
Rod Stephens

Visual Basic® 2010
Programmer’s Reference

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

 $39.99 USA
 $47.99 CAN

This comprehensive tutorial and reference guide provides program-
mers and developers of all skill and experience levels with a broad,
solid understanding of essential Visual Basic 2010 topics and clearly
explains how to use this powerful programming language to per-
form a variety of tasks. As a tutorial, the book describes the Visual
Basic language and covers essential Visual Basic topics. Also serving
as a reference guide, the material presents categorized information
regarding specific operations and reveals useful tips and tricks to
help you make the most of Visual Basic 2010.

Visual Basic 2010:

• Reviews the forms, controls, and other objects that Visual Basic provides
for building applications in a modern windowing environment

• Discusses the latest features of Visual Basic, including auto-
implemented properties, array literals and initializers, and nullable
optional parameters

• Explains how to customize the Visual Studio integrated development
environment

• Reviews WPF controls, error handling and debugging techniques, LINQ
features, user access security, and more

• Addresses object-oriented programming with Visual Basic 2010

• Details the various graphics classes in the GDI+

Rod Stephens frequently writes for such magazines as Visual Basic Developer,
Visual Basic Programmer’s Journal, and Dr. Dobb’s Journal. His web site
(vb-helper.com) receives several million hits per month. He is the author of more
than twenty books, including Visual Basic Programmer’s Reference, both the 2005
and 2008 editions.

Wrox Programmer’s References are designed to give the experienced developer
straight facts on a new technology, without hype or unnecessary explanations.
They deliver hard information with plenty of practical examples to help you
apply new tools to your development projects today.

Programming Languages/Visual Basic

Harness the capabilities
of Visual Basic 2010

Forums

the world.

ready to use.

to you.

Related Wrox Books

Beginning ASP.NET 4: in C# and VB
ISBN: 9780470502211
This introductory book offers helpful examples and step-by-step format and has code examples written in both C# and Visual
Basic. With this book you will gradually build a web site example that takes you through the processes of building basic ASP.
NET Web pages, adding features with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Microsoft Visual Basic 2010
ISBN: 9780470502228
This book not only shows you how to write Windows applications, web applications with ASP.NET, and Windows mobile and
embedded CE apps with Visual Basic 2010, but you’ll also get a thorough grounding in the basic nuts-and-bolts of writing good
code. You’ll be exposed to the very latest VB tools and techniques with coverage of both the Visual Studio 2010 and .NET 4
releases. Plus, the book walks you step by step through tasks, as you gradually master this exciting new release of Microsoft’s
popular and important programming language. Launch your Visual Basic programming career the right way with this practical,
thorough guide.

Beginning Microsoft Visual C# 2010
ISBN: 9780470502266
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out,” at every stage. By the end, you’ll be able to write useful programming
code following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming,
this book is the perfect one-stop resource.

Professional ASP.NET 4 in C# & VB
ISBN: 9780470502204
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4
and offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After
a fast-paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of
ASP.NET 4. You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional Visual Basic 2010 and .NET 4
ISBN: 9780470502242
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most,
this is your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need,
including .NET features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debug-
ging, Visual Studio features, and ASP.NET web programming.

Professional C# 4 and .NET 4
ISBN: 9780470502259
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework
features including LINQ, LINQ to SQL, LINQ to XML, WCF, WPF, Workflow, and Generics. Coverage also spans ASP.NET programming
with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest
capabilities of C# 4.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 9780470477229
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF
development and explains fundamental WPF concepts. It is packed with helpful examples and progresses through a range of
topics that gradually increase in their complexity.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

VISUAL BASIC® 2010

PROGRAMMER’S REFERENCE

INTRODUCTION .xli

PART I IDEI

CHAPTER 1 Introduction to the IDE . 3

CHAPTER 2 Menus, Toolbars, and Windows .17

CHAPTER 3 Customization . 43

CHAPTER 4 Windows Forms Designer . 47

CHAPTER 5 WPF Designer . 57

CHAPTER 6 Visual Basic Code Editor . 67

CHAPTER 7 Debugging. 85

PART II GETTING STARTED

CHAPTER 8 Selecting Windows Forms Controls . 99

CHAPTER 9 Using Windows Forms Controls . 117

CHAPTER 10 Windows Forms . 145

CHAPTER 11 Selecting WPF Controls .

171

CHAPTER 12 Using WPF Controls . 183

CHAPTER 13 WPF Windows . 221

CHAPTER 14 Program and Module Structure . 237

CHAPTER 15 Data Types, Variables, and Constants . 265

CHAPTER 16 Operators . 319

CHAPTER 17 Subroutines and Functions . 339

CHAPTER 18 Program Control Statements . 369

CHAPTER 19 Error Handling . 395

CHAPTER 20 Database Controls and Objects . 421

CHAPTER 21 LINQ . 473

CHAPTER 22 Custom Controls. 513

�

�

ffirs.indd i ffirs.indd i 12/31/09 9:04:47 PM12/31/09 9:04:47 PM

CHAPTER 23 Drag and Drop, and the Clipboard . 539

CHAPTER 24 UAC Security . 557

PART III OBJECT-ORIENTED PROGRAMMING

CHAPTER 25 OOP Concepts . 567

CHAPTER 26 Classes and Structures . 585

CHAPTER 27 Namespaces . 627

CHAPTER 28 Collection Classes . 641

CHAPTER 29 Generics. 671

PART IV GRAPHICS

CHAPTER 30 Drawing Basics . 687

CHAPTER 31 Brushes, Pens, and Paths . 721

CHAPTER 32 Text . 749

CHAPTER 33 Image Processing . 765

CHAPTER 34 Printing . 781

PART V INTERACTING WITH THE ENVIRONMENT

CHAPTER 35 Confi guration and Resources . 803

CHAPTER 36 Streams . 833

CHAPTER 37 File-System Objects . 847

CHAPTER 38 Windows Communication Foundation . 871

CHAPTER 39 Useful Namespaces . 881

PART VI APPENDIXES

APPENDIX A Useful Control Properties, Methods, and Events. 907

APPENDIX B Variable Declarations and Data Types . 919

APPENDIX C Operators . 929

APPENDIX D Subroutine and Function Declarations . 937

APPENDIX E Control Statements . 941

APPENDIX F Error Handling . 947

APPENDIX G Windows Forms Controls and Components . 949

�

�

�

�

ffirs.indd iiffirs.indd ii 12/31/09 9:04:48 PM12/31/09 9:04:48 PM

APPENDIX H WPF Controls . 1033

APPENDIX I Visual Basic Power Packs .1041

APPENDIX J Form Objects . 1045

APPENDIX K Classes and Structures .1061

APPENDIX L LINQ . 1065

APPENDIX M Generics . 1075

APPENDIX N Graphics . 1079

APPENDIX O Useful Exception Classes . 1091

APPENDIX P Date and Time Format Specifi ers . 1095

APPENDIX Q Other Format Specifi ers . 1099

APPENDIX R The Application Class .1105

APPENDIX S The My Namespace . 1109

APPENDIX T Streams .1125

APPENDIX U File-System Classes . 1131

APPENDIX V Index of Examples .1149

INDEX . 1171

ffirs.indd iiiffirs.indd iii 12/31/09 9:04:49 PM12/31/09 9:04:49 PM

ffirs.indd ivffirs.indd iv 12/31/09 9:04:49 PM12/31/09 9:04:49 PM

Visual Basic® 2010

PROGRAMMER’S REFERENCE

ffirs.indd vffirs.indd v 12/31/09 9:04:49 PM12/31/09 9:04:49 PM

ffirs.indd viffirs.indd vi 12/31/09 9:04:49 PM12/31/09 9:04:49 PM

Visual Basic® 2010

PROGRAMMER’S REFERENCE

Rod Stephens

ffirs.indd viiffirs.indd vii 12/31/09 9:04:49 PM12/31/09 9:04:49 PM

Visual Basic® 2010 Programmer’s Reference

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-49983-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009942303

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, and Wrox Programmer to Programmer are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may
not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation in the United
States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is
not associated with any product or vendor mentioned in this book.

ffirs.indd viiiffirs.indd viii 12/31/09 9:04:50 PM12/31/09 9:04:50 PM

For Terry Pratchett, whose genius is slowly being

stolen from himself and the world.
www.terrypratchettbooks.com

ffirs.indd ixffirs.indd ix 12/31/09 9:04:51 PM12/31/09 9:04:51 PM

ffirs.indd xffirs.indd x 12/31/09 9:04:51 PM12/31/09 9:04:51 PM

ABOUT THE AUTHOR

ROD STEPHENS started out as a mathematician, but while studying at MIT,
discovered the joys of programming and has been programming professionally
ever since. During his career, he has worked on an eclectic assortment of
applications in such fi elds as telephone switching, billing, repair dispatching,
tax processing, wastewater treatment, concert ticket sales, cartography, and
training for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and
ITT adjunct instructor. He has written more than 20 books that have been

translated into languages from all over the world, and more than 250 magazine articles covering
Visual Basic, C#, Visual Basic for Applications, Delphi, and Java. He is currently a regular
contributor to DevX (www.DevX.com).

Rod’s popular VB Helper web site www.vb-helper.com receives several million hits per month and
contains thousands of pages of tips, tricks, and example code for Visual Basic programmers, as well
as example code for this book.

ffirs.indd xiffirs.indd xi 12/31/09 9:04:51 PM12/31/09 9:04:51 PM

ffirs.indd xiiffirs.indd xii 12/31/09 9:04:51 PM12/31/09 9:04:51 PM

CREDITS

EXECUTIVE EDITOR

Robert Elliott

PROJECT EDITOR

Adaobi Obi Tulton

TECHNICAL EDITOR

John Mueller

PRODUCTION EDITOR

Eric Charbonneau

COPY EDITOR

Kim Cofer

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

PROOFREADER

Nancy Bell

INDEXER

Jack Lewis

COVER IMAGE

© Erik Isakson / Tetra images/ Jupiter Images

COVER DESIGNER

Michael Trent

ffirs.indd xiiiffirs.indd xiii 12/31/09 9:04:52 PM12/31/09 9:04:52 PM

ffirs.indd xivffirs.indd xiv 12/31/09 9:04:52 PM12/31/09 9:04:52 PM

ACKNOWLEDGMENTS

THANKS TO BOB ELLIOTT, Adaobi Obi Tulton, Kristin Vorce, Kim Cofer, and all of the others who
worked so hard to make this book possible.

Thanks also to John Mueller for giving me another perspective and the benefi t of his extensive
expertise. Visit www.mwt.net/~jmueller to learn about John’s books and to sign up for his free
newsletter .NET Tips, Trends & Technology eXTRA.

ffirs.indd xvffirs.indd xv 12/31/09 9:04:52 PM12/31/09 9:04:52 PM

ffirs.indd xviffirs.indd xvi 12/31/09 9:04:52 PM12/31/09 9:04:52 PM

CONTENTS

INTRODUCTION xli

PART I: IDE

CHAPTER 1: INTRODUCTION TO THE IDE 3

Diff erent IDE Appearances 4

IDE Confi gurations 5

Projects and Solutions 6

Starting the IDE 7

Creating a Project 10

Saving a Project 13

Summary 15

CHAPTER 2: MENUS, TOOLBARS, AND WINDOWS 17

Menus 17

File 18

Edit 21

View 23

Project 24

Build 29

Debug 30

Data 30

Format 31

Tools 31

Test 35

Help 37

Toolbars 37

Secondary Windows 37

Toolbox 39

Properties Window 40

Summary 41

ftoc.indd xviiftoc.indd xvii 12/31/09 8:47:22 PM12/31/09 8:47:22 PM

xviii

CONTENTS

CHAPTER 3: CUSTOMIZATION 43

Adding Commands 43

Making Keyboard Shortcuts 45

Summary 46

CHAPTER 4: WINDOWS FORMS DESIGNER 47

Setting Designer Options 47

Adding Controls 49

Selecting Controls 50

Copying Controls 50

Moving and Sizing Controls 51

Arranging Controls 52

Setting Properties 52

Setting Group Properties 52

Setting Diff erent Properties for Several Controls 53

Using Smart Tags 54

Adding Code to Controls 54

Summary 56

CHAPTER 5: WPF DESIGNER 57

Editor Weaknesses 58

Recognizing Designer Windows 59

Adding Controls 60

Selecting Controls 60

Copying Controls 61

Moving and Sizing Controls 62

Setting Properties 63

Setting Group Properties 63

Adding Code to Controls 64

Summary 64

CHAPTER 6: VISUAL BASIC CODE EDITOR 67

Margin Icons 68

Outlining 70

Tooltips 72

IntelliSense 73

Code Coloring and Highlighting 74

Code Snippets 77

Using Snippets 77

ftoc.indd xviiiftoc.indd xviii 12/31/09 8:47:24 PM12/31/09 8:47:24 PM

xix

CONTENTS

Creating Snippets 78

Architectural Tools 80

Rename 80

Go To Defi nition 81

Go To Type Defi nition 81

Highlight References 81

Find All References 81

Generate From Usage 82

The Code Editor at Runtime 83

Summary 84

CHAPTER 7: DEBUGGING 85

The Debug Menu 86

The Debug ➪ Windows Submenu 88

The Breakpoints Window 92

The Command and Immediate Windows 94

Summary 95

PART II: GETTING STARTED

CHAPTER 8: SELECTING WINDOWS FORMS CONTROLS 99

Controls Overview 99

Choosing Controls 104

Containing and Arranging Controls 105

Making Selections 107

Entering Data 108

Displaying Data 109

Providing Feedback 109

Initiating Action 111

Displaying Graphics 112

Displaying Dialog Boxes 113

Supporting Other Controls 113

Third-Party Controls 114

Summary 115

CHAPTER 9: USING WINDOWS FORMS CONTROLS 117

Controls and Components 117

Creating Controls 119

Creating Controls at Design Time 119

Adding Controls to Containers 120

ftoc.indd xixftoc.indd xix 12/31/09 8:47:25 PM12/31/09 8:47:25 PM

xx

CONTENTS

Creating Controls at Runtime 120

Properties 123

Properties at Design Time 124

Properties at Runtime 128

Useful Control Properties 129

Position and Size Properties 133

Methods 134

Events 134

Creating Event Handlers at Design Time 135

WithEvents Event Handlers 137

Setting Event Handlers at Runtime 137

Control Array Events 139

Validation Events 139

Summary 144

CHAPTER 10: WINDOWS FORMS 145

Transparency 146

About, Splash, and Login Forms 149

Mouse Cursors 150

Icons 152

Application Icons 154

Notifi cation Icons 154

Properties Adopted by Child Controls 155

Property Reset Methods 156

Overriding WndProc 156

SDI and MDI 158

MDI Features 159

MDI Events 162

MDI versus SDI 164

MRU Lists 165

Dialog Boxes 167

Wizards 169

Summary 170

CHAPTER 11: SELECTING WPF CONTROLS 171

Controls Overview 172

Containing and Arranging Controls 172

Making Selections 175

Entering Data 176

Displaying Data 177

Providing Feedback 177

Initiating Action 178

ftoc.indd xxftoc.indd xx 12/31/09 8:47:25 PM12/31/09 8:47:25 PM

xxi

CONTENTS

Presenting Graphics and Media 178

Providing Navigation 180

Managing Documents 180

Digital Ink 181

Summary 181

CHAPTER 12: USING WPF CONTROLS 183

WPF Concepts 183

Separation of User Interface and Code 184

WPF Control Hierarchies 185

WPF in the IDE 186

Editing XAML 186

Editing Visual Basic Code 190

XAML Features 192

Objects 193

Resources 196

Styles 197

Templates 199

Transformation 201

Animations 202

Drawing Objects 205

Procedural WPF 210

Documents 216

Flow Documents 216

Fixed Documents 218

XPS Documents 218

Summary 219

CHAPTER 13: WPF WINDOWS 221

Window Applications 221

Page Applications 224

Browser Applications 224

Frame Applications 226

PageFunction Applications 227

Wizard Applications 230

Summary 234

CHAPTER 14: PROGRAM AND MODULE STRUCTURE 237

Hidden Files 237

Code File Structure 242

Code Regions 243

ftoc.indd xxiftoc.indd xxi 12/31/09 8:47:26 PM12/31/09 8:47:26 PM

xxii

CONTENTS

Conditional Compilation 244

Namespaces 253

Typographic Code Elements 255

Comments 255

XML Comments 256

Line Continuation 260

Implicit Line Continuation 261

Line Joining 263

Line Labels 263

Summary 264

CHAPTER 15: DATA TYPES, VARIABLES, AND CONSTANTS 265

Data Types 266

Type Characters 268

Data Type Conversion 271

Narrowing Conversions 271

Data Type Parsing Methods 274

Widening Conversions 275

The Convert Class 275

ToString 275

Variable Declarations 276

Attribute_List 276

Accessibility 277

Shared 278

Shadows 279

ReadOnly 281

Dim 282

WithEvents 283

Name 284

Bounds_List 286

New 287

As Type and Inferred Types 288

Initialization_Expression 289

Initializing Collections 293

Multiple Variable Declarations 294

Option Explicit and Option Strict 295

Scope 298

Block Scope 298

Procedure Scope 300

Module Scope 300

Namespace Scope 301

ftoc.indd xxiiftoc.indd xxii 12/31/09 8:47:27 PM12/31/09 8:47:27 PM

xxiii

CONTENTS

Restricting Scope 302

Parameter Declarations 302

Property Procedures 304

Enumerated Data Types 307

Anonymous Types 310

Nullable Types 311

Constants 312

Accessibility 312

As Type 312

Initialization_Expression 313

Delegates 313

Naming Conventions 315

Summary 317

CHAPTER 16: OPERATORS 319

Arithmetic Operators 319

Concatenation Operators 320

Comparison Operators 321

Logical Operators 323

Bitwise Operators 324

Operator Precedence 325

Assignment Operators 326

The StringBuilder Class 328

Date and TimeSpan Operations 330

Operator Overloading 333

Operators with Nullable Types 336

Summary 337

CHAPTER 17: SUBROUTINES AND FUNCTIONS 339

Subroutines 339

Attribute_List 340

Inheritance_Mode 344

Accessibility 345

Subroutine_Name 346

Parameters 346

Implements interface.subroutine 354

Statements 356

Functions 356

Property Procedures 358

Extension Methods 359

ftoc.indd xxiiiftoc.indd xxiii 12/31/09 8:47:27 PM12/31/09 8:47:27 PM

xxiv

CONTENTS

Lambda Functions 360

Relaxed Delegates 363

Partial Methods 366

Summary 368

CHAPTER 18: PROGRAM CONTROL STATEMENTS 369

Decision Statements 369

Single-Line If Then 369

Multiline If Then 371

Select Case 371

Enumerated Values 374

IIf 375

If 377

Choose 378

Looping Statements 379

For Next 380

Non-Integer For Next Loops 382

For Each 383

Enumerators 386

Iterators 388

Do Loop Statements 388

While End 390

Exit and Continue 390

GoTo 391

Summary 394

CHAPTER 19: ERROR HANDLING 395

Bugs versus Unplanned Conditions 395

Catching Bugs 396

Catching Unplanned Conditions 398

Global Exception Handling 400

Structured Error Handling 402

Exception Objects 404

StackTrace Objects 406

Throwing Exceptions 406

Re-throwing Exceptions 409

Custom Exceptions 410

Visual Basic Classic Error Handling 411

On Error GoTo Line 412

On Error Resume Next 413

ftoc.indd xxivftoc.indd xxiv 12/31/09 8:47:28 PM12/31/09 8:47:28 PM

xxv

CONTENTS

On Error GoTo 0 414

On Error GoTo –1 414

Error-Handling Mode 416

Structured versus Classic Error Handling 416

The Err Object 418

Debugging 419

Summary 420

CHAPTER 20: DATABASE CONTROLS AND OBJECTS 421

Automatically Connecting to Data 421

Connecting to the Data Source 422

Adding Data Controls to the Form 425

Automatically Created Objects 428

Other Data Objects 430

Data Overview 431

Connection Objects 432

Transaction Objects 435

Data Adapters 438

Command Objects 443

DataSet 444

DataTable 449

DataRow 452

DataColumn 454

DataRelation 456

Constraints 459

DataView 461

DataRowView 464

Simple Data Binding 465

CurrencyManager 466

Complex Data Binding 469

Summary 471

CHAPTER 21: LINQ 473

Introduction to LINQ 474

Basic LINQ Query Syntax 476

From 476

Where 478

Order By 478

Select 479

Using LINQ Results 482

ftoc.indd xxvftoc.indd xxv 12/31/09 8:47:28 PM12/31/09 8:47:28 PM

xxvi

CONTENTS

Advanced LINQ Query Syntax 483

Join 483

Group By 485

Aggregate Functions 488

Set Operations 489

Limiting Results 489

LINQ Functions 490

LINQ Extension Methods 492

Method-Based Queries 492

Method-Based Queries with Lambda Functions 494

Extending LINQ 496

LINQ to Objects 500

LINQ to XML 500

XML Literals 500

LINQ Into XML 501

LINQ Out Of XML 503

LINQ to ADO.NET 506

LINQ to SQL and LINQ to Entities 506

LINQ to DataSet 507

PLINQ 510

Summary 511

CHAPTER 22: CUSTOM CONTROLS 513

Custom Controls in General 514

Create the Control Project 514

Make a Toolbox Icon 515

Test in the UserControl Test Container 516

Make a Test Project 516

Test the Control in the Test Project 517

Implement Properties, Methods, and Events 517

Other Custom Control Tasks 519

Add the Control to the Toolbox 519

Assign Attributes 520

Manage Design Time and Runtime 521

Derived Controls 522

Shadowing Parent Features 524

Hiding Parent Features 525

Composite Controls 526

Controls Built from Scratch 528

Components 530

Invisible Controls 531

ftoc.indd xxviftoc.indd xxvi 12/31/09 8:47:29 PM12/31/09 8:47:29 PM

xxvii

CONTENTS

Picking a Control Class 532

Controls and Components in Executable Projects 532

UserControls in Executable Projects 532

Inherited UserControls in Executable Projects 533

Controls in Executable Projects 533

Inherited Controls in Executable Projects 534

Components in Executable Projects 534

Custom Component Security 534

Strongly Named Assemblies 534

Using a Signature Authority 536

Summary 536

CHAPTER 23: DRAG AND DROP, AND THE CLIPBOARD 539

Drag-and-Drop Events 540

A Simple Example 541

Learning Data Types Available 543

Dragging within an Application 544

Accepting Dropped Files 545

Dragging Serializable Objects 546

Changing Format Names 549

Dragging Multiple Data Formats 550

Using the Clipboard 552

Summary 555

CHAPTER 24: UAC SECURITY 557

UAC Overview 557

Designing for UAC 558

Elevating Programs 562

User 562

Calling Program 562

Called Program 563

Summary 564

PART III: OBJECT-ORIENTED PROGRAMMING

CHAPTER 25: OOP CONCEPTS 567

Classes 567

Encapsulation 570

Inheritance 571

Inheritance Hierarchies 572

ftoc.indd xxviiftoc.indd xxvii 12/31/09 8:47:29 PM12/31/09 8:47:29 PM

xxviii

CONTENTS

Refi nement and Abstraction 573

“Has-a” and “Is-a” Relationships 575

Adding and Modifying Class Features 576

Interface Inheritance 578

Polymorphism 578

Method Overloading 580

Extension Methods 581

Summary 582

CHAPTER 26: CLASSES AND STRUCTURES 585

Classes 585

Attribute_list 586

Partial 587

Accessibility 588

Shadows 589

Inheritance 590

Implements interface 593

Structures 596

Structures Cannot Inherit 597

Structures Are Value Types 597

Memory Required 598

Heap and Stack Performance 599

Object Assignment 599

Parameter Passing 601

Boxing and Unboxing 602

Class Instantiation Details 602

Structure Instantiation Details 605

Garbage Collection 607

Finalize 608

Dispose 610

Constants, Properties, and Methods 612

Events 614

Declaring Events 614

Raising Events 616

Catching Events 616

Declaring Custom Events 618

Shared Variables 622

Shared Methods 623

Summary 625

ftoc.indd xxviiiftoc.indd xxviii 12/31/09 8:47:30 PM12/31/09 8:47:30 PM

xxix

CONTENTS

CHAPTER 27: NAMESPACES 627

The Imports Statement 628

Automatic Imports 630

Namespace Aliases 631

Namespace Elements 632

The Root Namespace 633

Making Namespaces 633

Classes, Structures, and Modules 635

Resolving Namespaces 636

Summary 639

CHAPTER 28: COLLECTION CLASSES 641

What Is a Collection? 641

Arrays 642

Array Dimensions 644

Lower Bounds 644

Resizing 645

Speed 646

Other Array Class Features 647

Collections 649

ArrayList 650

StringCollection 652

Strongly Typed Collections 652

Read-Only Strongly Typed Collections 654

NameValueCollection 654

Dictionaries 656

ListDictionary 656

Hashtable 657

HybridDictionary 659

Strongly Typed Dictionaries 659

Other Strongly Typed Derived Classes 660

StringDictionary 661

SortedList 661

CollectionsUtil 661

Stacks and Queues 662

Stack 662

Queue 663

Generics 665

Collection Initializers 667

Summary 668

ftoc.indd xxixftoc.indd xxix 12/31/09 8:47:30 PM12/31/09 8:47:30 PM

xxx

CONTENTS

CHAPTER 29: GENERICS 671

Advantages of Generics 671

Defi ning Generics 672

Generic Constructors 674

Multiple Types 674

Constrained Types 676

Using Generics 678

Imports Aliases 679

Derived Classes 680

Predefi ned Generic Classes 680

Generic Methods 681

Generics and Extension Methods 681

Summary 683

PART IV: GRAPHICS

CHAPTER 30: DRAWING BASICS 687

Drawing Overview 688

Drawing Namespaces 690

System.Drawing 690

System.Drawing.Drawing2D 692

System.Drawing.Imaging 694

System.Drawing.Text 695

System.Drawing.Printing 698

Graphics 699

Drawing Methods 699

Filling Methods 703

Other Graphics Properties and Methods 704

Anti-Aliasing 707

Transformation Basics 709

Advanced Transformations 713

Saving and Restoring Graphics State 716

Drawing Events 717

Summary 719

CHAPTER 31: BRUSHES, PENS, AND PATHS 721

Pen 721

Alignment 724

CompoundArray 725

ftoc.indd xxxftoc.indd xxx 12/31/09 8:47:31 PM12/31/09 8:47:31 PM

xxxi

CONTENTS

Custom Line Caps 726

Pen Transformations 727

Brush 729

SolidBrush 729

TextureBrush 729

HatchBrush 731

LinearGradientBrush 732

PathGradientBrush 736

GraphicsPath Objects 741

Garbage-Collection Issues 745

Summary 747

CHAPTER 32: TEXT 749

Drawing Text 750

Text Formatting 750

FormatFlags 752

Tab Stops 755

Trimming 755

MeasureString 756

Font Metrics 759

Summary 763

CHAPTER 33: IMAGE PROCESSING 765

Image 765

Bitmap 767

Loading Bitmaps 768

Saving Bitmaps 769

Implementing AutoRedraw 771

Pixel-by-Pixel Operations 772

Metafi le Objects 777

Summary 779

CHAPTER 34: PRINTING 781

How Not to Print 782

Basic Printing 783

Printing Text 786

Centering Printouts 792

Fitting Pictures to the Page 794

Simplifying Drawing and Printing 796

Summary 799

ftoc.indd xxxiftoc.indd xxxi 12/31/09 8:47:31 PM12/31/09 8:47:31 PM

xxxii

CONTENTS

PART V: INTERACTING WITH THE ENVIRONMENT

CHAPTER 35: CONFIGURATION AND RESOURCES 803

My 803

Me and My 804

My Sections 805

Environment 805

Setting Environment Variables 806

Using Environ 807

Using System.Environment 807

Registry 809

Native Visual Basic Registry Methods 810

My.Computer.Registry 812

Confi guration Files 815

Resource Files 818

Application Resources 819

Using Application Resources 820

Embedded Resources 821

Satellite Resources 822

Localization Resources 823

ComponentResourceManager 824

Application 827

Application Properties 827

Application Methods 829

Application Events 830

Summary 832

CHAPTER 36: STREAMS 833

Stream 834

FileStream 835

MemoryStream 837

Buff eredStream 837

BinaryReader and BinaryWriter 838

TextReader and TextWriter 840

StringReader and StringWriter 841

StreamReader and StreamWriter 842

OpenText, CreateText, and AppendText 843

Custom Stream Classes 845

Summary 845

ftoc.indd xxxiiftoc.indd xxxii 12/31/09 8:47:32 PM12/31/09 8:47:32 PM

xxxiii

CONTENTS

CHAPTER 37: FILE-SYSTEM OBJECTS 847

Permissions 847

Visual Basic Methods 848

File Methods 848

File-System Methods 850

Sequential-File Access 851

Random-File Access 851

Binary-File Access 854

.NET Framework Classes 854

Directory 854

File 856

DriveInfo 858

DirectoryInfo 858

FileInfo 860

FileSystemInfo 862

FileSystemWatcher 862

Path 865

My.Computer.FileSystem 867

My.Computer.FileSystem.SpecialDirectories 869

Summary 870

CHAPTER 38: WINDOWS COMMUNICATION FOUNDATION 871

WCF Concepts 872

WCF Example 872

Building the Initial Service 873

Building QuoteService 876

Testing QuoteService 877

Building QuoteClient 878

Summary 879

CHAPTER 39: USEFUL NAMESPACES 881

Root Namespaces 882

The Microsoft Namespace 882

The System Namespace 883

Advanced Examples 885

Regular Expressions 885

XML 887

Cryptography 890

ftoc.indd xxxiiiftoc.indd xxxiii 12/31/09 8:47:32 PM12/31/09 8:47:32 PM

xxxiv

CONTENTS

Refl ection 894

TPL 898

Summary 902

PART VI: APPENDIXES

APPENDIX A: USEFUL CONTROL PROPERTIES, METHODS,
AND EVENTS 907

Properties 907

Methods 911

Events 913

Event Sequences 916

Mouse Events 917

Resize Events 918

Move Events 918

APPENDIX B: VARIABLE DECLARATIONS AND DATA TYPES 919

Variable Declarations 919

Initialization Expressions 920

With 921

From 921

Using 922

Enumerated Type Declarations 923

XML Variables 923

Option Explicit and Option Strict 923

Option Infer 923

Data Types 924

Data Type Characters 925

Literal Type Characters 926

Data Type Conversion Functions 926

CType and DirectCast 928

APPENDIX C: OPERATORS 929

Arithmetic Operators 929

Concatenation Operators 930

Comparison Operators 930

Logical Operators 931

Bitwise Operators 932

Operator Precedence 932

Assignment Operators 933

ftoc.indd xxxivftoc.indd xxxiv 12/31/09 8:47:33 PM12/31/09 8:47:33 PM

xxxv

CONTENTS

Choose, If, and IIf 933

Date and TimeSpan Operators 934

Operator Overloading 935

APPENDIX D: SUBROUTINE AND FUNCTION DECLARATIONS 937

Subroutines 937

Functions 937

Property Procedures 938

Lambda Functions and Expressions 939

Extension Methods 940

Partial Methods 940

APPENDIX E: CONTROL STATEMENTS 941

Decision Statements 941

Single-Line If Then 941

Multiline If Then 942

Select Case 942

If and IIf 943

Choose 944

Looping Statements 944

For Next 944

For Each 944

Do Loop 945

While End 946

GoTo 946

APPENDIX F: ERROR HANDLING 947

Structured Error Handling 947

Throwing Exceptions 947

Classic Error Handling 948

APPENDIX G: WINDOWS FORMS CONTROLS AND COMPONENTS 949

Components’ Purposes 951

Pointer 953

BackgroundWorker 953

BindingNavigator 953

BindingSource 953

Button 954

CheckBox 954

CheckedListBox 955

ftoc.indd xxxvftoc.indd xxxv 12/31/09 8:47:33 PM12/31/09 8:47:33 PM

xxxvi

CONTENTS

ColorDialog 956

ComboBox 957

ContextMenuStrip 959

DataGridView 959

DataSet 959

DateTimePicker 960

DirectoryEntry 961

DirectorySearcher 961

DomainUpDown 962

ErrorProvider 962

EventLog 963

FileSystemWatcher 964

FlowLayoutPanel 964

FolderBrowserDialog 964

FontDialog 965

GroupBox 967

HelpProvider 968

HScrollBar 969

ImageList 969

Label 970

LinkLabel 970

ListBox 972

ListView 974

ListView Helper Code 976

Custom ListView Sorting 978

MaskedTextBox 979

MenuStrip 982

MessageQueue 984

MonthCalendar 984

NotifyIcon 987

NumericUpDown 988

OpenFileDialog 989

PageSetupDialog 992

Panel 993

PerformanceCounter 994

PictureBox 994

PrintDialog 995

PrintDocument 998

PrintPreviewControl 999

PrintPreviewDialog 1001

Process 1001

ftoc.indd xxxviftoc.indd xxxvi 12/31/09 8:47:34 PM12/31/09 8:47:34 PM

xxxvii

CONTENTS

ProgressBar 1002

PropertyGrid 1003

RadioButton 1003

RichTextBox 1005

SaveFileDialog 1010

SerialPort 1010

ServiceController 1011

SplitContainer 1011

Splitter 1012

StatusStrip 1013

TabControl 1014

TableLayoutPanel 1017

TextBox 1018

Timer 1021

ToolStrip 1021

ToolStripContainer 1022

ToolTip 1023

TrackBar 1024

TreeView 1025

VScrollBar 1030

WebBrowser 1030

APPENDIX H: WPF CONTROLS 1033

APPENDIX I: VISUAL BASIC POWER PACKS 1041

Microsoft Power Packs 1041

DataRepeater 1042

Line and Shape Controls 1042

Printer Compatibility Library 1042

PrintForm Component 1043

GotDotNet Power Pack 1043

Power Toys Pack Installer 1044

Refactor! 1044

APPENDIX J: FORM OBJECTS 1045

Properties 1045

Methods 1051

Events 1055

Property-Changed Events 1059

ftoc.indd xxxviiftoc.indd xxxvii 12/31/09 8:47:34 PM12/31/09 8:47:34 PM

xxxviii

CONTENTS

APPENDIX K: CLASSES AND STRUCTURES 1061

Classes 1061

Structures 1062

Constructors 1062

Events 1063

APPENDIX L: LINQ 1065

Basic LINQ Query Syntax 1065

From 1065

Where 1065

Order By 1066

Select 1066

Distinct 1067

Join 1067

Group By 1067

Limiting Results 1068

Using Query Results 1069

LINQ Functions 1069

LINQ to XML 1071

LINQ Into XML 1071

LINQ Out Of XML 1071

LINQ to DataSet 1073

Method-Based Queries 1074

PLINQ 1074

APPENDIX M: GENERICS 1075

Generic Classes 1075

Generic Extensions 1076

Generic Methods 1077

Prohibited Generics 1077

APPENDIX N: GRAPHICS 1079

Graphics Namespaces 1079

System.Drawing 1079

System.Drawing.Drawing2D 1080

System.Drawing.Imaging 1081

System.Drawing.Printing 1082

System.Drawing.Text 1082

Drawing Classes 1082

ftoc.indd xxxviiiftoc.indd xxxviii 12/31/09 8:47:35 PM12/31/09 8:47:35 PM

xxxix

CONTENTS

Graphics 1082

Pen 1086

Brushes 1087

GraphicsPath 1087

StringFormat 1088

Image 1089

Bitmap 1090

Metafi le 1090

APPENDIX O: USEFUL EXCEPTION CLASSES 1091

Standard Exception Classes 1091

Custom Exception Classes 1094

APPENDIX P: DATE AND TIME FORMAT SPECIFIERS 1095

Standard Format Specifi ers 1095

Custom Format Specifi ers 1096

APPENDIX Q: OTHER FORMAT SPECIFIERS 1099

Standard Numeric Format Specifi ers 1099

Custom Numeric Format Specifi ers 1100

Numeric Formatting Sections 1101

Composite Formatting 1102

Enumerated Type Formatting 1102

APPENDIX R: THE APPLICATION CLASS 1105

Properties 1105

Methods 1107

Events 1108

APPENDIX S: THE MY NAMESPACE 1109

My.Application 1109

My.Computer 1112

Audio 1112

Clipboard 1113

Clock 1114

FileSystem 1114

Info 1116

Keyboard 1117

Mouse 1117

ftoc.indd xxxixftoc.indd xxxix 12/31/09 8:47:35 PM12/31/09 8:47:35 PM

xl

CONTENTS

Name 1117

Network 1117

Ports 1118

Registry 1120

Screen 1122

My.Forms 1123

My.Resources 1124

My.User 1124

APPENDIX T: STREAMS 1125

Stream Class Summary 1125

Stream 1126

BinaryReader and BinaryWriter 1127

TextReader and TextWriter 1129

StringReader and StringWriter 1130

StreamReader and StreamWriter 1130

Text File Stream Methods 1130

APPENDIX U: FILE-SYSTEM CLASSES 1131

Visual Basic Methods 1131

Framework Classes 1133

FileSystem 1133

Directory 1135

File 1136

DriveInfo 1138

DirectoryInfo 1140

FileInfo 1141

FileSystemWatcher 1143

Path 1144

My.Computer.FileSystem 1146

My.Computer.FileSystem.SpecialDirectories 1148

APPENDIX V: INDEX OF EXAMPLES 1149

INDEX 1171

ftoc.indd xlftoc.indd xl 12/31/09 8:47:36 PM12/31/09 8:47:36 PM

INTRODUCTION

It has been said that Sir Isaac Newton was the last person to know everything. He was an
accomplished physicist (his three laws of motion were the basis of classical mechanics, which
defi ned astrophysics for three centuries), mathematician (he was one of the inventors of calculus and
developed Newton ’ s Method for fi nding roots of equations), astronomer, natural philosopher, and
alchemist (okay, maybe the last one was a mistake). He invented the refl ecting telescope, a theory of
color, a law of cooling, and studied the speed of sound.

Just as important, he was born before relativity, quantum mechanics, gene sequencing,
thermo dynamics, parallel computation, and a swarm of other extremely diffi cult branches
of science.

If you ever used Visual Basic 3, you too could have known everything. Visual Basic 3 was a
reasonably small but powerful language. Visual Basic 4 added classes to the language and made
Visual Basic much more complicated. Versions 4, 5, and 6 added more support for database
programming and other topics such as custom controls, but Visual Basic was still a fairly
understandable language, and if you took the time you could become an expert in just about
all of it.

Visual Basic .NET changed the language in much more fundamental ways and made it much harder
to understand every last detail of Visual Basic. The .NET Framework added powerful new tools to
Visual Basic, but those tools came at the cost of increased complexity. Associated technologies have
been added to the language at an ever - increasing rate, so today it is impossible for anyone to be an
expert on every topic that deals with Visual Basic.

To cover every nook and cranny in Visual Basic you would need an in - depth understanding of
database technologies, custom controls, custom property editors, XML, cryptography, serialization,
two - and three - dimensional graphics, multi - threading, refl ection, the code document object model
(DOM), diagnostics, globalization, Web Services, inter - process communication, work fl ow, Offi ce,
ASP, Windows Forms, WPF, and much more.

This book doesn ’ t even attempt to cover all of these topics. Instead, it provides a broad, solid
understanding of essential Visual Basic topics. It explains the powerful development environment
that makes Visual Basic such a productive language. It describes the Visual Basic language itself and
explains how to use it to perform a host of important development tasks.

It also explains the forms, controls, and other objects that Visual Basic provides for building
applications in a modern windowing environment.

This book may not cover every possible topic related to Visual Basic, but it does cover the majority
of the technologies that developers need to build sophisticated applications.

flast.indd xliflast.indd xli 12/31/09 8:48:44 PM12/31/09 8:48:44 PM

INTRODUCTION

xlii

SHOULD YOU USE VISUAL BASIC 2010?

Software engineers talk about fi ve generations of languages (so far). A fi rst - generation language
(1GL) is machine language : 0s and 1s. For example, the binary command 00110010 00001110
00010010 00000000 might mean to combine the register CL with the value at address 12H by
using the exclusive - or (XOR) operation. Pretty incomprehensible, right? You actually had to
program some early computers by painstakingly toggling switches to enter 0s and 1s!

A second - generation language (2GL) is an assembly language that provides terse mnemonics for
machine instructions. It provides few additional tools beyond an easier way to write machine code.
In assembly language, the previous XOR command might look like XOR CL, [12H] . It ’ s a lot better
than assembly language but it ’ s still pretty hard to read.

Third - generation languages (3GL s) are higher - level languages such as Pascal and FORTRAN. They
provide much more sophisticated language elements such as subroutines, loops, and data structures.
In Visual Basic, the previous example might look something like total = total Xor value .

WHERE DID THE REGISTER GO?

Higher-level languages generally don’t directly use registers or memory addresses.
Instead they work with variables such as total and value. The language’s
compiler fi gures out when a value should be placed in a register or other location.

Fourth - generation languages (4GL s) are “ natural languages , ” such as SQL. They let developers use
a language that is sort of similar to a human language to execute programming tasks. For example,
the SQL statement “ SELECT * FROM Customers WHERE Balance > 50 ” tells the database to
return information about customers that owe more than $50.

Fifth - generation languages (5GL s) provide powerful, highly graphical development environments to
allow developers to use the underlying language in more sophisticated ways. The emphasis is more
on the development environment than the language itself.

The Visual Studio development environment is an extremely powerful fi fth - generation tool. It pro-
vides graphical editors to make building forms and editing properties easy and intuitive; IntelliSense
to help developers remember what to type next; auto - completion so developers can use meaning-
ful variable names without needing to waste time typing them completely by hand; tools that show
call hierarchies indicating which routines call which others; and breakpoints, watches, and other
advanced debugging tools that make building applications easier.

Visual Studio is so powerful that the answer to the question of whether you should use it is practi-
cally obvious: if you want to write powerful applications that run in a Windows operating system,
you should use Visual Studio.

Visual Basic is not the only language that uses Visual Studio. The C# language does, too, so now the
question is, should you use Visual Basic or C#?

flast.indd xliiflast.indd xlii 12/31/09 8:48:45 PM12/31/09 8:48:45 PM

INTRODUCTION

xliii

LOTS OF LANGUAGES

Visual Studio also supports a few other languages including Visual C++, Visual J#,
and Visual F#, and in theory it could support others in the future. Visual Studio
originally built for Visual Basic and C# was designed to work with Visual Studio so
Visual Studio provides the most support for these.

A Visual Basic programmer ’ s joke asks, “ What ’ s the difference between Visual Basic .NET and C#?
About three months! ” The implication is that Visual Basic .NET syntax is easier to understand and
building applications with it is faster. Similarly, C# programmers have their jokes about Visual Basic
.NET, implying that C# is more powerful.

In fact, Visual Basic .NET is not a whole lot easier to use than C#, and C# is not signifi cantly more
powerful. The basic form of the two languages is very similar. Aside from a few stylistic differences
(Visual Basic is line - oriented; C# uses lots of braces and semicolons), the languages are comparable.
Both use the Visual Studio development environment, both provide access to the .NET Framework of
support classes and tools, and both provide similar syntax for performing basic programming tasks.

The main difference between these languages is one of style. If you have experience with previous
versions of Visual Basic, you will probably fi nd Visual Basic 2010 easier to get used to. If you have
experience with C++ or Java, you will probably fi nd C# (or Visual C++ or Visual J#) easy to learn.

Visual Basic does have some ties with other Microsoft products that increase its value. For example,
Active Server Pages (ASP) and ASP.NET use Visual Basic to create interactive web pages. Microsoft
Offi ce applications (Word, Excel, PowerPoint, and so forth) and many third - party tools use Visual
Basic for Applications (VBA) as a macro programming language. If you know Visual Basic, you
have a big head start in using these other languages. ASP and VBA are based on pre - .NET versions
of Visual Basic, so you won ’ t instantly know how to use them, but you ’ ll have an advantage if you
need to learn ASP or VBA.

If you are new to programming, either Visual Basic 2010 or C# is a good choice. I think Visual
Basic 2010 is a little easier to learn, but I may be slightly biased because I ’ ve been using Visual Basic
since long before C# was invented. You won ’ t be making a big mistake either way, and you can
easily switch later, if necessary.

WHO SHOULD READ THIS BOOK

This book is intended for programmers of all levels. It describes the Visual Basic 2010 language
from scratch, so you don ’ t need experience with previous versions of the language. The book also
covers many intermediate and advanced topics. It covers topics in enough depth that even experi-
enced developers will discover new tips, tricks, and language details. After you have mastered the
language, you may still fi nd useful tidbits throughout the book, and the reference appendixes will
help you look up easily forgotten details.

flast.indd xliiiflast.indd xliii 12/31/09 8:48:47 PM12/31/09 8:48:47 PM

INTRODUCTION

xliv

The chapters move quickly through the more introductory material. If you have never programmed
before and are intimidated by computers, you might want to read a more introductory book fi rst. If
you are a beginner who ’ s not afraid of the computer, you should have few problems learning Visual
Basic 2010 from this book.

If you have programmed in any other language, fundamentals such as variable declarations, data
types, and arrays should be familiar to you, so you should have no problem with this book. The
index and reference appendixes should be particularly useful in helping you translate from the lan-
guages you already know into the corresponding Visual Basic syntax.

HOW THIS BOOK IS ORGANIZED

The chapters in this book are divided into fi ve parts plus appendixes. The chapters in each part
are described here. If you are an experienced programmer, you can use these descriptions to decide
which chapters to skim and which to read in detail.

Part I: IDE

The chapters in this part of the book describe the Visual Studio integrated development
environment (IDE) from a Visual Basic developer ’ s point of view. The IDE is mostly the same for
C# and other developers, but a few differences exist, such as which keyboard shortcuts perform
which tasks.

Chapter 1, “ Introduction to the IDE, ” explains how to get started using the Visual Studio integrated
development environment. It tells how to confi gure the IDE for different kinds of development. It
defi nes and describes Visual Basic projects and solutions, and shows how to create, run, and save a
new project.

Chapter 2, “ Menus, Toolbars, and Windows, ” describes the most useful and important commands
available in the IDE ’ s menus and toolbars. The IDE ’ s menus and toolbars include hundreds of com-
mands, so this chapter covers only those that are the most useful.

Chapter 3, “ Customization, ” explains how to customize the IDE. It tells how you can create, hide,
and rearrange menus and toolbars to make it easy to use the tools that you fi nd most useful.

Chapter 4, “ Windows Forms Designer, ” describes the designer you can use to build Windows
Forms. It explains how to create, size, move, and copy controls. It tells how to set control properties
and add code to respond to control events. It also explains how to use handy designer tools such as
smart tags and command verbs.

Chapter 5, “ WPF Designer, ” explains how to use the Windows Presentation Foundation (WPF)
form designer. This chapter is similar to Chapter 4 except that it covers WPF forms instead of
Windows Forms.

flast.indd xlivflast.indd xliv 12/31/09 8:48:48 PM12/31/09 8:48:48 PM

INTRODUCTION

xlv

Chapter 6, “ Visual Basic Code Editor, ” describes one of the most important windows used by
developers: the code editor. It explains how to write code, set breakpoints, use code snippets, and
get the most out of IntelliSense.

Chapter 7, “ Debugging, ” explains debugging tools provided by Visual Studio. It describes the
debugging windows and explains techniques such as setting complex breakpoints to locate bugs.

Part II: Getting Started

The chapters in this part of the book explain the bulk of the Visual Basic language and the objects
that support it. They explain the forms, controls, and other objects that a program uses to build a
user interface, and they tell how you can put code behind those objects to implement the program ’ s
functionality.

Chapter 8, “ Selecting Windows Forms Controls, ” provides an overview of the Windows Forms
controls that you can put on a form. It groups the controls by category to help you fi nd the controls
you can use for a particular purpose.

Chapter 9, “ Using Windows Forms Controls, ” gives more detail about how you can use Windows
Forms controls. It explains how you can create controls at design time or runtime, how to set
complex property values, and how to use useful properties that are common to many different kinds
of controls. It explains how to add event handlers to process control events and how to validate
user - entered data.

Chapter 10, “ Windows Forms, ” describes the forms you use in a Windows Forms application.
Technically, forms are just another kind of control, but their unique position in the application ’ s
architecture means they have some special properties, and this chapter describes them.

Chapter 11, “ Selecting WPF Controls, ” provides an overview of WPF controls. It groups the
controls by category to help you fi nd the controls you can use for a particular purpose. This chapter
is similar to Chapter 8 except it covers WPF controls instead of Windows Forms controls.

Chapter 12, “ Using WPF Controls, ” gives more detail about how you can use WPF controls.
This chapter is similar to Chapter 9 except it deals with WPF controls instead of Windows Forms
controls.

Chapter 13, “ WPF Windows, ” describes the windows that WPF applications use in place of
Windows forms. This chapter is similar to Chapter 10 except it deals with WPF windows instead
of Windows forms.

Chapter 14, “ Program and Module Structure, ” describes the most important fi les that make up a
Visual Basic project. It describes some of the hidden fi les that projects contain and explains some
of the structure that you can give to code within a module, such as code regions and conditionally
compiled code.

flast.indd xlvflast.indd xlv 12/31/09 8:48:49 PM12/31/09 8:48:49 PM

INTRODUCTION

xlvi

Chapter 15, “ Data Types, Variables, and Constants, ” explains the standard data types provided by
Visual Basic. It shows how to declare and initialize variables and constants, and explains variable
scope. It discusses technical topics, such as value and reference types, passing parameters by value
or reference, and creating parameter variables on the fl y. It also explains how to create and initialize
arrays, enumerated types, and structures.

Chapter 16, “ Operators, ” describes the operators a program uses to perform calculations. These
include mathematical operators (+, *, \), string operators (&), and Boolean operators (And, Or).
The chapter explains operator precedence and potentially confusing type conversion issues that
arise when an expression combines more than one type of operator (for example, arithmetic and
Boolean).

Chapter 17, “ Subroutines and Functions, ” explains how you can use subroutines and functions
to break a program into manageable pieces. It describes routine overloading and scope. It also
describes lambda functions and relaxed delegates.

Chapter 18, “ Program Control Statements, ” describes the statements that a Visual Basic program
uses to control code execution. These include decision statements, such as If, Then, or Else and
looping statements, such as For and Next.

Chapter 19, “ Error Handling, ” explains error handling and debugging techniques. It describes the
Try Catch structured error handler, in addition to the older On Error statement inherited from early
versions of Visual Basic. It discusses typical actions a program might take when it catches an error.
It also describes important techniques for preventing errors and making errors more obvious when
they do occur.

Chapter 20, “ Database Controls and Objects, ” explains how to use the standard Visual
Basic database controls. These include database connection components that manage connections
to a database, DataSet components that hold data within an application, and data adapter controls
that move data between databases and DataSets.

Chapter 21, “ LINQ, ” describes language integrated query (LINQ) features. It explains how you
can write SQL - like queries to select data from or into objects, XML, or database objects. It also
explains PLINQ, a parallel version of LINQ that can provide improved performance on multi - core
systems.

Chapter 22, “ Custom Controls, ” explains how to build your own customized controls that you can
then use in other applications. It covers the three main methods for creating a custom control:
derivation, composition, and building from scratch. This chapter also provides several examples that
you can use as starting points for controls of your own.

Chapter 23, “ Drag and Drop, and the Clipboard, ” explains how a Visual Basic program can
support drag - and - drop operations. It tells how your program can start a drag to another
application, respond to drag operations started by another application, and receive a drop from
another application. This chapter also explains how you can copy data to and from the clipboard.
Using the clipboard is similar to certain types of drag - and - drop operations, so these topics fi t
naturally in one chapter.

flast.indd xlviflast.indd xlvi 12/31/09 8:48:49 PM12/31/09 8:48:49 PM

INTRODUCTION

xlvii

Chapter 24, “ UAC Security, ” describes the User Account Control (UAC) security model used by the
Vista and Windows 7 operating systems. With UAC security, all users run with reduced “ normal ”
user privileges. If a program must perform tasks requiring administrator permissions, a UAC dialog
box allows you to elevate the application ’ s privilege level. This chapter describes UAC security and
explains how you can mark a program for privilege elevation.

Part III: Object - Oriented Programming

This part explains fundamental concepts in object - oriented programming (OOP) with Visual Basic.
It also describes some of the more important classes and objects that you can use when building an
application.

Chapter 25, “ OOP Concepts, ” explains the fundamental ideas behind object - oriented programming
(OOP). It describes the three main features of OOP: encapsulation, polymorphism, and inheritance. It
explains the benefi ts of these features, and tells how you can take advantage of them in Visual Basic.

Chapter 26, “ Classes and Structures, ” explains how to declare and use classes and structures. It
explains what classes and structures are, and it describes their differences. It shows the basic decla-
ration syntax and tells how to create instances of classes and structures. It also explains some of the
trickier class issues such as private class scope, declaring events, and shared variables and methods.

Chapter 27, “ Namespaces, ” explains namespaces. It discusses how Visual Studio uses namespaces
to categorize code and to prevent name collisions. It describes a project ’ s root namespace, tells how
Visual Basic uses namespaces to resolve names (such as function and class names), and demonstrates
how you can add namespaces to an application yourself.

Chapter 28, “ Collection Classes, ” explains classes included in Visual Studio that you can use to
hold groups of objects. It describes the various collection, dictionary, queue, and stack classes; tells
how to make strongly typed versions of those classes; and gives some guidance on deciding which
class to use under different circumstances.

Chapter 29, “ Generics, ” explains templates you can use to build new classes designed to work with
specifi c data types. For example, you can build a generic binary tree, and then later use it to build
classes to represent binary trees of customer orders, employees, or work items.

Part IV: Graphics

The chapters in this part of the book describe graphics in Visual Basic 2010. They explain the
Graphics Device Interface+ (GDI+) routines that programs use to draw images in Visual Basic. They
explain how to draw lines and text; how to draw and fi ll circles and other shapes; and how to load,
manipulate, and save bitmap images. This part also explains how to generate printed output and
how to send reports to the screen or to the printer.

Chapter 30, “ Drawing Basics, ” explains the fundamentals of drawing graphics in Visual Basic 2010.
It describes the graphics namespaces and the classes they contain. It describes the most important
of these classes, Graphics, in detail. It also describes the Paint event handler and other events that a
program should use to keep its graphics up to date.

flast.indd xlviiflast.indd xlvii 12/31/09 8:48:50 PM12/31/09 8:48:50 PM

INTRODUCTION

xlviii

Chapter 31, “ Brushes, Pens, and Paths, ” explains the most important graphics classes after
Graphics: Pen and Brush. It tells how you can use Pens to draw solid lines, dashed lines, lines with
custom dash patterns, and lines with custom lengthwise stripe patterns. It tells how to use Brushes
to fi ll areas with colors, hatch patterns, linear color gradients, color gradients that follow a path,
and tiled images. This chapter also describes the GraphicsPath class, which represents a series of
lines, shapes, curves, and text.

Chapter 32, “ Text, ” explains how to draw strings of text. It shows how to create different kinds of
fonts, determine exactly how big text will be when drawn in a particular font, and use GDI+ func-
tions to make positioning text simple. It shows how to use a StringFormat object to determine how
text is aligned, wrapped, and trimmed, and how to read and defi ne tab stops.

Chapter 33, “ Image Processing, ” explains how to load, modify, and save image fi les. It shows how to
read and write the pixels in an image, and how to save the result in different fi le formats such as BMP,
GIF, and JPEG. It tells how to use images to provide auto - redraw features, and how to manipulate an
image pixel - by - pixel, both using a Bitmap ’ s GetPixel and SetPixel methods and using “ unsafe ” access
techniques that make pixel manipulation much faster than is possible with normal GDI+ methods.

Chapter 34, “ Printing, ” explains different ways that a program can send output to the printer. It
shows how you can use the PrintDocument object to generate printout data. You can then use the
PrintDocument to print the data immediately, use a PrintDialog control to let the user select the
printer and set its characteristics, or use a PrintPreviewDialog control to let the user preview the
results before printing.

Part V: Interacting with the Environment

The chapters in this part of the book explain how an application can interact with its environ-
ment. They show how the program can save and load data in external sources (such as the System
Registry, resource fi les, and text fi les); work with the computer ’ s screen, keyboard, and mouse; and
interact with the user through standard dialog controls.

Chapter 35, “ Confi guration and Resources, ” describes some of the ways that a Visual Basic
program can store confi guration and resource values for use at runtime. Some of the most useful of
these include environment variables, the Registry, confi guration fi les, and resource fi les.

Chapter 36, “ Streams, ” explains the classes that a Visual Basic application can use to work with
stream data. Some of these classes are FileStream, MemoryStream, BufferedStream, TextReader,
and TextWriter.

Chapter 37, “ File - System Objects, ” describes classes that let a Visual Basic application interact with
the fi le system. These include classes such as Directory, DirectoryInfo, File, and FileInfo that make it
easy to create, examine, move, rename, and delete directories and fi les.

Chapter 38, “ Windows Communication Foundation, ” describes the Windows Communication
Foundation (WCF), a library and set of tools that make building service - oriented applications easier.
This chapter explains how to use new WCF attributes to easily defi ne a service, how to use confi gu-
ration fi les to confi gure the service, and how to use WCF tools to consume the service.

flast.indd xlviiiflast.indd xlviii 12/31/09 8:48:50 PM12/31/09 8:48:50 PM

INTRODUCTION

xlix

Chapter 39, “ Useful Namespaces, ” describes some of the more useful namespaces defi ned by the
.NET Framework. It provides a brief overview of some of the most important System namespaces
and gives more detailed examples that demonstrate regular expressions, XML, cryptography, refl ec-
tion, threading, parallel programming, and Direct3D.

Part VI: Appendixes

The book ’ s appendixes provide a categorized reference of the Visual Basic 2010 language. You can
use them to quickly review the syntax of a particular command or refresh your memory of what a
particular class can do. The chapters earlier in the book give more context, explaining how to per-
form specifi c tasks and why one approach might be better than another.

Appendix A, “ Useful Control Properties, Methods, and Events, ” describes properties, methods, and
events that are useful with many different kinds of controls.

Appendix B, “ Variable Declarations and Data Types, ” summarizes the syntax for declaring vari-
ables. It also gives the sizes and ranges of allowed values for the fundamental data types.

Appendix C, “ Operators, ” summarizes the standard operators such as +, < < , OrElse, and Like. It
also gives the syntax for operator overloading.

Appendix D, “ Subroutine and Function Declarations, ” summarizes the syntax for subroutine,
function, and property procedure declarations. It also summarizes the syntax for using
lambda functions and statements (subroutines).

Appendix E, “ Control Statements, ” summarizes statements that control program fl ow, such as If
Then, Select Case, and looping statements.

Appendix F, “ Error Handling, ” summarizes both structured and classic error handling. It
describes some useful exception classes and gives an example showing how to build a custom
exception class.

Appendix G, “ Windows Forms Controls and Components, ” summarizes standard Windows Forms
controls and components provided by Visual Basic 2010. It explains the properties, methods, and
events that I have found most useful when working with these components.

Appendix H, “ WPF Controls, ” summarizes the most useful WPF controls.

Appendix I, “ Visual Basic Power Packs, ” lists some additional tools that you can download to make
Visual Basic development easier. This appendix describes some Visual Basic 6 compatibility tools
provided by Microsoft, and some GotDotNet Power Packs that contain useful controls built in
Visual Basic 2003.

Appendix J, “ Form Objects, ” describes forms. In a very real sense, forms are just another type of
control, but they play such a key role in Visual Basic applications that they deserve special attention
in their own appendix.

Appendix K, “ Classes and Structures, ” summarizes the syntax for declaring classes and structures,
and defi ning their constructors and events.

flast.indd xlixflast.indd xlix 12/31/09 8:48:51 PM12/31/09 8:48:51 PM

INTRODUCTION

l

Appendix L, “ LINQ, ” summarizes LINQ and PLINQ syntax.

Appendix M, “ Generics, ” summarizes the syntax for declaring generic classes.

Appendix N, “ Graphics, ” summarizes the objects used to generate graphics in Visual Basic 2010. It
covers the most useful graphics namespaces.

Appendix O, “ Useful Exception Classes, ” lists some of the more useful exception classes defi ned by
Visual Basic. You may want to throw these exceptions in your own code.

Appendix P, “ Date and Time Format Specifi ers, ” summarizes specifi er characters that you can use to
format dates and times. For example, they let you display a time using a 12 - hour or 24 - hour clock.

Appendix Q, “ Other Format Specifi ers, ” summarizes formatting for numbers and enumerated types.

Appendix R, “ The Application Class, ” summarizes the Application class that provides properties
and methods for controlling the current application.

Appendix S, “ The My Namespace, ” describes the My namespace, which provides shortcuts to
useful features scattered around other parts of the .NET Framework. It provides shortcuts for work-
ing with the application, computer hardware, application forms, resources, and the current user.

Appendix T, “ Streams, ” summarizes the Visual Basic stream classes such as Stream, FileStream,
MemoryStream, TextReader, CryptoStream, and so forth.

Appendix U, “ File - System Classes, ” summarizes methods that an application can use to learn about
and manipulate the fi le system. It explains classic Visual Basic methods such as FreeFile, WriteLine,
and ChDir, as well as newer .NET Framework classes such as FileSystem, Directory, and File.

Appendix V, “ Index of Examples, ” briefl y describes the more than 400 example programs that are
available for download on the book ’ s web site. You can use this list to see which programs demon-
strate particular techniques.

BONUS CHAPTERS

Occasionally I will post bonus chapters on the book’s web site to cover topics that didn’t fi t into this
book (despite its size) or to cover new technologies and techniques.

In particular, Crystal Reports is a useful reporting tool that Visual Basic developers have used for
years. Unfortunately, Crystal Reports 2010 won’t be ready until after Visual Studio 2010 is released
and that will be too late for this book. Rather than using the older version of Crystal Reports and
including a chapter that will become obsolete almost immediately, I’m going to provide that chap-
ter online when Crystal Reports 2010 is available. (Hopefully a free edition of Crystal Reports for
Visual Studio users should be available sometime in the second quarter of 2010.)

To learn when bonus chapters are available, check the book’s web site or email me at RodStephens@
vb-helper.com. If you’d like more information about some other topic, feel free to drop me a note.
If I think others will fi nd the information useful, I may be able to write another bonus chapter or
some examples. I can at least give you some hints and pointers that you may fi nd helpful.

flast.indd lflast.indd l 12/31/09 8:48:52 PM12/31/09 8:48:52 PM

INTRODUCTION

li

HOW TO USE THIS BOOK

If you are an experienced Visual Basic .NET programmer, you may want to skim the language
basics covered in the fi rst parts of the book. You may fi nd a few new features that have appeared in
Visual Basic 2010, so you probably shouldn ’ t skip these chapters entirely, but most of the basic
language features are the same as in previous versions.

Intermediate programmers and those with less experience with Visual Basic .NET should take these
chapters a bit more slowly. The chapters in Part III, “ Object - Oriented Programming, ” cover particu-
larly tricky topics. Learning all the variations on inheritance and interfaces can be rather confusing.

Beginners should spend more time on these fi rst chapters because they set the stage for the mate-
rial that follows. It will be a lot easier for you to follow a discussion of fi le management or regular
expressions if you are not confused by the error - handling code that the examples take for granted.

Programming is a skill best learned by doing. You can pick up the book and read through it quickly
if you like (well, as quickly as you can given how long it is), but the information is more likely to
stick if you open the development environment and experiment with some programs of your own.

Learning by doing may encourage you to skip sections of the book. For example, Chapter 1 covers
the IDE in detail. After you ’ ve read for a while, you may want to skip some sections and start exper-
imenting with the environment on your own. I encourage you to do so. Lessons learned by doing
last longer than those learned by reading. Later, when you have some experience with the develop-
ment environment, you can go back and examine Chapter 1 in more detail to see if you missed any-
thing during your experimentation.

The fi nal part of the book is a Visual Basic 2010 reference. These appendixes present more concise,
categorized information about the language. You can use these appendixes to recall the details of spe-
cifi c operations. For example, you can read Chapter 8 to learn which controls are useful for different
purposes. Then use Appendix G to learn about specifi c controls ’ properties, methods, and events.

Throughout your work, you can also refer to the appendixes to get information on specifi c classes,
controls, and syntax. For example, you can quickly fi nd the syntax for declaring a generic class in
Appendix M. If you need more information on generics, you can fi nd it in Chapter 29 or the online
help. If you just need to refresh your memory of the basic syntax, however, scanning Appendix M
will be faster.

NECESSARY EQUIPMENT

To read this book and understand the examples, you will need no special equipment. To use Visual
Basic 2010 and to run the examples found on the book ’ s web page, you need any computer that can
reasonably run Visual Basic 2010. That means a reasonably modern, fast computer with a lot of
memory. See the Visual Basic 2010 documentation for Microsoft ’ s exact requirements and recom-
mendations. (I use a dual - core 1.83 GHz Intel Core 2CPU system with 2 GB of memory and 100 GB
of hard disk space running Windows 7 Ultimate. It ’ s a nice system but I wouldn ’ t say it ’ s overkill.)

flast.indd liflast.indd li 12/31/09 8:48:52 PM12/31/09 8:48:52 PM

INTRODUCTION

lii

To build Visual Basic 2010 programs, you will also need a copy of Visual Basic 2010. Don ’ t bother
trying to run the examples shown here if you have a pre - .NET version of Visual Basic such as
Visual Basic 6. The changes between Visual Basic 6 and Visual Basic .NET are huge, and
many Visual Basic .NET concepts don ’ t translate well into Visual Basic 6. With some experience
in C#, it would be much easier to translate programs into that language.

Much of the Visual Basic 2010 release is compatible with Visual Basic 2008 and earlier versions of
Visual Basic .NET, however, so you can make many of the examples work with earlier versions
of Visual Basic .NET. You will not be able to load the example programs downloaded from the
book ’ s web site, however. You will need to open the source code fi les in an editor such as WordPad
and copy and paste the signifi cant portions of the code into your version of Visual Basic.

To use UAC security, you must have UAC security installed on your computer. UAC is installed and
activated by default in the Windows Vista and Windows 7 operating systems.

CONVENTIONS

To help you get the most from the text and keep track of what ’ s happening, a number of conventions
have been used throughout the book.

As for styles in the text:

Important words are highlighted when they are introduced.

Keyboard strokes are shown like this: Ctrl+A.

File names, URLs, and code within the text are shown like this: persistence.properties .

Code is presented in the following two different ways:

We use a monofont type for most code examples.
We use bolded type to emphasize code that's particularly important in the
present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code fi les that accompany the book. Many of the examples show only the
code that is relevant to the current topic and may be missing some of the extra details that you need
to make the example work properly.

All of the source code used in this book is available for download at www.wrox.com . Once at the site,
simply locate the book ’ s title (either by using the Search box or by using one of the title lists) and click
the Download Code link on the book ’ s detail page to obtain all the source code for the book.

➤

➤

➤

➤

flast.indd liiflast.indd lii 12/31/09 8:48:53 PM12/31/09 8:48:53 PM

INTRODUCTION

liii

FIND IT FAST

Because many books have similar titles, you may fi nd it easiest to locate the book
by its ISBN: 978-0-470-49983-2.

Once you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

You can also download the book ’ s source code from its web page on my VB Helper web site
www.vb-helper.com/vb_prog_ref.htm . That page allows you to download all of the book ’ s code
in one big chunk or by individual chapter.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of my books, like a spelling mistake or
faulty piece of code, I would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping me provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book ’ s errata is also available at www.wrox.com/misc-pages/
booklist.shtml .

If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check
the information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e - mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

flast.indd liiiflast.indd liii 12/31/09 8:48:54 PM12/31/09 8:48:54 PM

INTRODUCTION

liv

At p2p.wrox.com you will fi nd a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e - mail with information describing how to verify your account and com-
plete the joining process.

JOIN THE FUN

You can read messages in the forums without joining P2P, but in order to post your
own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Using the P2P forums allows other readers to benefi t from your questions and any answers they
generate. I monitor my book ’ s forums and respond whenever I can help.

If you have other comments, suggestions, or questions that you don ’ t want to post to the forums,
feel free to e - mail me at RodStephens@vb-helper.com with your comments, suggestion, or ques-
tions. I can ’ t promise to solve every problem but I ’ ll try to help you out if I can.

IMPORTANT URLS

Here ’ s a summary of important URLs:

www.vb-helper.com — My VB Helper web site. Contains thousands of tips, tricks, and
examples for Visual Basic developers.

www.vb-helper.com/vb_prog_reg.htm — This book ’ s web page on my VB Helper
web site. Includes basic information, code downloads, errata, and more.

p2p.wrox.com — Wrox P2P forums.

www.wrox.com — The Wrox web site. Contains code downloads, errata, and other
information. Search for the book by title or ISBN.

RodStephens@vb-helper.com — My e - mail address. I hope to hear from you!

➤

➤

➤

➤

➤

flast.indd livflast.indd liv 12/31/09 8:48:55 PM12/31/09 8:48:55 PM

PART I

IDE

CHAPTER 1: Introduction to the IDE

CHAPTER 2: Menus, Toolbars, and Windows

CHAPTER 3: Customization

CHAPTER 4: Windows Forms Designer

CHAPTER 5: WPF Designer

CHAPTER 6: Visual Basic Code Editor

CHAPTER 7: Debugging

�

�

�

�

�

�

�

c01.indd 1c01.indd 1 12/31/09 3:47:13 PM12/31/09 3:47:13 PM

c01.indd 2c01.indd 2 12/31/09 3:47:21 PM12/31/09 3:47:21 PM

1
Introduction to the IDE

The chapters in the fi rst part of this book describe the Visual Studio integrated development
environment (IDE). They explain the most important windows, menus, and toolbars that
make up the environment, and show how to customize them to suit your needs. They explain
some of the tools that provide help while you are writing Visual Basic applications and how to
use the IDE to debug programs.

Even if you are an experienced Visual Basic programmer, you should at least skim this mate-
rial. The IDE is extremely complex and provides hundreds (if not thousands) of commands,
menus, toolbars, windows, context menus, and other tools for editing, running, and debug-
ging Visual Basic projects. Even if you have used the IDE for a long time, there are sure to be
some features that you have overlooked.

SNEAKY SHORTCUTS

When I teach Visual Basic, for example, I cover the IDE’s keyboard shortcuts (such
as Alt+Space to open IntelliSense, and Ctrl+C, Ctrl+X, and Ctrl+V to copy, cut, and
paste) early in the class. The students don’t really write enough code to take full
advantage of these tools for several weeks, however, so we revisit the topic later.

These chapters describe some of the most important of those features, and you may discover
something useful that you ’ ve never noticed before.

Even after you ’ ve read these chapters, you should periodically spend some time wandering
through the IDE to see what you ’ ve missed. Every month or so, spend a few minutes exploring
little - used menus and right - clicking things to see what their context menus contain. As you
become a more profi cient Visual Basic programmer, you will fi nd uses for tools that you may
have dismissed or not understood before.

c01.indd 3c01.indd 3 12/31/09 3:47:21 PM12/31/09 3:47:21 PM

4 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

It ’ s also useful to save links to tips you discover online. You can make a Visual
Basic Tips folder in your browser ’ s favorites list to make fi nding the tips again
later easier.

This chapter explains how to get started using the IDE. It tells how to confi gure the IDE for
different kinds of development. It explains Visual Basic projects and solutions, and shows how to
create, run, and save new projects. This chapter is mostly an introduction to the chapters that
follow. The other chapters in this part of the book provide much more detail about particular tasks,
such as using the IDE ’ s menus, customizing menus and toolbars, and using the Windows Forms
Designer to build forms.

DIFFERENT IDE APPEARANCES

Before you start reading about the IDE and viewing screen shots, it ’ s important to understand
that the Visual Studio IDE is extremely customizable. You can move, hide, or modify the menus,
toolbars, and windows; create your own toolbars; dock, undock, or rearrange the toolbars and
windows; and change the behavior of the built - in text editors (change their indentation, colors for
different kinds of text, and so forth).

These chapters describe the basic Visual Studio development environment as it
is initially installed. After you ’ ve moved things around to suit your needs, your
IDE may look nothing like the pictures in this book. If a fi gure doesn ’ t look
exactly like what you see on your computer, don ’ t worry too much about it.

To avoid confusion, you should probably not customize the IDE ’ s basic menus and toolbars too
much. Removing the help commands from the Help menu and adding them to the Edit menu will
only cause confusion later. Moving or removing commands will also make it more diffi cult to follow
the examples in this and other books, and will make it more diffi cult to follow instructions given
by others who might be able to help you when you have problems.

Instead of making drastic changes to the default menus and toolbars, hide the menus and toolbars
that you don ’ t want and create new customized toolbars to suit your needs. Then you can fi nd the
original standard toolbars if you decide you need them later. Chapter 3, “ Customization, ” has more
to say about rearranging the IDE ’ s components.

The screens shown in this book may not look exactly like the ones on your system for several other
reasons as well. Visual Studio looks different on different operating systems. The fi gures in this
book were taken on a computer running Windows 7 so they display the Windows 7 look and feel.
You may see a different appearance, even if you are using Windows 7 and you have selected another
style. Additionally, some commands may not behave exactly the same way on different operating
systems.

c01.indd 4c01.indd 4 12/31/09 3:47:26 PM12/31/09 3:47:26 PM

SECURITY OBSCURITY

Windows Vista and Windows 7 use the User Account Control (UAC) security model.
When you fi rst log on, all accounts get a normal level of user privileges. Later, when
you try to run certain applications that require increased permissions, a UAC privi-
lege elevation dialog box appears where you can enter an administrator password.
The examples in this book were tested using a normal user account, so you should
not see that dialog while running them, but you may see it if you use other develop-
ment tools. Chapter 24, “UAC Security,” provides more details about UAC.

Visual Studio will also look different depending on which version you have installed. The free
Visual Basic 2010 Express Edition product has fewer tools than other editions such as the high - end
Team Suite. The fi gures in this book were captured while using Team Suite, so if you have another
version, you may not see all of the tools shown here. Menu items, toolbars, and other details may
also be slightly different for different versions. Usually you can fi nd moved items with a little
digging through the menus and customizations.

FOR MORE INFORMATION

You can learn about Visual Studio’s free Express editions at www.microsoft.com/
express. Learn about Visual Basic in general at the Visual Basic home page
msdn.microsoft.com/vbasic.

Finally, you may be using different confi guration settings from the ones used while writing this
book. You can confi gure Visual Studio to use settings customized for developing projects using
Visual Basic, C#, Web tools, and other technologies. This book assumes your installation is con-
fi gured for Visual Basic development and the screen shots may look different if you have selected a
different confi guration. The following section says more about different IDE confi gurations and tells
how you can select a particular confi guration.

IDE CONFIGURATIONS

When you install it, Visual Studio asks you what kind of development settings you want to use. The
most obvious choice for a Visual Basic developer is Visual Basic Development Settings. This choice
customizes Visual Studio to work more easily with Visual Basic, and is a good selection if you will
focus on Visual Basic development.

Another reasonable choice is General Development Settings. This option makes Visual Studio
behave more like Visual Studio 2003. It ’ s a good choice if you ’ re used to Visual Studio 2003, or
if you expect to use other Visual Studio languages, such as C#, somewhat regularly because these
settings are fairly effective for C# development as well as Visual Basic development.

IDE Confi gurations ❘ 5

c01.indd 5c01.indd 5 12/31/09 3:47:34 PM12/31/09 3:47:34 PM

6 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

This book assumes that you have confi gured Visual Studio for Visual Basic development. If you have
chosen a different confi guration, some of the fi gures in this book may look different from what you
see on your screen. Some of the menu items available may be slightly different, or may appear in
a different order. Usually, the items are available somewhere, but you may have to search a bit to
fi nd them.

If you later decide that you want to switch confi gurations, open the Tools menu and select Import
and Export Settings to display the Import and Export Settings Wizard. Select the “ Reset all set-
tings ” option button and click Next. On the second page, tell the wizard whether to save your
current settings and click Next. On the wizard ’ s fi nal page (shown in Figure 1 - 1), select the type of
confi guration you want and click Finish. When the wizard is done, click Close.

FIGURE 1-1: Use the Tools menu’s Import and Export Settings

command to change the Visual Studio confi guration.

PROJECTS AND SOLUTIONS

Before you can understand how to use the IDE effectively to manage Visual Basic projects and solu-
tions, you should know what projects and solutions are.

A project is a group of fi les that produces some specifi c output. This output may be a compiled
executable program, a dynamic - link library (DLL) of classes for use by other projects, or a control
library for use on other Windows forms.

c01.indd 6c01.indd 6 12/31/09 3:47:35 PM12/31/09 3:47:35 PM

A solution is a group of one or more projects that should be managed together. For example,
suppose that you are building a server application that provides access to your customer order data-
base. You are also building a client program that each of your sales representatives will use to query
the server application. Because these two projects are closely related, it might make sense to manage
them in a single solution. When you open the solution, you get instant access to all the fi les in
both projects.

Both projects and solutions can include associated fi les that are useful for building the application
but that do not become part of a fi nal compiled product. For example, a project might include the
application ’ s proposal and architecture documents. These are not included in the compiled code, but
it is useful to associate them with the project so they are easy to fi nd, open, and edit while working
on the project.

When you open the project, Visual Studio lists those documents along with the program fi les. If
you double - click one of these documents, Visual Studio opens the fi le using an appropriate applica-
tion. For example, if you double - click a fi le with a .doc, .docm, or .docx extension, Visual Studio
normally opens it with Microsoft Word.

To associate one of these fi les with a project or solution, right - click the project fi le at the top of the
Solution Explorer (more on the Solution Explorer shortly). Select the Add command ’ s New Item
entry, and use the resulting dialog box to select the fi le you want to add.

CUT OUT CLUTTER

Although you can add any fi le to a project or solution, it’s not a good idea to cram
dozens of unrelated fi les into the same project. Although you may sometimes want
to refer to an unrelated fi le while working on a project, the extra clutter brings
additional chances for confusion. It will be less confusing to shrink the Visual
Basic IDE to an icon and open the fi le using an external editor such as Word or
WordPad. If you won’t use a fi le very often with the project, don’t add it.

STARTING THE IDE

When you launch Visual Studio, it initially displays the Start Page shown in Figure 1 - 2 by default.
The Start Page ’ s Recent Projects section lists projects that you have worked on recently and provides
links that let you open an existing project or web site, or create a new project or web site. The Get
Started tab contains links to help topics that may be useful to beginners.

The Get Started tab is further divided into sub-topics such as Welcome, Windows, Web, Cloud, and
so forth. Click on those sub-topics for more specifi c information.

Starting the IDE ❘ 7

c01.indd 7c01.indd 7 12/31/09 3:47:35 PM12/31/09 3:47:35 PM

8 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

Click on the Guidance and Resources tab to see general development topics such as those shown
in Figure 1-3. Use the MSDN Resources sub-topic to learn more about MSDN subscriptions and
downloads. Use the Additional Tools sub-topic to learn more about additional extensions to Visual
Studio.

Click on the Latest News tab to see the RSS feed shown in Figure 1-3. This feed lists current articles
and stories about Visual Studio development. To change the feed, simply enter a new URL in the
textbox.

Use the links on the left to open or create new projects. Click New Project to start a new project.
Click Open Project to browse for a project to open. Click one of the Recent Project links to quickly
open a project that you have recently edited.

Instead of displaying the Start Page, Visual Studio can take one of several other actions when it
starts. To change the startup action, open the Tools menu and select Options. Then select the

FIGURE 1-2: By default, Visual Studio initially displays the Start Page.

c01.indd 8c01.indd 8 12/31/09 3:47:36 PM12/31/09 3:47:36 PM

FIGURE 1-3: The Guidance and Resources tab provides general information about

development with Visual Studio.

“ Show all settings ” check box so you can see all of the options and open the Environment folder ’ s
Startup item. In the “ At startup ” dropdown, you can select one of the following options:

Open Home Page

Load last loaded solution

Show Open Project dialog box

Show New Project dialog box

Show empty environment

Show Start Page

Pick one and click OK.

➤

➤

➤

➤

➤

➤

Starting the IDE ❘ 9

c01.indd 9c01.indd 9 12/31/09 3:47:37 PM12/31/09 3:47:37 PM

10 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

CREATING A PROJECT

After you open Visual Studio, you can use the Start Page ’ s New Project link (see Figure 1 - 4) or the
File menu ’ s New Project command to open the New Project dialog shown in Figure 1 - 5.

FIGURE 1-4: The Latest News tab shows current articles and information from

a Microsoft RSS feed.

FIGURE 1-5: The New Project dialog lets you start a new project.

c01.indd 10c01.indd 10 12/31/09 3:47:37 PM12/31/09 3:47:37 PM

Use the Project Types tree view on the left to select the project category that you want. Then select
a specifi c project type on the right. In Figure 1 - 5, the Windows Forms Application project type is
selected. Enter a name for the new project in the text box at the bottom.

After you fi ll in the new project ’ s information, click OK to create the project.

Visual Studio initially creates the project in a temporary directory. If you close
the project without saving it, it is discarded.

Figure 1 - 6 shows the IDE immediately after starting a new Windows Forms Application project.
Remember that the IDE is extremely confi gurable, so it may not look much like Figure 1 - 6 after you
have rearranged things to your liking (and I’ve arrange things to my liking here).

Creating a Project ❘ 11

FIGURE 1-6: Initially a new project looks more or less like this.

c01.indd 11c01.indd 11 12/31/09 3:47:38 PM12/31/09 3:47:38 PM

12 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

The key pieces of the IDE are labeled with numbers in Figure 1 - 6. The following list briefl y
describes each of these pieces:

1. Menus — The menus contain standard Visual Studio commands. These generally
manipulate the current solution and the modules it contains, although you can customize
the menus as needed. Visual Studio changes the menus and their contents depending on the
object you currently have selected. In Figure 1 - 6, a Form Designer (marked with the number
4) is open so the IDE is displaying the menus for editing forms.

2. Toolbars — Toolbars contain tools that you can use to perform frequently needed actions.
The same commands may be available in menus, but they are easier and faster to use in
toolbars. The IDE defi nes several standard toolbars such as Formatting, Debug, and Image
Editor. You can also build your own custom toolbars to hold your favorite tools. Visual
Studio changes the toolbars displayed to match the object you currently have selected.

3. Toolbox — The Toolbox contains tools appropriate for the item that you currently have
selected and for the project type that you are working on. In Figure 1 - 6, a Form Designer
is selected in a Windows Forms application so the Toolbox contains tools appropriate for a
Form Designer. These include Windows Forms controls and components, plus tools in the
other Toolbox tabs.

4. Form Designer — A Form Designer lets you modify the graphical design of a form. Select a
control tool from the Toolbox, and click and drag to place an instance of the control on
the form. Use the Properties window (marked with the number 6) to change the new
control ’ s properties. In Figure 1 - 6, no control is selected, so the Properties window shows
the form ’ s properties rather than a control ’ s.

5. Solution Explorer — The Solution Explorer lets you manage the fi les associated with the
current solution. For example, in Figure 1 - 6, you could select Form1.vb in the Project
Explorer and then click the View Code button (the third icon from the right at the top of
the Solution Explorer) to open the form ’ s code editor. You can also right - click an object
in the Solution Explorer to get a list of appropriate commands for that object.

6. Properties — The Properties window lets you change an object ’ s properties at design time.
When you select an object in a Form Designer or in the Solution Explorer, the Properties
window displays that object ’ s properties. To change a property ’ s value, simply click the
property and enter the new value.

7. Error List — The Error List window shows errors and warnings in the current project. For
example, if a variable is used but not declared, this list will say so.

If you look at the bottom of Figure 1 - 6, you ’ ll notice that the Error List window has a series of tabs.
The Task List tab displays items fl agged for further action such as To Do items. The Command
window lets you execute Visual Studio commands, such as those invoked by menu items. The
Immediate window lets you type and execute Visual Basic commands, possibly while a program is
running, but paused.

c01.indd 12c01.indd 12 12/31/09 3:47:40 PM12/31/09 3:47:40 PM

The Output tab shows output printed by the application. Usually an application interacts with the
user through its forms and dialog boxes, but it can display information here, usually to help you
debug the code. The Output window also shows informational messages generated by the IDE. For
example, when you compile an application, the IDE sends messages here to tell you what it is doing
and whether it succeeded.

WHAT WINDOWS?

If you don’t see the Error List, Task List, and other windows, they are probably
hidden. You can display many of them by selecting the appropriate item in the View
menu. Commands to display some of the more exotic windows are located in other
menus, such as the View menu’s Other Windows submenu and the Debug menu’s
Windows submenu.

As soon as you create a new project, it is ready to run. If you open the Debug menu and select Start
Debugging, the program will run. It displays only an empty form containing no controls, but the
form automatically handles a multitude of mundane windowing tasks for you.

READY TO RUN

If you’re using the Visual Basic environment settings, you can simply press F5 to
start the program.

Before you write a single line of code, the form lets the user resize, minimize, restore, maximize,
and close the form. The form draws its title bar, borders, and system menu, and repaints itself as
needed when it is covered and restored. The operating system also automatically handles many
tasks such as displaying the form in the Windows taskbar and Task Manager. Vista automatically
generates thumbnail previews for its Flip and Flip 3D tools that you display by pressing Alt+Tab or
Windows+Tab, respectively. Visual Basic and the operating system do a ton of work for you before
you even touch the project!

The form contains no controls, can ’ t open fi les, doesn ’ t process data, in fact doesn ’ t really do
anything unique but a lot of the setup is done for you. It handles the windowing chores for you
so you can focus on your particular problem.

SAVING A PROJECT

Later chapters explain in depth how to add controls to a form and how to write code to
interact with the form. For now, suppose you have built a project complete with controls
and code.

Saving a Project ❘ 13

c01.indd 13c01.indd 13 12/31/09 3:47:41 PM12/31/09 3:47:41 PM

14 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

If you try to close Visual Studio or start a new project, the
dialog shown in Figure 1 - 7 appears. Click Save to make
the Save Project dialog shown in Figure 1 - 8 appear. Click
Discard to throw away the existing project and start a new
one. Click Cancel to continue editing the current project.

As you work with the new project, Visual Studio saves its
form defi nitions and code in a temporary location. Each time
you run the program, Visual Studio updates the fi les so it
doesn ’ t lose everything if it crashes. The fi les are still tempo-
rary, however.

When you are ready to make the new project permanent, open the File menu and select Save All to
display the Save Project dialog shown in Figure 1 - 8.

The Name fi eld shows the name that you originally gave the project when you created it. Verify that
the name is okay or change it.

Next, enter the location where you want the project saved. The default location is similar to the
rather non - intuitive value shown in Figure 1 - 8. (This image was taken while I was logged in as the
user named Developer. When you save a project, the “ Developer ” part of the location would be
replaced with your user name.)

Be sure to pick a good location before you click Save. The next time you build a project, the default
will be the location you specify now so you won ’ t need to be quite as careful in the future, assuming
you want to build a lot of projects in the same directory.

If you check the “ Create directory for solution ” box, Visual Studio enables the Solution Name text
box and adds an extra directory above the project directory to hold the solution. This is most useful
when you want to include more than one project in a single solution. For example, you might want
several projects in the same solution to sit in a common solution directory.

After you have entered the project name and location, and optionally specifi ed a separate solution
directory, click Save.

FIGURE 1-8: Use this dialog to save a new project.

FIGURE 1 - 7: Before closing Visual

Studio or starting a new project,

you must decide what to do with the

previous project.

c01.indd 14c01.indd 14 12/31/09 3:47:42 PM12/31/09 3:47:42 PM

“SAVE AS” SURVIVAL SKILLS

The File menu’s Save As commands let you save particular pieces of the solu-
tion in new fi les. For example, if you have a project named Offi ceArrangerMain
selected in Project Explorer, the File menu contains a command named “Save
Offi ceArrangerMain As.” This command lets you save the project fi le with a
new name. Unfortunately it doesn’t make a new copy of the whole project; it just
makes a copy of the project fi le. That fi le contains information about the project
on a high level such as references used by the project, fi les imported by the project,
and the names of the forms included in the project. It does not contain the forms
themselves.

Many beginners try to use the File menu’s Save As commands to make copies of a
project or a solution but it doesn’t work. Instead, use Windows Explorer to fi nd the
directory containing the whole project or solution and make a copy of the entire
directory.

Similarly, if you want to back up a project or send someone a copy of a project, you
need to use the entire solution directory, not just one or two of the many fi les that
Visual Studio creates.

SUMMARY

This chapter explains how to get started using the Visual Studio integrated development environ-
ment. It shows how to confi gure the IDE for different kinds of development and explains that
different confi gurations might make your version of Visual Studio look different from the screen
shots shown in this book. It explains what Visual Basic projects and solutions are, and shows how
to create, run, and save a new project.

The next few chapters describe parts of the IDE in greater detail. Chapter 2, “ Menus, Toolbars, and
Windows, ” describes the commands available in the IDE and the menus, toolbars, and secondary
windows that hold them.

Summary ❘ 15

c01.indd 15c01.indd 15 12/31/09 3:47:43 PM12/31/09 3:47:43 PM

c01.indd 16c01.indd 16 12/31/09 3:47:44 PM12/31/09 3:47:44 PM

2
Menus, Toolbars, and Windows

The Visual Studio IDE is incredibly powerful and provides hundreds of tools for building
and modifying projects. The price you pay for all of these powerful tools is extra complexity.
Because so many tools are available, it can take some digging to fi nd the tool you want, even
if you know exactly what you need.

This chapter describes the menus, toolbars, and windows that contain the tools provided
by the IDE. It explains some of the most useful tools provided by the IDE and tells where to
fi nd them, provided you haven ’ t moved them while customizing the IDE.

This chapter also tells how you can customize the menus and toolbars to give you easy access
to the commands that you use most frequently and how to hide those that you don ’ t need.

MENUS

The IDE ’ s menus contain standard Visual Studio commands. These are generally commands that
manipulate the project and the modules it contains. Some of the concepts are similar to those
used by any Windows application (File ➪ New, File ➪ Save, Help ➪ Contents), but many of the
details are specifi c to Visual Studio programming, so the following sections describe them in a bit
more detail.

The menus are customizable, so you can add, remove, and rearrange the menus and the items
they contain. This can be quite confusing, however, if you later need to fi nd a command that
you have removed from its normal place in the menus. Some developers place extra commands
in standard menus, particularly the Tools menu, but it is generally risky to remove standard

c02.indd 17c02.indd 17 12/31/09 3:59:31 PM12/31/09 3:59:31 PM

18 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

menu items. Usually it is safest to leave the standard menus alone and make custom menus and tool-
bars to hold customizations. For more information on this, see Chapter 3, “ Customization. ”

Many of the menus ’ most useful commands are also available in other ways. Many provide key-
board shortcuts that make using them quick and easy. For example, Ctrl+N opens the New Project
dialog box just as if you had selected the File ➪ New Project menu command. (If you are using the
C# or General Development settings, the shortcut is Ctrl+Shift+N.) If you fi nd yourself using the
same command very frequently, look in the menu and learn its keyboard shortcut to save time later.

Many menu commands are also available in standard toolbars. For example, the Debug toolbar con-
tains many of the same commands that are in the Debug menu. If you use a set of menu commands
frequently, you may want to display the corresponding toolbar to make using the commands easier.

Visual Studio also provides many commands through context menus. For example, if you right - click
a project in the Solution Explorer, the context menu includes an Add Reference command that dis-
plays the Add Reference dialog box just as if you had invoked Project ➪ Add Reference. Often it is
easier to fi nd a command by right - clicking an object related to whatever you want to do than it is to
wander through the menus.

The following sections describe the general layout of the standard menus and briefl y explain their
most important commands. You might want to open the menus in Visual Studio as you read these
sections, so you can follow along.

MOVING MENUS

Visual Studio displays different menus and different commands in menus depend-
ing on what editor is active. For example, when you have a form open in the
Windows Forms Designer, Visual Studio displays a Format menu that you can use
to arrange controls on the form. When you have a code editor open, the Format
menu is hidden because it doesn’t apply to code.

File

The File menu contains commands that deal with creating, opening, saving, and closing projects and
project fi les. The following list describes the most important commands contained in the File menu
and its submenus:

New Project — This command displays the dialog box shown in Figure 2 - 1. This dialog
box lets you create new Windows applications, class libraries, console applications, control
libraries, and more. Select the type of project yo want to start, enter a project name, and
click OK.

➤

c02.indd 18c02.indd 18 12/31/09 3:59:37 PM12/31/09 3:59:37 PM

New Web Site — This command lets you start a new web site project. It displays a dialog
box where you can select the type of web site to create from among choices such as ASP
.NET Web Site, ASP.NET Web Service, and Empty Web Site.

Open Project — This command lets you open an existing project.

Open Web Site — This command lets you open an existing web site project.

Open File — This command displays the dialog box shown in Figure 2 - 2 and lets you
select a fi le to open. The IDE uses integrated editors to let you edit the new fi le. For exam-
ple, a simple bitmap editor lets you set a bitmap ’ s size, change its number of colors, and
draw on it. When you close the fi le, Visual Studio asks if you want to save it. Note that
this doesn ’ t automatically add the fi le to your current project. You can save the fi le and
use the Project ➪ Add Existing Item command if you want to do that.

➤

➤

➤

➤

FIGURE 2-1: The New Project dialog box lets you start various kinds of

new projects.

Menus ❘ 19

c02.indd 19c02.indd 19 12/31/09 3:59:38 PM12/31/09 3:59:38 PM

20 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Add — This submenu lets you add new items to the current solution. This submenu ’ s most
useful commands for Visual Basic developers are New Project and Existing Project, which
add a new or existing Visual Basic project to the current solution.

Close — This command closes the current editor. For example, if you were editing a form in
the Windows Forms Designer, this command closes the Designer.

Close Project — This command closes the entire project and all of the fi les it contains. If
you have a solution open, this command is labeled Close Solution and it closes the entire
solution.

Save Form1.vb — This command saves the currently open fi le, in this example, Form1.vb.

Save Form1.vb As — This command lets you save the currently open fi le in a new fi le.

Save All — This command saves all modifi ed fi les. When you start a new project, the fi les
are initially stored in a temporary location. This command allows you to pick a directory
where the project should be saved permanently.

Export Template — The Export Template command displays the dialog box shown in
Figure 2 - 3. The Export Template Wizard enables you to create project or item templates
that you can use later when making a new project.

➤

➤

➤

➤

➤

➤

➤

FIGURE 2-2: The Open File dialog box lets you select fi les to view

and edit.

c02.indd 20c02.indd 20 12/31/09 3:59:39 PM12/31/09 3:59:39 PM

Page Setup and Print — The Page Setup and Print commands let you confi gure printer
settings and print the current document. These commands are enabled only when it makes
sense to print the current fi le. For example, they let you print if you have a code editor
open because the code is text but they are disabled while you are using a Windows
Forms Designer.

Recent Files and Recent Projects and Solutions — The Recent Files and Recent Projects and
Solutions submenus let you quickly reopen fi les, projects, and solutions that you have used
recently.

Edit

The Edit menu contains commands that deal with manipulating text and other objects. These
include standard commands such as the Undo, Redo, Cut, Copy, Paste, and Delete commands that
you ’ ve seen in other Windows applications.

The following list describes other important commands contained in the Edit menu:

Find Symbol — The Find Symbol command lets you search the application for a program
symbol rather than a simple string. You can search for such items as namespaces, types,
interfaces, properties, methods, constants, and variables.

Quick Find — This command displays a fi nd dialog box where you can search the project
for specifi c text. A drop - down menu lets you indicate whether the search should include the

➤

➤

➤

➤

FIGURE 2-3: The File/Export Template command displays this dia-

log box to help you create project or items templates that you can

easily use in other projects.

Menus ❘ 21

c02.indd 21c02.indd 21 12/31/09 3:59:39 PM12/31/09 3:59:39 PM

22 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

current document, the currently selected text, all open documents, the current project,
or the current solution. Options let you determine such things as whether the text must
match case or whole words.

Quick Replace — This command displays the same dialog box as the Quick Find
command except with some extra controls. It includes a text box where you can specify
replacement text, and buttons that let you replace the currently found text or all
occurrences of the text.

REGRETFUL REPLACEMENT

Be careful when using Quick Replace. Often it gets carried away and replaces
substrings of larger strings so they don’t make sense anymore. For example,
suppose you want to replace the variable name “hand” with “handed.” If you
let Quick Replace run, it will change Handles clauses into “handedles” clauses,
which will confuse Visual Basic. To reduce the chances of this type of error, keep
the scope of the replacement as small as possible and check the result for weird
side effects.

Go To — This command lets you jump to a particular line number in the current fi le.

Insert File As Text — This command lets you select a fi le and insert its text into the current
location. This can be useful if the fi le contains a code snippet.

Advanced — The Advanced submenu contains commands for performing more complex
document formatting such as converting text to upper - or lowercase, controlling word wrap,
and commenting and uncommenting code.

Bookmarks — The Bookmarks submenu lets you add, remove, and clear bookmarks, and
move to the next or previous bookmark. You can use bookmarks to move quickly to specifi c
pieces of code that you have previously marked.

Outlining — The Outlining submenu lets you expand or collapse sections of code, and turn
outlining on and off. Collapsing code that you are not currently editing can make the rest of
the code easier to read.

IntelliSense — The IntelliSense submenu gives access to IntelliSense features. For example,
its List Members command makes IntelliSense display the current object ’ s properties,
methods, and events.

Next Method/Previous Method — The Next Method and Previous Method commands
move to the next or previous method or class in the current document.

➤

➤

➤

➤

➤

➤

➤

➤

c02.indd 22c02.indd 22 12/31/09 3:59:40 PM12/31/09 3:59:40 PM

View

The View menu contains commands that let you hide or display different windows and toolbars in
the Visual Studio IDE. The following list describes the View menu ’ s most useful commands:

Code — The Code command opens the selected fi le in a code editor window. For example,
to edit a form ’ s code, you can click the form in the Solution Explorer and then select
View ➪ Code.

Designer — The Designer command opens the selected fi le in a graphical editor if one is
defi ned for that type of fi le. For example, if the fi le is a form, this command opens the form
in a graphical form editor. If the fi le is a class or a code module, the View menu hides this
command because Visual Studio doesn ’ t have a graphical editor for those fi le types.

Standard windows — The next several commands in this menu list some explorers, Object
Browser, Error List, Properties window, and Toolbox. These commands restore a previously
hidden window.

Other Windows — The Other Windows submenu lists other standard menus that are not
listed in the View menu itself. These include the Bookmark window, Class View, Command
window, Document Outline, Output, Task List, Macro Explorer, and many others. Like
the standard windows commands, these commands are useful for recovering lost or hidden
windows.

Tab Order — If the currently visible document is a Windows Form that contains controls,
the Tab Order command displays the tab order on top of each control. You can click the
controls in the order you want them to have to set their tab orders quickly and easily. (If you
are working with a WPF form, you must set the controls ’ TabIndex properties to set their
tab order.)

Toolbars — The Toolbars submenu lets you hide or display the currently defi ned toolbars.
This submenu lists the standard toolbars in addition to any custom toolbars you have
created.

Full Screen — The Full Screen command hides all toolbars and windows except for any
editor windows that you currently have open. It also hides the Windows taskbar so that the
IDE occupies as much space as possible. This gives you the most space possible for working
with the fi les you have open. The command adds a small box to the title bar containing a
Full Screen button that you can click to end full - screen mode.

Property Pages — This command displays the current item ’ s property pages. For example, if
you select an application in the Solution Explorer, this command displays the application ’ s
property pages similar to those shown in Figure 2 - 4.

➤

➤

➤

➤

➤

➤

➤

➤

Menus ❘ 23

c02.indd 23c02.indd 23 12/31/09 3:59:41 PM12/31/09 3:59:41 PM

24 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Project

The Project menu contains commands that let you add and remove items to and from the project.
Which commands are available depends on the currently selected item.

The following list describes the most important commands on the Project menu:

New items — The fi rst several commands let you add new items to the project. These
commands are fairly self - explanatory. For example, the Add Class command adds a new
class module to the project. Later chapters explain how to use each of these fi le types.

Add New Item — The Add New Item command displays the dialog shown in Figure 2 - 5.
The dialog lets you select from a wide assortment of items such as about boxes, text fi les,
bitmap fi les, and class modules.

➤

➤

FIGURE 2-4: The View menu’s Property Pages command displays an application’s

property pages.

c02.indd 24c02.indd 24 12/31/09 3:59:42 PM12/31/09 3:59:42 PM

EASY ICONS

You can build an icon, cursor, or other graphical fi le right inside Visual Studio. Use
the Add New Item command to add the new fi le. Visual Studio’s built-in editors let
you draw these fi les, give them transparent backgrounds, and even set a cursor’s
hotspot. (The hotspot is the pixel that determines where the cursor is pointing. For
example, an arrow cursor’s hotspot is the tip of the arrow.)

Add Existing Item — The Add Existing Item command lets you browse for a fi le and add
it to the project. This may be a Visual Basic fi le (such as a module, form, or class), or some
other related fi le (such as a related document or image fi le).

Exclude From Project — This command removes the currently selected item from the
project. Note that this does not delete the fi le; it just removes it from the project.

Show All Files — The Show All Files command makes Solution Explorer list fi les that are
normally hidden. These include resource fi les used by forms, and hidden partial classes
such as designer - generated form code. Normally, you don ’ t need to work with these fi les,
so they are hidden. Select this command to show them. Select the command again to hide
them again.

➤

➤

➤

FIGURE 2-5: The Project menu’s Add New Item command lets you add a wide

variety of items to the project.

Menus ❘ 25

c02.indd 25c02.indd 25 12/31/09 3:59:42 PM12/31/09 3:59:42 PM

26 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Add Reference — The Add Reference
command displays the dialog shown in
Figure 2 - 6. Select the category of the exter-
nal object, class, or library that you want
to fi nd. For a .NET component, select the
.NET tab. This is what you ’ ll want most of
the time. For a Component Object Model
(COM) component such as an ActiveX
library or control built using Visual Basic 6,
select the COM tab. Select the Projects tab
to add a reference to another Visual Studio
project. Click the Browse tab to manually
locate the fi le you want to reference.

Scroll through the list of references until
you fi nd the one you want and select it.
You can use Shift+Click and Ctrl+Click to
select more than one library at the same
time. When you have made your selections, click OK to add the references to the project.
After you have added a reference to the project, your code can refer to the reference ’ s public
objects. For example, if the fi le MyMathLibrary.dll defi nes a class named MathTools and
that class defi nes a public function Fibonacci, a project with a reference to this DLL could
use the following code:

Dim math_tools As New MyMathLibrary.MathTools
MessageBox.Show("Fib(5) = " & math_tools.Fibonacci(5))

Add Service Reference — The Add
Service Reference command displays
the dialog shown in Figure 2 - 7.
You can use this dialog to fi nd Web
Services and add references to them so
your project can invoke them across
the Internet. Figure 2 - 7 shows a ser-
vice reference for the TerraServer map
and aerial photography service. For
more information, go to terraserver
.microsoft.com .

WindowsApplication1
Properties — This command
displays the application ’ s property
pages shown in Figure 2 - 4.

➤

➤

➤

FIGURE 2-6: Use the Add Reference dialog box to

add references to libraries.

FIGURE 2-7: Use the Add Service Reference dialog to

add references to Web Services.

c02.indd 26c02.indd 26 12/31/09 3:59:43 PM12/31/09 3:59:43 PM

Use the tabs on the left of the application ’ s property pages to view and modify different types of
application settings. You can leave many of the property values at their default values and many can
be set in ways other than the property pages. For example, by default, the Assembly name and Root
namespace values shown in Figure 2 - 4 are set to the name of the project when you fi rst create it. For
more projects, that ’ s fi ne.

Figure 2 - 8 shows the Compile property page. This page holds four properties that deserve special
mention.

FIGURE 2-8: The Compile tab contains important properties for controlling

code generation.

First, Option Explicit determines whether Visual Basic requires you to declare all variables before
using them. Leaving this option turned off can sometimes lead to subtle bugs. For example, the
following code is intended to print a list of even numbers between 0 and 10. Unfortunately, a
typographical error makes the Debug.WriteLine statement print the value of the variable j not i .
Because j is never initialized, the code prints out a bunch of blank values. If you set Option Explicit
to On, the compiler complains that the variable j is not declared and the problem is easy to fi x.

For i = 1 To 10
 If i Mod 2 = 0 Then Debug.WriteLine(j)
Next i

Menus ❘ 27

c02.indd 27c02.indd 27 12/31/09 3:59:44 PM12/31/09 3:59:44 PM

28 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

The second compiler option is Option Strict . When this option is turned off, Visual Studio allows
your code to implicitly convert from one data type to another, even if the types are not always com-
patible. For example, Visual Basic will allow the following code to try to copy the string s into the
integer i . If the value in the string happens to be a number, as in the fi rst case, this works. If
the string is not a number, as in the second case, this fails at runtime.

Dim i As Integer
Dim s As String
s = "10"
i = s ' This works.
s = "Hello"
i = s ' This Fails.

If you set Option Strict to On, the IDE warns you at compile time that the two data types are
incompatible, so you can easily resolve the problem while you are writing the code. You can still use
conversion functions such as CInt, Int, and Integer.Parse to convert a string into an Integer, but you
must take explicit action to do so. This makes you think about the code and reduces the chances
that the conversion is just an accident. This also helps you use the correct data types and avoid
unnecessary conversions that may make your program slower.

The third compiler directive, Option Compare , can take the values Binary or Text. If you set
Option Compare to Binary, Visual Basic compares strings using their binary representations. If you
set Option Compare to Text, Visual Basic compares strings using a case - insensitive method that
depends on your computer ’ s localization settings. Option Compare Binary is faster, but may not
always produce the result you want.

The fi nal compiler directive, Option Infer , determines whether you can omit the data type when
declaring a variable and let Visual Basic deduce its data type from the context. For example, the fi rst
statement in the following code declares the variable x , explicitly declaring it as a Single. The second
statement declares variable y without specifying a data type. Because y ’ s initialization value looks
like a Double, Visual Basic infers that the variable should be a Double.

Dim x As Single
Dim y = 3.14159265

The problem with inferred data types is that it is not obvious from the code what data type Visual
Basic should use. In the preceding code, you need to know Visual Basic ’ s inference rules to know
whether variable y is a Single, Double, or Decimal.

You can use an Option statement to set the values for each of these options at the top of a code
module. For example, the following code turns Option Explicit On and Option Infer Off for a
module:

Option Explicit On
Option Infer Off

Instead of using Option statements in a fi le, you can use the property page shown in Figure 2 - 8 to
set these options for all of the fi les in the application.

c02.indd 28c02.indd 28 12/31/09 3:59:44 PM12/31/09 3:59:44 PM

OPTION RECOMMENDATIONS

To avoid confusion and long debugging sessions, I recommend that you use the
Compile property page to set Option Explicit On, Option Strict On, and Option
Infer Off to make Visual Basic as restrictive as possible. Then if you must loosen
these restrictions in a particular fi le, you can add an Option statement at the top of
the fi le. For example, you may need to set Option Infer On for a module that uses
LINQ. See Chapter 21, “LINQ,” for more information about LINQ.

A fi nal item on this tab that deserves special mention is the “ Generate XML documentation fi le ”
checkbox near the bottom. If you check this box, then when you build the application Visual Studio
creates an XML document containing any XML comments you have included in the code. For more
information about XML comments, see the section “ XML Comments ” in Chapter 14, “ Program
and Module Structure. ”

Build

The Build menu contains commands that let you compile projects within a solution. The following
list describes the most useful commands contained in the Build menu:

Build WindowsApplication1 — This command compiles the currently selected project, in
this case the project WindowsApplication1. Visual Studio examines the project ’ s fi les to
see if any have changed since the last time it compiled the project. If any of the fi les have
changed, Visual Studio saves and recompiles them.

Rebuild WindowsApplication1 — This command recompiles the currently selected project
from scratch. It recompiles every fi le even if it has not been modifi ed since the last time it
was compiled.

Clean WindowsApplication1 — This command removes temporary and intermediate fi les
that were created while building the application, leaving only the source fi les and the fi nal
result .exe and .dll fi les.

Publish WindowsApplication1 — This command displays the Publish Wizard shown in
Figure 2 - 9. It can walk you through the process of making your application available for
distribution in a local fi le, fi le share, FTP site, or web site.

➤

➤

➤

➤

Menus ❘ 29

c02.indd 29c02.indd 29 12/31/09 3:59:45 PM12/31/09 3:59:45 PM

30 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

If your solution contains more than one application, then the Build menu also contains the solution -
related commands Build Solution, Rebuild Solution, and Clean Solution. These are similar to their
application counterparts except they apply to every application in the solution.

Debug

The Debug menu contains commands that help you debug a program. These commands help you
run the program in the debugger, move through the code, set and clear breakpoints, and generally
follow the code ’ s execution to see what it ’ s doing and hopefully what it ’ s doing wrong.

For more information about the Debug menu and debugging Visual Basic code, see Chapter 7,
“ Debugging. ”

Data

The Data menu contains commands that deal with data and data sources. Some of the commands in
this menu are only visible and enabled if you are designing a form and that form contains the proper
data objects.

The following list describes the most useful Data menu commands:

Show Data Sources — This command displays the Data Sources window, where you can
work with the program ’ s data sources. For example, you can drag and drop tables and fi elds
from this window onto a form to create controls bound to the data source.

Preview Data — This command displays a dialog box that lets you load data into a DataSet
and view it at design time.

➤

➤

FIGURE 2-9: The Publish Wizard helps you deploy

an application.

c02.indd 30c02.indd 30 12/31/09 3:59:46 PM12/31/09 3:59:46 PM

Add New Data Source — This command displays the Data Source Confi guration Wizard,
which walks you through the process of adding a data source to the project.

Add Query — This command is available when you are designing a form and have selected
a data - bound control such as a DataGridView or bound TextBox. This command opens a
dialog where you can specify a query to add to the form. This places a ToolStrip on the
form containing ToolStripButtons that populate the bound control by executing the query.

Format

The Format menu contains commands that arrange controls on a form. The commands are grouped
into submenus containing related commands. The following list describes the Format menu ’ s submenus:

Align — This submenu contains commands that align the controls you have selected in vari-
ous ways. It contains the commands Lefts, Centers, Rights, Tops, Middles, Bottoms, and to
Grid. For example, the Lefts command aligns the controls so their left edges line up nicely.
The to Grid command snaps the controls to the nearest grid position.

Make Same Size — This submenu contains commands that makes the dimensions of the
controls you have selected the same. It contains the commands Width, Height, and Both.
The Size to Grid command adjusts the selected controls ’ widths so that they are a multiple
of the alignment grid size. (This command is disabled unless the Windows Forms Designer ’ s
LayoutMode is set to SnapToGrid. To set this, open the Tools menu, select the Options
command, go to the Windows Forms Designer tab, open the General sub - tab, and set the
LayoutMode property.)

Horizontal Spacing — This submenu contains commands that change the horizontal
spacing between the controls you have selected. It contains the commands Make Equal,
Increase, Decrease, and Remove.

Vertical Spacing — This submenu contains the same commands as the Horizontal Spacing
submenu except it adjusts the controls ’ vertical spacing.

Center in Form — This submenu contains the commands Horizontally and Vertically that
center the selected controls on the form either horizontally or vertically.

Order — This submenu contains the commands Bring to Front and Send to Back, which
move the selected controls to the top or bottom of the stacking order.

Lock Controls — This command locks all of the controls on the form so that you cannot
move or resize them by clicking and dragging, although you can still move and resize the
controls by changing their Location and Size properties in the Properties window. Invoking
this command again unlocks the controls.

Tools

The Tools menu contains miscellaneous tools that do not fi t particularly well in the other menus.
It also contains a few duplicates of commands in other menus and commands that modify the IDE
itself.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Menus ❘ 31

c02.indd 31c02.indd 31 12/31/09 3:59:47 PM12/31/09 3:59:47 PM

32 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

The following list describes the Tools menu ’ s most useful commands. Note that some of these com-
mands only appear when a particular type of editor is open.

Attach to Process — This command displays a dialog box to let you attach the debugger to
a running process.

Connect to Database — This command displays the Connection Properties dialog box,
where you can defi ne a database connection. The connection is added to the Server Explorer
window. You can later use the connection to defi ne data adapters and other objects that use
a database connection.

Connect to Server — This command displays a dialog box that lets you connect to a data-
base server.

Code Snippets Manager — This command displays the Code Snippets Manager, which you
can use to add and remove code snippets.

Choose Toolbox Items — This command displays a dialog box that lets you select the tools
displayed in the Toolbox. For instance, some controls are not included in the Toolbox by
default. You can use this command to add them if you will use them frequently.

Add - in Manager — This command displays the Add - in Manager, which lists the add - in
projects registered on the computer. You can use the Add - in Manager to enable or disable
these add - ins.

Macros — The Macros submenu contains commands that help you create, edit, and execute
macros. See the section “ Macros ” later in this chapter for details.

Extension Manager — This command displays an Extension Manager dialog that lets you
fi nd Visual Studio extensions online and install them.

External Tools — This command displays a dialog box that lets you add and remove
commands from the Tools menu. For example, you could add a command to launch
WordPad, MS Paint, WinZip, and other handy utilities from the Tools menu.

Import/Export Settings — This command displays a dialog box that you can use to save,
restore, or reset your Visual Studio IDE settings. Use this dialog box to confi gure your
development environment for general development, project management, team test, Visual
Basic, C#, C++, or Web development.

Customize — This command allows you to customize the Visual Studio IDE. See Chapter 3,
“ Customization, ” for details.

Options — This command allows you to specify options for the Visual Studio IDE. See the
“ Options ” section later in this chapter for details.

Macros

The Macros submenu provides commands that help you create, edit, and execute macros that auto-
mate repetitive Visual Studio programming chores. If you must perform a series of actions many
times, you can record a macro that performs them. Then you can call the macro repeatedly to per-
form the actions rather than executing them manually.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c02.indd 32c02.indd 32 12/31/09 3:59:47 PM12/31/09 3:59:47 PM

Some examples of macros that I ’ ve used in the past include code that:

Arranges controls in unusual ways, such as spacing picture boxes around the edge
of a circle.

Generates a long series of statements that does the same thing to a bunch of text values
(for example, makes Select Case statements for a series of text values).

Sets up a new dialog box by creating the OK and Cancel buttons, positioning them, setting
their DialogResult properties, and setting the form ’ s AcceptButton and CancelButton
properties.

Building a name and address form with labels and text boxes that have appropriate Anchor
properties.

Author John Mueller (www.mwt.net/˜jmueller) uses similar macros to set up dialog boxes, create
standard menus, and build standard event handlers. You have other ways to do these things, such as
saving a pre - built dialog box for use as a template, or by using code snippets described later in this
chapter, but macros are quick and easy.

After you have recorded a macro, you can edit the macro ’ s code and make changes. For example, if
you want to run the code a certain number of times, you can include it in a For loop. Often, a quick
inspection of the code lets you fi gure out how to modify the macro to perform actions similar to
(but not exactly the same as) the actions you originally recorded.

Most of the commands in the Macros submenu are self - explanatory. Use the Record
TemporaryMacro command to record a macro for quick temporary use. When you select this
command, a small window pops up that contains buttons you can click to suspend, fi nish, or cancel
recording. Visual Studio saves the commands you execute in a macro named TemporaryMacro.

Select Run TemporaryMacro to run this macro. If you record a new TemporaryMacro, it
overwrites the existing one without warning you. Select the Save TemporaryMacro command to
rename the macro so you can record a new TemporaryMacro
without destroying the
previous one.

Select the Macro Explorer command to display the window
shown in Figure 2 - 10. If you right - click a macro, the resulting
pop - up menu lets you run, edit, rename, or delete the macro.
Notice the Macro Explorer ’ s predefi ned Samples section, which
contains example macros that you can use or modify for your
own use.

Sometimes when you perform a series of programming tasks many
times, you have better ways to approach the problem than writing a
macro. For example, you may be able to make your program repeat
the steps inside a loop. Or you may be able to extract the com-
mon code into a subroutine and then call it repeatedly rather than
repeating the code many times. In these cases, your application
doesn ’ t need to contain a long sequence of repetitive code that may
be hard to debug and maintain.

➤

➤

➤

➤

Menus ❘ 33

FIGURE 2-10: The Macro

Explorer lets you edit, run, and

delete macros.

c02.indd 33c02.indd 33 12/31/09 3:59:48 PM12/31/09 3:59:48 PM

34 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Macros are generally most useful when you must write similar pieces of code that cannot be eas-
ily extracted into a routine and shared by different parts of the application. For example, suppose
that you need to write event handlers for several dozen TextBox controls. You could record a macro
while you write one of them. Then you could edit the macro to make it generate the others in a loop
using different control names for each event handler. You could place the bulk of the event - han-
dling code in a separate subroutine that each event handler would call. That would avoid the need
for extensive duplicated code. (In fact, you could even use the AddHandler statement or a Handles
clause to make all the controls use the same event handler.)

Macros are also useful for manipulating the IDE and performing IDE - related tasks. For example,
you can write macros to show and hide your favorite toolbars, or to change whether the current fi le
is opened read - only.

Options

The Tools menu ’ s Options command displays the dialog box shown in Figure 2 - 11. This dialog box
contains a huge number of pages of options that confi gure the Visual Studio IDE.

FIGURE 2-11: The Options dialog box lets you specify IDE options.

The following list describes the Options dialog box ’ s most important categories:

Environment — Contains general IDE settings such as whether the IDE uses tabs or
multiple windows to display documents, the number of items shown in the most recently
used fi le lists, and how often the IDE saves AutoRecover information. The Fonts and
Colors subsection lets you determine the colors used by the editors for different types
of text. For example, comments are shown in green by default, but you can change
this color.

Projects and Solutions — Contains the default settings for Option Explicit, Option Strict,
and Option Compare.

➤

➤

c02.indd 34c02.indd 34 12/31/09 3:59:48 PM12/31/09 3:59:48 PM

Source Control — Contains entries that deal with the source code control system (for exam-
ple, Visual SourceSafe). These systems provide fi le locking and differencing tools that let
multiple developers work on the same project without interfering with each other.

Text Editor — Contains entries that specify the text editor ’ s features. For example, you
can use these pages to determine whether delimiters are highlighted, whether long lines are
automatically wrapped, whether line numbers are displayed, and whether the editor pro-
vides smart indentation. The Basic ➪ VB Specifi c subsection lets you specify options such as
whether the editor uses outlining, displays procedure separators, and suggests corrections
for errors.

Debugging — Contains debugging settings such as whether the debugger displays messages
as modules are loaded and unloaded, whether it should make you confi rm when deleting all
breakpoints, and whether it should allow Edit - and - Continue.

Database Tools — Contains database parameters such as default lengths for fi elds of vari-
ous types.

HTML Designer — Contains options for confi guring HTML Designer. These options
determine such settings as whether the designer starts in source or design view, and whether
it displays Smart Tags for controls in design view.

Offi ce Tools — Contains settings that specify how the keyboard should work when you use
Excel or Word fi les within Visual Studio.

Test Tools — Contains settings that determine how testing tools behave.

Windows Forms Designer — Contains settings that control the Windows Forms Designer.
For example, this section lets you determine whether the designer uses a snap - to grid or
snap lines and how far apart grid points are.

Test

The Test menu contains commands that control the Visual Studio testing tools. These tools let you
perform such actions as coverage testing (to see if every line of code is executed), regression testing
(to see if changes to the code broke anything), and load testing (to see how the application performs
with a lot of simulated users running at the same time).

The following list briefl y describes the Test menu ’ s commands:

New Test — Displays a dialog box that lets you create various kinds of tests for the
application.

Load Metadata File — Lets you load a test metadata fi le. These XML fi les describe test
lists, each of which can contain tests. This command lets you load test lists into different
projects.

Create New Test List — Lets you make a new test list. Test lists let you group related tests
so that you can execute them together. For example, you might have test lists for user inter-
face testing, print tests, database tests, and so forth.

Run — Starts executing the currently active test project without the debugger.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Menus ❘ 35

c02.indd 35c02.indd 35 12/31/09 3:59:49 PM12/31/09 3:59:49 PM

36 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Debug — Starts executing the currently active test project with the debugger.

Windows — Displays test - related windows including Test View, Test List Editor, Test
Results, and Test Runs.

The Window menu contains commands that control Visual Studio ’ s windows. Which commands are
enabled depends on the type of window that has the focus. For example, if focus is on a code editor,
the Split command is enabled and the Float, Dock, and Dock as Tabbed Document commands are
disabled, but when the Solution Explorer window has the focus, the opposite is true.

The following list briefl y describes the most useful of these commands:

Split — Splits a code window into two panes that can display different parts of the code at
the same time. This command changes to Remove Split when you use it.

Float, Dock, Dock as Tabbed Document — Secondary windows such as the Toolbox,
Solution Explorer, and Properties windows can be displayed as dockable, fl oating, or tabbed
documents. A dockable window can be attached to the edges of the IDE or docked with
other secondary windows. A fl oating window stays in its own independent window even
if you drag it to a position where it would normally dock. A tabbed document window is
displayed in the main editing area in the center of the IDE with the forms, classes, and other
project fi les.

Auto Hide — Puts a secondary window in Auto Hide mode. The window disappears, and
its title is displayed at the IDE ’ s nearest edge. When you click the title or hover over it, the
window reappears so that you can use it. If you click another window, this window hides
itself again automatically.

Hide — Removes the window.

Auto Hide All — Makes all secondary windows enter Auto Hide mode.

New Horizontal Tab Group — Splits the main document window horizontally so that you
can view two different documents at the same time.

New Vertical Tab Group — Splits the main document window vertically so that you can
view two different documents at the same time.

Close All Documents — Closes all documents.

Reset Window Layout — Resets the window layout to a default confi guration.

Form1.vb — The bottom part of the Window menu lists open documents such as form,
code, and bitmap editors. The menu displays a checkmark next to the currently active
document. You can select one of these entries to quickly view the corresponding document.

Windows — If you have too many open documents to display in the Window menu, select
this command to see a list of the windows in a dialog. This dialog box lets you switch to
another document, close one or more documents, or save documents. By pressing Ctrl+Click
or Shift+Click you can select more than one document and quickly close them.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c02.indd 36c02.indd 36 12/31/09 3:59:50 PM12/31/09 3:59:50 PM

Help

The Help menu displays the usual assortment of help commands. You should be familiar with most
of these from previous experience. The following list summarizes some of the more interesting non -
standard commands:

Visual Studio Documentation — Opens Visual Studio documentation in a web browser.

MSDN Forums — Opens an MSDN community forums web page where you can post and
search for answers to questions.

Report a Bug — Opens the Microsoft Developer Division Feedback Center where you can
report bugs, make suggestions, and look for hot fi xes for known problems.

Samples — Opens a Microsoft web page containing links to Visual Studio documentation
and samples.

Customer Feedback Options — Displays a dialog that lets you indicate whether you want to
participate in Microsoft ’ s anonymous Customer Experience Improvement Program. If you
join, Microsoft collects anonymous information about your system confi guration and how
you use its software.

Check for Updates — Check online for Visual Studio updates.

Technical Support — Opens a help page describing various support options. The page
includes phone numbers and links to more information.

TOOLBARS

The Visual Studio toolbars are easy to rearrange. Simply grab the four gray dots on a toolbar ’ s left
or upper edge and drag the toolbar to its new position. If you drag a toolbar to one of the IDE ’ s
edges, it will dock there either horizontally (on the IDE ’ s top or bottom edge) or vertically (on the
IDE ’ s left or right edge). If you drop a toolbar away from the IDE ’ s edges, it becomes a fl oating
window not docked to the IDE.

You can use the IDE ’ s menu commands to determine which toolbars are visible, to determine
what they contain, and to make custom toolbars of your own. See Chapter 3, “ Customization, ” for
more details.

Many menu commands are also available in standard toolbars. For example, the Debug toolbar con-
tains many of the same commands that are in the Debug menu. If you use a set of menu commands
frequently, you may want to display the corresponding toolbar to make using the commands easier.
Alternatively, you can make your own custom toolbar and fi ll it with your favorite commands.

SECONDARY WINDOWS

You can rearrange secondary windows such as the Toolbox and Solution Explorer almost as easily
as you can rearrange toolbars. Click and drag the window ’ s title bar to move it. As the window
moves, the IDE displays little blue icons to help you dock the window, as shown in Figure 2 - 12. This
fi gure probably looks somewhat confusing, but it ’ s fairly easy to use.

➤

➤

➤

➤

➤

➤

➤

Secondary Windows ❘ 37

c02.indd 37c02.indd 37 12/31/09 3:59:51 PM12/31/09 3:59:51 PM

38 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

When you drag the window over another window, the IDE displays docking icons for the other
window. In Figure 2 - 12, these are the fi ve center most icons. The four icons on the sides dock the
window to the corresponding edge of the other window.

The center icon places the dropped window in a tab within the other window.

When you drag the mouse over one of the docking icons, the IDE displays a pale blue rectangle to
give you an idea of where the window will land if you drop it. In Figure 2 - 12, the mouse is over
the main document window ’ s right docking icon, so the blue rectangle shows the dropped window
taking up the right half of the main document window.

If you drop a window somewhere other than on a docking icon, the window becomes free - fl oating.

When you drop a window on the main document area, it becomes a tabbed document within that
area, and you cannot later pull it out. To free the window, select it and use the Window menu ’ s
Dock or Float command.

Sometimes the IDE is so cluttered with windows that it ’ s hard to fi gure out exactly where the
window will be dropped. It ’ s usually fairly easy to just move the mouse around a bit and watch the
pale blue rectangle to see what ’ s happening.

The windows in the Microsoft Document Explorer used by the MSDN Library and other external
help fi les provide the same arranging and docking tools for managing its subwindows such as Index,
Contents, Help Favorites, Index Results, and Search Results.

FIGURE 2-12: Use the IDE’s docking icons to help you dock windows.

c02.indd 38c02.indd 38 12/31/09 3:59:52 PM12/31/09 3:59:52 PM

This section describes some of the general features of the IDE ’ s secondary windows. The follow-
ing sections describe two of the most important of those secondary windows: the Toolbox and the
Properties window.

Toolbox

The Toolbox window displays tools that you can use with the currently active document. The tools
are available when you are editing a Windows Form, WPF Form, UserControl, web page, or other
item that can contain objects such as controls and components.

The tools are grouped into sections called tabs ,
although they don ’ t look much like the tabs on most
documents. The Toolbox in Figure 2 - 13 displays
tools for the Windows Forms Designer. The All
Windows Forms section is showing its tools as icons
whereas the Data section is listing its tools by name.
Other tabs are hidden. In this fi gure, the Toolbox
was enlarged greatly to show most of its contents.
Most developers keep this window much smaller and
docked to the left edge of the IDE.

You can customize the Toolbox by right -
clicking a tab and selecting one of the commands
in the context menu. The following list briefl y
describes the most useful of these commands:

List View — Toggles the current tab to
display tools either as a list of names (as in
the Data section in Figure 2 - 13) or a series of icons (as in the All Windows Forms
section in Figure 2 - 13).

Show All — Shows or hides less commonly used tool tabs such as XML Schema, Dialog
Editor, DataSet, Login, WPF Interoperability, Windows Workfl ow, Device Controls, and
many others.

Choose Items — Displays the dialog box shown in Figure 2 - 14. Use the .NET Framework
Components tab to select .NET tools, and use the COM Components tab to select COM
tools. Click the Browse button to locate tools that are not in either list.

Sort Items Alphabetically — Sorts the items within a Toolbox tab alphabetically.

➤

➤

➤

➤

Secondary Windows ❘ 39

FIGURE 2-13: The Toolbox window can display

tools by name or icon.

c02.indd 39c02.indd 39 12/31/09 3:59:53 PM12/31/09 3:59:53 PM

40 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Reset Toolbox — Restores the Toolbox to a default confi guration. This removes any items
you may have added by using the Choose Items command.

Add Tab — Creates a new tab where you can place your favorite tools. You can drag tools
from one tab to another. Hold down the Ctrl key while dragging to add a copy of the tool to
the new tab without removing it from the old tab.

Delete Tab — Deletes a tab.

Rename Tab — Lets you rename a tab.

Move Up, Move Down — Moves the clicked tab up or down in the Toolbox. You can also
click and drag the tabs to new positions.

If you right - click a tool in the Toolbox, the context menu
*contains most of these commands plus Cut, Copy, Paste, Delete,
and Rename Item.

Properties Window

When you are designing a form, the Properties window allows you
to view and modify the properties of the form and of the controls
that it contains. Figure 2 - 15 shows the Properties window
displaying properties for a Button control named btnCalculate.
You can see in the fi gure that the control ’ s Text property
is “ Calculate ” so that ’ s what the button displays to the user.

Figure 2 - 15 shows some important features of the Properties win-
dow that deserve special mention. At the top of the window is a
drop - down list that holds the names of all of the controls on the

➤

➤

➤

➤

➤

FIGURE 2-14: Use the Choose Toolbox Items dialog box to

select the tools in the Toolbox.

FIGURE 2-15: The Properties

window lets you view and modify

control properties.

c02.indd 40c02.indd 40 12/31/09 3:59:54 PM12/31/09 3:59:54 PM

form. To select a control, you can either click it on the Windows Forms Designer or select it from
this list.

The buttons in the row below the dropdown determine what items are displayed in the window
and how they are arranged. If you click the leftmost button, the window lists properties grouped by
category. For example, the Appearance category contains properties that affect the control ’ s appear-
ance such as BackColor, Font, and Image. If you click the second icon that holds the letters A and Z,
the window lists the control ’ s properties alphabetically.

Arranging properties alphabetically makes fi nding properties easier for many
developers.

The third icon makes the window display the control ’ s properties and the fourth icon (which
displays a lightning bolt) makes the window display the control ’ s events instead. (Yes, it ’ s a little
odd that the Properties window displays either properties or events, but there is no Events window.)

For more information on using the Properties window to edit properties and create event handlers in
the Windows Forms Designer, see Chapter 4, “ Windows Forms Designer. ”

SUMMARY

The Visual Studio integrated development environment provides a huge number of tools for
manipulating projects. Menus and toolbars contain hundreds if not thousands of commands for
creating, loading, saving, and editing different kinds of projects and fi les.

This chapter describes the most useful and important commands available in the IDE ’ s menus and
toolbars. The kinds of menus, toolbars, and commands that are available depend on the type of
window that currently has focus, in addition to the project ’ s current state. For example, the Format
menu contains commands that arrange controls on a form so it is only available when you are using
a Windows Forms Designer.

Chapter 3, “ Customization, ” explains in greater detail how you can rearrange Visual Studio ’ s
toolbars and menus to meet your needs. It explains how you can make your own toolbars and
menus and fi ll them with the commands that you fi nd most useful during your day - to - day
development.

Summary ❘ 41

c02.indd 41c02.indd 41 12/31/09 3:59:55 PM12/31/09 3:59:55 PM

c02.indd 42c02.indd 42 12/31/09 3:59:57 PM12/31/09 3:59:57 PM

3
Customization

The Visual Studio IDE is packed with thousands of tools that are available through toolbar
and menu commands. So many tools are available that the IDE would be practically useless if
every tool were displayed at the same time. In the interests of usability, the IDE displays only
the tools that the Microsoft Visual Studio developers thought would be most useful when you
were performing a particular task.

Unfortunately, the Microsoft developers didn ’ t know exactly what you would be doing while
developing applications, so they made their best guesses about which tools you would need.
Under some circumstances, you may fi nd that a completely different set of tools would be
more useful. In those cases, you should customize the IDE to make using those tools easier
and faster.

This chapter explains how you can customize the IDE. It explains how to make new toolbars
and menus, add commands to them, and determine the commands ’ appearances. It also tells
how you can defi ne keyboard shortcuts to make the commands you use most often really easy
to access.

ADDING COMMANDS

The Tools menu ’ s Customize command displays the dialog box shown in Figure 3 - 1. On the
Toolbars tab, select the check boxes next to the toolbars that you want to be visible. Click
New to create a new toolbar where you can add your favorite tools. You can leave the toolbar
fl oating or drag it to the edge of the IDE and dock it. If you drag it to the top, it joins the
other toolbars.

c03.indd 43c03.indd 43 12/31/09 4:04:48 PM12/31/09 4:04:48 PM

44 ❘ CHAPTER 3 CUSTOMIZATION

Click the Commands tab and select a menu. Then click the Add Command button to see the dialog
shown in Figure 3-2. Select a command in the dialog and click OK to add it to the menu you
originally selected.

FIGURE 3-2: The Add Command dialog lets you add com-

mands to toolbars and menus.

FIGURE 3-1: The Customize dialog box’s Toolbars tab lets

you determine which toolbars are visible.

To make a command that executes a macro you have created, select the Macros category in the list on
the left. Find the macro you want to use in the list on the right, and drag it onto a toolbar or menu.

To create a new menu, click the Customize dialog’s Add New Menu button.

c03.indd 44c03.indd 44 12/31/09 4:04:51 PM12/31/09 4:04:51 PM

Making Keyboard Shortcuts ❘ 45

FIGURE 3-3: The Options dialog’s Keyboard section lets you view and

modify keyboard shortcuts.

MAKING KEYBOARD SHORTCUTS

Keyboard shortcuts let you quickly invoke a command by pressing a key combination. For example,
in most applications including Visual Studio, Ctrl+S invokes the save command.

The Keyboard button at the bottom of the Customize dialog displays the dialog box shown in
Figure 3 - 3. You can use this dialog to view and edit keyboard shortcuts.

Enter words in the “ Show commands containing ” text box to fi lter the commands. When you click
a command, the dialog box displays any keyboard shortcuts associated with it.

To make a new shortcut, click the “ Press shortcut keys ” text box and press the keys that you want
to use as a shortcut. The “Shortcuts for selected command” drop - down list displays any commands
that already use the shortcut you entered. To make the assignment, click the Assign button.

CONFUSING SHORTCUTS

To avoid confusion, don’t use standard shortcuts for non-standard commands.
For example, Ctrl+S normally makes the IDE save the currently selected items
(for example, the fi le you are editing). Changing the meaning of Ctrl+S so it runs a
macro that builds a sales form could be very confusing later.

When you type a new shortcut sequence in the “Press shortcut keys” box, look in
the “Shortcut currently used by” list to see if that combination of keys is already
assigned to another command. If the combination is in use, try something
different.

c03.indd 45 c03.indd 45 12/31/09 4:04:51 PM12/31/09 4:04:51 PM

46 ❘ CHAPTER 3 CUSTOMIZATION

SUMMARY

The Visual Studio IDE comes with a huge assortment of tools. Initially the IDE ’ s menus and tool-
bars are arranged to make it easy to access the tools that developers use most often, but if you
need to use some other tool frequently, you are not limited to the IDE ’ s initial layout. This chapter
explains how you can create, hide, and rearrange menus and toolbars to make it easy to use the
tools that you fi nd most useful.

In addition to its many menus and toolbars, the IDE contains dozens of windows that contain tools
or that allow you to view and modify different aspects of an application. Of all the windows dis-
played by the IDE, one of the fi rst that Visual Basic developers use when building a new application
is the Windows Forms Designer. This window allows you to add controls to a form, arrange them to
create a user interface, and set their properties to determine their appearances and behaviors.

Chapter 4, “ Windows Forms Designer, ” explains how to use the Windows Forms Designer to build
the forms that make up most Windows applications.

c03.indd 46c03.indd 46 12/31/09 4:04:52 PM12/31/09 4:04:52 PM

4
Windows Forms Designer

The Windows Forms Designer allows you to design forms for typical Windows applications.
It lets you add, size, and move controls on a form. Together with the Properties window, it
also lets you change a control ’ s properties to determine its appearance and behavior.

This chapter provides an introduction to the Windows Forms Designer. It explains how to
add controls to a form, move and size controls, set control properties, and add code
to respond to control events. It also describes tips and tricks that make working with
controls easier.

SETTING DESIGNER OPTIONS

When you fi rst install Visual Studio, the Windows Forms Designer is confi gured to be quite
usable. You can immediately open a form and use the Toolbox to place controls on it. You
can use the mouse to move and resize controls. You can use the Format menu to arrange and
size controls. Overall the Windows Forms Designer provides a fi rst - class intuitive WYSIWYG
(“ what you see is what you get ”) experience.

Behind the scenes, however, there are a few confi guration options that control the Designer ’ s
behavior and that you should know about to get the most out of the Designer.

To view the Designer ’ s options, open the Tools menu, select Options, open the Windows
Forms Designer branch, and select the General page to display the dialog shown in
Figure 4 - 1.

c04.indd 47c04.indd 47 12/30/09 6:40:40 PM12/30/09 6:40:40 PM

48 ❘ CHAPTER 4 WINDOWS FORMS DESIGNER

The following list describes the most important of these settings.

Optimized Code Generation — Determines whether Visual Studio generates optimized
code. This setting is here instead of some more code - oriented part of the Options dialog
because some controls may be incompatible with code optimization.

Grid Size — Determines the horizontal and vertical dimensions of the sizing grid for use
when LayoutMode is SnapToGrid.

LayoutMode — Determines whether Visual Studio uses snap - to - grid or snap lines . If this
is SnapToGrid, objects automatically snap to the nearest grid point when you drag or resize
them. When this is SnapLines, resized controls automatically snap to lines that align with
the edges or centers of other controls, or with the form ’ s margins. Both of these options
make it easy to build controls that are consistently sized and that align along their edges.
The two options have a very different feel, however, so you might want to experiment with
both to see which one you like best.

Automatically Open Smart Tags — Determines whether Visual Studio displays smart tags
by default.

EnableRefactoringOnRename — Determines whether Visual Studio performs refactoring
when you rename a control. (Refactoring is the process of restructuring the code, hopefully
to make it better.) If this setting is True and you change a control ’ s name, Visual Studio
updates any code that uses that control so it uses the new name. If this setting is False and
you rename a control, any code that refers to the control still uses its old name, so the code
will no longer work.

AutoToolboxPopulate — Determines whether Visual Studio adds components built by the
solution to the Toolbox window.

➤

➤

➤

➤

➤

➤

FIGURE 4-1: This dialog lets you control the Windows Forms

Designer’s behavior.

c04.indd 48c04.indd 48 12/30/09 6:40:42 PM12/30/09 6:40:42 PM

USEFUL OPTIONS

Which LayoutMode you should use is a matter of preference. I know many devel-
opers who use each style. The EnableRefactoringOnRename option can save you a
lot of trouble when you rename controls so it’s almost always worth leaving True.

ADDING CONTROLS

The Windows Forms Designer allows you to add controls to a form in several ways.

First, if you double - click a control on the Toolbox, Visual Studio places an instance of the control
on the form in a default location and at a default size. You can then use the mouse to move and
resize the control.

When you use this method, the new control is placed inside the currently
selected container on the form. If the currently selected control is a
GroupBox, the new control is placed inside the GroupBox. If the currently
selected control is a TextBox that is inside a Panel, the new control is placed
inside the Panel.

Second, if you click a control in the Toolbox, the mouse cursor changes while the mouse is over
the form. The new cursor looks like a plus sign with a small image of the control ’ s Toolbox icon
next to it. If you click the form, Visual Studio adds a control at that location with a default size.
Instead of just clicking, you can click and drag to specify the new control ’ s location and size. After
you place the new control, the mouse returns to a pointer cursor so you can click existing controls
to select them.

If you hold down the Control key when you click or drag on the form, the
Designer adds the new control to the form and keeps the control’s Toolbox
tool selected so you can add another instance of the control. For example,
suppose you need to create a series of TextBoxes to hold a user’s name,
street, city, state, and ZIP code. Select the TextBox tool in the Toolbox. Then
you can quickly use Ctrl+Click fi ve times to create the TextBoxes. Press the
Escape key to stop adding TextBoxes and then drag them into their correct
positions.

Adding Controls ❘ 49

c04.indd 49c04.indd 49 12/30/09 6:40:43 PM12/30/09 6:40:43 PM

50 ❘ CHAPTER 4 WINDOWS FORMS DESIGNER

SELECTING CONTROLS

When you fi rst create a control, the Designer selects it. The Designer
indicates that the control is selected by surrounding it with white boxes.
In Figure 4 - 2, the Button2 control is selected.

To select a control on the Designer later, simply click it.

You can click and drag to select a group of controls. As you drag the
mouse, the Designer displays a rectangle so you can tell which controls
will be selected. When you release the mouse button, all of the controls
that overlap the rectangle at least partly are selected.

When you select a group of controls, the Designer surrounds most of
them with black boxes. It surrounds a special “ master ” control with
white boxes. In Figure 4 - 3, four buttons are selected. Button1 is the
“ master ” control so it is surrounded by white boxes.

The Designer uses the “ master ” control to adjust the others if
you use the Format menu ’ s commands. For example, if you use the
Format ➪ Make Same Size ➪ Height command, the Designer gives the
“ black box ” controls the same height as the “ master ” control. Similarly
the Format ➪ Align ➪ Tops command moves the “ black box ” controls
so their tops are the same as the top of the “ master ” control.

To change the “ master ” control, simply click the control that you want to use as the “ master. ”

After you have selected some controls, you can Shift+Click or Ctrl+Click to add and remove single
controls from the selection. You can Shift+Click - and - drag or Ctrl+Click - and - drag to add and
remove groups of controls from the selection.

TRICKY CLICKS

Under some circumstances, the Designer will not remove its selection even if
you click the form off of the selected controls. To deselect all of the controls, either
click a control that is not selected or press the Escape key.

COPYING CONTROLS

A particularly useful technique for building a series of similar controls is to build one and then use
copy and paste to make others.

For example, to build the name, street, city, state, and ZIP code TextBoxes described in the previous
section, you could start by adding the Name TextBox to the form. Next, set all of the properties
for the control that will be shared by the other controls. For example, you may want to adjust the

FIGURE 4-2: The Designer

surrounds a selected control

with white boxes.

FIGURE 4-3: The selection’s

“master” control is surrounded

by white boxes.

c04.indd 50c04.indd 50 12/30/09 6:40:54 PM12/30/09 6:40:54 PM

TextBox ’ s width, set its MaxLength property to 20, and set its Anchor property to “ Top, Left,
Right ” so it resizes horizontally when its container resizes. Now select the control on the Designer
and press Ctrl+C to copy it. Then press Ctrl+V repeatedly to make copies for the other controls.
Drag the controls into position and you have quickly built all of the controls with their shared
properties already set.

CONTAINER CONFUSION

When you paste a copied control, the new control is placed inside whatever con-
tainer is currently selected on the form. This can be confusing if you quickly copy
and paste a container. For example, suppose you want to make three GroupBoxes.
You build one and size it the way you want it. Then you press Ctrl+C, Ctrl+V,
Ctrl+V. The fi rst GroupBox is copied and the fi rst copy is pasted inside the original
GroupBox. Then the second copy is also placed inside the fi rst copy. The result is
somewhat confusing and you’ll probably need to drag the copies out onto the form
before you can place them where you want.

You can also use copy and paste to copy a group of controls. For example, suppose you want to
make name, street, city, state, and ZIP code TextBoxes but you also want Label controls to the left
of the TextBoxes. First create the name Label and TextBox, set their properties, and position them
so they are lined up vertically and the Label is to the left of the TextBox as desired. Click and drag
to select both controls and then press Ctrl+C to copy them both. Now when you press Ctrl+V, the
Designer makes a copy of the Label and the TextBox. The copies are lined up vertically and the
Label is to the left of the TextBox as in the originals. The new controls are even both selected so you
can use the mouse to grab them both and drag them into position.

MOVING AND SIZING CONTROLS

Moving a control in the Windows Forms Designer is easy. Simply click and drag the control to its
new position.

To move a group of controls, select the controls that you want. Then click one of the controls and
drag to move the whole group.

Note that you can drag controls in and out of container controls such as the FlowLayoutPanel,
GroupBox, Panel, and PictureBox. When you drag a control into a new container, the mouse
cursor acquires a little fuzzy rectangle on the lower right. If you are dragging a control and you
see this appear, you know that dropping the control at the current position will move it into a
new container. The new container indicator appears if you are dragging a control from the form
into a container, from a container onto the form, or from one container to another.

Moving and Sizing Controls ❘ 51

c04.indd 51c04.indd 51 12/30/09 6:40:55 PM12/30/09 6:40:55 PM

52 ❘ CHAPTER 4 WINDOWS FORMS DESIGNER

Resizing a control is almost as easy as moving one. Click a control to select it. Then click and drag
one of the white boxes surrounding the control to change its size.

To resize a group of controls, select the group. Then click and drag one of the boxes surrounding
one of the controls. When you drag the mouse, the control beside the box you picked is resized as if
it were the only control selected. The other selected controls resize in the same manner. For example,
if you widen the clicked control by eight pixels, all of the other controls widen by eight pixels, too.

ARRANGING CONTROLS

The Format menu contains several submenus that hold tools that make arranging controls easier.
For example, the Format menu ’ s Align submenu contains commands that let you align controls
vertically and horizontally along their edges or centers.

For a description of this menu ’ s commands, see the section “ Format ” in Chapter 2, “ Menus,
Toolbars, and Windows. ” (Or just experiment with these commands — they aren ’ t too complicated.)

For more information about how the selection ’ s “ white box master ” control determines how other
controls are adjusted, see the section “ Selecting Controls ” earlier in this chapter.

SETTING PROPERTIES

When you select a control, the Properties window allows you to view and edit the control ’ s proper-
ties. For most properties, you can simply click the property and type a new value for the control.
Some properties are more complex than others and provide drop - down lists or special dialogs to
set the property ’ s value. Most of the editors provided for setting property values are fairly self -
explanatory, so they are not described in detail here.

In addition to using the Properties window to set a single control ’ s properties one at a time, you
can quickly set property values for groups of controls in a couple of ways. The following sections
describe some of the most useful of these techniques.

Setting Group Properties

If you select a group of controls, you can sometimes use the Properties window to give all of the
controls the same property value all at once. For example, suppose you select a group of TextBoxes.
Then you can use the Properties window to give them the same values for their Anchor, Text,
MultiLine, Font, and other properties simultaneously.

Sometimes, this even works when you select different kinds of controls at the same time. For exam-
ple, if you select some TextBoxes and some Labels, you can set all of the controls ’ Text properties at
the same time. You cannot set the TextBoxes ’ MultiLine properties because the Labels do not have a
MultiLine property.

c04.indd 52c04.indd 52 12/30/09 6:40:56 PM12/30/09 6:40:56 PM

BLANKING TEXT

One handy use for this technique is to set the Text property to a blank string for a
group of TextBox controls. Unfortunately, if the selected TextBoxes have different
Text values, the Properties window displays a blank value for the Text property.
If you then try to make the property blank, the Properties window doesn’t think
you’ve changed the value, so it doesn’t blank the controls’ Text properties.

To work around this restriction, fi rst set the Text property to any non-blank value
(“x” will do) to give all of the controls the same value. Then delete the Text value
to blank all of the controls’ Text values.

Setting Diff erent Properties for Several Controls

When you select a control on the Windows Forms Designer, the Properties window initially selects
a property for the control. The property selected depends on the kind of control you select and on
the property currently selected in the Properties window.

If the newly selected and previously selected controls both have the currently selected property,
the Properties window keeps that property selected. Otherwise the Properties window selects the
default property for the newly selected control.

For example, suppose you select a Label control on the Designer and then click the TabIndex prop-
erty in the Properties window. Now suppose you select a TextBox in the Designer. Because the
TextBox also has a TabIndex property, that property remains selected in the Properties window.

In contrast, suppose you select a Button and click the Text property. Now suppose you click on
a ListBox. The ListBox control doesn ’ t have a Text property so the Properties window selects its
default property (which is Items).

Because the Properties window tries to keep the same property selected, you can easily give a series
of controls different values for the same property. For example, suppose you copy and paste to
make a series of TextBoxes, and you want to give them good names. Select one TextBox, click its
Name property in the Properties window, and type the new name (for example, txtName). Now
click a different TextBox on the Windows Forms Designer. The Name property is still selected in
the Properties window. If you immediately type this control ’ s name (for example, txtStreet), the
Properties window assigns the control the new name. You can repeat this process of selecting a new
TextBox and typing its name very quickly.

WPF WANTING

Unfortunately, the WPF Designer is missing this feature (and many others). You
need to click the Name property each time you want to change a control’s name.
Hopefully this designer will catch up with the Windows Forms Designer some day.

Setting Properties ❘ 53

c04.indd 53c04.indd 53 12/30/09 6:40:57 PM12/30/09 6:40:57 PM

54 ❘ CHAPTER 4 WINDOWS FORMS DESIGNER

Using Smart Tags

Many controls display a smart tag when you select them on
the Designer. The smart tag looks like a little box contain-
ing a right - pointing triangle. When you click the smart tag,
a small dialog appears to let you perform common tasks for
the control quickly and easily.

Figure 4 - 4 shows a PictureBox with the smart tag expanded.
Because the smart tag ’ s dialog is visible, the smart tag indica-
tor shows a left - pointing triangle. If you click this, the dialog
disappears.

The PictureBox control ’ s smart tag dialog lets you choose an image for the control, set the control ’ s
SizeMode, or dock the control in its container. These actions set the control ’ s Image, SizeMode, and
Dock properties.

Many controls, particularly the more complicated kinds, provide smart tags to let you perform
common actions without using the Properties window.

ADDING CODE TO CONTROLS

After you have added the appropriate controls to a form and set their properties, the next step is to
add code to the form that responds to control events and that manipulates the controls.

You use the code editor to write code that responds to control events. The code editor is described in
Chapter 6, “ Visual Basic Code Editor, ” but you can open the code editor from the Windows Forms
Designer.

An event handler is a code routine that catches an event raised by a control and takes some action.
Almost all program action is started from an event handler. Even actions started automatically by a
timer begin when an event handler catches a timer ’ s events.

If you double - click a control on the Windows Forms Designer, Visual Studio creates an empty event
handler to handle the control ’ s default event and it opens the event handler in the code editor. For
example, the following code shows the event handler the IDE built for a Button control named
Button1. The default event for a Button is Click so this code is a Click event handler. (Note that I
added the line continuation in the fi rst line so it would fi t in the book. Visual Studio makes that all
one long line.)

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

End Sub

FIGURE 4-4: The PictureBox control’s

smart tag lets you choose an image,

set the control’s SizeMode, or dock the

control in its container.

c04.indd 54c04.indd 54 12/30/09 6:40:58 PM12/30/09 6:40:58 PM

RELAX, DON’T WORRY

Relaxed delegates let you remove the parameters from the event handler’s declara-
tion if you don’t need them. For example, if you use separate event handlers for
each button, you probably don’t need the parameters to fi gure out what’s happen-
ing. If the user clicks the button named btnExit, the btnExit_Click event handler
executes and the program can exit.

In this case, you can remove the parameters to simplify the code. The following
code shows the simplifi ed btnExit_Click event handler (without any code in it):

Private Sub btnExit_Click() Handles btnExit.Click

End Sub

Another way to build an event handler and open the code editor is
to select the control on the Windows Forms Designer. Then click
the Events icon (the lightning bolt) near the top of the Properties
window to make the window show a list of events for the control
as shown in Figure 4 - 5. Double - click an event in the window to
create an event handler for it and to open it in the code editor.

If you select more than one control in the Windows
Forms Designer and then double - click an event, Visual Studio
makes an event handler that catches the event for all of
the selected controls. To create the following event handler,
I selected three Buttons and double - clicked their
Click event:

Private Sub Button2_Click(ByVal sender As System.
Object, _
 ByVal e As System.EventArgs) _
 Handles Button3.Click, Button2.Click, Button1.Click

End Sub

The event handler ’ s name is Button2_Click instead of Button1_Click or some other name
because Button2 was the “ white box master ” control for the selected controls. See the section
“ Selecting Controls ” earlier in this chapter for more information about a selection ’ s “ master ”
control.

FIGURE 4-5: Click the Events icon

to make the Properties window

display a control’s events.

Adding Code to Controls ❘ 55

c04.indd 55c04.indd 55 12/30/09 6:40:59 PM12/30/09 6:40:59 PM

56 ❘ CHAPTER 4 WINDOWS FORMS DESIGNER

TOO MANY HANDLERS

If you select a group of controls and then double-click them, Visual Studio makes a
separate event handler for each control. If you want the same event handler to catch
events from all of the controls, click the event handler button (the lightning bolt) on
the Properties window and then double-click the event name there.

SUMMARY

The Windows Forms Designer allows you to build forms for use in Windows applications. It lets you
add controls to a form, and resize and move the controls. Together with the Properties window, it
lets you view and modify control properties, and create event handlers to interact with the controls.

This chapter introduces the Windows Forms Designer and explains how you can take advantage
of its features. Future chapters provide much more of the detail necessary for building forms.
Chapter 8, “ Selecting Windows Forms Controls, ” and Chapter 9, “ Using Windows Forms
Controls, ” provide more information about the kinds of controls you can use with the Windows
Forms Designer. Chapter 10, “ Windows Forms, ” says a lot more about how Windows Forms work
and what you can do with them.

Chapter 5, “ WPF Designer, ” describes the designer that you use to build Windows Presentation
Foundation forms. In some ways it is similar to the Windows Forms Designer. For example, you use
the Toolbox to place controls on the form, and you use the Properties window to view and edit con-
trol properties much as you do when using the Windows Forms Designer.

c04.indd 56c04.indd 56 12/30/09 6:41:00 PM12/30/09 6:41:00 PM

5
WPF Designer

The WPF (Windows Presentation Foundation) Designer allows you to build WPF windows
interactively much as the Windows Forms Designer lets you build Windows Forms. It provides
a WYSIWYG (what you see is what you get) surface where you can add controls to a window.
If you select one or more controls on the designer ’ s surface, the Properties window displays the
objects ’ properties and lets you edit many of them.

In addition to the WYSIWYG design surface, the designer provides an XAML (Extensible
Application Markup Language) code editor. Here you can view and edit the XAML code that
defi nes the user interface. This lets you edit properties and arrange controls in ways that are
impossible using the WYSIWYG designer.

This chapter provides an introduction to the WPF Designer. It explains how to add controls to a
window, move and size controls, set control properties, and add code to respond to control events.

FOR MORE INFORMATION

Windows Presentation Foundation is quite large and complex, requiring you to
learn about a whole new set of controls, objects, properties, animations, and other
items. It even uses a whole new system for properties and events that isn’t used by
Windows Forms.

The chapters in this book cover WPF in enough detail to get you started and let
you build an effective application, but there’s much more to WPF. For more details,
see my book WPF Programmer’s Reference: Windows Presentation Foundation
with C# 2010 and .NET 4.0 (Stephens, Wrox, 2009). Some of the code examples
use C# but most of the code uses XAML code, which is described by the book.
You can learn more and download the book’s example code in C# and Visual Basic
versions on the book’s web page www.vb-helper.com/wpf.htm.

c05.indd 57c05.indd 57 12/30/09 6:43:51 PM12/30/09 6:43:51 PM

58 ❘ CHAPTER 5 WPF DESIGNER

EDITOR WEAKNESSES

Visual Studio ’ s Windows Forms Designer has been around for a long time and over the years it has
become extremely powerful. In contrast, the WPF Designer is relatively new and lacks many of the
features included in its more mature cousin.

Although the WPF Designer is a WYSIWYG tool, it has a lot of weak spots. A small sampling of
these weaknesses includes:

You cannot graphically put controls inside controls that are not primarily used as
containers. For example, you cannot graphically put a Grid control inside a Button. You
need to resort to XAML to do this.

The Properties window does not provide editors for many types of objects, and many of
the editors it does provide are incomplete. For example, the Properties window provides no
tools for recording property animations and no tools for building styles or templates.

The Properties window provides no descriptions for the selected property, so you must look
in the documentation for help. Even the tooltips are weak, saying things like ClickMode:
ClickMode.

The designer surface has no snap - to - grid mode.

The XAML code editor ’ s IntelliSense is incomplete and doesn ’ t provide help in many places
where it would be useful (although it’s much better than nothing).

The WYSIWYG designer has enough weaknesses that it is often easier to build parts of a user inter-
face by using the XAML code editor. For example, the designer provides no methods for making
resources, styles, and templates, three items that are essential for building a maintainable interface.
Fortunately, these things are not too diffi cult to build in the XAML code editor.

In all fairness, the WPF Designer has improved greatly since its fi rst version and includes several
enhancements added since the previous version, including better enumerated property support
and primitive brush editors. It also crashes much less often and gets confused about how to draw
its controls much less frequently. Hopefully it will catch up with the Windows Forms Designer
some day.

All of these issues aside, the WPF Designer is a powerful tool. It lets you quickly build the basic
structures of a WPF window and layout controls. You may need to rearrange controls somewhat
and build additional elements such as resources and styles in the XAML editor, but the WYSIWYG
surface can get you started.

Though the XAML editor also has shortcomings, it does provide the tools you need to fi ne - tune
the user interface initially built by the designer surface. Together the two pieces of the WPF
Designer give you everything you need to build aesthetically pleasing and compelling WPF user
interfaces.

➤

➤

➤

➤

➤

c05.indd 58c05.indd 58 12/30/09 6:43:54 PM12/30/09 6:43:54 PM

BUILDING WITH BLEND

Microsoft’s Expression Blend product provides some of the features that are
missing from the WPF Designer. For example, it provides better tools for creat-
ing styles and templates, better brush editors, and the ability to record property
animations.

It still has its drawbacks (one being the fact that there is no free version) but it com-
plements Visual Studio’s WPF Designer nicely. Learn more about Expression Blend
or download a 30-day trial copy at www.microsoft.com/expression/products/
Overview.aspx?key=blend.

RECOGNIZING DESIGNER WINDOWS

Figure 5 - 1 shows the Visual Studio IDE displaying the WPF Designer. You can rearrange the IDE ’ s
windows, but normally the Toolbox is on the left and the Properties window is on the right, below
Solution Explorer. The WPF Designer is shown in the middle with its WYSIWYG design surface on
top and its XAML code editor on the bottom.

Recognizing Designer Windows ❘ 59

FIGURE 5-1: The WPF Designer includes a WYSIWYG design surface and an XAML

code editor.

c05.indd 59c05.indd 59 12/30/09 6:43:55 PM12/30/09 6:43:55 PM

60 ❘ CHAPTER 5 WPF DESIGNER

You can click the up and down arrow label between the WYSIWYG designer and the XAML editor
to make the two switch panes. This is useful if you make one pane large and the other small. Then
you can quickly switch back and forth, moving the one you want into the bigger pane as you move
from using the WYSIWYG designer to the XAML editor.

If there is an error in the XAML code, the designer may display a message at its top indicating that
there are errors. You can click that label to open the Error list to see the types of errors. You can
then fi x them in the XAML editor and refresh the designer.

ADDING CONTROLS

The WPF Designer allows you to add controls to a form in several ways that are similar to those
provided by the Windows Forms Designer. If you are familiar with that topic you might want to
skip this section.

First, if you double - click a control on the Toolbox, Visual Studio places an instance of the control
on the window in a default location and at a default size. You can then use the mouse to move and
resize the control.

CONTAINER CONFUSION

When you use this method, the new control is placed inside the currently selected
container on the window. If the currently selected control is a StackPanel, the
new control is placed inside the StackPanel. If the currently selected control is a
TextBox that is inside a Grid, the new control is placed inside the Grid.

Second, if you click a control in the Toolbox, the mouse cursor changes to a crosshair while the
mouse is over the window. If you click the window, Visual Studio adds a control at that location
with a default size. Instead of just clicking, you can click and drag to specify the new control ’ s loca-
tion and size.

If you hold down the Ctrl key when you select a tool from the Toolbox, that tool remains selected
even after you create a control on the window so you can add another instance of the control. For
example, suppose you need to create a series of TextBoxes to hold a user ’ s name, street, city, state,
and ZIP code. Hold the Ctrl key and click the TextBox tool in the Toolbox. Then you can quickly
click fi ve times to create the TextBoxes. Click another tool or the arrow tool in the Toolbox to stop
adding TextBoxes.

SELECTING CONTROLS

When you fi rst create a control, the designer selects it. The designer indicates that the control
is selected by surrounding it with light gray boxes. In Figure 5 - 1, the button in the lower right is
selected.

c05.indd 60c05.indd 60 12/30/09 6:43:56 PM12/30/09 6:43:56 PM

To select a control on the designer later, simply click it. You can also click and drag to select a group
of controls. As you drag the mouse, the designer displays a rectangle so you can tell which controls
will be selected. When you release the mouse button, all of the controls that overlap the rectangle at
least partly are selected.

When you select a group of controls, the designer surrounds them with little marks that look like
crop marks or frame marks. In Figure 5 - 2, the text box and the lower - right button are selected.

Copying Controls ❘ 61

FIGURE 5-2: Selected controls are surrounded by

frame marks.

After you have selected some controls, you can Shift+Click to add new controls to the selection or
Ctrl+Click to toggle a control ’ s membership in the selection. You can also Shift+Click - and - drag
or Ctrl+Click - and - drag to add or toggle groups of controls from the selection.

You can quickly deselect all controls by pressing the Escape key.

COPYING CONTROLS

A particularly useful technique for building a series of similar controls is to build one and then use
copy and paste to make others.

For example, suppose you want to build a contact form with fi elds for name, street, city, state, and
ZIP code. You could build a Label control that contains the text “ Name ” and a TextBox next to it.
You can set the TextBox ’ s properties such as its size, MaxLength, and MaxLines properties. Then
you can click and drag to select both controls, press Ctrl+C to copy them to the clipboard, and press
Ctrl+V to paste new copies of the controls onto the window. The new TextBox will have the same
size, MaxLength, and MaxLines properties as the original TextBox, and will be next to the new
Label. You can then drag the two controls into position and paste again to make two more.

c05.indd 61c05.indd 61 12/30/09 6:43:57 PM12/30/09 6:43:57 PM

62 ❘ CHAPTER 5 WPF DESIGNER

MOVING AND SIZING CONTROLS

Moving most controls in the WPF Designer is easy. Simply click and drag the control to its new
position.

Container controls work slightly differently. When you select a container such as a Grid, StackPanel,
or WrapPanel, the designer displays a drag handle above and to the left of the control. This handle
looks like a small box containing arrows pointing up, down, left, and right. Click and drag this
handle to move the container and the controls it holds.

To move a group of controls, select the controls that you want. Then click one of the controls and
drag to move the whole group. If one of the controls is a container, you can click and drag its move
handle to reposition the group.

Note that you can drag controls in and out of container controls such as the Grid or StackPanel.
When you drag a control over a new container, the cursor acquires a little curvy arrow and the
designer grays out the rest of the window ’ s controls so only the new container is white and you can
see where the control will land if you drop it.

As you drag a control, the designer displays snap lines to show how the control lines up with other
controls. It displays lines when the control ’ s edges align with another control ’ s edges. For some con-
trols, it displays lines when the control ’ s text baseline aligns with the text baseline of other controls.

Figure 5 - 3 shows the designer dragging the lower button.
Four snap lines show that this control ’ s edges line up with
the left and right edges of the upper button, the left edge
of the GroupBox control at the bottom, and the upper
edge of the Ellipse control to the right. Numbers on each
snap line show the distance between the moving control
and the controls with which it is aligned.

Resizing a control is almost as easy as moving one.
Click a control to select it. Then click and drag one of
its edges or one of the light gray boxes surrounding the
control to change its size.

WPF controls provide a fairly complex set of properties
to determine how they are anchored to their containers.
Fortunately, the WPF Designer provides aids to make
understanding control anchoring easier.

When you select a control, the designer displays symbols next to the control ’ s edges showing how
it is anchored. An arrow from the control ’ s edge to the corresponding container edge means the
control ’ s edge remains the same distance from the container ’ s edge even when the container resizes.
In Figure 5 - 1, the selected button ’ s lower and right edges are connected to its container ’ s lower and
right edges. When the window resizes, the button moves to stay the same distance from those edges.

A circle near the selected control ’ s edge means that edge remains the same distance from the con-
trol ’ s opposite edge. In Figure 5 - 1, the circles mean the selected button ’ s left and top edges move
when its lower and right edges move, so the control stays the same width and height.

FIGURE 5-3: Snap lines show how moving

controls align with other controls.

c05.indd 62c05.indd 62 12/30/09 6:44:00 PM12/30/09 6:44:00 PM

If the button ’ s left and top edges were also connected to the container with arrows, the button
would grow when the container grew.

ATTACHMENT ANXIETY

The designer will not allow you to remove the attachment from all of a control’s
edges (so they display circles). If you remove an arrow, the designer changes the
opposite side’s anchor symbol to a circle if it isn’t one already.

You can easily change a control ’ s edge anchors by simply clicking the symbol. If you click a circle,
the designer changes that anchor to an arrow and vice versa.

SETTING PROPERTIES

When you select a control, the Properties window allows you to view and edit the control ’ s
properties. For Boolean properties, the Properties window displays a box that you can check or
uncheck to indicate whether the property ’ s value should be True or False.

For many other properties, you can simply click the property and type a new value for the control in
a text box. Unfortunately, the Properties window doesn ’ t give you much help, and you need to know
what to type.

For example, you can set a control ’ s Margin property to a blank string to indicate no margins; to a
single number to make its left, top, right, and bottom margins the same; to two numbers separated
by commas to set the control ’ s left/right and top/bottom margins; or to four numbers separated by
commas to set the control ’ s left, top, right, and bottom margins, respectively. You cannot set this
property to three numbers or more than four numbers, but the Properties window doesn ’ t give you
any hints that this is the case.

SETTING GROUP PROPERTIES

If you select a group of controls, you can sometimes use the Properties window to give all of the
controls the same property value all at once. For example, suppose you select a group of TextBoxes.
Then you can use the Properties window to give them the same values for their Width, Height,
Margin, MaxLength, and many other properties.

Sometimes, this even works if you select different kinds of controls at the same time. For example,
if you select some TextBoxes and some Labels, you can set all of the controls ’ Width, Height, and
Margin properties at the same time. You cannot set the controls ’ MaxLength properties because the
Labels do not have a MaxLength property.

Setting Group Properties ❘ 63

c05.indd 63c05.indd 63 12/30/09 6:44:01 PM12/30/09 6:44:01 PM

64 ❘ CHAPTER 5 WPF DESIGNER

ADDING CODE TO CONTROLS

After you have added the appropriate controls to a form and set their properties, the next step is to
add code to the form that responds to control events and manipulates the controls.

You can add some kinds of code declaratively in the XAML editor. For example, you can make a
trigger respond to a change in a control ’ s property or to a control ’ s event.

You can also write Visual Basic source code to respond to control events just as you would in a
Windows Forms application. If you double - click a control on the WPF Designer, Visual Studio cre-
ates an empty event handler to catch the control ’ s default event, and it opens the event handler in the
code editor.

For example, the following code shows the event handler the IDE built for a Button control. The
default event for a Button is Click so this code is a Click event handler. Note that I added the line con-
tinuation in the fi rst line so that it would fi t in the book. Visual Studio makes that all one long line.

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles Button1.Click

End Sub

SIT BACK AND RELAX

As is the case with Windows Forms, you can use relaxed delegates to remove
unneeded parameters from event handlers. For example, the following code shows
an event handler with no parameters that catches the btnExit button’s Click event:

Private Sub btnExit_Click() Handles btnExit.Click

End Sub

Another way to build an event handler and open the code editor is to select the control on the WPF
Designer. Then click the Events icon (the lightning bolt) near the top of the Properties window to
make the window show a list of events for the control. Double - click an event in the window to open
a new event handler for it in the code editor.

You can also create a new event handler within the code editor. The upper - left part of the code
editor displays a dropdown listing the window ’ s controls. If you select a control from the list, you
can then pick an event for that control from a second dropdown in the code editor ’ s upper right. If
you select an event, the code editor makes a corresponding empty event handler.

SUMMARY

The WPF Designer allows you to build windows for use in WPF applications. It lets you add con-
trols to the window, and to resize and move the controls. Together with the Properties window, it
lets you view and modify control properties, and create event handlers to interact with the controls.

c05.indd 64c05.indd 64 12/30/09 6:44:02 PM12/30/09 6:44:02 PM

This chapter introduces the WPF Designer and explains how you can take advantage of its
features. Other chapters provide much more of the detail that is necessary for building windows.
Chapter 11, “ Selecting WPF Controls, ” and Chapter 12, “ Using WPF Controls, ” provide more
information about the kinds of controls you can use with the WPF Designer. Chapter 13, “ WPF
Windows, ” says more about WPF windows and pages.

Chapter 6, “ Visual Basic Code Editor, ” describes the code editor that you can use to edit the code
that sits behind Windows Forms and WPF control events. Later chapters explain the Visual Basic
language that you use within the code editor.

Summary ❘ 65

c05.indd 65c05.indd 65 12/30/09 6:44:03 PM12/30/09 6:44:03 PM

c05.indd 66c05.indd 66 12/30/09 6:44:03 PM12/30/09 6:44:03 PM

6
Visual Basic Code Editor

The Visual Studio IDE includes editors for many different kinds of documents, including
several different kinds of code. For example, it has Hypertext Markup Language (HTML),
Extensible Markup Language (XML), Extensible Application Markup Language (XAML),
and Visual Basic editors. These editors share some common features, such as displaying
comments and keywords in different colors.

As a Visual Basic developer, you will use the Visual Basic code editor frequently, so you should
spend a few minutes learning about its specialized features. The most obvious feature of the
code editor is that it lets you type code into a module, but the code editor is far more than a
simple text editor such as Notepad. It provides many features to make writing correct Visual
Basic code easier.

This chapter describes some of the most important of these features. Many of these tools are
invaluable for understanding and navigating through the code so, even if you have worked
with Visual Studio before, you should take some time to read through this chapter and
experiment with the tools it describes.

FANTASTIC FEATURES

The Visual Basic code editor provides many features that are not provided by other
Visual Studio editors. For example, the HTML, XML, and XAML editors do not
provide breakpoints or features that let you step through executing code. Even the
C# code editor is missing some of the features in the Visual Basic editor, such as
immediately updated error indicators as you type.

Figure 6 - 1 shows the code editor displaying some Visual Basic code at runtime. To make
referring to the code lines easier, this fi gure displays line numbers. To display line numbers,
invoke the Tools menu ’ s Options command, navigate to the Text Editor ➪ Basic ➪ General
page, and check the Line Numbers box.

c06.indd 67c06.indd 67 12/31/09 6:34:09 PM12/31/09 6:34:09 PM

68 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

MARGIN ICONS

The gray margin to the left of the line numbers contains icons giving information about the
corresponding lines of code. The following table describes the icons on lines 3 through 11.

LINE ICON MEANING

3 Yellow arrow Indicates that execution is paused at this line

4 Red circle Indicates a breakpoint

5 Hollow red circle Indicates a disabled breakpoint

6 Red circle with plus sign Indicates a breakpoint with a condition or hit count test

10 Red diamond Indicates a breakpoint that executes an action when

reached

11 Blue and white rectangle Indicates a bookmark

FIGURE 6-1: The Visual Basic code editor provides many features, including line

numbers and icons that indicate breakpoints and bookmarks.

c06.indd 68c06.indd 68 12/31/09 6:34:13 PM12/31/09 6:34:13 PM

BREAK TIME

A breakpoint is a line of code that you have fl agged to stop execution so you can test
and debug the program. When you run the program in the IDE, the program stops
at the breakpoint and lets you see what routines called what other routines, examine
variable values, change variables, and so forth to fi gure out what ’ s happening. For
more information on breakpoints and debugging, see Chapter 7, “ Debugging.”

These icons can combine to indicate more than one condition. For example, line 12 shows a blue
and white rectangle to indicate a bookmark, a hollow red diamond to indicate a disabled breakpoint
that performs an action, and a plus sign to indicate that the breakpoint has a condition or hit
count test.

Note that the editor marks some of these lines in other ways than just an icon. It highlights the
currently executing line with a yellow background. It marks lines that hold enabled breakpoints
with white text on a red background.

To add or remove a simple breakpoint, click in the gray margin.

To make a more complex breakpoint, click in the margin to create a simple breakpoint. Then
right - click the breakpoint icon and select one of the context menu ’ s commands. The following list
describes these commands:

Delete Breakpoint — Removes the breakpoint.

Disable Breakpoint — Disables the breakpoint. When the breakpoint is disabled, this
command changes to Enable Breakpoint.

Location — Lets you change the breakpoint ’ s line number. Usually it is easier to click in the
margin to remove the old breakpoint and then create a new one.

Condition — Lets you place a condition on the breakpoint. For example, you can make
the breakpoint stop execution only when the variable num_employees has a value greater
than 100.

Hit Count — Lets you set a hit count condition on the breakpoint. For example, you can
make the breakpoint stop execution when it has been reached a certain number of times.

Filter — Lets you restrict the breakpoint so it is only set in certain processes or threads.

When Hit — Lets you specify the action that the breakpoint performs when it triggers. For
example, it might display a message in the Output window or run a macro.

➤

➤

➤

➤

➤

➤

➤

Margin Icons ❘ 69

c06.indd 69c06.indd 69 12/31/09 6:34:14 PM12/31/09 6:34:14 PM

70 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

Edit Labels — Lets you add labels to a breakpoint. Later you can select this option to view,
change, or remove the breakpoint ’ s labels.

Export — Lets you export information about the breakpoint into an XML fi le.

To add or remove a bookmark, place the cursor on a line and then click the Toggle Bookmark tool.
You can fi nd this tool, which looks like the blue and white bookmark icon, in the Text Editor toolbar
(under the mouse in Figure 6 - 1) and at the top of the Bookmarks window. Other bookmark tools let
you move to the next or previous bookmark, the next or previous bookmark in the current folder, or
the next or previous bookmark in the current document. Others let you disable all bookmarks and
delete a bookmark.

OUTLINING

By default, the code editor displays an outline view of code. If you look at the fi rst line in Figure 6 - 1,
you ’ ll see a box with a minus sign in it just to the right of the line number. That box represents the
outlining for the Form1 class. If you click this box, the editor collapses the class ’ s defi nition and
displays it as a box containing a plus sign. If you then click the new box, the editor expands the
class ’ s defi nition again.

The gray line leading down from the box leads to other code items that are outlined, and that you
can expand or collapse to give you the least cluttered view of the code you want to examine. Near
the bottom of Figure 6 - 1, you can see that the RandomizeArray subroutine has been collapsed. The
ellipsis and rectangle around the routine name provide an extra indication that this code is hidden.

The editor automatically creates outlining entries for namespaces, classes and their methods, and
modules and their methods. You can also use the Region statement to group a section of code for
outlining. For example, you can place several related subroutines in a region so you can collapse and
expand the routines as a group.

Figure 6 - 2 shows more examples of outlining. Line 36 begins a region named Randomization
Functions that contains three collapsed subroutines. Notice that the corresponding End Region
statement includes a comment that I added giving the region ’ s name. This is not required but it
makes the code easier to understand when you are looking at the end of a region.

➤

➤

c06.indd 70c06.indd 70 12/31/09 6:34:14 PM12/31/09 6:34:14 PM

Line 89 contains a collapsed region named Utility Functions.

Line 95 starts a module named HelperRoutines that contains one collapsed subroutine.

Finally, line 114 holds the collapsed ImageResources namespace.

Notice that the line numbers skip values for any collapsed lines. For example, the
RandomizeIntegerArray subroutine is collapsed on line 38. This subroutine contains 15 lines
(including the Sub statement), so the next visible line is labeled 53.

COLLAPSED CODE COMMENTS

Notice that comments before a subroutine are not collapsed with the subroutine.
You can make reading collapsed code easier by placing a short descriptive comment
before each routine.

FIGURE 6-2: The code editor outlines namespaces, classes and their methods, modules

and their methods, and regions.

Outlining ❘ 71

c06.indd 71c06.indd 71 12/31/09 6:34:15 PM12/31/09 6:34:15 PM

72 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

TOOLTIPS

If you hover the mouse over a variable at design time, the editor displays a tooltip describing
the variable. For example, if you hover over an integer variable named num_actions , the tooltip
displays “ Dim num_actions As Integer. ”

If you hover over a subroutine or function call (not the routine ’ s defi nition, but a call to it), the
tooltip displays information about that routine. For example, if you hover over the RandomizeArray
subroutine (which takes an array of integers as a parameter), the tooltip reads, “ Private Sub
RandomizeArray(arr() As Integer). ”

At runtime, if you hover over a variable, the tooltip displays the variable ’ s value. If the variable is
complex (such as an array or structure), the tooltip displays the variable ’ s name and a plus sign. If
you click or hover over the plus sign, the tooltip expands to show the variable ’ s members.

In Figure 6 - 3, the mouse hovered over variable arr . The editor displayed a plus sign and the text
arr {Length = 100} . When the mouse hovered over the plus sign, the editor displayed the values
shown in the fi gure. Moving the mouse over the up and down arrows at the top and bottom of the
list makes the values scroll.

FIGURE 6-3: You can hover the mouse over a variable at runtime to see its value.

If a variable has properties that are references to other objects, you can hover over their plus signs
to expand those objects. You can continue following the plus signs to drill into the variable ’ s object
hierarchy as deeply as you like.

c06.indd 72c06.indd 72 12/31/09 6:34:16 PM12/31/09 6:34:16 PM

INTELLISENSE

If you start typing a line of code, the editor tries to anticipate what you will type. For example,
if you typed “ Me. ” the editor would know that you are about to use one of the current object ’ s
properties or methods.

IntelliSense displays a list of the properties and methods that you might be trying to select. As
you type more of the property or method, IntelliSense scrolls to show the choices that match what
you have typed.

In Figure 6 - 4, the code includes the text “ Me.Set ” , so IntelliSense is displaying the current object ’ s
methods that begin with the string “ Set. ”

FIGURE 6-4: IntelliSense displays a list of properties and methods that you might be

trying to type.

While the IntelliSense window is visible, you can use the up and down arrows to scroll through
the list. While IntelliSense is displaying the item that you want to use, you can press the Tab key to
accept that item and make IntelliSense type it for you. Press the Escape key to close the IntelliSense
window and type the rest manually.

After you fi nish typing a method and its opening parenthesis, IntelliSense displays information
about the method ’ s parameters. Figure 6 - 5 shows parameter information for a form object ’ s
SetBounds method. This method takes four parameters: x , y , width , and height .

IntelliSense ❘ 73

c06.indd 73c06.indd 73 12/31/09 6:34:17 PM12/31/09 6:34:17 PM

74 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

IntelliSense shows a brief description of the current parameter x . As you enter parameter
values, IntelliSense moves on to describe the other parameters.

IntelliSense also indicates whether overloaded versions of the method exist. In Figure 6 - 5,
IntelliSense is describing the fi rst version of two available versions. You can use the up and down
arrows on the left to move through the list of overloaded versions.

CODE COLORING AND HIGHLIGHTING

The code editor displays different types of code items in different colors (although they all appear
black in this book). You can change the colors used for different items by selecting the Tools menu ’ s
Options command and opening the Environment ➪ Fonts and Colors option page.

COLOR CONFUSION

To avoid confusion, you should probably leave the editor ’ s colors alone unless you
have a good reason to change them.

FIGURE 6-5: IntelliSense displays information about a method’s parameters.

c06.indd 74c06.indd 74 12/31/09 6:34:17 PM12/31/09 6:34:17 PM

The following table describes some of the default colors that the code editor uses to highlight
different code elements.

ITEM HIGHLIGHTING

Comment Green text

Compiler error Underlined with a wavy blue underline

Keyword Blue text

Other error Underlined with a wavy purple underline

Preprocessor keyword Blue text

Read - only region Light gray background

Stale code Purple text

User types Navy text

Warning Underlined with a wavy green underline

A few other items that may sometimes be worth changing have white backgrounds and black text by
default. These include identifi ers (variable names, types, object properties and methods, namespace
names, and so forth), numbers, and strings.

When the code editor fi nds an error in your code, it highlights the error with a wavy underline. If
you hover over the underline, the editor displays a tooltip describing the error. If Visual Studio can
guess what you are trying to do, it adds a small fl at rectangle to the end of the wavy error line to
indicate that it may have useful suggestions.

The assignment statement i = “ 12 ” shown in Figure 6 - 6 has an error because it tried to assign a
string value to an integer variable and that violates the Option Strict On setting. The editor displays
the wavy error underline and a suggestion indicator because it knows a way to fi x this error. The
Error List window at the bottom also shows a description of the error.

Code Coloring and Highlighting ❘ 75

c06.indd 75c06.indd 75 12/31/09 6:34:18 PM12/31/09 6:34:18 PM

76 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

If you hover over the suggestion indicator, the editor displays a tooltip describing the problem and
an error icon. If you click the icon, Visual Studio displays a dialog box describing the error
and listing the actions that you may want to take. Figure 6 - 7 shows the suggestion dialog box for
the error in Figure 6 - 6. If you click the text over the revised sample code, or if you double - click the
sample code, the editor makes the change.

FIGURE 6-7: The error suggestion dialog box proposes likely solutions to an error.

FIGURE 6-6: If the code editor thinks it can fi gure out what’s wrong, it displays

a suggestion indicator.

c06.indd 76c06.indd 76 12/31/09 6:34:19 PM12/31/09 6:34:19 PM

CODE SNIPPETS

A code snippet is a piece of code that you might fi nd useful in many applications. It is stored in a
snippet library so that you can quickly insert it into a new application.

Visual Studio comes with hundreds of snippets for performing standard tasks. Before you start
working on a complicated piece of code, you should glance at the snippets that are already available
to you. In fact, it would be worth your time to use the Snippet Manager available from the Tools
menu to take a good look at the available snippets right now before you start a new project. There ’ s
little point in reinventing methods for calculating statistical values if someone has already done it
and given you the code.

Snippets are stored in simple text fi les with XML tags, so it is easy to share snippets with other
developers. Go to the book ’ s supplemental web page, www.vb-helper.com/vb_prog_ref.htm ,
to contribute snippets and to download snippets contributed by others.

The following sections explain how to use snippets in your applications and how to create new
snippets.

Using Snippets

To insert a snippet, right - click where you want to insert the code and select Insert Snippet to make
the editor display a list of snippet categories. Double - click a category to fi nd the kinds of snippets
that you want. If you select a snippet, a tooltip pops up to describe it. Figure 6 - 8 shows the editor
preparing to insert the snippet named “ Create a public property ” from the “ VB Prog Ref Snippets ”
category.

FIGURE 6-8: When you select a code snippet, a pop-up describes it.

Code Snippets ❘ 77

c06.indd 77c06.indd 77 12/31/09 6:34:19 PM12/31/09 6:34:19 PM

78 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

Double - click the snippet to insert it into your code.

The snippet may include values that you should replace in your code. These replacement values are
highlighted with a light green background, and the fi rst value is initially selected. If you hover the
mouse over one of these values, a tooltip appears to describe the value. You can use the Tab key to
jump between replacement values.

Figure 6 - 9 shows the inserted code for this example. The text “ An Integer Property ” is highlighted
and selected. Other selected text includes “ Integer, ” “ 0, ” and “ MyProperty. ” The mouse is hovering
over the value “ An Integer Property, ” so the tooltip explains that value ’ s purpose.

FIGURE 6-9: Values that you should replace in a snippet are highlighted.

Creating Snippets

To create a new snippet, you need to build an XML fi le containing the property tags to defi ne the
snippet and any replacements that the user should make. To tell Visual Studio that the fi le contains a
snippet, save it with a “.snippet” extension.

The following code shows the “ Create a public property ” snippet used in the previous section. The
outer CodeSnippets and CodeSnippet tags are standard and you should not change them.

Use the Title tag in the Header section to describe the snippet.

Inside the Snippet tag, build a Declarations section describing any literal text that the user should
replace. This example defi nes DataType, Description, DefaultValue, and PropertyName symbols.
Each literal defi nition includes an ID, and can include a ToolTip and Description.

c06.indd 78c06.indd 78 12/31/09 6:34:20 PM12/31/09 6:34:20 PM

After the declarations, the Code tag contains the snippet ’ s source code. The syntax
< ![CDATA[. . .]] > tells XML processors to include any characters including carriage returns
between the < ![CDATA[and the]] > in the enclosing tag.

< CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >
 < CodeSnippet Format="1.0.0" >
 < Header >
 < Title > Create a public property < /Title >
 < /Header >
 < Snippet >
 < Declarations >
 < Literal >
 < ID > DataType < /ID >
 < ToolTip > The property's data type. < /ToolTip >
 < Default > Integer < /Default >
 < /Literal >
 < Literal >
 < ID > Description < /ID >
 < ToolTip > The property's description. < /ToolTip >
 < Default > An Integer property. < /Default >
 < /Literal >
 < Literal >
 < ID > DefaultValue < /ID >
 < ToolTip > The property's default value. < /ToolTip >
 < Default > 0 < /Default >
 < /Literal >
 < Literal >
 < ID > PropertyName < /ID >
 < ToolTip > The property's name. < /ToolTip >
 < Default > MyProperty < /Default >
 < /Literal >
 < /Declarations >
 < Code Language="VB" >
 < ![CDATA[
 ' $Description$
 Private m_$PropertyName$ As $DataType$ = $DefaultValue$
 Public Property $PropertyName$() As $DataType$
 Get
 Return m_$PropertyName$
 End Get
 Set(ByVal value As $DataType$)
 m_$PropertyName$ = value
 End Set
 End Property
]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

Create a directory to hold snippets and save the snippet ’ s XML defi nition there. To tell Visual
Studio where to look for your snippets, select the Tools menu ’ s Code Snippets Manager command
to display the tool shown in Figure 6 - 10. In the Language dropdown, select Visual Basic. Then click
the Add button, browse to your snippet directory, and click OK. Now the directory and the snippets
that it contains will be available in the Insert Snippet pop - ups.

Code Snippets ❘ 79

c06.indd 79c06.indd 79 12/31/09 6:34:21 PM12/31/09 6:34:21 PM

80 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

ARCHITECTURAL TOOLS

The code editor provides several powerful new tools in Visual Basic 2010 that can help you
understand the structure of your code and how to navigate through its pieces. They can give you
a better understanding of how the pieces of the program fi t together, and they can help you track
down important code snippets, such as where a variable or type is defi ned and where one piece of
code is called by others.

The following sections describe the most useful of these kinds of architectural tools and explain
how to invoke them.

Rename

If you right - click the defi nition or occurrence of a symbol, such as a variable, subroutine, function,
or class, and select Rename, Visual Studio displays a dialog where you can enter a new name for
the item. If you enter a name and click OK, Visual Studio updates all references to that symbol.
If the symbol is a variable, it changes all references to the variable so they use the new name.

This is much safer than using a simple textual fi nd - and - replace, which can wreak havoc with strings
that contain your target string. For example, if you textually replace the variable name “ factor ” with
“ issue, ” your Factorial function becomes Issueial. In contrast, if you right - click the “ factor ” variable,
select Rename, and set the new name to “ issue, ” Visual Studio only updates references to the variable.

CORRUPTED COMMENTS

Unfortunately, Rename still leaves any comments that discuss the factor variable
unchanged. You ’ ll have to search the comments to fi x them.

FIGURE 6-10: The Code Snippets Manager lets you add

and remove snippet directories.

c06.indd 80c06.indd 80 12/31/09 6:34:21 PM12/31/09 6:34:21 PM

Go To Defi nition

If you right - click a symbol or type, such as a variable, function, or class, and select Go To
Defi nition, the code editor jumps to the location where the symbol is defi ned. For example, it would
jump to a variable ’ s declaration or a function ’ s defi nition.

If the symbol you clicked is defi ned by Visual Basic or a library rather than your code, Visual Studio
opens the Object Browser and displays the symbol ’ s defi nition there.

Go To Type Defi nition

If you right - click a variable and click Go To Type Defi nition, the code editor jumps to the location
where the symbol ’ s data type is defi ned. For example, if you right - click a variable of type Employee,
the editor would jump to the defi nition of the Employee class.

If you click a variable that has one of the pre - defi ned data types such as Integer, Double, or String,
the editor displays the Object Browser entry for that type.

UNEXPECTED DEFINITIONS

If you right - click a function call and select Go To Type Defi nition, the editor goes
to the defi nition of the data type that the function returns. This can be fairly
confusing. You will probably learn more by using the Go To Defi nition command
instead.

Highlight References

As of Visual Studio 2010, whenever the cursor sits on a symbol, the code editor highlights all
references to that symbol by giving them a light gray background. It ’ s a subtle effect, so you may not
even notice it unless you know to look for it.

Reference highlighting makes it easier to see where a symbol such as a variable or subroutine is
used, although it only really works locally. If a subroutine is called from many pieces of code that
are far apart, you ’ ll only see the ones that are currently visible in the code editor ’ s window.

When you have a reference highlighted, you can use Ctrl+Shift+Up Arrow and Ctrl+Shift+Down
Arrow to move to the next or previous reference.

To learn more about references to a symbol that are farther away, use the Find All References
command described next.

Find All References

If you right - click a symbol such as a subroutine or variable and select “ Find All References, ” Visual
Studio displays a list of everywhere in the program that uses that symbol.

Architectural Tools ❘ 81

c06.indd 81c06.indd 81 12/31/09 6:34:23 PM12/31/09 6:34:23 PM

82 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

For example, if you right - click a call to a function named Fibonacci, the list includes all calls to that
function and the function ’ s defi nition.

You can double - click any of the listed references to make the code editor quickly jump to that
reference.

Generate From Usage

As of Visual Studio 2010, the code editor can provide methods for automatically generating pieces
of code. These come in the form of suggested error corrections.

For example, suppose you have not defi ned a Person class but you type the following code:

Dim new_student As New Person()

The code editor correctly fl ags this as an error because the Person class doesn ’ t exist. It underlines the
word Person with a blue squiggly line and displays a short red rectangle near it. If you hover over the
rectangle, you ’ ll see an error icon. If you then click the icon, Visual Studio displays a list of suggested
corrections that include:

Change Person to Version

Generate ‘ Class Person ’

Generate new type

The fi rst choice assumes you have made a simple spelling error.

The second choice creates a new empty class named Person. You can fi ll in its properties and
methods later.

The third choice displays the dialog shown in Figure 6 - 11 so you can make Person another data type
that might make sense such as an Enum or Structure. The
dialog lets you set the type ’ s access to Default, Friend, or
Public, and to specify the fi le where Visual Studio should
create the new type.

Now suppose you type the following code:

new_student.FirstName = "Zaphod"

The code editor also fl ags this statement as an error. If you
click the error icon this time, the suggested solution says:

Generate a property stub for ‘ FirstName ’ in
‘ WindowsApplication1.Person’

If you click this text, Visual Studio adds the following
simple property to the Person class:

Property FirstName As String

➤

➤

➤

FIGURE 6-11: The New Type dialog

lets you create a new Class, Enum, or

Structure.

c06.indd 82c06.indd 82 12/31/09 6:34:24 PM12/31/09 6:34:24 PM

The code editor can also generate a constructor for the class if you enter the following code:

Dim another_person As New Person("Trillian")

This code is fl agged as an error because no constructor is defi ned that takes a parameter. The error
suggestions can make a constructor for you, although you ’ ll need to edit it to give it code that
handles the parameter.

This also causes a new error because the class now has a constructor that takes a single parameter,
but not one that takes no parameters, so the earlier statement Dim new_student As New Person()
is fl agged as an error.

By now you can probably guess what ’ s coming: if you click the error icon, the suggestions can make
a constructor for this case, too.

Similarly, you can use the error suggestions to generate stubs for subroutines and functions. Simply
use the new items as if they already exist, use the error suggestions to build stubs, and then fi ll in
the appropriate code.

THE CODE EDITOR AT RUNTIME

The code editor behaves slightly differently at runtime and design time. Many of its design - time
features still work. Breakpoints, bookmarks, IntelliSense, and snippets still work.

At runtime, the editor adds new tools for controlling the program ’ s execution. Right - click a value
and select Add Watch or QuickWatch to examine and monitor the value. Use the Step Into, Step
Over, and Step Out commands on the Debug menu or toolbar to make the program walk through
the code. Hover the mouse over a variable to see a tooltip giving the variable ’ s value (see the section
“ Tooltips ” earlier in this chapter for more information).

ESSENTIAL SHORTCUTS

Some very handy runtime shortcuts are F5 (Start Debugging), F8 (Step Into), and
Shift+F8 (Step Over). Some particularly handy code editing shortcuts are F9 (Toggle
Breakpoint) and Shift+Space (Open IntelliSense). You might want to write down
these and any others that you use frequently.

(Note that some shortcuts are different if you don ’ t have Visual Studio set up for
Visual Basic development. If the IDE is customized for C# or general development,
Step Over is F10 and Step Into is F11.)

Right - click a statement and select Show Next Statement to move the cursor to the next statement
that the program will execute. Select Run To Cursor to make the program continue running until it
reaches the cursor ’ s current line.

The Code Editor at Runtime ❘ 83

c06.indd 83c06.indd 83 12/31/09 6:34:24 PM12/31/09 6:34:24 PM

84 ❘ CHAPTER 6 VISUAL BASIC CODE EDITOR

Right - click and select Set Next Statement to make the program skip to a new location. You can also
drag the yellow arrow indicating the next statement to a new location in the left margin.

REPOSITION RESTRICTIONS

Some restrictions exist as to where you can move the execution position. For
example, you cannot jump out of one routine and into another.

By using all of these runtime features, you can walk through the code while it executes and learn
exactly what it is doing at each step. You can see the values of variables, follow paths of execution
through If Then statements, step in and out of routines, and run until particular conditions are met.

For more information on the Debug menu and its submenus, see the section “ Debug ” in Chapter 2,
“ Menus, Toolbars, and Windows. ” For more information on debugging techniques, see Chapter 7,
“ Debugging. ”

You can discover other runtime features by exploring the editor at runtime. Right - click different
parts of the editor to see which commands are available in that mode.

SUMMARY

The Visual Basic code editor is one of the most important IDE windows for Visual Basic developers.
Though you can use the Windows Forms Designer alone to place controls on a form, the form can ’ t
do much without code behind those controls.

The Visual Basic code editor lets you type code into a module, but it also does much more. It
provides tooltips that let you view variable values; outlining that lets you expand and collapse
code, so you can focus on your current task; IntelliSense that helps you remember what methods
are available and what their parameters are; code coloring and highlighting that immediately fl ags
errors; and code snippets that let you save and reuse complex pieces of code that perform frequent
tasks. Architectural tools let you quickly fi nd symbol and type defi nitions, jump to specifi c pieces of
code, and easily see where a symbol is being used in the currently visible code. The code editor can
even automatically generate stubs for classes, constructors, properties, and methods.

Many of these tools help you understand how the code works as you write it. Chapter 7,
“ Debugging, ” explains IDE tools that help you understand the code when it runs. Those tools let
you walk through the code as it executes to see exactly what it is doing and what it is doing wrong.

c06.indd 84c06.indd 84 12/31/09 6:34:25 PM12/31/09 6:34:25 PM

7
Debugging

The Visual Basic code editor described in Chapter 6, “ Visual Basic Code Editor, ”
provides tools that make writing Visual Basic applications relatively easy. Features such as
error indicators, tooltips, and IntelliSense help you write code that obeys the rules of Visual
Basic syntax.

No code editor or any other tool can guarantee that the code you write actually does what
you want it to do. Debugging is the process of modifying the code to make it run and produce
correct results.

NUNIT NOTE

Testing tools such as NUnit (www.nunit.org) can do a lot to ensure that your code
runs correctly, but they only work if the code you write does the right things. If you
need a billing system but write an inventory application, no tool will save you.

Depending on the application ’ s complexity, debugging can be extremely diffi cult. Although
Visual Studio cannot do your debugging for you, it does include features that make debugging
easier. It allows you to stop execution while the program is running so you can examine and
modify variables, explore data structures, and step through the code to follow its
execution path.

This chapter explains Visual Basic ’ s most important debugging tools. It describes the tools
available in the Debug menu and the other IDE windows that are most useful for debugging.

c07.indd 85c07.indd 85 12/31/09 6:35:12 PM12/31/09 6:35:12 PM

86 ❘ CHAPTER 7 DEBUGGING

THE DEBUG MENU

The Debug menu contains commands that help you debug a program. These commands help you
run the program in the debugger, move through the code, set and clear breakpoints, and generally
follow the code ’ s execution to see what it ’ s doing and hopefully what it ’ s doing wrong.

GIVE ME A BREAK

A breakpoint is a line of code that is marked to temporarily stop execution so you
can test the code and fi gure out what ’ s happening. The section “ The Breakpoints
Window ” later in this chapter says a lot more about how to use breakpoints but
breakpoints are mentioned a lot between now and then so it ’ s useful to have some
idea of what they are now.

Effectively using these debugging tools can make fi nding problems in the code much easier, so you
should spend some time learning how to use them. They can mean the difference between fi nding
a tricky error in minutes, hours, or days.

The commands visible in the Debug window change depending on several conditions, such as the
type of fi le you have open, whether the program is running, the line of code that contains the cursor,
and whether that line contains a breakpoint. The following list briefl y describes the most important
menu items available while execution is stopped at a line of code that contains a breakpoint:

Windows — This submenu ’ s commands display other debugging - related windows. This
submenu is described in more detail in the following section, “ The Debug ➪ Windows
Submenu. ”

Continue — This command resumes program execution. The program runs until it fi nishes,
it reaches another breakpoint, it encounters an error, or you stop it.

Break All — This command stops execution of all programs running within the debugger.
This may include more than one program if you are debugging more than one application at
the same time. This can be useful, for example, if two programs work closely together.

Stop Debugging — This command halts the program ’ s execution and ends its debugging
session. The program stops immediately, so it does not get a chance to execute any cleanup
code that it may contain.

Step Into — This command makes the debugger execute the current line of code. If that
code invokes a function, subroutine, or some other procedure, the point of execution moves
into that procedure. It is not always obvious whether a line of code invokes a procedure. For
example, a line of code that sets an object ’ s property may be simply setting a value or it may
be invoking a property procedure.

Step Over — This command makes the debugger execute the current line of code. If that
code invokes a function, subroutine, or some other procedure, the debugger calls that
routine but does not step into it, so you don ’ t need to step through its code. However, if a
breakpoint is set inside that routine, execution will stop at the breakpoint.

➤

➤

➤

➤

➤

➤

c07.indd 86c07.indd 86 12/31/09 6:35:15 PM12/31/09 6:35:15 PM

Step Out — This command makes the debugger run until it leaves the routine it is currently
executing. Execution pauses when the program reaches the line of code that called this
routine.

QuickWatch — This command displays a dialog box that gives information about the
selected code object. Figure 7 - 1 shows the dialog box displaying information about a
TextBox control named txtDirectory. If you look closely, you can see some of the control ’ s
properties including TabIndex, TabStop, Tag, and Text.

➤

➤

FIGURE 7-1: The QuickWatch dialog box lets you

examine an object’s properties and optionally set a new

watch on it.

If you right - click a property ’ s value and select Edit Value, you can change it within the
dialog box. If you click the Add Watch button, the debugger adds the expression to
the Watch window shown in Figure 7 - 2. You can also highlight a variable ’ s name in the
code and drag and drop it into a Watch window to create a watch very quickly. Right - click
a watch in this window and select Delete Watch to remove it.

FIGURE 7-2: The Watch window lets you easily track expression

values.

Exceptions — This command displays the dialog box shown in Figure 7 - 3. When you select
a Thrown check box, the debugger stops whenever the selected type of error occurs. If
you select a User - unhandled check box, the debugger stops when the selected type of error
occurs and the program does not catch it with error - handling code.

For example, suppose that your code calls a subroutine that causes a divide - by - zero excep-
tion. Use the dialog box to select Common Language Runtime Exceptions/System/System.

➤

The Debug Menu ❘ 87

c07.indd 87c07.indd 87 12/31/09 6:35:16 PM12/31/09 6:35:16 PM

88 ❘ CHAPTER 7 DEBUGGING

DivideByZeroException (use the Find button to fi nd it quickly). When you select the Thrown
check box, the debugger stops in the subroutine when the divide - by - zero exception occurs,
even if the code is protected by an error handler. When you select the User - unhandled check
box, the debugger stops only if no error handler is active when the error occurs.

FIGURE 7-3: The Exceptions dialog box lets you determine

how Visual Basic handles uncaught exceptions.

Toggle Breakpoint — This command toggles whether the current code line contains a
breakpoint. When execution reaches a line with an active breakpoint, execution pauses so
you can examine the code and program variables. You can also toggle a line ’ s breakpoint by
clicking the margin to the left of the line in the code editor or by placing the cursor in the
line of code and pressing F9.

New Breakpoint — This submenu contains the Break At Function command. This
command displays a dialog box that lets you specify a function where the program should
break.

Delete All Breakpoints — This command removes all breakpoints from the entire solution.

THE DEBUG ➪ WINDOWS SUBMENU

The Debug menu ’ s Windows submenu contains commands that display debugging - related
windows. The following list briefl y describes the most useful of these commands. The two sections
that follow this one provide more detail about the Breakpoints, Command, and Immediate windows.

Immediate — This command displays the Immediate window, where you can type and
execute ad hoc Visual Basic statements. The section “ The Command and Immediate
Windows ” later in this chapter describes this window in a bit more detail.

Locals — This command displays the Locals window shown in Figure 7 - 4. The Locals
window displays the values of variables defi ned in the local context. To change a value, click
it and enter the new value. Click the plus and minus signs to the left of a value to expand
or collapse it. For example, the Me entry shown in Figure 7 - 4 is an object with lots of

➤

➤

➤

➤

➤

c07.indd 88c07.indd 88 12/31/09 6:35:16 PM12/31/09 6:35:16 PM

properties that have their own values. Click the plus sign to expand the object ’ s entry and
view its properties. Those properties may also be objects, so you may be able to expand
them further.

FIGURE 7-4: The Locals window displays the values of variables

defi ned in the local context.

Breakpoints — This command displays the Breakpoints window shown in Figure 7 - 5. This
dialog box shows the breakpoints, their locations, and their conditions. Select or clear the
check boxes on the left to enable or disable breakpoints. Right - click a breakpoint to edit its
location, condition, hit count, and action.

Use the dialog box ’ s toolbar to create a new function breakpoint, delete a breakpoint, delete
all breakpoints, enable or disable all breakpoints, go to a breakpoint ’ s source code, and
change the columns displayed by the dialog. Right - click a breakpoint to change its condition
(a condition that determines whether the breakpoint is activated), hit count (a count that
determines whether the breakpoint is activated), and When Hit (action to take when
activated). See the section “ The Breakpoints Window ” later in this chapter for more detail.

➤

FIGURE 7-5: The Breakpoints window helps you manage breakpoints.

The Debug ➪ Windows Submenu ❘ 89

c07.indd 89c07.indd 89 12/31/09 6:35:17 PM12/31/09 6:35:17 PM

90 ❘ CHAPTER 7 DEBUGGING

Output — This command displays the Output window. This window displays compilation
results and output produced by Debug and Trace statements.

Autos — This command displays the Autos window shown
in Figure 7 - 6. This window displays the values of local and
global variables used in the current line of code and in the
previous line.

Call Stack — This command displays the Call Stack
window shown in Figure 7 - 7. This window lists
the routines that have called other routines to reach the
program ’ s current point of execution. In Figure 7 - 7 the
program is at line 49 in the function FindEmployee. That
function was called by function SearchDatabase at line 36,
and that function was called by the btnLocals_Click event
handler.

Double - click a line to jump to the corresponding code in the program ’ s call stack. This
technique lets you move up the call stack to examine the code that called the routines that
are running.

Threads — This command displays the Threads window shown in Figure 7 - 8. A thread is
a separate execution path that is running. A multi - threaded application can have several

➤

➤

➤

➤

FIGURE 7-6: The Autos window

displays the variables used

in the current code statement

and the three statements

before and the three after.

FIGURE 7-7: The Call Stack window shows which routines have

called which to get to the program’s current point of execution.

threads running to perform more than one task at the same time. The Threads window lets
you control the threads ’ priority and suspended status.

The last line in Figure 7 - 8 has the location WindowsApplication1.Form1.FindEmployee,
indicating that this thread is executing the FindEmployee routine in the Form1 module in
program WindowsApplication1. The arrow on the left indicates that this is the currently
active thread.

c07.indd 90c07.indd 90 12/31/09 6:35:18 PM12/31/09 6:35:18 PM

Parallel Tasks — This command lists all of the application ’ s running tasks. This is useful for
debugging parallel applications.

Parallel Stacks — This command shows the call stacks for tasks running in parallel.

Watch — The Watch submenu contains the commands Watch 1, Watch 2, Watch 3, and
Watch 4. These commands display four different watch windows that let you easily keep
track of variable values. When you create a watch using the Debug menu ’ s QuickWatch
command described earlier, the new watch is placed in the Watch 1 window (shown in
Figure 7 - 2). You can click and drag watches from one watch window to another to make a
copy of the watch in the second window.

You can also click the Name column in the empty line at the bottom of a watch window
and enter an expression to watch.

WONDERFUL WATCHES

A useful IDE trick is to drag Watch windows 2, 3, and 4 onto Watch 1 so that they
all become tabs on the same window. Then you can easily use the tabs to group and
examine four sets of watches.

Modules — This command displays the Modules window shown in Figure 7 - 9. This
window displays information about the DLL and EXE fi les used by the program. It shows
each module ’ s fi le name and path. It indicates whether the module is optimized, whether it
is your code (rather than an installed library), and whether debugging symbols are loaded.
The window shows each module ’ s load order (lower - numbered modules are loaded fi rst), the
version, and timestamp. Click a column to sort the modules by that column.

➤

➤

➤

➤

FIGURE 7-8: The Threads window displays information about the

program’s threads of execution.

The Debug ➪ Windows Submenu ❘ 91

Right - click a thread and select Freeze to suspend it. Right - click the thread again and select
Thaw to make it resume execution. Double - click a thread or right - click it and select Switch
To Thread to activate that thread.

c07.indd 91c07.indd 91 12/31/09 6:35:18 PM12/31/09 6:35:18 PM

92 ❘ CHAPTER 7 DEBUGGING

Processes — This window lists processes that are attached to the Visual Studio session. This
includes any programs launched by Visual Studio and processes that you attached to using
the Debug menu ’ s Attach to Process command.

Usually, when these debug windows are visible at runtime, they occupy separate tabs in the same
area at the bottom of the IDE. That lets you switch between them quickly and easily without them
taking up too much space.

THE BREAKPOINTS WINDOW

A breakpoint is a line of code that you have fl agged to stop execution. When the program reaches
that line, execution stops and Visual Studio displays the code in a code editor window. This lets you
examine or set variables, see which routine called the one containing the code, and otherwise try to
fi gure out what the code is doing.

The Breakpoints window lists all the breakpoints you have defi ned for the program. This is useful
for a couple of reasons. First, if you defi ne a lot of breakpoints, it can be hard to fi nd them all later.
Although other commands let you disable, enable, or remove all of the breakpoints at once, there
are times when you may need to fi nd a particular breakpoint.

A common debugging strategy is to comment out broken code, add new code, and set a breakpoint
near the modifi cation so that you can see how the new code works. When you have fi nished testing
the code, you probably want to remove either the old or new code, so you don ’ t want to blindly
remove all of the program ’ s breakpoints.

The Breakpoints window lists all of the breakpoints and, if you double - click a breakpoint in the list,
you can easily jump to the code that holds it.

➤

FIGURE 7-9: The Modules window displays information about the

modules used by the program.

c07.indd 92c07.indd 92 12/31/09 6:35:19 PM12/31/09 6:35:19 PM

Source code control systems such as Visual SourceSafe track the entire change
history of your code. Later, if you fi nd a problem with the code, you can com-
pare the current version to previous versions to see what has changed. In the
worst case, you can back out the changes and recover an earlier version. This
can be a lot easier than manually trying to remember and remove the changes.

The Breakpoints window also lets you modify the breakpoints you have defi ned. Select or clear
the boxes on the left to enable or disable breakpoints. Use the dialog ’ s toolbar to enable or
disable all breakpoints, clear all breakpoints, or jump
to a breakpoint ’ s location in the source code.

Right - click a breakpoint and select Condition to
display the dialog shown in Figure 7 - 10. By default,
a breakpoint stops execution whenever it is reached.
You can use this dialog box to add an additional
condition that determines whether the breakpoint
activates when reached. In this example, the
breakpoint stops execution only if the expression
(i = j) And (i > 20) is True when the code reaches the
breakpoint.

PERFORMANCE ISSUE

Note that specifying a breakpoint condition can slow execution considerably
because Visual Basic must evaluate the condition frequently.

Right - click a breakpoint and select Hit Count to
display the Breakpoint Hit Count dialog box shown in
Figure 7 - 11. Each time the code reaches a breakpoint, it
increments the breakpoint ’ s hit count. You can use this
dialog box to make the breakpoint ’ s activation depend
on the hit count ’ s value.

From the drop - down list you can select one of the
following options:

break always

break when the hit count is equal to

break when the hit count is a multiple of

break when the hit count is greater than or equal to

If you select any but the fi rst option, you can enter a value in the text box and the program will
pause execution when the breakpoint has been reached the appropriate number of times. For

➤

➤

➤

➤

FIGURE 7-10: The Breakpoint Condition

dialog box lets you specify a condition that

determines whether Visual Studio stops at the

breakpoint.

The Breakpoints Window ❘ 93

FIGURE 7-11: The Breakpoint Hit Count dialog

box lets you make a breakpoint’s activation

depend on the number of times the code has

reached it.

c07.indd 93c07.indd 93 12/31/09 6:35:20 PM12/31/09 6:35:20 PM

94 ❘ CHAPTER 7 DEBUGGING

example, if you select the option “ break when the hit
count is a multiple of ” and enter 2 into the text box,
execution will pause every second time it reaches the
breakpoint.

Right - click a breakpoint and select When Hit to
display the When Breakpoint Is Hit dialog box
shown in Figure 7 - 12. This dialog box lets you
specify the actions that Visual Basic takes when the
breakpoint is activated. Select the “ Print a message ”
check box to make the program display a message in
the Output window. Select the “ Run a macro ” check
box to make the program execute a VBA macro.
Select the “ Continue execution ” check box to make
the program continue running without stopping.

THE COMMAND AND IMMEDIATE

WINDOWS

The Command and Immediate windows enable you to execute commands while the program is
stopped in the debugger. One of the more useful commands in each of these windows is the Debug
.Print statement. For example, the command Debug.Print x displays the value of the variable x .

You can use a question mark as an abbreviation for Debug.Print . The following text shows how
the command might appear in the Command window. Here the > symbol is the command prompt
provided by the window and 123 is the result: the value of variable x . In the Immediate window, the
statement would not include the > character.

> ? x
123

The command > immed tells the Command window to open the Immediate window. Conversely, the
command > cmd (you need to type the > in the Immediate window) tells the Immediate window to
open the Command window.

Although there is some overlap between these two windows, they serve two mostly different
purposes. The Command window can issue commands to the Visual Studio IDE. Typically, these
are commands that appear in menus or toolbars, or that could appear in menus and toolbars.
For example, the following command uses the Debug menu ’ s QuickWatch command to open a
QuickWatch window for the variable first_name :

> Debug.QuickWatch first_name

One particularly useful command is Tools.Alias . This command lists command aliases defi ned
by the IDE. For example, it indicates that ? is the alias for Debug.Print and that ?? is the alias for
Debug.QuickWatch .

FIGURE 7-12: The When Breakpoint Is Hit

dialog box lets you determine what actions

Visual Basic takes when the breakpoint is

activated.

c07.indd 94c07.indd 94 12/31/09 6:35:29 PM12/31/09 6:35:29 PM

The Command window includes some IntelliSense support. If you type the name of a menu, for
example Debug or Tools, IntelliSense will display the commands available within that menu.

While the Command window issues commands to the IDE, the Immediate window executes Visual
Basic statements. For example, suppose that you have written a subroutine named CheckPrinter .
Then the following statement in the Immediate window executes that subroutine:

CheckPrinter

You can execute subroutines in the Immediate window to quickly and easily test routines without
writing user interface code to handle all possible situations. You can call a subroutine or function,
passing it different parameters to see what happens. If you set breakpoints within the routine, the
debugger will pause there.

You can also set the values of global variables and then call routines that use them. The following
Immediate window commands set the value of the m_PrinterName variable and then call the
CheckPrinter subroutine:

m_PrinterName = "LP_REMOTE"
CheckPrinter

You can execute much more complex statements in the Command and Immediate windows. For
example, suppose that your program uses the following statement to open a fi le for reading:

Dim fs As FileStream = File.OpenRead(_
 "C:\Program Files\Customer Orders\Summary" & _
 DateTime.Now().ToString("yymmdd") & ".dat")

Suppose that the program is failing because some other part of the program is deleting the fi le.
You can type the following code (all on one line) into the Immediate window to see if the fi le exists.
As you step through different pieces of the code, you can use this statement again to see if the fi le
has been deleted.

?System.IO.File.Exists("C:\Program Files\Customer Orders\Summary" &
 DateTime.Now().ToString("yymmdd") & ".dat")

The window evaluates the complicated string expression to produce a fi le name. It then uses the
System.IO.File.Exists command to determine whether the fi le exists and displays True or False
accordingly.

SUMMARY

Although Visual Basic cannot debug your applications for you, it provides all of the tools you need
to get the job done. By using the tools in the Debug menu and the IDE ’ s debugging - related windows,
you can get a good idea about what your program is doing or doing wrong.

Summary ❘ 95

c07.indd 95c07.indd 95 12/31/09 6:35:30 PM12/31/09 6:35:30 PM

96 ❘ CHAPTER 7 DEBUGGING

The chapters in the fi rst part of the book describe the basic pieces of the development environment.
They describe the windows, menus, and toolbars that you use to build and debug Visual Basic
applications.

The next part of the book provides more detail about the steps you follow to build an application
before you debug it. Chapter 8, “ Selecting Windows Forms Controls, ” describes the most common
controls that you can use to build Windows Forms applications .

c07.indd 96c07.indd 96 12/31/09 6:35:30 PM12/31/09 6:35:30 PM

PART II

Getting Started

CHAPTER 8: Selecting Windows Forms Controls

CHAPTER 9: Using Windows Forms Controls

CHAPTER 10: Windows Forms

CHAPTER 11: Selecting WPF Controls

CHAPTER 12: Using WPF Controls

CHAPTER 13: WPF Windows

CHAPTER 14: Program and Module Structure

CHAPTER 15: Data Types, Variables, and Constants

CHAPTER 16: Operators

CHAPTER 17: Subroutines and Functions

CHAPTER 18: Program Control Statements

CHAPTER 19: Error Handling

�

�

�

�

�

�

�

�

�

�

�

�

c08.indd 97c08.indd 97 12/30/09 6:46:27 PM12/30/09 6:46:27 PM

CHAPTER 20: Database Controls and Objects

CHAPTER 21: LINQ

CHAPTER 22: Custom Controls

CHAPTER 23: Drag and Drop, and Clipboard

CHAPTER 24: UAC Security

�

�

�

�

�

c08.indd 98c08.indd 98 12/30/09 6:46:31 PM12/30/09 6:46:31 PM

8
Selecting Windows
Forms Controls

A control is a programming entity that has a graphical component. A control sits on a form and
interacts with the user, providing information and possibly allowing the user to manipulate it.
Text boxes, labels, buttons, scroll bars, drop - down lists, menu items, toolstrips, and just about
everything else that you can see and interact with in a Windows application is a control.

Controls are an extremely important part of any interactive application. They give information
to the user (Label, ToolTip, TreeView, PictureBox) and organize the information so that
it ’ s easier to understand (GroupBox, Panel, TabControl). They enable the user to enter data
(TextBox, RichTextBox, ComboBox, MonthCalendar), select options (RadioButton, CheckBox,
ListBox), tell the application to take action (Button, MenuStrip, ContextMenuStrip), and interact
with objects outside of the application (OpenFileDialog, SaveFileDialog, PrintDocument,
PrintPreviewDialog). Some controls also provide support for other controls (ImageList, ToolTip,
ContextMenuStrip, ErrorProvider).

This chapter provides only a very brief description of the stan-
dard Windows Forms controls together with some tips that can
help you decide which control to use for different purposes.
Appendix G, “ Windows Forms Controls and Components, ”
covers the controls in much greater detail, describing each
control ’ s most useful properties, methods, and events.

CONTROLS OVERVIEW

Figure 8 - 1 shows the Visual Basic Toolbox displaying the
standard Windows Forms controls. Because you can add
and remove controls on the Toolbox, you may see a slightly
different selection of tools on your computer.

FIGURE 8-1: Visual Basic provides a

large number of standard controls

for Windows Forms.

c08.indd 99c08.indd 99 12/30/09 6:46:31 PM12/30/09 6:46:31 PM

100 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

The following table briefl y describes the controls shown in Figure 8 - 1 in the order in which they
appear in the fi gure (starting at the top, or row 1, and reading from left to right).

CONTROL PURPOSE

Row 1

Pointer This is the pointer tool, not a control. Click this tool to deselect any

selected controls on a form. Then you can select new controls.

BackgroundWorker Executes a task asynchronously and notifi es the main program when it is

fi nished.

BindingNavigator Provides a user interface for navigating through a data source. For exam-

ple, it provides buttons that let the user move back and forth through the

data, add records, delete records, and so forth.

BindingSource Encapsulates a form ’ s data source and provides methods for navigating

through the data.

Button A simple push button. When the user clicks it, the program can perform

some action.

CheckBox A box that the user can check and clear.

CheckedListBox A list of items with check boxes that the user can check and clear.

ColorDialog Lets the user pick a standard or custom color.

ComboBox A text box with an attached list or drop - down list that the user can use to

enter or select a textual value.

ContextMenuStrip A menu that appears when the user right - clicks a control. You set a

control ’ s ContextMenuStrip property to this control, and the rest is

automatic.

Row 2

DataGridView A powerful grid control that lets you display large amounts of complex

data with hierarchical or Web - like relationships relatively easily.

DataSet An in - memory store of data with properties similar to those of a relational

database. It holds objects representing tables containing rows and

columns, and can represent many database concepts such as indexes and

foreign key relationships.

DateTimePicker Lets the user select a date and time in one of several styles.

DirectoryEntry Represents a node in an Active Directory hierarchy.

DirectorySearcher Performs searches of an Active Directory hierarchy.

c08.indd 100c08.indd 100 12/30/09 6:46:34 PM12/30/09 6:46:34 PM

CONTROL PURPOSE

DomainUpDown Lets the user scroll through a list of choices by clicking up - arrow and

down - arrow buttons.

ErrorProvider Displays an error indicator next to a control that is associated with an error.

EventLog Provides access to Windows event logs.

FileSystemWatcher Notifi es the application of changes to a directory or fi le.

FlowLayoutPanel Displays the controls it contains in rows or columns. For example, when

laying out rows, it places controls next to each other horizontally in a row

until it runs out of room and then it starts a new row.

Row 3

FolderBrowserDialog Lets the user select a folder.

FontDialog Lets the user specify a font ’ s characteristics (name, size, boldness, and so

forth).

GroupBox Groups related controls for clarity. It also defi nes a default RadioButton

group for any RadioButtons that it contains.

HelpProvider Displays help for controls that have help if the user sets focus on the

control and presses F1.

HScrollBar A horizontal scroll bar.

ImageList Contains a series of images that other controls can use. For example, the

images that a TabControl displays on its tabs are stored in an associated

ImageList control. Your code can also pull images from an ImageList for its

own use.

Label Displays text that the user cannot modify or select by clicking and

dragging.

LinkLabel Displays a label, parts of which may be hyperlinks. When the user clicks a

hyperlink, the program can take some action.

ListBox Displays a list of items that the user can select. Depending on the control ’ s

properties, the user can select one or several items.

ListView Displays a list of items in one of four possible views: LargeIcon, SmallIcon,

List, and Details.

continues

Controls Overview ❘ 101

c08.indd 101c08.indd 101 12/30/09 6:46:34 PM12/30/09 6:46:34 PM

102 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

CONTROL PURPOSE

Row 4

MaskedTextBox A text box that requires the input to match a specifi c format (such as a

phone number or ZIP code format).

MenuStrip Represents the form ’ s main menus, submenus, and menu items.

MessageQueue Provides communication between diff erent applications.

MonthCalendar Displays a calendar that allows the user to select a range of dates.

NotifyIcon Displays an icon in the system tray or status area.

NumericUpDown Lets the user change a number by clicking up - arrow and down - arrow

buttons.

OpenFileDialog Lets the user select a fi le for opening.

PageSetupDialog Lets the user specify properties for printed pages. For example, it lets the

user specify the printer ’ s paper tray, page size, margins, and orientation

(portrait or landscape).

Panel A control container. Using the control ’ s Anchor and Dock properties, you

can make the control resize itself so that its child controls resize themselves

in turn. The control can automatically provide scroll bars and defi nes a

RadioButton group for any RadioButtons that it contains.

PerformanceCounter Provides access to Windows performance counters.

Row 5

PictureBox Displays a picture. Also provides a useful drawing surface.

PrintDialog Displays a standard print dialog box. The user can select the printer, pages

to print, and printer settings.

PrintDocument Represents output to be sent to the printer. A program can use this object

to print and display print previews.

PrintPreviewControl Displays a print preview within one of the application ’ s forms.

PrintPreviewDialog Displays a print preview in a standard dialog box.

Process Allows the program to interact with processes, and to start and

stop them.

ProgressBar Displays a series of colored bars to show the progress of a long operation.

(continued)

c08.indd 102c08.indd 102 12/30/09 6:46:35 PM12/30/09 6:46:35 PM

CONTROL PURPOSE

PropertyGrid Displays information about an object in a format similar to the one used by

the Properties window at design time.

RadioButton Represents one of an exclusive set of options. When the user selects a

RadioButton, Visual Basic deselects all other RadioButton controls in the

same group. Groups are defi ned by GroupBox and Panels controls and the

Form class.

RichTextBox A text box that supports Rich Text extensions. The control can display

diff erent pieces of text with diff erent font names, sizes, bolding, and so

forth. It also provides paragraph - level formatting for justifi cation, bullets,

hanging indentation, and more.

Row 6

SaveFileDialog Lets the user select the name of a fi le where the program will save data.

SerialPort Represents a serial port and provides methods for controlling, reading,

and writing it.

ServiceController Represents a Windows service and lets you manipulate services.

SplitContainer Lets the user drag a divider vertically or horizontally to split available

space between two areas within the control.

Splitter Provides a divider that the user can drag to split available space between

two controls. The Dock properties and stacking orders of the controls

and the Splitter determine how the controls are arranged and resized.

The SplitContainer control automatically provides a Splitter between two

containers, so it is usually easier and less confusing to use.

StatusStrip Provides an area (usually at the bottom of the form) where the application

can display status messages, small pictures, and other indicators of the

application ’ s state.

TabControl Displays a series of tabs attached to pages that contain their own controls.

The user clicks a tab to display the associated page.

TableLayoutPanel Displays the controls it contains in a grid.

TextBox Displays some text that the user can edit.

Timer Triggers an event periodically. The program can take action when the

event occurs.

continues

Controls Overview ❘ 103

c08.indd 103c08.indd 103 12/30/09 6:46:36 PM12/30/09 6:46:36 PM

104 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

CONTROL PURPOSE

Row 7

ToolStrip Displays a series of buttons, dropdowns, and other tools that let the user

control the application.

ToolStripContainer A container that allows a ToolStrip control to dock to some or all of its

edges. You might dock a ToolStripContainer to a form to allow the user to

dock a ToolStrip to each of the form ’ s edges.

ToolTip Displays a tooltip if the user hovers the mouse over an associated control.

TrackBar Allows the user to drag a pointer along a bar to select a numeric value.

TreeView Displays hierarchical data in a graphical, tree - like form.

VScrollBar A vertical scroll bar.

WebBrowser A web browser in a control. You can place this control on a form and use

its methods to navigate to a web page. The control displays the results

exactly as if the user were using a standalone browser. One handy use for

this control is displaying Web - based help.

Example program UseToolStripContainer, which is available for download on the book ’ s web site,
contains a ToolStripContainer that holds two ToolStrip controls that you can drag and dock to the
sides of the ToolStripContainer.

See Appendix G for detailed descriptions of the controls.

CHOOSING CONTROLS

Keeping all of the intricacies of each of these controls in mind at once is a daunting task. With so
many powerful tools to choose from, it ’ s not always easy to pick the one that ’ s best for a particular
situation.

To simplify error - handling code, you should generally pick the most restrictive control that can
accomplish a given task, because more restrictive controls give the user fewer options for entering
invalid data.

For example, suppose that the user must pick from the choices Small, Medium, and Large. The
application could let the user type a value in a TextBox control, but then the user could type Weasel.
The program would need to verify that the user typed one of the valid choices and display an error
message if the text was invalid. The program might also need to use precious screen real estate to
list the choices so that the user can remember what to type.

A better idea would be to use a group of three RadioButton controls or a ComboBox with
DropDownStyle set to DropDownList. Then the user can easily see the choices available and can

(continued)

c08.indd 104c08.indd 104 12/30/09 6:46:36 PM12/30/09 6:46:36 PM

only select a valid choice. If the program initializes the controls with a default value rather than
leaving them initially undefi ned, it knows that there is always a valid choice selected.

COMMON SENSE DEFENSE

Restrictive controls also make the application more secure. By presenting users
with a list of choices rather than letting them type in whatever they like, the pro-
gram can protect itself from attack. For example, two of the most common attacks
on web sites are buffer overfl ow attacks, in which the attacker enters far more text
than intended in a text box, and SQL injection attacks, in which the attacker enters
carefully designed gibberish into a text box to confuse a database. Requiring the
user to select options rather than typing defuses both of these attacks.

The following sections summarize different categories of controls and provide some tips about when
to use each.

Containing and Arranging Controls

These controls contain, group, and help arrange other controls. These controls include
FlowLayoutPanel, TableLayoutPanel, GroupBox, Panel, TabControl, and SplitContainer.

The FlowLayoutPanel arranges the controls it contains in rows or columns. For example, when
its FlowDirection property is LeftToRight, the control arranges its contents in rows from left
to right. It positions its contents in a row until it runs out of room and then it starts a new row.
FlowLayoutPanel is particularly useful for toolboxes and other situations where the goal is to
display as many of the contained controls as possible at one time, and the exact arrangement of
the controls isn ’ t too important.

The TableLayoutPanel control displays its contents in a grid. All the cells in a particular row have
the same height, and all the cells in a particular column have the same width. In contrast, the
FlowLayoutPanel control simply places controls next to each other until it fi lls a row and then starts
a new one. Example program LayoutPanels, which is available for download on the book ’ s web site,
is shown in Figure 8 - 2 displaying these two controls side by side.

FIGURE 8-2: FlowLayoutPanel places controls

close together. TableLayoutPanel arranges

controls in a grid.

Choosing Controls ❘ 105

c08.indd 105c08.indd 105 12/30/09 6:46:37 PM12/30/09 6:46:37 PM

106 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

A GroupBox control is good for grouping related controls or the RadioButton controls in a
RadioButton group. (The RadioButton control is discussed later in this chapter in the section
“ Making Selections. ”) It provides a visible border and caption so that it can help the user make
sense out of a very complicated form.

GREAT GROUPS

The rule of thumb in user interface design is that a user can evaluate around seven
items (plus or minus two) at any given time. A list of fi ve or six choices is manage-
able, but a list containing dozens of options can be confusing.

By placing choices into categories visibly separated in GroupBox controls, you can
make the interface much easier for the user to understand. Rather than trying to
keep dozens of options straight all at once, the user can mentally break the problem
into smaller pieces and consider each group of options separately.

The Panel control can also contain the RadioButton controls in a RadioButton group. Unlike a
GroupBox control, the Panel control doesn ’ t display a visible border, so you must use some other
method to ensure that the user can tell that the buttons form a group. For example, you could use
several Panels in a row, each containing a column of RadioButton controls. Then the user would
select one option from each column.

One of the Panel control ’ s more powerful features is its ability to automatically display scroll bars.
If you set a Panel control ’ s AutoScroll property to True and the Panel resizes so all of its contents
cannot fi t, it automatically displays the scroll bars so the user can still see all of the content.
Scrolling back and forth can be cumbersome for the user, however, so this is not the best way to
display data if the user must view it all frequently. If the user must jump back and forth between
different controls inside a scrolling Panel, it may be better to use a TabControl.

TabControl displays data grouped by pages. The tabs enable the user to quickly jump from page to
page. The control can display scroll bars if necessary, although that makes using the control much
more awkward. TabControl works well if the data falls into natural groupings that you can use for
the tab pages. It doesn ’ t work as well if the user must frequently compare values on one page with
those on another, forcing the user to jump back and forth.

The SplitContainer control allows the user to divide an area between two adjacent regions.
SplitContainer contains two Panel controls in which you can place your own controls. When the
user drags the splitter between the two panels, the control resizes the panels accordingly. You can
set the Panels ’ AutoScroll properties to True to make them automatically provide scroll bars when
necessary.

SplitContainer is helpful when the form isn ’ t big enough to hold all the data the program must
display, and the user can trade area in one part of the form for area in another. It is particularly
useful when the user must compare values in the two areas by viewing them at the same time.

c08.indd 106c08.indd 106 12/30/09 6:46:38 PM12/30/09 6:46:38 PM

Though you can nest SplitContainers inside other SplitContainers, they are easiest to use when they
separate only two areas. Large groups of SplitContainers separating many areas are usually clumsy
and confusing.

Example program UseSplitter, which is available for download on the book ’ s web site, uses a Splitter
control to divide its form into two regions covered by Panel controls. To make the Splitter work, the
program contains a Panel with Dock = Left at the bottom of the stacking order, the Splitter next in
the stacking order, and then another Panel with Dock = Fill at the top of the stacking order.

Example program UseSplitContainer, which is also available for download, uses a SplitContainer
control to divide its form into two regions. The SplitContainer includes two Panel controls and a
Splitter so it ’ s all set to divide an area into two regions. Because you don ’ t need to worry about Dock
properties and stacking order as you do with a Splitter control, the SplitContainer is easier to use.

These container controls help arrange the controls they contain. The Anchor and Dock properties
of any controls inside the containers work relative to the containers. For example, suppose you place
a series of buttons with Anchor = Top,Left,Right inside a SplitContainer so that they are as wide
as the Panel containing them. When you drag the splitter, the buttons automatically resize to fi t the
width of their Panel.

Making Selections

Selection controls enable the user to choose values. If you use them carefully, you can reduce the
chances of the user making an invalid selection, so you can reduce the amount of error - handling
code you need to write.

These controls include CheckBox, CheckedListBox, ComboBox, ListBox, RadioButton,
DateTimePicker, MonthCalendar, DomainUpDown, NumericUpDown, TrackBar, HScrollBar, and
VScrollBar.

CheckBox enables the user to select an option or not, independently of all other selections. If you
want the user to select only one of a series of options, use a RadioButton instead. If a form requires
more than, say, fi ve to seven CheckBox controls that have related purposes, consider using a
CheckedListBox instead.

The CheckedListBox control enables the user to select among several independent options. It is basi-
cally a series of CheckBox controls arranged in a list that provides scroll bars if necessary.

The ComboBox control enables the user to make one brief selection. This control is particularly
useful when its DropDownStyle property is set to DropDownList because then the user must pick
a value from a list. If you want to allow the user to select a value or enter one that is not on the
list, set the control ’ s DropDownStyle to Simple or DropDown. This control does roughly the same
things as a simple ListBox but takes less space.

The ListBox control displays a list of items that the user can select. You can confi gure the control
to let the user select one or more items. A ListBox takes more room than a ComboBox but can be
easier to use if the list is very long.

Choosing Controls ❘ 107

c08.indd 107c08.indd 107 12/30/09 6:46:39 PM12/30/09 6:46:39 PM

108 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

LONG LISTS

If you have a long list and want to allow the user to select many items, it is
relatively easy for the user to accidentally deselect all of the previous selections by
clicking a new item. To make things easier for the user, you should consider using a
CheckedListBox, which doesn’t cause that problem.

The RadioButton control lets the user pick one of a set of options. For example, three RadioButton
controls might represent the choices Small, Medium, and Large. If the user selects one, Visual Basic
automatically deselects the others. This control is useful when the list of choices is relatively small,
and there is a benefi t to allowing the user to see all the choices at the same time. If the list of choices
is long, consider using a ListBox or ComboBox.

The DateTimePicker and MonthCalendar controls enable the user to select dates and times. They
validate the user ’ s selections, so they are generally better than other controls for selecting dates and
times. For example, if you use a TextBox to let the user enter month, date, and year, you must write
extra validation code to ensure that the user doesn ’ t enter February 29, 2013.

The DomainUpDown and NumericUpDown controls let the user scroll through a list of values. If
the list is relatively short, a ListBox or ComboBox may be easier for the user. The DomainUpDown
and NumericUpDown controls take very little space, however, so they may be helpful on very
crowded forms. By holding down one of the controls ’ arrow buttons, the user can scroll very quickly
through the values, so these controls can also be useful when they represent a long list of choices.

The TrackBar control lets the user drag a pointer to select an integer value. This is usually a more
intuitive way to select a value than a NumericUpDown control, although it takes a lot more space
on the form. It also requires some dexterity if the range of values allowed is large.

The HScrollBar and VScrollBar controls let the user drag a “ thumb ” across a bar to select an
integral value much as the TrackBar does. HScrollBar, VScrollBar, and TrackBar even have similar
properties. The main difference is in the controls ’ appearances. On one hand, the two scroll bar
controls allow more fl exible sizing (the TrackBar has defi nite ideas about how tall it should be for a
given width), and they may seem more elegant to some users. On the other hand, users are familiar
with the scroll bars ’ normal purpose of scrolling an area on the form, so using them as numeric
selection bars may sometimes be confusing.

Entering Data

Sometimes it is impractical to use the selection controls described in the previous section. For
example, the user cannot reasonably enter a long work history or comments using a ComboBox or
RadioButton.

The RichTextBox, TextBox, and MaskedTextBox controls let the user enter text with few restric-
tions. These controls are most useful when the user must enter a large amount of textual data that
doesn ’ t require any validation.

c08.indd 108c08.indd 108 12/30/09 6:46:40 PM12/30/09 6:46:40 PM

The TextBox control is less complex and easier to use than the RichTextBox control, so you may
want to use it unless you need the RichTextBox control ’ s extra features. If you need those features
(such as multiple fonts, indentation, paragraph alignment, superscripting and subscripting, multiple
colors, more than one level of undo/redo, and so forth), you need to use a RichTextBox.

The MaskedTextBox control is a TextBox control that requires the user to enter data in a particular
format. For example, it can help the user enter a phone number of the form 234 - 567 - 8901. This
is useful only for short fi elds where the format is tightly constrained. In those cases, however, it
reduces the chances of the user making mistakes.

Displaying Data

These controls display data to the user: Label, DataGridView, ListView, TreeView, and
PropertyGrid.

The Label control displays a simple piece of text that the user can view but not select or modify.
Because you cannot select the text, you cannot copy it to the clipboard. If the text contains a value
that you think the user might want to copy to the clipboard and paste into another application (for
example, serial numbers, phone numbers, e - mail addresses, web URLs, and so forth), you can use
a TextBox control with its ReadOnly property set to True to allow the user to select and copy
the text.

The DataGridView control can display table - like data. The control can also display several tables
linked with master/detail relationships and the user can quickly navigate through the data. You can
also confi gure this control to allow the user to update the data.

The ListView control displays data that is naturally viewed as a series of icons or as a list of values
with columns providing extra detail. With a little extra work, you
can sort the data by item or by detail columns.

The TreeView control displays hierarchical data in a tree - like
format similar to the directory display provided by Windows
Explorer. You can determine whether the control allows the user to
edit the nodes ’ labels.

The PropertyGrid control displays information about an object in a
format similar to the one used by the Properties window at design
time. The control enables the user to organize the properties alpha-
betically or by category and lets the user edit the property values.
Example program EmployeePropertyGrid, which is available for
download on the book ’ s web site, is shown in Figure 8 - 3 displaying
information about an Employee object in a PropertyGrid control.

Providing Feedback

These controls provide feedback to the user: ToolTip, HelpProvider, ErrorProvider, NotifyIcon,
StatusStrip, and ProgressBar. Their general goal is to tell the user what is going on without becom-
ing so obtrusive that the user cannot continue doing other things. For example, the ErrorProvider
fl ags a fi eld as incorrect but doesn ’ t prevent the user from continuing to enter data in other fi elds.

FIGURE 8-3: The PropertyGrid

control displays an object’s

properties.

Choosing Controls ❘ 109

c08.indd 109c08.indd 109 12/30/09 6:46:41 PM12/30/09 6:46:41 PM

110 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

DISRUPTIVE VALIDATION

You can force users to fi x errors by using a TextBox’s Validating event handler. For
example, if the event handler determines that a TextBox’s value is invalid, it can set
its e.Cancel parameter to True to prevent the user from moving out of the TextBox
or closing the application.

I don’t recommend this approach, however, particularly if the users are performing
“heads down” data entry, because it interrupts their fl ow of work. Instead I recom-
mend using an ErrorProvider to fl ag the error and letting the user fi x the problem
when it’s convenient.

For more information on validation events, see the section “Validation Events” in
Chapter 9.

The ToolTip control provides the user with a brief hint about a control ’ s purpose when the user
hovers the mouse over it. The HelpProvider gives the user more detailed help about a control ’ s
purpose when the user sets focus to the control and presses F1. A high - quality application pro-
vides both tooltips and F1 help for every control. These features are unobtrusive and appear only
if the user needs them, so it is better to err on the side of providing too much help rather than not
enough.

TOO MANY TOOLTIPS?

It may seem silly to place tooltips on every single control. For example, does it
really make sense to place a tooltip on a text box that sits next to a label that says
“Phone Number?” Surprisingly the answer is yes. It turns out that some screen
reader applications for the visually impaired get important cues from tooltips.
Giving that text box a tooltip can help some users fi gure out what belongs in it. The
ErrorProvider control fl ags a control as containing invalid data. It is better to use
selection controls that do not allow the user to enter invalid data, but this control is
useful when that is not possible.

The NotifyIcon control can display a small icon in the taskbar notifi cation area to let the user easily
learn the application ’ s status. This is particularly useful for applications that run in the background
without the user ’ s constant attention. If the application needs immediate action from the user, it
should display a dialog or message box rather than relying on a NotifyIcon.

c08.indd 110c08.indd 110 12/30/09 6:46:42 PM12/30/09 6:46:42 PM

WHAT’S THE TRAY?

The taskbar notifi cation area, also called the Windows system tray, is the small
area in the taskbar, usually on the right, that displays the current time and icons
indicating the status of various running applications.

The StatusStrip control displays an area (usually at the bottom of the form) where the program can
give the user some information about its state. This information can be in the form of small images
or short text messages. It can contain a lot more information than a NotifyIcon, although it is
visible only when the form is displayed.

The ProgressBar indicates how much of a long task has been completed. Usually, the task is
performed synchronously, so the user is left staring at the form while it completes. The ProgressBar
lets the user know that the operation is not stuck.

Initiating Action

Every kind of control responds to events, so every control can initiate an action. Nevertheless, users
only expect certain kinds of controls to perform signifi cant actions. For example, users expect
pushing a button to start an action, but they don ’ t expect clicking a label or check box to start a
long process.

To prevent confusion, you should start actions from the controls most often used to start actions.
These controls include Button, MenuStrip, ContextMenuStrip, ToolStrip, LinkLabel, TrackBar,
HScrollBar, VScrollBar, and Timer. All except the Timer control let the user initiate the action.

All of these controls interact with the program through event handlers. For example, the Button
control ’ s Click event handler normally makes the program perform some action when the user clicks
the button.

Other controls also provide events that can initiate action. For example, the CheckBox control
provides CheckChanged and Click events that you could use to perform some action. By catching
the proper events, you can use almost any control to initiate an action. Because the main intent of
those controls is not to execute code, they are not listed in this section.

The Button control allows the user to tell the program to execute a particular function. A button
is normally always visible on its form, so it is most useful when the user must perform the action
frequently or the action is part of the program ’ s central purpose. For actions less frequently
performed, use a MenuStrip or ContextMenuStrip control.

Items in a MenuStrip control also enable the user to make the program perform an action. You must
perform more steps to open the menu, fi nd the item, and select it than you must to click a button,
so a Button control is faster and easier. On the other hand, menus take up less form real estate than
buttons. You can also assign keyboard shortcuts (such as F5 or Ctrl+S) to frequently used menu
items, making them even easier to invoke than buttons.

Choosing Controls ❘ 111

c08.indd 111c08.indd 111 12/30/09 6:46:44 PM12/30/09 6:46:44 PM

112 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

A ContextMenuStrip control provides the same advantages and disadvantages as a MenuStrip con-
trol. ContextMenuStrip is available only from certain controls on the form, however, so it is useful
for commands that are appropriate only within specifi c contexts. For example, a Save command
applies to all the data loaded by a program, so it makes sense to put it in a MenuStrip. A command
that deletes a particular object in a drawing only applies to that object. By placing the command in
a ContextMenuStrip control attached to the object, the program keeps the command hidden when
the user is working on other things. It also makes the relationship between the action (delete)
and the object clear to both the user and the program.

The ToolStrip control combines some of the best features of menus and buttons. It displays a
series of buttons so they are easy to use without navigating through a menu. The buttons are
small and grouped at the top of the form, so they don ’ t take up as much space as a series of larger
buttons.

It is common to place buttons or ToolStrip buttons on a form to duplicate frequently used menu
commands. The menu commands provide keyboard shortcuts for more advanced users, and the
buttons make it easy to invoke the commands for less - experienced users.

The LinkLabel control displays text much as a Label control does. It also displays some text in blue
with an underline, displays a special cursor when the user moves over that text, and raises an event
if the user clicks the text. That makes the control appropriate when clicking a piece of text should
perform some action. For example, on a web page, clicking a link typically navigates to the link ’ s
web page.

The TrackBar, HScrollBar, and VScrollBar controls let the user drag a “ thumb ” across a bar to
select an integral value. As mentioned in the section “ Making Selections ” earlier in this chapter,
you can use these controls to let the user select a numeric value. However, they can also be used
to perform some action interactively. For example, the scroll bars are often used to scroll an area
on the form. More generally, they are used to make the program take action based on some new
value. For example, you could use a scroll bar to let the user select new red, green, and blue color
components for an image. As the user changed a scroll bar ’ s value, the program would update the
image ’ s colors.

The Timer control triggers some action at a regular interval. When the Timer control raises
its Timer event, the program takes action.

Displaying Graphics

These controls display graphics, either on the screen or on a printout: Form, PictureBox,
PrintPreviewControl, PrintDocument, and PrintPreviewDialog.

A Form (which can also display graphics) provides methods for drawing, but it ’ s often better to
draw in a PictureBox control instead of the form itself. That makes it easier to move the drawing if
you later need to redesign the form. For example, if you decide that the picture might be too big, it is
easy to move a PictureBox control into a scrolling Panel control. It would be much harder to rewrite
the code to move the drawing from the Form into a PictureBox control later.

c08.indd 112c08.indd 112 12/30/09 6:46:44 PM12/30/09 6:46:44 PM

PrintPreviewControl displays a print preview for a PrintDocument object. The program responds
to events raised by the PrintDocument object. PrintPreviewControl displays the results within a
control on one of the program ’ s forms.

The PrintPreviewDialog control displays graphics from a PrintDocument object much as a
PrintPreviewControl does, but it provides its own dialog box. Unless you need to arrange the print
preview in some special way, it is easier to use a PrintPreviewDialog rather than build your
own preview dialog box with a PrintPreviewControl. The PrintPreviewDialog control provides
many features that enable the user to zoom, scroll, and move through the pages of the preview
document. Implementing those features yourself would be a lot of work.

Displaying Dialog Boxes

Visual Basic provides a rich assortment of dialog boxes that enable the user to make standard selec-
tions. Figuring out which of these dialog boxes to use is usually easy because each has a very specifi c
purpose. The following table lists the dialog boxes and their purposes.

DIALOG PURPOSE

ColorDialog Select a color.

FolderBrowserDialog Select a folder (directory).

FontDialog Select a font.

OpenFileDialog Select a fi le to open.

PageSetupDialog Specify page set up for printing.

PrintDialog Print a document.

PrintPreviewDialog Display a print preview.

SaveFileDialog Select a fi le for saving.

Example program UseDialogs, which is available for download on the book ’ s web site, demonstrates
each of these dialogs.

Supporting Other Controls

Many of the Visual Basic controls require the support of other controls. The two controls used most
by other controls are ImageList and PrintDocument. These controls also include DataConnector
and DataNavigator.

The ImageList control holds images for other controls to display. Your code can also take images
from an ImageList control to use in whatever way it needs.

Choosing Controls ❘ 113

c08.indd 113c08.indd 113 12/30/09 6:46:45 PM12/30/09 6:46:45 PM

114 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

The PrintDocument control provides support for printing and print previewing. It generates the
graphics sent to the printer, PrintPreviewDialog, or PrintPreviewControl.

The DataConnector control provides a link between a data source and controls bound to the con-
nector. The program can use the DataConnector ’ s methods to navigate, sort, fi lter, and update the
data, and the control updates its bound controls appropriately.

The DataNavigator control provides methods for navigating through a data source such as
DataConnector.

THIRD - PARTY CONTROLS

Visual Basic comes with a large number of useful controls ready to go, but many other controls
are available that you can use if you need them. If you right - click the Toolbox and select Choose
Items, you can select from a huge list of .NET Framework and COM components available on
your system.

You can also obtain other controls provided by other companies and available for purchase
and sometimes for free on the Web. Many of these controls perform specialized tasks such as
generating bar codes, making shaped forms, warping images, and providing special graphical
effects.

Other controls extend the standard controls to provide more power or fl exibility. Several controls
are available that draw two - and three - dimensional charts and graphs. Other controls provide more
powerful reporting services than those provided by Visual Studio ’ s own tools.

If you use any major web search engine to search for “ windows forms controls, ” you will fi nd lots
of web sites where you can download controls for free or for a fee. A few places you might like to
explore include:

MVPs.org (www.mvps.org), a site leading to resources provided by people related
to Microsoft ’ s Most Valuable Professional (MVP) program. The Common Controls
Replacement Project (ccrp.mvps.org) provides controls that duplicate and enhance stan-
dard Visual Basic 6 controls. Development on this project has stopped but some of the old
Visual Basic 6 controls may give you some ideas for building controls of your own. MVPs
.org is also a good general resource.

Windows Forms .NET (windowsclient.net), Microsoft ’ s offi cial WPF and Windows
Forms .NET community.

ASP.NET (www.asp.net), Microsoft ’ s offi cial ASP.NET community.

Download.com (www.download.com).

Shareware.com (www.shareware.com).

Shareware Connection (www.sharewareconnection.com).

➤

➤

➤

➤

➤

➤

c08.indd 114c08.indd 114 12/30/09 6:46:45 PM12/30/09 6:46:45 PM

You should use these as a starting point for your own search, not as a defi nitive list. You can
download controls from hundreds (if not thousands) of web sites.

CONTROL CHAOS

You should also show some restraint in downloading third-party controls and
products in general. Every time you add another control to a project, you make the
project depend on that control. If you later move the project to a newer version of
Visual Basic, you must ensure that the control works with that version. Similarly,
if the vendor makes a new version of the control, you must fi nd out if it works
with your version of Visual Basic. If it doesn’t, you may be stuck using an older,
unsupported version of the control.

If controls and tools interact with each other, the problem becomes much more
diffi cult. If anything changes, you must fi nd a set of versions for all of the tools that
can work correctly together.

I try to keep my use of third-party controls to a bare minimum because, when I
write a book, I generally cannot assume that you have a particular third-party
control. I use tools such as WinZip (www.WinZip.com) and Internet Download
Manager (www.InternetDownloadManager.com) outside of projects, but nothing
inside them.

Use a third-party control if it will save you a lot of work. But, before you do, ask
yourself how much work would it be to do without the control and how much work
it will be to replace it if you need to move to a new version of Visual Basic.

And of course, if you download a control from a source that isn’t trustworthy, you
could be downloading a virus.

SUMMARY

Controls form the main connection between the user and the application. They allow the applica-
tion to give information to the user, and they allow the user to control the application. Controls are
everywhere in practically every Windows application. Only a tiny percentage of applications that
run completely in the background can do without controls.

This chapter briefl y describes purposes of the standard Visual Basic controls and provides a few tips
for selecting the controls appropriate for different purposes. Appendix G describes the controls in
much greater detail.

Even knowing all about the controls doesn ’ t guarantee that you can produce an adequate user
interface. There ’ s a whole science to designing user interfaces that are intuitive and easy to use.
A good design enables the user to get a job done naturally and with a minimum of wasted work. A bad
interface can encumber the user and turn even a simple job into an exercise in beating the application
into submission.

Summary ❘ 115

c08.indd 115c08.indd 115 12/30/09 6:46:46 PM12/30/09 6:46:46 PM

116 ❘ CHAPTER 8 SELECTING WINDOWS FORMS CONTROLS

For more information on building usable applications, read some books on user - interface design.
They explain standard interface issues and solutions. You can also learn a lot by studying other
successful applications. Look at the layout of their forms and dialog boxes. You shouldn ’ t steal their
designs outright, but you can try to understand why they arrange their controls in the way they do.
Look at applications that you like and fi nd particularly easy to use. Compare them with applications
that you fi nd awkward and confusing.

This chapter provided an introduction to Windows Forms controls to help you decide which controls
to use for different purposes. Chapter 9, “ Using Windows Forms Controls, ” explains in greater detail
how you can use the controls you select. It tells how to add a control to a form at design time or
runtime, and explains how to use a control ’ s properties, methods, and events.

c08.indd 116c08.indd 116 12/30/09 6:46:48 PM12/30/09 6:46:48 PM

Using Windows Forms Controls

As Chapter 8 mentions, a control is a programming entity that has a graphical component.
Text boxes, labels, list boxes, check boxes, menus, and practically everything else that you see
in a Windows application is a control.

A component is similar to a control, except it is not visible at runtime. When you add a
component to a form at design time, it appears in the component tray below the bottom of the
form. You can select the co mponent and use the Properties window to view and change its
properties. At runtime, the component is invisible to the user, although it may display a visible
object such as a menu, dialog box, or status icon.

This chapter explains controls and components in general terms. It describes different kinds
of controls and components. It explains how your program can use them at design time and
runtime to give the user information and to allow the user to control your application. It also
explains in general terms how a control ’ s properties, methods, and events work, and it lists
some of the most useful properties, methods, and events provided by the Control class. Other
controls that are derived from this class inherit those properties, methods, and events unless
they are explicitly overridden.

Appendix G, “ Windows Forms Controls and Components, ” describes some of the most
commonly used controls in greater detail.

CONTROLS AND COMPONENTS

Controls are graphic by nature. Buttons, text boxes, and labels provide graphical input and
feedback for the user. They display data and let the user trigger program actions. Some
controls (such as grid controls, tree view controls, and calendar controls) are quite powerful
and provide a rich variety of tools for interacting with the user.

9

c09.indd 117c09.indd 117 12/31/09 4:06:37 PM12/31/09 4:06:37 PM

118 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

In contrast, components are represented by graphical icons at design time and are hidden at
runtime. They may display some other object (such as a dialog box, menu, or graphical indicator),
but the component itself is hidden from the user.

Many components display information to the user. Others provide information needed by graphical
controls. For example, a program can use connection, data adapter, and data set components
to defi ne data that should be selected from a database. Then a grid control could display the data to
the user. Because the connection, data adapter, and data set objects are components, you can
defi ne their properties at design time without writing code.

Figure 9 - 1 shows a form at design time that contains several components. The components appear
in the component tray at the bottom of the form, not on the form ’ s graphical surface.

FIGURE 9-1: Some components provide data for graphical controls.

This example contains four components. Timer1 fi res an event periodically so the program can take
some action at specifi ed time intervals. ErrorProvider1 displays an error icon and error messages
for certain controls on the form such as TextBoxes. BackgroundWorker1 performs tasks asynchro-
nously while the main program works independently. ImageList1 contains a series of images for use
by another control. Usually an ImageList is associated with a control such as a Button, ListView, or
TreeView, and provides images for that control. For example, a ListView control can use the images
in an ImageList to display icons for the items it contains.

c09.indd 118c09.indd 118 12/31/09 4:06:40 PM12/31/09 4:06:40 PM

Aside from the lack of a graphical component on the form, working with components is very similar
to working with controls. You use the Properties window to set components ’ properties, the code
editor to defi ne event handlers, and code to call their methods. The rest of this chapter focuses on
controls, but the same concepts apply just as well to components.

CREATING CONTROLS

Usually you add controls to a form graphically at design time. In some cases, however, you may
want to add new controls to a form when the program is running. This gives you a bit more
fl exibility so that you can change the program ’ s appearance at runtime in response to the program ’ s
needs or the user ’ s commands.

For example, suppose an application might need between 1 and 100 text boxes. Most of the time it
needs only a few, but depending on the user ’ s input, it might need a lot. You could give the form
100 text boxes and then hide the ones it didn ’ t need, but that would be a waste of memory most of
the time. By creating only the number of text boxes actually needed, you can conserve memory in the
most common cases.

The following sections explain how to create controls both at design time and at runtime.

Creating Controls at Design Time

To create a control at design time, double - click a form in
Solution Explorer to open it in the form editor. Decide which
control you want to use from the Toolbox. If the Toolbox tab
you are using is in List View mode, it displays the controls ’
names. If the tab displays only control icons, you can hover
the mouse over a tool to see a tooltip that gives the control ’ s
name and a brief description. For example, Figure 9 - 2 shows
the Button control ’ s tooltip.

After you have chosen a control, you have several ways to
add it to the form. First, you can double - click the tool to
place an instance of the control on the form at a default size
in a default location. After adding the control to the form,
the IDE deselects the tool and selects the pointer tool (the
upper leftmost tool in the Toolbox ’ s current tab).

Second, you can select the tool in the Toolbox, and then click and drag to place it on the form. If
you click the form without dragging, the IDE adds a new control at that position with a default size.
After you add the control, the IDE deselects the tool and selects the pointer tool.

Third, if you click and drag a tool from the Toolbox onto the form, Visual Basic makes a new
control with a default size at the position where you dropped the tool.

FIGURE 9-2: Tools summarize controls.

Creating Controls ❘ 119

c09.indd 119c09.indd 119 12/31/09 4:06:41 PM12/31/09 4:06:41 PM

120 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

Fourth, if you plan to add many copies of the same type of control to the form, hold down the
Ctrl key and click the tool. Now the tool remains selected even after you add a control to the
form. When you click and drag on the form, the IDE creates a new control at that position and
keeps the tool selected so that you can immediately create another control. When you click the
form without dragging the mouse, the IDE adds a new control at that position with a default size.
When you are fi nished adding instances of that control type, click the pointer tool to stop adding
new controls.

Adding Controls to Containers

Some controls can contain other controls. For example, the GroupBox and Panel controls can hold
other controls.

You can place a control in a container in several ways. If you select the container and then double -
click a control ’ s tool in the Toolbox, Visual Basic places the new control inside the container.

When you select a tool and click and drag inside a container, Visual Basic also places the new
control inside the container, whether or not it is selected.

You can also click and drag a Toolbox tool onto the container, or click and drag controls from one
part of the form onto the container. If you hold down the Ctrl key when you drop the controls,
Visual Basic makes new copies of the controls instead of moving the existing controls.

Two common mistakes programmers make with containers are placing a control above a container
when they want it inside the container, and vice versa. For example, you can place groups of controls
inside different Panel controls and then hide or display the Panels to show different controls at
different times. If a control lies above a Panel but is not inside it, the control remains visible even if
the Panel is not.

To tell if a control is inside a container, move the container slightly. If the control also moves, it is
inside the container. If the control doesn ’ t move, it is above the container but not inside it. (When
you ’ re fi nished with this test, you can press Ctrl+Z or use the Edit menu ’ s Undo command to undo
the move and put the container back where it was.)

Creating Controls at Runtime

Normally, you create controls interactively at design time. Sometimes, however, it ’ s more convenient
to create new controls at runtime. For example, you may not know how many pieces of data you will
need to display until runtime. Sometimes you can display unknown amounts of data using a list, grid,
or other control that can hold a variable number of items, but other times you might like to display
the data in a series of labels or text boxes. In cases such as these, you need to create new controls at
runtime.

The following code shows how a program might create a new Label control. First it declares a vari-
able of type Label and initializes it with the New keyword. It uses the label ’ s SetBounds method to
position the label and sets its Text property to “ Hello World! ” The code then adds the label to the
current form ’ s Controls collection.

c09.indd 120c09.indd 120 12/31/09 4:06:42 PM12/31/09 4:06:42 PM

Dim lbl As New Label
lbl.SetBounds(10, 50, 100, 25)
lbl.Text = "Hello World!"
Me.Controls.Add(lbl)

CHANGING CONTAINERS

To place a control inside a container other than the form, add the control to
the container’s Controls collection. For example, to add the previous Label to a
GroupBox named grpLabels, you would use the statement grpLabels.Controls
.Add(lbl).

Usually, a label just displays a message so you don ’ t need to catch its events. Other controls such as
buttons and scroll bars, however, are not very useful if the program cannot respond to their events.

You can take two approaches to catching a new control ’ s events. First, you can use the WithEvents
keyword when you declare the control ’ s variable. Then you can open the form in the code editor,
select the variable ’ s name from the left drop - down list, and select an event from the right
drop - down list to give the control an event handler.

The following code demonstrates this approach. It declares a class - level variable btnHi using the
WithEvents keyword. When you click the btnMakeHiButton button, its event handler initializes the
variable. It sets the control ’ s position and text, and adds it to the form ’ s Controls collection. When
the user clicks this button, the btnHi_Click event handler executes and displays a message.

' Declare the btnHi button WithEvents.
Private WithEvents btnHi As Button

' Make the new btnHi button.
Private Sub btnMakeHiButton_Click() Handles btnMakeHiButton.Click
 btnHi = New Button
 btnHi.SetBounds(16, 16, 80, 23)
 btnHi.Text = "Say Hi"
 Me.Controls.Add(btnHi)
End Sub

' The user clicked the btnHi button.
Private Sub btnHi_Click() Handles btnHi.Click
 MessageBox.Show("Hi")
End Sub

code snippet MakeButtons

This fi rst approach works if you know the number and types of the controls you will need. Then
you can defi ne variables for them all using the WithEvents keyword. If you don ’ t know how many

Creating Controls ❘ 121

c09.indd 121c09.indd 121 12/31/09 4:06:42 PM12/31/09 4:06:42 PM

122 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

controls you need to create, however, this isn ’ t practical. For example, suppose that you want to
create a button for each fi le in a directory. When the user clicks a button, the fi le should open. If you
don ’ t know how many fi les the directory will hold, you don ’ t know how many variables you ’ ll need.

One solution to this dilemma is to use the AddHandler statement to add event handlers to the new
controls. The following code demonstrates this approach. When you click the btnMakeHelloButton
button, its Click event handler creates a new Button object, storing it in a locally declared variable.
It sets the button ’ s position and text and adds it to the form ’ s Controls collection as before. Next,
the program uses the AddHandler statement to make subroutine Hello_Click an event handler
for the button ’ s Click event. When the user clicks the new button, subroutine Hello_Click displays
a message.

' Make a new Hello button.
Private Sub btnMakeHelloButton_Click() Handles btnMakeHelloButton.Click
 ' Make the button.
 Dim btnHello As New Button
 btnHello.SetBounds(240, 64, 80, 23)
 btnHello.Text = "Say Hello"
 Me.Controls.Add(btnHello)

 ' Add a Click event handler to the button.
 AddHandler btnHello.Click, AddressOf Hello_Click
End Sub

' The user clicked the Hello button.
Private Sub Hello_Click()
 MessageBox.Show("Hello")
End Sub

code snippet MakeButtons

TAG, YOU’RE IT

When you build controls at runtime, particularly if you don’t know how many
controls you may create, the Tag property can be very useful. You can place
something in a new control’s Tag property to help identify it. For example, you
might store a control number in each new control’s Tag property and make them all
use the same event handlers. The event handlers can check the Tag property to see
which control raised the event.

You can use the same routine as an event handler for more than one button. In that case, the code
can convert the sender parameter into a Button object and use the button ’ s Name, Text, and other
properties to determine which button was pressed.

c09.indd 122c09.indd 122 12/31/09 4:06:44 PM12/31/09 4:06:44 PM

To remove a control from the form, simply remove it from the form ’ s Controls collection. To free the
resources associated with the control, set any variables that refer to it to Nothing. For example, the
following code removes the btnHi control created by the fi rst example:

Me.Controls.Remove(btnHi)
btnHi = Nothing

This code can remove controls that you created interactively at design time, as well as controls you
create during runtime.

Example program MakeButtons, available on the book ’ s web site, demonstrates techniques for
adding and removing buttons.

CODE ON THE RUN

In addition to creating new controls at runtime, you can actually create code! You
can build a string containing Visual Basic code that holds subroutines, functions,
variables declarations, and so forth just as if you had typed it into the code editor.
Your program can then compile and execute the code.

This is an interesting and fun exercise but it’s very advanced so it’s not covered
in detail here. My book Expert One-on-One Visual Basic 2005 Design and
Development (Wrox, Stephens, 2007) has a chapter on scripting that you may fi nd
useful. For more information and some brief tutorials, try these web pages:

www.vb-helper.com/talk_vsa.html

www.vb-helper.com/howto_net_use_vsa.html

www.codeproject.com/KB/dotnet/dynacodgen.aspx

www.codeguru.com/columns/dotnet/article.php/c10729

www.codeproject.com/KB/dotnet/VBRunNET.aspx

➤

➤

➤

➤

➤

PROPERTIES

A property is some value associated with a control. Often, a property corresponds in an obvious
way to the control ’ s appearance or behavior. For example, the Text property represents the text that
the control displays, BackColor represents the control ’ s background color, Top and Left represent the
control ’ s position, and so forth.

Many properties, including Text, BackColor, Top, and Left, apply to many kinds of controls. Other
properties work only with certain specifi c types of controls. For example, the ToolStrip control
has an ImageList property that indicates the ImageList control containing the images the ToolStrip
should display. Only a few controls such as the ToolStrip have an ImageList property.

The following sections explain how you can manipulate a control ’ s properties interactively at design
time or using code at runtime.

Properties ❘ 123

c09.indd 123c09.indd 123 12/31/09 4:06:45 PM12/31/09 4:06:45 PM

124 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

Properties at Design Time

To modify a control ’ s properties at design time, open its form
in the Windows Forms Designer and click the control. The
Properties window displays the control ’ s properties. Figure 9 - 3
shows the Properties window displaying a Button control ’ s
properties. For example, the control ’ s Text property has the
value “ Make Hi Button, ” and its TextAlign property (which
determines where the button displays its text) is set to
MiddleCenter.

The drop - down list at the top of the Properties window,
just below the Properties title, indicates that this control is
named btnMakeHiButton and that it is of the System.Windows
.Forms. Button class.

You can set many properties by clicking a property ’ s value in the
Properties window and then typing the new value. This works with simple string and numeric
values such as the controls ’ Name and Text properties, and it works with some other properties
where typing a value makes some sense.

For example, the HScrollBar control (horizontal scrollbar) has Minimum, Maximum, and Value
properties that determine the control ’ s minimum, maximum, and current values. You can click
those properties in the Properties window and enter new values. When you press the Enter key or
move to another property, the control validates the value you typed. If you entered a value that
doesn ’ t make sense (for example, if you typed ABC instead of a numeric value), the IDE reports the
error and lets you fi x it.

Compound Properties

A few properties have compound values. The Location property
includes the X and Y coordinates of the control ’ s upper - left
corner. The Size property contains the control ’ s width and height.
The Font property is an object that has its own font name, size,
boldness, and other font properties.

The Properties window displays these properties with a plus sign
on the left. When you click the plus sign, the window expands the
property to show the values that it contains. Figure 9 - 4 shows
the same Properties window shown in Figure 9 - 3 with the Font
property expanded. You can click the Font property ’ s subvalues
and set them independently just as you can set any other
property value.

When you expand a compound property, a minus sign appears
to the left (see the Font property in Figure 9 - 4). Click this minus
sign to collapse the property and hide its members.

FIGURE 9-3: The Properties window

lets you change a control’s proper-

ties at design time.

FIGURE 9-4: The Properties

window lets you change complex

properties at design time.

c09.indd 124c09.indd 124 12/31/09 4:06:47 PM12/31/09 4:06:47 PM

Some compound properties provide more sophisticated methods for setting the property ’ s values. If
you click the ellipsis button to the right of the Font property shown in Figure 9 - 4, the IDE presents
a font selection dialog that lets you set many of the font ’ s properties.

Restricted Properties

Some properties allow more restricted values. For example, the Visible property is a Boolean, so it
can only take the values True and False. When you click the property, a drop - down arrow appears
on the right. When you click this arrow, a drop - down list lets you select one of the choices, True
or False.

Many properties have enumerated values. The Button control ’ s FlatStyle property allows the values
Flat, Popup, Standard, and System. When you click the drop - down arrow to the right of this
property, a drop - down list appears to let you select one of those values.

You can also double - click the property to cycle through its allowed values. After you select a
property, you can use the up and down arrows to move through the values.

Some properties allow different values at different times. For example, some properties contain
references to other controls. The Button control ’ s ImageList property is a reference to an ImageList
component that contains the picture that the Button should display. If you click the drop - down
arrow to the right of this value, the Properties window displays a list of the ImageList components
on the form that you might use for this property. This list also contains the entry (none), which you
can select to remove any previous control reference in the property.

Many properties take very specialized values and provide specialized property editors to let you
select values easily. For example, the Anchor property lets you anchor a control ’ s edges to the edges
of its container. Normally, a control is anchored to the top and left edges of the container so that it
remains in the same position even if the container is resized. If you
also anchor the control on the right, its right edge moves in or
out as the container gets wider or narrower. This lets you make
controls that resize with their containers in certain useful ways.

If you select the Anchor property and click the drop - down arrow
on the right, the Properties window displays the small graphical
editor shown in Figure 9 - 5. Click the skinny rectangles on the left,
top, right, or bottom to anchor or unanchor (sometimes called
fl oat) the control on those sides. Press the Enter key to accept your
choices or press Escape to cancel them.

Other complex properties may provide other editors. These are
generally self - explanatory. Click the ellipsis or drop - down arrow
to the right of a property value to open the editor, and experiment
to see how these editors work.

FIGURE 9-5: Some properties,

such as Anchor, provide special-

ized editors to let you select

their values.

Properties ❘ 125

c09.indd 125c09.indd 125 12/31/09 4:06:48 PM12/31/09 4:06:48 PM

126 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

You can right - click any property ’ s name and select Reset to reset the property to a default value.
Many complex properties can take the value “ (none), ” and for those properties, selecting Reset
usually sets the value to “ (none). ”

Collection Properties

Some properties represent collections of objects. For example, the ListBox control displays a list of
items. Its Items property is a collection containing those items. The Properties window displays the
value of this property as “ (Collection). ” If you select this property and click the ellipsis to the right,
the Properties window displays a simple dialog box where you can edit the text displayed by the
control ’ s items. This dialog box is quite straightforward: Enter the items ’ text on separate lines and
click OK.

Other properties are much more complex. For example, to create a TabControl that displays images
on its tabs, you must also create an ImageList component. Select the ImageList component ’ s Images
property, and click the ellipsis to the right to display the dialog box shown in Figure 9 - 6. When you
click the Add button, the dialog box displays a fi le selection dialog box that lets you add an image
fi le to the control. The list on the left shows you the images you have loaded and includes a small
thumbnail picture of each image. The values on the right show you the images ’ properties.

FIGURE 9-6: This dialog box lets you load images into an

ImageList control at design time.

After you add pictures to the ImageList control, create a TabControl. Select its ImageList property,
click the drop - down arrow on the right, and select the ImageList control you created. Next, select
the TabControl ’ s TabPages property, and click the ellipsis on the right to see the dialog box shown
in Figure 9 - 7.

c09.indd 126c09.indd 126 12/31/09 4:06:48 PM12/31/09 4:06:48 PM

Use the Add button to add tab pages to the control. Select a tab page, click its ImageIndex property,
click the drop - down arrow to the right, and pick the number of the image in the ImageList that
you want to use for this tab. Figure 9 - 8 shows the resulting ImageTabs example program, which is
available for download on the book ’ s web site.

Some properties even contain a collection of objects,
each of which contains a collection of objects.
For example, the ListView control has an Items
property that is a collection. Each item in
that collection is an object that has a SubItems
property, which is itself a collection. When you display
the ListView control as a list with details, an object
in the Items collection represents a row in the view
and its SubItems values represent the secondary values
in the row.

To set these values at design time, select the ListView
control and click the ellipsis to the right of the control ’ s Items property in the Properties window.
Create an item in the editor, and click the ellipsis to the right of the item ’ s SubItems property.

Other complicated properties provide similarly complex editors. Although they may implement
involved relationships among various controls and components, they are usually easy enough to
fi gure out with a little experimentation.

FIGURE 9-7: This dialog box lets you edit a TabControl’s

tab pages.

FIGURE 9-8: A TabControl displays the

images stored in an ImageList component

on its tabs.

Properties ❘ 127

c09.indd 127c09.indd 127 12/31/09 4:06:49 PM12/31/09 4:06:49 PM

128 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

Properties at Runtime

Visual Basic lets you set most control properties at design time, but often you will need to get and
modify property values at runtime. For example, you might need to change a label ’ s text to tell
the user that something has changed, disable a button because it is not applicable at a particular
moment, or read the value selected by the user from a list.

As far as your code is concerned, a property is just like any other public variable defi ned by an
object. You get or set a property by using the name of the control, followed by a dot, followed by
the name of the property. For example, the following code examines the text in the TextBox named
txtPath. If the text doesn ’ t end with a / character, the code adds one. This code both reads and sets
the Text property:

If Not txtPath.Text.EndsWith("/") Then txtPath.Text & = "/"

If a property contains a reference to an object, you can use the object ’ s properties and methods in
your code. The following code displays a message box indicating whether the txtPath control ’ s font
is bold. It examines the TextBox control ’ s Font property. That property returns a reference to a
Font object that has a Bold property.

If txtPath.Font.Bold Then
 MessageBox.Show("Bold")
Else
 MessageBox.Show("Not Bold")
End If

FINALIZED FONTS

A Font object’s properties are read-only, so the code cannot set the value of
txtPath.Font.Bold. To change the TextBox control’s font, the code would need to
create a new font as in the statement:

txtPath.Font = New Font(txtPath.Font, FontStyle.Bold)

This code passes the Font object’s constructor a copy of the TextBox control’s current
font to use as a template, and a value indicating that the new font should be bold.

If a property represents a collection or array, you can loop through or iterate over the property just
as if it were declared as a normal collection or array. The following code lists the items the user has
selected in the ListBox control named lstChoices:

For Each selected_item As Object In lstChoices.SelectedItems()
 Debug.WriteLine(selected_item.ToString())
Next selected_item

c09.indd 128c09.indd 128 12/31/09 4:06:50 PM12/31/09 4:06:50 PM

A few properties are read - only at runtime, so your code can examine them but not change their
values. For example, a Panel control ’ s Controls property returns a collection holding references to
the controls inside the Panel. This property is read - only at runtime so you cannot set it equal to a
new collection. (The collection provides methods for adding and removing controls so you don ’ t
really need to replace the whole collection; you can change the controls that it contains instead.)

Note also that at design time, this collection doesn ’ t appear in the Properties window. Instead of
explicitly working with the collection, you add and remove controls interactively by moving them
in and out of the Panel control.

A control ’ s Bottom property is also read - only and not shown in the Properties window. It represents
the distance between the top of the control ’ s container and the control ’ s bottom edge. This value
is really just the control ’ s Top property plus its Height property (control.Bottom = control.Top +
control.Height), so you can modify it using those properties instead of setting the Bottom property
directly.

THE ELUSIVE WRITE-ONLY PROPERTY

In theory, a property can also be write-only at runtime. Such a property is really
more like a subroutine than a property, however, so most controls use a subroutine
instead. In practice, read-only properties are uncommon and write-only properties
are extremely rare.

Useful Control Properties

This section describes some of the most useful properties provided by the Control class. Appendix
A, “ Useful Control Properties, Methods, and Events, ” summarizes these and other Control proper-
ties for quick reference. Appendix A doesn ’ t cover every property, just those that are most useful.

All controls (including the Form control) inherit directly or indirectly from the Control class. That
means they inherit the Control class ’ s properties, methods, and events (unless they take explicit
action to override the Control class ’ s behavior).

Although these properties are available to all controls that inherit from the Control class, many are
considered advanced, so they are not shown by the IntelliSense pop - up ’ s Common tab. For example,
a program is intended to set a control ’ s position by using its Location property not its Left and Top
properties, so Location is in the Common tab whereas Left and Top are only in the Advanced tab.

Figure 9 - 9 shows the Common tab on the IntelliSense pop - up for a Label control. It shows the
Location property but not the Left property. If you click the All tab, you can see Left and the other
advanced properties.

Properties ❘ 129

c09.indd 129c09.indd 129 12/31/09 4:06:51 PM12/31/09 4:06:51 PM

130 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

When you type the control ’ s name and enough of the string Left to differentiate it from the
Location property (in this case “ lblDirectory.Le ”), the pop - up automatically switches to show a
smaller version of the IntelliSense pop - up listing only properties that contain “Le” such as Left,
RightToLeft, and TopLevelControl.

Many of the Control class ’ s properties are straightforward, but a few deserve special attention. The
following sections describe some of the more confusing properties in greater detail.

Anchor

The Anchor property allows a control to automatically resize itself when its container is resized.
Anchor determines which of the control ’ s edges should remain a fi xed distance from the
corresponding edges of the container.

For example, normally a control ’ s Anchor property is set to Top, Left. That means the control ’ s top
and left positions remain fi xed when the container resizes. If the control ’ s upper - left corner is at the
point (8, 16) initially, it remains at the position (8, 16) when you resize the container. This is the
normal control behavior, and it makes the control appear fi xed on the container.

For another example, suppose that you set a control ’ s Anchor property to Top, Right, and you place
the control in the container ’ s upper - right corner. When you resize the container, the control moves,
so it remains in the upper - right corner.

FIGURE 9-9: The Location property is on the IntelliSense Common tab but the Left

property is not.

c09.indd 130c09.indd 130 12/31/09 4:06:52 PM12/31/09 4:06:52 PM

If you set two opposite Anchor values, the control resizes itself to satisfy them both. For example,
suppose that you make a button that starts 8 pixels from its container ’ s left, right, and top edges.
Then suppose that you set the control ’ s Anchor property to Top, Left, Right. When you resize the
container, the control resizes itself so that it is always 8 pixels from the container ’ s left, right, and
top edges.

In a more common scenario, you can place Label controls on the left with Anchor set to Top, Left
so they remain fi xed on the form. On the right, you can place TextBoxes and other controls with
Anchor set to Top, Left, Right, so they resize themselves to take advantage of the resizing form ’ s
new width.

Similarly, you can make controls that stretch vertically as the form resizes. For example, if you set
a ListBox control ’ s Anchor property to Top, Left, Bottom, the control stretches vertically to take
advantage of the form ’ s height and display as much of its list of items as possible.

If you do not provide any Anchor value for either the vertical or horizontal directions, the
control anchors its center to the container ’ s center. For example, suppose you position a button in
the bottom middle of the form and you set its Anchor property to Bottom only. Because you
placed the control in the middle of the form, the control ’ s center coincides with the form ’ s center.
When you resize the form, the control moves so it remains centered horizontally.

If you place other controls on either side of the centered one, they will all move so they remain
together centered as a group as the form resizes. You may want to experiment with this property
to see the effect.

At runtime, you can set a control ’ s Anchor property to AnchorStyles.None or to a Boolean combi-
nation of the values AnchorStyles.Top, AnchorStyles.Bottom, AnchorStyles.Left, and AnchorStyles
.Right. For example, Example program AnchorButton, available for download on the book ’ s web
site, uses the following code to move the btnAnchored control to the form ’ s lower - right corner and
set its Anchor property to Bottom, Right, so it stays there:

Private Sub Form1_Load() Handles MyBase.Load
 btnAnchored.Location = New Point(_
 Me.ClientRectangle.Width - Button1.Width, _
 Me.ClientRectangle.Height - Button1.Height)
 btnAnchored.Anchor = AnchorStyles.Bottom Or AnchorStyles.Right
End Sub

code snippet AnchoredButtons

Dock

The Dock property determines whether a control attaches itself to one or more of its container ’ s
sides. For example, if you set a control ’ s Dock property to Top, the control docks to the top of
its container. It fi lls the container from lef t to right and is fl ush with the top of the container. If
the container is resized, the control remains at the top, keeps its height, and resizes itself to fi ll the
container ’ s width. This is how a typical toolbar behaves. The effect is similar to placing the control
at the top of the container so that it fi lls the container ’ s width and then setting its Anchor property
to Top, Left, Right.

Properties ❘ 131

c09.indd 131c09.indd 131 12/31/09 4:06:52 PM12/31/09 4:06:52 PM

132 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

You can set a control ’ s Dock property to Top, Bottom, Left, Right, Fill, or None. The value Fill
makes the control dock to all of its container ’ s remaining interior space. If it is the only control in
the container, it fi lls the whole container.

If the container holds more than one control with Dock set to a value other than None, the controls
are arranged according to their stacking order (also called the Z - order). The control that is fi rst
in the stacking order (would normally be drawn fi rst at the back) is positioned fi rst using its Dock
value. The control that comes next in the stacking order is arranged second, and so on until all of
the controls are positioned.

Figure 9 - 10 shows example program Docking, which is available
for download on the book ’ s web site. It contains four TextBoxes
with Dock set to different values. The fi rst in the stacking order
has Dock set to Left so it occupies the left edge of the form.
The next control has Dock set to Top, so it occupies the top edge
of the form ’ s remaining area. The third control has Dock set to
Right, so it occupies the right edge of the form ’ s remaining area.
Finally, the last control has Dock set to Fill so it fi lls the rest of
the form.

Controls docked to an edge resize to fi ll the container in one
dimension. For example, a control with Dock set to Top fi lls
whatever width the container has available. A control with Dock
set to Fill resizes to fi ll all of the form ’ s available space.

Other than that, the Dock property does not arrange controls very intelligently when you resize the
container. For example, suppose that you have two controls, one above the other. The fi rst has Dock
set to Top and the second has Dock set to Fill. You can arrange the controls so that they evenly
divide the form vertically. When you make the form taller, however, the second control, with Dock
set to Fill, takes up all of the new space, and the other control remains the same size.

You cannot use the Dock property to make the controls divide the form evenly when it is resized. You
cannot use the Anchor property to evenly divide the form either. Instead, you need to use code similar
to the following. When the form resizes, this code moves and sizes the two controls TextBox1 and
TextBox2 to fi ll the form, evenly dividing it vertically.

Private Sub Form1_Load() Handles Me.Load
 ArrangeTextBoxes()
End Sub
Private Sub Form1_Resize() Handles Me.Resize
 ArrangeTextBoxes()
End Sub
Private Sub ArrangeTextBoxes()
 Dim wid As Integer = Me.ClientRectangle.Width
 Dim hgt1 As Integer = Me.ClientRectangle.Height \ 2
 Dim hgt2 As Integer = Me.ClientRectangle.Height - hgt1
 txtTop.SetBounds(0, 0, wid, hgt1)
 txtBottom.SetBounds(0, hgt1, wid, hgt2)
End Sub

code snippet DivideForm

FIGURE 9-10: Docked controls

are arranged according to their

stacking order.

c09.indd 132c09.indd 132 12/31/09 4:06:53 PM12/31/09 4:06:53 PM

Example program DivideForm, available for download on the book ’ s web site, uses similar code to
divide its form between two text boxes.

When you want to divide a form, the SplitterContainer control can also be useful. The
SplitterContainer contains two panels that can hold other controls. The user can drag the divider
between the two panels to adjust the size allocated to each.

Position and Size Properties

Controls contain many position and size properties, and the differences among them can be
confusing. Some of the more bewildering aspects of controls are client area, non - client area, and
display area.

A control ’ s client area is the area inside the control where you can draw things or place other
controls. A control ’ s non - client area is everything else. In a typical form, the borders and title bar
are the non - client area. The client area is the space inside the borders and below the title bar where
you can place controls or draw graphics.

MENUS AND CLIENT AREA

A form’s menus can make the client and non-client areas a bit confusing. Logically,
you might think of the menus as part of the non-client area because you normally
place controls below them. Nevertheless, the menus are themselves controls and
you can even place other controls above or below the menus (although that would
be very strange and confusing to the user), so they are really contained in the client
area.

A control ’ s display area is the client area minus any internal decoration. For example, a GroupBox
control displays an internal border and a title. Although you can place controls over these, you
normally wouldn ’ t. The display area contains the space inside the GroupBox ’ s borders and below
the space where the title sits.

The following table summarizes properties related to the control ’ s size and position.

Properties ❘ 133

c09.indd 133c09.indd 133 12/31/09 4:06:54 PM12/31/09 4:06:54 PM

134 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

PROPERTY DATA TYPE READ/WRITE PURPOSE

Bounds Rectangle Read/Write The control ’ s size and position within its

container including non - client areas.

ClientRectangle Rectangle Read The size and position of the client area

within the control.

ClientSize Size Read/Write The size of the client area. If you set this

value, the control adjusts its size to make

room for the non - client area, while giving

you this client size.

DisplayRectangle Rectangle Read The size and position of the area within the

control where you would normally draw or

place other controls.

Location Point Read/Write The position of the control ’ s upper - left

corner within its container.

Size Point Read/Write The control ’ s size including non - client areas.

Left, Top, Width,

Height

Integer Read/Write The control ’ s size and position within its

container including non - client areas.

Bottom, Right Integer Read The position of the control ’ s lower - right

corner within its container.

METHODS

A method executes code associated with a control. The method can be a function that returns a
value or a subroutine that does something without returning a value.

Because methods execute code, you cannot invoke them at design time. You can only invoke them
by using code at runtime.

Appendix A summarizes the Control class ’ s most useful methods. Controls that inherit from the
Control class also inherit these methods unless they have overridden the Control class ’ s behavior.

EVENTS

A control or other object raises an event to let the program know about some change in circum-
stances. Sometimes raising an event is also called fi ring or throwing the event. Specifi c control
classes provide events that are relevant to their special purposes. For example, the Button control
provides a Click event to let the program know when the user clicks the button.

c09.indd 134c09.indd 134 12/31/09 4:06:55 PM12/31/09 4:06:55 PM

The program responds to an event by creating an event handler that catches the event and takes
whatever action is appropriate. Each event defi nes its own event - handler format and determines the
parameters that the event handler will receive. Often, these parameters give additional information
about the event.

For example, when part of the form is covered and exposed, the form raises its Paint event. The
Paint event handler takes as a parameter an object of type PaintEventArgs named e. That object ’ s
Graphics property is a reference to a Graphics object that the program can use to redraw the form ’ s
contents.

Some event handlers take parameters that are used to send information about the event back to
the object that raised it. For example, the Form class ’ s FormClosing event handler has a param-
eter of type FormClosingEventArgs. That parameter is an object that has a property named
Cancel. If the program sets Cancel to True, the Form cancels the FormClosing event and remains
open. For example, the event handler can verify that the data entered by the user was properly
formatted. If the values didn ’ t make sense, the program can display an error message and keep
the form open.

Although many of a control ’ s most useful events are specifi c to the control type, controls do inherit
some common events from the Control class. Appendix A summarizes the Control class ’ s most
important events. Controls that inherit from the Control class also inherit these events unless they
have overridden the Control class ’ s behavior.

Creating Event Handlers at Design Time

You can create an event handler at design time in a couple of ways. If you open a form in
the Windows Forms Designer and double - click a control, the code editor opens and displays the
control ’ s default event handler. For example, a TextBox control opens its TextChanged event
handler, a Button control opens its Click event handler, and the form itself opens its Load
event handler.

To create some other non - default event handler for a control, select the control and then click the
Properties window ’ s Events button (which looks like a lightning bolt). This makes the Properties
window list the control ’ s most commonly used events. If you have defi ned event handlers already,
possibly for other controls, you can select them from the events ’ drop - down lists. Double - click an
event ’ s entry to create a new event handler.

To create other non - default event handlers or to create event handlers inside the code editor, open
the code window, select the control from the left drop - down list, and then select the event handler
from the right drop - down list, as shown in Figure 9 - 11. To create an even handler for the form
itself, select “ (Form1 Events) ” from the left dropdown and then select an event from the right
dropdown.

Events ❘ 135

c09.indd 135c09.indd 135 12/31/09 4:06:56 PM12/31/09 4:06:56 PM

136 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

The code window creates an event handler with the correct parameters and return value. For
example, the following code shows an empty TextBox control ’ s Click event handler (note that the
fi rst two lines are wrapped in this text but appear on one line in the code editor). Now you just need
to fi ll in the code that you want to execute when the event occurs.

Private Sub TextBox1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles TextBox1.Click
End Sub

RELAX

Because Visual Basic supports relaxed delegates, you can omit the parameters from
the event handler’s declaration if you don’t need to use them. To make the code
easier to read, this book omits these parameters wherever they are not needed.
For example, the following code shows a relaxed version of the previous
TextBox_Click event handler:

Private Sub TextBox1_Click() Handles TextBox1.Click
End Sub

FIGURE 9-11: To create an event handler in the code window, select a control from the

left dropdown, and then select an event from the right dropdown.

c09.indd 136c09.indd 136 12/31/09 4:06:56 PM12/31/09 4:06:56 PM

WithEvents Event Handlers

If you declare an object variable using the WithEvents keyword, you can catch its events. After you
declare the variable, you can select it in the code designer ’ s left dropdown, just as you can select any
other control. Then you can pick one of the object ’ s events from the right dropdown.

When the code assigns an instance of an object to the variable, any event handlers defi ned for the
variable receive the object ’ s events. Later, if you set the variable to Nothing, the event handlers no
longer receive events.

Usually, you don ’ t need to create WithEvents variables for controls because Visual Basic does it for
you. However, using a variable declared WithEvents lets you enable and disable events quickly and
easily. For example, suppose a program wants to track a PictureBox ’ s mouse events at some times,
but not at others. It declares a PictureBox variable as shown in the following code:

Private WithEvents m_Canvas As PictureBox

When the program wants to receive events, it sets this variable equal to its PictureBox control as in
the following code. Now the variable ’ s event handlers such as m_Canvas_MouseDown,
m_Canvas_MouseMove, and m_Canvas_MouseUp are enabled.

m_Canvas = PictureBox1

When it no longer wants to receive these events, the program sets m_Canvas to Nothing as in the
following statement. While m_Canvas is Nothing, it has no associated control to generate events for it.

m_Canvas = Nothing

Setting Event Handlers at Runtime

Not only can you create event handlers at design time, but you can also assign them at runtime.
First create the event handler. You must get the routine ’ s parameters exactly correct for the type of
event handler you want to create. For example, a TextBox control ’ s Click event handler must take
two parameters with types System.Object and System.EventArgs.

EASY EVENT PARAMETERS

To ensure that you get the details right, you can start by creating an event handler
for a normal control at design time. Select the control from the code designer’s left
dropdown, and then select the event from the right. Change the resulting event
handler’s name to something more appropriate (for example, you might change
Button1_Click to ToolClicked) and remove the Handles statement that ties the
event handler to the control. You can also delete the original control if you don’t
need it for anything else.

Events ❘ 137

c09.indd 137c09.indd 137 12/31/09 4:06:57 PM12/31/09 4:06:57 PM

138 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

After you build the event handler, you can use the AddHandler and RemoveHandler statements
to add and remove the event handler from a control. The following code shows how example
program SwitchEventHandlers switches the event handler that a button executes when it
is clicked:

' Add or remove event handler 1.
Private Sub radEventHandler1_CheckedChanged() _
 Handles radEventHandler1.CheckedChanged
 If radEventHandler1.Checked Then
 AddHandler btnClickMe.Click, AddressOf EventHandler1
 Else
 RemoveHandler btnClickMe.Click, AddressOf EventHandler1
 End If
End Sub

' Add or remove event handler 2.
Private Sub radEventHandler2_CheckedChanged() _
 Handles radEventHandler2.CheckedChanged
 If radEventHandler2.Checked Then
 AddHandler btnClickMe.Click, AddressOf EventHandler2
 Else
 RemoveHandler btnClickMe.Click, AddressOf EventHandler2
 End If
End Sub

' Display a message telling which event handler this is.
Private Sub EventHandler1(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 MessageBox.Show("EventHandler1")
End Sub

Private Sub EventHandler2(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 MessageBox.Show("EventHandler2")
End Sub

code snippet SwitchEventHandlers

When the user selects or clears radio button radEventHandler1, the control ’ s CheckedChanged event
handler adds or removes the EventHandler1 event handler from the btnClickMe control ’ s Click
event. Similarly, when the user selects or clears radEventHandler2, its CheckedChanged event handler
adds or removes the EventHandler2 event handler from the btnClickMe control ’ s Click event.

The EventHandler1 and EventHandler2 event handlers simply display a message telling you which is
executing.

AddHandler and RemoveHandler allow you to switch one or two events relatively easily. If you
must switch many event handlers for the same control all at once, however, it may be easier to use a
variable declared using the WithEvents keyword.

c09.indd 138c09.indd 138 12/31/09 4:06:58 PM12/31/09 4:06:58 PM

Control Array Events

Visual Basic 6 and earlier versions allowed you to use control arrays. A control array was an array
of controls with the same name that shared the same event handlers. A parameter to the event
handlers gave the index of the control in the array that fi red the event. If the controls perform
closely related tasks, the common event handler may be able to share a lot of code for all of
the controls.

Visual Basic .NET does not support control arrays, but you can get similar effects in a couple of ways.

First, suppose that you add a control to a form and give it event handlers. Then you copy and paste
the control to make other controls on the form. By default, all of these controls share the event
handlers that you created for the fi rst control. If you look at the event handlers ’ code, you ’ ll see the
Handles statements list all of the copied controls. You can also modify an event handler ’ s Handles
clause manually to attach it to more than one control.

Another way to make controls share event handlers is to attach them to the controls by using the
AddHandler statement.

An event handler ’ s fi rst parameter is a variable of the type System.Object that contains a reference
to the object that raised the event. The program can use this object and its properties (for example,
its Name or Text property) to determine which control raised the event and take appropriate action.

Validation Events

Data validation is an important part of many applications. Visual Basic provides two events to make
validating data easier: Validating and Validated. The following sections describe three approaches to
using those events to validate data.

Integrated Validation

The Validating event fi res when the code should validate a control ’ s data. This happens when the
control has the input focus and the form tries to close, or when focus moves from the control to
another control that has its CausesValidation property set to True. Integrated validation uses the
Validating event to perform all validation.

The Validating event handler can verify that the data in a control has a legal value and take
appropriate action if it doesn ’ t. For example, consider the FiveDigits example program, which is
shown in Figure 9 - 12. The fi rst TextBox control ’ s Validating event handler checks that the control ’ s
value contains exactly fi ve digits. If the value does not contain fi ve digits, as is the case in the fi gure,
the program uses an ErrorProvider control to
fl ag the TextBox ’ s value as being in error and
moves the input focus back to the TextBox. The
ErrorProvider displays the little exclamation mark
icon to the right of the control and makes the icon
blink several times to get the user ’ s attention.
When the user hovers the mouse over the icon, the
ErrorProvider displays the error text in a tooltip.

FIGURE 9-12: The Validating event fi res when the

focus moves to a control that has CausesValidation

set to True.

Events ❘ 139

c09.indd 139c09.indd 139 12/31/09 4:06:59 PM12/31/09 4:06:59 PM

140 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

The second TextBox control in this example has a CausesValidation property value of False.
When the user moves from the fi rst TextBox control to the second one, the Validating event does not
fi re and the TextBox control is not fl agged. The third TextBox control has CausesValidation set to
True, so when the user moves into that TextBox control, the fi rst TextBox ’ s Validating event fi res,
and the value is fl agged if it is invalid. The Validating event also fi res if the user tries to close
the form.

The following code shows the Validating event handler used by this example. Notice that the
Handles clause lists all three TextBoxes ’ Validating events so this event handler catches the
Validating event for all three controls.

' Validate the TextBox's contents.
Private Sub txtNumber_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles txtNumber1.Validating, txtNumber2.Validating, txtNumber3.Validating
 ' Get the TextBox.
 Dim text_box As TextBox = DirectCast(sender, TextBox)

 ' Validate the control's value.
 ValidateFiveDigits(text_box, e.Cancel)
End Sub

' Verify that the TextBox contains five digits.
Private Sub ValidateFiveDigits(ByVal text_box As TextBox, _
 ByRef cancel_event As Boolean)
 If text_box.Text.Length = 0 Then
 ' Allow a zero-length string.
 cancel_event = False
 Else
 ' Allow five digits.
 cancel_event = Not (text_box.Text Like "#####")
 End If

 ' See if we're going to cancel the event.
 If cancel_event Then
 ' Invalid. Set an error.
 errBadDigits.SetError(text_box, _
 text_box.Name & " must contain exactly five digits")
 Else
 ' Valid. Clear any error.
 errBadDigits.SetError(text_box, "")
 End If
End Sub

code snippet FiveDigits

The event handler receives the control that raised the event in its sender parameter. It uses
DirectCast to convert that generic Object into a TextBox object and passes it to the ValidateFiveDigits
subroutine to do all of the interesting work. It also passes the e.Cancel parameter, so the subroutine
can cancel the action that caused the event if necessary.

c09.indd 140c09.indd 140 12/31/09 4:06:59 PM12/31/09 4:06:59 PM

ValidateFiveDigits checks the TextBox control ’ s contents and sets its cancel_event parameter to True
if the text has nonzero length and is not exactly fi ve digits. This parameter is passed by reference, so
this changes the original value of e.Cancel in the calling event handler. That will restore focus to the
TextBox that raised the event and that contains the invalid data.

If cancel_event is True, the value is invalid, so the program uses the ErrorProvider component
named errBadDigits to assign an error message to the TextBox control.

If cancel_event is False, the value is valid so the program blanks the ErrorProvider component ’ s
error message for the TextBox.

Separated Validation

A control ’ s Validated event fi res after the focus successfully leaves the control, either to another
control with CausesValidation set to True or when the form closes. The control should have already
validated its contents in its Validating event, hence the event name Validated.

This event doesn ’ t really have anything directly to do with validation, however, and it fi res whether
or not the code has a Validating event handler and even if the control ’ s value is invalid. The only
time it will not execute is if the validation does not complete. That happens if the Validating event
handler cancels the event causing the validation.

The previous section shows how to set or clear a control ’ s error in its Validating event handler. An
alternative strategy is to set errors in the Validating event handler and clear them in the Validated
event handler, as shown in the following code. If the control ’ s value is invalid, the Validating event
handler cancels the event causing the validation so the Validated event does not occur. If the
control ’ s value is valid, the Validating event handler does not cancel the event and the Validated
event handler executes, clearing any previous error.

' Validate the TextBox's contents.
Private Sub txtNumber_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles txtNumber1.Validating, txtNumber2.Validating, txtNumber3.Validating
 ' Validate the control's value.
 ValidateFiveDigits(DirectCast(sender, TextBox), e.Cancel)
End Sub

' Verify that the TextBox contains five digits.
 Private Sub ValidateFiveDigits(ByVal text_box As TextBox, _
 ByRef cancel_event As Boolean)
 ' Cancel if nonzero length and not five digits.
 cancel_event = (text_box.Text.Length < > 0) And _
 Not (text_box.Text Like "#####")
 ' See if we're going to cancel the event.
 If cancel_event Then
 ' Invalid. Set an error.
 ErrorProvider1.SetError(text_box, _
 text_box.Name & " must contain exactly five digits")
 End If
End Sub

' Validation succeeded. Clear any error.

Events ❘ 141

c09.indd 141c09.indd 141 12/31/09 4:07:00 PM12/31/09 4:07:00 PM

142 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

Private Sub txtNumber_Validated(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles txtNumber1.Validated, txtNumber2.Validated, txtNumber3.Validated
 ' Valid. Clear any error.
 ErrorProvider1.SetError(DirectCast(sender, TextBox), "")
End Sub

code snippet FiveDigitsSeparate

Example program FiveDigitsSeparate, available for download on the book ’ s web site, demonstrates
this approach.

Deferred Validation

By keeping focus in the control that contains the error, the previous approaches force the user to fi x
problems as soon as possible. In some applications, it may be better to let the user continue fi lling
out other fi elds and fi x the problems later. For example, a user who is touch - typing data into several
fi elds may not look up to see the error until much later, after entering a series of invalid values in the
fi rst fi eld and wasting a lot of time.

The following code shows one way to let the user continue entering values in other fi elds:

' Validate the TextBox's contents.
Private Sub txtNumber_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles txtNumber1.Validating, txtNumber2.Validating, txtNumber3.Validating
 ' Validate the control's value.
 ValidateFiveDigits(DirectCast(sender, TextBox))
End Sub

' Verify that the TextBox contains five digits.
Private Sub ValidateFiveDigits(ByVal text_box As TextBox)
 ' See if the data is valid.
 If (text_box.Text.Length < > 0) And _
 Not (text_box.Text Like "#####") _
 Then
 ' Invalid. Set an error.
 errBadDigits.SetError(text_box, _
 text_box.Name & " must contain exactly five digits")
 Else
 ' Valid. Clear the error.
 errBadDigits.SetError(text_box, "")
 End If
End Sub

' See if any fields have error messages.
Private Sub Form1_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 ' Assume we will cancel the close.
 e.Cancel = True

c09.indd 142c09.indd 142 12/31/09 4:07:01 PM12/31/09 4:07:01 PM

 ' Check for errors.
 If IsInvalidField(txtNumber1) Then Exit Sub
 If IsInvalidField(txtNumber3) Then Exit Sub

 ' If we got this far, the data's okay.
 e.Cancel = False
End Sub

' If this control has an error message assigned to it,
' display the message, set focus to the control,
' and return True.
Private Function IsInvalidField(ByVal ctl As Control) As Boolean
 ' See if the control has an associated error message.
 If errBadDigits.GetError(ctl).Length = 0 Then
 ' No error message.
 Return False
 Else
 ' There is an error message.
 ' Display the message.
 MessageBox.Show(errBadDigits.GetError(ctl))

 ' Set focus to the control.
 ctl.Focus()
 Return True
 End If
End Function

code snippet FiveDigitsDeferred

The Validating event handler calls the ValidateFiveDigits subroutine much as before, but this time
ValidateFiveDigits does not take the cancel_event parameter. If the TextBox object ’ s value has an
error, the routine uses the ErrorProvider to assign an error message to it and exits.

When the user tries to close the form, the FormClosing event handler executes. This routine
assumes that some fi eld contains invalid data, so it sets e.Cancel to True. It then calls the function
IsInvalidField for each of the controls that it wants to validate. If any call to IsInvalidField returns
True, the event handler exits, e.Cancel remains True, and the form refuses to close. If all of the fi elds
pass validation, the event handler sets e.Cancel to False, and the form closes.

The function IsInvalidField uses the ErrorProvider ’ s GetError method to get a control ’ s assigned
error message. If the message is blank, the function returns False to indicate that the control ’ s data
is valid. If the message is not blank, the function displays it in a message box, sets focus to the
control, and returns True to indicate that the form ’ s data is invalid.

If the focus is in a TextBox when the form tries to close, its Validating event fi res before the
form ’ s FormClosing event so the TextBox control has a chance to validate its contents before the
FormClosing event fi res.

Example program FiveDigitsDeferred, available for download on the book ’ s web site, demonstrates
this approach.

Events ❘ 143

c09.indd 143c09.indd 143 12/31/09 4:07:02 PM12/31/09 4:07:02 PM

144 ❘ CHAPTER 9 USING WINDOWS FORMS CONTROLS

VALIDATING BUTTONS

If the form is a dialog, you could validate the form’s data in an OK button’s Click
event handler instead of in the form’s FormClosing event.

Similarly, you may want to validate the data when the user clicks some other
button. On a New Order form, you might validate all of the fi elds when the user
clicks the Submit button.

SUMMARY

This chapter describes controls, components, and objects in general terms. It tells how to create
controls and how to use their properties, methods, and events. It spends some extra time explaining
how to add and remove event handlers, and data - validation events and strategies.

Appendix A, “ Useful Control Properties, Methods, and Events, ” describes the most useful proper-
ties, methods, and events provided by the Control class. All controls that inherit from this class also
inherit these properties, methods, and events, unless they take action to override the Control class ’ s
behavior.

Appendix G, “ Windows Forms Controls and Components, ” describes the standard Windows
controls and components in greater detail. This appendix can help you understand the controls to
get the most out of them.

The Form class inherits from the Control class all of that class ’ s properties, methods, and events.
In some sense a Form is just another control, but it does have special needs and provides special
features that are not shared with other controls. To help you use these objects effectively,
Chapter 10, “ Windows Forms, ” describes the Form class in greater detail.

c09.indd 144c09.indd 144 12/31/09 4:07:02 PM12/31/09 4:07:02 PM

Windows Forms

The Visual Basic Windows Form class is a descendant of the Control class. The inheritance trail
is Control ➪ ScrollableControl ➪ ContainerControl ➪ Form. That means a form is a type of
control. Except where overridden, it inherits the properties, methods, and events defi ned by the
Control class. In many ways, a form is just another kind of control (like a TextBox or ComboBox).

At the same time, Forms have their own special features that set them apart from other kinds
of controls. You usually place controls inside a form, but you rarely place a form inside another
form. Forms also play a very central role in most Visual Basic applications. They are the
largest graphical unit with which the user interacts directly. The user can minimize, restore,
maximize, and close forms. They package the content provided by the other controls so that
the user can manage them in a meaningful way.

This chapter describes some of the special features of Windows Forms not provided by other
objects. It focuses on different ways that typical applications use forms. For example, it explains
how to build multiple - document interface (MDI) applications, custom dialogs, and splash screens.

MDI VERSUS SDI

An MDI application displays more than one document at a time in separate
windows within a larger MDI parent form. MDI applications usually provide tools
for managing the child forms they contain. For example, commands in the Window
menu may let the user minimize child forms, arrange the icons for the minimized
forms, tile the parent form’s area with the child forms, and so on. Visual Studio
can display many windows (form designers, code editors, bitmap editors, and so
forth) all within its main form, so it is an MDI application.

A single-document interface (SDI) application displays only one document in each
form. For example, Microsoft Paint can manage only one picture at a time, so it is
an SDI application. Some SDI applications can display more than one document at
a time, but each has its own separate form.

10

c10.indd 145c10.indd 145 12/31/09 6:36:27 PM12/31/09 6:36:27 PM

146 ❘ CHAPTER 10 WINDOWS FORMS

The chapter covers the Form object ’ s properties, methods, and events only in passing. For a detailed
description of specifi c Form properties, methods, and events, see Appendix J, “ Form Objects. ”

TRANSPARENCY

The Form object provides a couple of properties that you can use to make a form partially trans-
parent. Opacity determines the form ’ s opaqueness. At design time, the Properties window shows
Opacity as a percentage where 100% means the form is completely opaque, and 0% means that the
form is completely transparent. At runtime, your program must treat Opacity as a fl oating - point
value between 0 (completely transparent) and 1 (completely opaque).

A program can use an Opacity value less than 100% to let the user see what lies below the form.
For example, you might build a partially transparent Search dialog box so the user could see the
underlying document as a search progresses.

Figure 10 - 1 shows example program SemiTransparent, which is available for download at the
book ’ s web page. The program contains a form with Opacity set to 66%. You can still see the
form ’ s borders, title bar, system menus, menu bar, and button, but you can also see the Visual Basic
IDE showing through from behind.

FIGURE 10-1: A form with Opacity set to 66% allows the Visual

Basic IDE to show through.

If Opacity is greater than 0%, the form behaves normally aside from its ghostlike appearance. The
user can click it, interact with its controls, minimize and maximize it, and grab its borders to resize it.

If Opacity is 0%, the form is completely transparent and the user can only interact with the form
through the keyboard. For example, the user can press the Tab key to move between the form ’ s
controls, type text, press the Spacebar to invoke a button that has the focus, and press Escape or

c10.indd 146 c10.indd 146 12/31/09 6:36:32 PM12/31/09 6:36:32 PM

Cancel to fi re the form ’ s Accept and Cancel buttons; however, the form and its controls will not
detect mouse clicks. The user also cannot see the form (obviously), so fi guring out which control has
the focus can be next to impossible.

TOO MUCH TRANSLUCENCY

Many developers don’t see a great need for translucent forms. A well-designed
application allows the user to move windows around so they don’t obscure each
other. Translucent forms can be confusing, may create extra confusion for users
with special needs, and incur a performance penalty. They’re an interesting special
effect but not everyone thinks they are necessary.

Example program TransparentForm, available for download on the book ’ s web site, has a form with
Opacity = 0 so you cannot see it while it is running. You can still use the Tab key to move between
its controls, and you can use the Space key to make its buttons execute.

If Opacity is 2%, the form is still invisible, but it recognizes mouse clicks, so it can obscure the
windows below. Example program CoverAll, also available for download, displays a maximized
form with Opacity set to 2%.

OPTIMAL OPACITY

Normally, you should set a form’s Opacity high enough that the user can see
the form. It can be useful to have toolbars, property grids, and other secondary
windows fl oat translucently above the main form to provide information without
completely obscuring the main form. In cases such as those, Opacity less than
50% makes it hard to read the secondary form, whereas Opacity greater
than 75% makes it hard to see the main form. A value around 66% seems to
provide a reasonable balance.

A second property that helps determine the form ’ s transparency is TransparencyKey. This property
is a color that tells Visual Basic which parts of the form should be completely transparent. When the
form is rendered, any areas with this color as their background colors are not drawn.

Figure 10 - 2 shows example program Hole, which is available for download at the book ’ s web page.
The program ’ s form has TransparencyKey set to red. Both the form and the Hole label have red
backgrounds so they are transparent. The label ’ s ForeColor property is black so its text is visible.
The form ’ s Paint event handler draws a black ellipse around the inside of the form.

Transparency ❘ 147

c10.indd 147c10.indd 147 12/31/09 6:36:33 PM12/31/09 6:36:33 PM

148 ❘ CHAPTER 10 WINDOWS FORMS

Example program GhostForm, also available for download, also uses a transparent background so
only its borders and controls are visible when it runs.

The most common use for TransparencyKey is to create shaped forms or skins. Set the form ’ s
FormBorderStyle property to None to remove the borders, title bar, and system buttons. Set the
form ’ s BackColor and TransparencyKey properties to a color that you don ’ t want to appear on the
form. Then draw the shape you want the form to have in some other color.

Figure 10 - 3 shows the Smiley example program, which has a form shaped like a smiley face. The
form ’ s Paint event handler draws the image from a bitmap fi le. These sorts of forms make inter-
esting splash screens and About dialog boxes, although they are often too distracting for use in a
program ’ s main user interface.

FIGURE 10-2: A form’s TransparencyKey property lets you

make shaped forms such as this one with a hole in it.

FIGURE 10-3: The TransparencyKey property lets you

make shaped forms such as this one.

c10.indd 148c10.indd 148 12/31/09 6:36:34 PM12/31/09 6:36:34 PM

CONCEALED CONTROL

Note that the form in Figure 10-3 has no title bar, borders, or system buttons, so
the user cannot move, resize, minimize, maximize, or close it. To use this form as a
splash screen, add a Timer control to make the form disappear after a few seconds.
To use it as an About dialog or some other kind of dialog, add a button that closes it.

If you use Opacity and TransparencyKey together, pixels that match TransparencyKey are
completely removed and any remaining pixels are shown according to the Opacity value.

ABOUT, SPLASH, AND LOGIN FORMS

The TransparencyKey and Opacity properties enable you to build forms with unusual and interest-
ing shapes. Although these would be distracting if used for the bulk of a business application, they
can add a little interest to About dialog boxes, splash screens, and login forms.

These three kinds of forms have quite a bit in common. Usually, they all display the application ’ s
name, version number, copyright information, trademarks, and so forth. They may also display a
serial number, the name of the registered user, and a web site or phone number where the user can
get customer support.

The main difference between these forms is in how the user dismisses them. A splash screen auto-
matically disappears after a few seconds. The user closes an About dialog box by clicking an OK
button. A login form closes when the user enters a valid user name and password and then clicks
OK. It also closes if the user clicks Cancel, although then it doesn ’ t display the main application.

REMOVING THE SPLASH

Sometimes a splash screen is displayed while the application initializes, loads
needed data, and otherwise prepares itself for work. In that case, the application
removes the splash screen after initialization is complete or a few seconds have
passed, whichever comes second.

The forms also differ slightly in the controls they contain. A splash screen needs a Timer control to
determine when it ’ s time to close the form. An About dialog box needs a single OK button. A login
form needs TextBoxes to hold the user name and password, two Labels to identify them, and OK
and Cancel buttons.

Splash screens and login forms greet the user, so there ’ s no need to provide both. However, that
still leaves you with the task of building two nearly identical forms: splash and About, or login
and About. With a little planning, you can use a single form as a splash screen, About dialog
box, and login form. At runtime, you can add whichever set of controls is appropriate to the form ’ s use.

About, Splash, and Login Forms ❘ 149

c10.indd 149c10.indd 149 12/31/09 6:36:34 PM12/31/09 6:36:34 PM

150 ❘ CHAPTER 10 WINDOWS FORMS

Alternatively, you can build the form with all three sets of controls at design time and then hide the
ones you don ’ t need for a particular purpose.

The following code shows how example program SplashScreen displays a form either as a splash
screen or as an About dialog:

' Display as a splash screen.
Public Sub ShowSplash()
 Me.tmrUnload.Enabled = True ' The Timer close the dialog.
 Me.TopMost = True ' Keep on top of main form.
 Me.Show() ' Show non-modally.
End Sub

' Unload the splash screen.
Private Sub tmrUnload_Tick() Handles tmrUnload.Tick
 Me.Close()
End Sub

' Display as an About dialog.
Public Sub ShowAbout()
 btnOK.Visible = True ' The OK button closes the dialog.
 Me.ShowDialog() ' Show modally.
End Sub

' Close the About dialog.
Private Sub btnOK_Click() Handles btnOK.Click
 Me.Close()
End Sub

code snippet SplashScreen

The form contains both a Timer named tmrUnload and an OK button named btnAboutOk. The
form ’ s ShowSplash method enables the tmrUnload Timer control and calls Show to display
the form. The Timer control ’ s Interval property was set to 3,000 milliseconds at design time, so its
Timer event fi res after three seconds and closes the form.

The ShowAbout method makes the btnOk button visible and calls ShowDialog to display the form
modally. A modal form holds the application ’ s focus so the user cannot interact with other parts
of the application until the modal form is dismissed. When the user clicks the button, the button ’ s
Click event handler closes the form.

MOUSE CURSORS

A form ’ s Cursor property determines the kind of mouse cursor the form displays. The Form class
inherits the Cursor property from the Control class, so other controls have a Cursor property,
too. If you want to give a particular control a special cursor, you can set its Cursor property. For
example, if you use a Label control as a hyperlink, you could make it display a pointing hand
similar to those displayed by web browsers to let the user know that the control is a hyperlink.

c10.indd 150c10.indd 150 12/31/09 6:36:35 PM12/31/09 6:36:35 PM

The Cursors class provides several standard cursors as shared values. For example, the following
statement sets a form ’ s cursor to the system default cursor (normally an arrow pointing up and to
the left):

Me.Cursor = Cursors.Default

Figure 10 - 4 shows example program ShowCursors, which is available for download on the book ’ s
web site, displaying the names and images of the standard cursors defi ned by the Cursors class
in Windows 7. In previous versions of Windows, the AppStarting and WaitCursor values display
hourglasses instead of animated circles.

FIGURE 10-4: The Cursors class defi nes standard cursors.

Unless a control explicitly sets its own cursor, it inherits the cursor of its container. If the control is
placed directly on the form, it displays whatever cursor the form is currently displaying. That means
you can set the cursor for a form and all of its controls in a single step by setting the form ’ s cursor.

Similarly, if a control is contained within a GroupBox, Panel, or other container control, it inherits
the container ’ s cursor. You can set the cursor for all the controls within a container by setting the
cursor for the container.

One common use for cursors is to give the user a hint when the application is busy. The program
sets its cursor to Cursors.WaitCursor when it begins a long task and then sets it back to Cursors.
Default when it fi nishes. The following code shows an example:

Me.Cursor = Cursors.WaitCursor
' Perform the long task.
...
Me.Cursor = Cursors.Default

code snippet UseWaitCursor

Mouse Cursors ❘ 151

c10.indd 151c10.indd 151 12/31/09 6:36:36 PM12/31/09 6:36:36 PM

152 ❘ CHAPTER 10 WINDOWS FORMS

Example program UseWaitCursor displays a wait cursor when you click its button.

If the program displays more than one form, it must set the cursors for each form individually. It
can set the cursors manually, or it can loop through the My.Application.OpenForms collection. The
SetAllCursors subroutine shown in the following code makes setting the cursor for all forms a
bit easier:

Private Sub SetAllCursors(ByVal the_cursor As Cursor)
 For Each frm As Form In My.Application.OpenForms
 frm.Cursor = the_cursor
 Next frm
End Sub

code snippet UseMultipleWaitCursors

The following code uses the SetAllCursors subroutine while performing a long task:

SetAllCursors(Cursors.WaitCursor)
' Perform the long task.
...
SetAllCursors(Cursors.Default)

Example program UseMultipleWaitCursors uses the SetAllCursors subroutine to display a wait
cursor on each of its forms when you click its button.

To use a custom cursor, create a new Cursor object using a fi le or resource containing cursor or icon
data. Then assign the new object to the form ’ s Cursor property. The following code sets a form ’ s
cursor to the program resource named SmileIcon.ico:

Me.Cursor = New Cursor(My.Resources.SmileIcon.Handle)

Example program SmileCursor, also available for download, uses this code to display a
custom cursor.

ICONS

Each form in a Visual Basic application has its own icon. A form ’ s icon is displayed on the left side
of its title bar, in the system ’ s taskbar, and by applications such as the Task Manager and Windows
Explorer.

Some of these applications display icons at different sizes. For example, Windows Explorer uses
32 × 32 pixel icons for its Large Icons view and 16 × 16 pixel icons for its other views. Toolbar

c10.indd 152c10.indd 152 12/31/09 6:36:37 PM12/31/09 6:36:37 PM

icons come in 16 × 16, 24 × 24, and 32 × 32 pixel sizes. Windows uses still other sizes for different
purposes. For more information on various pixel sizes used by Windows Vista, see msdn2.microsoft
.com/aa511280.aspx .

If an icon fi le doesn ’ t provide whatever size Windows needs, the system shrinks or enlarges
an existing image to fi t. That may produce an ugly result. To get the best appearance, you
should ensure that icon fi les include at least 16 × 16 and 32 × 32 pixel sizes. Depending on the
characteristics of your system, you may also want to include other sizes.

The integrated Visual Studio icon editor enables you to defi ne images for various color models
ranging from monochrome to 24 - bit color, and sizes ranging from 16 × 16 to 256 × 256 pixels. It
even lets you build icon images with custom sizes such as 32 × 48 pixels, although it is unlikely that
Windows will need to use those.

To use this editor, open Solution Explorer and double - click the My Project entry to open the Project
Properties window. Select the Resources tab, open the Add dropdown, and select New Icon. Use
the drawing tools to build the icons. Right - click the icon and use the Current Icon Image Types
submenu to work with icons of different sizes.

ICON - A - THON

The integrated icons editor works and is free but it ’ s fairly cumbersome. Many
developers use other icon editors such as IconForge (www.cursorarts.com/ca_if
.html), IconEdit (www.iconedit.com), IconEdit 2 (no relation between this and
IconEdit, www.iconedit2.com), and RealWorld Cursor Editor (www.rw-designer
.com/cursor-maker). Note that I don ’ t endorse one over the others.

To assign an icon to a form at design time, open the Windows Forms Designer and select the Icon
property in the Properties window. Click the ellipsis button on the right and select the icon fi le that
you want to use.

To assign an icon to a form at runtime, set the form ’ s Icon property to an Icon object. The following
code sets the form ’ s Icon property to an icon resource named MainFormIcon:

Me.Icon = My.Resources.MainFormIcon

Some applications change their icons to provide an indication of their status. For example, a
process - monitoring program might turn its icon red when it detects an error. It could even switch
back and forth between two icons to make the icon blink in the taskbar.

Icons ❘ 153

c10.indd 153c10.indd 153 12/31/09 6:36:38 PM12/31/09 6:36:38 PM

154 ❘ CHAPTER 10 WINDOWS FORMS

Application Icons

Windows displays a form ’ s icon in the form ’ s title bar, in the taskbar, and in the Task Manager.
Applications (such as Windows Explorer) that look at the application as a whole rather than at its
individual forms display an icon assigned to the application, not to a particular form. To set the
application ’ s icon, open Solution Explorer and double - click the My Project entry to open the Project
Properties window. On the Application tab, open the Icon drop - down list, and select the icon fi le
that you want to use or select < Browse . . . > to look for the fi le you want to use.

To set the icon for a form, open the form in the Windows Forms Designer. In the
Properties window, select the Icon property, click the ellipsis to the right, and
select the icon fi le you want to use.

Note that these different purposes display icons at different sizes. For example, the icon in the
form ’ s title bar is very small, whereas the one displayed by Task Manager is relatively large. As the
previous section mentions, the integrated Visual Studio icon editor enables you to defi ne images for
various color models and sizes in the same icon fi le.

Notifi cation Icons

Visual Basic applications can display one other kind of icon by using the NotifyIcon control. This
control can display an icon in the system tray. The system tray
(also called the status area) is the little area holding small icons
that is usually placed in the
lower - left part of the taskbar.

Figure 10 - 5 shows example program UseNotifyIcon, which is
available for download on the book ’ s web page, and its notifi ca-
tion icon. The little stop light near the mouse pointer is an icon
displayed by a NotifyIcon control. Hovering the mouse over
the icon makes it display a tooltip showing its text, in this case
Stopped. The program also sets its form icon to match the icon
shown in the NotifyIcon control.

The control ’ s Icon property determines the icon that it displays.
A typical application will change this icon to give information about the program ’ s status. For
example, a program that monitors the system ’ s load could use its system tray icon to give the user
an idea of the current load. Notifi cation icons are particularly useful for programs that have no user

FIGURE 10-5: An application can

use a NotifyIcon control to display

status icons in the system tray.

c10.indd 154c10.indd 154 12/31/09 6:36:39 PM12/31/09 6:36:39 PM

interface or that run in the background so that the user
isn ’ t usually looking at the program ’ s forms.

Notifi cation icons also often include a context menu that appears when the user right - clicks the
icon. The items in the menu enable the user to control the application. If the program has no other
visible interface, this may be the only way the user can control it.

Appendix G, “ Windows Forms Controls and Components, ” describes the NotifyIcon control in
greater detail.

PROPERTIES ADOPTED BY CHILD CONTROLS

Some properties are adopted by many of the child controls contained in a parent control or in a
form. For example, by default, a Label control uses the same background color as the form that
contains it. If you change the form ’ s BackColor property, its Label controls change to display the
same color. Similarly if a GroupBox contains a Label and you change the GroupBox ’ s BackColor
property, its Label changes to match.

Some properties adopted by a form ’ s controls include BackColor, ContextMenu, Cursor, Enabled,
Font, and ForeColor. Not all controls use all of these properties, however. For example, a TextBox
only matches its form ’ s Enabled and Font properties.

If you explicitly set one of these properties for a control, its value takes precedence over the form ’ s
settings. For example, if you set a Label control ’ s BackColor property to red, the control keeps its
red background even if you change the Form ’ s BackColor property.

Some of these properties are also not tremendously useful to the Form object itself, but they give
guidance to the form ’ s controls. For example, a form doesn ’ t automatically display text on its
surface, so it never really uses its Font property. Its Label, TextBox, ComboBox, List, RadioButton,
CheckBox, and many other controls adopt the value of this property, however, so the form ’ s Font
property serves as a central location to defi ne the font for all of these controls. If you change the
form ’ s Font property, even at runtime, all of the form ’ s controls change to match. The change
applies to all of the form ’ s controls, even those contained within GroupBoxes, Panels, and other
container controls, so that they do not sit directly on the form.

These properties can also help your application remain consistent both with the controls on the
form and with other parts of the application. For example, the following code draws the string
“ Hello World! ” on the form whenever the form needs to be repainted. This code explicitly creates
the Comic Sans MS font.

Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 Dim new_font As New Font("Comic Sans MS", 20)
 e.Graphics.DrawString("Hello World!", _
 new_font, Brushes.Black, 10, 10)
 new_font.Dispose()
End Sub

Properties Adopted by Child Controls ❘ 155

c10.indd 155c10.indd 155 12/31/09 6:36:42 PM12/31/09 6:36:42 PM

156 ❘ CHAPTER 10 WINDOWS FORMS

Rather than making different parts of the program build their own fonts, you can use the forms ’
Font properties as shown in the following code. This makes the code simpler and ensures that
different pieces of code use the same font.

Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 e.Graphics.DrawString("Hello World!", Me.Font, Brushes.Black, 10, 100)
End Sub

As a nice bonus, changing the form ’ s Font property raises a Paint event, so, if the form ’ s font
changes, this code automatically runs again and redraws the text using the new font.

Example program ChangeFormFont, available for download on the book ’ s web page, contains three
radio buttons and a label. When you click a radio button, the form ’ s font changes and the label ’ s
font automatically changes to match.

PROPERTY RESET METHODS

The Form class provides several methods that reset certain property values to their defaults. The
most useful of those methods are ResetBackColor, ResetCursor, ResetFont, ResetForeColor, and
ResetText.

If you change one of the corresponding form properties, either at design time or at runtime, these
methods restore them to their default values. The default values may vary from system to system,
but currently on my computer BackColor is reset to Control, Cursor is reset to Default, Font is reset
to 8 - point regular (not bold or italic) Microsoft Sans Serif, ForeColor is reset to ControlText, and
Text is reset to an empty string.

Because the controls on a form adopt many of these properties (all except Text), these methods also
reset the controls on the form.

OVERRIDING WNDPROC

The Windows operating system sends all sorts of messages to applications that tell them about
changes in the Windows environment. Messages tell forms to draw, move, resize, hide, minimize,
close, respond to changes in the Windows environment, and do just about everything else related to
Windows.

All Windows applications have a subroutine tucked away somewhere that responds to those
messages. That routine is traditionally called a WindowProc. A Visual Basic .NET form processes
these messages in a routine named WndProc. You can override that routine to take special actions
when the form receives certain messages.

Example program FixedAspectRatio, available on the book ’ s web page, looks for WM_SIZING
messages. When it fi nds those messages, it adjusts the form ’ s new width and height so they always
have the same aspect ratio (ratio of height to width).

c10.indd 156c10.indd 156 12/31/09 6:36:42 PM12/31/09 6:36:42 PM

WNDPROC WARNING

When you override the WndProc method, it is very important that the new method
calls the base class ’ s version of WndProc as shown in the following statement:

MyBase.WndProc(m)

If the program doesn ’ t do this, it won ’ t respond properly to events. For example,
the form won ’ t be able to draw itself correctly, resize or move itself, or even create
itself properly.

When you override the WndProc method, you must also fi gure out what messages to intercept, what
parameters those messages take, and what you can do to affect them safely. One way to learn about
messages is to insert the following WndProc and then perform the action that you want to study
(resizing the form, in this example):

Protected Overrides Sub WndProc(ByRef m As System.Windows.Forms.Message)
 Debug.WriteLine(m.ToString)
 MyBase.WndProc(m)
End Sub

code snippet ViewWindowMessages

Example program ViewWindowsMessages uses this code to display information about
the messages it receives.

The following statement shows the result for the WM_SIZING message sent to the form while
the user resizes it. It at least shows the message name (WM_SIZING) and its numeric value
(hexadecimal 0x214).

msg=0x214 (WM_SIZING) hwnd=0x30b8c wparam=0x2 lparam=0x590e29c result=0x0

Searching for the message name on the Microsoft web site and on other programming sites usually
gives you the other information you need to know (such as what m.WParam and m.LParam mean).

Note also that the Form class inherits the WndProc subroutine from the Control class, so all other
Windows Forms controls inherit it as well. That means you can override their WndProc routines to
change their behaviors.

For example, the following code shows how the NoCtxMnuTextBox class works. This control is
derived from the TextBox control. Its WndProc subroutine checks for WM_CONTEXTMENU
messages and calls the base class ’ s WndProc for all other messages. By failing to process the
WM_CONTEXTMENU message, the control prevents itself from displaying the TextBox control ’ s
normal Copy/Cut/Paste context menu when you right - click it.

Overriding WndProc ❘ 157

c10.indd 157c10.indd 157 12/31/09 6:36:43 PM12/31/09 6:36:43 PM

158 ❘ CHAPTER 10 WINDOWS FORMS

Public Class NoCtxMnuTextBox
 Inherits System.Windows.Forms.TextBox

 Protected Overrides Sub WndProc(ByRef m As System.Windows.Forms.Message)
 Const WM_CONTEXTMENU As Integer = & H7B

 If m.Msg < > WM_CONTEXTMENU Then
 MyBase.WndProc(m)
 End If
 End Sub
End Class

code snippet NoContextMenu

Example program NoContextMenu uses similar code to display a text box that does not
display a context menu when you right - click it.

SDI AND MDI

A single - document interface (SDI) application displays a single document in each form. Here, a
document can be an actual disk fi le, or it can be a group of related items such as those on an order,
employee record, or architectural drawing. For example, Microsoft Paint and Notepad are both SDI
applications. Figure 10 - 6 shows an SDI application showing three fi les in separate forms. Example pro-
gram SDIEdit, which is available for download on the book ’ s web page, is a simple SDI application.

FIGURE 10-6: An SDI application displays separate documents

in separate forms.

c10.indd 158c10.indd 158 12/31/09 6:36:44 PM12/31/09 6:36:44 PM

In contrast, a multiple - document interface (MDI) application displays its documents in their own
forms, but then places the forms inside a container form. For example, Visual Studio can act either
as an MDI application or it can display its child forms (form designers, code editors, and so forth)
using tabs. The individual document windows are called MDI child forms and the container form is
called the MDI container or MDI parent form. Figure 10 - 7 shows an MDI application with
three MDI child forms. Example program MDIEdit, which is also available for download, is a
simple MDI application.

SDI and MDI ❘ 159

FIGURE 10-7: An MDI application displays documents in forms

contained within an MDI container form.

The following sections describe some of the features provided by MDI forms and discuss reasons
you might want to use an MDI or SDI application style.

MDI Features

The MDI container form provides several services for its child forms. It contains the forms and
keeps them all together so that they are easy to fi nd. If you move a form so that it won ’ t fi t within
the container, the container automatically displays scroll bars so you can view it.

The program displays an icon in the taskbar and Task Manager for the MDI container, but not for
the child forms. If you minimize the MDI container, all of the forms it contains are hidden with
it. If you minimize a child form, its icon is displayed within the container, not separately in the
taskbar. If you maximize an MDI child, it fi lls the parent form and its caption becomes part of the
parent ’ s. For example, if the MDI parent form ’ s caption is Parent and the child ’ s caption is Child,
then when you maximize the child, the parent ’ s caption becomes Parent - [Child].

c10.indd 159c10.indd 159 12/31/09 6:36:45 PM12/31/09 6:36:45 PM

160 ❘ CHAPTER 10 WINDOWS FORMS

The MDI container also provides some methods for arranging its child forms. The following code
shows how an MDI container ’ s code can cascade the children so that they overlap nicely, tile the
children vertically or horizontally, and arrange the icons of any minimized child forms:

Private Sub mnuWinCascade_Click() Handles mnuWinCascade.Click
 Me.LayoutMdi(MdiLayout.Cascade)
End Sub

Private Sub mnuWinTileVertical_Click() Handles mnuWinTileVertical.Click
 Me.LayoutMdi(MdiLayout.TileVertical)
End Sub

Private Sub mnuWinTileHorizontal_Click() Handles mnuWinTileHorizontal.Click
 Me.LayoutMdi(MdiLayout.TileHorizontal)
End Sub

Private Sub mnuWinArrangeIcons_Click() Handles mnuWinArrangeIcons.Click
 Me.LayoutMdi(MdiLayout.ArrangeIcons)
End Sub

code snippet MDIEdit

Some other useful commands that you can add to an MDI application include Minimize All,
Restore All, Maximize All, and Close All. You can implement these commands by looping through
the MDI container ’ s MdiChildren collection, as shown in the following code:

Private Sub mnuWinMinimizeAll_Click() Handles mnuWinMinimizeAll.Click
 For Each frm As Form In Me.MdiChildren
 frm.WindowState = FormWindowState.Minimized
 Next frm
End Sub

Private Sub mnuWinRestoreAll_Click() Handles mnuWinRestoreAll.Click
 For Each frm As Form In Me.MdiChildren
 frm.WindowState = FormWindowState.Normal
 Next frm
End Sub

Private Sub mnuWinMaximizeAll_Click() Handles mnuWinMaximizeAll.Click
 For Each frm As Form In Me.MdiChildren
 frm.WindowState = FormWindowState.Maximized
 Next frm
End Sub

Private Sub mnuWinCloseAll_Click() Handles mnuWinCloseAll.Click
 For Each frm As Form In Me.MdiChildren
 frm.Close()
 Next
End Sub

code snippet MDIEdit

c10.indd 160c10.indd 160 12/31/09 6:36:46 PM12/31/09 6:36:46 PM

Depending on your application, you might also provide commands that operate on subsets of the
child forms. Suppose that a program displays a main order record and its many related order items
in MDI child forms. You might want to let the user close all the order items, while keeping the main
order form open.

Many MDI programs include a Window menu that displays a list of the MDI child forms that are
open. You can select one of these menu items to move that form to the top of the others.

Building an MDI child list is easy in Visual Basic. Select the main MenuStrip control. Then in the
Properties window, set the control ’ s MdiWindowListItem property to the menu that you want to
hold the child list. When you open and close child windows, Visual Basic automatically updates
the list.

Figure 10 - 8 shows a menu displaying an MDI child list. The form with the caption MDIEdit
.sln (behind the menu) currently has the focus, so the list displays a check mark next to
that form ’ s entry.

FIGURE 10-8: The MenuStrip’s MdiWindowListItem property

determines which menu item displays an MDI child list.

Most regular Visual Basic applications use SDI and when you create a new application, you get
SDI by default. To build an MDI application, start a new application as usual. Then set the startup
form ’ s IsMdiContainer property to True. In the Windows Forms Designer, this form will change
appearance, so it ’ s obvious that it is an MDI parent form.

Alternatively, you can select the Project menu ’ s Add Windows Form command. In the Add New
Item form dialog that appears, select MDI Parent Form, give the form a reasonable name, and click
Add. Visual Basic adds a new MDI parent form and gives it an assortment of standard controls that
you might like it to have including a menu strip containing standard menus (File, Edit, View, and so
forth) and a toolbar with standard tools (new, open, save, and so forth).

SDI and MDI ❘ 161

c10.indd 161c10.indd 161 12/31/09 6:36:46 PM12/31/09 6:36:46 PM

162 ❘ CHAPTER 10 WINDOWS FORMS

At design time, an MDI child form looks just like any other form. To make the child form sit inside
the MDI container, you must set its MdiParent property to the MDI container form at runtime.

The following code shows how the MDI parent form in Figure 10 - 7 creates new MDI children.
When the user selects the File menu ’ s Open command or the toolbar ’ s Open tool, this event handler
executes and displays an open fi le dialog. If the user selects a fi le and clicks OK, the code creates
a new Form1 object. It loads the selected fi le into the form ’ s txtContents TextBox, sets the form ’ s
caption to the fi le ’ s name (without the path), sets the form ’ s MdiParent property to Me (the MDI
parent form), and displays the form. The form is automatically shown in the MDI container and
added to the MDI child list.

Private Sub OpenFile() Handles mnuFileOpen.Click, toolOpen.Click
 If dlgOpen.ShowDialog(Me) = Windows.Forms.DialogResult.OK Then
 Dim frm As New Form1
 frm.FileName = dlgOpen.FileName
 frm.txtContents.Text = _
 My.Computer.FileSystem.ReadAllText(dlgOpen.FileName)
 frm.txtContents.Select(0, 0)
 frm.Text = New FileInfo(dlgOpen.FileName).Name
 frm.MdiParent = Me
 frm.Show()
 End If
End Sub

code snippet MDIEdit

Normally, the system menu in the left of a form ’ s title area includes a Close command with the
shortcut Alt+F4. This command closes the form. An MDI child ’ s system menu also contains a Close
command, but this one ’ s shortcut is Ctrl+F4. If you select this command or invoke its shortcut, the
application closes the MDI child form but not the MDI container.

The MDI child ’ s system menu also includes a Next command that moves the focus to the MDI
container ’ s next MDI child. The menu shows this command ’ s shortcut as Ctrl+F6. However,
Ctrl+Tab works as well. Ctrl+Tab may be a bit easier to remember because it is more similar to the
Alt+Tab shortcut that moves to the next application on the desktop. This is also more consistent
with the shortcuts for closing forms: Alt+F4 closes a top - level form, whereas Ctrl+F4 closes an
MDI child; Alt+Tab moves to the next desktop application, whereas Ctrl+Tab moves to the
next MDI child form.

MDI Events

Events for an MDI child form generally occur before the corresponding MDI parent ’ s events. For
example, if you try to close an MDI form, the child forms all receive FormClosing events before the
MDI parent receives its FormClosing event. Next, the MDI child forms receive FormClosed events,
and fi nally the MDI parent receives its FormClosed event.

Note that MDI child forms also receive these events if only the child form is closing. If the user
closes an MDI child form, it receives a FormClosing event followed by its FormClosed event.

c10.indd 162c10.indd 162 12/31/09 6:36:47 PM12/31/09 6:36:47 PM

If a form ’ s FormClosing event handler sets its e.Cancel parameter to True, the close is canceled
and the form remains open. The form can use this to guarantee that its data is consistent and has
been saved.

For example, the following code checks the txtContents control ’ s Modifi ed property to see if the
form ’ s data has been modifi ed since it was loaded. The program sets this property to False when the
fi le is opened or created from scratch, and sets it to True when the user changes the form ’ s text. If
this property is True, the program displays a message box asking if it should save the changes.

' See if it's safe to close the form.
Private Sub mdiChild_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing
 If txtContents.Modified Then
 ' There are unsaved changes.
 ' Ask the user if we should save them.
 Select Case MessageBox.Show(_
 "The data has changed. Save the changes?", _
 "Save Changes?", _
 MessageBoxButtons.YesNoCancel, _
 MessageBoxIcon.Question)
 Case Windows.Forms.DialogResult.Yes
 ' Save the changes.
 SaveFile()

 ' See if we succeeded.
 e.Cancel = txtContents.Modified
 Case Windows.Forms.DialogResult.No
 ' Discard the changes.
 ' Leave e.Cancel = False.
 Case Windows.Forms.DialogResult.Cancel
 ' Cancel the close.
 e.Cancel = True
 End Select
 End If
End Sub

code snippet MDIEdit2

If the user clicks the Yes button, the code calls subroutine SaveFile to save the changes. This routine
saves the data and sets the txtContents control ’ s Modifi ed property to False if it is successful. If
SaveFile fails (for example, if the data fi le is locked), it leaves the Modifi ed property set to True.

If the user clicks No to indicate that the program should discard the changes, the FormClosing event
handler leaves e.Cancel equal to False so the form closes normally.

If the user clicks the Cancel button to indicate that the form should not be closed after all, the event
handler sets e.Cancel to True to keep the form open.

If the user tries to close the MDI container and any of the MDI child forms ’ FormClosing event
handlers sets e.Cancel to True, the close is canceled for all the child forms. Any child forms that
have not yet received a FormClosing event do not get one. All of the children remain open, even
those that set e.Cancel = False.

SDI and MDI ❘ 163

c10.indd 163c10.indd 163 12/31/09 6:36:48 PM12/31/09 6:36:48 PM

164 ❘ CHAPTER 10 WINDOWS FORMS

After the children process their FormClosing events, the MDI parent form still gets the fi nal word.
It receives a FormClosing event with its e.Cancel value set to True if any of the child forms set it to
True. The e.Cancel value is False if all of the child forms left it False.

The MDI parent can leave the e.Cancel alone to accept whatever value the child forms selected, or it
can override the value and force the program to exit or not as it desires.

The child forms still have one chance to save their data in their FormClosed events. At this point,
they will close, however, so they had better take action if they need to save their data.

MDI versus SDI

MDI and SDI applications both have their advantages. In an SDI application, building and
understanding the menus is simpler. A menu applies to exactly one form, and there is no merging
and swapping of menus as the user changes MDI child forms.

SDI applications work particularly well when the program works with only one document at a time.
Notepad, Microsoft Paint, and similar applications that only let the user work with one fi le at a time
are SDI applications. These programs are light enough in weight that the user can easily run more
than one instance of the program to view more than one fi le at a time if necessary.

MDI applications help the user display many related fi les at once without cluttering up the desktop.
For example, Visual Studio can use an MDI interface to let you examine all of the fi les in a project
side by side. Displaying all of a project ’ s form designers, code editors, resource editors, and other
fi les in separate windows might bury the desktop under forms and fi ll the taskbar with icons.
Putting all of these forms inside an MDI container makes using the application easier. It lets the
system represent the Visual Studio program with a single container form and a single icon. The
Window menu provides an MDI child list that makes it easier to fi nd a particular form.

You can also build a hybrid application that displays several MDI containers, each holding any
number of MDI child forms. For example, each MDI container might hold all the forms related to
a particular order: customer data, order items, and so forth. This would keep these related items
together. It would also enable the user to display information about more than one order at a time in
separate MDI containers.

In practice, examples of this kind of hybrid application are often cumbersome and poorly designed.
It would generally be simpler to build this application as a standard MDI application and let the
user launch multiple instances to display more than one order ’ s data at once, but there may be times
when it is easier to build a single multiple - MDI application. For example, if the program must work
with a password - protected database, the program would need only to prompt the user for a user
name and password once, and all the MDI containers could share the same database con nection.
Often, you can avoid the need for multiple forms (and hence an MDI format) by using other
controls to fi t more information on a single form. For example, ComboBox, ListBox, TreeView,
SplitterContainer, and many other controls can display large amounts of data in a limited space,
providing scroll bars as necessary.

The TabControl lets an application display many pages of data on a single form. For example, you
might use different tabs to display the different pages that are relevant to an order: customer data,
the order itself, order items, shipping and billing addresses, and so forth. This type of tabbed form

c10.indd 164c10.indd 164 12/31/09 6:36:48 PM12/31/09 6:36:48 PM

placed inside an MDI container can make a very powerful application that enables the user to easily
manage and understand huge amounts of information.

One drawback to many of these controls is that they make it more diffi cult to perform side - by - side
comparisons of values. For example, suppose that a single form displays different addresses (billing,
shipping, contact, and so forth) on different tabs. Then it would be diffi cult for the user to compare
two addresses to see if they are identical. If you know that the user may want to compare two pieces
of data, try to arrange them so they can both be visible at the same time.

WHITHER MDI?

The more recent versions of Visual Studio seem to be providing less and less
support for MDI applications. MDI parent forms don ’ t merge child menus as
automatically as they did back in the good old days and WPF windows don ’ t even
have a concept of MDI. With Microsoft ’ s ever - increasing focus on the Internet and
applications that use Web - like navigation styles, it ’ s unlikely that MDI will get
much attention in the future.

MRU LISTS

MDI and SDI interfaces provide different ways to manage docu-
ments. Another tool that helps users manage documents is a Most
Recently Used list (MRU). The MRU list is a series of menu items
(usually at the bottom of an application ’ s File menu) that displays
the fi les most recently accessed by the user. If the user clicks one
of these menu items, the program reopens the corresponding fi le.
Figure 10 - 9 shows an MRU list in a simple editing application.

By convention, these menu items begin with the accelerator char-
acters 1, 2, 3, and so forth. If you opened the File menu shown in
Figure 10 - 9 and pressed 2, for example, the program would reopen
the fi le SDIEdit.sln.

When the user opens a new fi le or saves a fi le with a new name, that
fi le is placed at the top of the list. Most applications display up to
four items in the MRU list and, if the list ever contains more items,
the oldest are removed.

Most applications remove a fi le from the MRU list if the applications try to open it and fail. For
example, if the user selects an MRU menu item but the corresponding fi le has been removed from
the system, the program removes the fi le ’ s menu item.

Building an MRU list isn ’ t too diffi cult in Visual Basic. The MruList example program shown in
Figure 10 - 9 and available for download on the book ’ s web site uses the MruList class to manage its
MRU list. This class manages a menu that you want to use as an MRU list and updates the menu as

FIGURE 10-9: An MRU list

makes it easier for users to

reopen the fi les they have used

most recently.

MRU Lists ❘ 165

c10.indd 165c10.indd 165 12/31/09 6:36:49 PM12/31/09 6:36:49 PM

166 ❘ CHAPTER 10 WINDOWS FORMS

the user opens and closes fi les. For example, if you confi gure the class to allow four MRU list entries
and the user opens a fi fth fi le, the class removes the oldest entry and adds the new one.

The class saves and restores the MRU list in the system ’ s Registry. When the user selects a fi le from
the MRU list, the class raises an event so the main program ’ s code can open the corresponding fi le.
The class also provides an Add method that the main program can use to add new fi les to the MRU
list when the user opens a new fi le. Download the example and look at its code for more details.

The following code shows how the main MruList program uses the MruList class. This program is
a simple text viewer that lets the user open and view fi les.

This program declares an MruList variable named m_MruList. It uses the WithEvents keyword so
that it is easy to catch the object ’ s OpenFile event.

The form ’ s New event handler initializes the MruList object, passing it the application ’ s name, the
File menu, and the number of items the MRU list should hold.

When the user selects the File menu ’ s Open command, the program displays an open fi le dialog box.
If the user selects a fi le and clicks OK, the program calls subroutine OpenFile, passing it the name of
the selected fi le.

If the user selects a fi le from the MRU list, the m_MruList_OpenFile event handler executes and
calls subroutine OpenFile, passing it the name of the selected fi le.

Subroutine OpenFile loads the fi le ’ s contents into the txtContents TextBox control. It then calls the
MruList object ’ s Add method, passing it the fi le ’ s name. It fi nishes by setting the form ’ s caption to
the fi le ’ s name without its directory path.

Imports System.IO

Public Class Form1
 Private WithEvents m_MruList As MruList

 ' Initialize the MRU list.
 Private Sub Form1_Load() Handles Me.Load
 m_MruList = New MruList("SdiMruList", mnuFile, 4)
 End Sub

 ' Let the user open a file.
 Private Sub mnuFileOpen_Click() Handles mnuFileOpen.Click
 If dlgOpen.ShowDialog() = Windows.Forms.DialogResult.OK Then
 OpenFile(dlgOpen.FileName)
 End If
 End Sub

 ' Open a file selected from the MRU list.
 Private Sub m_MruList_OpenFile(ByVal file_name As String) _
 Handles m_MruList.OpenFile
 OpenFile(file_name)
 End Sub

 ' Open a file and add it to the MRU list.
 Private Sub OpenFile(ByVal file_name As String)
 txtContents.Text = File.ReadAll(file_name)

c10.indd 166c10.indd 166 12/31/09 6:36:50 PM12/31/09 6:36:50 PM

 txtContents.Select(0, 0)
 m_MruList.Add(file_name)
 Me.Text = "[" & New FileInfo(file_name).Name & "]"
 End Sub
End Class

code snippet MruList

You could easily convert the MruList class into a component. If you give the component
ApplicationName, FileMenu, and MaxEntries properties, you can set those values at design time.
For more information about building components, see Chapter 22, “ Custom Controls. ”

DIALOG BOXES

Using a form as a dialog box is easy. Create the form and give it whatever controls it needs to do
its job. Add one or more buttons to let the user dismiss the dialog. Many dialog boxes use OK and
Cancel buttons, but you can also use Yes, No, Retry, and others.

You may also want to set the form ’ s FormBorderStyle property to FixedDialog to make the form
non - resizable, although that ’ s not mandatory.

Set the form ’ s AcceptButton property to the button you want to invoke if the user presses the Enter
key. Set its CancelButton property to the button you want to invoke when the user presses the
Escape key.

The form ’ s DialogResult property indicates the dialog box ’ s return value. If the main program
displays the dialog box by using its ShowDialog method, ShowDialog returns the DialogResult value.

The following code shows how the main program can display a dialog box and react to its result. It
creates a new instance of the dlgEmployee form and displays it by calling its ShowDialog method. If
the user clicks OK, ShowDialog returns DialogResult.OK and the program displays the employee ’ s
name entered on the dialog. If the user clicks the Cancel button, ShowDialog returns DialogResult.
Cancel and the program displays the message “ Canceled. ”

Private Sub btnShowDialog_Click() Handles btnShowDialog.Click
 Dim dlg As New dlgEmployee
 If dlg.ShowDialog() = Windows.Forms.DialogResult.OK Then
 MessageBox.Show(_
 dlg.txtFirstName.Text & " " & _
 dlg.txtLastName.Text)
 Else
 MessageBox.Show("Canceled")
 End If
End Sub

code snippet CustomDialog

If the user clicks the Cancel button or closes the form by using the system menu (or the little “ X ”
in the upper - right corner), the form automatically sets its DialogResult property to Cancel and
closes the form.

Dialog Boxes ❘ 167

c10.indd 167c10.indd 167 12/31/09 6:36:51 PM12/31/09 6:36:51 PM

168 ❘ CHAPTER 10 WINDOWS FORMS

If the user clicks some other button, your event handler should set DialogResult to an appropriate
value. Setting this value automatically closes the form.

You can also set a button ’ s DialogResult property to indicate the value that the
dialog box should return when the user clicks that button. When the user clicks
the button, Visual Basic sets the form ’ s DialogResult property automatically.

The following code shows how the employee form reacts when the user clicks the OK button. It
sees if the fi rst and last name TextBox controls contain non - blank values. If either value is blank,
the event handler displays an error message and returns without setting the form ’ s DialogResult
property. If both values are non - blank, the code sets DialogResult to OK, and setting DialogResult
closes the form.

Private Sub btnOk_Click() Handles btnOk.Click
 ' Verify that the first name is present.
 If txtFirstName.Text.Length = 0 Then
 MessageBox.Show(_
 "Please enter a First Name", _
 "First Name Required", _
 MessageBoxButtons.OK, _
 MessageBoxIcon.Exclamation)
 txtFirstName.Select()
 Exit Sub
 End If

 ' Verify that the last name is present.
 If txtLastName.Text.Length = 0 Then
 MessageBox.Show(_
 "Please enter a Last Name", _
 "Last Name Required", _
 MessageBoxButtons.OK, _
 MessageBoxIcon.Exclamation)
 txtLastName.Select()
 Exit Sub
 End If

 ' Accept the dialog.
 Me.DialogResult = Windows.Forms.DialogResult.OK
End Sub

code snippet CustomDialog

CANCEL WITHOUT EVENTS

Note that the dialog box doesn ’ t need an event handler for the Cancel button. If you
set the form ’ s CancelButton property to the button and if the user clicks it, Visual
Basic automatically sets the form ’ s DialogResult to Cancel and closes the form.

c10.indd 168c10.indd 168 12/31/09 6:36:52 PM12/31/09 6:36:52 PM

Example program CustomDialog demonstrates this kind of dialog.

Many dialog boxes provide OK and Cancel buttons, so they usually set DialogResult to OK or
Cancel. However, you can also set DialogResult to Abort, Ignore, No, None, Retry, and Yes if that
makes sense for your program. The main program can use an If Then or Select Case statement to
see which value was set.

WIZARDS

One common type of dialog box is called a wizard. A wizard is a form that guides the user through
a series of steps to do something. For example, building a database connection is complicated, so
Visual Basic provides a data connection confi guration wizard that helps the user enter the correct
information for different kinds of databases. When it fi nishes, the wizard adds a connection object
to the current form.

Figure 10 - 10 shows a typical wizard. The user enters data
on each tab and then moves on to the next one. This wizard
asks the user to enter an employee ’ s name, identifi cation
(Social Security number and Employee ID), address and
phone number, offi ce location and extension, and privileges.
Many tabbed wizards also include
Next and Previous buttons to help you move from one tab
to another.

When the user has fi lled in all the fi elds, the wizard enables
the OK button. When the user clicks the OK or Cancel but-
ton, control returns to the main program, which handles the
result just as it handles any other dialog box.

Figure 10 - 11 shows a different style of wizard. Instead of
tabs, it uses buttons to let the user move through
its pages of fi elds. The wizard only enables a button
when the user has fi lled in the necessary information
on the previous page. In Figure 10 - 11, the Offi ce
button is disabled because the user has not fi lled in all
the fi elds on the Address page.

The button style is sometimes better at helping the
user fi ll in all of the required fi elds because the user
must fi nish fi lling in one page before moving on to
the next. In a tabbed wizard, the user might leave a
required fi eld blank or use an incorrect format (for
example, an invalid phone number) on the fi rst tab
and not realize it until clicking the OK button.

FIGURE 10-10: A wizard guides the user

through the steps of some complicated

task.

FIGURE 10-11: This wizard uses buttons

instead of tabs to move through its pages of

data.

Wizards ❘ 169

c10.indd 169c10.indd 169 12/31/09 6:36:54 PM12/31/09 6:36:54 PM

170 ❘ CHAPTER 10 WINDOWS FORMS

SUMMARY

Although forms are just one kind of control, they have some very special characteristics. They form
the basic pieces of an application that sit on the desktop, and they have many properties, methods,
and events that set them apart from other controls. Appendix J provides more information about
form properties, methods, and events.

This chapter describes some of the more typical uses of forms. It explains how to build About,
splash, and login forms; manage a form ’ s mouse cursor and icon; override WndProc to intercept a
form ’ s Windows messages; build MDI applications and tools that help the user manage MDI child
forms; and make dialog boxes and wizards. After you master these tasks, you can build the forms
that implement the large - scale pieces of an application.

Chapters 8, 9, and 10 describe Windows Forms controls and the Form class. The next three chapters
provide corresponding information for Windows Presentation Foundation (WPF) controls and
forms. Chapter 11, “ Selecting WPF Controls, ” starts by providing an overview of WPF controls and
giving tips on which you might like to use for given purposes, much as Chapter 8 does for Windows
Forms controls.

c10.indd 170c10.indd 170 12/31/09 6:36:55 PM12/31/09 6:36:55 PM

11
Selecting WPF Controls

Windows Presentation Foundation (WPF) provides a whole new method for building user
interfaces. Although it bears a superfi cial resemblance to Windows Forms, WPF provides new
controls, a new event architecture, and a new foundation for building and interacting with
properties.

WPF also provides tools for separating the user interface from the code behind the interface
so that the two pieces can potentially be built by separate user interface designers and Visual
Basic developers. It includes a new Extensible Application Markup Language (XAML ,
pronounced “ zammel ”) that lets you build a user interface by using declarative statements
rather than executable code. XAML lets you determine the size, position, and other properties
of the WPF controls on a form. It lets you defi ne styles that can be shared among many
controls, and it lets you defi ne transformations and animations that affect the controls.

As is the case in Windows Forms applications, controls play a central role in WPF
applications. Different kinds of controls give information to the user (Label, StatusBar,
TreeView, ListView, Image) and organize the information so that it ’ s easy to understand
(Border, StackPanel, DockPanel, TabControl). They enable the user to enter data (TextBox,
TextBlock, ComboBox, PasswordBox), select options (RadioButton, CheckBox, ListBox), and
control the application (Button, Menu, Slider).

To make an application as effective as possible, you should match controls with your application ’ s
needs. Though it is often possible to use many controls to perform a particular task, some controls
usually work better than others. For example, you could display status information by changing
a button ’ s caption, but that ’ s not really what buttons do best. A label in a status bar is usually a
better way to give the user status information because the user will expect and understand it.
Users generally don ’ t expect to see status information in a button with changing text.

This chapter briefl y describes the most common WPF controls so you can understand which
controls work best for different purposes. To help you fi nd the controls you need, the sections
later in this chapter group controls by their general function. For example, if you need to
display status to the user, look in the section “ Providing Feedback. ”

c11.indd 171c11.indd 171 12/31/09 6:39:02 PM12/31/09 6:39:02 PM

172 ❘ CHAPTER 11 SELECTING WPF CONTROLS

I provide only brief descriptions of the WPF controls in this chapter, and some tips that can help you
decide which control to use for different purposes. The following chapter, “ Using WPF Controls, ”
covers the controls in much greater detail, describing each control ’ s most useful properties,
methods, and events.

FOR MORE INFORMATION

This chapter and those that follow provide only the briefest glance at WPF.
They explain enough to get you started but for greater detail and more
in - depth information, see a book about WPF such as my book WPF Programmer ’ s
Reference: Windows Presentation Foundation with C# 2010 and .NET 4.0 (Wrox,
Stephens, 2009, www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper).

CONTROLS OVERVIEW

You can group WPF controls into several categories. Some of these correspond naturally to the
purposes of Windows Forms controls. Other categories play a more important role in WPF than
they do in Windows Forms applications.

In particular, WPF controls rely heavily on layout controls that arrange and organize the controls
that they contain. Windows Forms developers often simply arrange controls on a form with their
desired sizes and positions. A WPF application is more likely to arrange the controls in a hierarchy
of StackPanel and Grid controls and let those controls arrange their contents.

The following sections describe the main categories of WPF controls. The example programs for this
chapter, which are available on the book ’ s web site, demonstrate many of the controls ’ basic uses.

CONCEALED CONTROLS

Not all of the controls described here are available by default when you create a
new WPF application. You need to add some of these controls to the Toolbox before
you can use them. To add a control that is missing, right - click a Toolbox section
and select Choose Items. On the Choose Toolbox Items dialog, select the WPF
Components tab, check the boxes next to the controls that you want, and click OK.

Note, also, that some additional controls may be available in the Choose Toolbox
Items dialog that are not described here. The following sections describe only the
most commonly used controls.

CONTAINING AND ARRANGING CONTROLS

Layout controls determine the arrangement of the controls that they contain. For example, they may
arrange controls vertically, horizontally, or in rows and columns.

c11.indd 172c11.indd 172 12/31/09 6:39:05 PM12/31/09 6:39:05 PM

The preferred style for WPF control arrangement is to make container controls determine the
positions of their children and let the children take advantage of whatever space is allowed. This can
be particularly useful for localized applications where you cannot easily predict how much space a
control will need in a particular language.

For example, suppose a form contains a StackPanel control. The StackPanel contains several
buttons that launch application dialogs. If you remove the buttons ’ Width properties, the buttons
automatically size themselves to fi t the StackPanel horizontally. Now if you need to make the
buttons wider to hold text for a new language, you can simply widen the form. The StackPanel
widens to fi ll the form and the buttons widen to fi t the StackPanel.

Example program ResizingButtons, which is available for download on the book ’ s web site,
demonstrates buttons with fi xed heights but widths that resize when their container resizes.

In a Windows Forms application, you can achieve a similar effect by using
Anchor and Dock properties.

Layout controls are also important because they can hold lots of other controls. Some of the WPF
controls can hold only a single content item. For example, an Expander can hold only a single item.
However, if you place another layout control such as a StackPanel inside the Expander, you can then
place lots of other controls inside the StackPanel.

The following table briefl y describes the WPF controls that are intended mainly to contain and
arrange other controls.

CONTROL PURPOSE

Border 1 Provides a visible border or background to the contents.

BulletDecorator 2 Contains two children. The fi rst is used as a bullet and the second is

aligned with the fi rst. For example, you can use this to align bullet images

next to labels. (See example program UseBulletDecorator, available for

download on the book ’ s web site.)

Canvas Creates an area in which you can explicitly position children by specifying

their Width, Height, Canvas.Left, and Canvas.Top properties. (See example

program UseCanvas, available for download on the book ’ s web site.)

DockPanel Docks its children to its left, right, top, or bottom much as the Dock

property does in a Windows Forms application. If the control ’ s LastChildFill

property is True, the control makes its last child control fi ll the remaining

space. (See example program UseDockPanel, available for download on

the book ’ s web site.)

continues

Containing and Arranging Controls ❘ 173

c11.indd 173c11.indd 173 12/31/09 6:39:06 PM12/31/09 6:39:06 PM

174 ❘ CHAPTER 11 SELECTING WPF CONTROLS

CONTROL PURPOSE

Expander 1 Displays a header with an expanded/collapsed indicator. The user can click

the header or indicator to expand or collapse the control ’ s single content

item. (See example program UseExpander, available for download on the

book ’ s web site.)

Grid Displays children in rows and columns. This is somewhat similar to the

Windows Forms TableLayoutPanel control. Grid is one of the most useful

container controls.

GridSplitter Allows the user to resize two rows or columns in a Grid control.

GridView Displays data in columns within a ListView control.

GroupBox 1 Displays a border and caption much as a Windows Forms GroupBox

control does.

Panel Panel is the parent class for Canvas, DockPanel, Grid, TabPanel,

ToolbarOverfl owPanel, UniformGrid, StackPanel, VirtualizingPanel, and

WrapPanel. Usually you should use one of those classes instead of Panel,

but you can use Panel to implement your own custom panel controls.

ScrollViewer 1 Provides vertical and horizontal scroll bars for a single content element.

(See example program UseScrollViewer, available for download on the

book ’ s web site.)

Separator Separates two controls inside a layout control. (See example program

UseSeparator, available for download on the book ’ s web site.)

StackPanel Arranges children in a single row or column. If there are too many controls,

those that don ’ t fi t are clipped. StackPanel is one of the most useful

container controls.

TabControl Arranges children in tabs. TabItem controls contain the items that should

be displayed in the tabs. (See example program UseTabControl, available

for download on the book ’ s web site.)

TabItem 1 Holds the content for one TabControl tab.

Viewbox 1 Stretches its single child to fi ll the Viewbox. The Stretch property

determines whether the control stretches its child uniformly (without

changing the width - to - height ratio). (See example program UseViewbox,

available for download on the book ’ s web site.)

(continued)

c11.indd 174c11.indd 174 12/31/09 6:39:07 PM12/31/09 6:39:07 PM

CONTROL PURPOSE

VirtualizingStackPanel Generates child items to hold items that can fi t in the available area.

For example, when working with a ListBox bound to a data source, the

VirtualizingStackPanel generates only the items that will fi t within the

ListBox. If the control is not bound to a data source, this control behaves

like a StackPanel.

WrapPanel Arranges children in rows/columns depending on its Orientation property.

When a row/column is full, the next child moves to a new row/column. This

is similar to the Windows Forms FlowLayoutPanel control. (See example

program UseWrapPanel, available for download on the book ’ s web site.)

1This control can hold only a single child.
2This control should hold exactly two children. Controls with no footnote can hold any number of children.

Many of the layout controls have the ability to resize their children if you let them. For example, if
you place a Button inside a Grid control ’ s fi rst row and column, by default the Button resizes when
its row and column resize. The control ’ s Margin property determines how far from the cell ’ s edges
the Button ’ s edges lie.

If a child control explicitly defi nes its Width and Height properties, those properties override the
parent ’ s arrangement policy. For example, if you set Width and Height for a Button inside a Grid,
the Button does not resize when its Grid cell does.

To get the effect that you want, consider how the control ’ s Margin, Width, and Height properties
interact with the parent layout control.

MAKING SELECTIONS

Selection controls enable the user to choose values. If you use them carefully, you can reduce the
chances of the user making an invalid selection, so you can reduce the amount of error - handling
code you need to write.

The following table briefl y describes the WPF controls that allow the user to select choices.

CONTROL PURPOSE

CheckBox Lets the user select an item or not. Each CheckBox choice is independent of

all others.

ComboBox Displays items in a drop - down list. ComboBoxItem controls contain the items

displayed in the list. (See example program UseComboBox, available for

download on the book ’ s web site.)

ComboBoxItem 1 Holds the content for one ComboBox item.

continues

Making Selections ❘ 175

c11.indd 175c11.indd 175 12/31/09 6:39:08 PM12/31/09 6:39:08 PM

176 ❘ CHAPTER 11 SELECTING WPF CONTROLS

CONTROL PURPOSE

ListBox Displays items in a list. ListBoxItem controls contain the items displayed in the

list. The control automatically displays scroll bars when needed. (See example

program UseListBox, available for download on the book ’ s web site.)

ListBoxItem 1 Holds the content for one ListBox item.

RadioButton Lets the user pick from among a set of options. If the user checks one

RadioButton, all others with the same parent become unchecked. (See

example program UseRadioButtons, available for download on the book ’ s

web site.)

ScrollBar Allows the user to drag a “ thumb ” to select a numeric value. Usually scroll

bars are used internally by other controls such as the ScrollViewer and your

applications should use a Slider instead. (See example program UseScrollBar,

available for download on the book ’ s web site.)

Slider Allows the user to drag a “ thumb ” to select a numeric value. Similar to the

Windows Forms TrackBar control. (See example program UseSlider, available

for download on the book ’ s web site.)

1This control can hold only a single child.

ENTERING DATA

Sometimes, it is impractical to use the selection controls described in the previous section. For
example, the user cannot reasonably enter biographical data or comments using a ComboBox or
RadioButton. In those cases, you can provide a text control where the user can type information.

The following table briefl y describes the WPF controls that allow the user to enter text.

CONTROL PURPOSE

PasswordBox Similar to a TextBox but displays a mask character instead of the characters that

the user types. (See example program UsePasswordBox, available for download

on the book ’ s web site.)

RichTextBox Similar to a TextBox but contains text in the form of a document object. See the

section “ Managing Documents ” later in this chapter for more information on

documents.

TextBox Allows the user to enter simple text. Optionally can allow carriage returns and

tabs, and can wrap text.

(continued)

c11.indd 176c11.indd 176 12/31/09 6:39:09 PM12/31/09 6:39:09 PM

DISPLAYING DATA

These controls are used primarily to display data to the user. The following table briefl y describes
these WPF controls.

CONTROL PURPOSE

Label Displays non - editable text.

TextBlock Displays more complex non - editable text. This control ’ s contents can include

inline tags to indicate special formatting. Tags can include AnchoredBlock, Bold,

Hyperlink, InlineUIContainer, Italic, LineBreak, Run, Span, and Underline.

TreeView Displays hierarchical data in a tree - like format similar to the directory display

provided by Windows Explorer.

PROVIDING FEEDBACK

The following controls provide feedback to the user. Like the controls that display data in the
previous section, these controls are intended to give information to the user and not interact with
the user. The following table briefl y describes these WPF controls.

CONTROL PURPOSE

Popup Displays content in a window above another control. Usually you can use the

Tooltip and ContextMenu controls instead of a Popup. (See example program

UsePopup, available for download on the book ’ s web site.)

ProgressBar Indicates the fraction of a long task that has been completed. Usually, the task is

performed synchronously, so the user is left staring at the form while it completes.

The ProgressBar lets the user know that the operation is not stuck. (See example

program UseProgressBar, available for download on the book ’ s web site.)

StatusBar Displays a container at the bottom of the form where you can place controls

holding status information. Though you can place anything inside a StatusBar, this

control is intended to hold summary status information, not tools. Generally, menus,

combo boxes, buttons, toolbars, and other controls that let the user manipulate

the application do not belong in a SatusBar. (See example program UseStatusBar,

available for download on the book ’ s web site.)

StatusBarItem 1 Holds the content for one StatusBar item.

ToolTip Displays a tooltip. To give a control a simple textual tooltip, set its Tooltip property.

Use the Tooltip control to build more complex tooltips. For example, a Tooltip

control might contain a StackPanel that holds other controls. (See example

program UseToolTip, available for download on the book ’ s web site.)

1This control can hold only a single child.

Providing Feedback ❘ 177

c11.indd 177c11.indd 177 12/31/09 6:39:09 PM12/31/09 6:39:09 PM

178 ❘ CHAPTER 11 SELECTING WPF CONTROLS

INITIATING ACTION

Every kind of control responds to events, so every control can initiate an action. In practice,
however, users only expect certain kinds of controls to perform actions. For example, they generally
don ’ t expect the application to launch into a time - consuming calculation when they double - click
a label.

The following table summarizes controls that normally initiate action.

CONTROL PURPOSE

Button 1 Raises a Click event that the program can catch to perform an action.

(See example program UseButtonRepeatButton, available for download on the

book ’ s web site.)

ContextMenu Displays a context menu for other controls. Normally the ContextMenu contains

MenuItem controls. (See example program UseMenuContextMenu, available for

download on the book ’ s web site.)

Menu Displays a menu for the form. Normally, the Menu contains MenuItem controls

representing the top - level menus. Those items contain other MenuItem

controls representing commands. (See example program

UseMenuContextMenu, available for download on the book ’ s web site.)

MenuItem Contains an item in a ContextMenu or Menu.

PrintDialog Displays a standard Windows print dialog. You shouldn ’ t place a PrintDialog on

a window. Instead use code to build and display the PrintDialog. (See example

program UsePrintDialog, available for download on the book ’ s web site.)

RepeatButton 1 Acts as a Button that raises its Click event repeatedly when it is pressed and

held down. (See example program UseButtonRepeatButton, available for

download on the book ’ s web site.)

ToolBar Contains items. Normally, the control sits across the top of the form and

contains command items such as buttons and combo boxes. (See example

program UseToolBar, available for download on the book ’ s web site.)

ToolBarTray Contains ToolBars and allows the user to drag them into new positions.

(See example program UseToolBar, available for download on the

book ’ s web site.)

1This control can hold only a single child.

PRESENTING GRAPHICS AND MEDIA

Any control can display an image. The following XAML code makes an ImageBrush and then uses
it to fi ll a Grid control ’ s background:

c11.indd 178c11.indd 178 12/31/09 6:39:10 PM12/31/09 6:39:10 PM

< Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="FormImage"
 Height="300" Width="300" >
 < Window.Resources >
 < ImageBrush ImageSource="smile.bmp" x:Key="brSmile" / >
 < /Window.Resources >
 < Grid Background="{StaticResource brSmile}" >

 < /Grid >
< /Window >

code snippet FormImage

Example program FormImage displays an image in a Grid control ’ s background.

Though a Grid control can display an image or other graphic, its real purpose is to arrange
other controls. The following table describes controls whose main purpose is to present graphics
and media.

CONTROL PURPOSE

Ellipse Displays an ellipse.

Image Displays a bitmap image, for example, from a .bmp, .jpg, or .png fi le. Can

optionally stretch the image with or without distortion.

Line Draws a line segment.

MediaElement Presents audio and video. To let you control the media, it provides Play,

Pause, and Stop methods, and Volume and SpeedRatio properties. (See

example program UseMediaElement, available for download on the book ’ s

web site.)

Path Draws a series of drawing instructions.

Polygon Draws a closed polygon.

Polyline Draws a series of connected line segments.

Rectangle Draws a rectangle, optionally with rounded corners.

The shape drawing objects (Ellipse, Line, Path, Polygon, Polyline, and Rectangle) all provide Stroke,
StrokeThickness, and Fill properties to let you control their appearance. Although these controls
are primarily intended to draw simple (or not so simple) shapes, like any other control they provide
a full assortment of events. For example, they provide an IsMouseOver property and a MouseUp
event that you can use to make these objects behave like simple buttons.

Presenting Graphics and Media ❘ 179

c11.indd 179c11.indd 179 12/31/09 6:39:11 PM12/31/09 6:39:11 PM

180 ❘ CHAPTER 11 SELECTING WPF CONTROLS

Example program DrawingShapes, which is available for download on the book ’ s web site,
demonstrates several of these shape controls. Program EllipseClick, which is also available for
download, uses triggers to change the color of an Ellipse when the mouse is over it, and displays
a message when you click the Ellipse.

PROVIDING NAVIGATION

The Frame control provides support for navigation through external web sites or the application ’ s
pages. Use the control ’ s Navigate method to display a web page or XAML page. The Frame provides
back and forward arrows to let the user navigate through the pages visited.

Example program UseFrame, which is available for download on the book ’ s web site, uses a Frame
control to provide navigation between two Page objects.

MANAGING DOCUMENTS

WPF includes three different kinds of documents: fl ow documents, fi xed documents, and XPS
documents. These different kinds of documents provide support for high - end text viewing and printing.

XPS EXPLAINED

XPS (XML Paper Specifi cation) is a Microsoft standard that defi nes fi xed - format
documents similar to PDF fi les. An XPS reader can view an XPS fi le but will not
reformat it as a web browser might rearrange the text on a web page. For more
information, see the section “ XPS Documents ” in Chapter 12, “ Using WPF Controls.”

The following table summarizes the controls that WPF provides for viewing these kinds of documents.

CONTROL PURPOSE

DocumentViewer Displays fi xed documents page - by - page.

FlowDocumentPageViewer Displays a fl ow document one page at a time. If the control is wide

enough, it may display multiple columns although it still only displays

one page at a time.

FlowDocumentReader Displays fl ow documents in one of three modes. When in single page
mode , it acts as a FlowDocumentReader. When in scrolling mode ,

it acts as a FlowDocumentScrollViewer. In book reading mode , it

displays two pages side - by - side much as a real book does.

FlowDocumentScollViewer Displays an entire fl ow document in a single long scrolling page and

provides scroll bars to let the user move through the document.

c11.indd 180c11.indd 180 12/31/09 6:39:11 PM12/31/09 6:39:11 PM

DIGITAL INK

Digital ink controls provide support for stylus input from tablet PCs (where you use a plastic stylus
similar to a pen to draw right on a tablet PC ’ s touch screen). Normally you would only use digital
ink in a tablet PC application where the user is expected to enter data by drawing on the screen with
a stylus. These applications usually provide text recognition to understand what the user is writing.
They also use the stylus to perform the same operations they would perform with the mouse on a
desktop system. For example, they let you tap to click buttons, and tap and drag to move items. For
more information on tablet PCs and mobile PC development, see msdn.microsoft.com/windows/
aa905027.aspx .

Though ink controls are most useful for tablet PCs, WPF includes two ink controls that you can use
in any Visual Basic application.

CONTROL PURPOSE

InkCanvas Displays or captures ink strokes.

InkPresenter Displays ink strokes.

SUMMARY

Controls are the link between the user and the application. They allow the application to give
information to the user and they allow the user to control the application.

This chapter briefl y describes the WPF controls grouped by category. You can use the categories
to help you decide which controls to use. If the user must select an item, consider the controls in
the “ Making Selections ” section. If the application needs to display status information, look at the
controls in the “ Providing Feedback ” section.

This chapter gives only a brief introduction to the WPF controls and provides some hints about
each control ’ s purpose. Chapter 12, “ Using WPF Controls, ” describes the controls in greater detail.
It explains the most important properties, methods, and events provided by the most useful WPF
controls.

Summary ❘ 181

c11.indd 181c11.indd 181 12/31/09 6:39:13 PM12/31/09 6:39:13 PM

c11.indd 182c11.indd 182 12/31/09 6:39:13 PM12/31/09 6:39:13 PM

Using WPF Controls

The code behind WPF controls is the same as the code behind Windows Forms controls. That
means that everything the earlier chapters have explained about applications, forms, controls,
Visual Basic code, error handling, drawing, printing, reports, and so forth, still work almost
exactly as before.

Chapter 11, “ Selecting WPF Controls, ” briefl y describes the most common WPF controls,
grouped by category to help you pick the control that best suits a particular task. This chapter
provides more detail about WPF. It explains some of the more important concepts that
underlie WPF. It also gives more detail about how particular controls work and tells how you
can use them in your applications.

WPF is a huge topic. It basically reproduces all of the functionality of Windows Forms
programming, and then some. This chapter cannot hope to cover all of the concepts, tools,
and techniques used by WPF. Instead, it introduces some of the more important concepts and
explains how to build basic WPF forms.

WPF CONCEPTS

WPF applications are similar in concept to Windows Forms applications in many respects.
Both display a form or window that contains controls. Controls in both systems provide
properties, methods, and events that determine the control ’ s appearance and behavior.

Windows Forms applications use a set of controls provided by the System.Windows
.Forms namespace. WPF applications use a different set of controls in the System.Windows
.Controls namespace. Many of these controls serve similar functions to those used by
Windows Forms applications, but they provide a different set of capabilities. For example,
both namespaces have buttons, labels, combo boxes, and check boxes, but their appearances
and abilities are different.

12

c12.indd 183c12.indd 183 12/31/09 6:40:04 PM12/31/09 6:40:04 PM

184 ❘ CHAPTER 12 USING WPF CONTROLS

WPF uses these similar, but different, controls for two main reasons:

To take better advantage of the graphics capabilities of modern computer hardware and
software. The new controls can more easily provide graphical effects such as transparent
or translucent backgrounds, gradient shading, rotation, two - and three - dimensional
appearance, multimedia, and other effects.

To provide a greater separation between the user interface and the code behind it.
The following sections describe this idea and some of the other key WPF concepts in

greater detail.

Separation of User Interface and Code

The idea of separating the user interface from the code isn ’ t new. Visual Basic developers have been
building thin user interface applications for years. Here, the user interface contains as little code as
possible, and calls routines written in libraries to do most of the work.

Unfortunately, the code that calls those libraries sits inside the same fi le that defi nes the user
interface, at least in Windows Forms applications. That means you cannot completely separate
the code from the user interface. For example, if one developer wants to modify the user interface,
another developer cannot simultaneously modify the code behind it.

WPF separates the user interface from the code more completely. The program stores the user
interface defi nition in a XAML fi le.

Associated with a XAML fi le is a code fi le containing Visual Basic code. It contains any code you
write to respond to events and manipulate the controls much as Windows Forms code can. Unlike
the case with Windows Forms, WPF keeps the user interface defi nition and the code behind it in
two separate fi les so, in theory at least, different developers can work on the user interface and the
code at the same time. For example, a graphics designer can use the Expression Blend design tool
to build the user interface, defi ning the forms ’ labels, menus, buttons, and other controls. Then a
Visual Basic developer can attach code to handle the controls ’ events.

Though it isn ’ t a free product, Expression Blend provides some useful tools that
are missing from Visual Studio such as tools to record animations. If you
frequently need to build property animations, I highly recommend that you
give it a try.

You can learn more about Expression Blend and download a trial version at
www.microsoft.com/expression/products/Overview.aspx?key=blend .

Because the user interface defi nition is separate from the code behind it, the graphic designer can
later edit the XAML to rearrange controls, change their appearance, and otherwise modify the user
interface while the code behind it should still work unchanged.

➤

➤

c12.indd 184c12.indd 184 12/31/09 6:40:06 PM12/31/09 6:40:06 PM

DEVELOPERS DIVIDED

It ’ s not yet clear whether this scenario will actually play out as envisioned by
Microsoft. At a Visual Studio users group meeting, a Microsoft representative said
that Expression Blend would not be included with MSDN subscriptions. The group
greeted this statement with a rousing chorus of boos. Of the 100 or so people in the
room, none thought that their companies would have the desire or budget to pro-
vide separate graphics designers and developers. They felt that the developers would
be building user interfaces much as they do today.

The separation between the user interface fi le and the code behind also it isn ’ t as
great as Microsoft would like. While you can work on the two fi les separately, they
are tied closely together. For example, the user interface fi le defi nes event handlers
that the code - behind must implement. If the code - behind doesn ’ t implement them
yet, then the graphic designer cannot test the interface by running it.

I suspect there ’ s still some room for adjustment in Microsoft ’ s plan, however. Some
of the features of Expression Blend have moved into the latest Visual Studio release.
For example, the previous version of Visual Studio didn ’ t include any brush edi-
tors but the latest version does. It is possible that Visual Studio will gain at least
some new features in future releases, although it is likely that Expression Blend will
always include at least some tools that are missing from Visual Studio.

You can also implement these features by using XAML code or Visual Basic code,
although that will be more diffi cult than using built - in design tools. If using the
new features is too diffi cult, developers simply won ’ t bother.

WPF Control Hierarchies

In a WPF application, the Window class plays a role similar to the one played by a Form in a
Windows Forms application. Whereas a Form can contain any number of controls, a Window can
contain only one. If you want a WPF form to display more than one control, you must fi rst give it
some kind of container control, and then place other controls inside that one.

For example, when you create a WPF application, its Window initially contains a Grid control that
can hold any number of other controls, optionally arranged in rows and columns. Other container
controls include Canvas, DockPanel, DocumentViewer, Frame, StackPanel, and TabControl.

The result is a tree - like control hierarchy with a single Window object serving as the root element.
This matches the hierarchical nature of XAML. Because XAML is a form of XML, and XML fi les
must have a single root element, XAML fi les must also have a single root element. When you look at
XAML fi les later in this chapter, you will fi nd that they begin with a Window element that contains
all other elements.

Many non - container controls can hold only a single element, and that element is determined by the
control ’ s Content property. For example, you can set a Button control ’ s Content property to the text
that you want to display.

WPF Concepts ❘ 185

c12.indd 185c12.indd 185 12/31/09 6:40:08 PM12/31/09 6:40:08 PM

186 ❘ CHAPTER 12 USING WPF CONTROLS

A control ’ s Content property can only have a single value, but that value
does not need to be something simple such as text. For example, Figure 12 - 1
shows a Button containing a Grid control that holds three labels.

WPF IN THE IDE

The Visual Studio IDE includes editors for manipulating WPF Window
classes and controls. Although many of the details are different, the basic
operation of the IDE is the same whether you are building a Windows
Forms application or a WPF application. For example, you can use the
WPF Window Designer to edit a WPF window. You can select controls from the Toolbox and
place them on the window much as you place controls on a Windows Form.

Despite their broad similarities, the Windows Forms Designer and the WPF Window Designer differ
in detail. Although the Properties window displays properties for WPF controls much as it does for
Windows Forms controls, many of the property values are not displayed in similar ways.

The window represents many Boolean properties with check boxes. It represents other properties
that take enumerated values with combo boxes where you can select a value or type one in (if you
know the allowed values). The window represents some object properties with the objects ’ type
names and doesn ’ t allow you to select objects as the Properties window does in the Windows
Forms Designer.

Future Visual Studio releases may make Expression Blend more consistent with Visual Studio,
although some more advanced features (such as animation recording) are likely to remain only in
Expression Blend to encourage developers to buy it.

Though some of these property editors are inconvenient or missing, it is important to note that the
editors merely build the XAML code that defi nes the user interface. You can always edit the XAML
manually to achieve effects that the Properties window does not support directly.

The following sections explain how to write XAML code and the Visual Basic code behind it.

Editing XAML

Figure 12 - 2 shows the IDE displaying a new WPF project. Most of the areas should look familiar
from Windows Forms development. The Toolbox on the left contains tools that you can place on the
window in the middle area. Solution Explorer on the right shows the fi les used by the application.
The Properties window shows property values for the currently selected control in the middle. The
selected object in Figure 12 - 2 is the main Window, so the top of the Properties window shows its
type: System.Windows.Window.

FIGURE 12-1: This

Button contains a Grid

that holds three labels.

c12.indd 186c12.indd 186 12/31/09 6:40:09 PM12/31/09 6:40:09 PM

One large difference between the IDE ’ s appearance when building a WPF application versus a
Windows Forms application is the central editor. In a Windows Forms application, you edit a form
with the Windows Forms Designer. In a WPF application, you use the graphical XAML editor
shown in Figure 12 - 2 to edit a Window object ’ s XAML code. The upper half of this area shows
a graphical editor where you can drag controls from the Toolbox much as you design a Windows
Form. The lower part of the editor shows the resulting XAML code.

If you look closely at Figure 12 - 2, you can see the Window element that includes the rest of the fi le.
When you fi rst build an application, the Window object ’ s element contains a single Grid control.

Usually, it is easiest to build WPF Window objects by using the graphical editor and the Toolbox.
When you select a control in the graphical editor, you can view and modify many of its properties in
the Properties window. Unfortunately, the Properties window does not give you access to all of the
controls ’ features. Some properties are read - only in the Properties window or represent values that
you cannot enter in the Properties window.

For example, a control ’ s LayoutTransform property determines how the control is moved, scaled,
rotated, and skewed before it is positioned and drawn. In the Properties window, this property
appears as “ Identity ” if you have not defi ned a transformation, or the name of a class such as
“ System.Windows.Media.RotateTransform ” if the transform rotates the control. Unfortunately, the

FIGURE 12-2: The IDE looks almost the same for Windows Forms and WPF applications.

WPF in the IDE ❘ 187

c12.indd 187c12.indd 187 12/31/09 6:40:10 PM12/31/09 6:40:10 PM

188 ❘ CHAPTER 12 USING WPF CONTROLS

Properties window does not provide any tools for setting the LayoutTransform property ’ s value. If
you want to set this property, you must type it into the XAML code by hand.

Figure 12 - 3 shows a Window containing a Button that is rotated 20 degrees. Notice that the
LayoutTransform property in the Properties window displays the RotateTransform ’ s class name
System.Windows.Media.RotateTransform. The XAML code in the bottom left defi nes the control ’ s
LayoutTransform property.

FIGURE 12-3: XAML code can make a LayoutTransform but the Properties window cannot.

Example program RotatedButton, which is available for download on the book ’ s web site, uses the
code shown in Figure 12 - 3 to display a rotated button.

Expression Blend provides additional tools for editing XAML. For example, it includes editors that
let you defi ne layout transformations interactively. Although the Visual Studio IDE doesn ’ t provide
similar tools, you can build these by hand with XAML code.

Similarly, the Properties window doesn ’ t give you an easy way to set a non - container control ’ s
Content property to another control, but you can do this easily with XAML code. For example, to
place a Grid inside a Button control, simply type the Grid control ’ s defi nition between the Button
control ’ s start and end tags.

c12.indd 188c12.indd 188 12/31/09 6:40:10 PM12/31/09 6:40:10 PM

Example program GridButton uses the following XAML code to build a Button containing a Grid
similar to the one shown in Figure 12 - 1:

< Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="XamlGridButton"
 Height="193" Width="219" >
 < Grid >
 < Button Name="btnGrid" Height="100" Width="150" >
 < Grid Height="90" Width="140" >
 < Grid.RowDefinitions >
 < RowDefinition Height="33*" / >
 < RowDefinition Height="33*" / >
 < RowDefinition Height="33*" / >
 < /Grid.RowDefinitions >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width="33*" / >
 < ColumnDefinition Width="33*" / >
 < ColumnDefinition Width="33*" / >
 < /Grid.ColumnDefinitions >
 < Label Content="UL" Grid.Row="0" Grid.Column="0" / >
 < Label Content="In The Middle" Grid.Row="1"
 Grid.Column="0" Grid.ColumnSpan="3"
 VerticalAlignment="Center" HorizontalAlignment="Center" / >
 < Label Content="LR" Grid.Row="2" Grid.Column="2"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right" / >
 < /Grid >
 < /Button >
 < /Grid >
< /Window >

code snippet GridButton

The top - level Window element contains a Grid control that holds a single Button. The Button
contains a second Grid control. Grid.Row and Grid.Column elements defi ne the grid ’ s row and
column sizes.

The inner Grid contains three Label controls. The fi rst displays the text UL, is aligned to the upper
left (by default), and is contained in the grid ’ s upper - left cell (row 0, column 0).

The second Label displays the text In the Middle, is aligned in the center, and is contained in grid ’ s
second row (row 1), fi rst column (column 0). Its ColumnSpan property is 3, so it spans all three cells
in the second row.

The fi nal Label displays the text LR, is aligned to the lower right, and is in the grid ’ s lower - right cell
(row 2, column 2).

WPF in the IDE ❘ 189

c12.indd 189c12.indd 189 12/31/09 6:40:12 PM12/31/09 6:40:12 PM

190 ❘ CHAPTER 12 USING WPF CONTROLS

The graphical editor and the Properties window don ’ t give you access to all of XAML ’ s features,
but they do let you build a basic user interface for WPF applications. Once you have defi ned the
window ’ s basic structure, you can use XAML to fi ne - tune the result (for example, by adding
gradient backgrounds).

Editing Visual Basic Code

Each XAML fi le is associated with a Visual Basic code fi le. When you fi rst create a WPF project,
that fi le is opened by default. If you look closely at the central designer in Figure 12 - 3, you ’ ll
see that the XAML fi le Window1.xaml is open and visible in the designer. Another tab contains the
corresponding Visual Basic fi le Window1.xaml.vb. Click that tab to view the Visual Basic
source code.

The following text shows the Visual Basic source code initially created for a XAML fi le:

Class Window1

End Class

You can add event handlers to this fi le just as you can add event handlers to Windows Forms code.
Use the left dropdown to select a control or Window1 Events. Then use the right drop - down list to
select an event for that object.

You can also double - click a WPF control on the WPF Window Designer to create an event handler
for that control ’ s default event. This doesn ’ t work with every control (such as Grid, Label, and
StackPanel) but it works for those that are most likely to need event handlers (such as Button,
CheckBox, ComboBox, RadioButton, and TextBox).

You can also add non - event handler subroutines and functions as you can in any other Visual Basic
code fi le.

Inside the Visual Basic code fi le, you can get and set control properties and call control methods,
just as you can in a Windows Forms project. The only differences are in the features the
WPF controls provide. Those differences generally correspond to the XAML commands that defi ne
controls.

For example, the following Visual Basic code builds the same Button containing a Grid holding
three Labels shown in Figure 12 - 1. The previous section, “ Editing XAML, ” shows XAML code
that builds this button.

Class Window1
 Private Sub Window1_Loaded() Handles Me.Loaded
 ' Make a grid.
 Dim grd As New Grid()
 grd.Width = btnGrid.Width - 10
 grd.Height = btnGrid.Height - 10

 ' Add rows and columns.
 AddRow(grd, New GridLength(33, GridUnitType.Star))
 AddRow(grd, New GridLength(33, GridUnitType.Star))
 AddRow(grd, New GridLength(33, GridUnitType.Star))

c12.indd 190c12.indd 190 12/31/09 6:40:12 PM12/31/09 6:40:12 PM

 AddCol(grd, New GridLength(33, GridUnitType.Star))
 AddCol(grd, New GridLength(33, GridUnitType.Star))
 AddCol(grd, New GridLength(33, GridUnitType.Star))

 ' Put things inside the grid.
 Dim lbl1 As New Label()
 lbl1.Content = "UL"
 lbl1.HorizontalAlignment = Windows.HorizontalAlignment.Left
 lbl1.VerticalAlignment = Windows.VerticalAlignment.Top
 lbl1.SetValue(Grid.RowProperty, 0)
 lbl1.SetValue(Grid.ColumnProperty, 0)
 grd.Children.Add(lbl1)

 Dim lbl2 As New Label()
 lbl2.Content = "In the Middle"
 lbl2.HorizontalAlignment = Windows.HorizontalAlignment.Center
 lbl2.VerticalAlignment = Windows.VerticalAlignment.Center
 lbl2.SetValue(Grid.RowProperty, 1)
 lbl2.SetValue(Grid.ColumnProperty, 0)
 lbl2.SetValue(Grid.ColumnSpanProperty, 3)
 grd.Children.Add(lbl2)

 Dim lbl3 As New Label()
 lbl3.Content = "LR"
 lbl3.HorizontalAlignment = Windows.HorizontalAlignment.Right
 lbl3.VerticalAlignment = Windows.VerticalAlignment.Bottom
 lbl3.SetValue(Grid.RowProperty, 2)
 lbl3.SetValue(Grid.ColumnProperty, 2)
 grd.Children.Add(lbl3)

 ' Put the grid inside the button.
 btnGrid.Content = grd
 End Sub

 ' Add a row of the indicated height to the grid.
 Private Sub AddRow(ByVal my_grid As System.Windows.Controls.Grid, _
 ByVal height As GridLength)
 Dim row_def As New RowDefinition()
 row_def.Height = height
 my_grid.RowDefinitions.Add(row_def)
 End Sub

 ' Add a column of the indicated width to the grid.
 Private Sub AddCol(ByVal my_grid As System.Windows.Controls.Grid, _
 ByVal width As GridLength)
 Dim col_def As New ColumnDefinition()
 col_def.Width = width

 my_grid.ColumnDefinitions.Add(col_def)
 End Sub

WPF in the IDE ❘ 191

c12.indd 191c12.indd 191 12/31/09 6:40:13 PM12/31/09 6:40:13 PM

192 ❘ CHAPTER 12 USING WPF CONTROLS

 Private Sub btnGrid_Click() Handles btnGrid.Click
 MessageBox.Show("Clicked!", "Clicked", _
 MessageBoxButton.OK, _
 MessageBoxImage.Information)
 End Sub
End Class

code snippet GridButtonCode

The main Window class ’ s Loaded event handler fi res when the form is loaded. The code starts by
creating a Grid control and setting its width and height.

Next, the code calls subroutines AddRow and AddCol to make three rows and columns. These
routines make building rows and columns easier, and are described shortly.

The code then creates three Label controls and sets their properties. Some properties, such as
HorizontalAlignment and Content, are fairly straightforward. Other properties, such as Grid
.RowProperty, Grid.ColumnProperty, and Grid.ColumnSpan, are a little trickier. Those properties
only make sense when the Label controls are contained in a Grid, so they are not really properties of
the Label controls. Instead they are properties added by the Grid control ’ s SetValue method, much
as an ExtenderProvider adds properties to a control. If you place a Button inside a StackPanel, the
Properties window doesn ’ t show these properties.

After it initializes each Label, the code uses the Grid control ’ s Children.Add method to put the
Label inside the Grid.

After it fi nishes creating all of the controls, the code sets the Button control ’ s Content property to
the new grid.

Subroutine AddRow creates a new RowDefi nition object to represent a Grid ’ s row. It sets the
object ’ s Height and adds the object to the Grid control ’ s RowDefi nitions collection. Subroutine
AddCol uses similar methods to make a new Grid column.

The last piece of code in this example is a Click event handler for the btnGrid button. When you
click the button, this code displays a message box.

Anything you can do declaratively with XAML you can also do procedurally with Visual Basic. The
following section, “ XAML Features, ” describes some of the things that you can do with XAML
and shows examples. The section “ Procedural WPF ” later in this chapter explains how you can
implement some of the same features with Visual Basic code instead of XAML.

XAML FEATURES

XAML is a form of XML that defi nes certain allowed combinations of XML elements. For
example, a XAML fi le should have a single root element that represents a Window. That object can
have a single child element that is normally a container. The container can hold several children
with specifi cally defi ned properties such as Width and Height.

c12.indd 192c12.indd 192 12/31/09 6:40:13 PM12/31/09 6:40:13 PM

XAML is a very complicated language, and many of its features are available only in certain places
within the fi le. For example, inside a Button element you can place attributes such as Background,
BorderThickness, Margin, Width, Height, and Content. The XAML text editor provides IntelliSense
that makes fi guring out what is allowed in different places easier, but building a XAML fi le can still
be quite challenging.

One good way to learn XAML is to go online and search for examples. The
Microsoft web site has lots of examples, as do several other sites. Although
the documentation isn ’ t always easy to use, the examples can help you learn
specifi c techniques. Some good places to start include the XAML overview
at msdn2.microsoft.com/ms752059.aspx and the Windows Presentation
Foundation development page at msdn2.microsoft.com/ms754130.aspx . My
book WPF Programmer ’ s Reference (Wrox, Stephens, 2010, www.amazon.com/
exec/obidos/ASIN/0470477229/vbhelper) also provides lots of examples of
useful techniques. If you discover other sources of good examples, email me at
RodStephens@vb-helper.com and I ’ ll post them on the book ’ s web site.

The following sections describe some of the basic building blocks of a XAML
application. They explain how to build objects; how to use resources, styles,
and templates to make objects consistent and easier to modify; and how to
use transformations and animations to make objects interactive. The section
“ Procedural WPF ” later in this chapter explains how to do these things in Visual
Basic code instead of XAML.

Objects

WPF objects are represented by XML elements in the XAML fi le. Their properties are
represented either by attributes within the base elements or as separate elements within the main
element.

For example, the following XAML code shows a Window containing a Grid object. The Grid
element contains a Background attribute that makes the object ’ s background red.

< Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="WindowsApplication1"
 Height="235" Width="300" >
 < Grid Background="Red" >

 < /Grid >
< /Window >

XAML Features ❘ 193

c12.indd 193c12.indd 193 12/31/09 6:40:14 PM12/31/09 6:40:14 PM

194 ❘ CHAPTER 12 USING WPF CONTROLS

More complicated properties must be set in their own sub - elements. The following code shows a
similar Grid that has a linear gradient background:

< Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="WindowsApplication1"
 Height="235" Width="300" >
 < Grid >
 < Grid.Background >
 < LinearGradientBrush StartPoint="0,0" EndPoint="1,1" >
 < GradientStop Color="Red" Offset="0.0" / >
 < GradientStop Color="White" Offset="0.5" / >
 < GradientStop Color="Blue" Offset="1.0" / >
 < /LinearGradientBrush >
 < /Grid.Background >
 < /Grid >
< /Window >

code snippet GradientBackground

Instead of using a Background attribute, the Grid element contains a Grid.Background element.
That, in turn, contains a LinearGradientBrush element that defi nes the background. The
StartPoint and EndPoint attributes indicate that the gradient should start at the upper - left corner
of the grid (0, 0) and end at the lower right (1, 1). The GradientStop elements inside the brush ’ s
defi nition set the colors that the brush should display at different fractions of the way through the
gradient. In this example, the gradient starts red, changes to white halfway through, and changes
to blue at the end.

You cannot defi ne an object ’ s Background property more than once. If you
include a Background attribute and a Grid.Background element for the same
grid, the XAML editor complains.

Object elements often contain other elements that further defi ne the object. The following code
defi nes a grid that has two rows and three columns. (From now on I ’ m leaving out the Window
element to save space.) The rows each occupy 50 percent of the grid ’ s height. The fi rst column is 50
pixels wide and the other two columns each take up 50 percent of the remaining width.

< Grid >
 < Grid.RowDefinitions >
 < RowDefinition Height="50*" / >
 < RowDefinition Height="50*" / >
 < /Grid.RowDefinitions >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width="50" / >
 < ColumnDefinition Width="50*" / >
 < ColumnDefinition Width="50*" / >
 < /Grid.ColumnDefinitions >
< /Grid >

c12.indd 194c12.indd 194 12/31/09 6:40:16 PM12/31/09 6:40:16 PM

When you use a * in measurements, the control divides its height or width proportionally among
items that contain a *. For example, if a grid has two rows with height 50*, they each get half of the
control ’ s height. If the two rows had heights 10* and 20*, the fi rst would be half as tall as the second.

If the control also contains items without a *, their space is taken out fi rst. For example, suppose a
grid defi nes rows with heights 10, 20*, and 30*. Then the fi rst row has height 10, the second row
gets 20/50 of the remaining height, and the third row gets the rest.

Most of the examples in this chapter use values that are at least close to
percentages because they ’ re easier to understand.

An object element ’ s body can also contain content for the object. In some cases, the content is
simple text. The following example defi nes a Button object that has the caption Click Me:

< Button Margin="2,2,2,2" Name="btnClickMe" > Click Me < /Button >

An object ’ s content may also contain other objects. The following code defi nes a grid with three
rows and three columns holding nine buttons:

< Grid >
 < Grid.RowDefinitions >
 < RowDefinition Height="33*" / >
 < RowDefinition Height="33*" / >
 < RowDefinition Height="33*" / >
 < /Grid.RowDefinitions >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width="33*" / >
 < ColumnDefinition Width="33*" / >
 < ColumnDefinition Width="33*" / >
 < /Grid.ColumnDefinitions >
 < Button Grid.Row="0" Grid.Column="0" Margin="5" > 0,0 < /Button >
 < Button Grid.Row="0" Grid.Column="1" Margin="5" > 0,1 < /Button >
 < Button Grid.Row="0" Grid.Column="2" Margin="5" > 0,2 < /Button >
 < Button Grid.Row="1" Grid.Column="0" Margin="5" > 1,0 < /Button >
 < Button Grid.Row="1" Grid.Column="1" Margin="5" > 1,1 < /Button >
 < Button Grid.Row="1" Grid.Column="2" Margin="5" > 1,2 < /Button >
 < Button Grid.Row="2" Grid.Column="0" Margin="5" > 2,0 < /Button >
 < Button Grid.Row="2" Grid.Column="1" Margin="5" > 2,1 < /Button >
 < Button Grid.Row="2" Grid.Column="2" Margin="5" > 2,2 < /Button >
< /Grid >

code snippet NineButtons

Usually, it is easiest to start building a Window by using the graphical XAML editor, but you may
eventually want to look at the XAML code to see what the editor has done. It often produces almost
but not quite what you want. For example, if you size and position a control by using click and drag,
the editor may set its Margin property to 10,10,11,9 when you really want 10,10,10,10 (or just 10).

It can also sometimes be hard to place controls exactly where you want them. You can fi x some of
these values in the Properties window, but sometimes it ’ s just easier to edit the XAML code directly.

XAML Features ❘ 195

c12.indd 195c12.indd 195 12/31/09 6:40:18 PM12/31/09 6:40:18 PM

196 ❘ CHAPTER 12 USING WPF CONTROLS

Resources

Example program Calculator, which is available for download on the
book ’ s web site, is shown in Figure 12 - 4. This program contains three
groups of buttons that use radial gradient backgrounds with similar
colors. The number buttons, +/ – , and the decimal point have yellow
backgrounds drawn with RadialGradientBrush objects. The CE, C,
and = buttons have blue backgrounds, and the operator buttons have green
backgrounds.

You could build each button separately, including the appropriate
RadialGradientBrush objects to give each button the correct background.
Suppose, however, you decide to change the color of all of the number
buttons from yellow to red. You would have to edit each of their 12
RadialGradientBrush objects to give them their new colors. In addition to
being a lot of work, those changes would give you plenty of chances to make mistakes. The changes
would be even harder if you decide to change the numbers of colors used by the brushes (perhaps
having the brush shade from yellow to red to orange), or if you want to use a completely different
brush for the buttons such as a LinearGradientBrush.

One of the ways XAML makes maintaining projects easier is by letting you defi ne resources.
You can then use the resources when defi ning objects. In this example, you can defi ne resources
to represent button backgrounds, and then use those resources to set each button ’ s Background
property. If you later need to change the background, you only need to update the resources.

The following code shows how the calculator application shown in Figure 12 - 4 creates a
LinearGradientBrush resource called brResult, which the program uses to draw the result text box
at the top. Ellipses show where code has been omitted to make it easier to read.

< Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="XamlCalculator"
 Height="292" Width="227" Focusable="True" >
 < Window.Resources >
 ...
 < LinearGradientBrush x:Key="brResult" StartPoint="0,0" EndPoint="1,1" >
 < GradientStop Color="LightBlue" Offset="0.0" / >
 < GradientStop Color="AliceBlue" Offset="1.0" / >
 < /LinearGradientBrush >
 ...
 < /Window.Resources >
 ...
< /Window >

code snippet Calculator

FIGURE 12-4: This

program uses resources

to simplify maintenance.

c12.indd 196c12.indd 196 12/31/09 6:40:20 PM12/31/09 6:40:20 PM

The Window element contains a Window.Resources tag that contains the resource defi nitions. The
LinearGradientBrush element defi nes the brush. One of this element ’ s more important attributes is
x:Key, which identifi es the brush for later use.

The following code shows how the calculator program defi nes the Label that displays calculation
results. The Background attribute refers to the resource brNumber.

< Label Name="lblResult"
 Background="{StaticResource brResult}"
 Grid.ColumnSpan="4"
 Margin="2,2,2,2"
 HorizontalContentAlignment="Right"
 VerticalContentAlignment="Center" > 0 < /Label >

code snippet Calculator

Later if you decide to change the background color for the result label, you only need to change the
defi nition of the brResult resource. This example only uses that resource for one label so you don ’ t
save a huge amount of work by defi ning a resource. The program ’ s buttons, however, reuse the same
resources many times. Instead of reusing the background resources directly, however, the buttons
use styles as described in the next section.

Styles

Resources make it easy to create many controls that share an attribute such as a background. Styles
take attributes a step further by allowing you to bundle multiple attributes into one package. For
example, you could defi ne a style that includes background, width, height, and font properties. Then
you could use the style to help defi ne controls.

You can also use styles to defi ne other styles. For example, you can make a base style to be applied
to every button in an application. Then you can derive other styles for different kinds of buttons
from the base style.

The following example defi nes a style named styAllButtons. It contains Setter elements that set
controls ’ properties. This style sets a control ’ s Focusable property to False and its Margin property
to 2,2,2,2.

< Style x:Key="styAllButtons" >
 < Setter Property="Control.Focusable" Value="false" / >
 < Setter Property="Control.Margin" Value="2,2,2,2" / >
< /Style >

code snippet Calculator

XAML Features ❘ 197

c12.indd 197c12.indd 197 12/31/09 6:40:21 PM12/31/09 6:40:21 PM

198 ❘ CHAPTER 12 USING WPF CONTROLS

The following code defi nes a style named styClear for the calculator ’ s C, CE, and = buttons:

< Style x:Key="styClear" BasedOn="{StaticResource styAllButtons}" >
 < Setter Property="Control.Background" Value="{StaticResource brClear}" / >
 < Setter Property="Grid.Row" Value="1" / >
 < Setter Property="Control.Margin" Value="2,20,2,2" / >
< /Style >

code snippet Calculator

The BasedOn attribute makes the new style start with the properties defi ned by styAllButtons. The
new style then uses two Setter elements to add new values for the Background (set to the brush
resource brClear) and Grid.Row properties (these buttons are all in row 1 in the calculator). It then
overrides the styAllButtons style ’ s value for the Margin property to increase the margin above
these buttons.

The following code shows how the program defi nes its C button. By setting the button ’ s style to
styClear, the code sets most of the button ’ s properties with a single statement. It then sets the
button ’ s Grid.Column property (those values are different for the C, CE, and = buttons) and
its content.

< Button Name="btnC"
 Style="{StaticResource styClear}"
 Grid.Column="1" > C < /Button >

code snippet Calculator

Styles let the program keep all of the common properties for a set of controls in a single location.
Now if you decided to change the color of the C, CE, and = buttons, you would only need to change
the defi nition of the brClear brush. If you wanted to change the brushes ’ margins, you would only
need to change the styClear style.

As the previous code shows, styles also keep the controls ’ defi nitions very simple.

Styles also let you easily change the controls ’ properties later. For example, if you later decide to
specify the font family and font size for the calculator ’ s C, CE, and = buttons, you only need to add
the appropriate Setter elements to styClear instead of adding a new property to every button. If you
want to set the font for every button in the program, you simply add the appropriate Setter elements
to styAllButtons and the other styles automatically pick up the changes.

c12.indd 198c12.indd 198 12/31/09 6:40:22 PM12/31/09 6:40:22 PM

Templates

Templates determine how controls are drawn and how they behave by default. For example, the
default button template makes buttons turn light blue when the mouse hovers over them. When you
press the button down, it grows slightly darker and shows a thin shadow along its upper and left
edges. By using Template elements, you can override these default behaviors.

The following code contained in the Window.Resources section defi nes a button template:

< Style TargetType="Button" >
 < Setter Property="Margin" Value="2,2,2,2" / >
 < Setter Property="Template" >
 < Setter.Value >
 < ControlTemplate TargetType="{x:Type Button}" >
 < Grid >
 < Polygon x:Name="pgnBorder"
 Stroke="Purple"
 StrokeThickness="5"
 Points="0.2,0 0.8,0 1,0.2 1,0.8 0.8,1 0.2,1 0,0.8 0,0.2"
 Stretch="Fill"
 Fill="{StaticResource brOctagonUp}" >
 < /Polygon >
 < ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" / >
 < /Grid >

 < !-- Triggers -- >
 < ControlTemplate.Triggers >
 < Trigger Property="IsMouseOver" Value="true" >
 < Setter TargetName="pgnBorder" Property="Stroke" Value="Black" / >
 < Setter TargetName="pgnBorder" Property="Fill"
 Value="{StaticResource brOctagonOver}" / >
 < /Trigger >
 < /ControlTemplate.Triggers >
 < /ControlTemplate >
 < /Setter.Value >
 < /Setter >
< /Style >

code snippet ButtonTemplate

The code begins with a Style element that contains two Setter elements. The fi rst Setter sets a
button ’ s Margin property to 2,2,2,2. The second Setter sets a Template property. The Setter ’ s value
is a ControlTemplate element targeted at Buttons.

The ControlTemplate contains a Grid that it uses to hold other elements. In this example, the Grid
holds a Polygon element named pgnBorder. The Points attribute lists the points used to draw the
polygon. Because the polygon ’ s Fill attribute is set to Stretch, the polygon is stretched to fi ll its
parent area, and Points coordinates are on a 0.0 to 1.0 scale within this area. The polygon ’ s Fill
attribute is set to the brOctagonUp brush defi ned elsewhere in the Window.Resources section
and not shown here. This is a RadialGradientBrush that shades from white in the center to
red at the edges.

XAML Features ❘ 199

c12.indd 199c12.indd 199 12/31/09 6:40:23 PM12/31/09 6:40:23 PM

200 ❘ CHAPTER 12 USING WPF CONTROLS

The ControlTemplate element also contains a Triggers section. The single Trigger element in this
section executes when the button ’ s IsMouseOver condition is true. When that happens, a Setter
changes the pgnBorder polygon ’ s Stroke property to Black. A second Setter sets the polygon ’ s Fill
property to another brush named brOctagonOver. This brush (which also isn ’ t shown here) shades
from red in the center to white at the edges.

Because this style does not have an x:Key attribute, it applies to any button in the Window that
doesn ’ t have a Style set explicitly.

Example program ButtonTemplate uses the following code to create its controls:

< Grid >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width="0.25*" / >
 < ColumnDefinition Width="0.25*" / >
 < ColumnDefinition Width="0.25*" / >
 < ColumnDefinition Width="0.25*" / >
 < /Grid.ColumnDefinitions >
 < Grid.RowDefinitions >
 < RowDefinition Height="0.50*" / >
 < RowDefinition Height="0.50*" / >
 < /Grid.RowDefinitions >
 < Button Name="btnOne" Content="One" Grid.Row="1" Grid.Column="0" / >
 < Button Name="btnTwo" Content="Two" Grid.Row="1" Grid.Column="1" / >
 < Button Name="btnThree" Content="Three" Grid.Row="1" Grid.Column="2" / >
 < Button Name="btnFour" Content="Four" Grid.Row="1" Grid.Column="3" / >

 < Button Name="btnClickMe" Content="Click Me"
 Style="{StaticResource styYellowButton}" / >
 < Button Name="btnYellow" Content="I'm Yellow"
 Style="{StaticResource styYellowButton}" Grid.Column="2" Grid.Row="0" / >
< /Grid >

code snippet ButtonTemplate

The Window contains a Grid that holds six buttons. The fi rst four buttons do not explicitly set their
Style, so they use the previously defi ned octagonal style.

The fi nal buttons set their Style attributes to styYellowButton (also defi ned in the Windows
.Resources section, but not shown here) so they display a yellow background. That style also
positions the button ’ s text in the upper center. When you hover the mouse over these buttons, they
switch to an orange background. If you press the mouse down on these buttons, they change to a
red background with white text that says “ Pushed! ”

Example program ButtonTemplate demonstrates this code. Download the example to see how the
triggers work.

Figure 12 - 5 shows the result. The mouse is hovering over the second button, so it displays the black
border and its background shades from red in the center to white at the edges.

c12.indd 200c12.indd 200 12/31/09 6:40:25 PM12/31/09 6:40:25 PM

TAME TEMPLATES

You can use templates to change the appearance and behavior of XAML objects to
give your applications distinctive appearances, but you probably shouldn ’ t get too
carried away. Although you can make buttons radically change their colors, shapes,
captions, and other characteristics when the user interacts with them, doing so may
be very distracting. Use templates to make your applications distinctive, but not
overwhelming.

Also be careful not to make controls hard for those with accessibility issues. For
example, if you use subtle color differences to distinguish button states, users with
impaired color vision or those who have trouble seeing small items may have trou-
ble using your program. Similarly using sounds to indicate state won ’ t help hearing
impaired users (and may annoy people sitting at nearby desks).

Transformations
Properties determine a control ’ s basic appearance, but you can further modify that appearance by
using a RenderTransform element. The following code creates a button that has been rotated 270
degrees. The Button.RenderTransform element contains a RotateTransform element that represents
the rotation.

< Button Name="btnSideways"
 Content="Sideways"
 Background="{StaticResource brButton}"
 Margin="-6,-6.5,0,0"
 Height="43"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Width="94" >
 < Button.RenderTransform >
 < RotateTransform Angle="270" CenterX="75" CenterY="50" / >
 < /Button.RenderTransform >
< /Button >

code snippet RotatedButtons

FIGURE 12-5: Templates let you change the appearance

and behavior of objects such as buttons.

XAML Features ❘ 201

c12.indd 201c12.indd 201 12/31/09 6:40:26 PM12/31/09 6:40:26 PM

202 ❘ CHAPTER 12 USING WPF CONTROLS

XAML also provides TranslateTransform and
ScaleTransform elements that let you translate and scale an
object. Example program RotatedButton, which is available
for download on the book ’ s web site and shown in Fig -
ure 12 - 6, uses transformations to draw several buttons that
have been rotated and scaled vertically and horizontally.

XAML also defi nes a TransformGroup element that you can
use to perform a series of transformations on an object. For
example, a TransformGroup would let you translate, scale,
rotate, and then translate an object again.

Animations

The section “ Templates ” earlier in this chapter shows how to use Triggers to make an object
change its appearance in response to events. For example, it shows how to make a button change its
background and border color when the mouse moves over it.

XAML also provides methods for scripting more complicated actions that take place over a defi ned
period of time. For example, you can make a button spin slowly for two seconds when the user
clicks it.

You use a trigger to start the animation and a Storyboard object to control it. A Storyboard contains
information about the state the animation should have at various times during the animation.

The SpinButton example program uses the following code to make a button rotate around its center
when it is clicked:

< Button Name="btnSpinMe" Content="Spin Me"
 Width="150" Height="100" >
 < Button.Background >
 < RadialGradientBrush
 Center="0.5,0.5"
 RadiusX="1.0" RadiusY="1.0" >
 < GradientStop Color="Yellow" Offset="0.0" / >
 < GradientStop Color="Orange" Offset="1.0" / >
 < /RadialGradientBrush >
 < /Button.Background >
 < Button.RenderTransform >
 < RotateTransform x:Name="rotButton" Angle="0" CenterX="75" CenterY="50" / >
 < /Button.RenderTransform >
 < Button.Triggers >
 < EventTrigger RoutedEvent="Button.Click" >
 < EventTrigger.Actions >
 < BeginStoryboard >
 < Storyboard
 Storyboard.TargetName="rotButton"
 Storyboard.TargetProperty="(RotateTransform.Angle)" >
 < DoubleAnimationUsingKeyFrames >
 < SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="0.0" / >
 < SplineDoubleKeyFrame KeyTime="0:0:00.2" Value="30.0" / >
 < SplineDoubleKeyFrame KeyTime="0:0:00.8" Value="330.0" / >

FIGURE 12-6: Buttons can be rotated

and scaled vertically and horizon-

tally by using RotateTransform and

ScaleTransform.

c12.indd 202c12.indd 202 12/31/09 6:40:28 PM12/31/09 6:40:28 PM

 < SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="360.0" / >
 < /DoubleAnimationUsingKeyFrames >
 < /Storyboard >
 < /BeginStoryboard >
 < /EventTrigger.Actions >
 < /EventTrigger >
 < /Button.Triggers >
< /Button >

code snippet SpinButton

Much of this code should seem familiar by now. The Button element ’ s attributes set its name,
contents, and size. A Background element fi lls the button with a RadialGradientBrush.

The Button element contains a RenderTransform element similar to the ones described in the
previous section. In this case, the transform is a RotateTransform with angle of rotation initially set
to 0 so that the button appears in its normal orientation. Its center is set to the middle of the button.
The transform is named rotButton so that other code can refer to it later.

After the transform element, the code contains a Triggers section. This section holds an
EventTrigger element that responds to the Button.Click routed event.

A routed event is a new kind of event developed for WPF. Routed events travel up and down
through a WPF application ’ s hierarchy of controls so interested controls can catch and process the
events. For simple purposes, however, a routed event behaves much like a Windows Forms event
does and you can catch it with a normal Visual Basic event handler. When the user clicks the button,
the Button.Click event fi res and this trigger springs into action.

The trigger ’ s Actions element contains the tasks that the trigger should perform when it runs. In this
example, the trigger performs the BeginStoryboard action. Inside the BeginStoryboard element is a
Storyboard element that represents the things that the storyboard should do.

STORYBOARD START

When I see “ BeginStoryboard, ” I think of the beginning of a storyboard. Actually,
this element more properly means “ start the storyboard. ” When this element
executes, it starts the storyboard running. (The name “ ExecuteStoryboard ” or
“ PlayStoryboard ” might have been more intuitive.)

The Storyboard element ’ s TargetName attribute gives the target object on which the storyboard
should act, in this case the RotateTransform object named rotButton. The TargetProperty attribute
tells what property of the target button the storyboard should manipulate, in this example the
object ’ s Angle property.

The Storyboard element contains a DoubleAnimationUsingKeyFrames element. A key frame is
specifi c point in an animation sequence with known values. The program calculates values between
the key frame values to make the animation smooth.

XAML Features ❘ 203

c12.indd 203c12.indd 203 12/31/09 6:40:28 PM12/31/09 6:40:28 PM

204 ❘ CHAPTER 12 USING WPF CONTROLS

This DoubleAnimationUsingKeyFrames element holds a collection of SplineDoubleKeyFrame
elements that defi ne the animation ’ s key values. Each key frame gives its time in the animation in
hours, minutes, and seconds, and the value that the controlled property should have at that point
in the animation. In this example, the rotation transformation ’ s angle should have a value of
0 when the storyboard starts, a value of 30 when the animation is 20 percent complete, a value
of 330 when the storyboard is 80 percent complete, and a value of 360 when the storyboard fi nishes.
The result is that the button rotates slowly for the fi rst 0.2 seconds, spins relatively quickly for the
next 0.6 seconds, and then fi nishes rotating at a more leisurely pace.

Example program SpinButton animates a single property, the button ’ s angle of rotation, but you
can animate more than one property at the same time if you like. Program SpinAndGrowButton
simultaneously animates a button ’ s angle of rotation and size. This example has two key differences
from program SpinButton.

First, the new button ’ s RenderTransform element contains a TransformGroup that contains
two transformations, one that determines the button ’ s angle of rotation and one that determines
its scaling:

< Button.RenderTransform >
 < TransformGroup >
 < RotateTransform x:Name="rotButton" Angle="0" CenterX="50" CenterY="25" / >
 < ScaleTransform x:Name="scaButton" ScaleX="1" ScaleY="1"
 CenterX="50" CenterY="25" / >
 < /TransformGroup >
< /Button.RenderTransform >

code snippet SpinAndGrowButton

The second difference is in the new button ’ s Storyboard. The following code omits the animation ’ s
TargetName and TargetProperty from the Storyboard element ’ s attributes. It includes three
DoubleAnimationUsingKeyFrame elements inside the Storyboard, and it is there that it sets the
TargetName and TargetProperty. The three animations update the button ’ s angle of rotation,
horizontal scale, and vertical scale.

< Storyboard >
 < !-- Rotate -- >
 < DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="rotButton"
 Storyboard.TargetProperty="(RotateTransform.Angle)" >
 < SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="0.0" / >
 < SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="360.0" / >
 < /DoubleAnimationUsingKeyFrames >

 < !-- ScaleX -- >
 < DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="scaButton"
 Storyboard.TargetProperty="(ScaleTransform.ScaleX)" >
 < SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="1.0" / >
 < SplineDoubleKeyFrame KeyTime="0:0:00.5" Value="2.0" / >

c12.indd 204c12.indd 204 12/31/09 6:40:30 PM12/31/09 6:40:30 PM

 < SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="1.0" / >
 < /DoubleAnimationUsingKeyFrames >

 < !-- ScaleY -- >
 < DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="scaButton"
 Storyboard.TargetProperty="(ScaleTransform.ScaleY)" >
 < SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="1.0" / >
 < SplineDoubleKeyFrame KeyTime="0:0:00.5" Value="2.0" / >
 < SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="1.0" / >
 < /DoubleAnimationUsingKeyFrames >
< /Storyboard >

code snippet SpinAndGrowButton

By using XAML Storyboards, you can build complex animations that run when certain events
occur. As with templates, however, you should use some restraint when building storyboard
animations. A few small animations can make an application more interesting, but too many large
animations can distract and annoy the user.

Drawing Objects

WPF provides several objects for drawing two - dimensional shapes. The following sections
summarize the most useful of these objects: Line, Ellipse, Rectangle, Polygon, Polyline, and Path.

Line

The Line object draws a straight line between two points. The X1, Y1, X2, and Y2 attributes
determine the line ’ s endpoints. The following code draws a line from (10, 10) to (90, 90) and
another from (90, 10) to (10, 90):

< Line X1="10" Y1="10" X2="90" Y2="90"
 Grid.Column="0" Grid.Row="1"
 Stroke="Blue" StrokeThickness="10"
 StrokeStartLineCap="Round" StrokeEndLineCap="Round" / >
< Line X1="90" Y1="10" X2="10" Y2="90"
 Grid.Column="0"
 Grid.Row="1" Stroke="Blue" StrokeThickness="10"
 StrokeStartLineCap="Round" StrokeEndLineCap="Round" / >

code snippet Shapes

The Stroke and StrokeThickness attributes determine the lines ’ color and thickness.

The StrokeStartLineCap and StrokeEndLineCap attributes determine the appearance of the lines ’
start and end points. This example draws rounded end caps.

XAML Features ❘ 205

c12.indd 205c12.indd 205 12/31/09 6:40:31 PM12/31/09 6:40:31 PM

206 ❘ CHAPTER 12 USING WPF CONTROLS

Ellipse

The Ellipse object draws an ellipse. The following code draws an ellipse fi lled with a
LinearGradientBrush:

< Ellipse Margin="2,20,2,20"
 Grid.Column="2" Grid.Row="0"
 Stroke="Orange" StrokeThickness="5" >
 < Ellipse.Fill >
 < LinearGradientBrush
 StartPoint="0,0"
 EndPoint="1,0" >
 < GradientStop Color="Green" Offset="0.0" / >
 < GradientStop Color="White" Offset="0.5" / >
 < GradientStop Color="Green" Offset="1.0" / >
 < /LinearGradientBrush >
 < /Ellipse.Fill >
< /Ellipse >

code snippet Shapes

Rectangle

The Rectangle object draws a rectangle. The syntax is similar to that used to draw ellipses. The
following code draws a rectangle fi lled with a LinearGradientBrush:

< Rectangle Margin="2,20,2,20"
 Grid.Column="2" Grid.Row="0"
 Stroke="Orange" StrokeThickness="5" >
 < Rectangle.Fill >
 < LinearGradientBrush
 StartPoint="0,0"
 EndPoint="1,0" >
 < GradientStop Color="Green" Offset="0.0" / >
 < GradientStop Color="White" Offset="0.5" / >
 < GradientStop Color="Green" Offset="1.0" / >
 < /LinearGradientBrush >
 < /Rectangle.Fill >
< /Rectangle >

This code is exactly the same as the ellipse code except it uses the keyword Rectangle instead
of Ellipse.

Polygon

The Polygon object draws a closed polygon. Its Points attribute lists the points that should be
connected. The Polygon object automatically closes its fi gure by connecting the fi nal point to the
fi rst point.

c12.indd 206c12.indd 206 12/31/09 6:40:32 PM12/31/09 6:40:32 PM

The following code draws the four - pointed star:

< Polygon Margin="0,0,0,0"
 Grid.Column="0" Grid.Row="0"
 Points="10,10 50,40 90,10 60,50 90,90 50,60 10,90 40,50"
 Fill="LightBlue"
 Stroke="Red" StrokeThickness="3" / >

code snippet Shapes

Polyline

The Polyline object is similar to the Polygon object, except that it does not automatically close the
drawing by connecting the fi nal point to the fi rst point.

The following code draws a series of four dashed lines:

< Polyline Margin="0,0,0,0"
 Grid.Column="1" Grid.Row="0"
 Points="20,20 40,40 60,30 90,90 30,70"
 Stroke="Black" StrokeLineJoin="Round"
 StrokeThickness="3"
 StrokeDashArray="2,1,2,3" / >
 < Ellipse Margin="2,20,2,20"
 Grid.Column="2" Grid.Row="0"
 Stroke="Orange" StrokeThickness="5" >
 < Ellipse.Fill >
 < LinearGradientBrush
 StartPoint="0,0"
 EndPoint="1,0" >
 < GradientStop Color="Green" Offset="0.0" / >
 < GradientStop Color="White" Offset="0.5" / >
 < GradientStop Color="Green" Offset="1.0" / >
 < /LinearGradientBrush >
 < /Ellipse.Fill >
 < /Ellipse >

code snippet Shapes

This code demonstrates a few additional features of line drawing in general. The StrokeLine
Join attribute determines how lines are connected. In this example, the lines are joined with
rounded corners.

The StrokeDashArray attribute determines the lines ’ dash pattern. The numbers indicate the
number of units the line draws and skips. In this example, the value 2,1,2,3 means the line draws 2
units, skips 1 unit, draws 2 units, and skips 3 units. Each unit represents the line ’ s width.

Path

The Path object draws a series of shapes such as lines, arcs, and curves. A Path object can be
incredibly complex, and can include any of the other drawing objects plus a few others that draw
smooth curves.

XAML Features ❘ 207

c12.indd 207c12.indd 207 12/31/09 6:40:32 PM12/31/09 6:40:32 PM

208 ❘ CHAPTER 12 USING WPF CONTROLS

You can defi ne a Path object in two ways. First, you can make the Path element contain other
elements (Line, Ellipse, and so forth) that defi ne objects drawn by the path.

The second (and more concise) method is to use the Path element ’ s Data attribute. This is a text
attribute that contains a series of coded commands for drawing shapes. For example, the following
code makes the Path move to the point (20, 20), and then draw to connect the following points (80,
20), (50, 60), (90, 100), and (50, 120):

< Path Stroke="Gray" StrokeThickness="5" Grid.Column="1" Grid.Row="1"
 Data="M 20,20 L 80,20 50,60 90,100 50,120" / >

You can use spaces or commas to separate point coordinates. To make it easier to read the code, you
may want to use commas between a point ’ s X and Y coordinates and spaces between points, as in
the previous example.

Some commands allow both uppercase and lowercase command letters. For those commands, the
lowercase version means that the following points ’ coordinates are relative to the previous points ’
coordinates. For example, the following data makes the object move to the point (10, 20) and then
draws to the absolute coordinates (30, 40):

Data="M 10,20 L 30,40"

In contrast, the following data moves to the point (10, 20) as before, but then moves distance (30, 40)
relative to the current position. The result is that the line ends at point (10 + 30, 20 + 40) = (40, 60).

Data="M 10,20 l 30,40"

There isn ’ t enough room for a complete discussion of the Path object, but the following table
summarizes the commands that you can include in the Data attribute.

COMMAND RESULT EXAMPLE

F0 Sets the fi ll rule to the odd/even rule. F0

F1 Sets the fi ll rule to the non - zero rule. F1

M or m Moves to the following point without drawing. M 10,10

L or l Draws a line to the following point(s). L 10,10 20,20 30,10

H or h Draws a horizontal line from the current point to the given

X coordinate.

h 50

V or v Draws a vertical line from the current point to the given Y

coordinate.

v 30

C or c Draws a cubic Bezier curve. This command takes three

points as parameters: two control points and an endpoint.

The curve starts at the current point moving toward the

fi rst control point. It ends at the endpoint, coming from the

direction of the second control point.

C 20,20 60,0 50,50

c12.indd 208c12.indd 208 12/31/09 6:40:33 PM12/31/09 6:40:33 PM

COMMAND RESULT EXAMPLE

S or s . Draws a smooth cubic Bezier curve. This command takes

two points as parameters: a control point and an endpoint.

The curve defi nes an initial control point by refl ecting the

second control point used by the previous S command,

and then uses it plus its two points to draw a cubic Bezier

curve. This makes a series of Bezier curves join smoothly.

S 60,0 50,50 S 80,60

50,70

Q or q Draws a quadratic Bezier curve. This command takes two

points as parameters: a control point and an endpoint. The

curve starts at the current point moving toward the control

point. It ends at the endpoint, coming from the direction of

the control point.

Q 80,20 50,60

T or t Draws a smooth cubic Bezier curve. This command takes

one point as a parameter: an endpoint. The curve defi nes

a control point by refl ecting the control point used by

the previous T command, and then uses it to draw a

quadratic Bezier curve. The result is a smooth curve that

passes through each of the points given as parameters to

successive T commands.

T 80,20 T 50,60 T

90,100

A or a Draws an elliptical arc. This command takes fi ve

parameters:

A 50,20 0 1 0 60,80

size — The X and Y radii of the arc

rotation_angle — The ellipse ’ s angle of rotation

large_angle — 0 if the arc should span less than 180; 1 if

the arc should span 180 degrees or more

sweep_direction — 0 if the arc should sweep

counterclockwise; 1 if it should sweep clockwise

end_point — The point where the arc should end

Z or z Closes the fi gure by drawing a line from the current point

to the Path ’ s starting point.

Z

Example program Shapes, which is available for download on the book ’ s web site, demonstrates
several different Path objects.

Example program BezierCurves, shown in Figure 12 - 7, shows examples of the four different kinds
of Bezier curves. This program also draws a gray polyline to show the curves ’ parameters.

XAML Features ❘ 209

c12.indd 209c12.indd 209 12/31/09 6:40:34 PM12/31/09 6:40:34 PM

210 ❘ CHAPTER 12 USING WPF CONTROLS

The cubic Bezier curve on the left connects the two endpoints using the two middle points to
determine the curve ’ s direction at the endpoints.

The smooth cubic Bezier curve shown next passes through the fi rst, third, and fi fth points. The
second point determines the curve ’ s direction as it leaves the fi rst point and as it enters the third
point. The curve automatically defi nes a control point to determine the direction leaving the third
point, so the curve passes through the point smoothly. Finally, the fourth point determines the
curve ’ s direction as it ends at the fi fth point.

The next curve shows two quadratic Bezier curves. The fi rst curve connects the fi rst and third
points with the second point determining the curve ’ s direction at both points. The second curve
connects the third and fi fth points, using the fourth to determine its direction.

The fi nal curve in Figure 12 - 7 uses an M command to move to the point (20, 20). It then uses three
smooth quadratic Bezier curves to connect the following three points. The curve automatically
defi nes the control points it needs to connect the points smoothly.

With all of these drawing objects at your disposal, particularly the powerful Path object, you can
draw just about anything you need. The graphical XAML editor does not provide interactive tools
for drawing shapes, but you can draw them by using the XAML text editor. It may help to sketch
out what you want to draw on graph paper fi rst.

PROCEDURAL WPF

The previous sections explain how to use XAML to build WPF windows. By using XAML, you can
defi ne controls, resources, styles, templates, transformations, and even animations.

Behind the scenes, an application reads the XAML code, and then builds corresponding controls
and other objects to make the user interface. Often, it ’ s easiest to build forms by using the XAML
editor, but if necessary, your Visual Basic code can build exactly the same objects.

FIGURE 12-7: The Path object can draw Bezier curves.

c12.indd 210c12.indd 210 12/31/09 6:40:35 PM12/31/09 6:40:35 PM

KEEP YOUR DISTANCE

Usually you should build the interface with XAML to increase the separation
between the user interface and the code. However, it may sometimes be easier to
build dynamic elements in code (for example, in response to data loaded at run-
time, inputs from the user, or in response to errors).

For example, the following Visual Basic code adds a button to a WPF form:

' The button we will build.
Private WithEvents btnClickMe As Button

' Build the user interface.
Private Sub Window1_Loaded() Handles Me.Loaded
 ' Get the window's default Grid.
 Dim grd As Grid = DirectCast(Me.Content, Grid)

 ' Add a Button.
 btnClickMe = New Button()
 btnClickMe.Content = "Click Me"
 btnClickMe.Margin = New Thickness(5)
 grd.Children.Add(btnClickMe)
End Sub

' The user clicked the button.
Private Sub btnClickMe_Click() Handles btnClickMe.Click
 MessageBox.Show("Clicked!")
End Sub

The code starts by converting the window ’ s Content property into a Grid object. It then creates a
Button, sets a couple of properties for it, and adds it to the Grid control ’ s Children collection.

The Button control ’ s variable is declared at the module level and includes the WithEvents keyword
so it is easy to catch the button ’ s Click event.

Example program ProceduralAnimatedButton uses Visual Basic code to implement several of the
techniques described earlier using XAML code. It creates a brush object and uses it to defi ne a Style
for buttons. It then creates three Buttons using that Style.

When the mouse moves over a button, the program ’ s code builds and plays an animation
to enlarge the button. When the mouse moves off of the button, the code restores the button to its
original size.

Procedural WPF ❘ 211

c12.indd 211c12.indd 211 12/31/09 6:40:35 PM12/31/09 6:40:35 PM

212 ❘ CHAPTER 12 USING WPF CONTROLS

The following code builds the user interface objects when the program ’ s window loads:

Private WithEvents btnCenter As Button
Private Const BIG_SCALE As Double = 1.5

Private Sub Window1_Loaded() Handles Me.Loaded
 ' Make a style for the buttons.
 Dim br_button As New RadialGradientBrush(_
 Colors.HotPink, Colors.Red)
 br_button.Center = New Point(0.5, 0.5)
 br_button.RadiusX = 1
 br_button.RadiusY = 1

 Dim style_button As New Style(GetType(Button))
 style_button.Setters.Add(New Setter(Control.BackgroundProperty, _
 br_button))
 style_button.Setters.Add(New Setter(Control.WidthProperty, CDbl(70)))
 style_button.Setters.Add(New Setter(Control.HeightProperty, CDbl(40)))
 style_button.Setters.Add(New Setter(Control.MarginProperty, _
 New Thickness(5)))

 ' Set the transform origin to (0.5, 0.5).
 style_button.Setters.Add(New Setter(_
 Control.RenderTransformOriginProperty, New Point(0.5, 0.5)))

 ' Make a StackPanel to hold the buttons.
 Dim stack_panel As New StackPanel()
 stack_panel.Margin = New Thickness(20)

 ' Add the Left button.
 Dim btn_left As Button
 btn_left = New Button()
 btn_left.Style = style_button
 btn_left.Content = "Left"
 btn_left.RenderTransform = New ScaleTransform(1, 1)
 btn_left.SetValue(_
 StackPanel.HorizontalAlignmentProperty, _
 Windows.HorizontalAlignment.Left)
 AddHandler btn_left.MouseEnter, AddressOf btn_MouseEnter
 AddHandler btn_left.MouseLeave, AddressOf btn_MouseLeave
 stack_panel.Children.Add(btn_left)

 ' Make the Center button.
 btnCenter = New Button()
 btnCenter.Style = style_button
 btnCenter.Content = "Center"
 btnCenter.RenderTransform = New ScaleTransform(1, 1)
 btnCenter.SetValue(_
 StackPanel.HorizontalAlignmentProperty, _
 Windows.HorizontalAlignment.Center)
 AddHandler btnCenter.MouseEnter, AddressOf btn_MouseEnter
 AddHandler btnCenter.MouseLeave, AddressOf btn_MouseLeave
 stack_panel.Children.Add(btnCenter)

c12.indd 212c12.indd 212 12/31/09 6:40:36 PM12/31/09 6:40:36 PM

 ' Make the Right button.
 Dim btn_right As New Button
 btn_right.Style = style_button
 btn_right.Content = "Right"
 btn_right.RenderTransform = New ScaleTransform(1, 1)
 btn_right.SetValue(_
 StackPanel.HorizontalAlignmentProperty, _
 Windows.HorizontalAlignment.Right)
 AddHandler btn_right.MouseEnter, AddressOf btn_MouseEnter
 AddHandler btn_right.MouseLeave, AddressOf btn_MouseLeave
 Stack_panel.Children.Add(btn_right)

 Me.Content = stack_panel
End Sub

code snippet ProcedurallyAnimatedButton

This code starts by declaring a Button control using the WithEvents keyword. The program makes
three buttons, but only catches the Click event for this one. The code also defi nes a constant that
determines how large the button will grow when it enlarges.

When the window loads, the code creates a RadialGradientBrush and defi nes its properties. It then
creates a Style object that can apply to Button objects. It adds several Setter objects to the Style to
set a Button control ’ s Background, Width, Height, Margin, and RenderTransformOrigin properties.

Next, the code creates a StackPanel object. This will be the window ’ s main control and will replace
the Grid control that Visual Studio creates by default.

The program then makes three Button objects. It sets various Button properties, including
setting the Style property to the Style object created earlier. It also sets each Button control ’ s
RenderTransform property to a ScaleTransform object that initially scales the Button by a factor of
1 vertically and horizontally. It will later use this transformation to make the Button grow
and shrink.

The code uses each Button control ’ s SetValue method to set its HorizontalAlignment property
for the StackPanel. The code uses AddHandler to give each Button an event handler for its
MouseEnter and MouseLeave events. Finally, the code adds the Button controls to the StackPanel ’ s
Children collection.

The window ’ s Loaded event handler fi nishes by setting the window ’ s Content property to the new
StackPanel containing the Button controls.

The following code shows how the program responds when the mouse moves over a Button:

' The mouse moved over the button.
' Make it larger.
Private Sub btn_MouseEnter(ByVal btn As Button, _
 ByVal e As System.Windows.Input.MouseEventArgs)
 ' Get the button's transformation.
 Dim scale_transform As ScaleTransform = _
 DirectCast(btn.RenderTransform, ScaleTransform)

 ' Create a DoubleAnimation.

Procedural WPF ❘ 213

c12.indd 213c12.indd 213 12/31/09 6:40:37 PM12/31/09 6:40:37 PM

214 ❘ CHAPTER 12 USING WPF CONTROLS

 Dim ani As New DoubleAnimation(1, BIG_SCALE, _
 New Duration(TimeSpan.FromSeconds(0.15)))

 ' Create a clock for the animation.
 Dim ani_clock As AnimationClock = ani.CreateClock()

 ' Associate the clock with the transform's
 ' ScaleX and ScaleY properties.
 scale_transform.ApplyAnimationClock(_
 ScaleTransform.ScaleXProperty, ani_clock)
 scale_transform.ApplyAnimationClock(_
 ScaleTransform.ScaleYProperty, ani_clock)
End Sub

code snippet ProcedurallyAnimatedButton

This code fi rst gets the button ’ s ScaleTransform object. It then creates a DoubleAnimation
object to change a value from 1 to the BIG_SCALE value (defi ned as 1.5 in the earlier Const
statement) over a period of 0.15 seconds. It uses the object ’ s CreateClock statement to make an
AnimationClock to control the animation. Finally, the code calls the ScaleTransformation object ’ s
ApplyAnimationClock method twice, once for its horizontal and vertical scales. The result is
that the Button control ’ s ScaleTransform object increases the Button control ’ s scale vertically and
horizontally.

The btn_MouseLeave event handler is very similar, except that it animates the Button controls ’ scale
values shrinking from BIG_SCALE to 1.

Example program GrowingButtons uses a similar technique to enlarge and shrink Button controls.
Instead of using a simple DoubleAnimation to enlarge the Button controls, however, it uses
DoubleAnimationUsingKeyFrames. This object lets you defi ne a series of values that the animation
should visit.

The following code shows how this program ’ s MouseEnter event handler works:

Private Const BIG_SCALE As Double = 1.75
Private Const END_SCALE As Double = 1.5

Private Sub btn_MouseEnter(ByVal btn As Button, _
 ByVal e As System.Windows.Input.MouseEventArgs)
 ' Get the button's transformation.
 Dim scale_transform As ScaleTransform = _
 DirectCast(btn.RenderTransform, ScaleTransform)

 ' Create a DoubleAnimation that first
 ' makes the button extra big and then
 ' shrinks it to the "normal" big size.
 Dim ani As New DoubleAnimationUsingKeyFrames()
 Dim fr1 As New SplineDoubleKeyFrame(1.0, KeyTime.FromPercent(0.0))
 Dim fr2 As New SplineDoubleKeyFrame(BIG_SCALE, KeyTime.FromPercent(0.5))
 Dim fr3 As New SplineDoubleKeyFrame(END_SCALE, KeyTime.FromPercent(1.0))
 ani.KeyFrames.Add(fr1)
 ani.KeyFrames.Add(fr2)

c12.indd 214c12.indd 214 12/31/09 6:40:38 PM12/31/09 6:40:38 PM

 ani.KeyFrames.Add(fr3)
 ani.Duration = New Duration(TimeSpan.FromSeconds(0.33))

 ' Create a clock for the animation.
 Dim ani_clock As AnimationClock = ani.CreateClock()
 'Dim ani_clock As AnimationClock = ani.CreateClock()

 ' Associate the clock with the transform's
 ' ScaleX and ScaleY properties.
 scale_transform.ApplyAnimationClock(_
 ScaleTransform.ScaleXProperty, ani_clock)
 scale_transform.ApplyAnimationClock(_
 ScaleTransform.ScaleYProperty, ani_clock)

 ' Pop the button to the top of the stacking order.
 grdMain.Children.Remove(btn)
 grdMain.Children.Add(btn)
End Sub

code snippet GrowingButtons

Instead of simply growing the Button ’ s scale factors from 1 to 1.5, the animation fi rst makes
the Button grow by a factor of 1.75, and then shrink to a growth factor of 1.5. This overshoot
gives the Button a cartoon - like style that is popular in some user interfaces.

After it fi nishes animating the Button, the code removes the Button from the main Grid control ’ s
Children collection, and then re - adds it to the collection to make the Button appear above the other
Buttons so it covers parts of its neighbors.

Figure 12 - 8 shows example program GrowingButtons in action with the mouse resting over the
Tuesday button.

FIGURE 12-8: Program GrowingButtons uses Visual

Basic code to animate buttons.

Other examples available for download on the book ’ s web site demonstrate other procedural
WPF techniques. For example, program ProceduralCalculator builds a calculator similar to the
one shown in Figure 12 - 4, but it builds its user interface in Visual Basic code. Example program
GridButtonCode uses Visual Basic code to build a button that holds a grid similar to the one shown
in Figure 12 - 1.

Procedural WPF ❘ 215

c12.indd 215c12.indd 215 12/31/09 6:40:39 PM12/31/09 6:40:39 PM

216 ❘ CHAPTER 12 USING WPF CONTROLS

DOCUMENTS

WPF includes three different kinds of documents: fl ow documents, fi xed documents, and XPS
(XML Paper Specifi cation) documents. These different kinds of documents provide support for
high - end text and printing capabilities.

For example, fi xed documents allow you to generate a document that keeps the same layout whether
it is viewed on a monitor, printed at low - resolution, or printed at a very high - resolution. On each
device, the document uses the features available on that device to give the best result possible.

Each of these three kinds of documents is quite complex so there isn ’ t room to do them justice here.
However, the following three sections provide an overview and give brief examples.

Flow Documents

Flow documents are designed to display as much data as possible in the best way possible,
depending on runtime constraints such as the size of the control displaying the document. If the
control grows, the document rearranges its contents to take advantage of the new available space. If
the control shrinks, the document again rearranges its contents to fi t the available space. The effect
sort of mimics the way a web browser behaves, rearranging the objects it displays as it is resized.

The WPF FlowDocument control represents a fl ow document. The FlowDocument can contain four
basic content elements: List, Section, Paragraph, and Table. These have rather obvious purposes: to
display data in a list, group data in a section, group data in a paragraph, or display data in a table.

Although the main emphasis of these elements is on text, they can contain other objects. For
example, a Paragraph can contain controls such as Button, Label, TextBox, and Grid controls. It
can also contain shapes such as Polygon, Ellipse, and Path.

A fi fth content element, BlockUIElement, can hold user interface controls such a Button, Label, and
TextBox. A BlockUIElement can hold only one child, but if that child is a container such as a Grid
or StackPanel it may contain other controls.

WMF provides three types of objects for displaying FlowDocuments: FlowDocumentReader,
FlowDocumentPageViewer, and FlowDocumentScrollViewer.

The FlowDocumentReader lets the user pick from three different viewing modes: single page, book
reading, and scrolling. In single page mode , the reader displays the document one page at a time.
The object determines how big to make a page based on its size. If the reader is wide enough, it will
display the FlowDocument in two or more columns, although it still considers its surface to hold a
single page at a time, even if that page uses several columns.

In book reading mode , the reader displays two pages at a time. The object divides its surface into
left and right halves, and fi lls each with a “ page ” of data. The reader always displays two pages, no
matter how big or small it is.

In scrolling mode , the reader displays all of the document ’ s contents in a single long page, and it
provides a scroll bar to allow the user to scroll down through the document. This is similar to the
way web browsers handle a very tall web page.

c12.indd 216c12.indd 216 12/31/09 6:40:39 PM12/31/09 6:40:39 PM

Example program UseFlowDocumentReader, shown in Figure 12 - 9 and available for download on
the book ’ s web site, shows a FlowDocumentReader object displaying a document in book reading
mode. The program ’ s View menu lets you change the viewing mode.

FIGURE 12-9: This FlowDocumentReader is using book reading mode.

This program demonstrates several useful features of FlowDocument objects. The section headers
are contained in Paragraph objects that use a Style that defi nes their font. If you wanted to change
the appearance of all of the headers, you would only need to change the Style.

The FlowDocument uses a LinearGradientBrush that shades from black to gray as the text moves
left to right. (The effect is more striking on a monitor if you use a colored gradient.)

The document contains a table in its fi rst section, Button and TextBox controls, an Ellipse, and a
Grid that holds a Polygon. It uses the Floater element to allow another Grid containing a Polygon
and a text caption to fl oat to a position where it will fi t nicely in the display. The document also
holds a list, one item of which contains a Polygon drawing a triangle.

The bottom of the FlowDocumentReader displays a toolbar. If you click the magnifying glass
button on the left, a search text box appears next to it. You can enter text to search for, and the
reader will let you scroll back and forth through any matches.

In the middle of the toolbar, the reader displays the current page number and the total number of
pages. The three buttons to the right let the user select the single page, book reading, and scrolling
views. Finally, the slider on the lower right lets the user adjust the document ’ s scale to zoom in or out.

Documents ❘ 217

c12.indd 217c12.indd 217 12/31/09 6:40:40 PM12/31/09 6:40:40 PM

218 ❘ CHAPTER 12 USING WPF CONTROLS

The FlowDocumentPageViewer and FlowDocumentScrollViewer objects behave as the
FlowDocumentReader does in its single page and scrolling modes, respectively. (The big difference
is that FlowDocumentReader can display documents in several modes while the others use only
one. If you want to allow the reader more options, use FlowDocumentReader. If you want to restrict
the view available, use one of the other kinds of viewers.)

Example programs UseFlow DocumentPageViewer and UseFlowDocumentScrollViewer, which are
available for download on the book ’ s web site, demonstrate these controls.

If you display a FlowDocument element itself, it acts as a FlowDocumentReader.
See example program UseFlowDocument, which is available for download on
the book ’ s web site.

Fixed Documents

A FixedDocument represents a document that should always be displayed exactly as it was
originally composed. Whereas a FlowDocument rearranges its content to take advantage of its
current size, all of the content in a FixedDocument remains where it was originally placed. If a
FlowDocument is similar to a web browser, then a FixedDocument is similar to an Adobe Acrobat
PDF document.

The FixedDocument object contains one or more PageContent objects, each containing a FixedPage
object. It is in the FixedPage object that you place your content. You can use the usual assortment of
containers to arrange controls and other objects inside the FixedPage object.

A program can use a DocumentViewer to display a FixedDocument. The DocumentViewer provides
tools to let the user print, zoom in and out, size the document to fi t the viewer, display the document
in one - or two - page modes, and search for text within the document.

Example program UseFixedDocument, which is available for download on the book ’ s web site,
displays a FixedDocument inside a DocumentViewer.

XPS Documents

In addition to fl ow documents and fi xed documents, WPF also defi nes a third kind of document
called XML Paper Specifi cation (XPS) documents. XPS is an XML - based open standard used to
represent fi xed documents.

An XPS document is stored in a fi le called a package . The package is made up of pieces called
parts . Physically, the parts are arranged as fi les and folders. When you save the document to disk,
it is stored as a ZIP - compressed collection of these physical fi les and folders. If you change the
fi le ’ s extension from .xps to .zip, you can read the fi les using any ZIP - enabled viewer. For example,
Windows Explorer will let you browse through the ZIP fi le.

Logically, the document ’ s parts form a hierarchical representation of the document. (Remember that
the document uses an XML format, and XML is hierarchical, so the document is also hierarchical.)
The document itself may contain a FixedDocumentSequence object that contains one or more

c12.indd 218c12.indd 218 12/31/09 6:40:40 PM12/31/09 6:40:40 PM

FixedDocument objects. The FixedDocument objects are similar to the ones described in the
previous section, so they can hold container controls that contain any number of objects arranged in
a hierarchical way.

In addition to the features provided by FixedDocuments, XPS documents also allow you to digitally
sign the package. That tells others that you signed it, gives them the time and date that you signed
it, and ensures that the document has not been modifi ed since then. A document can contain
more than one signature and you can provide different levels of security on different parts of the
document. For example, you could prevent others from changing the document ’ s body, but allow
them to add annotations.

Like the other new WPF document objects, XPS documents are quite complex, and there isn ’ t room
to do them justice here. See Microsoft ’ s online help (msdn2.microsoft.com/system.windows.xps
and www.microsoft.com/whdc/xps/xpsspec.mspx are good places to start) and search the Web
for more detailed information and examples.

Note that many of the WPF examples scattered around the Web were written in
early betas and no longer work exactly as they were originally posted. You may
need to perform some conversions to make them work properly.

SUMMARY

One of the main goals of WPF is to separate the user interface more completely from the code
behind it. XAML lets you declaratively build a user interface, and then later add code to handle the
events that any Windows application needs to perform. Because the user interface is separate from
the code, you can assign different developers to work on each of them. You can have a graphics
designer use a graphical XAML editor to build the user interface, and have a Visual Basic developer
write the underlying code. Later, the graphical designer can modify the user interface without
forcing you to rewrite the code.

WPF also includes hundreds of new objects for defi ning user interfaces. These objects let you build
windows that take advantage of modern computer graphics hardware, and can provide advanced
features such as translucency and rotated controls. New drawing objects produce complex graphics
in two and three dimensions.

Resources and styles let you customize objects so that they are easy to change in a central location.
Triggers, animations, and storyboards let the interface interact with the user at a very high level, so
the bulk of your code doesn ’ t need to handle these more cosmetic chores.

New document objects let you display information that can fl ow to take best advantage of the
available space, or that remain in fi xed positions on any display device. Powerful document viewers
let users scroll through documents, zoom in and out, print, and copy data to the clipboard.

WPF provides a huge number of powerful new features, and this chapter barely scratches the
surface.

Summary ❘ 219

c12.indd 219c12.indd 219 12/31/09 6:40:42 PM12/31/09 6:40:42 PM

220 ❘ CHAPTER 12 USING WPF CONTROLS

In Windows Forms applications, Form objects play a special role. They represent the top - level user
interface components in which all other controls reside.

In a WPF application, the situation is a little less obvious. A top - level object in a WPF application
can be a Window, which roughly corresponds to a Form, but it can also be a Page, PageFunction, or
FlowDocument. Chapter 13, “ WPF Windows, ” describes the Windows class and these other top -
level classes, and explains their special roles in WPF applications.

c12.indd 220c12.indd 220 12/31/09 6:40:44 PM12/31/09 6:40:44 PM

13
WPF Windows

In Windows Forms applications, Form objects play a special role. They represent the
top - level user interface components in which all other controls reside. Ignoring behind - the -
scenes chores such as parsing command - line arguments and messing with the operating
system, a typical Windows Forms application starts by displaying a Form object. That Form
may provide buttons, menus, and other controls that open other Form objects, but all of the
controls are contained in Form objects.

In WPF applications, you can display controls on a Window, an object that is basically the
WPF version of a Form. Alternatively you can display controls in a Page. A Page is a lot
like a Window without decorations such as borders, title bar, and system menus (maximize,
minimize, restore, close, and so forth). A Page must be hosted inside another object that
provides these decorations. Usually, a Page is displayed in a web browser, but the WPF Frame
control can also display Page objects.

This chapter explains how you can use these top - level objects, Window and Page, in your
WPF applications. It explains how a program can display and manage multiple Window and
Page objects, and provides some examples showing simple navigation schemes.

WINDOW APPLICATIONS

A typical desktop WPF application displays its controls in Window objects. To create this
type of application, select the File menu ’ s New Project command to display the New Project
dialog. On the Visual Basic ➪ Windows tab, select WPF Application, enter a project name,
and click OK.

The new application begins with a single Window class named Window1. Open the Solution
Explorer and double - click the Window1.xaml entry to edit the Window ’ s controls. Double -
click the Window1.xaml.vb entry to edit the Visual Basic code behind the Window.

CH013.indd 221CH013.indd 221 12/31/09 6:41:19 PM12/31/09 6:41:19 PM

222 ❘ CHAPTER 13 WPF WINDOWS

CODE - BEHIND

The code behind a Window is called its code - behind . It ’ s not a very imaginative
term, but it ’ s easy to remember.

To add other Window classes, open the Project menu and select Add Window. Enter a name for the
class and click OK.

To display a window in code, create a variable that refers to a new instance of the window. Call
its Show method to display the window non - modally, or call its ShowDialog method to display
the window modally. The following code creates a new window of type Window2 and displays it
modally:

Dim win2 As New Window2
win2.ShowDialog()

Although several similarities exist between the way a program uses a Window and the way it uses a
Form, there are many signifi cant differences.

For example, both classes have a DialogResult property that indicates how the user closed the form.
Both classes ’ ShowDialog methods return this result, so the code can easily determine the form ’ s
DialogResult value. In a Form, the DialogResult property is a value of type DialogResult, an enumerated
type that provides values such as OK, Cancel, Yes, and No to indicate which button the user clicked
to close the form. If the code sets this value, the form automatically hides, so the calling ShowDialog
method returns.

In contrast, a WPF Window ’ s DialogResult value is a Boolean intended to indicate whether the user
accepted or canceled the dialog. If you need more detail (did the user click Yes, No, or Cancel?),
you ’ ll need to provide code in the dialog to remember which button the user clicked. If the code
sets DialogResult, the window automatically closes so the calling ShowDialog method returns.
Unfortunately, the window closes rather than hides so you cannot display the dialog again (you
cannot display a window after it has closed). If you want to remember which button the user clicked
and then hide the window without closing it, you ’ ll need to implement your own property rather
than DialogResult, and you ’ ll need to hide the window explicitly.

The Windows Forms and WPF Button classes also both have properties that you can use to defi ne a
dialog ’ s default and cancel buttons, but they work in different ways.

You can set a Windows Forms Button object ’ s DialogResult property to the value you want the
button to give to the form ’ s DialogResult property. If the user clicks the button, it assigns the form ’ s
DialogResult value and hides the form so the calling ShowDialog method returns that value.

In a WPF application, you can set a button ’ s IsCancel property to True to indicate that the button
is the form ’ s cancel button. If the user presses the Escape key or clicks the button, the button sets
the form ’ s DialogResult property and closes the form so the calling ShowDialog method returns.
Unfortunately, the button closes the form rather than merely hiding it so, as before, you cannot
display the dialog again.

CH013.indd 222CH013.indd 222 12/31/09 6:41:22 PM12/31/09 6:41:22 PM

You can also set a WPF button ’ s IsDefault property to indicate that it should fi re if the user presses
the Enter key. Unfortunately, this does not automatically set the form ’ s DialogResult property and
does not close the dialog.

Example program UseDialog shows one approach to solving this problem. The dialog class
Window2 contains three buttons labeled Yes, No, and Cancel.

The following code shows how the dialog handles button clicks. The single btn_Click event
handler fi res for all three of the buttons. It saves the button ’ s text in the public variable
UserClicked and then closes the form.

Partial Public Class Window2
 Public UserClicked As String = "Cancel"

 Private Sub btn_Click(ByVal btn As Button, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles btnYes.Click, btnNo.Click, btnCancel.Click
 UserClicked = btn.Content
 Me.Close()
 End Sub
End Class

code snippet UseDialog

The following code shows how the program ’ s main window displays the dialog and checks the
result. When you click the Show Dialog button, the program creates a new dialog window and
displays it modally. It then checks the dialog ’ s UserClicked property to see which button the user
clicked.

Private Sub btnShowDialog_Click() Handles btnShowDialog.Click
 Dim win2 As New Window2
 win2.ShowDialog()
 Select Case win2.UserClicked
 Case "Yes"
 MessageBox.Show("You clicked Yes", "Yes", MessageBoxButton.OK)
 Case "No"
 MessageBox.Show("You clicked No", "No", MessageBoxButton.OK)
 Case "Cancel"
 MessageBox.Show("You clicked Cancel", "Cancel", _
 MessageBoxButton.OK)
 End Select
End Sub

code snippet UseDialog

Most of the things that you can do with a Form you can do with a Window. For example, you can:

Create new instances of Window classes .

Display Windows modally or non - modally .

➤

➤

Window Applications ❘ 223

CH013.indd 223CH013.indd 223 12/31/09 6:41:23 PM12/31/09 6:41:23 PM

224 ❘ CHAPTER 13 WPF WINDOWS

Close or hide Windows .

View and manipulate the properties of one Window from within the code of another Window .

Nevertheless, the details between Form and Window operations may be different. You may need
to use slightly different properties, and you may need to take a slightly different approach, but
Window is a fairly powerful class and with some perseverance you should be able to build usable
interfaces with it.

A BLAST FROM THE PAST

In many ways, the Window class seems like a primitive version of the Form class,
somewhat like those used in early versions of Visual Basic. Hopefully future
versions of WPF will give us a more powerful and consistent control that provides
the features we ’ ve grown used to in the Form class.

PAGE APPLICATIONS

A Page is similar to a borderless Window. It doesn ’ t provide its own decorations (border, title bar,
and so forth), but instead relies on its container to provide those elements.

Often a Page is hosted by a web browser, although the WPF Frame control can also display Page
objects.

The following sections explain how you can use Page objects to build WPF applications.

Browser Applications

To make a XAML Browser Application (XBAP, pronounced ex - bap), select the File menu ’ s New
Project command to display the New Project dialog. On the Visual Basic ➪ Windows tab, select
WPF Browser Application, enter a project name, and click OK.

EXCITING XBAPS

For an interesting site that has lots of information about XBAPs including a FAQ,
tutorial, and samples, see XBap.org (www.xbap.org).

The new application begins with a single Page class named Page1. You can view and edit this Page
exactly as you would view and edit a Window. Open the Solution Explorer and double - click the
Page1.xaml entry to edit the Window ’ s controls. Double - click the Window1.xaml.vb entry to edit
the Visual Basic code behind the Window.

To run the application, open the Debug menu and select Start Debugging. Internet Explorer should
open and display the initial Page. Visual Studio is nicely integrated with this instance of Internet

➤

➤

CH013.indd 224CH013.indd 224 12/31/09 6:41:24 PM12/31/09 6:41:24 PM

Explorer so you can set breakpoints in the code to stop execution and debug the code just as you
can debug a Windows Forms application or a WPF Window application.

To add other Page classes to the application, open the Project menu and select Add Page. Enter a
name for the class and click OK.

To display a Page in code, create a variable that refers to a new instance of the Page. Then use the
current Page ’ s NavigationService object ’ s Navigate method to display the new Page.

The following code creates a new page of type Page2 , and then uses the NavigationService object
to display it:

Dim p2 As New Page2
NavigationService.Navigate(p2)

Because the application is hosted inside a browser, several differences exist in the ways in which
the user will interact with the application. Rather than displaying new forms and dialogs, the
application will generally display new material within the same browser.

This design has several consequences. For example, the previous code creates a new instance of the
Page2 class and displays it. If the user were to execute this same code later, it would create a second
instance of the class and display it. Because these are two instances of the class, they do not have the
same controls, so any changes the user makes (entering text, checking radio buttons, and so forth)
are not shared between the two pages. When the second instance appears, the user may wonder
where all of the previous selections have gone.

The program can prevent this confusion by using a single application - global variable to hold
references to the Page2 instance. Every time the program needs to show this page, it can display
the same instance. That instance will display the same control values so the user ’ s selections are
preserved.

That approach solves one problem but leads to another. Because the application runs inside a
browser, the browser ’ s navigation and history tools work with it. If you press the browser ’ s Back
button, it will display the previous page. That part works relatively transparently, but every time the
application uses NavigationService.Navigate to display a Page, that Page is added to the browser ’ s
history.

To see why this is an issue, suppose the application has an initial Page that contains a button leading
to a second Page. That Page has a button that navigates back to the fi rst page. If the user moves back
and forth several times, the browser ’ s history will be cluttered with entries such as Page 1, Page 2,
Page 1, Page 2, Page 2, and so forth. Although this represents the user ’ s actual path through the
Pages, it isn ’ t very useful.

You can reduce clutter in the browser ’ s history by using the NavigationService object ’ s GoForward
and GoBack methods whenever it makes sense. In this example, it would probably make sense for
the second Page to use the GoBack method to return to the main page. Instead of creating a new
entry in the history as the Navigate method does, GoBack moves back one position in the existing
history. After several trips between the two Pages, the history will contain only those two Pages,
one possibly available via the browser ’ s Back button and one possibly available via the browser ’ s
Next button.

Page Applications ❘ 225

CH013.indd 225CH013.indd 225 12/31/09 6:41:25 PM12/31/09 6:41:25 PM

226 ❘ CHAPTER 13 WPF WINDOWS

Example program BrowserApp demonstrates this technique. The program uses two Pages that
provide buttons to navigate to each other. Both Pages also contain a text box where you can enter
some text, just to verify that the values are preserved when you navigate between the pages.

The following code shows how the main Page navigates to the second Page. If the NavigationService
can go forward, the code calls its GoForward method. If the NavigationService cannot go forward,
the code uses its Navigate method to visit a new Page2 object.

Private Sub btnPage2_Click() Handles btnPage2.Click
 If NavigationService.CanGoForward Then
 NavigationService.GoForward()
 Else
 NavigationService.Navigate(New Page2)
 End If
End Sub

code snippet BrowserApp

The following code shows how the second Page returns to the fi rst. This code simply calls the
NavigationService object ’ s GoBack method.

Private Sub btnBack_Click() Handles btnBack.Click
 Me.NavigationService.GoBack()
End Sub

Once you ’ ve built an XBAP, you can run it by pointing a web browser at the compiled xbap fi le.
When I built the previous example program, the fi le BrowserApp.xbap was created in the project ’ s
bin/Debug directory and the fi le successfully loaded in either Internet Explorer or Firefox.

Building a Page class is almost exactly the same as building a Window class. You use the same
XAML editor and Visual Basic code behind the scenes. The main difference is in how you navigate
between the application ’ s forms. In a WPF application, you create Window objects and use their
Show or ShowDialog methods. In an XBAP, you create Page objects and use the NavigationService
object ’ s navigation methods.

Frame Applications

Though Page objects normally sit inside a browser, the WPF Frame control can also host them.
The program simply navigates the Frame control to a Page and the rest works exactly as it does for
an XBAP.

Example program FrameApp, which is available for download on the book ’ s web page and shown in
Figure 13 - 1, uses the following code to load a Page1 object into its Frame control:

fraPages.Navigate(New Page1)

CH013.indd 226CH013.indd 226 12/31/09 6:41:26 PM12/31/09 6:41:26 PM

This example contains the same Page1 and Page2 classes used
by the BrowserApp example program described in the previous
section.

If an XBAP runs so easily in a browser, why would you want to
host pages in a Frame control?

One reason is that you can place multiple frames within a Window
to let the user view different pieces of information or perform
different tasks at the same time. For example, you can display help
in a separate frame, possibly in a separate Window.

If you build each frame ’ s contents in a separate XBAP, you can
load the frames at runtime. That makes replacing XBAPs to
upgrade or change their contents easy.

The Frame control also provides simple browser - style navigation that uses Next and Back buttons
and that may be easier for users to navigate in some situations. Microsoft ’ s web page “ Top Rules
for the Windows Vista User Experience ” at msdn2.microsoft.com/Aa511327.aspx lists as Rule 7
“ Use Windows Explorer - hosted, navigation - based user interfaces, provide a Back button. ” That page
argues that this style of interaction simplifi es navigation even in traditional applications.

STRENGTH OR WEAKNESS?

Personally I think Microsoft is claiming a weakness as a strength. Web browsers
use this type of navigation because they have no context to provide more organized
navigation other than the hyperlinks provided by Web pages. There are certainly
cases where this style of navigation is reasonable (for example, in wizards that lead
the user through a series of steps) but many desktop applications are more natural
if the user can open separate windows for different tasks. Let me know what you
think at RodStephens@vb-helper.com .

The Frame control gives you more control than a browser does. For example, it provides easier
access to Page history. You can also determine a Frame control ’ s size whereas you have no control
over a browser ’ s size and position.

Displaying Page objects within a Frame control won ’ t make sense for every application, but for some
it can be a useful technique.

PageFunction Applications

Microsoft ’ s documentation says that a PageFunction is “ a special type of page that allows you
to treat navigation to a page in a similar fashion to calling a method. ” This is a fairly misleading
statement. Navigating to a PageFunction is actually similar to navigating to any other Page object.
What is different is that a PageFunction is intended to take parameters when it is displayed and to
return a result when it fi nishes.

FIGURE 13-1: The Frame control

provides navigation between

Page objects.

Page Applications ❘ 227

CH013.indd 227CH013.indd 227 12/31/09 6:41:27 PM12/31/09 6:41:27 PM

228 ❘ CHAPTER 13 WPF WINDOWS

The PageFunction does not perform these tasks in the same way that a method call performs
them. The program “ passes parameters ” to the object by including them in the PageFunction ’ s
constructor. It receives a “ return value ” by catching the PageFunction ’ s Return event and examining
a parameter passed to that event.

Example program UsePageFunction, which is shown in Figure 13 - 2, demonstrates the PageFunction
class. This program is an XBAP that contains a startup Page and a PageFunction. The startup Page
contains two text boxes: one for an initial value and one for a return value. Type some text into the
Initial Value text box and click the “ Go to Page 2 ” button.

FIGURE 13-2: The PageFunction class simplifi es

passing parameters and return values to pages.

The second Page displays the text you typed on the fi rst Page in a text box to show that the
code successfully passed your text into the PageFunction. If you modify the text and click the
Return button, the fi rst Page displays the modifi ed text to show that it successfully received the
PageFunction object ’ s return value.

The following code shows how the PageFunction works. Notice that the class inherits from
PageFunction(Of String). That indicates that this is a PageFunction class and that its “ parameter ”
and “ return value ” are strings. The wizard example described in the following section shows how a
PageFunction can use a different data type.

Partial Public Class PageFunction1
 Inherits PageFunction(Of String)

 ' Start with the input value.
 Public Sub New(ByVal initial_value As String)
 Me.InitializeComponent()

 txtValue.Text = initial_value
 End Sub

CH013.indd 228CH013.indd 228 12/31/09 6:41:28 PM12/31/09 6:41:28 PM

 ' Return the current text.
 Private Sub btnReturn_Click() Handles btnReturn.Click
 OnReturn(New ReturnEventArgs(Of String)(txtValue.Text))
 End Sub
End Class

code snippet UsePageFunction

The PageFunction ’ s constructor takes a string as a parameter. It calls its InitializeComponent
method to prepare its controls for use and saves the string value in the page ’ s text box.

When you click the Return button, the btnReturn_Click event handler calls the PageFunction ’ s
OnReturn method, passing it a new ReturnEventArgs(Of String) object. That object becomes the
return result that the fi rst page receives. The code passes this object ’ s constructor the string that it
wants to return. In this example, the result is the text you modifi ed in the text box.

The following code shows how the startup Page works:

Class Page1
 Private WithEvents page2 As PageFunction1

 Private Sub btnPage2_Click() Handles btnPage2.Click
 page2 = New PageFunction1(txtInitialValue.Text)
 NavigationService.Navigate(page2)
 End Sub

 ' Catch the Return event and process the result.
 Private Sub page2_Return(ByVal sender As Object, _
 ByVal e As System.Windows.Navigation.ReturnEventArgs(Of String)) _
 Handles page2.Return
 txtReturnedValue.Text = e.Result
 End Sub
End Class

code snippet UsePageFunction

This code starts by declaring a variable named Page2 of type PageFunction1. The code uses the
WithEvents keyword, so it is easy to catch the object ’ s events.

When you click the Page ’ s Go to Page 2 button, the btnPage2_Click event handler creates a
new PageFunction1 and saves it in the variable Page2 so it can catch that object ’ s events. It then
navigates to the new object.

When the PageFunction calls its OnReturn method, this Page catches the object ’ s Return
event. The event handler receives a parameter e that contains the return value in its Result
property. The code displays the result in the txtReturnedValue text box.

This isn ’ t exactly the way a method call works, but it does allow the application to pass a value
to the PageFunction and receive a result. The next section describes a more complicated
PageFunction example.

Page Applications ❘ 229

CH013.indd 229CH013.indd 229 12/31/09 6:41:29 PM12/31/09 6:41:29 PM

230 ❘ CHAPTER 13 WPF WINDOWS

Wizard Applications

Although PageFunction objects, or XBAPs in general for that matter, are not appropriate for all
situations, they work well for building wizards. A typical wizard walks the user through a series of
steps one at a time until the user fi nishes the fi nal step.

The BrowserWizard example program is an XBAP that uses PageFunction objects to build a
simplistic dinner selection wizard.

The initial Page is a Page object that displays a Start Wizard button and a list of fi nal selections
made by the wizard (initially these are blank). When the user clicks the button, the program displays
the wizard ’ s fi rst step.

The fi rst step is displayed by a PageFunction that contains a combo box where the user can select an
appetizer and a check box that lets the user select salad (or not). After making selections, the user
can click the Next button to move to the wizard ’ s second step. The user can also click the Cancel
button to close the wizard.

The second step is another PageFunction that contains two combo boxes where the user can select
an entr é e and a drink. This step enables its Next button only after the user selects an entr é e. This
step also contains a Prev button that lets the user move back to the fi rst step and a Cancel button
that lets the user cancel the wizard.

The wizard ’ s fi nal step is also implemented with a PageFunction object. It contains a combo box
that lets the user select a dessert. It provides Prev and Cancel buttons similar to those on the second
page. Instead of a Next button, it displays a Finish button that ends the wizard. Control returns to
the initial Page and that Page displays the user ’ s choices.

This application passes an object of type WizardData to each of its steps. This class, shown in the
following code, keeps track of the user ’ s selections as the wizard walks through its steps:

Public Enum DessertType
 None
 IceCream
 Cake
 Pie
 Cookie
End Enum

' This is the data that the user will fill in.
' We set default values here.
Public Class WizardData
 Public Canceled As Boolean = True
 Public Appetizer As String = ""
 Public Entree As String = ""
 Public Salad As Boolean = False
 Public Drink As String = ""
 Public Dessert As DessertType = DessertType.None
End Class

code snippet BrowserWizard

CH013.indd 230CH013.indd 230 12/31/09 6:41:30 PM12/31/09 6:41:30 PM

In addition to fi elds to store the user ’ s appetizer, entr é e, salad, drink, and dessert selections, the
WizardData class also defi nes a Canceled fi eld to keep track of whether the user clicked the Cancel
button at any stage.

The following code shows how the initial Page works:

Class WizardStart
 Private WithEvents m_Page1 As WizardPage1

 ' Display page 1.
 Private Sub btnPage1_Click() Handles btnPage1.Click
 m_Page1 = New WizardPage1(New WizardData)
 NavigationService.Navigate(m_Page1)
 End Sub

 ' Page 1 returned.
 Private Sub m_Page1_Return(ByVal sender As Object, _
 ByVal e As System.Windows.Navigation.ReturnEventArgs(Of WizardData)) _
 Handles m_Page1.Return
 Dim wiz_data As WizardData = e.Result

 ' See if the user canceled.
 If wiz_data.Canceled Then
 lblAppetizer.Content = ""
 lblEntree.Content = ""
 lblSalad.Content = ""
 lblDrink.Content = ""
 lblDessert.Content = ""
 Else
 lblAppetizer.Content = wiz_data.Appetizer
 lblEntree.Content = wiz_data.Entree
 lblSalad.Content = wiz_data.Salad.ToString
 lblDrink.Content = wiz_data.Drink
 lblDessert.Content = wiz_data.Dessert.ToString
 End If
 End Sub
End Class

code snippet BrowserWizard

This Page declares a variable of type WizardPage1, using the WithEvents keyword so it is easy to
catch the object ’ s Return event. When the user clicks the Start Wizard button, the btnPage1_Click
event handler creates a new WizardPage1 object passing its constructor a new WizardData object
and navigates to the new page.

When the WizardPage1 object returns, the start page catches its Return event. If the returned
WizardData object ’ s Canceled value is True, the code clears all of the start page ’ s menu choice
controls. If Canceled is False, the program displays the menu selections in the initial Page ’ s controls.

Page Applications ❘ 231

CH013.indd 231CH013.indd 231 12/31/09 6:41:31 PM12/31/09 6:41:31 PM

232 ❘ CHAPTER 13 WPF WINDOWS

 RETURN TYPE

 Notice that the Return event handler ’ s e parameter has a type that includes
the Of WizardData generic specifi er. That makes the e.Return property have type
WizardData so it ’ s easy for the code to use.

 The following code shows how the wizard ’ s fi rst step begins. Notice that this class inherits from
PageFunction(Of WizardData) so its constructor and OnReturn method take WizardData objects as
parameters.

Inherits PageFunction(Of WizardData)

Private m_WizardData As WizardData
Private WithEvents m_Page2 As WizardPage2

' Save the WizardData object.
Public Sub New(ByVal wizard_data As WizardData)
 InitializeComponent()

 m_WizardData = wizard_data
End Sub

code snippet BrowserWizard

 The code declares a private WizardData variable to hold information about the user ’ s current menu
selections. The class ’ s constructor initializes its controls and then saves the WizardData object it is
passed in this variable.

 The code also creates a variable of type WizardPage2. It displays this object when the user clicks
this page ’ s Next button.

 When that step returns, the following code catches its Return event and calls this Page ’ s OnReturn
method passing it the same event parameter that it received. This forwards the results of the
following step back to the initial Page.

' The next page returned. Return its result.
Private Sub m_Page2_Return(ByVal sender As Object, _
 ByVal e As System.Windows.Navigation.ReturnEventArgs(Of WizardData)) _
 Handles m_Page2.Return
 OnReturn(e)
End Sub

code snippet BrowserWizard

CH013.indd 232CH013.indd 232 12/31/09 6:41:31 PM12/31/09 6:41:31 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

The following code shows the fi rst Page ’ s navigation code:

' Open the next page.
Public Sub btnNext_Click() Handles btnNext.Click
 If NavigationService.CanGoForward Then
 NavigationService.GoForward()
 Else
 m_Page2 = New WizardPage2(m_WizardData)
 NavigationService.Navigate(m_Page2)
 End If
End Sub

' Return a result indicating that we canceled.
Private Sub btnCancel_Click() Handles btnCancel.Click
 m_WizardData.Canceled = True
 OnReturn(New ReturnEventArgs(Of WizardData)(m_WizardData))
End Sub

code snippet BrowserWizard

When the user clicks the Next button, the btnNext_Click event handler checks whether the
NavigationService can go forward. This object ’ s CanGoForward property will be True if the user went
to the next page and then came back to this one. In that case, the program shouldn ’ t create a new Page
object. Instead it calls NavigationService object ’ s GoForward method to display the same object again.

If NavigationService.CanGoForward is False, the code has not displayed the second Page yet. The
code creates a new WizardPage2 object, passing its constructor the WizardData object that holds
the information about the user ’ s current menu selections. It then navigates to the new Page.

If the user clicks the Cancel button, the btnCancel_Click event handler sets the WizardData
object ’ s Canceled property to True and then calls the page ’ s OnReturn method, passing it the
WizardData. Control returns to the start page where that page catches the Return event and sees
that the WizardData object ’ s Canceled property is True.

The following code records the user ’ s appetizer and salad selections:

' Save the selection.
Private Sub cboAppetizer_SelectionChanged() _
 Handles cboAppetizer.SelectionChanged
 ' The ComboBox's Text property isn't updated yet.
 If cboAppetizer.SelectedIndex < 0 Then
 m_WizardData.Appetizer = ""
 Else
 m_WizardData.Appetizer = _
 cboAppetizer.Items(cboAppetizer.SelectedIndex).Content
 End If
End Sub

' Save the selection.
Private Sub chkSalad_Checked() _
 Handles chkSalad.Checked, chkSalad.Unchecked
 m_WizardData.Salad = chkSalad.IsChecked
End Sub

code snippet BrowserWizard

Page Applications ❘ 233

CH013.indd 233CH013.indd 233 12/31/09 6:41:32 PM12/31/09 6:41:32 PM

234 ❘ CHAPTER 13 WPF WINDOWS

 When the user selects an appetizer, the cboAppetizer_SelectionChanged event handler saves
the user ’ s new choice in the WizardData object ’ s Appetizer fi eld. Similarly, if the user checks or
unchecks the Salad check box, the chkSalad_Checked event handler saves the user ’ s new selection.

 The second and third wizard pages are similar to the fi rst except for two issues.

 First, the user can navigate back to wizard steps that come before these steps. The following code
shows how these steps move to the previous step when the user clicks the Prev button:

' Go back to the previous page.
Private Sub btnPrev_Click() Handles btnPrev.Click
 NavigationService.GoBack()
End Sub

code snippet BrowserWizard

 Second, the fi nal step does not navigate to a next step when the user clicked a Next button. Instead
when the user clicks the Finish button, the following code executes:

' Finish.
Public Sub btnFinish_Click() Handles btnFinish.Click
 M_WizardData.Canceled = False
 OnReturn(New ReturnEventArgs(Of WizardData)(m_WizardData))
End Sub

code snippet BrowserWizard

 This code sets the WizardData object ’ s Canceled fi eld to False to indicate that the user did not
cancel. The code then calls the PageFunction ’ s OnReturn method, passing it a new ReturnEventArgs
object that contains the WizardData.

 At this point, control cascades back through the navigations. The second Page catches this Page ’ s
Return event and calls its own OnReturn method. Next, the fi rst Page catches the second
Page ’ s Return event and calls its own OnReturn method. Finally the initial Page catches the fi rst
wizard Page ’ s Return event and displays the results contained in the returned WizardData object.

 PageFunction classes are not necessary in every application, but they can simplify wizards such as
this one and other applications that pass information back and forth through a series of Pages.

 SUMMARY

 In a Windows Forms application, everything is contained in Form objects. Some of those Form
classes may be dialogs or derived from the Form class, but ultimately everything is contained
in a form.

 In a WPF application, controls may be contained in Window objects or in Page objects. Window
objects sit on the desktop much as Windows Forms do. Page objects must be hosted inside
something else, usually a browser or a Frame control in a Window. The PageFunction class provides

CH013.indd 234CH013.indd 234 12/31/09 6:41:33 PM12/31/09 6:41:33 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

a modifi ed version of a Page that makes it easier to pass values back and forth between
coordinated Pages.

Chapters 8 through 13 give useful background on working with controls. They explain how
to select and use both Windows Forms and WPF controls. They also explain the top - level user
interface classes: Form for Windows Forms applications, and Window, Page, and PageFunction for
WPF applications.

Although these are huge topics, there ’ s even more to building a Visual Basic application than just
controls. You also need to understand the code behind the Form or Window that lets the program
take the controls ’ values, manipulate those values, and display a result in other controls. The next
several chapters cover these topics in detail. Chapter 14, “ Program and Module Structure, ” starts
the process by explaining the fi les that make up a Visual Basic project and the structure contained
within code fi les.

Summary ❘ 235

CH013.indd 235CH013.indd 235 12/31/09 6:41:34 PM12/31/09 6:41:34 PM

CH013.indd 236CH013.indd 236 12/31/09 6:41:34 PM12/31/09 6:41:34 PM

14
Program and Module Structure

A Visual Basic solution contains one or more related projects. A project contains fi les related
to some topic. Usually, a project produces some kind compiled output (such as an executable
program, class library, control library, and so forth). The project includes all the fi les related
to the output, including source code fi les, resource fi les, documentation fi les, and whatever
other kinds of fi les you decide to add to it.

This chapter describes the basic structure of a Visual Basic project. It explains the
functions of some of the most common fi les and tells how you can use them to manage your
applications.

This chapter also explains the basic structure of source code fi les. It explains regions,
namespaces, and modules. It describes some simple typographic features provided by Visual
Basic such as comments, line continuation, and line labels. These features do not execute
programming commands themselves, but they are an important part of how you can structure
your code.

HIDDEN FILES

Figure 14 - 1 shows the Solution Explorer window for a solution that contains two projects.
The solution named MySolution contains two projects named WindowsApplication1
and WindowsApplication2. Each project contains a My Project item that represents the
project ’ s properties, various fi les containing project confi guration settings, and a form
named Form1.

In WindowsApplication2, the Show All Files button has been clicked (the second button from
the left with the box around it) so that you can see all the project ’ s fi les. WindowsApplication1
has similar fi les, but they are hidden by default.

These fi les are generated by Visual Basic for various purposes. For example, Resources.resx
contains resources used by the project and Settings.settings contains project settings.

CH014.indd 237CH014.indd 237 12/30/09 6:54:20 PM12/30/09 6:54:20 PM

238 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

FIGURE 14-1: A solution contains one or

more projects that contain fi les.

RESOURCES AND SETTINGS

Resources are chunks of data that are distributed with the application but are not
intended to be modifi ed by the program. These might include prompt strings, error
message strings, icons, and sound fi les. For example, resources are commonly used
for customizing applications for different languages. You build different resource
fi les for different languages, and the program loads its prompts and error messages
from the appropriate resource fi le. Chapter 36, “Confi guration and Resources,” has
more to say about resources. (Technically, you can change resource values, but then
they are acting more as settings than resources, so I won’t cover that here. In fact,
changing resources in a strongly named resource fi le raises an alarm indicating that
someone may have tampered with the fi le.)

Settings are values that control the execution of the application. These might
include fl ags telling the program what options to display or how to perform
certain tasks. For example, you could build different profi les to provide settings
that make the program run in a restricted demo mode or in a fully licensed
mode. Normally, settings for .NET applications are stored in .confi g fi les,
although an application can also store settings in the Registry, XML, or .ini
fi les. For example, this article discusses savings in XML fi les: www.devsource
.com/c/a/Techniques/XML-Serialization-Better-than-the-Registry.

CH014.indd 238CH014.indd 238 12/30/09 6:54:23 PM12/30/09 6:54:23 PM

The following list describes the fi les contained in WindowsApplication2 and shown in
Figure 14 - 1. The exact fi les you see may be different from those shown here, but this list should give you
an idea of what ’ s involved in building a project. Note that some of these fi les are generated automatically
by Visual Studio and you shouldn ’ t edit them manually. If you change them directly, you are likely to
lose your changes when Visual Studio rebuilds them and you may even confuse Visual Studio.

WindowsApplication2 — This folder represents the entire project. You can expand or
collapse it to show and hide the project ’ s details.

My Project — This folder represents the project ’ s assembly information, application - level
events, resources, and confi guration settings. Double - click the My Project entry to view and
edit these values.

Application.myapp — This XML fi le defi nes application properties (such as whether it ’ s
a single instance program and whether its shutdown mode is AfterMainFormCloses or
AfterAllFormsClose).

Application.Designer.vb — This fi le contains code that works with the values defi ned in
Application.myapp.

AssemblyInfo.vb — This fi le contains information about the application ’ s assembly such as
copyright information, company name, trademark information, and assembly version.

Resources.resx — This resource fi le contains project ’ s resources.

Resources.Designer.vb — This fi le contains Visual Basic code for manipulating resources
defi ned in Resources.resx. For example, if you defi ne a string resource named Greeting in
Resources.resx, Visual Basic adds a read - only property to this module so you can read the
value of Greeting as shown in the following code:

MessageBox.Show(My.Resources.Greeting)

Settings.settings — This fi le contains settings that you can defi ne to control the application.

Settings.Designer.vb — This fi le contains Visual Basic code for manipulating settings
defi ned in Settings.settings, much as Resources.Designer.vb contains code for working with
Resources.resx. For example, the following code uses the UserMode setting:

If My.Settings.UserMode = "Clerk" Then ...

References — This folder lists references to external components such as DLLs and COM
components.

bin — This folder is used to build the application before it is executed. It contains the
compiled .exe fi le.

obj — This folder is used to build the application before it is executed.

ApplicationEvents.vb — This code fi le contains application - level event handlers for the
MyApplication object. For example, it contains the application ’ s Startup, Shutdown, and
NetworkAvailabilityChanged event handlers.

Form1.vb — This is a form fi le. It contains the code you write for the form, its controls,
their event handlers, and so forth.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Hidden Files ❘ 239

CH014.indd 239CH014.indd 239 12/30/09 6:54:24 PM12/30/09 6:54:24 PM

240 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

Form1.Designer.vb — This fi le contains designer - generated Visual Basic code that builds
the form. It initializes the form when it is created, adds the controls you placed on the form,
and defi nes variables with the WithEvents keyword for the controls so that you can easily
catch their events.

Some projects may have other hidden fi les. For example, when you add controls to a form, the
designer adds a resource fi le to the form to hold any resources needed by the controls.

Normally, you do not need to work directly with the hidden fi les and doing so can mess up your
application. At best, the changes you make will be lost. At worst, you may confuse Visual Studio so
it can no longer load your project.

You can use other tools to modify hidden fi les indirectly. For example, the fi les Resources.Designer
.vb, Settings.Designer.vb, and Form1.Designer.vb are automatically generated when you modify
their corresponding source fi les Resources.resx, Settings.settings, and Form1.vb.

You don ’ t even need to work with all of these source fi les directly. For example, if you
double - click the My Project item in Solution Explorer, the property pages shown in Figure 14 - 2
appear. The Application tab shown in this fi gure lets you set high - level application settings. The
View Application Events button at the bottom of the fi gure lets you edit the application - level events
stored in ApplicationEvents.vb.

➤

FIGURE 14-2: These property pages let you defi ne the project’s resources, settings, and

general confi guration.

CH014.indd 240CH014.indd 240 12/30/09 6:54:25 PM12/30/09 6:54:25 PM

The References tab shown in Figure 14 - 2 lets you view,
add, and remove project references. As you can probably
guess, the Resources and Settings tabs let you edit the
project ’ s resources and settings.

A particularly important section hidden away in these
tabs is the assembly information. When you click the
Assembly Information button shown in Figure 14 - 2, the
dialog box shown in Figure 14 - 3 appears.

Many of the items in this dialog box, such as the
application ’ s title and description, are self - explanatory.
They are simply strings that the assembly carries around
for identifi cation. The assembly and fi le versions are
used by the Visual Studio runtime to verify compatibility
between an application ’ s components. The GUID (which
stands for “ globally unique identifi er ” and is pronounced
to rhyme with “ squid ”) uniquely identifi es the assembly
and is generated by Visual Studio. The “ Make assembly
COM - Visible ” check box lets you determine whether
the assembly should make types defi ned in the assembly visible to COM applications. For more
information on this dialog box, see msdn2.microsoft.com//1h52t681.aspx .

An assembly is the fundamental unit of deployment and version control in Visual Studio .NET. An
assembly can contain an executable application, a DLL (dynamic - link library), or a control library.
Usually a project is contained in a single assembly.

The Assembly Information dialog box lets you defi ne information that should be associated with
the assembly, including the assembly ’ s company name, description, copyright, trademark, name,
product name, title, and version (which includes major, minor, revision, and build values).

The My.Application.AssemblyInfo namespace provides easy access to these values at runtime.
Example program ShowAssemblyInfo uses the following code to display this information in a series
of labels when it starts:

Private Sub Form1_Load() Handles MyBase.Load
 lblCompanyName.Text = My.Application.Info.CompanyName
 lblDescription.Text = My.Application.Info.Description
 lblCopyright.Text = My.Application.Info.Copyright
 lblTrademark.Text = My.Application.Info.Trademark
 lblDirectoryPath.Text = My.Application.Info.DirectoryPath
 lblProductName.Text = My.Application.Info.ProductName
 lblTitle.Text = My.Application.Info.Title
 lblVersion.Text = My.Application.Info.Version.ToString
End Sub

code snippet ShowAssemblyInfo

FIGURE 14-3: The Assembly Information

dialog box lets you defi ne basic project

information such as title, copyright, and

version number.

Hidden Files ❘ 241

CH014.indd 241CH014.indd 241 12/30/09 6:54:26 PM12/30/09 6:54:26 PM

242 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

CODE FILE STRUCTURE

A form, class, or code module should contain the following sections in this order (if they are
present — you can omit some):

Option statements — Option Explicit, Option Strict, Option Compare, or Option Infer. By
default, Option Explicit is on, Option Strict is off, Option Compare is binary, and Option
Infer is on.

Imports statements — These declare namespaces that the module will use.

A Main subroutine — The routine that starts execution when the program runs.

Class, Module, and Namespace statements — As needed.

DEBUGGING OPTIONS

To uncover potentially annoying and sometimes elusive bugs, turn Option Explicit
on, Option Strict on, and Option Infer off. The section “Project” in Chapter 2
describes these options.

Some of these items may be missing. For example, Option and Imports statements are optional.
Note that an executable Windows program can start from a Main subroutine or it can start by
displaying a form, in which case it doesn ’ t need a Main subroutine. (In that case, the program starts
with the automatically generated New subroutine in the fi le Application.Designer.vb.) Classes and
code modules don ’ t need Main subroutines.

The following code shows a simple code module. It sets Option Explicit On (so variables must be
declared before used), Option Strict On (so implicit type conversions cause an error), and Option
Infer Off (so you must give variables explicit data types). It imports the System.IO namespace so the
program can easily use classes defi ned there. It then defi nes the Employee class.

Option Explicit On
Option Strict On
Option Infer Off

Imports System.IO

Public Class Employee
 ...
End Class

Usually, you put each class or module in a separate fi le, but you can add multiple Class or Module
statements to the same fi le if you like.

➤

➤

➤

➤

CH014.indd 242CH014.indd 242 12/30/09 6:54:26 PM12/30/09 6:54:26 PM

Class and Module statements defi ne top - level nodes in the code hierarchy. Click the minus sign to
the left of one of these statements in the code editor to collapse the code it contains. When the code
is collapsed, click the plus sign to the left of it to expand the code.

The project can freely refer to any public class, or to any public variable or routine in a module. If
two modules contain a variable or routine with the same name, the program can select the version
it wants by prefi xing the name with the module ’ s name. For example, if the AccountingTools and
BillingTools modules both have a subroutine named ConnectToDatabase, the following statement
executes the version in the BillingTools module:

BillingTools.ConnectToDatabase()

Code Regions

Class and Module statements defi ne regions of code that you can expand or collapse to make
the code easier to understand. Subroutines and functions also defi ne collapsible code sections. In
addition to these, you can use the Region statement to create your own collapsible sections of code.
You can place subroutines that have a common purpose in a region so you can collapse and expand
the code as needed. The following code shows a simple region:

#Region "Drawing Routines"
 ...
#End Region

Note that the IDE ’ s search - and - replace features normally work only on expanded regions. If you
collapse a region and make a global search - and - replace in the current document or the current
selection, the collapsed code remains unchanged. If you make a global replace throughout the whole
project, the replacement occurs within collapsed regions as well.

RENAME, DON’T REPLACE

Instead of using a global fi nd and replace to rename a variable, class, or other
programming entity, use Visual Basic’s renaming feature. Right-click the
entity you want to rename and select Rename. Enter the new name and click
OK. Visual Basic will change all occurrences of the entity in every module as
needed.

Using rename instead of global replace makes it easier to rename one variable
while not renaming other variables with the same name in different scopes.
It also prevents annoying replacement errors. For example, if you use global
replace to change “man” to “person,” you may accidentally change “manager” to
“personager” and “command” to “compersond.”

Code File Structure ❘ 243

CH014.indd 243CH014.indd 243 12/30/09 6:54:27 PM12/30/09 6:54:27 PM

244 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

By itself, the End Region statement does not tell you which region it is ending. You can make your
code easier to understand, particularly if you have many regions in the same module, by adding
a comment after the End Region statement giving the name of the region, as shown in the
following code:

#Region "Drawing Routines"
 ...
#End Region ' Drawing Routines

REAL-LIFE REGIONS

I use regions extensively in my code. They make it easy to collapse code that
I’m not working on and they group related code into meaningful sections. Just
building the regions helps you put related material together and makes reading
the code easier.

Sometimes it may be easier to move related pieces of code into separate fi les. The Partial keyword
allows you to place parts of a class in different fi les. For example, you could move a form ’ s code
for loading and saving data into a separate fi le and use the Partial keyword to indicate that the
code was part of the form. Chapter 26, “ Classes and Structures, ” describes the Partial keyword
in detail.

However, you cannot use the Partial keyword with modules so a module ’ s code must all go in one
fi le. In that case, you can use regions to similarly separate a group of related routines and make the
code easier to read.

Conditional Compilation

Conditional compilation statements allow you to include or exclude code from the program ’ s
compilation. The basic conditional compilation statement is similar to a multiline If Then Else
statement. The following code shows a typical statement. If the value condition1 is True, the code in
code_block_1 is included in the compiled program. If that value is False but the value condition2 is
True, the code in code_block_2 becomes part of the compiled program. If neither condition is True,
the code in code_block_3 is included in the program.

#If condition1 Then
 code_block_1 ...
#ElseIf condition2 Then
 code_block_2 ...
#Else
 code_block_3 ...
#End if

It is important to understand that the code not included by the conditional compilation statements is
completely omitted from the executable program. At compile time, Visual Studio decides whether or

CH014.indd 244CH014.indd 244 12/30/09 6:54:28 PM12/30/09 6:54:28 PM

not a block of code should be included. That means any code that is omitted does not take up space
in the executable program. It also means that you cannot set the execution statement to omitted
lines in the debugger because those lines are not present.

In contrast, a normal If Then Else statement includes all the code in every code block in the
executable program, and then decides which code to execute at runtime.

Because the conditional compilation statement evaluates its conditions at compile time, those
conditions must be expressions that can be evaluated at compile time. For example, they can be
expressions containing values that you have defi ned using compiler directives (described shortly).
They cannot include values generated at runtime (such as the values of variables).

In fact, a conditional compilation statement evaluates its conditions at design time, so it can give
feedback while you are writing the code. For example, if Option Explicit is set to On, Visual Basic
fl ags the following assignment statement as an error. Because the fi rst condition is True, the variable
X is declared as a string. Option Explicit On disallows implicit conversion from an integer to a
string, so the IDE fl ags the statement as an error.

#If True Then
 Dim X As String
#Else
 Dim X As Integer
#End If

 X = 10

That much makes sense, but it ’ s also important to realize that the code not included in the
compilation is not evaluated by the IDE. If the fi rst condition in the previous code were False, the
code would work properly because variable X would be declared as an integer. The IDE doesn ’ t
evaluate the other code, so it doesn ’ t notice that there is an error if the condition is False. You
probably won ’ t notice the error until you try to actually use the other code.

You can set conditional compilation constants in two main ways: in code and in the project ’ s
compilation settings.

Setting Constants in Code

To set conditional compilation constants explicitly in your program, use a #Const statement, as
shown in the following code:

#Const UserType = "Clerk"

#If UserType = "Clerk" Then
 ' Do stuff appropriate for clerks ...
 ...
#ElseIf UserType = "Supervisor" Then
 ' Do stuff appropriate for supervisors ...

Code File Structure ❘ 245

CH014.indd 245CH014.indd 245 12/30/09 6:54:29 PM12/30/09 6:54:29 PM

246 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

 ...
#Else
 ' Do stuff appropriate for others ...
 ...
#End if

Note that these constants are defi ned only after the point at which they appear in the code. If
you use a constant before it is defi ned, its value is False (unfortunately Option Explicit doesn ’ t
apply to these constants). That means the following code displays the value Slow followed by the
value Fast:

#If UseFastAlgorithm Then
 MessageBox.Show("Fast")
#Else
 MessageBox.Show("Slow")
#End If

#Const UseFastAlgorithm = True

#If UseFastAlgorithm Then
 MessageBox.Show("Fast")
#Else
 MessageBox.Show("Slow")
#End if

To avoid possible confusion, many programmers defi ne these constants at the beginning of the fi le
so they don ’ t need to worry about using a variable before it is defi ned.

Also note that your code can redefi ne a constant using a new #Const statement later. That means
these are not really constants in the sense that their values are unchangeable.

Setting Constants with the Project ’ s Compilation Settings

To set constants with the project ’ s compilation settings, open Solution Explorer and double - click
My Project. Select the Compile tab and click its Advanced Compile Options button to open the
Advanced Compiler Settings dialog box shown in Figure 14 - 4. Enter the names and values of the
constants in the “ Custom constants ” text box. Enter each value in the form ConstantName=Value,
separating multiple constants with commas.

CH014.indd 246CH014.indd 246 12/30/09 6:54:30 PM12/30/09 6:54:30 PM

Constants that you specify on the Advanced Compiler Settings dialog box are available everywhere
in the project. However, your code can redefi ne the constant using a #Const directive. The constant
has the new value until the end of the fi le or until you redefi ne it again.

Example program CompilerConstantsSettings, which is available for download on the book ’ s web
site, includes constants set on this dialog and code to check their values.

Predefi ned Constants

Visual Basic automatically defi nes several conditional compilation constants that you can use to
determine the code that your application compiles. The following table describes these constants.

CONSTANT CASE

Compilation constant values are case-sensitive. For example, you should compare
CONFIG to “Debug” not “debug” or “DEBUG.”

CONSTANT MEANING

CONFIG A string that gives the name of the current build. Typically, this will be “ Debug ” or

“ Release. ”

DEBUG A Boolean that indicates whether this is a debug build. By default, this value is True

when you build a project ’ s Debug confi guration.

FIGURE 14-4: Use the Advanced Compiler Settings dialog box

to defi ne compilation constants.

continues

Code File Structure ❘ 247

CH014.indd 247 CH014.indd 247 12/30/09 6:54:30 PM12/30/09 6:54:30 PM

248 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

CONSTANT MEANING

PLATFORM A string that tells you the target platform for the application ’ s current confi guration.

Unless you change this, the value is “ AnyCPU. ”

TARGET A string that tells the kind of application the project builds. This can be winexe

(Windows Form or WPF application), exe (console application), library (class library),

or module (code module).

TRACE A Boolean that indicates whether the Trace object should generate output in the

Output window.

VBC_VER A number giving Visual Basic ’ s major and minor version numbers. The value

for Visual Basic 2005 is 8.0 and the value for Visual Basic 2008 is 9.0. The value for

Visual Basic 2010 should logically be 10.0, but it was still 9.0 in late beta versions.

_MyType A string that tells what kind of application this is. Typical values are “ Console ”

for a console application, “ Windows ” for a class or Windows control library, and

“ WindowsForms ” for a Windows Forms application.

MORE ON _MYTYPE

For more information on _MyType and how it relates to other special compilation
constants, see msdn2.microsoft.com/ms233781.aspx.

Example program CompilerConstantsInCode, which is available for download on the book ’ s
web site, shows how a program can check these compiler constants. Example program
WpfCompilerConstantsInCode, which is also available for download, is a WPF version of the same
program.

The following sections describe the DEBUG, TRACE, and CONFIG constants and their normal
uses in more detail.

DEBUG

Normally when you make a debug build, Visual Basic sets the DEBUG constant to True. When you
compile a release build, Visual Basic sets DEBUG to False. The Confi guration Manager lets you
select the Debug build, the Release build, or other builds that you defi ne yourself.

After you have activated the Confi guration Manager, you can open it by clicking the project in
the Solution Explorer and then selecting the Build menu ’ s Confi guration Manager command.
Figure 14 - 5 shows the Confi guration Manager. Select Debug or Release from the drop - down list,
and click Close.

(continued)

CH014.indd 248CH014.indd 248 12/30/09 6:54:32 PM12/30/09 6:54:32 PM

THE MISSING MANAGER MYSTERY

If the Confi guration Manager is not available in the Build menu, open the Tools
menu and select the Options command. Open the Projects and Solutions node’s
General entry, and select the “Show advanced build confi gurations” check box.

When the DEBUG constant is True, the Debug object ’ s methods send output to the Output
window. When the DEBUG constant is not True, the Debug object ’ s methods do not generate any code,
so the object doesn ’ t produce any output. This makes the Debug object useful for displaying diagnostic
messages during development and then hiding the messages in release builds sent to customers.

The following sections describe some of the Debug object ’ s most useful properties and methods.

Assert

The Debug.Assert method evaluates a Boolean expression and, if the expression is False, displays
an error message. This method can optionally take as parameters an error message and a detailed
message to display. The following code shows how a program might use Debug.Assert to verify that
the variable NumEmployees is greater than zero:

Debug.Assert(NumEmployees > 0, _
 "The number of employees must be greater than zero.", _
 "The program cannot generate timesheets if no employees are defined")

Example program EmployeeAssert, which is available for download on the book ’ s web site,
demonstrates this Debug.Assert statement.

FIGURE 14-5: Use the Confi guration Manager to select a Debug or

Release build.

Code File Structure ❘ 249

CH014.indd 249CH014.indd 249 12/30/09 6:54:32 PM12/30/09 6:54:32 PM

250 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

If NumEmployees is zero, this statement displays an error dialog that shows the error message and
the detailed message. It also displays a long stack dump that shows exactly what code called what
other code to reach this point of execution. Only the fi rst few entries will make sense to practically
anyone because the stack dump quickly moves out of the application ’ s code and into the supporting
Visual Basic libraries that execute the program.

The dialog also displays three buttons labeled Abort, Retry, and Ignore. If you click the Abort
button, the program immediately halts. If you click Retry, the program breaks into the debugger,
so you can examine the code. If you click Ignore, the program continues as if the Assert statement ’ s
condition was True.

A good use for the Assert method is to verify that a routine ’ s parameters or other variable values are
reasonable before starting calculations. For example, suppose that the AssignJob subroutine assigns
a repairperson to a job. The routine could begin with a series of Assert statements that verify that
the person exists, the job exists, the person has the skills necessary to perform the job, and so forth.
It is usually easier to fi x code if you catch these sorts of errors before starting a long calculation or
database modifi cation that may later fail because, for example, the repairperson doesn ’ t have the
right kind of truck to perform the job.

If the DEBUG constant is not True, the Assert method does nothing. This lets you automatically
remove these rather obscure error messages from the compiled executable that you send to
customers. The dialog with its messages and stack dump is so technical that it would terrify many
users anyway, so there ’ s no point infl icting it on them.

You should take some care when deciding what tests should be placed in Assert statements so that
they are removed from the compiled executable. For example, suppose you use Assert to verify that
a string entered by the user contains a valid value. When you run the compiled executable, this test
is removed, so the program does not protect itself from bad data. When you use Assert to verify a
condition, you must be certain that the program can run safely if the Assert statement is removed
and the condition fails.

If the program cannot run safely when the condition fails, you should also add code to protect it
even in the fi nal compiled version.

Fail

The Debug.Fail method displays an error message just as Debug.Assert does when its Boolean
condition parameter is False.

IndentSize, Indent, Unindent, and IndentLevel

These properties and methods determine the amount of indentation used when the Debug object
writes into the Output window. You can use them to indent the output in subroutines to show the
program ’ s structure more clearly.

The IndentSize property indicates the number of spaces that should be used for each level of
indentation. The IndentLevel property determines the current indentation level. For example, if
IndentSize is 4 and IndentLevel is 2, output is indented by eight spaces.

The Indent and Unindent methods increase and decrease the indentation level by one.

CH014.indd 250CH014.indd 250 12/30/09 6:54:33 PM12/30/09 6:54:33 PM

Write, WriteLine, WriteIf, and WriteLineIf

These routines send output to the Output window. The Write method prints text and stops without
starting a new line. WriteLine prints text and follows it with a new line.

The WriteIf and WriteLineIf methods take a Boolean parameter and act the same as Write and
WriteLine if the parameter ’ s value is True.

TRACE

The Trace object is very similar to the Debug object and provides the same set of properties and
methods. The difference is that it generates output when the TRACE constant is defi ned rather than
when the DEBUG constant is defi ned.

Normally, the TRACE constant is defi ned for both debug and release builds so Trace.Assert and
other Trace object methods work in both builds. By default, DEBUG is defi ned only for debug
builds, so you get Debug messages for debug builds.

You can add listener objects to the Trace object (or the Debug object) to perform different actions
on any Trace output. For example, a listener could write the Trace output into a log fi le.

CONFIG

The CONFIG constant ’ s value is the name of the type of build. Normally, this is either
Debug or Release, but you can also create your own build confi gurations. You can use these for
interim builds, point releases, alpha and beta releases, or any other release category you can
think of.

To create a new build type, click the project in the Solution Explorer and then select the Build
menu ’ s Confi guration Manager command to display the dialog box shown in Figure 14 - 5. Select
< New . . . > from the drop - down list to display the New Project Confi guration dialog box. Enter
a name for the new confi guration, select the existing confi guration from which the new one should
initially copy its settings, and click OK.

The following code shows how to use the CONFIG compiler constant to determine which build is
being made and take different actions accordingly:

#If CONFIG = "Debug" Then
 ' Do stuff for a Debug build ...
#ElseIf CONFIG = "Release" Then
 ' Do stuff for a Release build ...
#ElseIf CONFIG = "InterimBuild" Then
 ' Do stuff for a custom InterimBuild ...
#Else
 MessageBox.Show("Unknown build type")
#End if

Code File Structure ❘ 251

CH014.indd 251CH014.indd 251 12/30/09 6:54:34 PM12/30/09 6:54:34 PM

252 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

One reason you might want to make different confi gurations is to handle variations among
operating systems. Your code can decide which confi guration is in effect and then execute the
appropriate code to handle the target operating system. For example, it might need to work around
the reduced privileges that are granted by default on Vista.

Debugging Level Constants

Sometimes it is helpful to be able to easily adjust the level of diagnostic output a program generates.
You could defi ne the constant DEBUG_LEVEL and then send data to the Output window,
depending on its value. For example, you might place level 1 Debug statements in major subroutines,
level 2 statements in secondary routines, and level 3 statements throughout important routines to
provide step - by - step information. Then you can defi ne the DEBUG_LEVEL constant to quickly give
you the amount of information you want.

The following code shows a small example. The IsPhoneNumberValid function determines whether
its parameter looks like a valid 7 - or 10 - digit U.S. phone number. If DEBUG_LEVEL is at least 1,
the function displays messages when it starts and when it exits. It also indents the output when it
starts and unindents the output before it exits. If DEBUG_LEVEL is at least 2, the function also
displays statements telling when it is about to check for 7 - and 10 - digit phone numbers.

#Const DEBUG_LEVEL = 2

 Private Function IsPhoneNumberValid(ByVal phone_number As String) As Boolean
#If DEBUG_LEVEL > = 1 Then
 Debug.WriteLine("Entering IsPhoneNumberValid(" & phone_number & ")")
 Debug.Indent()
#End If

 ' Check for a 7-digit phone number.
#If DEBUG_LEVEL > = 2 Then
 Debug.WriteLine("Checking for 7-digit phone number")
#End If
 Dim is_valid As Boolean = _
 phone_number Like "###-####"

 If Not is_valid Then
#If DEBUG_LEVEL > = 2 Then
 Debug.WriteLine("Checking for 10-digit phone number")
#End If
 is_valid = phone_number Like "###-###-####"
 End If

#If DEBUG_LEVEL > = 1 Then
 Debug.Unindent()
 Debug.WriteLine("Leaving IsPhoneNumberValid, returning " & is_valid)
#End If
 Return is_valid
 End Function

code snippet DebugLevel

CH014.indd 252CH014.indd 252 12/30/09 6:54:34 PM12/30/09 6:54:34 PM

The following text shows the results in the Output window when DEBUG_LEVEL is set to 2:

Entering IsPhoneNumberValid(123-4567)
 Checking for 7-digit phone number
Leaving IsPhoneNumberValid, returning True

From this output, you can tell that the function examined the string 123 - 4567, did not need to
check for a 10 - digit phone number, and returned True.

Example program DebugLevel, which is available for download on the book ’ s web site, uses this
strategy to provide different levels of debugging output.

For more information on debugging Visual Basic applications, see Chapter 19, “ Error Handling. ”

Namespaces

Visual Studio uses namespaces to categorize code. A namespace can contain other namespaces,
which can contain others, forming a hierarchy of namespaces.

You can defi ne your own namespaces to help categorize your code. By placing different routines in
separate namespaces, you can allow pieces of code to include only the namespaces they are actually
using. That makes it easier to ignore the routines that the program isn ’ t using. It also allows more
than one namespace to defi ne items that have the same names.

For example, you could defi ne an Accounting namespace that contains the AccountsReceivable
and AccountsPayable namespaces. Each of those might contain a subroutine named
ListOutstandingInvoices. The program could select one version or the other by calling either
Accounting.AccountsReceivable.ListOutstandingInvoices or Accounting.AccountsPayable
.ListOutstandingInvoices.

You can only use the Namespace statement at the fi le level or inside another namespace, not within
a class or module. Within a namespace, you can defi ne nested namespaces, classes, or modules.

The following example defi nes the AccountingModules namespace. That namespace contains
the two classes PayableItem and ReceivableItem , the module AccountingRoutines , and the
nested namespace OrderEntryModules . The AccountingRoutines module defi nes the PayInvoice
subroutine. All the classes, modules, and namespaces may defi ne other items.

Namespace AccountingModules
 Public Class PayableItem
 ...
 End Class

 Public Class ReceivableItem
 ...
 End Class

 Module AccountingRoutines
 Public Sub PayInvoice(ByVal invoice_number As Long)

Code File Structure ❘ 253

CH014.indd 253CH014.indd 253 12/30/09 6:54:35 PM12/30/09 6:54:35 PM

254 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

 ...
 End Sub
 ...
 End Module

 Namespace OrderEntryModules
 Public Class OrderEntryClerk
 ...
 End Class
 ...
 End Namespace
End Namespace

Code using a module ’ s namespace does not need to explicitly identify the module. If a module
defi nes a variable or routine that has a unique name, you do not need to specify the module ’ s name
to use that item. In this example, there is only one subroutine named PayInvoice , so the code can
invoke it as AccountingModules.PayInvoice . If the AccountingModules namespace contained
another module that defi ned a PayInvoice subroutine, the code would need to indicate which
version to use as in AccountingModules.AccountingRoutines.PayInvoice .

Although modules are transparent within their namespaces, nested namespaces are not. Because the
nested OrderEntryModules namespace defi nes the OrderEntryClerk class, the code must specify
the full namespace path to the class, as in the following code:

Dim oe_clerk As New AccountingModules.OrderEntryModules.OrderEntryClerk

NORMAL NAMESPACES

Note that a Visual Basic project defi nes its own namespace that contains everything
else in the project. Normally, the namespace has the same name as the project.
To view or modify this root namespace, double-click the Solution Explorer’s My
Project entry to open the project’s property pages, and select the Application tab.
Enter the new root namespace name in the text box labeled “Root namespace” in
the upper right.

You can use an Imports statement to simplify access to a namespace inside a fi le. For example,
suppose that you are working on the GeneralAccounting project that has the root namespace
GeneralAccounting. The fi rst statement in the following code allows the program to use items
defi ned in the AccountingModules namespace without prefi xing them with AccountingModules.
The second statement lets the program use items defi ned in the AccountingModules nested
namespace OrderEntryModules. The last two lines of code declare variables using classes defi ned in
those namespaces.

CH014.indd 254CH014.indd 254 12/30/09 6:54:35 PM12/30/09 6:54:35 PM

Imports GeneralAccounting.AccountingModules
Imports GeneralAccounting.AccountingModules.OrderEntryModules
...
Private m_OverdueItem As PayableItem ' In the AccountingModules namespace.
Private m_ThisClerk As OrderEntryClerk ' In the namespace
 ' AccountingModules.OrderEntryModules.

TYPOGRAPHIC CODE ELEMENTS

A few typographic code elements can make a program ’ s structure a bit easier to understand. They
do not execute programming commands themselves, but they are an important part of how you can
structure your code. These elements include comments, line continuation and joining characters,
and line labels.

Comments

Comments can help other developers (or you at a later date) understand the program ’ s purpose,
structure, and method. You start a comment by typing a single quotation mark (') that is not inside
a quoted string. All of the characters starting at the quote and continuing until the end of the line
are part of the comment and are ignored by Visual Basic.

If a line with a comment ends with a line continuation character (described shortly), Visual Basic
ignores that character. That means the line is not continued onto the next line, so the comment ends
with the current line. In other words, you cannot use line continuation characters to make a multi -
line comment.

In the following code, the fi rst declaration is followed by a comment. The comment ends with a line
continuation character so you might expect the second declaration to be part of the comment. That is
not the case. Because this can be misleading, you should not end comments with a line continuation
character. The second statement declares and initializes a string using a value that contains a single
quote. Because the quote is inside a quoted string, it becomes part of the string and does not start a
comment. The next single quotation mark outside of the string begins a new comment.

Dim num_customers As Integer ' The number of customers. _
 This doesn't work as a continued comment!
Dim product_name As String = "Bob's Miracle Code Fixer" ' The program's name.

If you want to continue a comment on the following line, you must use another comment character,
as in the following example:

' Return True if the address is valid. This function checks the address
' format to see that it makes sense. It also looks up the ZIP code and
' verifies that the city is valid for that ZIP code. It does not verify
' that the street and street number exist.
Private Function IsAddressValid(ByVal address_text As String) As Boolean
 ...

Typographic Code Elements ❘ 255

CH014.indd 255CH014.indd 255 12/30/09 6:54:37 PM12/30/09 6:54:37 PM

256 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

To quickly comment or uncomment a large block of code, click and drag to select it using the mouse
and then open the Edit menu ’ s Advanced submenu. Select the Comment Selection command to
comment out the selection or select Uncomment Selection to remove the comment characters from
the front of the selection. Those commands are also available more conveniently as buttons in the
Text Editor toolbar. Use the View menu ’ s Toolbars submenu ’ s Text Editor command to show or hide
this toolbar.

Another way to quickly remove a chunk of code from the program is to surround it with compiler
directives, as in the following code:

#If False Then
 Dim A As Integer
 Dim B As Integer
 Dim C As Integer
#End if

Use comments to make your code clear. Comments do not slow the executable program down (some
superstitious developers think they must slow the code because they make the fi le bigger), so there ’ s
no good reason to exclude them.

XML Comments

A normal comment is just a piece of text that gives information to a developer trying to read your
code. XML comments let you add some context to a comment. For example, you can mark a
comment as a summary describing a subroutine.

Visual Studio automatically extracts XML comments to build an XML fi le describing the project.
This fi le displays the hierarchical shape of the project, showing comments for the project ’ s modules,
namespaces, classes, and other elements.

The result is not particularly easy to read, but you can use it to automatically generate more useful
documentation such as reports or web pages.

You can place a block of XML comments before code elements that are not contained in methods.
Generally, you use them to describe a module, class, variable, property, method, or event.

To begin a comment block, place the cursor on the line before the element you want to describe
and type three single quotes ('''). Visual Studio automatically inserts a template for an XML
comment block. If the element that follows takes parameters, it includes sections describing the
parameters, so it is in your best interest to completely defi ne the parameters before you create
the XML comment block. (Otherwise you ’ ll need to add the appropriate comment sections
by hand.)

The following code shows the XML comment block created for a simple subroutine. It includes
a summary area to describe the subroutine, two param sections to describe the subroutine ’ s
parameters, and a remarks section to provide additional detail.

CH014.indd 256CH014.indd 256 12/30/09 6:54:37 PM12/30/09 6:54:37 PM

''' < summary >
'''
''' < /summary >
''' < param name="jobs" > < /param >
''' < param name="employees" > < /param >
''' < remarks > < /remarks >
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

Note that XML elements can span multiple lines, as the summary element does in this example.

You can add more XML comment sections to the block simply by typing them, following the
convention that they should begin with three single quotes. For example, the following code adds
some content for the comments in the previous code and an extra WrittenBy element that contains
a date attribute:

''' < summary >
''' Assigns jobs to employees, maximizing the total value of jobs assigned.
''' < /summary >
''' < param name="jobs" > The array of Jobs to assign. < /param >
''' < param name="employees" > The array of Employees to assign. < /param >
''' < remarks > The full assignment is not guaranteed to be unique. < /remarks >
''' < WrittenBy date="7/24/10" > Rod Stephens < /WrittenBy >
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

COMMENT CONVENTIONS

Note that I just made up the WrittenBy element and its date attribute — they’re not
part of some XML comment standard. You can put anything you want in there,
although the comments will be easiest to use if you use standard elements such as
param and remarks whenever possible.

These XML comments are somewhat bulky and hard to read. In the previous
example, it isn’t easy to pick out the subroutine’s most important summary
information with a quick glance at the code. To make reading XML comments
easier, Visual Basic defi nes an outlining section for each XML comment block. If
you click the minus sign to the left of the fi rst line in the block, the whole block
collapses and shows only the summary information. If you then click the plus
sign to the left of the summary, Visual Studio expands the comments to show
them all.

Typographic Code Elements ❘ 257

CH014.indd 257CH014.indd 257 12/30/09 6:54:38 PM12/30/09 6:54:38 PM

258 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

The following code shows the beginning of an application that assigns jobs to employees. The
project contains two fi les, a form named Form1.vb and a code module named Module1.vb. The form
contains very little code. The code module defi nes the Job and Employee classes and the AssignJobs
subroutine. Each of these has an XML comment block.

Public Class Form1
 Private m_Jobs() As Job
 Private m_Employees() As Employee
End Class

Module Module1
 Public Class Job
 Public JobNumber As Integer
 ''' < summary >
 ''' A list of skills required to perform this job.
 ''' < /summary >
 ''' < remarks > Represent required equipment as skills. < /remarks >
 Public SkillsRequired As New Collection
 ''' < summary >
 ''' The value of this job.
 ''' < /summary >
 ''' < remarks > Higher numbers indicate more priority. < /remarks >
 Public Priority As Integer
 End Class

Public Class Employee
 Public FirstName As String
 Public LastName As String
 ''' < summary >
 ''' A list of skills this employee has.
 ''' < /summary >
 ''' < remarks > Represent special equipment as skills. < /remarks >
 Public Skills As New Collection
 End Class

 ''' < summary >
 ''' Assigns jobs to employees.
 ''' < /summary >
 ''' < param name="jobs" > Array of Jobs to assign. < /param >
 ''' < param name="employees" > Array of Employees to assign jobs. < /param >
 ''' < remarks > Maximizes total value of jobs assigned. < /remarks >
 ''' < WrittenBy date="7/26/04" > Rod Stephens < /WrittenBy >
 Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

 End Sub
End Module

code snippet AssignJobs

CH014.indd 258CH014.indd 258 12/30/09 6:54:39 PM12/30/09 6:54:39 PM

In addition to providing documentation for your use, XML comments let the Object Browser
provide additional information about your code. Figure 14 - 6 shows the Object Browser describing
the Job class ’ s SkillsRequired property. The area on the lower right shows the property ’ s XML
summary and remarks sections. This project’s name is AssignJobs, its root namespace is AssignJobs,
and the Job class is contained in the JobStuff module, so the complete path to the Job class shown
in the tree view on the left is AssignJobs (project) ➪ AssignJobs (root namespace) ➪ JobStuff.Job
(module and class).

FIGURE 14-6: The Object Browser displays an item’s XML summary and

remarks sections.

When you compile the application, Visual Studio extracts the XML comments and places them in
an XML fi le with the same name as the executable fi le in the project ’ s bin\Debug directory. The
following text shows the result. If you look through the document carefully, you can pick out the
XML comments.

< ?xml version="1.0"? >
< doc >
< assembly >
< name >
AssignJobs
< /name >
< /assembly >
< members >
< member name="F:AssignJobs.JobStuff.Job.SkillsRequired" >
 < summary >
 A list of skills required to perform this job.
 < /summary >
 < remarks > Represent required equipment as skills. < /remarks >
< /member > < member name="F:AssignJobs.JobStuff.Job.Priority" >
 < summary >
 The value of this job.
 < /summary >

Typographic Code Elements ❘ 259

CH014.indd 259CH014.indd 259 12/30/09 6:54:39 PM12/30/09 6:54:39 PM

260 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

 < remarks > Higher numbers indicate more priority. < /remarks >
< /member > < member name="F:AssignJobs.JobStuff.Employee.Skills" >
 < summary >
 A list of skills this employee has.
 < /summary >
 < remarks > Represent special equipment as skills. < /remarks >
< /member > < member name="M:AssignJobs.JobStuff.AssignJobs(
AssignJobs.JobStuff.Job[],AssignJobs.JobStuff.Employee[])" >
 < summary >
 Assigns jobs to employees.
 < /summary >
 < param name="jobs" > Array of Jobs to assign. < /param >
 < param name="employees" > Array of Employees to assign jobs. < /param >
 < remarks > The assignment maximizes total value of jobs assigned. < /remarks >
 < WrittenBy date="1/13/07" > Rod Stephens < /WrittenBy >
< /member >
< /members >
< /doc >

Example program AssignJobs, which is available for download on the book ’ s web site, defi nes job
assignment classes that you can view with the Object Browser. If you compile the program (which
actually doesn ’ t do any job assignment, it just defi nes the classes), you can examine its XML
documentation.

Line Continuation

Line continuation characters let you break long lines across multiple shorter lines so that they are
easier to read. To continue a line, end it with a space followed by an underscore (_). Visual Basic
treats the following code as if it were all on one long line:

Dim background_color As Color = _
 Color.FromName(_
 My.Resources.ResourceManager.GetString(_
 "MainFormBackgroundColor"))

As the previous section explains, you cannot continue comments. A comment includes any space
and underscore at the end of its line so the comment does not apply to the following line.

You can break a line just about anywhere that a space is allowed and between program elements.
For example, you can break a line after the opening parenthesis in a parameter list, as shown in the
following code:

AReallyReallyLongSubroutineNameThatTakesFiveParameters(_
 parameter1, parameter2, parameter3, parameter4, parameter5)

CH014.indd 260CH014.indd 260 12/30/09 6:54:40 PM12/30/09 6:54:40 PM

You cannot break a line inside a quoted string. If you want to break a string, end the string and
restart it on the next line, as in the following example:

Dim txt As String = "To break a long string across multiple lines, " & _
 "end the string, add the line continuation character " & _
 "(space + underscore) " & _
 "and restart the string on the next line."

Visual Basic does not enforce its usual indentation rules on continued lines, so you can indent the
lines in any way you like to make the code ’ s structure more clear. For example, many programmers
align parameters in long subroutine calls:

DoSomething(_
 parameter1, _
 parameter2, _
 parameter3)

Implicit Line Continuation

Visual Basic can also guess where you are continuing a line even if you don ’ t use the line
continuation character, at least sometimes. For example, Visual Basic can fi gure out that the
statement shown in the following code isn ’ t complete until the fi nal line so it treats all of this code as
if it were written on a single long line.

Dim background_color As Color =
 Color.FromName(
 My.Resources.ResourceManager.GetString(
 "MainFormBackgroundColor"
)
)

CONVENTIONAL CONTINUATION

Implicit line continuation is a new feature in Visual Basic 2010 and is not
supported by previous versions. If you use it, then you won’t be able to copy
and paste your code into older versions of Visual Basic. That may not be a big
problem if you don’t plan to go back to Visual Basic 2008 but, because missing line
continuation characters look like typos, you may confuse some people in online
discussions and forums.

To avoid potential confusion, at least some developers plan to not use this new
feature.

Typographic Code Elements ❘ 261

CH014.indd 261CH014.indd 261 12/30/09 6:54:40 PM12/30/09 6:54:40 PM

262 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

Visual Basic does not allow implicit line continuation in all cases, however. For example, in
the following code the “ Next i ” statement is split across two lines. Because a Next statement ’ s
variable name is optional, Visual Basic doesn ’ t know that the following i is required so it doesn ’ t
look for it.

For i As Integer = 1 To 10

Next
 i

In fact, you can ’ t break the statement “ For i As Integer = 1 To 10 ” at any point without a line
continuation character or Visual Basic gets confused.

Some places that Visual Basic does allow implicit line continuation include:

After an equals sign

After a binary operator such as + or *

After commas

After opening parentheses or brackets and before closing parentheses or brackets

The following code shows a few examples:

<
 ComClass()
>
Public Class Employee
 Public Function CalculateStuff(
 ByVal v1 As Integer,
 ByVal v2 As Integer
)

 Dim a As Integer =
 Math.Max(
 v1,
 v2 +
 12
)
 Return a
 End Function

 ...
End Class

➤

➤

➤

➤

CH014.indd 262CH014.indd 262 12/30/09 6:54:41 PM12/30/09 6:54:41 PM

IMPLICIT CONFUSION

Implicit line continuation has great potential for causing confusion so use it
carefully. Use proper indentation to show the structure and make it easier to see
that the parts of the continued line belong together as in the previous example.

Also, don’t assume that implicit line continuation automatically makes the code
easier to understand. Use it to break very long lines or to show nested structure but
sometimes a statement is easier to read in one piece. For example, the following
code is easier to read than the previous version.

a = Math.Max(b, c + d)

Line Joining

Not only can you break a long statement across multiple lines, but you can also join short
statements on a single line. To use two statements on a single line, separate them with a colon (:).
The following line of code contains three statements that store the red, green, and blue components
of a form ’ s background color in the variables r, g, and b:

r = BackColor.R : g = BackColor.G : b = BackColor.B

Line joining is most useful when you have many lines in a row that all have a very similar structure.
By scanning down the lines, you can tell if there are differences that may indicate a bug.

Use line joining with some caution. If the statements are long, or if you have a series of joined lines
with dissimilar structure, combining lots of statements on a single line can make the code harder
to read. If the code is easier to read with each statement on a separate line, write the code that way.
Using more lines doesn ’ t cost extra or make the code run any slower.

Line Labels

You can place a label to the left of any line of code. The label can be either a name or a number,
followed by a colon. The following code defi nes three labels. The fi rst is named DeclareX and
marks the declaration of the variable X . The second has value 10 and is located on a line containing
a comment. The third label, named Done , labels a blank line.

DeclareX: Dim X As Single
10: ' Do something here.
Done:

You must label a line if you will later want to jump to that line. For example, the GoTo, On Error
GoTo, and Resume statements can make code jump to a labeled line. These are less useful in Visual
Basic .NET than they were in Visual Basic 6 and previous versions that didn ’ t have structured error
handling (the Try Catch block), but they are still available.

Typographic Code Elements ❘ 263

CH014.indd 263CH014.indd 263 12/30/09 6:54:42 PM12/30/09 6:54:42 PM

264 ❘ CHAPTER 14 PROGRAM AND MODULE STRUCTURE

SUMMARY

A Visual Studio solution contains a hierarchical arrangement of items. At the top level, it contains
one or more projects. Each project contains several standard items such as My Project (that
represents the project as a whole), References (that records information about references to external
objects), the bin and obj items (that are used by Visual Studio when building the application), and
app.confi g (that holds confi guration information). Projects also contain form, class, and other code
modules.

Normally, many of these fi les are hidden and you do not need to edit them directly. Instead, you
can double - click Solution Explorer ’ s My Project entry and use the project ’ s Properties pages to view
and modify application values. Other hidden fi les store code and resources that determine a form ’ s
appearance, and you can modify them by altering the form with the Form Designer.

Within a code module, you can use modules, classes, regions, and namespaces to group related code
into blocks. You can use conditional compilation statements and conditional compilation constants
to easily add or remove code to or from the compiled application. The Debug and Trace objects let
you generate messages and alerts, depending on whether certain predefi ned constants are defi ned.

Finally, typographic elements such as comments, line continuation, and line joining let you format
the code so that it is easier to read and understand. XML comments provide additional information
that is useful to the Object Browser and that you can use to automatically generate more complete
documentation.

Although all of these components are not required by Visual Basic, they can make the difference
between understanding the code quickly and completely, and not understanding it at all. Over an
application ’ s lifetime of development, debugging, upgrading, and maintenance, this can determine a
project ’ s success.

This chapter describes structural elements that make up code fi les. Within those elements, you
can place the code that gathers, manipulates, stores, and displays data. Chapter 15, “ Data Types,
Variables, and Constants, ” describes the variables that a program uses to hold data values. It
explains how to declare variables, what types of data they can hold, and how Visual Basic converts
from one data type to another.

CH014.indd 264CH014.indd 264 12/30/09 6:54:43 PM12/30/09 6:54:43 PM

15
Data Types, Variables,
and Constants

Variables are among the most fundamental building blocks of a program. A variable is a
program object that stores a value. The value can be a number, letter, string, date, structure
containing other values, or an object representing both data and related actions.

When a variable contains a value, the program can manipulate it. It can perform arithmetic
operations on numbers, string operations on strings (concatenation, calculating substrings,
fi nding a target within a string), date operations (fi nd the difference between two dates, add a
time period to a date), and so forth.

Four factors determine a variable ’ s exact behavior:

Data type determines the kind of the data (integer, character, string, and so forth).

Scope defi nes the code that can access the variable. For example, if you declare a
variable inside a For loop, only other code inside the For loop can use the variable. If
you declare a variable at the top of a subroutine, all the code in the subroutine can use
the variable.

Accessibility determines what code in other modules can access the variable. If you
declare a variable at the module level (outside of any subroutine in the module) and
you use the Private keyword, only the code in the module can use the variable. If you
use the Public keyword, code in other modules can use the variable as well.

Lifetime determines how long the variable ’ s value is valid. A variable inside
a subroutine that is declared with a normal Dim statement is created when the
subroutine begins and is destroyed when it exits. If the subroutine runs again, it
creates a new copy of the variable and its value is reset. If the variable is declared
with the Static keyword, however, the same instance of the variable is used whenever
the subroutine runs. That means the variable ’ s value is preserved between
calls to the subroutine.

➤

➤

➤

➤

c15.indd 265c15.indd 265 12/31/09 6:42:24 PM12/31/09 6:42:24 PM

266 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

For example, a variable declared within a subroutine has scope equal to the subroutine.
Code outside of the subroutine cannot access the variable. If a variable is declared on a module level
outside any subroutine, it has module scope. If it is declared with the Private keyword, it
is accessible only to code within the module. If it is declared with the Public keyword, then it is also
accessible to code outside of the module.

Visibility is a concept that combines scope, accessibility, and lifetime. It determines whether a
certain piece of code can use a variable. If the variable is accessible to the code, the code is
within the variable ’ s scope, and the variable is within its lifetime (has been created and not yet
destroyed), the variable is visible to the code.

This chapter explains the syntax for declaring variables in Visual Basic. It explains how you can
use different declarations to determine a variable ’ s data type, scope, accessibility, and lifetime. It
discusses some of the issues you should consider when selecting a type of declaration, and describes
some newer variable concepts such as anonymous and nullable types, which can complicate variable
declarations. This chapter also explains ways you can initialize objects, arrays, and collections
quickly and easily.

Constants, parameters, and property procedures all have concepts of scope and data type that are
similar to those of variables, so they are also described here.

The chapter fi nishes with a brief explanation of naming conventions. Which naming rules you adopt
isn ’ t as important as the fact that you adopt some. This chapter discusses where you can fi nd
the conventions used by Microsoft Consulting Services. From those, you can build your own coding
conventions.

DATA TYPES

The following table summarizes Visual Basic ’ s elementary data types.

TYPE SIZE VALUES

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned byte)

SByte 1 byte − 128 to 127 (signed byte)

Char 2 bytes 0 to 65,535 (unsigned character)

Short 2 bytes − 32,768 to 32,767

UShort 2 bytes 0 through 65,535 (unsigned short)

Integer 4 bytes − 2,147,483,648 to 2,147,483,647

UInteger 4 bytes 0 through 4,294,967,295 (unsigned integer)

Long 8 bytes − 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

c15.indd 266c15.indd 266 12/31/09 6:42:27 PM12/31/09 6:42:27 PM

TYPE SIZE VALUES

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long)

Decimal 16 bytes 0 to +/ − 79,228,162,514,264,337,593,543,950,335 with no decimal

point. 0 to +/ − 7.9228162514264337593543950335 with 28 places to the

right of the decimal place.

Single 4 bytes − 3.4028235E+38 to − 1.401298E - 45 (negative values) 1.401298E - 45 to

3.4028235E+38 (positive values)

Double 8 bytes − 1.79769313486231570E+308 to − 4.94065645841246544E - 324

(negative values) 4.94065645841246544E - 324 to

1.79769313486231570E+308 (positive values)

String variable Depending on the platform, a string can hold approximately 0 to 2

billion Unicode characters

Date 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm

Object 4 bytes Points to any type of data

Structure Variable Structure members have their own ranges .

The System namespace also provides integer data types that specify their number of bits explicitly.
For example, Int32 represents a 32 - bit integer. Using these values instead of Integer emphasizes the
fact that the variable uses 32 bits. That can sometimes make code clearer. For example, suppose that
you need to call an application programming interface (API) function that takes a 32 - bit integer as
a parameter. In Visual Basic 6, a Long uses 32 bits but in Visual Basic .NET, an Integer uses 32 bits.
You can make it obvious that you are using a 32 - bit integer by giving the parameter the Int32 type.

The data types that explicitly give their sizes are Int16, Int32, Int64, UInt16, UInt32, and UInt64.

The Integer data type is usually the fastest of the integral types. You will generally get better
performance using Integers than you will with the Char, Byte, Short, Long, or Decimal data types.
You should stick with the Integer data type unless you need the extra range provided by Long and
Decimal, or you need to save space with the smaller Char and Byte data types. In many cases, the
space savings you will get using the Char and Byte data types isn ’ t worth the extra time and effort,
unless you are working with a very large array of values.

Note that you cannot safely assume that a variable ’ s storage requirements are exactly the same as
its size. In some cases, the program may move a variable so that it begins on a boundary that is
natural for the hardware platform. For example, if you make a structure containing several Short
(2 - byte) variables, the program may insert 2 extra bytes between them so they can all start on 4 -
byte boundaries because that may be more effi cient for the hardware. For more information on
structures, see Chapter 26, “ Classes and Structures. ”

Data Types ❘ 267

c15.indd 267c15.indd 267 12/31/09 6:42:27 PM12/31/09 6:42:27 PM

268 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

ALIGNMENT ATTRIBUTES

Actually, you can use the StructLayout attribute to change the way Visual Basic
allocates the memory for a structure. In that case you may be able to determine
exactly how the structure is laid out. This is a fairly advanced topic and is not
covered in this book. For more information, see msdn.microsoft.com/system
.runtime.interopservices.structlayoutattribute.aspx .

Some data types also come with some additional overhead. For example, an array stores some extra
information about each of its dimensions.

TYPE CHARACTERS

Data type characters identify a value ’ s data type. The following table lists the data type characters
of Visual Basic.

CHARACTER DATA TYPE

% Integer

& Long

@ Decimal

! Single

Double

$ String

You can specify a variable ’ s data type by adding a data type character after a variable ’ s name when
you declare it. When you use the variable later, you can omit the data type character if you like.
For example, the following code declares variable num_desserts as a Long and satisfaction_
quotient as a Double. It then assigns values to these variables.

Dim num_desserts &
Dim satisfaction_quotient#

num_desserts = 100
satisfaction_quotient# = 1.23

If you have Option Explicit turned off, you can include a data type character the fi rst time you use
the variable to determine its data type. If you omit the character, Visual Basic picks a default data
type based on the value you assign to the variable.

c15.indd 268c15.indd 268 12/31/09 6:42:28 PM12/31/09 6:42:28 PM

If the value you assign is an integral value that will fi t in an Integer, Visual Basic makes the variable
an Integer. If the value is too big for an Integer, Visual Basic makes the variable a Long. If the value
contains a decimal point, Visual Basic makes the variable a Double.

The following code shows the fi rst use of three variables (Option Explicit is off). The fi rst statement
sets the variable an_integer equal to the value 100. This value fi ts in an Integer, so Visual Basic
makes the variable an Integer. The second statement sets a_long equal to 10000000000. That value
is too big to fi t in an Integer, so Visual Basic makes it a Long. The third statement sets a_double to
1.0. That value contains a decimal point, so Visual Basic makes the variable a Double.

an_integer = 100
a_long = 10000000000
a_double = 1.0

If you set a variable equal to a True or False, Visual Basic makes it a Boolean.

In Visual Basic, you surround date values with # characters. If you assign a variable to a date value,
Visual Basic gives the variable the Date data type. The following code assigns Boolean and Date
variables:

a_boolean = True
a_date = #12/31/2007#

In addition to data type characters, Visual Basic provides a set of literal type characters that
determine the data type of literal values. These are values that you explicitly type into your code in
statements such as assignment and initialization statements. The following table lists the literal type
characters of Visual Basic.

CHARACTER DATA TYPE

S Short

US UShort

I Integer

UI UInteger

L Long

UL ULong

D Decimal

F Single (F for fl oating point)

R Double (R for real)

c Char (note lowercase c)

Type Characters ❘ 269

c15.indd 269c15.indd 269 12/31/09 6:42:29 PM12/31/09 6:42:29 PM

270 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

A literal type character determines the data type of a literal value in your code and may indirectly
determine the data type of a variable assigned to it. For example, suppose that the following code is
the fi rst use of the variables i and ch (with Option Explicit turned off).

i = 123L
ch = "X"c

Normally, Visual Basic would make i an Integer, because the value 123 fi ts in an Integer. Because
the literal value 123 ends with the L character, however, the value is a Long, so the variable i is
also a Long.

Similarly, Visual Basic would normally make variable ch a String because the value “ X ” looks like a
string. The c following the value tells Visual Basic to make this a Char variable instead.

Visual Basic also lets you precede a literal integer value with & H to indicate that it is hexadecimal
(base 16) or & O to indicate that it is octal (base 8). For example, the following three statements set
the variable flags to the same value. The fi rst statement uses the decimal value 100 , the second
uses the hexadecimal value & H64 , and the third uses the octal value & O144 .

flags = 100 ' Decimal 100.
flags = & H64 ' Hexadecimal & H64 = 6 * 16 + 4 = 96 + 4 = 100.
flags = & O144 ' Octal & O144 = 1 * 64 + 4 * 8 + 4 = 64 + 32 + 4 = 100.

BASE CONVERSIONS

The Hex and Oct functions let you convert numeric values into hexadecimal and
octal strings, respectively. In some sense, this is the opposite of what the & H
and & O codes do: make Visual Basic interpret a string literal as hexadecimal or
octal number.

The following code displays the value of the variable flags in decimal,
hexadecimal, and octal:

Debug.WriteLine(flags) ' Decimal.
Debug.WriteLine(Hex(flags)) ' Hexadecimal.
Debug.WriteLine(Oct(flags)) ' Octal.

Sometimes you must use literal type characters to make a value match a variable ’ s data type.
For example, consider the following code:

c15.indd 270c15.indd 270 12/31/09 6:42:29 PM12/31/09 6:42:29 PM

Dim ch As Char
ch = "X" ' Error because "X" is a String.
ch = "X"c ' Okay because "X"c is a Char.

Dim amount As Decimal
amount = 12.34 ' Error because 12.34 is a Double.
amount = 12.34D ' Okay because 12.34D is a Decimal.

The fi rst assignment tries to assign the value “ X ” to a Char variable. This throws an error because
“ X ” is a String value so it won ’ t fi t in a Char variable. Although it is obvious to a programmer
that this code is trying to assign the character X to the variable, Visual Basic thinks the types
don ’ t match.

The second assignment statement works because it assigns the Char value “ X ” c to the variable. The
next assignment fails when it tries to assign the Double value 12.34 to a Decimal variable. The fi nal
assignment works because the value 12.34D is a Decimal literal.

The following code shows another way to accomplish these assignments. This version uses the data
type conversion functions CChar and CDec to convert the values into the proper data types. The
following section, “ Data Type Conversion, ” has more to say about data type conversion functions.

ch = CChar("X")
amount = CDec(12.34)

Using data type characters, literal type characters, and the Visual Basic default data type
assignments can lead to very confusing code. You cannot expect every programmer to notice that a
particular variable is a Single because it is followed by ! in its fi rst use, but not in others. You can
make your code less confusing by using variable declarations that include explicit data types.

DATA TYPE CONVERSION

Normally, you assign a value to a variable that has the same data type as the value. For example,
you assign a string value to a String variable, you assign an integer value to an Integer variable,
and so forth. Whether you can assign a value of one type to a variable of another type depends on
whether the conversion is a narrowing or widening conversion.

Narrowing Conversions

A narrowing conversion is one where data is converted from one type to another type that cannot
hold all of the possible values allowed by the original data type. For example, the following code
copies the value from a Long variable into an Integer variable. A Long value can hold values that
are too big to fi t in an Integer, so this is a narrowing conversion. The value contained in the Long
variable may or may not fi t in the Integer.

Data Type Conversion ❘ 271

c15.indd 271c15.indd 271 12/31/09 6:42:31 PM12/31/09 6:42:31 PM

272 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Dim an_integer As Integer
Dim a_long As Long
...
an_integer = a_long

The following code shows a less obvious example. Here the code assigns the value in a String
variable to an Integer variable. If the string happens to contain a number (for example “ 10 ” or
“ 1.23 ”), the assignment works. If the string contains a non - numeric value (such as “ Hello ”),
however, the assignment fails with an error.

Dim an_integer As Integer
Dim a_string As String
...
an_integer = a_string

Another non - obvious narrowing conversion is from a class to a derived class. Suppose that the
Employee class inherits from the Person class. Then setting an Employee variable equal to a Person
object, as shown in the following code, is a narrowing conversion because you cannot know without
additional information whether the Person is a valid Employee. All Employees are Persons, but not
all Persons are Employees.

Dim an_employee As Employee
Dim a_person As Person
...
an_employee = a_person

If you have Option Strict turned on, Visual Basic will not allow implicit narrowing conversions.
If Option Strict is off, Visual Basic will attempt an implicit narrowing conversion and throw
an error if the conversion fails (for example, if you try to copy the Integer value 900 into a Byte
variable).

To make a narrowing conversion with Option Strict turned on, you must explicitly use a data type
conversion function. Visual Basic will attempt the conversion and throw an error if it fails. The
CByte function converts a numeric value into a Byte value, so you could use the following code to
copy an Integer value into a Byte variable:

Dim an_integer As Integer
Dim a_byte As Byte
...
a_byte = CByte(an_integer)

If the Integer variable contains a value less than 0 or greater than 255, the value will not fi t in a Byte
variable so CByte throws an error.

The following table lists the data type conversion functions of Visual Basic.

c15.indd 272c15.indd 272 12/31/09 6:42:31 PM12/31/09 6:42:31 PM

FUNCTION CONVERTS TO

CBool Boolean

CByte Byte

CChar Char

CDate Date

CDbl Double

CDec Decimal

CInt Integer

CLng Long

CObj Object

CSByte SByte

CShort Short

CSng Single

CStr String

CUInt UInteger

CULng ULong

CUShort UShort

The CInt and CLng functions round fractional values off to the nearest whole number. If the
fractional part of a number is exactly .5, the functions round to the nearest even whole number. For
example, 0.5 rounds to 0, 0.6 rounds to 1, and 1.5 rounds to 2.

In contrast, the Fix and Int functions truncate fractional values. Fix truncates toward zero, so
Fix(– 0.9) is 0 and Fix(0.9) is 0. Int truncates downward, so Int(– 0.9) is – 1 and Int(0.9) is 0.

Fix and Int also differ from CInt and CLng because they return the same data type they are passed.
CInt always returns an Integer no matter what type of value you pass it. If you pass a Long into Fix,
Fix returns a Long. In fact, if you pass a Double into Fix, Fix returns a Double.

The CType function takes as parameters a value and a data type, and it converts the value into that
type if possible. For example, the following code uses CType to perform a narrowing conversion
from a Long to an Integer. Because the value of a_long can fi t within an integer, the
conversion succeeds.

Data Type Conversion ❘ 273

c15.indd 273c15.indd 273 12/31/09 6:42:32 PM12/31/09 6:42:32 PM

274 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Dim an_integer As Integer
Dim a_long As Long = 100
an_integer = Ctype(a_long, Integer)

The DirectCast statement changes value types much as CType does, except that it only works
when the variable it is converting implements or inherits from the new type. For example,
suppose the variable dessert_obj has the generic type Object and you know that it points to
an object of type Dessert. Then the following code converts the generic Object into the specifi c
Dessert type:

Dim dessert_obj As Object = New Dessert("Ice Cream")
Dim my_dessert As Dessert
my_dessert = DirectCast(dessert_obj, Dessert)

DirectCast throws an error if you try to use it to change the object ’ s data type. For example,
the following code doesn ’ t work, even though converting an Integer into a Long is a narrowing
conversion:

Dim an_integer As Integer = 100
Dim a_long As Long
a_long = DirectCast(an_integer, Long)

The TryCast statement converts data types much as DirectCast does, except that it returns Nothing
if there is an error, rather than throwing an error.

Data Type Parsing Methods

Each of the fundamental data types (except for String) has a Parse method that attempts to convert
a string into the variable type. For example, the following two statements both try to convert the
string value txt_entered into an Integer:

Dim txt_entered As String = "112358"
Dim num_entered As Integer
...
num_entered = CInt(txt_entered) ' Use CInt.
num_entered = Integer.Parse(txt_entered) ' Use Integer.Parse.

Some of these parsing methods can take additional parameters to control the conversion. For
example, the numeric methods can take a parameter that gives the international number style the
string should have.

The class parsing methods have a more object - oriented feel than the conversion functions. They
are also a bit faster. They only parse strings, however, so if you want to convert from a Long to an
Integer, you need to use CInt rather than Integer.Parse or Int32.Parse.

c15.indd 274c15.indd 274 12/31/09 6:42:32 PM12/31/09 6:42:32 PM

Widening Conversions

In contrast to a narrowing conversion, a widening conversion is one where the new data type is
always big enough to hold the old data type ’ s values. For example, a Long is big enough to hold any
Integer value, so copying an Integer value into a Long variable is a widening conversion.

Visual Basic allows widening conversions. Note that some widening conversions can still result in a
loss of data. For example, a Decimal variable can store more signifi cant digits than a Single variable
can. A Single can hold any value that a Decimal can but not with the same precision. If you assign a
Decimal value to a Single variable, you may lose some precision.

The Convert Class

The Convert class provides an assortment of methods for converting a value from one data type to
another. For example, the following code uses the ToInt32 method to convert the string “ 17 ” into a
32 - bit integer:

Dim i As Integer = Convert.ToInt32("17")

These methods are easy to understand so they make code simple to read. Unfortunately they work
with particular data type sizes such as 16 - or 32 - bit integer rather than with the system ’ s default
integer size so they may require editing in the future. For example, if a later version of Visual Basic
assumes 64 - bit integers, then you may need to update your calls to Convert methods.

ToString

The ToString method is a conversion function that is so useful it deserves special mention. Every
object has a ToString method that returns a string representation of the object. For example, the
following code converts the integer value num_employees into a string:

Dim txt As String = num_employees.ToString()

Exactly what value ToString returns depends on the object. For example, a double ’ s ToString
method returns the double formatted as a string. More complicated objects tend to return their
class names rather than their values (although you can change that behavior by overriding
their ToString methods).

ToString can take as a parameter a format string to change the way it formats its result. For
example, the following code displays the value of the double angle with two digits after
the decimal point:

MessageBox.Show(angle.ToString("0.00"))

Appendix P, “ Date and Time Format Specifi ers, ” and Appendix Q, “ Other Format Specifi ers, ”
describe format specifi ers in greater detail.

Data Type Conversion ❘ 275

c15.indd 275c15.indd 275 12/31/09 6:42:33 PM12/31/09 6:42:33 PM

276 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

VARIABLE DECLARATIONS

The complete syntax for a variable declaration is as follows:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly] _
Dim [WithEvents] name [(bounds_list)] [As [New] type] _
[= initialization_expression]

All declarations have only one thing in common: They contain a variable ’ s name. Other than the
name, different declarations may have nothing in common. Variable declarations with different
forms can use or omit any other piece of the general declaration syntax. For example, the following
two declarations don ’ t share a single keyword:

Dim i = 1 ' Declare private Integer named i. (Option Explicit Off)
Public j As Integer ' Declare public Integer named j.

The many variations supported by a variable declaration make the general syntax rather
intimidating. In most cases, however, declarations are straightforward. The previous two
declarations are fairly easy to understand.

The following sections describe the pieces of the general declaration in detail.

Attribute_List

The optional attribute list is a comma - separated list of attributes that apply to the variable. An
attribute further refi nes the defi nition of a variable to give more information to the compiler and the
runtime system.

Attributes are rather specialized and address issues that arise when you perform very specifi c
programming tasks. For example, when you write code to serialize and de - serialize data, you can
use serialization attributes to gain more control over the process.

The following code defi nes the OrderItem class. This class declares three public variables: ItemName ,
Quantity , and Price . It uses attributes on its three variables to indicate that ItemName should be
stored as text, Price should be stored as an attribute named Cost , and Quantity should be stored
as an attribute with its default name, Quantity .

Public Class OrderItem
 < XmlText() >
 Public ItemName As String

 < XmlAttributeAttribute(AttributeName:="Cost") >
 Public Price As Decimal

 < XmlAttributeAttribute() >
 Public Quantity As Integer
End Class

c15.indd 276c15.indd 276 12/31/09 6:42:33 PM12/31/09 6:42:33 PM

The following code shows the XML serialization of an OrderItem object:

< OrderItem Cost="1.25" Quantity="12" > Cookie < /OrderItem >

Because attributes are so specialized, they are not described in more detail here. For more
information, see the sections in the online help related to the tasks you need to perform. For
more information on XML serialization attributes, for example, search for “ System.Xml.
Serialization Namespace, ” or look at these web pages:

XML Serialization in the .NET Framework, msdn.microsoft.com/ms950721.aspx .

Controlling XML Serialization Using Attributes, msdn.microsoft.com/2baksw0z(VS.71)
.aspx .

Attributes That Control XML Serialization, msdn.microsoft.com/83y7df3e
(VS.71).aspx .

For more information on attributes in general, see the “ Attributes ” section of the Visual Basic
Language Reference or go to msdn.microsoft.com/39967861.aspx .

For a list of attributes you can use to modify variable declarations, search the online help for
“ Attribute Hierarchy, ” or see these web pages:

Attributes Used in Visual Basic, msdn.microsoft.com/f51fe7sf.aspx .

Attribute Class, msdn.microsoft.com/system.attribute.aspx . (Look for the

“ Inheritance Hierarchy ” section to see what attributes inherit from the Attribute class.)

Accessibility

A variable declaration ’ s accessibility clause can take one of the following values:

Public — You can use the Public keyword only for variables declared at the module,
class, structure, namespace, or fi le level but not inside a subroutine. Public indicates that
the variable should be available to all code inside or outside of the variable ’ s module. This
allows the most access to the variable.

Protected — You can use the Protected keyword only at the class level, not inside a
module or inside a routine within a class. Protected indicates that the variable should be
accessible only to code within the same class or a derived class. The variable is available to
code in the same or a derived class, even if the instance of the class is different from the one
containing the variable. For example, one Employee object can access a Protected variable
inside another Employee object.

Friend — You can use the Friend keyword only for variables declared at the module, class,
namespace, or fi le level, not inside a subroutine. Friend indicates that the variable should be
available to all code inside or outside of the variable ’ s module within the same project. The
difference between this and Public is that Public allows code outside of the project to access
the variable. This is generally only an issue for code and control libraries. For example,
suppose that you build a code library containing dozens of routines and then you write a
program that uses the library. If the library declares a variable with the Public keyword, the

➤

➤

➤

➤

➤

➤

➤

➤

Variable Declarations ❘ 277

c15.indd 277c15.indd 277 12/31/09 6:42:34 PM12/31/09 6:42:34 PM

278 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

code in the library and the code in the main program can use the variable. In contrast, if the
library declares a variable with the Friend keyword, only the code in the library can access
the variable, not the code in the main program.

Protected Friend — You can use Protected Friend only at the class level, not inside a
module or inside a routine within a class. Protected Friend is the union of the Protected and
Friend keywords. A variable declared Protected Friend is accessible only to code within the
same class or a derived class and only within the same project.

Private — You can use the Private keyword only for variables declared at the module,
class, or structure, not inside a subroutine. A variable declared Private is accessible only to
code in the same module, class, or structure. If the variable is in a class or structure, it is
available to other instances of the class or structure. For example, one Customer object can
access a Private variable inside another Customer object.

Static — You can use the Static keyword only for variables declared within a subroutine
or a block within a subroutine (for example, a For loop or Try Catch block). You cannot use
Static with Shared or Shadows. A variable declared Static keeps its value between lifetimes.
For example, if a subroutine sets a Static variable to 27 before it exits, the variable begins
with the value 27 the next time the subroutine executes. The value is stored in memory,
so it is not retained if you exit and restart the whole program. Use a database, the System
Registry, or some other means of permanent storage if you need to save values between
program runs.

Shared

You can use the Shared keyword at the module, class, structure, namespace, or fi le level, not within
a subroutine. This keyword means that all instances of the class or structure containing the variable
share the same variable.

For example, suppose that the Order class declares the Shared variable NumOrders to represent
the total number of orders in the application. Then all instances of the Order class share the same
NumOrders variable. If one instance of an Order sets NumOrders to 10 , all instances of Order
see NumOrders equal 10 .

You can access a Shared variable either by using a specifi c class instance or by using the class itself.
For example, the following code uses the order1 object ’ s NumOrders variable to set the value of
NumOrders to 100 . It then displays this value by using order1 and another Order object named
order2 . Next, it uses the class itself to set the value of NumOrders and uses the class to display
the result.

order1.NumOrders = 100 ' Use order1 to set NumOrders = 100.
MessageBox.Show(order1.NumOrders) ' Use order1 to display 100.
MessageBox.Show(order2.NumOrders) ' Use a different Order to Display 100.
Order.NumOrders = 101 ' Use the class to set NumOrders = 101.
MessageBox.Show(Order.NumOrders) ' Use the class to display 101.

You cannot use the Shared keyword with the Static keyword. This makes sense because a Shared
variable is in some fashion static to the class or structure that contains it. If one instance of the class

➤

➤

➤

c15.indd 278c15.indd 278 12/31/09 6:42:34 PM12/31/09 6:42:34 PM

modifi es the variable, the value is available to all other instances. In fact, even if you destroy every
instance of the class or never create any instances at all, the class itself still keeps the variable ’ s value
safe. That provides a persistence similar to that given by the Static keyword.

Shadows

You can use the Shadows keyword only for variables declared at the module, class, structure,
namespace, or fi le level, not inside a subroutine. Shadows indicates that the variable hides a variable
with the same name in a base class. In a typical example, a subclass provides a variable with the
same name as a variable declared in one of its ancestor classes.

Example program ShadowTest, which is available for download on the book ’ s web site, uses the
following code to demonstrate the Shadows keyword:

Public Class Person
 Public LastName As String
 Public EmployeeId As String
End Class

Public Class Employee
 Inherits Person
 Public Shadows EmployeeId As Long
End Class

Public Class Manager
 Inherits Employee
 Public Shadows LastName As String
End Class

Private Sub TestShadows()
 Dim txt As String = ""

 Dim mgr As New Manager
 mgr.LastName = "Manager Last Name"
 mgr.EmployeeId = 1

 Dim emp As Employee = CType(mgr, Employee)
 emp.LastName = "Employee Last Name"
 emp.EmployeeId = 2

 Dim per As Person = CType(mgr, Person)
 per.LastName = "Person Last Name"
 per.EmployeeId = "A"

 txt & = "Manager: " & mgr.EmployeeId & ": " & mgr.LastName & vbCrLf
 txt & = "Employee: " & emp.EmployeeId & ": " & emp.LastName & vbCrLf
 txt & = "Person: " & per.EmployeeId & ": " & per.LastName & vbCrLf

 txtResults.Text = txt
 txtResults.Select(0, 0)
End Sub

code snippet ShadowTest

Variable Declarations ❘ 279

c15.indd 279c15.indd 279 12/31/09 6:42:35 PM12/31/09 6:42:35 PM

280 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

The code defi nes a Person class that contains public String variables LastName and EmployeeId .
The Employee class inherits from Person and declares its own version of the EmployeeId variable.
It uses the Shadows keyword so this version covers the version defi ned by the Person class. Note that
Shadows works here even though the two versions of EmployeeId have different data types:
Long versus String. An Employee object gets the Long version, and a Person object gets the String
version.

The Manager class inherits from the Employee class and defi nes its own version of the LastName
variable. A Manager object uses this version, and an Employee or Person object uses the version
defi ned by the Person class.

Having defi ned these three classes, the program works with them to demonstrate shadowing.
First it creates a Manager object, and sets its LastName variable to “ Manager Last Name ” and its
EmployeeId variable to 1 . The LastName value is stored in the Manager class ’ s version of
the variable declared with the Shadows keyword. The EmployeeId value is stored in the EmployeeId
variable declared with the Shadows keyword in the Employee class.

The program then creates an Employee variable and makes it point to the Manager object. This
makes sense because Manager inherits from Employee. A Manager is a type of Employee so
an Employee variable can point to a Manager object. The program sets the Employee object ’ s
LastName variable to “ Employee Last Name ” and its EmployeeId variable to 2 . The LastName
value is stored in the Person class ’ s version of the variable. The EmployeeId value is stored
in the EmployeeId variable declared with the Shadows keyword in the Employee class. Because
the Manager class does not override this declaration with its own shadowing declaration of
EmployeeId , this value overwrites the value stored by the Manager object.

Next, the program creates a Person variable and makes it point to the same Manager object. Again
this makes sense because a Manager is a type of Person so a Person variable can point to a Manager
object. The program sets the Person object ’ s LastName variable to “ Person Last Name ” and its
EmployeeId variable to “ A. ” The Person class does not inherit, so the program stores the values
in the versions of the variables defi ned by the Person class. Because the Employee class does not
override the Person class ’ s declaration of LastName with its own shadowing declaration, this value
overwrites the value stored by the Employee object.

Finally, the program prints the values of the EmployeeId and LastName variables for each of
the objects.

The following output shows the program ’ s results. Notice that the Employee object ’ s value for
EmployeeId (2) overwrote the value saved by the Manager object (1) and that the Person object ’ s
value for LastName (Person Last Name) overwrote the value saved by the Employee object
(Employee Last Name).

Manager: 2: Manager Last Name
Employee: 2: Person Last Name
Person: A: Person Last Name

c15.indd 280c15.indd 280 12/31/09 6:42:36 PM12/31/09 6:42:36 PM

Normally, you don ’ t need to access shadowed versions of a variable. If you declare a version of
LastName in the Employee class that shadows a declaration in the Person class, you presumably did
it for a good reason (unlike in the previous example, which does it just to show how it ’ s done), and
you don ’ t need to access the shadowed version directly.

However, if you really do need to access the shadowed version, you can use variables from ancestor
classes to do so. For example, the previous example creates Employee and Person objects pointing to
a Manager object to access that object ’ s shadowed variables.

Within a class, you can similarly cast the Me object to an ancestor class. For example, the following
code in the Manager class makes a Person variable pointing to the same object and sets its
LastName value:

Public Sub SetPersonEmployeeId(ByVal employee_id As String)
 Dim per As Person = CType(Me, Person)
 per.EmployeeId = employee_id
End Sub

Code in a class can also use the MyBase keyword to access the variables defi ned by the parent
class. The following code in the Manager class sets the object ’ s LastName variable declared by the
Employee parent class:

Public Sub SetManagerLastName(ByVal last_name As String)
 MyBase.LastName = last_name
End Sub

ReadOnly

You can use the ReadOnly keyword only for variables declared at the module, class, structure,
namespace, or fi le level, not inside a subroutine. ReadOnly indicates that the program can read, but
not modify, the variable ’ s value.

You can initialize the variable in one of two ways. First, you can include an initialization statement
in the variable ’ s declaration, as shown in the following code:

Public Class EmployeeCollection
 Public ReadOnly MaxEmployees As Integer = 100
 ...
End Class

Second, you can initialize the variable in the object ’ s constructors. The following code
declares the ReadOnly variable MaxEmployees . The empty constructor sets this variable
to 100 . A second constructor takes an integer parameter and sets the MaxEmployees to its
value.

Variable Declarations ❘ 281

c15.indd 281c15.indd 281 12/31/09 6:42:36 PM12/31/09 6:42:36 PM

282 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Public Class EmployeeCollection
 Public ReadOnly MaxEmployees As Integer

 Public Sub New()
 MaxEmployees = 100
 End Sub

 Public Sub New(ByVal max_employees As Integer)
 MaxEmployees = max_employees
 End Sub
 ...
End Class

After the object is initialized, the program cannot modify the ReadOnly variable. This restriction
applies to code inside the module that declared the variable, as well as code in other modules. If you
want to allow code inside the same module to modify the value but want to prevent code in other
modules from modifying the value, you should use a property procedure instead. See the section,
“ Property Procedures, ” later in this chapter for more information.

Dim

The Dim keyword offi cially tells Visual Basic that you want to create a variable.

You can omit the Dim keyword if you specify Public, Protected, Friend, Protected Friend,
Private, Static, or ReadOnly. In fact, if you include one of these keywords, the Visual Basic editor
automatically removes the Dim keyword if you include it.

If you do not specify otherwise, variables you declare using a Dim statement are Private. The
following two statements are equivalent:

Dim num_people As Integer
Private num_people As Integer

CERTAIN SCOPE

For certainty ’ s sake, many programmers (including me) explicitly specify Private
to declare private variables. Using Private means that programmers don ’ t need to
remember that the Dim keyword gives a private variable by default.

One place where the Dim keyword is common is when declaring variables inside subroutines. You
cannot use the Private keyword inside a subroutine (or Public, Protected, Friend, Protected Friend,
or ReadOnly, for that matter), so you must use either Static or Dim.

c15.indd 282c15.indd 282 12/31/09 6:42:37 PM12/31/09 6:42:37 PM

WithEvents

The WithEvents keyword tells Visual Basic that the variable is of a specifi c object type that may
raise events that you will want to catch. For example, the following code declares the variable Face
as a PictureBox object that may raise events you want to catch:

Private WithEvents Face As PictureBox

When you declare a variable with the WithEvents keyword, Visual Basic creates an entry for it in
the left drop - down list in the module ’ s code window, as shown in Figure 15 - 1.

FIGURE 15-1: Visual Basic creates a drop-down entry for variables declared WithEvents.

If you select the object in the left drop - down list, Visual Basic fi lls the right drop - down list with the
object ’ s events that you might want to catch, as shown in Figure 15 - 2.

Variable Declarations ❘ 283

c15.indd 283c15.indd 283 12/31/09 6:42:38 PM12/31/09 6:42:38 PM

284 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

If you select an event, Visual Basic creates a corresponding empty event handler. Letting Visual
Basic automatically generate the event handler in this way is easier and safer than trying to type the
event handler yourself, creating all of the required parameters by hand.

Declaring variables using the WithEvents keyword is a powerful technique. You can make the
variable point to an object to catch its events. Later, if you want to process events from some other
object using the same event handlers, you can set the variable to point to the new object. If you no
longer want to receive any events, you can set the variable to Nothing.

Unfortunately, you cannot declare an array using the WithEvents keyword. That means you cannot
use a simple declaration to allow the same event handlers to process events from more than one
object. However, you can achieve this by using the AddHandler method to explicitly set the event
handler routines for a series of objects. For more information on this technique, see the section
“ Catching Events ” in Chapter 26.

Name

A declaration ’ s name clause gives the name of the variable. This must be a valid Visual Basic
identifi er. The rules for valid identifi ers are a bit confusing, but generally an identifi er should begin
with a letter or underscore, followed by any number of letters, digits, or underscores.

FIGURE 15-2: When you select an object declared WithEvents in the left drop-down list,

Visual Basic fi lls the right drop-down list with events you might want to catch.

c15.indd 284c15.indd 284 12/31/09 6:42:38 PM12/31/09 6:42:38 PM

If the identifi er begins with an underscore (which is unusual), it must contain at least one other
valid character (letter, digit, or underscore) so that Visual Basic doesn ’ t confuse it with a line
continuation character.

Identifi er names cannot contain special characters such as & , %, #, and $, although some of these
may be used as data type characters.

Here are some examples:

num_employees Valid

NumEmployees Valid

_manager Valid (but unusual)

_ Invalid (contains only a single underscore)

__ Valid (two underscores is valid but could be very confusing)

1st_employee Invalid (doesn ’ t begin with a letter or underscore)

#employees Invalid (contains the special character #)

Normal identifi ers cannot be the same as a Visual Basic keyword. However, you can escape an
identifi er (mark it to give it a special meaning) by enclosing it in square brackets. If you escape
an identifi er, you can give it the same name as a Visual Basic keyword. For example, in the following
code, the ParseString subroutine takes a single parameter named String of type String:

Public Sub ParseString(ByVal [String] As String)
 Dim values() As String = Split([String])
 ...
End Sub

If you begin writing a call to this subroutine in the code editor, the IntelliSense pop - up describes
this routine as ParseString(String As String).

These rules let you come up with some strange and potentially confusing identifi er names. For
example, you can make escaped variables named String, Boolean, ElseIf, and Case. Depending on
your system ’ s settings, underscores may be hard to read either on the screen or in printouts. That
may make variables such as __ (two underscores) seem to vanish and may make it hard to tell the
difference between _Name and Name .

Although these identifi ers are all legal, they can be extremely confusing and may lead to long,
frustrating debugging sessions. To avoid confusion, use escaped identifi ers and identifi ers beginning
with an underscore sparingly.

Variable Declarations ❘ 285

c15.indd 285c15.indd 285 12/31/09 6:42:39 PM12/31/09 6:42:39 PM

286 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Bounds_List

A variable declaration ’ s bounds_list clause specifi es bounds for an array. This should be a comma -
separated list of non - negative integers that give the upper bounds for the array ’ s dimensions. All
dimensions have a lower bound of zero. You can optionally specify the lower bound, but it must
always be zero.

LIMITED LOWER BOUNDS

Henry Ford once said, “ Any customer can have a car painted any color that he
wants so long as it is black. ” A similar rule applies here: you can specify any lower
bound for an array as long as it ’ s zero.

The following code declares two arrays in two different ways. The fi rst statement declares a
one - dimensional array of 101 Customer objects with indexes ranging from 0 to 100. The second
statement defi nes a two - dimensional array of Order objects. The fi rst dimension has bounds ranging
from 0 to 100 and the second dimension has bounds ranging from 0 to 10. The array ’ s entries are
those between orders(0, 0) and orders(100, 10) giving a total of 101 * 11 = 1111 entries. The
last two statements defi ne similar arrays, while explicitly declaring the arrays ’ lower bounds.

Private customers(100) As Customer
Private orders(100, 10) As Order
Private customers2(0 To 100) As Customer
Private orders2(0 To 100, 0 To 10) As Order

You may fi nd that specifying the lower bound makes the code easier to read because it gives the
lower bound explicitly rather than requiring you to remember that lower bounds are always 0. It
can be particularly helpful for those who have used Visual Basic 6 and earlier versions because those
versions of Visual Basic allowed arrays to have lower bounds other than 0.

Note that declarations of this sort that use an object data type do not instantiate the objects. For
example, the fi rst declaration in the previous example defi nes 101 array entries that all point to
Nothing. They do not initially point to instances of the Customer class. After this declaration, the
program would need to create each object reference individually, as shown in the following code:

Private customers(100) As Customer
For i As Integer = 0 To 100
 customers(i) = New Customer
Next i

Alternatively, the program can use an initialization statement to declare and initialize the objects in
a single step. See the section Initialization_Expression coming up shortly for more information on
initializing arrays in their declarations.

c15.indd 286c15.indd 286 12/31/09 6:42:40 PM12/31/09 6:42:40 PM

If you provide parentheses but no bounds_list , Visual Basic defi nes the array, but doesn ’ t create
it with specifi c bounds. Later, you can use the ReDim statement to give it bounds. Note that you
can also use ReDim to change the bounds of an array that you initially give bounds. The following
example declares two arrays named a1 and a2 . Initially, the program allocates 11 items for array a1
but no items for array a2 . The program then uses ReDim to allocate 21 entries for both arrays.

Dim a1(10) As Integer
Dim a2() As Integer

ReDim a1(20)
ReDim a2(0 To 20)

The ReDim statement cannot change the number of bounds in an array. If you want to declare but
not initialize a multidimensional array, include commas as if you were defi ning the bounds. The
following code declares a three - dimensional array and initializes its separate steps:

Dim a1(,,) As Integer

ReDim a1(10, 20, 30)

New

If you are declaring an object variable, the New keyword tells Visual Basic to create a new instance
of the object. Without this keyword, Visual Basic makes an object variable that doesn ’ t yet hold a
reference to any object. It initially holds Nothing.

For example, the fi rst line in the following code declares an Employee object variable named emp1 .
After that line, the variable is defi ned, but it doesn ’ t point to anything. If you examine the variable,
you will fi nd that it has the value Nothing. The second line sets emp1 equal to a new Employee
object. The last line creates an Employee object variable named emp2 and assigns it to a new
Employee object. This does the same thing as the fi rst and second line but in a single statement.

Dim emp1 As Employee
emp1 = New Employee

Dim emp2 As New Manager

If the object ’ s class has constructors that take parameters, you can include the parameters after
the class name. For example, suppose that the Employee class has two constructors: an empty
constructor (one that takes no parameters) and a constructor that takes fi rst and last name strings as
parameters. Then the following code creates two Employee objects using the different constructors:

Dim emp1 As New Employee
Dim emp2 As New Employee("Rod", "Stephens")

Note that you must provide parameters that match some constructor. If the class does not have
a constructor that takes no arguments, you cannot use the New keyword without specifying
parameters. If the Employee class didn ’ t have an empty constructor, the fi rst line in the previous
example would be illegal.

Variable Declarations ❘ 287

c15.indd 287c15.indd 287 12/31/09 6:42:41 PM12/31/09 6:42:41 PM

288 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

As Type and Inferred Types

The As clause tells Visual Basic what kind of variable you are declaring. For example, the following
As statement indicates that the variable cx has type Single:

Dim cx As Single

If Option Infer is on, you do not need to declare a local variable ’ s data type. If you omit the As
clause, Visual Basic infers the variable ’ s data type from the value that you assign to it. For example,
the following code declares a variable named message . Because the code assigns a string value to the
variable, Visual Basic infers that the variable should be a String.

Dim message = "Hello!"

Unfortunately, inferred data types make the code harder to understand later. You can fi gure
out that the previous declaration makes a variable that is a String, but it is much more obvious
if you explicitly include the As String clause. In this example, type inference only saves you a
few keystrokes and makes the code slightly harder to understand. Now, consider the following
statement:

Dim x = 1.234

Does this statement make variable x a Single, Double, Decimal, or some other data type? In this
case, it ’ s much less obvious what data type Visual Basic will decide to use. (It makes x a Double.)

MINIMIZE CONFUSION

To avoid confusion and make the code as easy to read as possible, I recommend
that you turn Option Infer off. Then you can use an Option Infer statement at the
top of any module where type inference would be helpful. Even in those modules, I
recommend that you explicitly give variables data types whenever possible.

The only times when type inference is helpful is when you cannot easily fi gure out the type needed
by a variable. For example, LINQ lets a program generate results that have confusing data types, so
type inference can be very handy when working with LINQ. For more information on LINQ, see
Chapter 21, “ LINQ. ”

INOFFENSIVE INFERENCE

When you create a new project, Option Infer is on by default. To restrict its
scope, turn it off for the project as a whole and then turn it on only in the fi les that
need it.

c15.indd 288c15.indd 288 12/31/09 6:42:41 PM12/31/09 6:42:41 PM

Initialization_Expression

The initialization_expression clause gives data that Visual Basic should use to initialize the variable.
The most straightforward form of initialization assigns a simple value to a variable. The following
code declares the variable num_employees and assigns it the initial value zero:

Dim num_employees As Integer = 0

More complicated data types may require more complex initialization clauses. If the declaration
declares an object variable, you can use the New keyword to initialize the variable. For example,
the fi rst line in the following code declares an Employee variable named emp1 and sets it equal to
a new Employee object. The second statement uses the As New form of declaration to do the same
thing without a separate initialization clause. This version is slightly more compact, but you can use
whichever version seems most natural to you.

Dim emp1 As Employee = New Employee("Rod", "Stephens")
Dim emp2 As New Employee("Rod", "Stephens")

The With keyword allows you to initialize an object without using a special constructor. This
statement lets you assign values to an object ’ s public properties and variables right after the object
is created. The following code creates a new Employee object and sets its FirstName and LastName
values much as the previous statements do:

Dim emp3 As New Employee With {.FirstName = "Rod", .LastName = "Stephens"}

Initializing Arrays

Arrays have their own special initialization syntax. To declare and initialize an array in one
statement, you must omit the array ’ s bounds. Visual Basic uses the initialization data to discover the
bounds.

Place the array ’ s values inside curly braces separated by commas. The following code initializes a
one - dimensional array of integers:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

If you have Option Infer on, you can omit the array ’ s data type and Visual Basic will try to deduce
it from the values that you use to initialize it. For example, the following code creates three arrays.
Visual Basic can infer that the fi rst contains Integers and the second contains Strings. The third
array contains Strings, Integers, and Doubles so Visual Basic makes it an array of Objects.

Dim numbers() = {1, 2, 3}
Dim strings() = {"A", "B", "C"}
Dim objects() = {"A", 12, 1.23}

Variable Declarations ❘ 289

c15.indd 289c15.indd 289 12/31/09 6:42:43 PM12/31/09 6:42:43 PM

290 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

TYPES OF THE TIMES

Inferring array type is a new feature in Visual Basic 2010. In earlier versions, Visual
Basic always created arrays without explicit data types as arrays of Objects.

For a multidimensional array, put commas in the variable ’ s parentheses to indicate
the number of dimensions. Use curly braces to surround the array data. Nest each
dimension of data inside the previous one, enclosing each dimension ’ s data with
braces and separating entries with commas.

This probably makes the most sense if you think of a multidimensional array as an array of arrays.
For example, a three - dimensional array is an array of two - dimensional arrays. Each of the two -
dimensional arrays is an array of one - dimensional arrays. You can use line continuation and
indentation to make the array ’ s structure more obvious.

The following code declares and initializes a two - dimensional array of integers and then prints
the values:

Dim int_values(,) As Integer =
{
 {1, 2, 3},
 {4, 5, 6}
}
Dim txt As String = ""
For i As Integer = 0 To 1
 For j As Integer = 0 To 2
 txt & = int_values(i, j)
 Next j
 txt & = vbCrLf
Next i

The following shows this code ’ s output:

123
456

The following code declares and initializes a three - dimensional array of strings. The text
for each value gives its position in the array. For example, the value str_values(0, 1, 1)
is “ 011. ” Notice how the code uses indentation to make the data a bit easier to understand. Items
in the fi rst dimension are indented one level and items in the second dimension are indented two
levels. The fi nal level is basically a one - dimensional array, which is fairly easy to understand with
just commas separating its values. After initializing the array, the code loops through its entries and
prints them.

c15.indd 290c15.indd 290 12/31/09 6:42:43 PM12/31/09 6:42:43 PM

Dim str_values(,,) As String =
{
 {
 {"000", "001", "002"},
 {"010", "011", "012"}
 },
 {
 {"100", "101", "102"},
 {"110", "111", "112"}
 }
}
Dim txt As String = ""
For i As Integer = 0 To 1
 For j As Integer = 0 To 1
 txt & = "["
 For k As Integer = 0 To 2
 txt & = str_values(i, j, k) & " "
 Next k
 txt & = "] "
 Next j
 txt & = vbCrLf
Next i

The following text shows this code ’ s output:

[000 001 002] [010 011 012]
[100 101 102] [110 111 112]

Example program InitializeArrays, which is available for download on the book ’ s web site, uses
similar code to demonstrate array initialization.

Note that you must provide the correct number of items for each of the array ’ s dimensions. For
example, the following declaration is invalid because the array ’ s second row contains fewer elements
than its fi rst row:

Dim int_values(,) As Integer =
{
 {1, 2, 3},
 {4, 5}
}

Initializing Object Arrays

The basic syntax for initializing an array of objects is similar to the syntax you use to initialize
any other array. You still omit the array bounds from the declaration and then include values
inside curly braces. The values you use to initialize the array, however, are different because object

Variable Declarations ❘ 291

c15.indd 291c15.indd 291 12/31/09 6:42:44 PM12/31/09 6:42:44 PM

292 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

variables do not take simple values such as 12 and “ Test ” that you would use to initialize integer or
string arrays.

If you create an array of objects without an initialization clause, Visual Basic creates the object
variables but does not create objects for them. Initially, all of the array ’ s entries are Nothing.

The following code creates an array containing 11 references to Employee objects. Initially, all of the
references are set to Nothing.

Dim employees(0 To 10) As Employee

If you want to initialize the objects, you must initialize each object in the array separately using
Nothing or the class ’ s constructors. Optionally, you can add a With statement to set public
properties and variables after creating the object. The following code declares an array of
Employee objects. It initializes two entries using an Employee object constructor that takes as
parameters the employees ’ fi rst and last names, two entries with an empty constructor and a
With statement, two with an empty constructor only, and two fi nal entries with the value
Nothing.

Dim employees() As Employee =
{
 New Employee("Alice", "Andrews"),
 New Employee("Bart", "Brin"),
 New Employee With {.FirstName = "Cindy", .LastName="Cant"},
 New Employee With {.FirstName = "Dan", .LastName="Diver"},
 New Employee,
 New Employee,
 Nothing,
 Nothing
}

To initialize higher - dimensional arrays of objects, use the syntax described in the previous
section. Use Nothing or the New keyword and object constructors to initialize each array entry
individually.

Initializing XML Variables

To initialize an XElement object, declare the XElement variable and set it equal to properly
formatted XML code. The XML code must begin on the same logical line as the variable
assignment, although, as usual, you can use line continuation characters to start the actual
XML code on the following line. Visual Basic reads the data ’ s opening tag and then reads XML
data until it reaches a corresponding closing tag so the XML data can include whitespace
just as an XML document can. In particular, it can span multiple lines without line continuation
characters.

c15.indd 292c15.indd 292 12/31/09 6:42:44 PM12/31/09 6:42:44 PM

XML CONTINUED

In fact, if you use line continuation characters within the XML, the underscore
characters become part of the XML data, which is probably not what you want.

For example, the following code declares a variable named book_node that contains XML data
representing a book:

Dim book_node As XElement =
 < Book >
 < Title > The Bug That Was < /Title >
 < Year > 2010 < /Year >
 < Pages > 376 < /Pages >
 < /Book >

This type of declaration and initialization makes it easy to build XML data directly into your Visual
Basic applications.

You can initialize XML literal values with much more complicated expressions. For example, you
can use LINQ to select values from relational data sources and build results in the form of an XML
document. For more information on LINQ, see Chapter 21.

INITIALIZING COLLECTIONS

Starting with Visual Basic 2010, collection classes that provide an Add method such as List,
Dictionary, and SortedDictionary have their own initialization syntax. Instead of using an equals
sign as you would with an array initializer, use the From keyword followed by the values that should
be added to the collection surrounded by curly braces.

For example, the following code initializes a new List(Of String):

Dim pies As New List(Of String) From {
 "Apple", "Banana", "Cherry", "Coconut Cream"
}

The items inside the braces must include all of the values needed by the collection ’ s Add method.
For example, the Dictionary class ’ s Add method takes two parameters giving the key and value that
should be added.

The following code initializes a Dictionary(Of String, String). The parameters to the class ’ s Add
method are an item ’ s key and value so, for example, the value 940 - 283 - 1298 has the key Alice Artz.

Initializing Collections ❘ 293

c15.indd 293c15.indd 293 12/31/09 6:42:45 PM12/31/09 6:42:45 PM

294 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Later you could look up Alice ’ s phone number by searching the Dictionary for the item with key
“ Alice Artz. ”

Dim phone_numbers As New Dictionary(Of String, String) From {
 {"Alice Artz", "940-283-1298"},
 {"Bill Bland", "940-237-3827"},
 {"Carla Careful", "940-237-1983"}
}

ADDING ADD

Some collection classes such as Stack and Queue don ’ t have an Add method, so
From won ’ t work for them. Fortunately, you can use extension methods (described
in the “ Extension Methods ” section in Chapter 17, “ Subroutines and Functions ”)
to add one. The following code adds a simple extension method to the Stack(Of
String) class:

< Extension() >
Sub Add(ByVal the_stack As Stack(Of String), ByRef value As String)
 the_stack.Push(value)
End Sub

Now the program can initialize a Stack(Of String) as in the following code:

Dim orders As New Stack(Of String) From {
 "Art", "Beatrice", "Chuck"
}

Multiple Variable Declarations

Visual Basic .NET allows you to declare more than one variable in a single declaration statement.
For example, the following statement declares two Integer variables named num_employees and
num_customers :

Private num_employees, num_customers As Integer

You can place accessibility keywords (Private, Public, and so on), Shared, Shadows, and ReadOnly
only at the beginning of the declaration and they apply to all of the variables in the declaration. In
the preceding statement, both num_employees and num_customers are Private.

You can declare variables with different data types by including more than one As clause separated
by commas. The following statement declares two Integer variables and one String variable:

c15.indd 294c15.indd 294 12/31/09 6:42:46 PM12/31/09 6:42:46 PM

Private emps, custs As Integer, cust As String

You cannot use an initialization statement if multiple variables share the same As clause, but you
can include an initialization statement for variables that have their own As clause. In the preceding
example, you cannot initialize the two Integer variables, but you can initialize the String variable as
shown in the following statement:

Private emps, custs As Integer, cust As String = "Cozmo"

To initialize all three variables, you would need to give them each their own As clauses, as shown in
the following example:

Private emps As Integer = 5, custs As Integer = 10, cust As String = "Cozmo"

You can also declare and initialize multiple objects, arrays, and arrays of objects all in the same
statement.

Although all of these combinations are legal, they quickly become too confusing to be of much
practical use. Even the relatively simple statement that follows can lead to later misunderstandings.
Quickly glancing at this statement, the programmer may think that all three variables are declared
as Long.

Private num_employees, num_customers As Integer, num_orders As Long

You can reduce the possibility of confusion by using one As clause per declaration. Then a
programmer can easily understand how the variables are defi ned by looking at the beginning and
ending of the declaration. The beginning tells the programmer the variables ’ accessibility and
whether they are shared, shadowing other variables, or read - only. The end gives the variables ’
data type.

You can also keep the code simple by giving variables with initialization statements their own
declarations. Then a programmer reading the code won ’ t need to decide whether an initialization
statement applies to one or all of the variables.

There ’ s nothing particularly wrong with declaring a series of relatively short variables in a single
statement, as long as you don ’ t fi nd the code confusing. The following statements declare fi ve
Integer variables and three Single variables. Breaking this into eight separate Dim statements would
not make it much clearer.

Dim i, j, k, R, C As Integer
Dim X, Y, Z As Single

OPTION EXPLICIT AND OPTION STRICT

The Option Explicit and Option Strict compiler options play an important role in variable
declarations.

Option Explicit and Option Strict ❘ 295

c15.indd 295c15.indd 295 12/31/09 6:42:47 PM12/31/09 6:42:47 PM

296 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

When Option Explicit is set to On, you must declare all variables before you use them. If Option
Explicit is Off, Visual Basic automatically creates a new variable whenever it sees a variable that it
has not yet encountered. For example, the following code doesn ’ t explicitly declare any variables. As
it executes the code, Visual Basic sees the fi rst statement, num_managers = 0 . It doesn ’ t recognize
the variable num_managers , so it creates it. Similarly, it creates the variable i when it sees it in the
For loop.

Option Explicit Off
Option Strict Off

Public Class Form1
 ...
 Public Sub CountManagers()
 num_managers = 0
 For i = 0 To m_Employees.GetUpperBound(0)
 If m_Employees(i).IsManager Then num_managrs += 1
 Next i

 MessageBox.Show(num_managers)
 End Sub
 ...
End Class

Keeping Option Explicit turned off can lead to two very bad problems. First, it silently hides
typographical errors. If you look closely at the preceding code, you ’ ll see that the statement inside
the For loop increments the misspelled variable num_managrs instead of the correctly spelled
variable num_managers . Because Option Explicit is off, Visual Basic assumes that you want to use a
new variable, so it creates num_managrs . After the loop fi nishes, the program displays the value of
num_managers , which is zero because it was never incremented.

The second problem that occurs when Option Explicit is off is that Visual Basic doesn ’ t really know
what you will want to do with the variables it creates for you. It doesn ’ t know whether you will use
a variable as an Integer, Double, String, or PictureBox. Even after you assign a value to the variable
(say, an Integer), Visual Basic doesn ’ t know whether you will always use the variable as an Integer or
whether you might later want to save a String in it.

To keep its options open, Visual Basic creates undeclared variables as generic objects. Then it can fi ll
the variable with just about anything. Unfortunately, this can make the code much less effi cient than
it needs to be. For example, programs are much better at manipulating integers than they are at
manipulating objects. If you are going to use a variable as an integer, creating it as an object makes
the program run much slower.

c15.indd 296c15.indd 296 12/31/09 6:42:47 PM12/31/09 6:42:47 PM

IMPRECISE INFERENCE

If Option Infer is on, Visual Basic may be able to deduce an explicit data type
for a variable declared without a type. In that case, the program may not incur
a performance penalty. It won ’ t be clear from the code whether that ’ s the case,
however, so it could lead to some confusion.

In more advanced terms, integers are value types, whereas objects are reference
types. A reference type is really a fancy pointer that represents the location of the
actual object in memory. When you treat a value type as a reference type, Visual
Basic performs an operation called boxing , where it wraps the value in an object so
it can use references to the boxed value. If you then perform an operation involving
two boxed values, Visual Basic must unbox them, perform the operation, and then
possibly box the result to store it in another reference variable. All of this boxing
and unboxing has a signifi cant overhead.

Example program TimeGenericObjects, which is available for download on the book ’ s web site,
uses the following code to demonstrate the difference in speed between using variables with explicit
types and variables of the generic Object type:

Dim num_trials As Integer = Integer.Parse(txtNumTrials.Text)

Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan

start_time = Now
For i As Integer = 1 To num_trials

Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblIntegers.Text = elapsed_time.TotalSeconds.ToString("0.000000")
Refresh()

start_time = Now
For j = 1 To num_trials

Next j
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblObjects.Text = elapsed_time.TotalSeconds.ToString("0.000000")

code snippet TimeGenericObjects

The code executes two For loops. In the fi rst loop, it explicitly declares its looping variable to be
of type Integer. In the second loop, the code doesn ’ t declare its looping variable, so Visual Basic

Option Explicit and Option Strict ❘ 297

c15.indd 297c15.indd 297 12/31/09 6:42:48 PM12/31/09 6:42:48 PM

298 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

automatically makes it an Object when it is needed. In one test, the second loop took more than 60
times as long as the fi rst loop.

The second compiler directive that infl uences variable declaration is Option Strict. When Option
Strict is turned off, Visual Basic silently converts values from one data type to another, even if the
types are not very compatible. For example, Visual Basic will allow the following code to try to
copy the string s into the integer i . If the value in the string happens to be a number (as in the fi rst
case), this works. If the string is not a number (as in the second case), this throws an error at runtime.

Dim i As Integer
Dim s As String
s = "10"
i = s ' This works.
s = "Hello"
i = s ' This Fails.

If you turn Option Strict on, Visual Basic warns you of possibly illegal conversions at compile time.
You can still use conversion functions such as CInt, Int, and Integer.Parse to convert a string into an
Integer, but you must take explicit action to do so.

To avoid confusion and ensure total control of your variable declarations, you should always turn
on Option Explicit and Option Strict.

For more information on Option Explicit and Option Strict (including instructions for turning these
options on), see the “ Project ” section in Chapter 2, “ Menus, Toolbars, and Windows. ”

SCOPE

A variable ’ s scope tells which other pieces of code can access it. For example, if you declare a
variable inside a subroutine, only code within that subroutine can access the variable. The four
possible levels of scope are (in increasing size of scope) block, procedure, module, and namespace.

Block Scope

A block is a series of statements enclosed in a construct that ends with some sort of End, Else, Loop,
or Next statement. If you declare a variable within a block of code, the variable has block scope,
and only other code within that block can access the variable. Furthermore, only code that appears
after the variable ’ s declaration can see the variable.

Variables declared in the block ’ s opening statement are also part of the block. Note that a variable is
visible within any sub - block contained within the variable ’ s scope.

c15.indd 298c15.indd 298 12/31/09 6:42:49 PM12/31/09 6:42:49 PM

The following example uses a For loop with the looping variable i declared in the For statement.
The scope of variable i is block - defi ned by the For loop. Code inside the loop can see variable i , but
code outside of the loop cannot.

Inside the loop, the code declares variable j . This variable ’ s scope is also the For loop ’ s block.

If i equals j , the program declares variable M and uses it. This variable ’ s scope includes only the two
lines between the If and Else statements.

If i doesn ’ t equal j , the code declares variable N . This variable ’ s scope includes only the two lines
between the Else and End If statements.

The program then declares variable k . This variable also has block scope, but it is available only
after it is declared, so the code could not have accessed it earlier in the For loop.

For i As Integer = 1 To 5
 Dim j As Integer = 3
 If i = j Then
 Dim M As Integer = i + j
 Debug.WriteLine("M: " & M)
 Else
 Dim N As Integer = i * j
 Debug.WriteLine("N: " & N)
 End If

 Dim k As Integer = 123
 Debug.WriteLine("k: " & k)
Next i

Other code constructs that defi ne blocks include the following:

Select Case statements — Each Case has its own block.

Try Catch statements — The Try section and each Exception statement defi nes a block.
Note also that the exception variable defi ned in each Exception statement is in its own
block; for example, they can all have the same name.

Try
 Dim i As Integer = CInt("bad value")
Catch ex As InvalidCastException
 Dim txt As String = "InvalidCastException"
 MessageBox.Show(txt)
Catch ex As Exception
 Dim txt As String = "Exception"
 MessageBox.Show(txt)
End Try

➤

➤

Scope ❘ 299

c15.indd 299c15.indd 299 12/31/09 6:42:50 PM12/31/09 6:42:50 PM

300 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Single - Line If Then statements — These are strange and confusing enough that you should
avoid them, but the following code is legal:

If manager Then Dim txt As String = "M" : MessageBox.Show(txt) Else _

 Dim txt As String = "E" : MessageBox.Show(txt)

While loops — Variables declared inside the loop are local to the loop.

Using statements — Resources acquired by the block and variables declared inside the block
are local to the block. The Using statement in the following code defi nes two Employee
objects and a Pen object within its block. Those variables are visible only within the block.

Using _
 emp1 As New Employee("Ann", "Archer"),
 emp2 As New Employee("Bob", "Beagle"),
 the_pen As New Pen(Color.Red)
 ...
End Using

Because block scope is the most restrictive, you should use it whenever possible to reduce the
chances for confusion. The section “ Restricting Scope ” later in this chapter discusses more about
restricting variable scope.

Procedure Scope

If you declare a variable inside a subroutine, function, or other procedure, but not within a block,
the variable is visible in any code inside the procedure that follows the declaration. The variable is
not visible outside of the procedure. In a sense, the variable has block scope where the block is the
procedure.

A procedure ’ s parameters also have procedure scope. For example, in the following code, the scope
of the order_object and order_item parameters is the AddOrderItem subroutine:

Public Sub AddOrderItem(ByVal order_object As Order, ByVal order_item As OrderItem)
 order_object.OrderItems.Add(order_item)
End Sub

Module Scope

A variable with module scope is available to all code in its code module, class, or structure, even if
the code appears before the variable ’ s declaration. For example, the following code works
even though the DisplayLoanAmount subroutine is declared before the m_LoanAmount variable that
it displays:

➤

➤

➤

c15.indd 300c15.indd 300 12/31/09 6:42:50 PM12/31/09 6:42:50 PM

Private Class Lender
 Public Sub DisplayLoanAmount()
 MessageBox.Show(m_LoanAmount)
 End Sub

 Private m_LoanAmount As Decimal
 ...
End Class

To give a variable module scope, you should declare it with the Private, Protected, or Protected
Friend keyword. If you declare the variable Private, it is visible only to code within the same
module.

If you declare the variable Protected, it is accessible only to code in its class or a derived class.
Remember that you can only use the Protected keyword in a class.

A Protected Friend variable is both Protected and Friend. That means it is available only to code
that is inside the variable ’ s class or a derived class (Protected), and that is within the same project
(Friend).

These keywords apply to both variable and procedure declarations. For example, you can declare a
subroutine, function, or property procedure Private, Protected, or Protected Friend.

For more information on accessibility keywords, see the section “ Accessibility ” earlier in
this chapter.

Example program ScopeTest, which is available for download on the book ’ s web site, demonstrates
module and procedure scope.

Namespace Scope

By default, a project defi nes a namespace that includes all the project ’ s variables and code. However,
you can use Namespace statements to create other namespaces if you like. This may be useful to
help categorize the code in your application.

If you declare a variable with the Public keyword, it has namespace scope and is available to all code
in its namespace, whether inside the project or in another project. It is also available to code in any
namespaces nested inside the variable ’ s namespace. If you do not create any namespaces of your
own, the whole project lies in a single namespace, so you can think of Public variables as having
global scope.

If you declare a variable with the Friend keyword, it has namespace scope and is available to all
code in its namespace within the same project. It is also available to code in any namespaces nested
inside the variable ’ s namespace within the project. If you do not create any namespaces of your
own, the whole project lies in a single namespace so you can think of Friend variables as having
project scope.

For more information on the Public and Friend keywords, see the section “ Accessibility ” earlier in
this chapter.

Scope ❘ 301

c15.indd 301c15.indd 301 12/31/09 6:42:51 PM12/31/09 6:42:51 PM

302 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Restricting Scope

There are several reasons why you should give variables the most restrictive scope possible that still
lets them do their jobs.

Limited scope keeps the variable localized so that programmers cannot use the variable incorrectly
in far off code that is unrelated to the variable ’ s main purpose.

Having fewer variables with global scope means programmers have less to remember when
they are working on the code. They can concentrate on their current work, rather than worrying
about whether variables r and c are declared globally and whether the current code will interfere
with them.

Limiting scope keeps variables closer to their declarations, so it ’ s easier for programmers to check
the declaration. One of the best examples of this situation is when a For loop declares its looping
variable right in the For statement. A programmer can easily see that the looping variable is an
integer without scrolling to the top of the subroutine hunting for its declaration. It is also easy to
see that the variable has block scope, so other variables with the same names can be used outside of
the loop.

Limited scope means a programmer doesn ’ t need to worry about whether a variable ’ s old value will
interfere with the current code, or whether the fi nal value after the current code will later interfere
with some other code. This is particularly true for looping variables. If a program declares variable
i at the top of a subroutine, and then uses it many times in various loops, you might need to do a
little thinking to be sure the variable ’ s past values won ’ t interfere with new loops. If you declare
i separately in each For statement, each loop has its own version of i , so there ’ s no way they can
interfere with each other.

Finally, variables with larger scope tend to be allocated more often, so they take up memory more
often. For example, block variables and non - static variables declared with procedure scope are
allocated when they are needed and are destroyed when their scope ends, freeing their memory. A
variable declared Static or with module or namespace scope is not freed until your application exits.
If those variables are large arrays, they may take up a lot of memory the entire time your application
is running.

PARAMETER DECLARATIONS

A parameter declaration for a subroutine, function, or property procedure defi nes the names and
types of the parameters passed into it. Parameter declarations always have non - static procedure
scope. Visual Basic creates parameter variables when a procedure begins and destroys them when
the procedure ends. The subroutine ’ s code can access the parameters, but code outside of the routine
cannot.

For example, the following subroutine takes an integer as a parameter. The subroutine calls this
value employee_id . Code within the subroutine can access employee_id , whereas code outside of
the subroutine cannot.

c15.indd 302c15.indd 302 12/31/09 6:42:51 PM12/31/09 6:42:51 PM

Public Sub DisplayEmployee(ByVal employee_id As Integer)
 ...
End Sub

Whereas a parameter ’ s basic scope is straightforward (non - static procedure scope), parameters have
some special features that complicate the situation. Although this isn ’ t exactly a scoping issue, it ’ s
related closely enough to scope that it ’ s worth covering here.

You can declare a parameter ByRef or ByVal (ByVal is the default if you use neither keyword). If you
declare the variable ByVal, the routine makes its own local parameter variable with procedure scope
just as you would expect.

If you declare a parameter with the ByRef keyword, the routine does not create a separate copy
of the parameter variable. Instead, it uses a reference to the parameter you pass in, and any changes
the routine makes to the value are refl ected in the calling subroutine.

For example, the following code includes two routines that double their parameters. Subroutine
DoubleItByVal declares its parameter with the ByVal keyword. This routine makes a new variable
named X and copies the value of its parameter into that variable. The parameter X is available within
the subroutine, the routine multiplies it by 2, and then exits. At that point, the parameter variable
goes out of scope and is destroyed.

Subroutine DoubleItByRef declares its parameter with the ByRef keyword. This routine ’ s variable X
is a reference to the variable passed into the routine. The subroutine doubles X and that doubles the
variable in the calling code.

Subroutine TestParameters calls each of these routines. It declares a variable named value , passes
it to subroutine DoubleItByVal , and displays the result after DoubleItByVal returns. Because
DoubleItByVal declares its parameter ByVal, the variable value is not changed so the result is 10.

Subroutine TestParameters then calls subroutine DoubleItByRef and displays the result after
the call returns. Subroutine DoubleItByRef declares its parameter ByRef so the variable value is
changed to 20.

Sub DoubleItByVal(ByVal X As Single)
 X*= 2
End Sub
Sub DoubleItByRef(ByRef X As Single)
 X*= 2
End Sub
Sub TestParameters()
 Dim value As Single

 value = 10
 DoubleItByVal(value)
 Debug.WriteLine(value)

 value = 10
 DoubleItByRef(value)
 Debug.WriteLine(value)
End Sub

Parameter Declarations ❘ 303

c15.indd 303c15.indd 303 12/31/09 6:42:52 PM12/31/09 6:42:52 PM

304 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Even this more complex view of how procedures handle parameters has exceptions. If you pass a
literal value or the result of an expression into a procedure, there is no variable to pass by reference,
so Visual Basic must create its own temporary variable. In that case, any changes made to a ByRef
parameter are not returned to the calling routine, because that code did not pass a variable into the
procedure. The following code shows statements that pass a literal expression and the result of an
expression into the DoubleItByRef subroutine:

DoubleItByRef(12) ' Literal expression.
DoubleItByRef(X + Y) ' Result of an expression.

Another case where a ByRef parameter does not modify a variable in the calling code is when you
omit an optional parameter. For example, the following subroutine takes an optional
ByRef parameter. If you call this routine and omit the parameter, Visual Basic creates the
employee_id parameter from scratch so the subroutine can use it in its calculations. Because you
called the routine without passing it a variable, the subroutine does not update a variable.

Sub UpdateEmployee(Optional ByRef employee_id As Integer = 0)
 ...
End Sub

Probably the sneakiest way a ByRef variable can fail to update a variable in the calling routine is if
you enclose the variable in parentheses. The parentheses tell Visual Basic to evaluate their contents
as an expression, so Visual Basic creates a temporary variable to hold the result of the expression.
It then passes the temporary variable into the procedure. If the procedure ’ s parameter is declared
ByRef, it updates the temporary variable, but not the original variable, so the calling routine doesn ’ t
see any change to its value.

The following code calls subroutine DoubleItByRef , passing the variable value into the routine
surrounded with parentheses. The DoubleItByRef subroutine doubles the temporary variable
Visual Basic creates, leaving value unchanged.

DoubleItByRef((value))

Keep these issues in mind when you work with parameters. Parameters have non - static procedure
scope but the ByRef keyword can sometimes carry their values outside of the routine.

For more information on routines and their parameters, see Chapter 17.

PROPERTY PROCEDURES

Property procedures are routines that can represent a variable - like value. To other pieces of the
program, property procedures look just like variables, so they deserve mention in this chapter.

The following code shows property procedures that implement a Name property. The Property Get
procedure simply returns the value in the private variable m_Name . The Property Set procedure saves
a new value in the m_Name variable.

c15.indd 304c15.indd 304 12/31/09 6:42:53 PM12/31/09 6:42:53 PM

Private m_Name As String

Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal Value As String)
 m_Name = Value
 End Set
End Property

A program could use these procedures exactly as if there were a single public Name variable. For
example, if this code is in the Employee class, the following code shows how a program could set
and then get the Name value for the Employee object named emp :

emp.Name = "Rod Stephens"
MessageBox.Show(emp.Name)

You might want to use property procedures rather than a public variable for several reasons. First,
the routines give you extra control over the getting and setting of the value. For example, you could
use code to validate the value before saving it in the variable. The code could verify that a postal
code or phone number has the proper format and throw an error if the value is badly formatted.

You can set breakpoints in property procedures. Suppose that your program is crashing because a
piece of code is setting an incorrect value in a variable. If you implement the variable with property
procedures, you can set a breakpoint in the Property Set procedure and stop whenever the program
sets the value. This can help you fi nd the problem relatively quickly.

Property procedures let you set and get values in formats other than those you want to actually use
to store the value. For example, the following code defi nes Name property procedures that save a
name in m_FirstName and m_LastName variables. If your code would often need to use the last and
fi rst names separately, you could also provide property procedures to give access to those values
separately.

Private m_LastName As String
Private m_FirstName As String

Property MyName() As String
 Get
 Return m_FirstName & " " & m_LastName
 End Get
 Set(ByVal Value As String)
 m_FirstName = Value.Split(" "c)(0)
 m_LastName = Value.Split(" "c)(1)
 End Set
End Property

Property Procedures ❘ 305

c15.indd 305c15.indd 305 12/31/09 6:42:53 PM12/31/09 6:42:53 PM

306 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Finally, you can use property procedures to create read - only and write - only variables. The
following code shows how to make a read - only NumEmployees property procedure and a write - only
NumCustomers property procedure. (Write - only property procedures are unusual but legal.)

Public ReadOnly Property NumEmployees() As Integer
 Get
 ...
 End Get
End Property

Public WriteOnly Property NumCustomers() As Integer
 Set(ByVal Value As Integer)
 ...
 End Set
End Property

You don ’ t need to remember all of the syntax for property procedures. If you type the fi rst line and
press Enter, Visual Basic fi lls in the rest of the empty property procedures. If you use the keyword
ReadOnly or WriteOnly, Visual Basic only includes the appropriate procedure.

Visual Basic 2010 introduced auto - implemented properties. These are simple properties that do not
have separate property procedures. You declare the property ’ s name and Visual Basic automatically
creates the necessary backing variables and property procedures behind the scenes.

The following code shows a simple FirstName property:

Public Property FirstName As String

You can give a property a default value as in the following code:

Public Property FirstName As String = " < missing > "

You cannot use the ReadOnly or WriteOnly keywords with auto - implemented properties. If you
want to make a read - only or write - only property, you need to write Get and Set procedures as
described earlier.

The advantage of auto - implemented properties is that you don ’ t need to write as much code. The
disadvantage is that you can ’ t set breakpoints in the property procedures.

PROPERTY PROCEDURES AS YOU NEED THEM

To get the best of both worlds, you can initially use auto - implemented properties.
Later if you need to set breakpoints in the property procedures, you can redefi ne
the property to include them.

c15.indd 306c15.indd 306 12/31/09 6:42:54 PM12/31/09 6:42:54 PM

ENUMERATED DATA TYPES

An enumerated type is a discrete list of specifi c values. You defi ne the enumerated type and the
values allowed. Later, if you declare a variable of that data type, it can take only those values.

For example, suppose that you are building a large application where users can have one of three
access levels: clerk, supervisor, and administrator. You could defi ne an enumerated type named
AccessLevel that allows the values Clerk , Supervisor , and Administrator . Now, if you declare a
variable to be of type AccessLevel , Visual Basic will only allow the variable to take those values.

The following code shows a simple example. It defi nes the AccessLevel type and declares the
variable m_AccessLevel using the type. Later the MakeSupervisor subroutine sets m_AccessLevel
to the value AccessLevel.Supervisor . Note that the value is prefi xed with the enumerated
type ’ s name.

Public Enum AccessLevel
 Clerk
 Supervisor
 Administrator
End Enum

Private m_AccessLevel As AccessLevel ' The user's access level.

' Set supervisor access level.
Public Sub MakeSupervisor()
 m_AccessLevel = AccessLevel.Supervisor
End Sub

The syntax for declaring an enumerated type is as follows:

 [attribute_list] [accessibility] [Shadows] Enum name [As type]
 [attribute_list] value_name [= initialization_expression]
 [attribute_list] value_name [= initialization_expression]
 ...
End Enum

Most of these terms, including attribute_list and accessibility , are similar to those used by variable
declarations. See the section “ Variable Declarations ” earlier in this chapter for more information.

The type value must be an integral type and can be Byte, Short, Integer, or Long. If you omit this
value, Visual Basic stores the enumerated type values as integers.

The value_name pieces are the names you want to allow the enumerated type to have. You can
include an initialization_expression for each value if you like. This value must be compatible
with the underlying data type (Byte, Short, Integer, or Long). If you omit a value ’ s initialization
expression, the value is set to one greater than the previous value. The fi rst value is zero by default.

Enumerated Data Types ❘ 307

c15.indd 307c15.indd 307 12/31/09 6:42:55 PM12/31/09 6:42:55 PM

308 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

In the previous example, Clerk = 0 , Supervisor = 1 , and Administrator = 2 . The
following code changes the default assignments so Clerk = 10 , Supervisor = 11 , and
Administrator = − 1 :

Public Enum AccessLevel
 Clerk = 10
 Supervisor
 Administrator = -1
End Enum

Usually, all that ’ s important about an enumerated type is that its values are unique, so you don ’ t
need to explicitly initialize the values.

Note that you can give enumerated values the same integer value either explicitly or implicitly. For
example, the following code defi nes several equivalent AccessLevel values. The fi rst three values,
Clerk , Supervisor , and Administrator , default to 0 , 1 , and 2 , respectively. The code explicitly
sets User to 0 , so it is the same as Clerk . The values Manager and SysAdmin then default to the next
two values, 1 and 2 (the same as Supervisor and Administrator , respectively). Finally, the code
explicitly sets Superuser = SysAdmin .

Public Enum AccessLevel
 Clerk
 Supervisor
 Administrator
 User = 0
 Manager
 SysAdmin
 Superuser = SysAdmin
End Enum

This code is somewhat confusing. The following version makes it more obvious that some values are
synonyms for others:

Public Enum AccessLevel
 Clerk
 Supervisor
 Administrator

 User = Clerk
 Manager = Supervisor
 SysAdmin = Administrator
 Superuser = Administrator
End Enum

code snippet AccessLevelEnum

c15.indd 308c15.indd 308 12/31/09 6:42:55 PM12/31/09 6:42:55 PM

You can get an effect similar to enumerated types using integer variables and constants, as shown in
the following code. This code does roughly the same thing as the previous examples.

Public Const Clerk As Integer = 0
Public Const Supervisor As Integer = 1
Public Const Administrator As Intger = 2

Private m_AccessLevel As Integer ' The user's access level.

' Set supervisor access level.
Public Sub MakeSupervisor()
 m_AccessLevel = Supervisor
End Sub

Declaring an enumerated type has a couple of advantages over using integers and constants,
however. First, it prevents you from assigning nonsense values to the variable. In the previous code,
you could set m_AccessLevel to 10, which wouldn ’ t make any sense.

Using an enumerated data type allows Visual Basic to verify that the value you are assigning to the
variable makes sense. You can only set the variable equal to one of the values in the enumerated
type or to the value stored in another variable of the same enumerated type.

If you really need to set an enumerated variable to a calculated value for some reason, you can
use the CType function to convert an integer value into the enumerated type. For example, the
following statement uses the value in the variable integer_value to set the value of the variable
m_AccessLevel . Making you use CType to perform this type of conversion makes it less likely that
you will set an enumerated value accidentally.

m_AccessLevel = CType(integer_value, AccessLevel)

Another benefi t of enumerated types is that they allow Visual Basic to provide IntelliSense
help. If you type m_AccessLevel = , Visual Basic provides a list of the allowed AccessLevel
values.

A fi nal benefi t of enumerated types is that they provide a ToString method that returns the textual
name of the value. For example, the following code displays the message “ Clerk ” :

Dim access_level As AccessLevel = Clerk
MessageBox.Show(access_level.ToString())

Example program AccessLevelEnum, which is available for download on the book ’ s web site,
makes an AccessLevel Enum and then displays the results returned by calling ToString for each of
its values.

Enumerated Data Types ❘ 309

c15.indd 309c15.indd 309 12/31/09 6:42:56 PM12/31/09 6:42:56 PM

310 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

If you have a value that can take only a fi xed number of values, you should probably make it an
enumerated type. Also, if you discover that you have defi ned a series of constants to represent
related values, you should consider converting them into an enumerated type. Then you can gain the
benefi ts of the improved Visual Basic type checking and IntelliSense.

ANONYMOUS TYPES

An anonymous type is an object data type that is built automatically by Visual Basic and never
given a name for the program to use. The type is used implicitly by the code that needs it and is then
discarded.

The following code uses LINQ to select data from an array of BookInfo objects named m_BookInfo .
It begins by using a LINQ query to fi ll variable book_query with the selected books. It then iterates
through the results stored in book_query , adding information about the selected books to a string.
It fi nishes by displaying the string in a text box.

Dim book_query =
 From book In m_BookInfo
 Where book.Year > 1999
 Select book.Title, book.Pages, book.Year
 Order By Year

Dim txt As String = ""
For Each book In book_query
 txt & = book.Title & " (" & book.Year & ", " &
 book.Pages & " pages)" & ControlChars.CrLf
Next book
txtResult.Text = txt

The book_query variable is an ordered sequence containing objects that hold the data selected
by the query: Title, Pages, and Year. This type of object doesn ’ t have an explicit defi nition; it is
an anonymous type created by Visual Basic to hold the selected values Title, Pages, and Year. If
you hover the mouse over the book_query variable in the code editor, a tooltip appears giving the
variable ’ s data type as:

System.Linq.IOrderedSequence(Of < anonymous type >)

Later, the code uses a For Each loop to enumerate the objects in book_query . The looping variable
book must have the same type as the items in the sequence. The code does not explicitly give the
variable ’ s data type, so Visual Basic can infer it. If you hover the mouse over the book variable in the
code editor, a tooltip appears giving the variable ’ s data type as:

< anonymous type >

You are not really intended to use anonymous types explicitly. For example, you shouldn ’ t need to
declare a new object of the anonymous type. They are intended to support LINQ. Although you
won ’ t use anonymous types explicitly, it ’ s still helpful to understand what they are.

c15.indd 310c15.indd 310 12/31/09 6:42:56 PM12/31/09 6:42:56 PM

IMPORTANT INFERENCE

In this example, Visual Basic infers the data types for the book_query and book
variables. This is important because they must use an anonymous type, so you
cannot explicitly give them a type. Because these data types are inferred, the code
will only work if Option Infer is on.

For more information on LINQ, see Chapter 21.

NULLABLE TYPES

Most relational databases have a concept of a null data value. A null value indicates that a fi eld
does not contain any data. It lets the database distinguish between valid zero or blank values and
non - existing values. For example, a null value in a text fi eld means there is no data in the fi eld and a
blank value means the fi eld contains a value that happens to be blank.

You can create a nullable variable in Visual Basic by adding a question mark either to the variable ’ s
name or after its data type. You can also declare the variable to be of type Nullable(Of type). For
example, the following code declares three nullable integers:

Dim i As Integer?
Dim j? As Integer
Dim k As Nullable(Of Integer)

To make a nullable variable “ null, ” set it equal to Nothing. The following code makes variable
num_choices null:

num_choices = Nothing

To see if a nullable variable contains a value, use the Is operator to compare it to Nothing. The
following code determines whether the nullable variable num_choices contains a value. If the
variable contains a value, the code increments it. Otherwise the code sets the value to 1.

If num_choices IsNot Nothing Then
 num_choices += 1
Else
 num_choices = 1
End If

Calculations with nullable variables use “ null - propagation ” rules to ensure that the result makes
sense. For example, if a nullable integer contains no value, it probably doesn ’ t make sense to add
another number to it. (What is null plus three?)

If one or more operands in an expression contains a null value, the result is a null value. For
example, if num_choices in the previous example contains a null value, then num_choices + 1 is
also a null value. (That ’ s why the previous code checks explicitly to see whether num_choices is null
before incrementing its value.)

Nullable Types ❘ 311

c15.indd 311c15.indd 311 12/31/09 6:42:57 PM12/31/09 6:42:57 PM

312 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Example program NullableTypes, which is available for download on the book ’ s web site,
demonstrates nullable types.

CONSTANTS

In many respects, a constant is a lot like a read - only variable. Both variable and constant
declarations may have attributes, accessibility keywords, and initialization expressions. Both read -
only variables and constants represent a value that the code cannot change after it is assigned.

The syntax for declaring a constant is as follows:

[attribute_list] [accessibility] [Shadows] _
Const name [As type] = initialization_expression

For the general meanings of the various parts of a constant declaration, see the section “ Variable
Declarations ” earlier in this chapter. The following sections describe differences between read - only
variable and constant declarations.

Accessibility

When you declare a variable, you can omit the Dim keyword if you use any of the keywords Public,
Protected, Friend, Protected Friend, Private, Static, or ReadOnly. You cannot omit the Const
keyword when you declare a constant, because it tells Visual Basic that you are declaring a constant
rather than a variable.

You cannot use the Static, ReadOnly, or Shared keywords in a constant declaration. Static implies
that the value will change over time, and the value should be retained when the enclosing routine
starts and stops. Because the code cannot change a constant ’ s value, that doesn ’ t make sense.

The ReadOnly keyword would be redundant because you already cannot change a constant ’ s value.

You use the Shared keyword in a variable declaration within a class to indicate that the variable ’ s
value is shared by all instances of the class. If one object changes the value, all objects see the
changed value. Because the program cannot change a constant ’ s value, the value need not be
shared. All objects have the same version of the constant at all times. You can think of a constant as
always shared.

You can use the other accessibility keywords in a constant declaration: Public, Protected, Friend,
Protected Friend, and Private.

As Type

If you have Option Strict turned on, you must include the constant ’ s data type. A constant can only
be an intrinsic type (Boolean, Byte, Short, Integer, Long, Decimal, Single, Double, Char, String,
Date, or Object) or the name of an enumerated type. You cannot declare a constant that is a class,
structure, or array.

c15.indd 312c15.indd 312 12/31/09 6:42:58 PM12/31/09 6:42:58 PM

If you declare the constant with the Object data type, the initialization_expression must set the
object equal to Nothing. If you want a constant that represents some other object, or a class,
structure, or array, use a read - only variable instead.

Because the generic Object class doesn ’ t raise any events, and because you cannot make a constant
of some other class type, it doesn ’ t make sense to use the WithEvents keyword in a constant
declaration.

INFER REQUIRED

Though Visual Basic has inferred types for local variables, it does not infer types
of constants. If you have Option Strict on, you must explicitly give all constants a
data type.

Initialization_Expression

The initialization_expression assigns the constant its never - changing value. You cannot use
variables in the initialization_expression , but you can use conversion functions such as CInt. You
can also use the values of previously defi ned constants and enumeration values. The expression can
include type characters such as # or & H , and if the declaration doesn ’ t include a type statement (and
Option Explicit is off), the type of the value determines the type of the constant.

The following code demonstrates these capabilities. The fi rst statement uses the CInt function to
convert the value 123.45 into an integer constant. The second and third statements set the values
of two Long constants to hexadecimal values. The next statement combines the values defi ned in
the previous two using a bitwise Or. The fi nal statement sets a constant to a value defi ned by the
enumerated type AccessLevel .

Private Const MAX_VALUES As Integer = CInt(123.45)
Private Const MASK_READ As Long = & H1000 &
Private Const MASK_WRITE As Long = & H2000 &
Private Const MASK_READ_WRITE As Long = MASK_READ Or MASK_WRITE
Private Const MAX_ACCESS_LEVEL As AccessLevel = AccessLevel.SuperUser

DELEGATES

A delegate is an object that refers to a subroutine, function, or other method. The method can be
an instance method provided by an object, a class ’ s shared method, or a method defi ned in a code
module. A delegate variable acts as a pointer to a subroutine or function. Delegate variables are
sometimes called type - safe function pointers .

The Delegate keyword defi nes a delegate class and specifi es the parameters and return type of the
method to which the delegate will refer.

Delegates ❘ 313

c15.indd 313c15.indd 313 12/31/09 6:42:59 PM12/31/09 6:42:59 PM

314 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

The following code uses a Delegate statement to declare the StringDisplayerType to be a
delegate to a subroutine that takes a string as a parameter. Next, the code declares the variable
m_DisplayStringRoutine to be of this type. This variable can hold a reference to a subroutine that
takes a string parameter. The code then sets the variable equal to the ShowStringInOutputWindow
subroutine. Finally, the code invokes the delegate ’ s subroutine, passing it a string.

' Define a StringDisplayerType delegate to be a pointer to a subroutine
' that has a string parameter.
Private Delegate Sub StringDisplayerType(ByVal str As String)

' Declare a StringDisplayerType variable.
Dim m_DisplayStringRoutine As StringDisplayerType

' Assign the variable to a subroutine.
m_DisplayStringRoutine = AddressOf ShowStringInOutputWindow

' Invoke the delegate's subroutine.
m_DisplayStringRoutine("Hello world")

The delegate in the preceding example holds a reference to a subroutine defi ned in a code module. A
delegate can also hold the address of a class ’ s shared method or an instance method. For example,
suppose the Employee class defi nes the shared function GetNumEmployees that returns the number
of employees loaded. Suppose that it also defi nes the instance function ToString that returns an
Employee object ’ s fi rst and last names.

Example program UseDelegates, which is available for download on the book ’ s web site, uses the
following code to demonstrate delegates for both of these functions:

Dim emp As New Employee("Rod", "Stephens")

' Use a delegate pointing to a shared class method.
Private Delegate Function NumEmployeesDelegate() As Integer

Private Sub btnShared_Click() Handles btnShared.Click
 Dim show_num As NumEmployeesDelegate
 show_num = AddressOf Employee.GetNumEmployees
 MessageBox.Show(show_num().ToString, "# Employees")
End Sub

' Use a delegate pointing to a class instance method.
Private Delegate Function GetNameDelegate() As String
Private Sub btnInstance_Click() Handles btnInstance.Click
 Dim show_name As GetNameDelegate
 show_name = AddressOf emp.ToString
 MessageBox.Show(show_name(), "Name")
End Sub

code snippet UseDelegates

c15.indd 314c15.indd 314 12/31/09 6:43:00 PM12/31/09 6:43:00 PM

First, it declares and initializes an Employee object named emp . It then defi nes a delegate named
NumEmployeesDelegate , which is a pointer to a function that returns an integer. The btnShared_
Click event handler declares a variable of this type, sets it to the address of the Employee class ’ s
shared GetNumEmployees function, and calls the function. Then the code defi nes a delegate named
GetNameDelegate , which is a pointer to a function that returns a string. The btnInstance_Click
event handler declares a variable of this type, sets it to the address of the emp object ’ s ToString
function, and then calls the function.

These examples are somewhat contrived because the code could easily invoke the subroutines and
functions directly without delegates, but they show how a program can save a delegate pointing to a
subroutine or function and then call it later. A real application might set the delegate variable ’ s value
and only use it much later.

A particular delegate variable could hold references to different methods, depending on the
program ’ s situation. For example, different subroutines might generate output on a form, on the
printer, or into a bitmap fi le. The program could set a delegate variable to any of these routines.
Later, the program could invoke the variable ’ s routine without needing to know which routine will
actually execute.

Another useful technique is to pass a delegate variable into a subroutine or function. For example,
suppose that you are writing a subroutine that sorts an array of Customer objects. This routine
could take as a parameter a delegate variable that references the function to use when comparing
the objects in the array. By passing different functions into the routine, you could make it sort
customers by company name, contact name, customer ID, total past sales, or anything else you can
imagine.

Delegates are particularly confusing to many programmers, but understanding them is worth a little
extra effort. They can add an extra dimension to your programming by essentially allowing you to
manipulate subroutines and functions as if they were data.

NAMING CONVENTIONS

Many development teams adopt naming conventions to make their code more consistent and easier
to read. Different groups have developed their own conventions, and you cannot really say that one
of them is best. It doesn ’ t really matter which convention you adopt. What is important is that you
develop some coding style that you use consistently.

One rather simple convention is to use lowercase_letters_with_underscores for variables with
routine scope, MixedCaseLetters for variables with module and global scope, and ALL_CAPS for
constants of any scope. Use the prefi xes m_ and g_ to differentiate between module and global
scope, and an abbreviation to give an object ’ s data type. For example, the following statement
defi nes a module - scope PictureBox variable:

Private m_picCanvas As PictureBox

Routine names are generally MixedCase .

Naming Conventions ❘ 315

c15.indd 315c15.indd 315 12/31/09 6:43:00 PM12/31/09 6:43:00 PM

316 ❘ CHAPTER 15 DATA TYPES, VARIABLES, AND CONSTANTS

Many developers carry these rules a bit further and add type prefi x abbreviations to all variables,
not just objects. For example, this statement declares an integer variable:

Dim iNumEmployees As Integer

If you apply these rules strictly enough, you should never need to assign one variable to another
variable ’ s value, unless the two have the same type abbreviation. If you see a statement that
mixes variable types, you should examine the code more closely to see if there is a real data type
mismatch problem. For example, the following statement should make the developer suspicious
because it ’ s assigning an Integer value to a Long variable:

mlngNumEmployees = intNumAbsent + intNumPresent

Some developers extend the rules to cover all programming objects, including functions
and subroutines. For example, a global function that returns a string might be named
gstrGetWebmasterName .

Generally, this scope and type information is more important the farther you are from a variable ’ s
declaration. If you declare a variable inside a subroutine, a developer can usually remember the
variable ’ s data type. If there is any doubt, it ’ s easy to scroll up and review the variable ’ s declaration.

In contrast, if a variable is declared globally in an obscure code module that developers rarely need
to read, a programmer may have trouble remembering the variable ’ s scope and data type. In that
case, using prefi xes to help the developers ’ memory can be important.

No matter which convention you use, the most important piece of a name is the descriptive
part. The name mblnDL tells you that the value is a module - scope Boolean, but it doesn ’ t tell you
what the value means (and variables with such terrible names are all too common). The name
mblnDataIsLoaded is much more descriptive.

WHAT ’ S IN A NAME?

I have never seen a project that suffered because it lacked variable prefi xes such as
mbln . However, I have seen developers waste huge amounts of time because the
descriptive parts of variable names were confusing. Take a few seconds to think of
a good, meaningful name.

Building an all - encompassing naming convention that defi nes abbreviations for every conceivable
type of data, control, object, database component, menu, constant, and routine name takes a lot
of time and more space than it ’ s worth in a book such as this. For an article that describes the
conventions used by Microsoft Consulting Services, go to support.microsoft.com/kb/110264 .
It explains everything, including data type abbreviations, making the fi rst part of a function name
contain a verb (GetUserName rather than UserName), and commenting conventions.

c15.indd 316c15.indd 316 12/31/09 6:43:01 PM12/31/09 6:43:01 PM

Naming and coding conventions make it easier for other programmers to read your code. Look over
the Microsoft Consulting Services conventions or search the Web for others. Select the features that
you think make the most sense and ignore the others. It ’ s more important that you write consistent
code than that you follow a particular set of rules.

SUMMARY

Two of the most important things you control with a variable declaration are its data type and its
visibility. Visibility combines scope (the piece of code that contains the variable such as a For loop,
subroutine, or module), accessibility (the code that is allowed to access the variable determined by
keywords such as Private, Public, and Friend), and lifetime (when the variable has been created and
not yet destroyed).

To avoid confusion, explicitly declare the data type whenever possible and use the most limited
scope possible for the variable ’ s purpose. Turn Option Explicit and Option Strict on to allow the
IDE to help you spot potential scope and type errors before they become a problem.

Code that uses LINQ complicates matters somewhat. When you use LINQ, it is generally not
possible to declare explicitly every variable ’ s data type. A LINQ query returns a sequence of objects
that have an anonymous type. If you enumerate over the sequence, the looping variable will be of
the same anonymous type. In those cases, when you cannot explicitly declare a variable ’ s type, use
extra caution to make the code easy to understand so you can fi x and maintain it later. For more
information on LINQ, see Chapter 21.

Parameters, property procedures, and constants have similar data types and scope issues. Once you
become comfortable with variable declarations, they should give you little trouble.

One of the most important steps you can take to make your code easier to debug and maintain is
to make your code consistent. A good naming convention can help. Review the guidelines used by
Microsoft Consulting Services, and adopt the pieces that make the most sense to you.

When you know how to declare variables, you are ready to learn how to combine them. Chapter
16, “ Operators, ” explains the symbols (such as + , 2 , and ̂) that you can use to combine variables to
produce new results.

Summary ❘ 317

c15.indd 317c15.indd 317 12/31/09 6:43:02 PM12/31/09 6:43:02 PM

c15.indd 318c15.indd 318 12/31/09 6:43:02 PM12/31/09 6:43:02 PM

16
Operators

An operator is a basic code element that performs some operation on one or more values to
create a result. The values the operator acts upon are called operands . For example, in the
following statement, the operator is + (addition), the operands are B and C , and the result is
assigned to the variable A :

A = B + C

The Visual Basic operators fall into fi ve categories: arithmetic, concatenation, comparison,
logical, and bitwise. This chapter fi rst explains these categories and the operators they
contain, and then discusses other operator issues such as precedence, assignment operators,
and operator overloading. Also included are discussions of some specialized issues that arise
when you work with strings and dates.

ARITHMETIC OPERATORS

The following table lists the arithmetic operators provided by Visual Basic. Most programmers
should be very familiar with most of them. The four operators that may need a little extra
explanation are \ , Mod , < < , and > > .

OPERATOR PURPOSE EXAMPLE RESULT

^ Exponentiation 2 ^ 3 (2 to the power 3) = 2 * 2 * 2 = 8

– Negation - 2 - 2

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

continues

c16.indd 319c16.indd 319 12/31/09 6:43:47 PM12/31/09 6:43:47 PM

320 ❘ CHAPTER 16 OPERATORS

OPERATOR PURPOSE EXAMPLE RESULT

\ Integer division 17 \ 5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

2 Subtraction 3 - 2 1

< < Bit left shift 10110111 < < 1 01101110

> > Bit right shift 10110111 > > 1 01011011

The \ operator performs integer division. It returns the result of dividing its fi rst operand by the
second, dropping any remainder. It ’ s important to understand that the result is truncated toward
zero, not rounded. For example, 7 \ 4 = 1 and – 7 \ 4 = – 1 rather than 2 and – 2 as you might expect.

The Mod operator returns the remainder after dividing its fi rst operand by its second. For example,
17 Mod 5 = 2 because 17 = 3 * 5 + 2 .

The < < operator shifts the bits of an Integer value to the left, padding the empty bits on the right
with zeros. For example, the byte value with bits 10110111 shifted 1 bit to the left gives 01101110.
Shifting 10110111 2 bits to the left gives 11011100.

The > > operator shifts the bits of a value to the right, padding the empty bits on the left with zeros.
For example, the byte value with bits 10110111 shifted 1 bit to the right gives 01011011. Shifting
10110111 2 bits to the right gives 00101101.

Unfortunately, Visual Basic doesn ’ t work easily with bit values, so you cannot use a binary value
such as 10110111 in your code. Instead, you must write this value as the hexadecimal value & HB7
or the decimal value 183. The last two entries in the table show the values in binary, so it is easier to
understand how the shifts work.

CALCULATOR CLEVERNESS

The Calculator application that comes with Windows lets you easily convert
between binary, octal, hexadecimal, and decimal. To start the Calculator, open
the Start menu and select Run. Type calc and click OK. Open the View menu
and select Scientifi c. Now you can click the Bin, Oct, Dec, or Hex radio buttons to
select a base, enter a value, and select another base to convert the value.

CONCATENATION OPERATORS

Visual Basic provides two concatenation operators: + and & . Both join two strings together.
Because the + symbol also represents an arithmetic operator, your code will be easier to read if you
use the & symbol for concatenation. Using & can also make your code faster and lead to fewer
problems because it lets Visual Basic know that the operands are strings.

(continued)

c16.indd 320c16.indd 320 12/31/09 6:43:50 PM12/31/09 6:43:50 PM

COMPARISON OPERATORS

Comparison operators compare one value to another and return a Boolean value (True or False),
depending on the result. The following table lists the comparison operators provided by Visual
Basic. The fi rst six (= , < > , < , < = , > , and > =) are relatively straightforward. Note that the Not operator
is not a comparison operator, so it is not listed here. It is described in the next section, “ Logical
Operators. ”

OPERATOR PURPOSE EXAMPLE RESULT

= Equals A = B True if A equals B

< > Not equals A < > B True if A does not equal B

< Less than A < B True if A is less than B

< = Less than or equal to A < = B True if A is less than or

equal to B

> Greater than A > B True if A is greater than B

> = Greater than or equal to A > = B True if A is greater than or

equal to B

Is Equality of two objects emp Is mgr True if emp and mgr refer

to the same object

IsNot Inequality of two

objects

emp IsNot mgr True if emp and mgr refer

to diff erent objects

TypeOf ... Is Object is of a certain

type

TypeOf(obj) Is

Manager

True if obj points to a

Manager object

Like Matches a text pattern A Like “ ### - #### ” True if A contains three

digits, a dash, and four

digits

The Is operator returns True if its two operands refer to the same object. For example, if you create
an Order object and make two different variables, A and B , point to it, the expression A Is B is
True. Note that Is returns False if the two operands point to different Order objects that happen to
have the same property values.

The IsNot operator is simply shorthand for a more awkward Not . . . Is construction. For example,
the statement A IsNot Nothing is equivalent to Not (A Is Nothing) .

The value Nothing is a special value that means not an object . If you have an object variable, you
can use the Is or IsNot operator to compare it to Nothing to see if it represents anything. Note that
you cannot use Is or IsNot to compare an object variable to 0 or some other numeric value. Is and
IsNot only work with objects such as those stored in variables and the special value Nothing.

Comparison Operators ❘ 321

c16.indd 321c16.indd 321 12/31/09 6:43:51 PM12/31/09 6:43:51 PM

322 ❘ CHAPTER 16 OPERATORS

The TypeOf operator returns True if its operand is of a certain type. This operator is particularly
useful when a subroutine takes a parameter that could be of more than one object type. It can use
TypeOf to see which type of object it has.

The Like operator returns True if its fi rst operand matches a pattern specifi ed by its second operand.
Where the pattern includes normal characters, the string must match those characters exactly. The
pattern can also include several special character sequences summarized in the following table.

CHARACTER(S) MEANING

? Matches any single character

* Matches any zero or more characters

Matches any single digit

[characters] Matches any of the characters between the brackets

[! characters] Matches any character not between the brackets

A - Z When inside brackets, matches any character in the range A to Z

You can combine ranges of characters and individual characters inside brackets. For example, the
pattern [a - zA - Z] matches any letter between a and z or between A and Z. The following table lists
some useful patterns for use with the Like operator.

PATTERN MEANING

[2 - 9]## - #### Seven - digit U.S. phone number

[2 - 9]## - [2 - 9]## - #### Ten - digit phone number, including area code

1 - [2 - 9]## - [2 - 9]## - #### Eleven - digit phone number, beginning with 1 and area code

Five - digit ZIP code

- #### Nine - digit ZIP + 4 code

?*@?*.?* E - mail address

For example, the following code checks whether the text box txtPhone contains something that
looks like a 10 - digit phone number:

If Not (txtPhone.Text Like "[2-9]##-[2-9]##-####") Then
 MessageBox.Show("Please enter a valid pohone number")
End If

These patterns are not completely foolproof. For example, the e - mail address pattern verifi es that the
string contains at least one character, an @ character, at least one other character, a dot, and at least
one more character. For example, it allows RodStephens@vb - helper.com. However, it does not

c16.indd 322c16.indd 322 12/31/09 6:43:51 PM12/31/09 6:43:51 PM

verify that the extension makes sense, so it also allows RodStephens@vb - helper.commercial , and
it allows more than one @ character, as in RodStephens@vb - helper.com@bad_value .

Regular expressions provide much more powerful pattern - matching capabilities. The section
“ Regular Expressions ” in Chapter 40, “ Useful Namespaces, ” contains more information about
regular expressions.

LOGICAL OPERATORS

Logical operators combine two Boolean values and return True or False, depending on the result.
The following table summarizes Visual Basic ’ s logical operators.

OPERATOR PURPOSE EXAMPLE RESULT

Not Logical or bitwise negation Not A True if A is false

And Logical or bitwise And A And B True if A and B are both true

Or Logical or bitwise Or A Or B True if A or B or both are true

Xor Logical or bitwise exclusive Or A Xor B True if A or B but not both

is true

AndAlso Logical or bitwise And with

short - circuit evaluation

A AndAlso B True if A and B are both true

(see the following notes)

OrElse Logical or bitwise Or with

short - circuit evaluation

A OrElse B True if A or B or both are true

(see notes)

The operators Not, And, and Or are relatively straightforward.

“ Xor ” stands for “ exclusive or, ” and the Xor operator returns True if one but not both of its
operands is true. The expression A Xor B is true if A is true or B is true but both are not true.

Xor is useful for situations where exactly one of two things should be true. For example, suppose
you ’ re running a small software conference with two tracks so two talks are going on at any
given time. Each attendee should sign up for one talk in each time slot but cannot sign up for both
because they ’ re at the same time. Then you might use code similar to the following to check whether
an attendee has signed up for either talk 1a or talk 1b but not both.

If talk1a Xor talk1b Then
 ' This is okay
 ...
End If

Logical Operators ❘ 323

c16.indd 323c16.indd 323 12/31/09 6:43:52 PM12/31/09 6:43:52 PM

324 ❘ CHAPTER 16 OPERATORS

The AndAlso and OrElse operators are similar to the And and Or operators, except that they
provide short - circuit evaluation. In short - circuit evaluation , Visual Basic is allowed to stop
evaluating operands if it can deduce the fi nal result without them. For example, consider the
expression A AndAlso B . If Visual Basic evaluates the value A and discovers that it is false, the
program knows that the expression A AndAlso B is also false no matter what value B has, so it
doesn ’ t need to evaluate B .

Whether the program evaluates both operands doesn ’ t matter much if A and B are simple Boolean
variables. However, assume that they are time - consuming functions in the following code. For
example, the TimeConsumingFunction function might need to look up values in a database or
download data from a web site. In that case, not evaluating the second operand might save a lot
of time.

If TimeConsumingFunction("A") AndAlso TimeConsumingFunction("B") Then ...

Just as AndAlso can stop evaluation if it discovers one of its operands is False, the OrElse operand
can stop evaluating if it discovers that one of its operands is True. The expression A OrElse B is
True if either A or B is True. If the program fi nds that A is True, it doesn ’ t need to evaluate B .

Because AndAlso and OrElse do the same thing as And and Or but sometimes faster, you might
wonder why you would ever use And and Or. The main reason is that the operands may have side
effects. A side effect is some action a routine performs that is not obviously part of the routine.
For example, suppose that the NumEmployees function opens an employee database and returns
the number of employee records, leaving the database open. The fact that this function leaves the
database open is a side effect.

Now, suppose that the NumCustomers function similarly opens the customer database, and then
consider the following statement:

If (NumEmployees() > 0) AndAlso (NumCustomers() > 0) Then ...

After this code executes, you cannot be certain which databases are open. If NumEmployees returns
0 , the AndAlso operator ’ s fi rst operand is False, so it doesn ’ t evaluate the NumCustomers function
and that function doesn ’ t open the customer database.

The AndAlso and OrElse operators can improve application performance under some
circumstances. However, to avoid possible confusion and long debugging sessions, do not use
AndAlso or OrElse with operands that have side effects.

BITWISE OPERATORS

Bitwise operators work much like logical operators do, except they compare values one bit at a
time. The bitwise negation operator Not fl ips the bits in its operand from 1 to 0 and vice versa. The
following shows an example:

c16.indd 324c16.indd 324 12/31/09 6:43:53 PM12/31/09 6:43:53 PM

 10110111
Not 01001000

The And operator places a 1 in a result bit if both of the operands have a 1 in that position. The
following shows the results of combining two binary values by using the bitwise And operator:

 10101010
And 00110110
 00100010

The bitwise Or operator places a 1 bit in the result if either of its operands has a 1 in the
corresponding position. The following shows an example:

 10101010
Or 00110110
 10111110

The bitwise Xor operator places a 1 bit in the result if exactly one of its operands, but not both, has
a 1 in the corresponding position. The following shows an example:

 10101010
Xor 00110110
 10011100

There are no bitwise equivalents for the AndAlso and OrElse operators.

OPERATOR PRECEDENCE

When Visual Basic evaluates a complex expression, it must decide the order in which to evaluate
operators. For example, consider the expression 1 + 2 * 3 / 4 + 2. The following text shows three
orders in which you might evaluate this expression to get three different results:

1 + (2 * 3) / (4 + 2) = 1 + 6 / 6 = 2
1 + (2 * 3 / 4) + 2 = 1 + 1.5 + 2 = 4.5
(1 + 2) * 3 / (4 + 2) = 3 * 3 / 6 = 1.5

Precedence determines which operator Visual Basic executes fi rst. For example, the Visual Basic
precedence rules say the program should evaluate multiplication and division before addition, so the
second equation is correct.

The following table lists the operators in order of precedence. When evaluating an expression, the
program evaluates an operator before it evaluates those lower than it in the list.

Operator Precedence ❘ 325

c16.indd 325c16.indd 325 12/31/09 6:43:54 PM12/31/09 6:43:54 PM

326 ❘ CHAPTER 16 OPERATORS

OPERATOR DESCRIPTION

() Grouping (parentheses)

^ Exponentiation

- Negation

* , / Multiplication and division

\ Integer division

Mod Modulus

+ , -, + Addition, subtraction, and concatenation

& Concatenation

< < , > > Bit shift

= , < > , < , < = , > , > = , Like , Is , IsNot ,

TypeOf ... Is

All comparisons

Not Logical and bitwise negation

And , AndAlso Logical and bitwise And with and without short - circuit

evaluation

Xor , Or , OrElse Logical and bitwise Xor, and Or with and without short - circuit

evaluation

When operators are on the same line in the table, or if an expression contains more than one
instance of the same operator, the program evaluates them in left - to - right order. For example, * and /
are on the same line in the table so in the expression 12 * 4 / 20 Visual Basic would perform the
multiplication fi rst. (Of course, it wouldn ’ t matter much in this example because the result should be
the same either way, at least within the limits of the computer ’ s precision.)

Parentheses are not really operators, but they do have a higher precedence than the true operators,
so they ’ re listed to make the table complete. You can always use parentheses to explicitly dictate the
order in which Visual Basic will perform an evaluation.

If there ’ s the slightest doubt about how Visual Basic will handle an expression, add parentheses
to make it obvious. Even if you can easily fi gure out what an expression means, parentheses often
make the code even easier to read and understand. There ’ s no extra charge for using parentheses,
and they may avoid some unnecessary confusion.

ASSIGNMENT OPERATORS

Visual Basic has always had the simple assignment operator =. Visual Basic .NET added several
new assignment operators to handle some common statements where a value was set equal to itself
combined with some other value. For example, the following two statements both add the value 10
to the variable iterations :

c16.indd 326c16.indd 326 12/31/09 6:43:54 PM12/31/09 6:43:54 PM

iterations = iterations + 10 ' Original syntax.
iterations += 10 ' New syntax.

All the other assignment operators work similarly by adding an equals sign to an arithmetic
operator. For example, the statement A ^= B is equivalent to A = A ^ B .

You can still use the original syntax if you like. However, the new syntax sometimes gives you
better performance. If the left - hand side of the assignment is not a simple variable, Visual Basic
may be able to save time by evaluating it only once. For example, the following code adds 0.1 to
a customer order ’ s discount value. By using += , the code allows Visual Basic to fi nd the location of
this value only once.

Customers(cust_num).Orders(order_num).Discount += 0.1

PERFORMANCE ANXIETY

In most applications, performance is usually adequate whether you use += or the
older syntax. Usually, you are best off if you use whichever version seems most
natural and easiest to understand and only worry about performance when you are
sure you have a problem.

The complete list of assignment operators is: =, ̂ = , *= , /= , \= , += , - = , & = , < < = , and > > = .

If you have Option Strict set to On, the variables must have the appropriate data types. For
example, /= returns a Double, so you cannot use that operator with an Integer, as in the
following code:

Dim i As Integer = 100
i /= 2 ' Not allowed.

To perform this operation, you must explicitly convert the result into an Integer, as shown in the
following statement:

i = CInt(i / 2)

This makes sense because you are trying to assign the value of fl oating - point division to an Integer.
It ’ s less obvious why the following code is also illegal. Here the code is trying to assign an Integer
result to a Single variable, so you might think it should work. After all, an Integer value will fi t in a
Single variable.

Dim x As Single
x \= 10 ' Not allowed.

The problem isn ’ t in the assignment, but in performing the calculation. The following statement is
equivalent to the previous one, and it is also illegal:

x = x \ 10 ' Not allowed.

Assignment Operators ❘ 327

c16.indd 327c16.indd 327 12/31/09 6:43:55 PM12/31/09 6:43:55 PM

328 ❘ CHAPTER 16 OPERATORS

The problem with both of these statements is that the \ operator takes as arguments two Integers.
If Option Strict is on, the program will not automatically convert a fl oating - point variable into an
Integer for the \ operator. To make this statement work, you must manually convert the variable
into an Integer data type, as shown in the following example:

x = CLng(x) \ 10 ' Allowed.

The += and & = operators both combine strings but & = is less ambiguous, so you should use it
whenever possible. It may also give you better performance because it explicitly tells Visual Basic
that the operands are strings.

THE STRINGBUILDER CLASS

The & and & = operators are useful for concatenating a few strings together. However, if you must
combine a large number of strings, you may get better performance using the StringBuilder class.
This class is optimized for performing long sequences of concatenations to build big strings.

For small pieces of code, the difference between using a String and a StringBuilder is not noticeable.
If you need only to concatenate a dozen or so strings once, using a StringBuilder won ’ t make much
difference in runtime and may even slow performance slightly.

However, if you make huge strings built up in pieces, or if you build simpler strings but many times
in a loop, StringBuilder may make your program run faster.

Example program StringBuilderTest1, which is available for download on the book ’ s web site,
uses the following code to compare the speeds of building a long string with and without the
StringBuilder class:

Private Sub btnGo_Click() Handles btnGo.Click
 Const ADD_STRING As String = "1234567890"
 Dim num_trials As Long = Long.Parse(txtNumTrials.Text)
 Dim start_time As DateTime
 Dim stop_time As DateTime
 Dim elapsed_time As TimeSpan
 Dim txt As String
 Dim string_builder As New StringBuilder

 lblString.Text = ""
 lblStringBuilder.Text = ""
 Application.DoEvents()

 txt = ""
 start_time = Now
 For i As Long = 1 To num_trials
 txt = txt & ADD_STRING
 Next i
 stop_time = Now
 elapsed_time = stop_time.Subtract(start_time)
 lblString.Text = elapsed_time.TotalSeconds.ToString("0.000000")

c16.indd 328c16.indd 328 12/31/09 6:43:56 PM12/31/09 6:43:56 PM

 txt = ""
 start_time = Now
 For i As Long = 1 To num_trials
 string_builder.Append(ADD_STRING)
 Next i
 txt = string_builder.ToString()
 stop_time = Now
 elapsed_time = stop_time.Subtract(start_time)
 lblStringBuilder.Text = elapsed_time.TotalSeconds.ToString("0.000000")
End Sub

code snippet StringBuilderTest1

The code concatenates the string 1234567890 a large number of times, fi rst using a String variable
and then using a StringBuilder. In one test that performed the concatenation 10,000 times to build
strings 100,000 characters long, using a String took roughly 1.6 seconds. Using a StringBuilder, the
program was able to build the string in roughly 0.001 seconds.

Admittedly, building such enormous strings is not a common programming task. Even when the
strings are shorter, you can sometimes see a noticeable difference in performance, particularly if you
must build a large number of such strings.

Example program StringBuilderTest2, which is also available for download, uses the following code
to concatenate the string 1234567890 to itself 100 times, making a string 1,000 characters long. It
builds the string repeatedly for a certain number of trials. In one test building the 1,000 - character
string 10,000 times, using a String took around 0.95 seconds, whereas using a StringBuilder took
about 0.06 seconds.

Private Sub btnGo_Click() Handles btnGo.Click
 Const ADD_STRING As String = "1234567890"
 Dim num_trials As Long = Long.Parse(txtNumTrials.Text)
 Dim start_time As DateTime
 Dim stop_time As DateTime
 Dim elapsed_time As TimeSpan
 Dim txt As String
 Dim string_builder As New StringBuilder

 lblString.Text = ""
 lblStringBuilder.Text = ""
 Application.DoEvents()

 start_time = Now
 For i As Long = 1 To num_trials
 txt = ""
 For j As Long = 1 To 100
 txt = txt & ADD_STRING
 Next j
 Next i
 stop_time = Now
 elapsed_time = stop_time.Subtract(start_time)
 lblString.Text = elapsed_time.TotalSeconds.ToString("0.000000")

The StringBuilder Class ❘ 329

c16.indd 329c16.indd 329 12/31/09 6:43:57 PM12/31/09 6:43:57 PM

330 ❘ CHAPTER 16 OPERATORS

 txt = ""
 start_time = Now
 For i As Long = 1 To num_trials
 string_builder = New StringBuilder
 For j As Long = 1 To 100
 string_builder.Append(ADD_STRING)
 Next j
 txt = string_builder.ToString()
 Next i
 stop_time = Now
 elapsed_time = stop_time.Subtract(start_time)
 lblStringBuilder.Text = elapsed_time.TotalSeconds.ToString("0.000000")
End Sub

code snippet StringBuilderTest2

Strings and string operations are a bit more intuitive than the StringBuilder class, so your code will
usually be easier to read if you use String variables when performance isn ’ t a big issue. If you are
building enormous strings, or are building long strings a huge number of times, the performance
edge given by the StringBuilder class may be worth slightly more complicated - looking code.

DATE AND TIMESPAN OPERATIONS

The Date data type is fundamentally different from other data types. When you perform an
operation on most data types, you get a result that has the same data type or that is at least of some
compatible data type. For example, if you subtract two Integer variables, the result is an Integer. If
you divide two Integers using the / operator, the result is a Double. That ’ s not another Integer, but it
is a compatible numeric data type used because an Integer cannot always hold the result
of a division.

If you subtract two Date variables, however, the result is not a Date. For example, what ’ s August 7
minus July 20? It doesn ’ t make sense to think of the result as a Date. Instead, Visual Basic defi nes
the difference between two Dates as a TimeSpan. A TimeSpan measures the elapsed time between
two Dates. In this example, August 7 minus July 20 is 18 days. (And yes, TimeSpans know all about
leap years.)

The following equations defi ne the arithmetic of Dates and TimeSpans:

Date – Date = TimeSpan

Date + TimeSpan = Date

TimeSpan + TimeSpan = TimeSpan

TimeSpan – TimeSpan = TimeSpan

The TimeSpan class also defi nes unary negation (ts2 = - ts1), but other operations (such as
multiplying a TimeSpan by a number) are not defi ned. However, in some cases, you can still
perform the calculation if you must.

➤

➤

➤

➤

c16.indd 330c16.indd 330 12/31/09 6:43:57 PM12/31/09 6:43:57 PM

Example program MultiplyTimeSpan, which is available for download on the book ’ s web site, uses
the following statement to make the TimeSpan ts2 equal to 12 times the duration of TimeSpan ts1 :

 ts2 = New TimeSpan(ts1.Ticks * 12)

Starting with Visual Basic 2005, the + , - , < , > , < = , > = , < > , and = operators are defi ned for Dates
and TimeSpans. Previous versions did not defi ne these operators, but the Date class did provide
equivalent operator methods. For example, the Date class ’ s op_Subtraction method subtracts two
Dates and returns a TimeSpan.

These operator methods are still available and you may want to use them if you fi nd using the
normal operator symbols less clear. The following table lists the Date operator methods. Note that
the Common Language Runtime name for the Date data type is DateTime, so you need to look for
DateTime in the online help for more information on these methods.

SYNTAX MEANING

result_date = Date.op_Addition(date1,

timespan1)

Returns date1 plus timespan1

result_boolean =

Date.op_Equality(date1, date2)

True if date1 > date2

result_boolean =

Date.op_GreaterThan(date1, date2)

True if date1 > date2

result_boolean =

Date.op_GreaterThanOrEqual(date1,

date2)

True if date1 > = date2

result_boolean =

Date.op_Inequality(date1, date2)

True if date1 < > date2

result_boolean =

Date.op_LessThan(date1, date2)

True if date1 < date2

result_boolean =

Date.op_LessThanOrEqual(date1, date2)

True if date1 < = date2

result_timespan =

Date.op_Subtraction(date1, date2)

Returns the TimeSpan between date1 and date2

result = Date.Compare(date1, date2) Returns a value indicating whether date1 is

greater than, less than, or equal to date2

The Compare method is a bit different from the others, returning an Integer rather than a Boolean
or Date. Its value is less than zero if date1 < date2, greater than zero if date1 > date2, and equal to
zero if date1 = date2.

These are shared methods, so you do not need to use a specifi c instance of the Date data type to use
them. For example, the following code displays the number of days between July 20 and August 7:

Date and TimeSpan Operations ❘ 331

c16.indd 331c16.indd 331 12/31/09 6:43:58 PM12/31/09 6:43:58 PM

332 ❘ CHAPTER 16 OPERATORS

Dim date1 As Date = #7/20/04#
Dim date2 As Date = #8/7/04#
Dim elapsed_time As TimeSpan

 elapsed_time = Date.op_Subtraction(date2, date1)
 Debug.WriteLine(elapsed_time.Days)

These operators are a bit cumbersome. To make these kinds of calculations easier, the Date data
type provides other methods for performing common operations that are a bit easier to read.
Whereas the operator methods take both operands as parameters, these methods take a single
operand as one parameter and use the current object as the other. For example, a Date object ’ s Add
method adds a TimeSpan to the date and returns the resulting date. The following table summarizes
these methods.

SYNTAX MEANING

result_date = date1.Add(timespan1) Returns date1 plus timespan1

result_date =

date1.AddYears(num_years)

Returns the date plus the indicated number

of years

result_date =

date1.AddMonths(num_months)

Returns the date plus the indicated number

of months

result_date = date1.AddDays

(num_days)

Returns the date plus the indicated number of days

result_date =

date1.AddHours(num_hours)

Returns the date plus the indicated number

of hours

result_date =

date1.AddMinutes(num_minutes)

Returns the date plus the indicated number

of minutes

result_date =

date1.AddSeconds(num_seconds)

Returns the date plus the indicated number

of seconds

result_date =

date1.AddMilliseconds(num_milliseconds)

Returns the date plus the indicated number

of milliseconds

result_date =

date1.AddTicks (num_ticks)

Returns the date plus the indicated number of ticks

(100 - nanosecond units)

result_timespan =

date1.Subtract (date2)

Returns the time span between date2 and date1

result_integer =

date1.CompareTo (date2)

Returns a value indicating whether date1 is

greater than, less than, or equal to date2

result_boolean = date1.Equals(date2) Returns True if date1 equals date2

c16.indd 332c16.indd 332 12/31/09 6:43:58 PM12/31/09 6:43:58 PM

The CompareTo method returns a value less than zero if date1 < date2, greater than zero if date1 >
date2, and equal to zero if date1 = date2.

OPERATOR OVERLOADING

Visual Basic defi nes operators for expressions that use standard data types such as Integers and
Boolean values. It defi nes a few operators such as Is and IsNot for objects, but operators such as *
and Mod don ’ t make sense for objects in general.

Nevertheless, you can also defi ne those operators for your structures and classes, if you like, by
using the Operator statement. This is a more advanced topic, so if you ’ re new to Visual Basic, you
may want to skip this section and come back to it later, perhaps after you have read Chapter 26,
“ Classes and Structures. ”

The general syntax for operator overloading is:

 [< attributes >] Public [Overloads] Shared [Shadows] _
 [Widening | Narrowing] Operator symbol (operands) As type
 ...
End Operator

The parts of this declaration are:

attributes — Attributes for the operator.

Public — All operators must be Public Shared.

Overloads — You can only use this if the operator takes two parameters that are from
a base class and a derived class as its two operators. In that case, it means the operator
overrides the operator defi ned in the base class.

Shared — All operators must be Public Shared.

Shadows — The operator replaces a similar operator defi ned in the base class.

Widening — Indicates that the operator defi nes a widening conversion that always succeeds
at runtime. For example, an Integer always fi ts in a Single, so storing an Integer in a
Single is a widening operation. This operator must catch and handle all errors. The CType
operator must include either the Widening or Narrowing keyword.

Narrowing — Indicates that the operator defi nes a narrowing conversion that may fail at
runtime. For example, a Single does not necessarily fi t in an Integer, so storing a Single in
an Integer is a narrowing operation. The CType operator must include either the Widening
or Narrowing keyword.

symbol — The operator ’ s symbol. This can be + , — , * , / , \ , ̂ , & , < < , > > , = , < > , < , > , < = , > = ,
Mod , Not , And , Or , Xor , Like , IsTrue , IsFalse , or CType .

➤

➤

➤

➤

➤

➤

➤

➤

Operator Overloading ❘ 333

c16.indd 333c16.indd 333 12/31/09 6:43:59 PM12/31/09 6:43:59 PM

334 ❘ CHAPTER 16 OPERATORS

operands — Declarations of the objects to be manipulated by the operator. The unary
operators + , — , Not , IsTrue , and IsFalse take a single operand. The binary operators + ,
— , * , / , \ , ̂ , & , < < , > > , = , < > , < , > , < = , > = , Mod , And , Or , Xor , Like , and CType take two
operands.

type — All operators must have a return type and must return a value by using a Return
statement.

Operator overloading is subject to several constraints:

Some operands come in pairs, and if you defi ne one you must defi ne the other. The pairs are
= and < > , < and > , < = and > = , and IsTrue and IsFalse .

For the standard unary or binary operators, the class or structure that defi nes the operator
must appear in an operand. For the CType conversion operator, the class or structure must
appear in the operand or return type.

The IsTrue and IsFalse operators must return Boolean values.

The second operands for the < < and > > operators must be Integers.

If you defi ne an operator, Visual Basic automatically provides the corresponding
assignment operator. For example, if you defi ne the + operator, Visual Basic provides
the += assignment operator.

Though you cannot use the IsTrue and IsFalse operators directly, you can use them indirectly. If
you defi ne IsTrue for a class, Visual Basic uses it to determine whether an object should be treated
as True in a Boolean expression. For example, the following statement uses the IsTrue operator to
decide whether the object c1 should be considered True:

if c1 Then ...

If you defi ne the And and IsFalse operators, Visual Basic uses them to handle the AndAlso operator
as well. For this to work, the And operator must return the same type of class or structure where
you defi ne it. For example, suppose you have defi ned And and IsFalse for the Composite class
and suppose variables c1 , c2 , and c3 are all instances of this class. Then consider the following
statement:

c3 = c1 AndAlso c2

Visual Basic uses IsFalse to evaluate c1 . If IsFalse returns True, the program doesn ’ t bother to
evaluate c2 . Instead it assumes the whole statement is False and returns a False value. Because
IsFalse returned True for c1 , Visual Basic knows that c1 is a False value, so it sets c3 equal to c1 .

This is pretty confusing. It may make more sense if you think about how Visual Basic evaluates
Boolean expressions that use the normal AndAlso operator.

Similarly, if you defi ne the Or and IsTrue operators, Visual Basic automatically provides the
OrElse operator.

➤

➤

➤

➤

➤

➤

c16.indd 334c16.indd 334 12/31/09 6:44:00 PM12/31/09 6:44:00 PM

Although you generally cannot make two versions of a function in Visual Basic that differ only
in their return types, you can do that for CType conversion operators. When the program tries to
make a conversion, Visual Basic can tell by the type of the result which conversion operator to use.

Example program ComplexNumbers, which is available for download on the book ’ s web site, uses
the following code to defi ne a Complex class that represents a complex number. It defi nes +, - ,
and * operators to implement normal addition, subtraction, and multiplication on complex
numbers. It also defi nes = , < > , and unary negation operators, and a conversion operator that
converts a Complex object into a Double by returning its magnitude.

Public Class Complex
 Public Re As Double
 Public Im As Double

 ' Constructors.
 Public Sub New()
 End Sub
 Public Sub New(ByVal real_part As Double, ByVal imaginary_part As Double)
 Re = real_part
 Im = imaginary_part
 End Sub

 ' ToString.
 Public Overrides Function ToString() As String
 Dim txt As String = Re.ToString
 If Im < 0 Then
 txt & = " - " & Math.Abs(Im).ToString
 Else
 txt & = " + " & Im.ToString
 End If
 Return txt & "i"
 End Function

 ' Operators.
 Public Shared Operator *(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Complex
 Return New Complex(
 c1.Re * c2.Re - c1.Im * c2.Im,
 c1.Re * c2.Im + c1.Im * c2.Re)
 End Operator
 Public Shared Operator +(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Complex
 Return New Complex(
 c1.Re + c2.Re,
 c1.Im + c2.Im)
 End Operator
 Public Shared Operator -(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Complex
 Return New Complex(
 c1.Re - c2.Re,
 c1.Im - c2.Im)
 End Operator
 Public Shared Operator =(ByVal c1 As Complex, ByVal c2 As Complex) _

Operator Overloading ❘ 335

c16.indd 335c16.indd 335 12/31/09 6:44:00 PM12/31/09 6:44:00 PM

336 ❘ CHAPTER 16 OPERATORS

 As Boolean
 Return (c1.Re = c2.Re) AndAlso (c1.Im = c2.Im)
 End Operator
 Public Shared Operator < > (ByVal c1 As Complex, ByVal c2 As Complex) _
 As Boolean
 Return (c1.Re < > c2.Re) OrElse (c1.Im < > c2.Im)
 End Operator
 Public Shared Operator -(ByVal c1 As Complex) As Complex
 Return New Complex(-c1.Re, -c1.Im)
 End Operator
 Public Shared Narrowing Operator CType(ByVal c1 As Complex) As Double
 Return System.Math.Sqrt(c1.Re * c1.Re + c1.Im * c1.Im)
 End Operator
End Class

code snippet ComplexNumbers

It is easy to get carried away with operator overloading. Just because you can defi ne an operator
for a class doesn ’ t mean you should. For example, you might be able to concoct some meaning for
addition with the Employee class, but it would probably be a counterintuitive operation. You would
probably be better off writing a subroutine or function with a meaningful name instead of using an
ambiguous operator such as + or > > .

OPERATORS WITH NULLABLE TYPES

Chapter 15, “ Data Types, Variables, and Constants, ” describes nullable types. A variable declared
as nullable can distinguish between holding zero, blank, and other “ trivial ” values and holding
no data at all. For example, if you declare the variable x as a nullable Integer, you can set it to the
special value Nothing to indicate that it doesn ’ t contain any data.

If all of the operands in an expression contain actual values rather than Nothing, then arithmetic,
comparison, logical, or bitwise operations return the values you would expect. If one or more
nullable variables in an expression contains the special value Nothing, Visual Basic uses special
“ null - propagation ” rules for evaluating the expression.

If one or more of the operands in an arithmetic, comparison, logical, or bitwise operation is
Nothing, the result is also Nothing. For example, if x and y are nullable and x contains no value, the
following expressions, and just about any other expression containing x , have the value Nothing.

-x
x + y
x * y
x ^ y
x > > y

For more information about nullable types, see Chapter 15.

c16.indd 336c16.indd 336 12/31/09 6:44:01 PM12/31/09 6:44:01 PM

SUMMARY

A program uses operators to manipulate variables, constants, and literal values to produce new
results. The Visual Basic operators fall into fi ve categories: arithmetic, concatenation, comparison,
logical, and bitwise. In most cases, using operators is straightforward and intuitive.

Operator precedence determines the order in which Visual Basic applies operators when evaluating
an expression. In cases where an expression ’ s operator precedence is unclear, add parentheses to
make the order obvious. Even if you don ’ t change the way that Visual Basic handles the statement,
you can make the code more understandable and avoid possibly time - consuming bugs.

The String data type has its own special needs. String manipulation plays a big role in many
applications, so Visual Basic provides a StringBuilder class for manipulating strings more effi ciently.
On the one hand, if your program only works with a few short strings, it probably doesn ’ t need to
use a StringBuilder, and using the String data type will probably make your code easier
to understand. On the other hand, if your application builds enormous strings or concatenates
a huge number of strings, you may be able to save a noticeable amount of time using the
StringBuilder class.

The Date data type also behaves differently from other data types. The normal operators such as +
and – have different meanings here from other data types. For example, a Date minus a Date gives
a TimeSpan, not another Date. These operations generally make sense if you think carefully about
what dates and time spans are.

Just as addition, subtraction, and the other operators have special meaning for Dates and
TimeSpans, you can use operator overloading to defi ne operators for your classes. Defi ning division
or exponentiation may not make much sense for Employees, Customer, or Orders, but in some cases
custom operators can make your code more readable. For example, you might imagine the following
statement adding an OrderItem to a CustomerOrder:

the_order += new_item

This chapter explains how to use operators to combine variables to calculate new results. A
typical program may perform the same set of calculations many times for different variable values.
Although you might be able to perform those calculations in a long series, the resulting code would
be cumbersome and hard to maintain. Chapter 17, “ Subroutines and Functions, ” explains how you
can use subroutines and functions to break a program into manageable pieces that you can then
reuse to make performing the calculations easier and more uniform.

Summary ❘ 337

c16.indd 337c16.indd 337 12/31/09 6:44:01 PM12/31/09 6:44:01 PM

c16.indd 338c16.indd 338 12/31/09 6:44:02 PM12/31/09 6:44:02 PM

Subroutines and Functions

Subroutines and functions enable you to break an otherwise unwieldy chunk of code into
manageable pieces. They allow you to extract code that you may need to use under more than one
circumstance and place it in one location where you can call it as needed. This not only reduces
repetition within your code; it also enables you to maintain and update the code in a single location.

A subroutine performs a task for the code that invokes it. A function performs a task and then
returns some value. The value may be the result of a calculation, or a status code indicating
whether the function succeeded or failed.

Together, subroutines and functions are sometimes called routines or procedures. They are
also sometimes called methods , particularly when they are subroutines or functions belonging
to a class. Subroutines are also occasionally called sub procedures or less formally subs .

This chapter describes subroutines and functions. It explains the syntax for declaring and
using each in a Visual Basic application. It also provides some tips for making routines more
maintainable.

SUBROUTINES

A Sub statement defi nes the subroutine ’ s name. It declares the parameters that the subroutine
takes as arguments and defi nes the parameters ’ data types. Code between the Sub statement
and an End Sub statement determines what the subroutine does when it runs.

The syntax for defi ning a subroutine is as follows:

[attribute_list] [inheritance_mode] [accessibility] _
Sub subroutine_name ([parameters]) [Implements interface.subroutine]
 [statements]
End Sub

The following sections describe the pieces of this declaration.

17

c17.indd 339c17.indd 339 12/30/09 6:59:23 PM12/30/09 6:59:23 PM

340 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Attribute_List

The optional attribute list is a comma - separated list of attributes that apply to the subroutine.
An attribute further refi nes the defi nition of a class, method, variable, or other item to give more
information to the compiler and the runtime system.

DELIGHTFUL DECORATIONS

Applying an attribute to a class, variable, method, or other code entity is some-
times called decorating the entity.

Attributes are specialized and address issues that arise when you perform very specifi c programming
tasks. For example, the Conditional attribute means the subroutine is conditional upon the
defi nition of some compiler constant. Example program AttributeConditional uses the following
code to demonstrate the Conditional attribute:

#Const DEBUG_LIST_CUSTOMERS = True
' #Const DEBUG_LIST_EMPLOYEES = True

Private Sub Form1_Load() Handles MyBase.Load
 ListCustomers()
 ListEmployees()

 txtResults.Select(0, 0)
End Sub

< Conditional("DEBUG_LIST_CUSTOMERS") >
Private Sub ListCustomers()
 txtResults.Text & = "ListCustomers" & vbCrLf
End Sub

< Conditional("DEBUG_LIST_EMPLOYEES") >
Private Sub ListEmployees()
 txtResults.Text & = "ListEmployees" & vbCrLf
End Sub

code snippet AttributeConditional

The code defi nes the compiler constant DEBUG_LIST_CUSTOMERS . The value DEBUG_LIST_EMPLOYEES
is not defi ned because it is commented out.

This program ’ s Form1_Load event handler calls subroutines ListCustomers and ListEmployees
. ListCustomers is defi ned using the Conditional attribute with parameter DEBUG_LIST_CUSTOMERS .
That tells the compiler to generate code for the routine only if DEBUG_LIST_CUSTOMERS is defi ned.
Because that constant is defi ned, the compiler generates code for this subroutine.

c17.indd 340c17.indd 340 12/30/09 6:59:27 PM12/30/09 6:59:27 PM

Subroutine ListEmployees is defi ned using the Conditional attribute with parameter
DEBUG_LIST_EMPLOYEES . Because that constant is not defi ned, the compiler does not generate
code for this subroutine and, when Form1_Load calls it, the subroutine call is ignored.

The following text shows the output from this program:

ListCustomers

Visual Basic 2010 defi nes more than 400 attributes. Many have very specialized purposes that won ’ t
interest you most of the time, but some are pretty useful. For example, the Browsable attribute
determines whether a property or event should be listed in the Properties window. It is fairly general
and useful, so it ’ s described shortly. In contrast, the System.EnterpriseServices.ApplicationQueuing
attribute enables queuing for an assembly and allows it to read method calls from message queues.
This attribute is only useful in very specialized circumstances, so it isn ’ t described here.

Many attributes give metadata for editors and the IDE, so you will often see their effects only when
you view an object in an editor or the IDE. If you are building a control or component, you can
put one on a form and then see its properties in the Properties window. In that case, many kinds
of attributes will be useful. If you ’ re building an Employee class that ’ s used only in code, fewer
attributes are useful in any obvious way.

However, Visual Basic comes with a powerful PropertyGrid control that lets you display an object ’ s
properties on a form much as the Properties window displays them to a developer. That control
honors all of the property - related attributes and gives them a whole new level of usefulness.

The following list describes some of the most useful attributes. Most of them are in the System
.ComponentModel namespace. Check the online help to fi nd the namespaces for the others and
to learn about each attribute ’ s parameters. Even these most useful attributes are fairly specialized
and advanced so you may not immediately see their usefulness. If one of them doesn ’ t make
sense, skip it and scan the list again after you have more experience with such topics as building
custom controls.

AttributeUsage — You can build your own custom attributes by inheriting from the
Attribute class. You can give your attribute class the AttributeUsage attribute to specify how
your attribute can be used. You can determine whether an item can have multiple instances
of your attribute, whether your attribute can be inherited by a derived class, and the kinds of
things that can have your attribute (assembly, class, method, and so forth).

Browsable — This indicates whether a property or event should be displayed in an editor
such as the Properties window. If you pass the attribute ’ s constructor the value False, the
Properties window does not display the property.

Category — This indicates the grouping that should hold the property or event in a visual
designer such as the Properties window. For example, if the user clicks the Categorized
button in the Properties window, the window groups the properties by category. This
attribute tells which category should hold the property. Note that the category names are
not magic. You can use any string you like and the Properties window will make a new
category for you if necessary.

➤

➤

➤

Subroutines ❘ 341

c17.indd 341c17.indd 341 12/30/09 6:59:28 PM12/30/09 6:59:28 PM

342 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

DefaultEvent — This gives a class ’ s default event name. If the class is a control or
component and you double - click it in a form, the code editor opens to this event. For
example, the default event for a Button is Click, so when you double - click a Button at
design time, the code editor opens the control ’ s Click event handler.

DefaultProperty — This gives a class ’ s default property name. Suppose that the Employee
component has LastName set as its default property. Then suppose that you select the
form and click the FormBorderStyle property in the Properties window. Now you click
an Employee. Because Employee doesn ’ t have a FormBorderStyle property, the Properties
window displays its default property: LastName.

DefaultValue — This gives a property a default value. If you right - click the property
in the Properties window and select Reset, the property is reset to this value. Be sure to
use a valid value. For example, don ’ t set this to the string “ unknown ” if the property is
an Integer.

Description — This gives a description of the item. If a property has a Description and
you select the property in the Properties window, the window displays the description text
at the bottom.

Visual Basic carries this one step further and also allows you to use XML comments to provide a
description of routines and their parameters for use by IntelliSense. For more information, see the
section “ XML Comments ” in Chapter 14, “ Program and Module Structure. ”

Localizable — This determines whether a property should be localizable so you can
easily store different versions of the property for different languages and locales. If this is
True, localized values are automatically stored in the appropriate resource fi les for different
locales and automatically loaded at startup based on the user ’ s computer settings. If this is
False (the default), all locales share the same property value.

To try this out, set the form ’ s Localizable property to True and enter a value for the property.
Then set the form ’ s Language property to another language and give the localizable property a
new value. Visual Basic automatically applies the right value for the user ’ s locale when it runs
the program.

MergableProperty — This indicates whether or not the property can be merged with the
same property provided by other components in the Properties window. If this is False and
you select more than one instance of a control with the property, the Properties window
does not display the property.

If this is True and you select more than one control with the property, the Properties
window displays the value if the controls all have the same value. If you enter a new value,
all of the controls are updated. This is the way the Text property works for TextBox, Label,
and many other kinds of controls.

ParenthesizePropertyName — This indicates whether editors such as the Properties
window should display parentheses around the property ’ s name. If the name has
parentheses, the Properties window moves it to the top of the list when displaying properties
alphabetically or to the top of its category when displaying properties by category.

➤

➤

➤

➤

➤

➤

➤

c17.indd 342c17.indd 342 12/30/09 6:59:28 PM12/30/09 6:59:28 PM

ReadOnly — This indicates whether designers should treat this property as read - only. For
example, the Properties window displays the property grayed out and doesn ’ t let the user
change its value. This attribute is a little strange in practice because ReadOnly is a Visual
Basic keyword. If you enter just the attribute name ReadOnly, Visual Basic gets confused.
Either use the full name System.ComponentModel.ReadOnly or enclose the name in square
brackets as in < [ReadOnly](True) >

RecommendedAsConfigurable — This indicates that a property should be tied to the
confi guration fi le. When you select the object at design time and expand the “ (Dynamic
Properties) ” item, the property is listed. If you click the ellipsis to the right, a dialog appears
that lets you map the property to a key in the confi guration fi le.

RefreshProperties — This indicates how an editor should refresh the object ’ s other
properties if this property is changed. The value can be Default (do not refresh the
other properties), Repaint (refresh all other properties), or All (re - query and refresh
all properties).

Conditional — This indicates that the method is callable if a compile - time constant
such as DEBUG or MY_CONSTANT is defi ned. If the constant is not defi ned, code for
the method is still generated and parameters in the method call are checked against the
parameter types used by the method, but calls to the method are ignored at runtime. If
the method has more than one Conditional attribute, the method is callable if any of the
specifi ed compile - time constants is defi ned.

Note that the constant must be defi ned in the main program, not in the component if you are
building a component. Select the main program, open the Project menu, select the Properties item at
the bottom, open the Confi guration Properties folder, click Build, and in the Custom constants text
box enter a value such as IS_DEFINED=True.

You can also use the compiler directive #If to exclude code completely from compilation. However,
if you eliminate a method in this way, any calls to the routine will generate compile - time errors
because the method doesn ’ t exist. The Conditional attribute lets you hide a method while still
allowing the code to contain calls to it.

DebuggerHidden — This tells debuggers whether a method should be debuggable. If
DebuggerHidden is True, the IDE skips over the method and will not stop at breakpoints
inside it.

DebuggerStepThrough — This tells debuggers whether to let the developer step through a
method in the debugger. If DebuggerStepThrough is True, the IDE will not step through
the method, although it will stop at any breakpoints inside it.

ToolboxBitmap — This tells the IDE where to fi nd a control or component ’ s Toolbox
bitmap. This can be a fi le, or it can be a type in an assembly that contains the bitmap and
the bitmap ’ s name in the assembly. It ’ s awkward but essential if you ’ re developing controls
or components.

NonSerializedAttribute — This indicates that a member of a serializable class should not
be serialized. This is useful for excluding values that need not be serialized.

➤

➤

➤

➤

➤

➤

➤

➤

Subroutines ❘ 343

c17.indd 343c17.indd 343 12/30/09 6:59:29 PM12/30/09 6:59:29 PM

344 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Obsolete — This indicates that the item (class, method, property, or whatever) is obsolete.
Optionally, you can specify the message that the code editor should display to the developer
if code uses the item (for example, “ Use the NewMethod instead ”). You can also indicate
whether the IDE should treat using this item as a warning or an error.

Serializable — This indicates that a class is serializable. All public and private fi elds are
serialized by default. Note that some routines require a class to be serializable even though
you don ’ t use the serialization yourself. Also note that attributes in the System.Xml
.Serialization namespace can provide a lot of control over serializations.

ThreadStaticAttribute — This indicates that a Shared class variable should not be shared
across threads. Different threads get their own copies of the variable and all instances of the
class within each thread share the thread ’ s copy.

FINDING ATTRIBUTES

Finding the attributes that you need for a particular task can be tricky. It helps to
realize that attribute classes inherit either directly or indirectly from the Attribute
class. You can get information about the Attribute class at msdn2.microsoft.com/
system.attribute.aspx. You can see a list of classes that inherit from System
.Attribute at msdn2.microsoft.com/2e39z096.aspx.

Inheritance_Mode

The inheritance_mode can be one of the values Overloads, Overrides, Overridable, NotOverridable,
MustOverride, Shadows, or Shared. These values determine how a subroutine declared within a
class inherits from the parent class or how it allows inheritance in derived classes. The following list
explains the meanings of these keywords:

Overloads — Indicates that the subroutine has the same name as another subroutine
defi ned for this class. The parameter list must be different in the different versions so
that Visual Basic can tell them apart (if they are the same, this works just like Overrides
described next). If you are overloading a subroutine defi ned in a parent class, you must use
this keyword. If you are overloading only subroutines in the same class, you can omit the
keyword. If you use the keyword in any of the overloaded subroutines, however, you must
include it for them all.

Overrides — Indicates that this subroutine replaces a subroutine in the parent class that
has the same name and parameters.

Overridable — Indicates that a derived class can override this subroutine. This is the
default for a subroutine that overrides another one.

NotOverridable — Indicates that a derived class cannot override this subroutine. You can
only use this with a subroutine that overrides another one.

➤

➤

➤

➤

➤

➤

➤

c17.indd 344c17.indd 344 12/30/09 6:59:30 PM12/30/09 6:59:30 PM

MustOverride — Indicates that any derived classes must override this subroutine. When
you use this keyword, you omit all subroutine code and the End Sub statement, as in the
following code:

MustOverride Sub Draw()
MustOverride Sub MoveMap(ByVal X As Integer, ByVal Y As Integer)
MustOverride Sub Delete()
...

If a class contains a subroutine declared MustOverride, you must declare the class using the
MustInherit keyword. Otherwise, Visual Basic won ’ t know what to do if you call this subroutine,
because it contains no code.

MustOverride is handy for defi ning a subroutine that derived classes must implement, but for which
a default implementation in the parent class doesn ’ t make sense. For example, suppose that you
make a Drawable class that represents a shape that can be drawn and that you will derive specifi c
shape classes such as Rectangle, Ellipse, Line, and so forth. To let the program draw a generic shape,
the Drawable class defi nes the Draw subroutine. Because Drawable doesn ’ t have a particular
shape, it cannot provide a default implementation of that subroutine. To require the derived classes
to implement Draw, the Drawable class declares it MustOverride.

Shadows — Indicates that this subroutine replaces an item (probably a subroutine) in the
parent class that has the same name, but not necessarily the same parameters. If the parent
class contains more than one overloaded version of the subroutine, this subroutine shadows
them all. If the derived class defi nes more than one overloaded version of the subroutine,
they must all be declared with the Shadows keyword.

Shared — Indicates that this subroutine is associated with the class itself, rather than
with a specifi c instance of the class. You can invoke it using the class ’ s name (ClassName.
SharedSub) or using a specifi c instance (class_instance.SharedSub). Because the subroutine
is not associated with a specifi c class instance, it cannot use any properties or methods that
are provided by a specifi c instance. The subroutine can only use other Shared properties and
methods, as well as globally available variables.

Accessibility

A subroutine ’ s accessibility clause can take one of these values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can invoke the subroutine. The
following list explains these keywords:

Public — Indicates that there are no restrictions on the subroutine. Code inside or outside
of the subroutine ’ s class or module can call it.

Protected — Indicates that the subroutine is accessible only to code in the same class or
in a derived class. You can only use the Protected keyword with subroutines declared inside
a class.

➤

➤

➤

➤

➤

Subroutines ❘ 345

c17.indd 345c17.indd 345 12/30/09 6:59:31 PM12/30/09 6:59:31 PM

346 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Friend — Indicates that the subroutine is available to all code inside or outside of the
subroutine ’ s module within the same project. The difference between this and Public is
that Public allows code outside of the project to access the subroutine. This is generally
only an issue for code libraries (DLLs) and control libraries. For example, suppose that you
build a code library containing dozens of routines and then you write a program that uses
the library. If the library declares a subroutine with the Public keyword, the code in the
library and the code in the main program can use the subroutine. In contrast, if the library
declares a subroutine with the Friend keyword, only the code in the library can access the
subroutine, not the code in the main program.

Protected Friend — Indicates that the subroutine has both Protected and Friend status.
The subroutine is available only within the same project and within the same class or a
derived class.

Private — Indicates that the subroutine is available only within the class or module that
contains it.

To reduce the amount of information that developers must remember, you should generally declare
subroutines with the most restricted accessibility that allows them to do their jobs. If you can,
declare the subroutine Private. Then, developers working on other parts of the application don ’ t
even need to know that the subroutine exists. They can create other routines with the same name if
necessary and won ’ t accidentally misuse the subroutine.

Later, if you discover that you need to use the subroutine outside of its class or module, you can
change its declaration to allow greater accessibility.

Subroutine_Name

The subroutine ’ s name must be a valid Visual Basic identifi er. That means it should begin with a
letter or an underscore. It can then contain zero or more letters, numbers, and underscores. If the
name begins with an underscore, it must include at least one other character so that Visual Basic
can tell it apart from a line continuation character.

Many developers use camel case when naming subroutines so a subroutine ’ s name consists of several
descriptive words with their fi rst letters capitalized. A good method for generating subroutine
names is to use a short phrase beginning with a verb and describing what the subroutine does. Some
examples include LoadData, SaveNetworkConfi guration, and PrintExpenseReport.

Subroutine names with leading underscores can be hard to read, so you should either save them for special
purposes or avoid them entirely. Names such as _1 and __ (two underscores) are particularly confusing.

Parameters

The parameters section of the subroutine declaration defi nes the arguments that the subroutine
takes as parameters. The parameter declarations defi ne the numbers and types of the parameters.
This section also gives the names by which the subroutine will know the values.

Declaring parameters is very similar to declaring variables. See Chapter 15, “ Data Types, Variables,
and Constants, ” for information on variable declarations, data types, and other related topics.

➤

➤

➤

c17.indd 346c17.indd 346 12/30/09 6:59:31 PM12/30/09 6:59:31 PM

The following sections describe some of the more important details related to subroutine parameter
declarations.

ByVal

If you include the optional ByVal keyword before a parameter ’ s declaration, the subroutine makes
its own local copy of the parameter with procedure scope. The subroutine can modify this value all
it wants and the corresponding value in the calling procedure isn ’ t changed.

For example, consider the following code. The main program initializes the variable A and prints its
value in the Output window. It then calls subroutine DisplayDouble , which declares its parameter
X with the ByVal keyword. It doubles X and displays the new value. Because the parameter X is
declared ByVal, the subroutine has its own local copy of the variable, so doubling it doesn ’ t change
the value of the variable A in the main program. When the subroutine ends and the main program
resumes, it displays the value of variable A .

Private Sub Main()
 Dim A As Integer = 12
 Debug.WriteLine("Main: " & A)
 DisplayDouble(A)
 Debug.WriteLine("Main: " & A)
End Sub

Private Sub DisplayDouble(ByVal X As Integer)
 X *= 2
 Debug.WriteLine("DisplayDouble: " & X)
End Sub

The following text shows the results:

Main: 12
DisplayDouble: 24
Main: 12

ByRef

If you declare a parameter with the ByRef keyword, the subroutine does not create a separate copy
of the parameter variable. Instead, it uses a reference to the original parameter passed into the
subroutine and any changes the subroutine makes to the value are refl ected in the calling subroutine.

Consider the following code. This code is the same as the previous example except that the
DisplayDouble subroutine declares its parameter using the ByRef keyword. As before, the main
program initializes the variable A and prints its value in the Output window. It then calls subroutine
DisplayDouble , which doubles its parameter X and displays the new value. Because X is declared
ByRef, this doubles the value of the variable A that was passed by the main program into the
subroutine. When the subroutine ends and the main program resumes, it displays the new doubled
value of variable A .

Subroutines ❘ 347

c17.indd 347c17.indd 347 12/30/09 6:59:32 PM12/30/09 6:59:32 PM

348 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Private Sub Main()
Dim A As Integer = 12
Debug.WriteLine("Main: " & A)
DisplayDouble(A)
Debug.WriteLine("Main: " & A)
End Sub
Private Sub DisplayDouble(ByRef X As Integer)
X *= 2
Debug.WriteLine("DisplayDouble: " & X)
End Sub

The following shows the results:

Main: 12
DisplayDouble: 24
Main: 24

Arrays Declared ByVal and ByRef

If you declare an array parameter using ByVal or ByRef, those keywords apply to the array itself,
not to the array ’ s values. In either case, the subroutine can modify the values inside the array.

The DoubleArrayValues subroutine shown in the following code has a parameter named arr .
This parameter is an array of integers and is declared ByVal. The routine loops through the array,
doubling each of its values. It then loops through the array, displaying the new values. Next, the
subroutine assigns the variable arr to a new array of integers. It loops through the array, again
displaying the new values.

Private Sub DoubleArrayValues(ByVal arr() As Integer)
' Double the values.
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
arr(i) *= 2
Next i
' Display the values.
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
Debug.WriteLine(arr(i))
Next i
Debug.WriteLine("----------")
' Create a new array of values.
arr = New Integer() {-1, -2}
' Display the values.
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
Debug.WriteLine(arr(i))
Next i
Debug.WriteLine("----------")

End Sub

c17.indd 348 c17.indd 348 12/30/09 6:59:33 PM12/30/09 6:59:33 PM

The following code declares an array of integers containing the values 1 , 2 , and 3 . It invokes the
subroutine DoubleArrayValues and then loops through the array, displaying the values after
DoubleArrayValues returns.

Dim the_values() As Integer = {1, 2, 3}
DoubleArrayValues(the_values)

For i As Integer = the_values.GetLowerBound(0) To the_values.GetUpperBound(0)
 Debug.WriteLine(the_values(i))
Next i

The following text shows the results. The DoubleArrayValues subroutine lists the array ’ s
doubled values 2 , 4 , 6 , assigns a new array to its local variable arr , and then displays the new
values - 1 and - 2 . When DoubleArrayValues returns, the main program displays its version of
the values. Notice that the values were updated by DoubleArrayValues but that the subroutine ’ s
assignment of its arr variable to a new array had no effect on the main program ’ s array
the_values .

2
4
6

-1
-2

2
4
6

Now suppose that the subroutine DoubleArrayValues was declared with the following
statement:

Private Sub DoubleArrayValues(ByRef arr() As Integer)

In this case, when DoubleArrayValues assigns a new array to its arr variable, the calling routine
sees the change, so the the_values array receives the new array. The following text shows the new
results:

2
4
6

-1
-2

-1
-2

Subroutines ❘ 349

c17.indd 349c17.indd 349 12/30/09 6:59:33 PM12/30/09 6:59:33 PM

350 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Parenthesized Parameters

A subroutine can fail to update a parameter declared using the ByRef keyword in a couple ways. The
most confusing occurs if you enclose a variable in parentheses when you pass it to the subroutine.
Parentheses tell Visual Basic to evaluate their contents as an expression. Visual Basic creates a
temporary variable to hold the result of the expression and then passes the temporary variable into
the procedure. If the procedure ’ s parameter is declared ByRef, the subroutine updates the temporary
variable but not the original variable, so the calling routine doesn ’ t see any change to its value.

The following code calls subroutine DisplayDouble , passing it the variable A surrounded by
parentheses. Subroutine DisplayDouble modifi es its parameter ’ s value, but the result doesn ’ t get
back to the variable A .

Private Sub Main()
 Dim A As Integer = 12
 Debug.WriteLine("Main: " & A)
 DisplayDouble((A))
 Debug.WriteLine("Main: " & A)
End Sub

Private Sub DisplayDouble(ByRef X As Integer)
 X *= 2
 Debug.WriteLine("DisplayDouble: " & X)
End Sub

The following text shows the results:

Main: 12
DisplayDouble: 24
Main: 12

Chapter 15 has more to say about parameters declared with the ByVal and ByRef keywords.

Optional

If you declare a parameter with the Optional keyword, the code that uses it may omit that
parameter. When you declare an optional parameter, you must give it a default value for the
subroutine to use if the parameter is omitted by the calling routine.

The DisplayError subroutine in the following code takes an optional string parameter. If the
calling routine provides this parameter, the subroutine displays it. If the calling routine leaves this
parameter out, DisplayError displays its default message “ An error occurred. ” The PlaceOrder
subroutine checks its the_customer parameter. If this parameter is Nothing, PlaceOrder calls
DisplayError to show the message “ Customer is Nothing in subroutine PlaceOrder. ” Next,
subroutine PlaceOrder calls the_customer ’ s IsValid function. If IsValid returns False,
the subroutine calls DisplayError . This time it omits the parameter so DisplayError presents
its default message.

c17.indd 350c17.indd 350 12/30/09 6:59:34 PM12/30/09 6:59:34 PM

Private Sub DisplayError(Optional ByVal error_message As String = _
 "An error occurred")
 MessageBox.Show(error_message)
End Sub

Private Sub PlaceOrder(ByVal the_customer As Customer,
 ByVal order_items() As OrderItem)
 ' See if the_customer exists.
 If the_customer Is Nothing Then
 DisplayError("Customer is Nothing in subroutine PlaceOrder")
 Exit Sub
 End If

 ' See if the_customer is valid.
 If Not the_customer.IsValid() Then
 DisplayError()
 Exit Sub
 End If

 ' Generate the order.
 ...
End Sub

Optional parameters must go at the end of the parameter list. If one parameter uses the Optional
keyword, all of the following parameters must use it, too.

OPTIONAL AND NULLABLE

A new feature in Visual Basic 2010 allows nullable parameters to also be optional.
For example, the following code defi nes three subroutines that each take an
optional nullable parameter. The fi rst two give the parameter the default value
Nothing, and the third uses the default value 0.

Public Sub Sub1(Optional ByVal x? As Integer = Nothing)
 ...
End Sub

Public Sub Sub2(Optional ByVal x As Integer? = Nothing)
 ...
End Sub

Public Sub Sub3(Optional ByVal x As Nullable(Of Integer) = 0)
 ...
End Sub

Subroutines ❘ 351

c17.indd 351c17.indd 351 12/30/09 6:59:34 PM12/30/09 6:59:34 PM

352 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Optional parameters are particularly useful for initializing values in a class ’ s constructor. The
following code shows a DrawableRectangle class. Its constructor takes as parameters the rectangle ’ s
position and size. All the parameters are optional, so the main program can omit them if it desires.
Because each parameter has default values, the constructor always knows it will have the four
values, so it can always initialize the object ’ s Bounds variable.

Public Class DrawableRectangle
 Public Bounds As Rectangle

 Public Sub New(
 Optional ByVal X As Integer = 0,
 Optional ByVal Y As Integer = 0,
 Optional ByVal Width As Integer = 100,
 Optional ByVal Height As Integer = 100
)
 Bounds = New Rectangle(X, Y, Width, Height)
 End Sub
 ...
End Class

Note that overloaded subroutines cannot differ only in optional parameters. If a call to the
subroutine omitted the optional parameters, Visual Basic would be unable to tell which version of
the subroutine to use.

Optional versus Overloading

Different developers have varying opinions on whether you should use optional parameters or
overloaded routines under various circumstances. For example, suppose that the FireEmployee
method could take one or two parameters giving either the employee ’ s name or the name and
reason for dismissal. You could make this a subroutine with the reason parameter optional,
or you could make one overloaded version of the FireEmployee method for each possible
parameter list.

One argument in favor of optional parameters is that overloaded methods might duplicate a lot of
code. However, it is easy to make each version of the method call another version that allows more
parameters, passing in default values. For example, in the following code the fi rst version of the
FireEmployee method simply invokes the second version:

Public Sub FireEmployee(ByVal employee_name As String)
 FireEmployee(employee_name, "Unknown reason")
End Sub

Public Sub FireEmployee(ByVal employee_name As String, ByVal reason As String)
 ...
End Sub

Method overloading is generally superior when the different versions of the routine need to do
something different. You might be able to make a single routine with optional parameters take

c17.indd 352c17.indd 352 12/30/09 6:59:35 PM12/30/09 6:59:35 PM

different actions based on the values of its optional parameters, but separating the code into
overloaded routines will probably produce a cleaner solution.

Parameter Arrays

Sometimes it is convenient to allow a subroutine to take a variable number of parameters. For
example, a subroutine might take as parameters the addresses of people who should receive e - mail.
It would loop through the names to send each a message.

One approach is to include a long list of optional parameters. For example, the e - mail subroutine
might set the default value for each of its parameters to an empty string. Then it would need to send
e - mail to every address parameter that was not empty.

Unfortunately, this type of subroutine would need to include code to deal with each optional
parameter separately. This would also place an upper limit on the number of parameters
the subroutine can take (however many you are willing to type in the subroutine ’ s
parameter list).

A better solution is to use the ParamArray keyword to make the subroutine ’ s fi nal argument a
parameter array. A parameter array contains an arbitrary number of parameter values. At runtime,
the subroutine can loop through the array to process the parameter values.

The DisplayAverage subroutine shown in the following code takes a parameter array named
values . It checks the array ’ s bounds to make sure it contains at least one value. If the array isn ’ t
empty, the subroutine adds the values it contains and divides by the number of values to calculate
the average.

' Display the average of a series of values.
Private Sub DisplayAverage(ByVal ParamArray values()As Double)
 ' Do nothing if there are no parameters.
 If values Is Nothing Then Exit Sub
 If values.Length < 1 Then Exit Sub

 ' Calculate the average.
 Dim total As Double = 0
 For i As Integer = LBound(values) To UBound(values)
 total += values(i)
 Next i

 ' Display the result.
 MessageBox.Show((total / values.Length).ToString)
End Sub

The following code shows one way the program could use this subroutine. In this example,
DisplayAverage would display the average of the integers 1 through 7, which is 4.

DisplayAverage(1, 2, 3, 4, 5, 6, 7)

Subroutines ❘ 353

c17.indd 353c17.indd 353 12/30/09 6:59:36 PM12/30/09 6:59:36 PM

354 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Parameter arrays are subject to the following restrictions:

A subroutine can have only one parameter array, and it must come last in the
parameter list.

All other parameters in the parameter list must not be optional.

All parameter lists are declared ByVal, so any changes the subroutine makes to the array ’ s
contents do not affect the calling routine.

Parameter array values are implicitly optional, so the calling routine can provide any
number of values (including zero) for the array. However, you cannot use the Optional
keyword when you declare the parameter array.

All the items in the parameter array must have the same data type. However, you can use an
array that contains the generic Object data type and then it can hold just about anything.
The downside is you may need to convert the items into a more specifi c type (for example,
using DirectCast or CInt) to use their features.

The calling routine can pass any number of values (including zero) for the parameter array.
It can also pass the value Nothing, in which case the subroutine ’ s parameter array has
value Nothing.

The program can also pass an array of the appropriate data type in place of the parameter array
values. The following two calls to the DisplayAverage subroutine produce the same result inside the
DisplayAverage subroutine:

DisplayAverage(1, 2, 3, 4, 5, 6, 7)

Dim values() As Double = {1, 2, 3, 4, 5, 6, 7}
DisplayAverage(values)

Implements interface.subroutine

An interface defi nes a set of properties, methods, and events that a class implementing the interface
must provide. An interface is a lot like a class with all of its properties, methods, and events
declared with the MustOverride keyword. Any class that inherits from the base class must provide
implementations of those properties, methods, and events.

The IDrawable interface shown in the following code defi nes a Draw subroutine, a Bounds function,
and a property named IsVisible . The DrawableRectangle class begins with the statement
Implements IDrawable . That tells Visual Basic that the class will implement the IDrawable
interface. If you make the class declaration, type the Implements statement, and then press the
Enter key, Visual Basic automatically fi lls in the declarations you need to satisfy the interface. In
this example, it creates the empty Bounds function, Draw subroutine, and IsVisible property
procedures shown here. All you need to do is fi ll in the details.

➤

➤

➤

➤

➤

c17.indd 354c17.indd 354 12/30/09 6:59:36 PM12/30/09 6:59:36 PM

NAMING CONVENTION

Developers often begin the name of interfaces with a capital I so that it’s obvious that
it’s an interface. In fact, it’s such a common practice and has no disadvantages that it
should practically be a requirement. Start interface names with “I” so other developers
know it’s an interface.

Public Interface IDrawable
 Sub Draw(ByVal gr As Graphics)
 Function Bounds() As Rectangle
 Property IsVisible() As Boolean
End Interface

Public Class DrawableRectangle
 Implements IDrawable

 Public Function Bounds() As System.Drawing.Rectangle _
 Implements IDrawable.Bounds

 End Function

 Public Sub Draw(ByVal gr As System.Drawing.Graphics) _
 Implements IDrawable.Draw

 End Sub

 Public Property IsVisible() As Boolean Implements IDrawable.IsVisible
 Get

 End Get
 Set(ByVal Value As Boolean)

 End Set
 End Property
End Class

If you look at the preceding code, you can see where the subroutine declaration ’ s Implements
interface.subroutine clause comes into play. In this case, the Draw subroutine implements the
IDrawable interface ’ s Draw method.

When you type the Implements statement and press the Enter key, Visual Basic generates empty
routines to satisfy the interface; then you don ’ t need to type the Implements interface.subroutine
clause yourself. Visual Basic enters this for you.

The only time you should need to modify this statement is if you change the interface ’ s name or
subroutine name or you want to use some other subroutine to satisfy the interface. For example, you

Subroutines ❘ 355

c17.indd 355c17.indd 355 12/30/09 6:59:37 PM12/30/09 6:59:37 PM

356 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

could give the DrawableRectangle class a DrawRectangle method and add Implements IDrawable
.Draw to its declaration. Visual Basic doesn ’ t care what you call the routine, as long as some routine
implements IDrawable.Draw .

Statements

A subroutine ’ s statements section contains whatever Visual Basic code is needed to get the routine ’ s
job done. This can include all the usual variable declarations, For loops, Try blocks, and other
Visual Basic paraphernalia.

The subroutine ’ s body cannot include module, class, subroutine, function, structure, enumerated
type, or other fi le - level statements. For example, you cannot defi ne a subroutine within another
subroutine.

One new statement that you can use within a subroutine is Exit Sub. This command makes the
subroutine immediately exit and return control to the calling routine. Within a subroutine,
the Return statement is equivalent to Exit Sub.

You can use Exit Sub or Return as many times as you like to allow the subroutine to exit under
different conditions. For example, the following subroutine checks whether a phone number has
a 10 - digit or 7 - digit format. If the phone number matches a 10 - digit format, the subroutine exits.
Then if the phone number matches a 7 - digit format, the subroutine exits. If the number doesn ’ t
match either format, the subroutine displays an error message to the user.

Private Sub ValidatePhoneNumber(ByVal phone_number As String)
 ' Check for a 10-digit phone number.
 If phone_number Like "###-###-####" Then Exit Sub

 ' Check for a 7-digit phone number.
 If phone_number Like "###-####" Then Return

 ' The phone number is invalid.
 MessageBox.Show("Invalid phone number " & phone_number)
End Sub

FUNCTIONS

Functions are basically the same as subroutines, except that they return some sort of value. The
syntax for defi ning a function is as follows:

[attribute_list] [inheritance_mode] [accessibility] _
Function function_name ([parameters]) [As return_type] [Implements interface.
function]
 [statements]
End function

c17.indd 356c17.indd 356 12/30/09 6:59:37 PM12/30/09 6:59:37 PM

This is almost the same as the syntax for defi ning a subroutine. See the section, “ Subroutines, ”
earlier in this chapter for information about most of this declaration ’ s clauses.

One difference is that a function ends with the End Function statement rather than End Sub.
Similarly, a function can exit before reaching its end using Exit Function rather than Exit Sub.

The one nontrivial difference between subroutine and function declarations is the clause As
return_type that comes after the function ’ s parameter list. This tells Visual Basic the type of value
that the function returns.

The function can set its return value in one of two ways. First, it can set its name equal to the value it
wants to return. The Factorial function shown in the following code calculates the factorial of a number.
Written N!, the factorial of N is N * (N 2 1) * (N 2 2) . . . * 1. The function initializes its result variable to
1, and then loops over the values between 1 and the number parameter, multiplying these values to the
result. It fi nishes by setting its name, Factorial, equal to the result value that it should return.

Private Function Factorial(ByVal number As Integer) As Double
 Dim result As Double = 1

 For i As Integer = 2 To number
 result *= i
 Next i

 Factorial = result
End function

A function can assign and reassign its return value as many times as it wants to before it returns.
Whatever value is assigned last becomes the function ’ s return value.

The second way a function can assign its return value is to use the Return keyword followed by the
value that the function should return. The following code shows the Factorial function rewritten to
use the Return statement:

Private Function Factorial(ByVal number As Integer) As Double
 Dim result As Double = 1

 For i As Integer = 2 To number
 result *= i
 Next i

 Return result
End function

The Return statement is roughly equivalent to setting the function ’ s name equal to the return
value, and then immediately using an Exit Function statement. The Return statement may allow
the compiler to perform extra optimizations, however, so it is generally preferred to setting the
function ’ s name equal to the return value. (Return is also the more modern syntax and has become
so common that some developers don ’ t even recognize the other syntax anymore.)

Functions ❘ 357

c17.indd 357c17.indd 357 12/30/09 6:59:38 PM12/30/09 6:59:38 PM

358 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

PROPERTY PROCEDURES

Property procedures are routines that can represent a property value for a class. The simplest
kind of property is an auto - implemented property . Simply add the Property keyword to a variable
declaration as shown in the following code:

Public Property LastName As String

If you want, you can give the property a default value as in the following code:

Public Property LastName As String = " < missing > "

Behind the scenes, Visual Basic makes a hidden variable to hold the property ’ s value. When other
parts of the program get or set the value, Visual Basic uses the hidden variable.

This type of property is easy to make but it has few advantages over a simple variable. You can
make the property more powerful if you write your own procedures to get and set the property ’ s
value. If you write your own procedures you can add validation code, perform complex calculations,
save and restore values in a database, set breakpoints, and add other extras to the property.

A normal read - write property procedure contains a function for returning the property ’ s value and
a subroutine for assigning it.

The following code shows property procedures that implement a Value property. The Property Get
procedure is a function that returns the value in the private variable m_Value . The Property Set
subroutine saves a new value in the m_Value variable.

Private m_Value As Single

Property Value() As Single
 Get
 Return m_Value
 End Get
 Set(ByVal Value As Single)
 m_Value = Value
 End Set
End Property

Although the property is implemented as a pair of property procedures, the program could treat the
value as a simple property. For example, suppose that the OrderItem class contains the preceding
code. Then the following code sets the Value property for the OrderItem object named paper_item :

paper_item.Value = 19.95

You can add property procedures to any type of object module. For example, you can use property
procedures to implement a property for a form or for a class of your own.

c17.indd 358c17.indd 358 12/30/09 6:59:38 PM12/30/09 6:59:38 PM

It ’ s less obvious that you can also use property procedures in a code module. The property
procedures look like an ordinary variable to the routines that use them. If you place the previous
example in a code module, the program could act as if there were a variable named Value defi ned in
the module.

For more information on property procedures, see the section “ Property Procedures ” in Chapter 15.

EXTENSION METHODS

Extension methods allow you to add a new method to an existing class without rewriting it or
deriving a new class from it. To make an extension method, decorate the method declaration
with the Extension attribute. Then make a normal subroutine or function that takes one or more
parameters. The fi rst parameter determines the class that the method extends. The method can use
that parameter to learn about the item for which the method was called. The other parameters are
passed into the method so it can use them to perform its chores.

EASIER EXTENSIONS

The Extension attribute is defi ned in the System.Runtime.CompilerServices
namespace. Using an Imports statement to import that namespace makes it easier
to write extensions.

For example, the following code adds a MatchesRegexp subroutine to the String class. The
Extension attribute tells Visual Basic that this is an extension method. The method ’ s fi rst parameter
is a String so this method extends the String class. The second parameter is a regular expression.
The method returns True if the String matches the regular expression.

' Return True if a String matches a regular expression.
< Extension() >
Public Function MatchesRegexp(ByVal the_string As String,
 ByVal regular_expression As String) As Boolean
 Dim reg_exp As New Regex(regular_expression)
 Return reg_exp.IsMatch(the_string)
End function

The following code shows how a program might use this method to decide whether the string stored
in variable phone_number looks like a valid 7 - digit United States phone number:

if Not phone_number.MatchesRegexp("^[2-9]\d{2}-\d{4}$") Then
 MessageBox.Show("Not a valid phone number")
End if

Extension Methods ❘ 359

c17.indd 359c17.indd 359 12/30/09 6:59:39 PM12/30/09 6:59:39 PM

360 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

Example program ValidatePhone demonstrates the MatchesRegexp extension method. It also
uses the MatchesRegexp method to defi ne the following three additional extension methods that
determine whether a string looks like a valid 7 - or 10 - digit United States phone number. These
methods simply call the MatchesRegexp method, passing it appropriate regular expressions.

' Return True if a String looks like a 7-digit US phone number.
< Extension() >
Public Function IsValidPhoneNumber7digit(ByVal the_string As String) As Boolean
 Return the_string.MatchesRegexp("^[2-9]\d{2}-\d{4}$")
End Function

' Return True if a String looks like a 10-digit US phone number.
< Extension() >
Public Function IsValidPhoneNumber10digit(ByVal the_string As String) As Boolean
 Return the_string.MatchesRegexp("^([2-9]\d{2}-){2}\d{4}$")
End Function

' Return True if a String looks like a 7- or 10-digit US phone number.
< Extension() >
Public Function IsValidPhoneNumberUS(ByVal the_string As String) As Boolean
 Return IsValidPhoneNumber7digit(the_string) OrElse
 IsValidPhoneNumber10digit(the_string)
End function

code snippet ValidatePhone

If you build a class and later need to change its features, it ’ s usually easiest to modify its code
directly. That will cause less confusion than extension methods, which may lie in some obscure
module that seems unrelated to the original class. If you need to add methods to existing classes that
you cannot modify directly, such as String and other classes defi ned by Visual Basic and the .NET
Framework, extension methods can be extremely useful.

LAMBDA FUNCTIONS

Lambda functions are functions that are defi ned within the fl ow of the program ’ s code. Often they
are defi ned, used, and forgotten in a single statement without ever being given a name.

To defi ne a lambda function for later use, start with the Function keyword. Add the function ’ s name
and any parameters that it requires, followed by a single statement that evaluates to the value that
the function should return.

Next include either (1) a single statement that evaluates to the value that the function should return,
or (2) a function body that ends with an End Function statement.

The following code fragment shows examples of both of these styles. First the program creates a
lambda function named square_it that takes parameter n and returns n * n . It then creates a
multiline lambda function named factorial that calculates and returns a number ’ s factorial. The
code fi nishes by calling both functions and displaying their results.

c17.indd 360c17.indd 360 12/30/09 6:59:40 PM12/30/09 6:59:40 PM

Dim square_it = Function(n As Integer) n * n
Dim factorial = Function(n As Integer) As Integer
 Dim result As Integer = 1
 For i As Integer = 2 To n
 result *= i
 Next i
 Return result
 End Function

Debug.WriteLine(square_it(5))
Debug.WriteLine(factorial(5))

Example program LambdaFunction contains the following code fragment:

' Define a lambda function that adds two integers.
Dim plus = Function(i1 As Integer, i2 As Integer) i1 + i2

' Get A and B.
Dim A As Integer = Integer.Parse(txtA.Text)
Dim B As Integer = Integer.Parse(txtB.Text)

' Call the lambda function to calculate the result.
txtResult.Text = plus(A, B).ToString

code snippet LambdaFunction

This code starts by defi ning a variable named plus . This variable holds a reference to a lambda
function that takes two integers as parameters and returns their sum. The code then gets input
values from text boxes and calls the plus function, passing it those values. It converts the result into
a string and displays it in the txtResult text box.

This example creates a variable to hold a reference to a lambda function and then invokes the
function by using that variable. It could just as easily have invoked the lambda function itself while
defi ning it.

Example program InlineFunction, which is also available for download on the book ’ s web site,
demonstrates this in the following line of code. This line defi nes the function and invokes it without
ever saving a reference to it.

txtResult.Text =
 (Function(i1 As Integer, i2 As Integer) i1 + i2)(A, B).ToString

Because lambda functions are declared in a single line of code, they are also called inline
functions. A lambda function defi ned inside a subroutine or function is also sometimes called a
nested function.

Lambda Functions ❘ 361

c17.indd 361c17.indd 361 12/30/09 6:59:41 PM12/30/09 6:59:41 PM

362 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

LAMBDA OR INLINE?

To the extent that anyone distinguishes between lambda and inline functions, the
preceding example is more properly called an inline function because the function
is contained within the line that uses it and is never given a name. The examples
before that one are more properly called lambda functions because they create
named functions (square_it, factorial, and plus).

No matter which method the program uses to defi ne a lambda function, it could then pass the
function to another routine that will later call the function. For example, suppose subroutine
PerformCalculations takes as a parameter the function it should use to perform its calculations. The
following code shows how a program could call subroutine PerformCalculations while passing it
the previous lambda functions:

' Define the plus function.
Dim plus = Function(i1 As Integer, i2 As Integer) i1 + i2

' Call PerformCalculations passing it the lambda function.
PerformCalculations(plus)

' Call PerformCalculations passing it an inline lambda function.
PerformCalculations(Function(i1 As Integer, i2 As Integer) i1 + i2)

Inline functions were invented for use by LINQ and are most often used with LINQ. For more
information about LINQ, see Chapter 21, “ LINQ. ”

Visual Basic 2010 also adds the ability to write lambda subroutines that are similar to lambda
functions except they don ’ t return a value.

The following code defi nes two named lambda subroutines. The fi rst does all of its work on a single
line whereas the second uses the multiline format. After defi ning the subroutines, the code invokes
them to display two messages.

Dim write_msg = Sub(ByRef msg As String) Debug.WriteLine("write_msg: " & msg)
Dim show_msg = Sub(ByRef msg As String)
 MessageBox.Show("show_msg: " & msg)
 End Sub

write_msg("Hi")
show_msg("Hi again")

As with lambda functions, you can build and pass a lambda subroutine into another routine as a
parameter as shown in the following code:

c17.indd 362c17.indd 362 12/30/09 6:59:41 PM12/30/09 6:59:41 PM

Delegate Sub MsgFunc(ByVal m As String)

Private Sub DisplayMessage(ByVal msg As String, ByVal msg_func As MsgFunc)
 msg_func(msg)
End Sub

Private Sub TestSub()
 DisplayMessage("Hello?", Sub(m As String) MessageBox.Show(m))
End Sub

The code fi rst declares a delegate type named MsgFunc that represents a subroutine that takes a
String parameter.

Subroutine DisplayMessage takes as parameters a String and a subroutine of type MsgFunc. It calls
the subroutine, passing it the String parameter.

The test subroutine TestSub calls DisplayMessage passing it a String and a lambda subroutine
created inline.

RELAXED DELEGATES

If you assign a variable to the value in a variable of a different type, Visual Basic automatically
converts the value into the correct type under some circumstances. If you set a Single variable equal
to an Integer variable, Visual Basic automatically converts the Integer into a Single.

If Option Strict is off, you can also do the reverse: if you assign an Integer variable equal to a Single
variable, Visual Basic converts the Single into an Integer (if it can).

In a similar manner, relaxed delegates let Visual Basic convert method parameters from one data
type to another under certain circumstances. If the code invokes a subroutine by using a delegate,
Visual Basic tries to convert parameters when it can. Probably the easiest way to understand how
this works is to consider an example.

The following code declares a delegate type named TestDelegate . Methods that match this
delegate should be subroutines that take a Control as a parameter.

' Declare the delegate type.
Private Delegate Sub TestDelegate(ByVal ctl As Control)

The following code defi nes three subroutines that take parameters of different types. The fi rst takes
an Object as a parameter, the second takes a TextBox, and the third takes no parameters. Note that
the fi rst subroutine cannot work if Option Strict is on. Option Strict disallows late binding, so the
code cannot use a Text property provided by a generic Object.

Relaxed Delegates ❘ 363

c17.indd 363c17.indd 363 12/30/09 6:59:42 PM12/30/09 6:59:42 PM

364 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

' A more general parameter type.
Private Sub Test1(ByVal obj As Object)
 obj.Text = "Test1" ' Needs Option Strict off.
End Sub

' A more specific parameter type.
Private Sub Test2(ByVal text_box As TextBox)
 text_box.Text = "Test2"
End Sub

' Parameter omitted.
Private Sub Test3()
 txtField3.Text = "Test3"
End Sub

The following code declares three variables of the TestDelegate type and sets them equal to the
addresses of the three test subroutines:

' Make variables of the delegate type
' hold references to the subroutines.
Private Sub1 As TestDelegate = AddressOf Test1
Private Sub2 As TestDelegate = AddressOf Test2 ' Needs Option Strict off.
Private Sub3 As TestDelegate = AddressOf Test3

The fi rst assignment works even though subroutine Test1 does not exactly match the delegate type.
Subroutine Test1 takes an Object as a parameter and TestDelegate takes a Control as a parameter.
When Visual Basic invokes the Sub1 variable, it will pass the subroutine a Control object as a
parameter because Sub1 has type TestDelegate, and that type takes a Control as a parameter.
A Control is a type of Object, so Visual Basic can safely pass a Control in place of an Object
parameter. That allows the code assigning Sub1 to the address of subroutine Test1 to work.

The second line of code that assigns variable Sub2 to subroutine Test2 works only if Option Strict is
off. When Visual Basic invokes the Sub2 variable, it will pass the subroutine a Control object as
a parameter because Sub1 has type TestDelegate, and that type takes a Control as a parameter.
Subroutine Test2 takes a TextBox as a parameter, and not every Control is a TextBox. That means at
design time Visual Basic cannot tell whether it can safely invoke the Sub2 delegate so, if Option Strict
is on, Visual Basic fl ags this assignment as an error. If Option Strict is off, Visual Basic allows the
assignment, although the program will crash if it tries to pass a control that is not a TextBox into Sub2
at runtime.

STRICTLY SPEAKING

This is similar to setting a TextBox variable equal to the value in a Control
variable. If Option Strict is on, Visual Basic will not allow that assignment.

c17.indd 364c17.indd 364 12/30/09 6:59:42 PM12/30/09 6:59:42 PM

The fi nal assignment sets variable Sub3 to the address of subroutine Test3. Subroutine Test3 takes
no parameters. This is a special case that Visual Basic allows: if the method does not need to use the
parameters specifi ed by the delegate, it can omit its parameters. Note that the method must omit all
or none of the parameters; it cannot omit some and not others.

The following code invokes the subroutines pointed to by the three TestDelegate variables, passing
each a reference to a different TextBox. Sub1 treats txtField1 as an Object, Sub2 treats txtField2
as a TextBox, and Sub3 ignores its parameter completely.

Sub1(txtField1)
Sub2(txtField2)
Sub3(txtField3)
' Test3(txtField3) ' This doesn't work.

The fi nal line of code, that invokes subroutine Test3 directly, doesn ’ t work. Omitting the parameter
list from a method only works if you access the method from a delegate. If you call the method
directly, the parameter list must match the one declared for the method.

Example program RelaxedDelegates, which is available for download on the book ’ s web site,
demonstrates this code.

All of these relaxed delegate rules are somewhat confusing. They give you a little more fl exibility,
but they can make the code a lot more confusing. You may wonder why you should bother. In fact,
if you use delegates such as those shown in this example, you might want to avoid using relaxed
delegates to keep the code easier to understand.

These rules also apply to event handlers, and in that context they are fairly useful. They let you
change an event handler ’ s parameter types to make them more general or more specifi c, or to
omit them.

The following code shows a simple, standard Button Click event handler. It takes two parameters of
types Object and EventArgs. In this example, the code reads a text fi le into a text box.

Private Sub btnLoad_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnLoad.Click
 txtContents.Text = System.IO.File.ReadAllText(txtFile.Text)
End Sub

Many event handlers must deal explicitly with the control that raised their event. In that case, the
fi rst thing the event handler usually does is convert the generic sender parameter from an Object
into a more specifi c control type.

The following code defi nes a Button Click event handler similar to the previous one but this one
declares its sender parameter to be of type Button. This works as long as the event is actually raised
by a Button, so the sender parameter really is a button. If you were to attach this event handler to
a TextBox ’ s TextChanged event, the program would crash when Visual Basic tries to convert the
TextBox into a Button when it raises the event.

Relaxed Delegates ❘ 365

c17.indd 365c17.indd 365 12/30/09 6:59:43 PM12/30/09 6:59:43 PM

366 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

' Needs Option Strict off.
Private Sub btnLoad2_Click(ByVal btn As Button,
 ByVal e As Object) Handles btnLoad2.Click
 txtContents.Text = System.IO.File.ReadAllText(txtFile.Text)
End Sub

Note that this version requires Option Strict off. If Option Strict is on, Visual Basic will not allow
this subroutine to handle a Button ’ s Click event. This is similar to the way Option Strict prevents
you from setting a Button variable equal to a generic Object variable.

The previous code declares its parameters to have a more restrictive type than those passed into it
by the control raising the event. You can also make the parameters more general. You could declare
the e parameter to be of type Object instead of EventArgs. Usually, that doesn ’ t help you much.
It could be useful if you want to use the same event handler to catch different kinds of events that
provide different types of arguments, but it ’ s hard to imagine a really good example where that
wouldn ’ t be confusing.

A more common situation is where the event handler ignores its parameters completely. Usually each
Button has its own Click event handler so you don ’ t need to look at the parameters to fi gure out
which button was clicked.

The following code defi nes a Button Click event handler that takes no parameters. When the
user clicks the btnLoad3 Button, Visual Basic doesn ’ t pass the event handler any parameters.
This code is easier to read than the previous versions, partly because the Sub statement fi ts all on
one line.

Private Sub btnLoad3_Click() Handles btnLoad3.Click
 txtContents.Text = System.IO.File.ReadAllText(txtFile.Text)
End Sub

Example program RelaxedEventHandlers, which is available for download on the book ’ s web site,
demonstrates relaxed event handlers.

Relaxed delegates may add more confusion than they ’ re worth if you use delegate variables, but
they can be useful for simplifying event handlers. Declaring parameters with a more specifi c type
(for example, Button instead of Object) can make the code easier to write and understand,
although it has the large drawback of requiring Option Strict off. Omitting parameters when you
don ’ t need them is an even better technique. It simplifi es the code without forcing you to turn
Option Strict off.

PARTIAL METHODS

A partial method is a private subroutine that is declared in one place and implemented in another.
The code includes a subroutine declaration that uses the Partial keyword and that has an empty
body. Another part of the class declares the method again, this time without the Partial keyword
and providing a method body.

c17.indd 366c17.indd 366 12/30/09 6:59:43 PM12/30/09 6:59:43 PM

What ’ s the point? Partial methods were invented for the convenience of code generators. The
details are somewhat technical and not relevant for developers at this point so they are only briefl y
considered here.

Partial methods were designed as a more effi cient alternative to events. Rather than raising an event
for a class to catch, the generated code can call a partial method. If the method has no body, the
compiler optimizes the call away and nothing happens, much as would be the case if an object did
not catch an event.

The following list summarizes the differences between event handlers and partial methods:

An event can be caught by any number of event handlers, but a partial method has only one body.

An event can be declared Public, Private, or Friend, but a partial method must be Private.

Raising an event requires some overhead even if no event handlers catch it. If a partial
method has no body, the compiler ignores calls to it so there ’ s no overhead.

A program can add and remove event handlers at runtime, but a partial method is given a
body or not at design time.

Just about any piece of code can catch an object ’ s events, but only that object can see its
partial method (because it ’ s private).

Partial methods are really intended for use by code generators, but it ’ s conceivable that you might
fi nd a use for them. It ’ s also worth knowing about them so you know what ’ s going on if you see
them in automatically generated code.

Example program PartialMethods uses the following code to defi ne the TestMethod subroutine:

Public Class Form1
 ' Define the TestMethod subroutine without a method body.
 Partial Private Sub TestMethod(ByVal msg As String)

 End Sub

 ' Other code omitted ...
End Class

code snippet PartialMethods

The example uses the following code in a separate module to defi ne the method ’ s body:

Partial Public Class Form1
 ' Define the implementation for TestMethod.
 Private Sub TestMethod(ByVal msg As String)
 MessageBox.Show(msg)
 End Sub
End Class

code snippet PartialMethods

➤

➤

➤

➤

➤

Partial Methods ❘ 367

c17.indd 367c17.indd 367 12/30/09 6:59:44 PM12/30/09 6:59:44 PM

368 ❘ CHAPTER 17 SUBROUTINES AND FUNCTIONS

When you click the program ’ s button, the code calls subroutine TestMethod, passing it a string to
display. If you comment out the method ’ s body defi nition, the program ignores this call.

You can achieve results similar to methods without using partial methods in a couple of ways. First,
you can make a class raise an event. If no code catches the event, the event is essentially ignored
much as a partial method call is ignored if you have not defi ned the method body.

A second approach is to decorate a method with the Conditional attribute. In that case, Visual
Basic removes the method and any calls to it from the code if the condition is not satisfi ed. The
AttributeConditional example program, which is available for download on the book ’ s web site,
demonstrates this approach. For more information about that example, see the section “ Attribute_
List ” earlier in this chapter.

Partial methods are also somewhat similar to interfaces, which also defi ne a method ’ s signature but
don ’ t provide an implementation.

Finally, partial methods are similar to classes with overridable methods. Any derived classes can
override the overridable methods to give them method bodies. If the parent class gives the method a
body, the child class can leave it alone and inherit the parent ’ s version as a default.

Partial methods are really intended for use by code generators, but you can use them if you wish.

SUMMARY

Subroutines and functions let you break an application into manageable, reusable pieces. A subroutine
performs a series of commands. A function performs a series of commands and returns a value.

Property procedures use paired functions and subroutines to provide the behavior of a simple
property using routines.

These form the fundamental building blocks of the procedural part of an application. Chapters 25
through 29 explain the other half of an application ’ s structure: the objects that encapsulate the
application ’ s behavior. Together, the program ’ s objects and its procedural subroutines and functions
defi ne the application.

This chapter explains how to break an otherwise unwieldy expanse of code into subroutines and
functions of manageable size. It also explains techniques related to subroutines and functions, such
as extension methods and relaxed delegates, that let you use existing classes and events in new ways.

The chapters so far do not explain how to write anything other than straight - line code that executes
one statement after another with no deviation. Most programs need to follow more complex paths
of execution, performing some statements only under certain conditions and repeating others a
given number of times. Chapter 18, “ Program Control Statements, ” describes the statements that a
Visual Basic program uses to control the fl ow of code execution. These include decision statements
(If Then Else, Select Case, IIF, Choose) and looping statements (For Next, For Each, Do While,
While Do, Repeat Until).

c17.indd 368c17.indd 368 12/30/09 6:59:44 PM12/30/09 6:59:44 PM

18
Program Control Statements

Program control statements tell an application which other statements to execute under a
particular set of circumstances. They control the path that execution takes through the code.
They include commands that tell the program to execute some statements but not others and
to execute certain statements repeatedly.

The two main categories of control statements are decision statements (or conditional
statements) and looping statements . The following sections describe in detail the decision and
looping statements provided by Visual Basic .NET.

DECISION STATEMENTS

A decision or conditional statement represents a branch in the program. It marks a place
where the program can execute one set of statements or another, or possibly no statements at
all, depending on some condition. These include If, Choose, and Select Case statements.

Single - Line If Then

The single - line If Then statement has two basic forms. The fi rst allows the program to execute
a single statement if some condition is true. The syntax is as follows:

If condition Then statement

If the condition is true, the program executes the statement. In the most common form of
single - line If Then statement, the statement is a single simple command (such as assigning a
value to a variable or calling a subroutine).

The following example checks the emp object ’ s IsManager property. If IsManager is True, the
statement sets the emp object ’ s Salary property to 90,000.

If emp.IsManager Then emp.Salary = 90000

c18.indd 369c18.indd 369 12/30/09 7:06:26 PM12/30/09 7:06:26 PM

370 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

The second form of the single - line If Then statement is more confusing and generally harder to debug
and maintain. To prevent unnecessary confusion, many programmers switch to the multiline If Then
statement described in the next section when the simple single - statement version won ’ t work.

The second form of single - line If Then statement uses the Else keyword. The syntax is as follows:

If condition Then statement1 Else statement2

If the condition is true, the code executes the fi rst statement. If the condition is false, the code
executes the second statement. The decision about which statement to execute is an either - or
decision; the code executes one statement or the other, but not both.

This type of single - line If Then Else statement can be confusing if it is too long to easily see in the
code editor. For longer statements, a multiline If Then Else statement is easier to understand and
debug. The performance of single - line and multiline If Then Else statements is comparable (in one
test, the multiline version took only about 80 percent as long), so you should use the one that is
easiest for you to read.

The statements executed by a single - line If Then statement can be simple commands (such as
assigning a value to a variable). They can also be a series of simple statements separated by colons
on the same line. For example, the following code tests the value of the Boolean variable
is_new_customer . If is_new_customer is true, the program calls the customer object ’ s Initialize
method and then calls its Welcome method.

If is_new_customer Then customer.Initialize(): customer.Welcome()

Using more than one simple statement separated by colons like this can be perplexing. It gets even
worse if you use single - line If Then Else, as shown here:

If order.Valid() Then order.Save(): order.Post() Else order.order.Delete()

The single - line If Then statement can also include Else If clauses. For example, the following code
examines the variable X . If X is 1, the program sets variable txt to “ One. ” If X has the value 2, the
program sets txt to “ Two. ” If X is not 1 or 2, the program sets txt to a question mark.

Dim txt As String
If X = 1 Then txt = "One" Else If X = 2 Then txt = "Two" Else txt = "?"

The code can include as many Else If clauses as you like, and each execution statement can be
composed of multiple simple statements separated by colons. However, confusing code such
as these examples can lead to puzzling bugs that are easy to avoid if you use multiline If Then
statements instead.

In summary, if you can write a simple single - line If Then statement with no Else If or Else
clauses, and the whole thing fi ts nicely on the line so that it ’ s easy to see the whole thing without
confusion, go ahead. If the statement is too long to read easily, contains Else If or Else clauses,
or executes a series of statements separated by colons, you are usually better off using a multiline
If Then statement. It may take more lines of code, but the code will be easier to read, debug, and
maintain later.

c18.indd 370c18.indd 370 12/30/09 7:06:29 PM12/30/09 7:06:29 PM

Multiline If Then

A multiline If Then statement can execute more than one line of code when a condition is true. The
syntax for the simplest form of multiline If Then statement is as follows:

If condition Then
 statements ...
End If

If the condition is true, the program executes all the commands that come before the End If statement.

Like the single - line If Then statement, the multiline version can include Else If and Else clauses. For
possibly historical reasons, ElseIf is spelled as a single word in the multiline If Then statement. The
syntax is as follows:

If condition1 Then
 statements1 ...
ElseIf condition2
 statements2 ...
Else
 statements3 ...
End If

If the fi rst condition is true, the program executes the fi rst set of statements. If the fi rst condition is
false, the code examines the second condition and, if that one is true, the code executes the second
set of statements. The program continues checking conditions until it fi nds one that is true and it
executes the corresponding code.

If the program reaches an Else statement, it executes the corresponding code. If the program reaches
the End If statement without fi nding a true condition or an Else clause, it doesn ’ t execute any of the
statement blocks.

It is important to understand that the program exits the If Then construction immediately after it has
executed any block of statements. It does not examine the other conditions. This saves the program
some time and is particularly important if the conditions involve functions. If each test calls a
relatively slow function, skipping these later tests can save the program a signifi cant amount of time.

Select Case

The Select Case statement lets a program execute one of several pieces of code depending on a single
value. The basic syntax is as follows:

Select Case test_value
 Case comparison_expression1
 statements1
 Case comparison_expression2
 statements2
 Case comparison_expression3
 statements3
 ...
 Case Else
 else_statements
End Select

Decision Statements ❘ 371

c18.indd 371c18.indd 371 12/30/09 7:06:30 PM12/30/09 7:06:30 PM

372 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

If test_value matches comparison_expression1 , the program executes the statements in the
block statements1 . If test_value matches comparison_expression2 , the program executes the
statements in the block statements2 . The program continues checking the expressions in the
Case statements in order until it matches one, or it runs out of Case statements.

If test_value doesn ’ t match any of the expressions in the Case statements, the program executes
the code in the else_statements block. Note that you can omit the Case Else section. In that
case, the program executes no code if test_value doesn ’ t match any of the expressions.

Select Case is functionally equivalent to an If Then Else statement. The following code does the
same thing as the previous Select Case code:

If test_value = comparison_expression1 Then
 statements1
ElseIf test_value = comparison_expression2 Then
 statements2
ElseIf test_value = comparison_expression3 Then
 statements3
...
Else
 else_statements
End If

Select Case is sometimes easier to understand than a long If Then Else statement. It is often faster as
well, largely because Select Case doesn ’ t need to reevaluate test_value for every Case statement. If
test_value is a simple variable, the difference is insignifi cant, but if test_value represents a slow
function call, the difference can be important. For example, suppose test_value represents a function
that opens a database and looks up a value. The Select Case version will fi nd the value once and use it
in each comparison, whereas the If Then version would reopen the database for each comparison.

The previous If Then example assumes the comparison expressions are constants. A comparison
expression can also specify ranges using the To and Is keywords, and include a comma - separated
list of expressions. These forms are described in the following sections. The fi nal section describing
Select Case discusses using enumerated values to control Select Case statements.

To

The To keyword specifi es a range of values that test_value should match. The following code
examines the variable num_items . If num_items is between 1 and 10, the program calls subroutine
ProcessSmallOrder . If num_items is between 11 and 100, the program calls subroutine
ProcessLargeOrder . If num_items is less than 1 or greater than 100, the program beeps.

Select Case num_items
 Case 1 To 10
 ProcessSmallOrder()
 Case 11 To 100
 ProcessLargeOrder()
 Case Else
 Beep()
End Select

c18.indd 372c18.indd 372 12/30/09 7:06:30 PM12/30/09 7:06:30 PM

Is

The Is keyword lets you perform logical comparisons using the test value. The word Is takes the
place of the test value in the comparison expression. For example, the following code does almost
the same things as the previous version. If the value num_items is less than or equal to 10, the
program calls subroutine ProcessSmallOrder . If the fi rst Case clause doesn ’ t apply and num_items
is less than or equal to 100, the program calls subroutine ProcessLargeOrder . If neither of these
cases applies, the program beeps.

Select Case num_items
 Case Is < = 10
 ProcessSmallOrder()
 Case Is < = 100
 ProcessLargeOrder()
 Case Else
 Beep()
End Select

This version is slightly different from the previous one. If num_items is less than 1, this code calls
subroutine ProcessSmallOrder whereas the previous version beeps.

You can use the operators = , < > , < , < = , > , and > = in an Is clause. (In fact, if you use a simple value in
a Case clause as in Case 7 , you are implicitly using Is = as in Case Is = 7 .)

Comma - Separated Expressions

A comparison expression can include a series of expressions separated by commas. If the test value
matches any of the comparison values, the program executes the corresponding code.

For example, the following code examines the department_name variable. If department_name is
“ R & D, ” “ Test, ” or “ Computer Operations, ” the code adds the text “ Building 10 ” to the
address_text string. If department_name is “ Finance, ” “ Purchasing, ” or “ Accounting, ” the code
adds “ Building 7 ” to the address. More Case clauses could check for other department_name values
and the code could include an Else statement.

Select Case department_name
 Case "R & D", "Test", "Computer Operations"
 address_text & = "Building 10"
 Case "Finance", "Purchasing", "Accounting"
 address_text & = "Building 7"
 ...
End Select

Note that you cannot use comma - separated expressions in a Case Else clause. For example, the
following code doesn ’ t work:

Case Else, "Corporate" ' This doesn't work.

Decision Statements ❘ 373

c18.indd 373c18.indd 373 12/30/09 7:06:31 PM12/30/09 7:06:31 PM

374 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

You can mix and match constants, To, and Is expressions in a single Case clause, as shown in
the following example. This code checks the variable item_code and calls subroutine
DoSomething if the value is less than 10, between 30 and 40 inclusive, exactly equal to 100, or
greater than 200.

Select Case item_code
 Case Is < 10, 30 To 40, 100, Is > 200
 DoSomething()
 ...
End Select

Complex comparison expressions are sometimes diffi cult to read. If an expression is too
complicated, you should consider rewriting the code to make it easier to understand. Storing values
in temporary variables can help. The following code shows a version of the preceding code that ’ s a
bit easier to understand:

Select Case item_code
 Case Is < 10
 DoSomething()
 Case 30 To 40
 DoSomething()
 Case 100
 DoSomething()
 Case Is > 200
 DoSomething()
 ...
End Select

While this version is easier to understand, it is more verbose and uses duplicated code (repeated calls
to DoSomething). The following version uses a temporary variable to make the code easy to read
without the duplication.

' See if we must do something.
Dim must_do_something As Boolean = False
If item_code < 10 Then must_do_something = True
If (item_code > = 30) AndAlso (item_code < = 40) Then must_do_something = True
If item_code = 100 Then must_do_something = True
If item_code > 200 Then must_do_something = True

If must_do_something Then
 ...
End If

Enumerated Values

Select Case statements work very naturally with lists of discrete values. You can have a separate
Case statement for each value, or you can list multiple values for one Case statement in a comma -
separated list.

c18.indd 374c18.indd 374 12/30/09 7:06:32 PM12/30/09 7:06:32 PM

Enumerated types defi ned by the Enum statement also work with discrete values, so they work well
with Select Case statements. The enumerated type defi nes the values and the Select Case statement
uses them, as shown in the following code fragment:

Private Enum JobStates
 Pending
 Assigned
 InProgress
 ReadyToTest
 Tested
 Released
End Enum
Private m_JobState As JobStates
...
Select Case m_JobState
 Case Pending
 ...
 Case Assigned
 ...
 Case InProgress
 ...
 Case ReadyToTest
 ...
 Case Tested
 ...
 Case Released
 ...
End Select

To catch bugs when changing an enumerated type, many developers include a Case Else statement
that throws an exception. If you later add a new value to the enumerated type but forget to add
corresponding code to the Select Case statement, the Select Case statement throws an error when it
sees the new value, so you can fi x the code.

For more information on enumerated types, see the section “ Enumerated Data Types ” in
Chapter 15, “ Data Types, Variables, and Constants. ”

IIf

The IIf statement evaluates a Boolean expression and then returns one of two values, depending on
whether the expression is true or false. This statement may look more like an assignment statement
or a function call than a decision statement such as If Then.

The syntax is as follows:

variable = IIf(condition , value_if_true , value_if_false)

Decision Statements ❘ 375

c18.indd 375c18.indd 375 12/30/09 7:06:32 PM12/30/09 7:06:32 PM

376 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

For example, the following code examines an Employee object ’ s IsManager property. If IsManager
is True, the code sets the employee ’ s Salary to 90,000. If IsManager is False, the code sets the
employee ’ s Salary to 10,000.

emp.Salary = IIf(emp.IsManager, 90000, 10000)

Note that the IIf statement returns an Object data type. If you have Option Strict turned on,
Visual Basic will not allow this statement, because it assigns a result of type Object to an Integer
variable. To satisfy Visual Basic, you must explicitly convert the value into an Integer, as in the
following code:

emp.Salary = CInt(IIf(emp.IsManager, 90000, 10000))

The IIf statement has several drawbacks. First, it is confusing. When you type an IIf statement,
IntelliSense will remind you that its parameters give a condition, a True value, and a False value.
When you are reading the code, however, you must remember what the different parts of the
statement mean. If you use IIf in some other statement, the chances for confusion increase. For
example, consider the following code:

For i = 1 To CType(IIf(employees_loaded, num_employees, 0), Integer)
 ' Process employee i.
 ...
Next i

Code is generally much easier to understand if you replace IIf with an appropriate If Then
statement.

Another drawback to IIf is that it evaluates both the True and False values whether the condition
is true or false. For example, consider the following code. If the Boolean use_groups is True, the
code sets num_objects to the result of the CountGroups function. If use_groups is False, the code
sets num_objects to the result of the CountIndividuals function. IIf evaluates both functions no
matter which value it actually needs. If the functions are time - consuming or executed inside a large
loop, using IIf can waste a lot of time.

num_objects = CType(
 IIf(use_groups,
 CountGroups(),
 CountIndividuals()),
 Integer)

For an even more dangerous example, consider the following code. If data_loaded is True, this
statement sets num_loaded = num_employees . If data_loaded is False, the code sets num_loaded
to the value returned by the LoadEmployees function (which loads the employees and returns the
number of employees it loaded).

c18.indd 376c18.indd 376 12/30/09 7:06:33 PM12/30/09 7:06:33 PM

num_loaded = CType(IIf(data_loaded, num_employees, LoadEmployees()), Integer)

IIf evaluates both the value num_employees and the value LoadEmployees() no matter what. If the
employees are already loaded, IIf calls LoadEmployees() to load the employees again, ignores the
returned result, and sets num_loaded = num_employees . LoadEmployees may waste quite a lot of
time loading the data that is already loaded. Even worse, the program may not be able to handle
loading the data when it is already loaded.

A fi nal drawback to IIf is that it is slower than a comparable If Then Else statement. In one test, IIf
took roughly twice as long as a comparable If Then statement.

One case where you can argue that IIf is easier to understand is when you have a long series of very
simple statements. In that case, IIf statements may allow you to easily see the common features in
the code and notice if anything looks wrong. For example, the following code initializes several text
boxes using strings. It uses an IIf statement to set a text box ’ s value to < Missing > if the string is not
yet initialized.

txtLastName.Text = IIf(last_name Is Nothing, " < Missing > ", last_name)
txtFirstName.Text = IIf(first_name Is Nothing, " < Missing > ", first_name)
txtStreet.Text = IIf(street Is Nothing, " < Missing > ", street)
txtCity.Text = IIf(city Is Nothing, " < Missing > ", city)
txtState.Text = IIf(state Is Nothing, " < Missing > ", state)
txtZip.Text = IIf(zip Is Nothing, " < Missing > ", zip)

To avoid confusing side effects, use IIf only if it makes the code easier to understand.

If

The If statement resolves some of the problems with the IIf statement. It evaluates a Boolean
expression and then returns one of two values, depending on whether the expression is true or
false, as IIf does. The difference is that If only evaluates the return value that it actually
returns.

For example, the following code examines an Employee object ’ s IsManager property. If IsManager
is True, the code sets the employee ’ s Salary to the result returned by the GetManagerSalary
function and never calls function GetEmployeeSalary . If IsManager is False, the code sets the
employee ’ s Salary to the result of the GetEmployeeSalary function and never calls function
GetManagerSalary . This is different from the way IIf works because IIf would call both functions
no matter which value it was going to return. If the functions are time - consuming, using If can
make the code more effi cient.

emp.Salary = If(emp.IsManager, GetManagerSalary(), GetEmployeeSalary())

Other than the fact that If doesn ’ t evaluate both of its possible return values, it behaves just as IIf
does. For more information, see the previous section.

Decision Statements ❘ 377

c18.indd 377c18.indd 377 12/30/09 7:06:33 PM12/30/09 7:06:33 PM

378 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

Choose

The IIf statement uses a Boolean expression to pick between two values. The Choose statement uses
an integer to decide among any number of options. The syntax is as follows:

variable = Choose(index , value1 , value2 , value3 , value4 , ...)

If the index parameter is 1, Choose returns the fi rst value, value1 ; if index is 2, Choose returns
value2 ; and so forth. If index is less than 1 or greater than the number of values in the parameter
list, Choose returns Nothing.

This statement has the same drawbacks as IIf. Choose evaluates all of the result values no matter
which one is selected, so it can slow performance. It can be particularly confusing if the values are
functions with side effects.

Often Choose is more confusing than a comparable Select Case statement. If the values look
dissimilar (mixing integers, objects, function calls, and so forth), involve complicated functions, or
are wrapped across multiple lines, a Select Case statement may be easier to read.

However, if the Choose statement ’ s values are short and easy to understand, and the statement
contains many values, the Choose statement may be easier to read. For example, the following
Choose and Select Case statements do the same thing. Because the Choose statement ’ s values are
short and easy to understand, this statement is easy to read. The Select Case statement is rather
long. If the program had more choices, the Select Case statement would be even longer, making it
more diffi cult to read.

fruit = Choose(index, "apple", "banana", "cherry", "date")

Select Case index
 Case 1
 fruit = "apple"
 Case 2
 fruit = "banana"
 Case 3
 fruit = "cherry"
 Case 4
 fruit = "date"
End Select

Although it ’ s not always clear whether a Choose statement or a Select Case statement will be
easier to read, Select Case is certainly faster. In one test, Choose took more than fi ve times as
long as Select Case. If the code lies inside a frequently executed loop, the speed difference may be
an issue.

Choose and Select Case are not your only options. You can also store the program ’ s choices in an
array, and then use the index to pick an item from the array. For example, the following code stores
the strings from the previous example in the values array. It then uses the index to pick the right
choice from the array.

c18.indd 378c18.indd 378 12/30/09 7:06:34 PM12/30/09 7:06:34 PM

Dim fruit_names() As String = {"apple", "banana", "cherry", "date"}

fruit = fruit_names(index - 1)

INTELLIGENT INDEXING

Notice that the code subtracts 1 from the index when using it to pick the right
choice. The Choose statement indexes its values starting with 1, but arrays in
Visual Basic .NET start with index 0. Subtracting 1 allows the program to use the
same index values used in the previous example.

This version makes you think about the code in a different way. It requires that you know that the
fruit_names array contains the names of the fruits that the program needs. If you understand
the array ’ s purpose, then the assignment statement is easy to understand.

The assignment code is even slightly faster than Select Case, at least if you can initialize the
fruit_names array ahead of time.

If you fi nd Choose easy to understand and it doesn ’ t make your code more diffi cult to read in your
particular circumstances, by all means use it. If Select Case seems clearer, use that. If you will need
to perform the assignment many times and pre - building an array of values makes sense, using a
value array might improve your performance.

LOOPING STATEMENTS

Looping statements make the program execute a series of statements repeatedly. The loop can
run for a fi xed number of repetitions, run while some condition is true, or run while some condition
is false.

Broadly speaking, there are two types of looping statement. For loops execute a certain number
of times that (in theory at least) is known. For example, a For loop may execute a series of
statements exactly 10 times. Or, it may execute the statements once for each object in a certain
collection. If you know how many items are in the collection, you know the number of times the
loop will execute.

A While loop executes while a condition is true or until a condition is met. Without a lot more
information about the application, it is impossible to tell how many times the code will execute. For
example, suppose a program uses the InputBox function to get names from the user until the user
clicks the Cancel button. In that case, there ’ s no way for the program to guess how many values the
user will enter before canceling.

The following sections describe the looping statements supported by Visual Basic .NET. The next
two sections describe For loops, and the sections after those describe While loops.

Looping Statements ❘ 379

c18.indd 379c18.indd 379 12/30/09 7:06:34 PM12/30/09 7:06:34 PM

380 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

LOTS OF LOOPS

Example program Loops, which is available for download on the book’s web site,
demonstrates some of these kinds of loops.

For Next

The For Next loop is the most common type of looping statement in Visual Basic. The syntax is
as follows:

For variable [As data_type] = start_value To stop_value [Step increment]
 statements
 [Exit For]
 statements
 [Continue For]
 statements
Next [variable]

The value variable is the looping variable that controls the loop. When the program reaches the
For statement, it sets variable equal to start_value . It then compares variable to stop_value .
If variable has passed stop_value , the loop exits. Note that the loop may not execute even once
depending on the start and stop values.

For example, the following loop runs for the values employee_num = 1 , employee_num = 2 , . . .,
employee_num = num_employees . If the program has not loaded any employees so num_employees = 0 ,
the code inside the loop is not executed at all.

For employee_num = 1 To num_employees
 ProcessEmployee(employee_num)
Next employee_num

After it compares variable to stop_value , the program executes the statements inside the loop. It
then adds increment to variable and starts the process over, again comparing variable to
stop_value . If you omit increment , the program uses an increment of 1.

Note that increment can be negative or a fractional number, as in the following example:

For i As Integer = 3 To 1 Step -0.5
 Debug.WriteLine(i)
Next i

c18.indd 380c18.indd 380 12/30/09 7:06:35 PM12/30/09 7:06:35 PM

If increment is positive, the program executes as long as variable < = stop_value . If increment
is negative, the program executes as long as variable > = stop_value . This means that the loop
would not execute infi nitely if increment were to move variable away from stop_value . For
example, in the following code start_value = 1 and increment = - 1 . The variable i would take
the values i = 1 , i = 0 , i = - 1 , and so forth, so i will never reach the stop_value of 2. However,
because increment is negative, the loop only executes while i > = 2 . Because i starts with the
value 1, the program immediately exits and the loop doesn ’ t execute at all.

For i As Integer = 1 To 2 Step -1
 Debug.WriteLine(i)
Next i

Visual Basic doesn ’ t require that you include the variable ’ s name in the Next statement, although
this makes the code easier to read. If you do specify the name in the Next statement, it must match
the name you use in the For statement.

If you do not specify the looping variable ’ s data type in the For statement and Option Explicit is
on and Option Infer is off, then you must declare the variable before the loop. For example, the
following loop declares the variable i outside of the loop:

Dim i As Integer

For i = 1 To 10
 Debug.WriteLine(i)
Next i

Declaring the looping variable in the For statement is a good practice. It limits the scope of the
variable so you don ’ t need to remember what the variable is for in other pieces of code. It keeps
the variable ’ s declaration close to the code where it is used, so it ’ s easier to remember the variable ’ s
data type. It also lets you more easily reuse counter variables without fear of confusion. If you
have several loops that need an arbitrarily named looping variable, they can all declare and use the
variable i without interfering with each other.

The program calculates its start_value and stop_value before the loop begins and it never
recalculates them, even if their values change. For example, the following code loops from 1 to
this_customer.Orders(1).NumItems . The program calculates this_customer.Orders(1)
.NumItems before executing the loop and doesn ’ t recalculate that value even if it later changes. This
saves the program time, particularly for long expressions such as this one, which could take
a noticeable amount of time to reevaluate each time through a long loop.

For item_num As Integer = 1 To this_customer.Orders(1).NumItems
 this_customer.ProcessItem(item_num)
Next item_num

Looping Statements ❘ 381

c18.indd 381c18.indd 381 12/30/09 7:06:36 PM12/30/09 7:06:36 PM

382 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

If you must reevaluate stop_value every time the loop executes, use a While loop instead of a
For loop.

The Exit For statement allows the program to leave a For loop before it would normally fi nish. For
example, the following code loops through the employees array. When it fi nds an entry with the
IsManager property set to True, it saves the employee ’ s index and uses Exit For to immediately
stop looping.

Dim manager_index As Integer

For i As Integer = employees.GetLowerBound(0) To employees.GetUpperBound(0)
 If employees(i).IsManager Then
 manager_index = i
 Exit For
 End If
Next i

The Exit For statement exits only the For loop immediately surrounding the statement. If a For loop
is nested within another For loop, the Exit For statement only exits the inner loop.

The Continue For statement makes the loop jump back to its For statement, increment its
looping variable, and start the loop over again. This is particularly useful if the program doesn ’ t
need to execute the rest of the steps within the loop ’ s body and wants to start the next iteration
quickly.

OUT OF CONTROL

Your code can change the value of the control variable inside the loop, but that’s
generally not a good idea. The For Next loop has a very specifi c intent, and modifying
the control variable inside the loop violates that intent, making the code more
diffi cult to understand and debug. If you must modify the control variable in more
complicated ways than are provided by a For Next loop, use a While loop instead.
Then programmers reading the code won’t expect a simple incrementing loop.

Non - Integer For Next Loops

Usually a For Next loop ’ s control variable is an integral data type such as an Integer or Long, but
it can be any of the fundamental Visual Basic numeric data types. For example, the following code
uses a variable declared as Single to display the values 1.0, 1.5, 2.0, 2.5, and 3.0:

For x As Single = 1 To 3 Step 0.5
 Debug.WriteLine(x.ToString("0.0"))
Next x

c18.indd 382c18.indd 382 12/30/09 7:06:37 PM12/30/09 7:06:37 PM

Because fl oating - point numbers cannot exactly represent every possible value, these data types are
subject to rounding errors that can lead to unexpected results in For Next loops. The preceding code
works as you would expect, at least on my computer. The following code, however, has problems.
Ideally, this code would display values between 1 and 2, incrementing them by 1/7. Because
of rounding errors, however, the value of x after seven trips through the loop is approximately
1.85714316. The program adds 1/7 to this and gets 2.0000003065381731. This is greater than
the stopping value 2, so the program exits the loop and the Debug statement does not execute
for x = 2.

For x As Single = 1 To 2 Step 1 / 7
 Debug.WriteLine(x)
Next x

One solution to this type of problem is to convert the code into a loop that uses an Integer control
variable. Integer variables do not have the same problems with rounding errors that fl oating - point
numbers do, so you have more precise control over the values used in the loop.

The following code does roughly the same thing as the previous code. It uses an Integer control
variable, however, so this loop executes exactly eight times as desired. The fi nal value printed into
the Output window by the program is 2.

Dim x As Single

x = 1
For i As Integer = 1 To 8
 Debug.WriteLine(x)
 x += CSng(1 / 7)
Next i

If you look at the value of variable x in the debugger, you will fi nd that its real value during
the last trip through the loop is roughly 2.0000001702989851. If this variable were controlling
the For loop, the program would see that this value is greater than 2, so it would not display its
fi nal value.

For Each

A For Each loop iterates over the items in a collection, array, or other container class that supports
For Each loops. The syntax is as follows:

For Each variable [As object_type] In group
 statements
 [Exit For]
 statements
 [Continue For]
 statements
Next [variable]

Looping Statements ❘ 383

c18.indd 383c18.indd 383 12/30/09 7:06:38 PM12/30/09 7:06:38 PM

384 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

Here, group is a collection, array, or other object that supports For Each. As in For Next loops, the
control variable must be declared either in or before the For statement if you have Option Explicit
on and Option Infer off.

ENABLING ENUMERATORS

To support For Each, the group object must implement the System.Collections
.IEnumerable interface. This interface defi nes a GetEnumerator method that
returns an enumerator. For more information, see the next section, “Enumerators.”

The control variable must be of a data type compatible with the objects contained in the group.
If the group contains Employee objects, the variable could be an Employee object. It could also be
a generic Object or any other class that readily converts into an Employee object. For example, if
Employee inherits from the Person class, then the variable could be of type Person.

Visual Basic doesn ’ t automatically understand what kinds of objects are stored in a collection or
array until it tries to use them. If the control variable ’ s type is not compatible with an object ’ s type,
the program generates an error when the For Each loop tries to assign the control variable to that
object ’ s value.

That means if a collection or array contains more than one type of object, the control variable
must be of a type that can hold all of the objects. If the objects in a collection do not inherit from a
common ancestor class, the code must use a control variable of type Object.

Like For Next loops, For Each loops support the Exit For and Continue For statements.

As is the case with For Next loops, declaring the looping variable in the For Each statement is a
good practice. It limits the scope of the variable, so you don ’ t need to remember what the variable
is for in other pieces of code. It keeps the variable ’ s declaration close to the code where it is used, so
it ’ s easier to remember the variable ’ s data type. It also lets you more easily reuse counter variables
without fear of confusion. If you have several loops that need an arbitrarily named looping variable,
they can all declare and use the variable obj , person , or whatever else makes sense without
interfering with each other.

Your code can change the value of the control variable inside the loop, but that has no effect on the
loop ’ s progress through the collection or array. The loop resets the variable to the next object inside
the group and continues as if you had never changed the variable ’ s value. To avoid confusion,
don ’ t bother.

Changes to a collection are immediately refl ected in the loop. For example, if the statements inside
the loop add a new object to the end of the collection, then the loop continues until it processes the
new item. Similarly, if the loop ’ s code removes an item from the end of the collection (that it has not
yet reached), the loop does not process that item.

The exact effect on the loop depends on whether the item added or removed comes before or after
the object the loop is currently processing. For example, if you remove an item before the current

c18.indd 384c18.indd 384 12/30/09 7:06:39 PM12/30/09 7:06:39 PM

item, the loop has already examined that item, so there is no change to the loop ’ s behavior. If you
remove an item after the current one, the loop doesn ’ t examine it. If you remove the current item,
the loop seems to get confused and exits without raising an error.

Additions and deletions to an array are not refl ected in the loop. If you use a ReDim statement to
add items to the end of the array, the loop does not process them. If you try to access those objects,
however, the program generates an “ Index was outside the bounds of the array ” error.

If you use ReDim to remove items from the end of the array, the loop processes those items any
way! If you modify the values in the array, for example, you change an object ’ s properties or set an
array entry to an entirely new object, the loop sees the changes.

To avoid all these possible sources of confusion, don ’ t modify a collection or array while a For Each
loop is examining its contents.

CREATIVE COLLECTIONS

If you really must modify a collection while looping through it, create a new
collection and modify that one instead. For example, suppose you want to loop
through the original collection and remove some items. Make the new collection
and then loop through the original copying the items that you want to keep into the
new collection.

In really complicated situations, you may need to use a For loop and some careful
indexing instead of a For Each loop.

One common scenario when dealing with collections is to examine every item in the collection and
remove some of them. If you use a For Each loop, removing the loop ’ s current item makes the loop
exit prematurely.

Another approach that seems like it might work (but doesn ’ t) is to use a For Next loop, as
shown in the following code. If the code removes an object from the collection, the loop skips
the next item because its index has been reduced by one and the loop has already passed that
position in the collection. Worse still, the control variable i will increase until it reaches the
original value of employees.Count . If the loop has removed any objects, the collection no
longer holds that many items. The code tries to access an index beyond the end of the collection
and throws an error.

Dim emp As Employee

For i As Integer = 1 To employees.Count
 emp = CType(employees(i), Employee)
 If emp.IsManager Then employees.Remove(i)
Next i

Looping Statements ❘ 385

c18.indd 385c18.indd 385 12/30/09 7:06:40 PM12/30/09 7:06:40 PM

386 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

One solution to this problem is to use a For Next loop to examine the collection ’ s objects in reverse
order, as shown in the following example. In this version, the code never needs to use an index after
it has been deleted because it is counting backward. The index of an object in the collection also
doesn ’ t change unless that object has already been examined by the loop. The loop examines every
item exactly once, no matter which objects are removed.

For i As Integer = employees.Count To 1 Step -1
 emp = CType(employees(i), Employee)
 If emp.IsManager Then employees.Remove(i)
Next i

Enumerators

An enumerator is an object that lets you move through the objects contained by some sort of
container class. For example, collections, arrays, and hash tables provide enumerators. This section
discusses enumerators for collections, but the same ideas apply for these other classes.

You can use an enumerator to view the objects in a collection but not to modify the collection
itself. You can use the enumerator to alter the objects in the collection, but you can generally not use
it to add, remove, or rearrange the objects in the collection.

Initially, an enumerator is positioned before the fi rst item in the collection. Your code can use
the enumerator ’ s MoveNext method to step to the next object in the collection. MoveNext
returns True if it successfully moves to a new object or False if there are no more objects in the
collection.

The Reset method restores the enumerator to its original position before the fi rst object, so you can
step through the collection again.

The Current method returns the object that the enumerator is currently reading. Note that Current
returns a generic Object, so you will probably need to use CType to convert the result into a more
specifi c data type before you use it. Invoking Current throws an error if the enumerator is not
currently reading any object. That happens if the enumerator is before the fi rst object or after the
last object.

The following example uses an enumerator to loop through the items in a collection named
m_Employees . It declares an Employee variable named emp and an IEnumerator object named
employee_enumerator . It uses the collection ’ s GetEnumerator method to obtain an enumerator
for the collection. The program then enters a While loop. If employee_enumerator.MoveNext
returns True, the enumerator has successfully moved to the next object in the collection. As long
as it has read an object, the program uses CType to convert the generic object returned by Current
into an Employee object, and it displays the Employee object ’ s Title , FirstName , and LastName
values. When it has fi nished processing all of the objects in the collection, employee_enumerator
.MoveNext returns False and the While loop ends.

Dim emp As Employee
Dim employee_enumerator As IEnumerator
employee_enumerator = m_Employees.GetEnumerator()

c18.indd 386c18.indd 386 12/30/09 7:06:41 PM12/30/09 7:06:41 PM

Do While (employee_enumerator.MoveNext)
 emp = CType(employee_enumerator.Current, Employee)
 Debug.WriteLine(emp.Title & " " & .FirstName & " " & emp.LastName)
Loop

EXACT ENUMERATORS

Some containers support enumerators that use more specifi c data types. For
example, a program can use a generic List that contains a specifi c kind of object
such as Employee. Then it can use a generic enumerator of the correct type, in this
case IEnumerator(Of Employee). In that case, the enumerator’s Current property
returns an Employee instead of an Object so the code does not need to convert it
into an Employee before using its methods.

Example program EnumerateEmployees, which is available for download on the
book’s web site, creates a List(Of Employee). It then creates an IEnumerator(Of
Employee) for the list and uses it to loop through the list. For more information on
generics, see Chapter 29, “Generics.”

A For Each loop provides roughly the same access to the items in a container class as an enumerator.
Under some circumstances, however, an enumerator may provide a more natural way to loop
through a container class than a For Each loop. For example, an enumerator can skip several items
without examining them closely. You can also use an enumerator ’ s Reset method to restart the
enumeration. To restart a For Each loop, you would need to repeat the loop, possibly by placing it
inside yet another loop that determines when to stop looping.

The Visual Basic documentation states that an enumerator is valid only as long as you do not
modify the collection. If you add or remove an object to or from the collection, the enumerator
throws an “ invalid operation ” exception the next time you use it. In at least some cases, however,
this doesn ’ t seem to be true, and an enumerator can still work even if you modify its collection.
This could lead to extremely confusing situations, however. To avoid unnecessary confusion,
do not modify a collection while you are accessing it with an enumerator. (If you really must
modify the collection, try the techniques described in the “ Creative Collections ” tip earlier in
this chapter.)

The IEnumerable interface defi nes the features needed for enumerators so any class that
implements the IEnumerable interface provides enumerators. Any class that supports For Each
must also implement the IEnumerable interface, so any class that supports For Each also supports
enumerators. A few of the classes that implement IEnumerable include the following:

Looping Statements ❘ 387

c18.indd 387c18.indd 387 12/30/09 7:06:41 PM12/30/09 7:06:41 PM

388 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

Array HybridDictionary SqlDataReader

ArrayList ListDictionary Stack

Collection MessageQueue String

CollectionBase OdbcDataReader StringCollection

ControlCollection OleDbDataReader StringDictionary

DataView OracleDataReader TableCellCollection

DictionaryBase Queue TableRowCollection

DictionaryEntries ReadOnlyCollectionBase XmlNode

Hashtable SortedList XmlNodeList

Iterators

An iterator is similar in concept to an enumerator. It also provides methods that allow you to step
through the objects in some sort of container object. Iterators are more specialized than enumerators
and work with a particular kind of class. Although you can use a nonspecifi c IEnumerator object
to step through the items contained in any class that implements IEnumerable (an array, collection,
hash table, or whatever), a certain iterator class is associated with a specifi c container class.

For example, a GraphicsPath object represents a series of connected lines and curves.
A GraphicsPathIterator object can step through the line and curve data contained in a
GraphicsPath object.

Iterators are much more specialized than enumerators. How you use them depends on what you
need to do and on the kind of iterator, so they are not described in detail here.

Do Loop Statements

Visual Basic .NET supports three basic forms of Do Loop statements. The fi rst form is a loop that
repeats forever. The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop

This kind of Do Loop executes the code it contains until the program somehow ends the loop. The
following loop processes work orders. It calls the WorkOrderAvailable function to see if a work

c18.indd 388c18.indd 388 12/30/09 7:06:42 PM12/30/09 7:06:42 PM

order is available. If an order is available, the code calls ProcessWorkOrder to process it. The code
then repeats the loop to look for another work order.

Do
 ' See if a work order is available.
 If WorkOrderAvailable() Then
 ' Process the next work order.
 ProcessWorkOrder()
 End If
Loop

This example keeps checking for work orders forever. Most programs include some method for the
loop to end so that the program can eventually stop. For example, the loop might use the Exit Do
statement described shortly to end the loop if the user clicks a Stop button.

The second and third forms of Do Loop statements both include a test to determine whether
they should continue looping. The difference between the two versions is where they place
the test.

The next version of Do Loop places its test at the beginning, so the test is evaluated before the code
is executed. If the test initially indicates that the loop should not continue, the statements inside the
loop are never executed. The syntax is as follows:

Do {While | Until} condition
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop

The fi nal version of Do Loop places its test at the end. In this version, the statements inside the loop
are executed before the loop performs its test. That means that the code is always executed at least
once. The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop {While | Until} condition

If the code uses the While keyword, the loop executes as long as the condition is true. If the code
uses the Until keyword, the loop executes as long as the condition is false. Note that the statement
Until condition is equivalent to While Not condition . Visual Basic provides these two variations
so that you can pick the one that makes your code more readable. Use the one that makes the most
sense to you.

Looping Statements ❘ 389

c18.indd 389c18.indd 389 12/30/09 7:06:43 PM12/30/09 7:06:43 PM

390 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

The Exit Do statement allows the program to leave the nearest enclosing loop before it would
normally fi nish. The Continue Do statement makes the loop jump back to its Do statement and start
the loop over again. This is particularly useful if the program doesn ’ t need to execute the rest of the
steps within the loop and wants to quickly start the next iteration. Unlike a For loop, the Do loop
does not automatically increment a looping variable or move to the next object in a collection. The
code must explicitly change the loop ’ s condition before calling Continue Do or else the loop will
continue forever.

While End

A While End loop is equivalent to a Do While loop. The syntax is as follows:

While condition
 statements
 [Exit While]
 statements
 [Continue While]
 statements
End While

This is equivalent to the following Do While loop:

Do While condition
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop

The Exit While statement exits a While End loop just as an Exit Do statement exits a Do While
Loop. Similarly, Continue While makes the program return to the top of the loop just as Continue
Do does for Do loops.

The difference between While End and Do While Loop is stylistic, and you can use whichever seems
clearer to you. Because Do Loop provides more fl exibility, having four different versions using While
or Until at the start or fi nish of the loop, you might want to stick to them for consistency ’ s sake.

Exit and Continue

The Exit and Continue statements are described in the previous sections, but they deserve a
quick summary.

The Exit statement lets you end a loop early. The Continue statement lets you jump to the start of a
loop before reaching its end.

Both of these statements work only on the innermost loop of the appropriate type. For example, an
Exit For statement exits the innermost For loop surrounding the statement.

Example program ExitAndContinue, which is available for download on the book ’ s web site,
demonstrates the Exit and Continue statements.

c18.indd 390c18.indd 390 12/30/09 7:06:44 PM12/30/09 7:06:44 PM

GOTO

A GoTo statement unconditionally tells the program to jump to a specifi c location in the code.
Because it tells the program what to do, it is a program control statement. The syntax is as
 follows:

 GoTo line_label
 ...
line_label:
 ...

Though GoTo by itself isn ’ t a decision statement, it is often used to mimic a decision statement. For
example, the following code fragment uses GoTo to mimic an If Then Else statement. It examines
the purchase_total variable. If purchase_total is less than 1000, the code jumps to the line
labeled SmallOrder . If purchase_total is greater than or equal to 1000, the program continues to
execute the code that processes a larger order.

 If purchase_total < 1000 Then GoTo SmallOrder
 ' Process a large order.
 ...
 Exit Sub

SmallOrder:
 ' Process a small order.
 ...

The following code does roughly the same thing as the preceding version but without the
GoTo statement:

If purchase_total < 1000 Then
 ' Process a large order.
 ...
Else
 ' Process a small order.
 ...
End If

Similarly, GoTo is sometimes used to build a loop. The following code uses GoTo to jump backward
in the code to call subroutine DoSomething 10 times:

 Dim i As Integer = 1
StartLoop:
 DoSomething()
 i += 1
 If i < = 10 Then GoTo StartLoop

GoTo ❘ 391

c18.indd 391c18.indd 391 12/30/09 7:06:44 PM12/30/09 7:06:44 PM

392 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

The following code does the same thing without the GoTo statement:

For i As Integer = 1 To 10
 DoSomething()
Next i

The problem with the GoTo statement is its fl exibility. By using GoTo in a haphazard way, an
undisciplined programmer can make the program jump all over the place with little rhyme or
reason. This can lead to spaghetti code (so called because a diagram showing the program ’ s fl ow
of control can look like a pile of spaghetti) that is extremely diffi cult to understand, debug, and
maintain.

Many programming teams prohibit any use of GoTo because it can lead to this kind of code.
Some even believe GoTo should be removed from the Visual Basic language. You can always use If
Then Else statements, For Next loops, While loops, and other control statements in place of GoTo
statements, so GoTo is not absolutely necessary.

However, some programmers feel that GoTo simplifi es code under certain very specifi c
circumstances. The following code begins by performing some sort of initialization. It may open
databases, create temporary fi les, connect to the Internet, and perform other startup chores. It then
executes a series of tasks, each of which may fail or otherwise make it pointless for the program
to continue. If any of these steps sets the variable should_stop to True, the program uses a GoTo
statement to jump to its clean - up code. This code closes any open database, deletes temporary fi les,
closes permanent fi les, and performs any other necessary clean up chores.

 ' Get started, open database, open files, etc.
 Initialize()

 ' Perform a long series of tasks.
 DoStuff1()
 If should_stop Then GoTo CleanUp

 DoStuff2()
 If should_stop Then GoTo CleanUp

 DoStuff3()
 If should_stop Then GoTo CleanUp

 ...

CleanUp:
 ' Close database, delete temporary files, etc.
 PerformCleanUp()

The GoTo statement in this code lets the program jump to the clean - up code any time it needs to
stop performing its tasks. That may be because a task failed, the user canceled the operation, or all
the tasks are fi nished.

Note that this is a very specifi c use of GoTo. The code only jumps forward, never backward. It also
only jumps to clean - up code, not to some arbitrary point in the code. These facts help make the
GoTo statement easier to understand and prevent spaghetti code.

c18.indd 392c18.indd 392 12/30/09 7:06:44 PM12/30/09 7:06:44 PM

The following code does the same thing as the preceding version without using GoTo. At each
step, the program checks the value of should_stop to see if it should continue working through
its tasks.

 ' Get started, open database, open files, etc.
Initialize()

' Perform a long series of tasks.
DoStuff1()

If Not should_stop Then DoStuff2()

If Not should_stop Then DoStuff3()

' Close database, delete temporary files, etc.
PerformCleanUp()

The following code shows another version that doesn ’ t use GoTo. This version places the code that
formerly contained the GoTo statement in a new subroutine. Instead of using GoTo, this routine uses
Exit Sub to stop performing tasks early if necessary.

Sub DoWork() '
 ' Get started, open database, open files, etc.
 Initialize()

 ' Perform all of the tasks.
 PerformTasks()

 ' Close database, delete temporary files, etc.
 PerformCleanUp()
End Sub

' Perform a long series of tasks.
Sub PerformTasks()
 DoStuff1()
 If should_stop Then Exit Sub

 DoStuff2()
 If should_stop Then Exit Sub

 DoStuff3()
 If should_stop Then Exit Sub
End Sub

Conceptually, an Exit Sub statement is little different from a GoTo statement. After all, it, too,
is an unconditional jump command. However, Exit Sub has a very specifi c, well - known effect: it
makes the program stop executing the current subroutine. It cannot make the program jump around
arbitrarily, possibly leading to spaghetti code.

If you ever feel tempted to use GoTo, take a few moments to think about ways you might rewrite
the code. If the only ways you can think of to rewrite the code are more confusing than the original

GoTo ❘ 393

c18.indd 393c18.indd 393 12/30/09 7:06:45 PM12/30/09 7:06:45 PM

394 ❘ CHAPTER 18 PROGRAM CONTROL STATEMENTS

version, go ahead and use GoTo. You should probably add some fairly detailed comments to ensure
that the GoTo statement doesn ’ t cause trouble later.

SUMMARY

Control statements form the heart of any program. Decision statements determine what commands
are executed, and looping statements determine how many times they are executed.

Single - line and multiline If Then statements, as well as Select Case, are the most commonly
used decision statements. IIf and Choose statements are often more confusing and sometimes
slower, so usually you should use If Then and Select Case statements instead. Under some specifi c
circumstances, however, IIf and Choose may make your code more readable. Use your judgment
and pick the method that makes the most sense in your application.

For Next, For Each, and Do Loop are the most common looping statements. Some container classes
also support enumerators that let you step through the items in the container. An enumerator can be
more natural than a For Each loop under some circumstances.

A While End loop is equivalent to Do While loop. You can use whichever you think makes more
sense, although you might want to use Do While because it is more consistent with the other forms
of Do Loop.

Finally, the GoTo statement is often used in a decision statement or to create a loop. Unfortunately,
undisciplined use of GoTo statements can lead to spaghetti code that is extremely hard to
understand, debug, and maintain. To avoid later frustration, you should avoid using GoTo
statements whenever possible, and provide good comments where GoTo is necessary. Some
programmers use GoTo in very specialized cases, whereas others avoid it at all costs. You can always
rewrite code to avoid GoTo statements, and usually that is better in the long run.

Using the control statements described in this chapter, you can build extremely complex and
powerful applications. In fact, you can build applications that are so complex that it is diffi cult to
ensure that they work correctly. Even a relatively simple application sometimes encounters errors.
Chapter 19, “ Error Handling, ” explains how you can protect an application from these and other
unexpected errors and let it take action to correct any problems or at least to avoid crashing.

c18.indd 394c18.indd 394 12/30/09 7:06:45 PM12/30/09 7:06:45 PM

19
Error Handling

Although it is theoretically possible to write a program that perfectly predicts every possible
situation that it might encounter, in practice that ’ s very diffi cult for nontrivial programs. For
large applications, it is very diffi cult to plan for every eventuality. Errors in the program ’ s
design and implementation can introduce bugs that give unexpected results. Users and
corrupted databases may give the application values that it doesn ’ t know how to manage.

Similarly, changing requirements over time may introduce data that the application was never
intended to handle. The Y2K bug is a good example. When engineers wrote accounting,
auto registration, fi nancial, inventory, and other systems in the 1960s and 1970s, they never
dreamed their programs would still be running in the year 2000. At the time, disk storage
and memory were relatively expensive, so they stored years as 2 - byte values (for example, 89
meant 1989). When the year 2000 rolled around, the applications couldn ’ t tell whether the
value 01 meant the year 1901 or 2001. In one humorous case, an auto registration system
started issuing horseless carriage license plates to new cars because it thought cars built in 00
must be antiques.

The Y2K problem wasn ’ t really a bug. It was a case of software used with data that wasn ’ t
part of its original design.

This chapter explains different kinds of exceptional conditions that can arise in an
application. These range from unplanned data (as in the Y2K problem) to bugs where the code
is just plain wrong. With some advance planning, you can build a robust application that can
keep running gracefully, even when the unexpected happens.

BUGS VERSUS UNPLANNED CONDITIONS

Several different types of unplanned conditions can derail an otherwise high - quality
application. How you should handle these conditions depends on their nature.

c19.indd 395c19.indd 395 12/30/09 7:07:54 PM12/30/09 7:07:54 PM

396 ❘ CHAPTER 19 ERROR HANDLING

For this discussion, a bug is a mistake in the application code. Some bugs become apparent right
away and are easy to fi x. These usually include simple typographic errors and cases where you
misuse an object (for example, by using the wrong control property). Other bugs are subtler and
may only be detected long after they occur. For example, a data - entry routine might place invalid
characters into a rarely used fi eld in a Customer object. Only later when the program tries to access
that fi eld will you discover the problem. This kind of bug is diffi cult to track down and fi x, but there
are some proactive steps you can take to make these sorts of bugs easier to fi nd.

BUGS THROUGHOUT HISTORY

On a historical note, the term “ bug ” has been used since at least the time of the
telegraph to mean some sort of defect. Probably the origin of the term in computer
science was an actual moth that was caught between two relays in an early com-
puter in 1947. For a bit more information, including a picture of this fi rst computer
bug, see www.jamesshuggins.com/h/tek1/first_computer_bug.htm .

An unplanned condition is some predictable condition that you don ’ t want to happen, but that
you know could happen despite your best efforts. For example, there are many ways that a simple
printing operation can fail. The printer might be unplugged, disconnected from its computer,
disconnected from the network, out of toner, out of paper, experiencing a memory fault, clogged
by a paper jam, or just plain broken. These are not bugs, because the application software is not at
fault. There is some condition outside of the program ’ s control that must be fi xed.

Another common unplanned condition occurs when the user enters invalid data. You may want the
user to enter a value between 1 and 10 in a text box, but the user might enter 0, 9999, or “ lunch ”
instead.

Catching Bugs

By defi nition, bugs are unplanned. No reasonable programmer sits down and thinks, “ Perhaps I ’ ll
put a bug in this variable declaration. ”

Because bugs are unpredictable, you cannot know ahead of time where a bug will lie. However,
you can watch for behavior in the program that indicates that a bug may be present. For example,
suppose that you have a subroutine that sorts a purchase order ’ s items by cost. If the routine receives
an order with 100,000 items, something is probably wrong. If one of the items is a computer
keyboard with a price of $73 trillion, something is probably wrong. If the customer who placed the
order doesn ’ t exist, something is probably wrong.

This routine could go ahead and sort the 100,000 items with prices ranging from a few cents to
$73 trillion. Later, the program would try to print a 5000 - page invoice with no shipping or billing
address. Only then would the developers realize that there is a problem.

c19.indd 396c19.indd 396 12/30/09 7:07:57 PM12/30/09 7:07:57 PM

Rather than trying to work around the problematic data, it would be better if the sorting routine
immediately told developers that something is wrong so they can start trying to fi nd the cause of the
problem. Bugs are easier to fi nd the sooner they are detected. This bug will be easier to fi nd if the
sorting routine notices it, rather than waiting until the application tries to print an invalid invoice.
Your routines can protect themselves and the program as a whole by proactively validating inputs
and outputs, and reporting anything suspicious to developers.

Some developers object to making routines spend considerable effort validating data that they know
is correct. After all, one routine generated this data and passed it to another, so you know that it is
correct because the fi rst routine did its job properly. That ’ s only true if every routine that touches
the data works perfectly. Because bugs are by defi nition unexpected, you cannot safely assume that
all the routines are perfect and that the data remains uncorrupted.

AUTOMATED BUG CATCHERS

Many companies use automated testing tools to try to fl ush out problems early.
Regression testing tools can execute code to verify that its outcome isn ’ t changed
after you have made modifi cations to other parts of the application. If you build a
suite of testing routines to validate data and subroutines ’ results, you may be able
to work them into an automated testing system, too.

To prevent validation code from slowing down the application, you can use the Debug object ’ s
Assert method to check for strange conditions. When you are debugging the program, these
statements throw an error if they detect something suspicious. When you make a release build
to send to customers, the Debug.Assert code is removed from the application. That makes the
application faster and doesn ’ t infl ict cryptic error messages on the user.

You can also use the DEBUG, TRACE, and CONFIG compiler constants to add other input and
output validation code.

Example program SortOrders uses the following code to validate a subroutine ’ s inputs. (This
program doesn ’ t actually do anything; it just shows how to write input validation code.)

Private Sub SortOrderItems(ByVal the_order As Order)
 ' Validate input.
 Debug.Assert(the_order.Items IsNot Nothing, "No items in order")
 Debug.Assert(the_order.Customer IsNot Nothing, "No customer in order")
 Debug.Assert(the_order.Items.Count < 100, "Too many order items")
 ...

 ' Sort the items.
 ...

 ' Validate output.
#If DEBUG Then
 ' Verify that the items are sorted.
 Dim order_item1 As OrderItem

Bugs versus Unplanned Conditions ❘ 397

c19.indd 397c19.indd 397 12/30/09 7:07:58 PM12/30/09 7:07:58 PM

398 ❘ CHAPTER 19 ERROR HANDLING

 Dim order_item2 As OrderItem
 order_item1 = DirectCast(the_order.Items(1), OrderItem)
 For i As Integer = 2 To the_order.Items.Count
 order_item2 = DirectCast(the_order.Items(i), OrderItem)
 Debug.Assert(order_item1.Price < = order_item2.Price,
 "Order items not properly sorted")
 order_item1 = order_item2
 Next i
#End If
End Sub

code snippet SortOrders

The subroutine starts by validating its input. It verifi es that the Order object that it received
has an Items collection and that its Customer property is not Nothing. It also verifi es that the
order contains fewer than 100 items. If a larger order comes along during testing, developers can
increase this number to 200 or whatever value makes sense, but there ’ s no need to start with an
unreasonably large default.

Before the subroutine exits, it loops through the sorted items to verify that they are correctly sorted.
If any item has cost less than the one before, the program throws an error. Because this test is
contained within an #If DEBUG Then statement, this code is removed from release builds.

After you have tested the application long enough, you should have discovered most of these types
of errors. When you make the release build, the compiler automatically removes the validation code,
making the fi nished executable smaller and faster.

Catching Unplanned Conditions

Although you don ’ t want an unplanned condition to happen, with some careful thought, you
can predict where an unplanned condition might occur. Typically, these situations arise when the
program must work with something outside of its own code. For example, when the program needs
to access a fi le, printer, web page, fl oppy disk, or CD - ROM, that item may be unavailable. Similarly,
whenever the program takes input from the user, the user may enter invalid data.

Notice how this differs from the bugs described in the previous section. After suffi cient testing, you
should have found and fi xed most of the bugs. No amount of testing can remove the possibility of
unplanned conditions. No matter what code you use, the user may still remove a fl oppy disk from
the drive before the program is ready.

Whenever you know that an unplanned condition might occur, you should write code to protect
the program from dangerous conditions. It is generally better to test for these conditions explicitly
rather than simply attempting to perform whatever action you were planning and then catching an
error if one occurs. Testing for problem conditions generally gives you more complete information
about what ’ s wrong. It ’ s also usually faster than catching an error because the structured error
handling described shortly comes with considerable overhead.

c19.indd 398c19.indd 398 12/30/09 7:07:59 PM12/30/09 7:07:59 PM

For example, the following statement sets an integer variable using the value the user entered in a
text box:

Dim num_items As Integer = Integer.Parse(txtNumItems.Text)

The user might enter a valid value in the text box. Unfortunately, the user may also enter something
that is not a number, a value that is too big to fi t in an integer, or a negative number when you are
expecting a positive number. The user may even leave the fi eld blank.

Example program ValidateInteger uses the following code to validate integer input:

' Check for blank entry.
Dim num_items_txt As String = txtNumItems.Text
If num_items_txt.Length < 1 Then
 MessageBox.Show("Please enter Num Items")
 txtNumItems.Focus()
 Exit Sub
End If

' See if it's numeric.
If Not IsNumeric(num_items_txt) Then
 MessageBox.Show("Num Items must be a number")
 txtNumItems.Select(0, num_items_txt.Length)
 txtNumItems.Focus()
 Exit Sub
End If

' Assign the value.
Dim num_items As Integer
Try
 num_items = Integer.Parse(txtNumItems.Text)
Catch ex As Exception
 MessageBox.Show("Error in Num Items." & vbCrLf & ex.Message)
 txtNumItems.Select(0, num_items_txt.Length)
 txtNumItems.Focus()
 Exit Sub
End Try

' Check that the value is between 1 and 100.
If num_items < 1 Or num_items > 100 Then
 MessageBox.Show("Num Items must be between 1 and 100")
 txtNumItems.Select(0, num_items_txt.Length)
 txtNumItems.Focus()
 Exit Sub
End If

code snippetValidateInteger

The code checks that the fi eld is not blank and uses the IsNumeric function to verify that the fi eld
contains a vaguely numeric value.

Bugs versus Unplanned Conditions ❘ 399

c19.indd 399c19.indd 399 12/30/09 7:08:00 PM12/30/09 7:08:00 PM

400 ❘ CHAPTER 19 ERROR HANDLING

Unfortunately, the IsNumeric function doesn ’ t exactly match the behavior of functions such as
Integer.Parse. IsNumeric returns False for values such as & H10, which is a valid hexadecimal
value that Integer.Parse can correctly interpret. IsNumeric also returns True for values such as
123456789012345 that lie outside of the values allowed by integers and 1.2, which is numeric but
not an integer. Because IsNumeric doesn ’ t exactly match Integer.Parse, the program still needs to
use a Try Catch block (bolded in the previous code) to protect itself when it actually tries to convert
the string into an integer.

The code fi nishes by verifying that the value lies within a reasonable bound. If the value passes all of
these checks, the code uses the value.

A typical subroutine might need to read and validate many values, and retyping this code would
be cumbersome. A better solution is to move it into an IsValidInteger function and then call the
function as needed.

You can write similar routines to validate other types of data fi elds such as phone numbers, e - mail
addresses, street addresses, and so on.

Global Exception Handling

Normally, you should try to catch an error as close as possible to the place where it occurs. If
an error occurs in a particular subroutine, it will be easiest to fi x the bug if you catch it in that
subroutine.

However, bugs often arise in unexpected places. Unless you protect every subroutine with error -
handling code (a fairly common strategy), a bug may arise in code that you have not protected.

In early versions of Visual Basic, you could not catch the bug, so the application crashed. In the
most recent versions of Visual Basic, however, you can defi ne a global error handler to catch any
bug that isn ’ t caught by other error - handling code.

ERRORS, ERRORS, EVERYWHERE

In fact, some sources of errors are completely beyond your control. For example,
power surges, static electricity, intermittent short circuits, or even stray radiation
striking exactly the right part of a chip can make the computer ’ s hardware misbe-
have so code that should work correctly fails. There ’ s little you can do to anticipate
these kinds of errors but you can use global error handling to try to recover
from them.

Of course that doesn ’ t excuse you from rigorously checking your code for errors.
The vast majority of bugs are due to real mistakes in the code or data rather than
to magical cosmic rays fl ipping a single bit on a memory chip.

c19.indd 400c19.indd 400 12/30/09 7:08:00 PM12/30/09 7:08:00 PM

To defi ne application - level event handlers, double - click My Project in the Project Explorer. Open
the Application tab and click the View Application Events button. This opens a code window for
application - level events.

In the left drop - down list, select (MyApplication Events). Then in the right drop - down list, you
can select one of several events including NetworkAvailabilityChanged, Shutdown, Startup,
StartupNextInstance, and UnhandledException. Select the last of these commands to open the
UnhandledException event handler.

In the event handler, you can take whatever action is appropriate for the error. Because you
probably didn ’ t anticipate the error, there ’ s usually little chance that the program can correct it
properly. However, you can at least log the error and possibly save data before shutting down the
application.

The event parameter e has an ExitApplication property that you can set to True or False to tell
Visual Basic whether the application should terminate.

KEEP RUNNING

Usually it ’ s better for an application to do the best it can to recover and keep run-
ning instead of exiting. Even if the program must reset itself to a default state, that
at least saves the user the trouble of restarting the application, reopening forms,
arranging toolbars, and otherwise getting the program ready to work. Before you
decide, compare the diffi culty of making the program reset and continue with the
trouble the user will have restarting and getting back to work.

Example program GlobalException uses the following code to display a message giving the
unhandled exception ’ s error message. It then sets e.ExitApplication to False, so the program
keeps running.

Private Sub MyApplication_UnhandledException(
 ByVal sender As Object,
 ByVal e As Microsoft.VisualBasic.ApplicationServices.UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 MessageBox.Show("Exception caught globally" & vbCrLf & e.Exception.Message)
 e.ExitApplication = False
End Sub

code snippet GlobalException

When you run the application in the IDE, Visual Basic stops execution in the debugger when it
reaches the statement that causes the error, so the UnhandledException event never executes. If you
run the compiled executable, however, the UnhandledException event fi res and the global error -
handler runs.

Bugs versus Unplanned Conditions ❘ 401

c19.indd 401c19.indd 401 12/30/09 7:08:02 PM12/30/09 7:08:02 PM

402 ❘ CHAPTER 19 ERROR HANDLING

STRUCTURED ERROR HANDLING

Visual Basic .NET introduced structured error handling using the Try block. The syntax is
as follows:

Try
 try_statements ...
[Catch ex As exception_type_1
 exception_statements_1 ...
]
[Catch ex As exception_type_2
 exception_statements_2 ...
]
...
[Catch
 final_exception_statements ...
]
[Finally
 finally_statements ...
]

End Try

The program executes the code in the try_statements block. If any of that code throws an
exception, the program jumps to the fi rst Catch statement.

If the exception matches exception_type_1 , the program executes the code in exception_
statements_1 . The exception type might match the Catch statement ’ s exception class exactly, or it
might be a subclass of the listed class. For example, suppose that the code in the try_statements
block performs a calculation that divides by zero. That raises a DivideByZeroException. That class
inherits from the ArithmeticException class, which inherits from SystemException, which inherits
from Exception. That means the code would stop at the fi rst Catch statement it fi nds that looks for
DivideByZeroException, ArithmeticException, SystemException, or Exception.

If the raised exception does not match the fi rst exception type, the program checks the next Catch
statement. The program keeps comparing the exception to Catch statements until it fi nds one that
applies, or it runs out of Catch statements.

CATCH CONTROL

Be sure to arrange Catch statements so the most specifi c come fi rst. Otherwise,
a more general statement will catch errors before a more specifi c statement has a
chance. For example, the generic Exception class includes all other exceptions, so
if the fi rst Catch statement catches Exception, no other Catch statements will
ever execute.

If two Catch statements are unrelated, neither will catch the other ’ s exceptions, so
put the exception more likely to occur fi rst. That will make the code more effi cient
because it looks for the most common problems fi rst. It also keeps the code that is
most likely to execute near the top where it is easier to read.

c19.indd 402c19.indd 402 12/30/09 7:08:03 PM12/30/09 7:08:03 PM

If no Catch statement matches the exception, the exception “ bubbles up ” to the next level in the
call stack and Visual Basic moves to the routine that called the current one. If that routine has
appropriate error - handling code, it deals with the error. If that routine can ’ t catch the error, the
exception bubbles up again until Visual Basic eventually either fi nds error - handling code that can
catch the exception, or it runs off the top of the call stack. If it runs off the call stack, Visual Basic
calls the global UnhandledException event handler described in the previous section, if one exists. If
there is no UnhandledException event handler, the program crashes.

If you include a Catch statement with no exception type, that block matches any exception. If
the raised exception doesn ’ t match any of the previous exception types, the program executes the
final_exception_statements block of code. Note that the statement Catch ex As Exception
also matches all exceptions, so it ’ s just good as Catch by itself. It also gives you easy access to the
exception object ’ s properties and methods.

You can fi gure out what exception classes to use in Catch statements in several ways. First, you can
spend a lot of time digging through the online help. An easier method is to let the program crash and
then look at the error message it produces. Figure 19 - 1 shows the error message a program throws
when it tries to convert the non - numeric string “ Hello ” into an integer with Integer.Parse. From the
exception dialog ’ s title, it ’ s easy to see that the program should look for a FormatException.

FIGURE 19-1: When a program crashes, the message it generates tells you the type of

exception it raised.

Another way to decide what types of exceptions to catch is to place a fi nal generic Catch ex As
Exception statement at the end of the Catch list. Place code inside that Catch block that displays
either the exception ’ s type name (use TypeName) or the result of its ToString method. When you
encounter new exception types, you can give them their own Catch statements and take more action
that ’ s appropriate to that exception type.

Structured Error Handling ❘ 403

c19.indd 403c19.indd 403 12/30/09 7:08:04 PM12/30/09 7:08:04 PM

404 ❘ CHAPTER 19 ERROR HANDLING

CATCH CATASTROPHES

It may not be possible to take meaningful action when you catch certain exceptions.
For example, if a program uses up all of the available memory, Visual Basic throws
an OutOfMemoryException. If there is no memory available, you may have trouble
doing anything useful. Similarly, if there ’ s a problem with the fi le system, you may
be unable to write error descriptions into a log fi le.

After it has fi nished running the code in try_statements and it has executed any necessary
exception code in a Catch block, the program executes the code in finally_statements . You can
use the Finally section to execute code whether the code in try_statements succeeds or fails.

You do not need to include any Catch statements in a Try block, but leaving them all out defeats
the Try block ’ s purpose. If the try_statements raise an error, the program doesn ’ t have any error
code to execute, so it sends the error up the call stack. Eventually, the program fi nds an active error
handler or the error pops off the top of the stack and the program crashes. You may as well not
bother with the Try block if you aren ’ t going to use any Catch sections.

A Try block must include at least one Catch or Finally section, although those sections do not need
to contain any code. For example, the following Try block calls subroutine DoSomething and uses
an empty Catch section to ignore any errors that occur:

Try
 DoSomething()
Catch
End Try

Using an empty Finally section is legal but not terribly useful. The following code doesn ’ t protect
the program from any exceptions and doesn ’ t do anything in the Finally block. You may as well just
omit the Try block.

Try
 DoSomething()
Finally
End Try

Example program ThrowError, which is available for download on the book ’ s web site, shows how
a program can use a Try Catch block to handle errors.

Exception Objects

When a Catch statement catches an exception, its exception variable contains information about the
error that raised the exception. Different exception classes may provide different features, but they
all provide the basic features defi ned by the Exception class from which they are all derived. The
following table lists the most commonly used Exception class properties and methods.

c19.indd 404c19.indd 404 12/30/09 7:08:04 PM12/30/09 7:08:04 PM

ITEM PURPOSE

InnerException The exception that caused the current exception. For example, suppose

that you write a tool library that catches an exception and then throws a

new custom exception describing the problem in terms of your library. You

should set InnerException to the exception that you caught before you

throw the new exception.

Message Returns a brief message that describes the exception.

Source Returns the name of the application or object that threw the exception.

StackTrace Returns a string containing a stack trace giving the program ’ s location

when the error occurred.

TargetSite Returns the name of the method that threw the exception.

ToString Returns a string describing the exception and including the stack trace.

Example program ShowExceptionInfo, which is available for download on the book ’ s web site,
displays an exception ’ s Message, StackTrace, and ToString values.

At a minimum, the program should log or display the Message value for any unexpected exceptions
so you know what exception occurred. It might also log the StackTrace or the result of ToString so
you can see where the exception occurred.

The following text shows the results of the ToString method produced by a DivideByZeroException
exception object:

System.DivideByZeroException: Attempted to divide by zero.
 at ShowExceptionInfo.Form1.CheckVacationPay() in C:\Documents and
Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 25
 at ShowExceptionInfo.Form1.CalculateEmployeeSalaries() in C:\Documents and
Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 18
 at ShowExceptionInfo.Form1.btnCalculate_Click(Object sender, EventArgs e) in
C:\Documents and Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 5

The StackTrace and ToString values can help developers fi nd a bug, but they can be intimidating
to end users. Even the abbreviated format used by the exception ’ s Message property is usually
not very useful to a user. When the user clicks the “ Find Outstanding Invoices ” button, the
message “ Attempted to divide by zero ” doesn ’ t really tell the user what the problem is or what to
do about it.

Structured Error Handling ❘ 405

c19.indd 405c19.indd 405 12/30/09 7:08:06 PM12/30/09 7:08:06 PM

406 ❘ CHAPTER 19 ERROR HANDLING

When a program catches an error, a good strategy is to record the full ToString message in a log
fi le or e - mail it to a developer. Then display a message that restates the error message in terms
that the user can understand. For example, the program might say the following: “ Unable to
total outstanding invoices. A bug report has been sent to the development team. ” The program
should then try to continue as gracefully as possible. It may not be able to fi nish this
calculation, but it should not crash, and it should allow the user to continue working on other
tasks if possible.

StackTrace Objects

An exception object ’ s ToString and StackTrace methods return textual representations of the
program ’ s stack trace. Your code can also use StackTrace objects to examine the program ’ s
execution position without generating an error.

The following code shows how a program can display a simple stack trace in the Immediate
window:

Imports System.Diagnostics
...
Dim stack_trace As New System.Diagnostics.StackTrace(True)
Debug.WriteLine(stack_trave.ToString())

The StackTrace class also provides methods for exploring call frames in the stack. The FrameCount
property and the GetFrame and GetFrames methods give you access to StackFrame objects
representing the frames. StackFrame objects provide some additional detail not listed by the
StackTrace object ’ s ToString method such as each code ’ s fi le name, line number, and column
number. Example program ClimbStackTrace, which is available for download on the book ’ s web
site, shows how a program can climb through the layers of a stack trace and display information
about each call level.

Throwing Exceptions

In addition to catching exceptions, your program may need to generate its own exceptions. Because
handling an exception is called catching it, raising an exception is called throwing it. (This is just a
silly pun. People also catch lions and colds, but I don ’ t think many people throw them. It ’ s as good a
term as any, however.)

To throw an error, the program creates an instance of the type of exception it wants to generate,
passing the constructor additional information describing the problem. The program can set other
exception fi elds if you like. For example, it might set the exception ’ s Source property to tell any
other code that catches the error where it originated. The program then uses the Throw statement to
raise the error. If an error handler is active somewhere in the call stack, Visual Basic jumps to that
point and the error handler processes the exception.

Example program DrawableRect, which is available for download on the book ’ s web site, uses the
following code to show how the DrawableRectangle class can protect itself against invalid input:

c19.indd 406c19.indd 406 12/30/09 7:08:06 PM12/30/09 7:08:06 PM

Public Class DrawableRectangle
 Public Sub New(ByVal new_x As Integer, ByVal new_y As Integer,
 ByVal new_width As Integer, ByVal new_height As Integer)
 ' Verify that new_width > 0.
 If new_width < = 0 Then
 Dim ex As New ArgumentException(
 "DrawableRectangle must have a width greater than zero",
 "new_width")
 Throw ex
 End If

 ' Verify that new_height > 0.
 If new_height < = 0 Then
 Throw New ArgumentException(
 "DrawableRectangle must have a height greater than zero",
 "new_height")
 End If
 ' Save the parameter values.
 ...
 End Sub
 ...
End Class

code snippet DrawableRect

The class ’ s constructor takes four arguments: an X and Y position, and a width and height. If the
width is less than or equal to zero, the program creates a new ArgumentException object. It passes
the exception ’ s constructor a description string and the name of the argument that is invalid. After
creating the exception object, the program uses the Throw statement to raise the error. The code
checks the object ’ s new height similarly, but it creates and throws the exception in a single statement
to demonstrate another style for throwing an error.

The following code shows how a program might use a Try block to protect itself while creating a
new DrawableRectangle object:

Try
 Dim rect As New DrawableRectangle(10, 20, 0, 100)
Catch ex As Exception
 MessageBox.Show(ex.Message)
End Try

When your application needs to throw an exception, it ’ s easiest to use an existing exception class.
There are a few ways to get lists of exception classes so that you can fi nd one that makes sense for
your application. First, Appendix O, “ Useful Exception Classes, ” lists some of the more useful
exception classes. The online help topic, “ Introduction to Exception Handling in Visual Basic
.NET ” at msdn.microsoft.com/aa289505.aspx also has a good list of exception classes at the end.
Microsoft ’ s web page msdn.microsoft.com/system.exception_derivedtypelist.aspx provides
a very long list of exception classes that are derived from the System.Exception class.

Structured Error Handling ❘ 407

c19.indd 407c19.indd 407 12/30/09 7:08:07 PM12/30/09 7:08:07 PM

408 ❘ CHAPTER 19 ERROR HANDLING

Another method for fi nding exception classes is to open the Object Browser (select the View menu ’ s
Object Browser command) and search for “ Exception. ” Figure 19 - 2 shows the Object Browser
displaying roughly 400 matches, many of which are exception classes. The System.FormatException
class is selected, so the Object Browser is showing that class ’ s description.

FIGURE 19-2: You can use the Object Browser to fi nd exception classes.

When you throw exceptions, you must use your judgment about selecting these classes. For
example, Visual Basic uses the System.Refl ection.AmbiguousMatchException class when it tries to
bind a subroutine call to an object ’ s method, and it cannot determine which overloaded method
to use. This happens at a lower level than your program will act, so you won ’ t use that class for
exactly the same purpose. It may be useful, for example, if your routine parses a string and, based
on the string, cannot decide what action to take. In that case, you might use this class to represent
the error, even though you ’ re not using it exactly as it was originally intended.

Be sure to use the most specifi c exception class possible. Using more generic classes such as
Exception makes it much harder for developers to understand and locate an error. If you cannot fi nd
a good, specifi c fi t, create your own exception class as described in the section “ Custom Exceptions ”
later in this chapter.

Before you use one of these classes, look it up in the online help to make sure that it fi ts your
purpose. If there ’ s no good fi t, you can always create your own as described in the following section,
“ Custom Exceptions. ”

Specialized classes and libraries sometimes have their own particular exception classes. For
example, serialization and cryptographic objects have their own sets of exception classes that
make sense within their own domains. Usually, these are fairly specialized, so you won ’ t need to

c19.indd 408c19.indd 408 12/30/09 7:08:08 PM12/30/09 7:08:08 PM

throw them in your program unless you are re - raising an error you received from a serialization or
cryptographic object.

Re - throwing Exceptions

Sometimes when you catch an exception, you cannot completely handle the problem. In that case, it
may make sense to re - throw the exception so call higher up in the call stack can take a crack at it.

To re - throw an error exactly as you caught it, simply use the Throw keyword as in the following
example.

Try
 ' Do something hard here.
 ...

Catch ex As ArithmeticException
 ' We can handle this exception. Fix it.
 ...

Catch ex As Exception
 ' We don't know what to do with this one. Re-throw it.
 Throw
End Try

If your code can fi gure out more or less why an error is happening but it cannot fi x it, it ’ s often a
good idea to re - throw the error as a different exception type. For example, suppose a piece of code
causes an ArithmeticException but the underlying cause of the exception is an invalid argument. In
that case it is better to throw an ArgumentException instead of an ArithmeticException because
that will provide more specifi c information higher up in the call stack.

At the same time, however, you don ’ t want to lose the information contained in the original
ArithmeticException.

The solution is to throw a new ArgumentException but place the original ArithmeticException
in its InnerException property so code that catches the new exception has access to the original
information.

The following code demonstrates this technique:

Try
 ' Do something hard here.
 ...

Catch ex As ArithmeticException
 ' This was caused by an invalid argument.
 ' Re-throw it as an ArgumentException.
 Throw New ArgumentException("Invalid argument X in function Whatever.", ex)

Catch ex As Exception
 ' We don't know what to do with this one. Re-throw it.
 Throw
End Try

Structured Error Handling ❘ 409

c19.indd 409c19.indd 409 12/30/09 7:08:09 PM12/30/09 7:08:09 PM

410 ❘ CHAPTER 19 ERROR HANDLING

Custom Exceptions

When your application needs to raise an exception, it ’ s easiest to use an existing exception class.
Reusing existing exception classes makes it easier for developers to understand what the exception
means. It also prevents exception proliferation, where the developer needs to watch for dozens or
hundreds of types of exceptions.

Sometimes, however, the predefi ned exceptions don ’ t fi t your needs. For example, suppose that you
build a class that contains data that may exist for a long time. If the program tries to use an object
that has not refreshed its data for a while, you want to raise some sort of “ data expired ” exception.
You could squeeze this into the System.TimeoutException class, but that exception doesn ’ t quite fi t
this use. The Expired class is a better fi t, but it ’ s part of the System.Net.Cookie namespace. Using
it would require your application to include the System.Net.Cookie namespace just to defi ne the
exception class, even if the program has nothing to do with cookies. In this case, it would probably
be better to create your own exception class.

Building a custom exception class is easy. Make a new class that inherits from the System.
ApplicationException class. Then, provide constructor methods to let the program create instances
of the class. That ’ s all there is to it.

By convention, an exception class ’ s name should end with the word Exception. Also by convention,
you should provide at least three overloaded constructors for developers to use when creating new
instances of the class. (For more information on what constructors are and how to defi ne them, see
the section “ Class Instantiation Details ” in Chapter 26, “ Classes and Structures. ”)

The fi rst constructor takes no parameters and initializes the exception with a default message
describing the general type of error.

The other two versions take as parameters an error message, and an error message plus an inner
exception object. These constructors pass their parameters to the base class ’ s constructors to
initialize the object appropriately.

For completeness, you can also make a constructor that takes as parameters a SerializationInfo
object and a StreamingContext object. This version can also pass its parameters to a base class
constructor to initialize the exception object, so you don ’ t need to do anything special with the
parameters. This constructor is useful if the exception will be serialized and deserialized. If you ’ re
not sure whether you need this constructor, you probably don ’ t. If you do include it, however, you
will need to import the System.Runtime.Serialization namespace in the exception class ’ s fi le to
defi ne the SerializationInfo and StreamingContext classes.

Example program CustomException uses the following code to defi ne the ObjectExpiredException
class:

Imports System.Runtime.Serialization

Public Class ObjectExpiredException
 Inherits System.ApplicationException

 ' No parameters. Use a default message.

c19.indd 410c19.indd 410 12/30/09 7:08:09 PM12/30/09 7:08:09 PM

 Public Sub New()
 MyBase.New("This object has expired")
 End Sub

 ' Set the message.
 Public Sub New(ByVal new_message As String)
 MyBase.New(new_message)
 End Sub

 ' Set the message and inner exception.
 Public Sub New(ByVal new_message As String,
 ByVal inner_exception As Exception)
 MyBase.New(new_message, inner_exception)
 End Sub

 ' Include SerializationInfo object and StreamingContext objects.
 Public Sub New(ByVal info As SerializationInfo,
 ByVal context As StreamingContext)
 MyBase.New(info, context)
 End Sub
End Class

code snippet CustomException

After you have defi ned the exception class, you can throw and catch it just as you can throw and
catch any exception class defi ned by Visual Basic. For example, the following code throws an
ObjectExpiredException error:

Throw New ObjectExpiredException("This Customer object has expired.")

The parent class System.ApplicationException automatically handles the object ’ s Message,
StackTrace, and ToString properties so you don ’ t need to implement them yourself.

VISUAL BASIC CLASSIC ERROR HANDLING

Structured error handling using the Try block is a relatively recent innovation, appearing in
the fi rst versions of Visual Basic .NET. Visual Basic 6 and earlier versions used a more line -
oriented syntax sometimes called Visual Basic Classic Error Handling. Although the Try
block is generally preferred, you can still use classic error handling in your Visual Basic .NET
applications. In fact, you can use both styles in the same program, although not in the same
routine. The section “ Structured versus Classic Error Handling ” later in this chapter discusses
the pros and cons of each.

A classic error handler begins with an On Error statement that tells Visual Basic what it should do
if it encounters an error. This statement can take one of four forms: On Error GoTo line, On Error
Resume Next, On Error GoTo 0, and On Error GoTo – 1.

Visual Basic Classic Error Handling ❘ 411

c19.indd 411c19.indd 411 12/30/09 7:08:10 PM12/30/09 7:08:10 PM

412 ❘ CHAPTER 19 ERROR HANDLING

CLASSIC CATCHES

Example program ClassicErrorHandling, which is available for download on the
book ’ s web site, demonstrates many of the concepts described in the following
sections.

On Error GoTo Line

After the On Error GoTo line statement, if Visual Basic encounters an error, it enters error - handling
mode and jumps to the indicated line. The error handler that begins at the indicated line can take
whatever action is appropriate.

The following code executes the statement On Error GoTo LoadPayrollError and then
calls subroutine LoadPayrollFile . If that routine causes an error, Visual Basic jumps to the
line labeled LoadPayrollError . The error - handling code displays a message and exits the
subroutine. The program then executes the statement On Error GoTo PrintPaychecksError
and calls the PrintPaychecks routine. If that routine throws an error, the code starting at the
PrintPaychecksError label executes. After it has fi nished its work, the routine uses an Exit Sub
statement to end without falling into the error - handling code that follows.

Private Sub ProcessPayroll()
 ' Load the payroll file.
 On Error GoTo LoadPayrollError
 LoadPayrollFile()

 On Error GoTo PrintPaychecksError
 ' Print paychecks.
 PrintPaychecks()

 ' We're done.
 Exit Sub

LoadPayrollError:
 MessageBox.Show("Error loading the payroll file.")
 Exit Sub

PrintPaychecksError:
 MessageBox.Show("Error printing paychecks.")
 Exit Sub
End Sub

The program can leave error - handling mode using the statements Exit Sub, Exit Function, Exit
Property, Resume, or Resume Next.

An Exit Sub, Exit Function, or Exit Property statement makes the program immediately leave the
routine in which the error occurred, and that ’ s the end of error - handling mode for this error.

c19.indd 412c19.indd 412 12/30/09 7:08:11 PM12/30/09 7:08:11 PM

The Resume statement makes the program resume execution with the statement that caused the
error. If the problem has not been fi xed, the error will occur again and the program may enter
an infi nite loop. You should use the Resume statement only if there is a chance that the error has
been fi xed. For example, if the program tries to read from a fl oppy disk and the drive is empty, the
program could ask the user to insert the disk and then it could try to read the disk again.

The Resume Next statement makes the program resume execution with the statement after the one
that caused the error. This statement is appropriate when the program cannot fi x the problem but
should continue anyway. For example, suppose that a program fails to read a value from a fi le. It
might want to continue anyway so that it can close the fi le in the next statement.

On Error Resume Next

After the On Error Resume Next statement, if Visual Basic encounters an error, it skips the
statement that caused the error and resumes execution with the following statement. If the program
doesn ’ t care whether the statement completed, On Error Resume Next lets it continue without
checking for errors.

If the program needs to take action when an error occurs, it can use the Err object to check for
errors after each statement. For example, the following code uses the On Error Resume Next
statement and then calls subroutine DoSomething . When the subroutine returns, the program
checks the Err object ’ s Number property to see if an error occurred. If there is an error, the program
displays a message and exits the subroutine. If subroutine DoSomething did not cause an error, the
program calls subroutine DoSomethingElse and performs a similar check for errors.

On Error Resume Next
DoSomething()
If Err.Number < > 0 Then
 MessageBox.Show("Error in DoSomething")
 Exit Sub
End If

DoSomethingElse()
If Err.Number < > 0 Then
 MessageBox.Show("Error in DoSomethingElse")
 Exit Sub
End If
 ...

A program can also use this statement to check for different kinds of errors and take appropriate
action. The following example takes no special action if there is no error. If Err.Number is 11, the
program tried to divide by zero. In that case, the code sets variable X to a default value. If there is
some other error, the program tells the user and exits the subroutine.

‘ Try to calculate X.
On Error Resume Next
X = CalculateValue()

Visual Basic Classic Error Handling ❘ 413

c19.indd 413c19.indd 413 12/30/09 7:08:12 PM12/30/09 7:08:12 PM

414 ❘ CHAPTER 19 ERROR HANDLING

Select Case Err.Number
 Case 0 ' No error. Do nothing.
 Case 11 ' Divide by zero. Set a default value.
 X = 1000
 Case Else ' Unexpected error. Tell the user.
 MessageBox.Show("Error calculating X." & vbCrLf & Err.Description)
 Exit Sub
End Select
 ...

On Error GoTo 0

The On Error GoTo 0 statement disables any active error handler. You should deactivate an error
handler when it no longer applies to what the program is doing. The following code installs an
error handler while it loads some data. When it is fi nished loading the data, it uses On Error GoTo 0
to deactivate the error handler before it performs other tasks.

 On Error GoTo LoadDataError
 ' Load the data.
 ...
 ' Done loading data.
 On Error GoTo 0
 ...
 Exit Sub

LoadDataError:
 MessageBox.Show("Error loading data." & vbCrLf & Err.Description)
 Exit Sub
End Sub

Deactivating the error handler stops the program from taking inappropriate action for an error. In
the preceding example, it might confuse the user to say there was an error loading data when the
program was doing something else. In other cases, the program might incorrectly try to fi x problems
that are not there if you leave an old error handler installed. For example, the program might
ask the user to insert a fl oppy disk when it had already fi nished reading from the disk.

Deactivating old error handlers also lets the program fail if an unexpected error occurs. That lets
developers discover and handle new types of failure, possibly by adding a new error handler.

On Error GoTo – 1

The On Error GoTo – 1 statement is very similar to On Error GoTo 0. It deactivates any active
error handler. However, it also ends error - handling mode if it is running. Example program
OnErrorGoToMinus1 uses the following code to show the difference:

c19.indd 414c19.indd 414 12/30/09 7:08:12 PM12/30/09 7:08:12 PM

Dim i As Integer
Dim j As Integer = 0

 On Error GoTo DivideError1
 i = 1 \ j ' This raises an error.

DivideError1: ' We enter error-handling mode here.
 On Error GoTo -1 ' This ends error-handling mode.
 On Error Resume Next ' Ignore errors in the future.
 i = 1 \ j ' This error is ignored.
 Exit Sub

 On Error GoTo DivideError2
 i = 1 \ j ' This raises an error.
 Exit Sub

DivideError2: ' We enter error-handling mode here.
 On Error GoTo 0 ' This does NOT end error-handling mode.
 On Error Resume Next ' Doesn't work in error-handling mode.
 i = 1 \ j ' This error is not caught and crashes the program.
 Exit Sub

code snippet OnErrorGoToMinus1

The program uses On Error GoTo DivideError1 to install an error handler and then executes a
command that causes a divide - by - zero error.

The error - handling code uses On Error GoTo - 1 to end error - handling mode and continue
execution. It then calls On Error Resume Next to ignore further errors and performs another
calculation that divides by zero. Because the On Error Resume Next statement is in effect, the
program ignores this error.

Next, the code uses On Error GoTo DivideError2 to install another error handler. It divides by
zero again to jump to the error handler and enter error - handling mode.

This time, the error handler uses the On Error GoTo 0 statement. This uninstalls the current error
handler (On Error GoTo DivideError2) but does not end error - handling mode. The program
then uses the On Error Resume Next statement. Unfortunately, this statement is ignored while the
program is running in error - handling mode. If the program used a Resume statement to exit error -
handling mode, this statement would then have an effect, but it does nothing until error - handling
mode ends. Now, when the program divides by zero again, there is no active error handler, so the
program crashes.

To avoid confusion, you should not use this style of error handling with error - handling code
running through the body of a routine. Instead, place error - handling code at the end of the routine
and use Exit Sub, Exit Function, Exit Property, Resume, or Resume Next to return to the routine ’ s
main body of code. The On Error GoTo - 1 statement is usually more confusing than it ’ s worth.

Visual Basic Classic Error Handling ❘ 415

c19.indd 415c19.indd 415 12/30/09 7:08:13 PM12/30/09 7:08:13 PM

416 ❘ CHAPTER 19 ERROR HANDLING

Error - Handling Mode

Undoubtedly, the most confusing part of classic error handling is error - handling mode. The On
Error GoTo line statement makes the program enter a special error - handling mode that remains in
effect until the error handler calls Exit Sub, Exit Function, Exit Property, Resume, Resume Next, or
On Error GoTo - 1.

While in error - handling mode, most other error - handling statements do not work as they normally
do. Generally, their effects only take place when error - handling mode fi nally ends. In the example
in the previous section, the fi nal On Error Resume Next statement has no effect because it executes
while the program is in error handling mode.

Trying to execute error - handling statements within error handling mode is one of the most common
mistakes programmers make when working with error - handling mode. The error - handling code
must be safe, or the program will crash (or at least the error will propagate up to the calling
routine).

If you really need to perform operations that might crash within the error handler ’ s code, move
that code into a subroutine. That routine can use its own error - handling code to protect itself
from another error. The following example demonstrates this approach. The SetDefaultValue
subroutine uses its own On Error Resume Next statement to avoid crashing if it has problems of
its own.

Private i, j As Integer

Private Sub PerformCalculation()
 On Error GoTo EquationError
 i = 1 \ j
 Exit Sub

EquationError:
 SetDefaultValue()
 Resume Next
End Sub

Private Sub SetDefaultValue()
 On Error Resume Next
 i = 2 \ j
End Sub

STRUCTURED VERSUS CLASSIC ERROR HANDLING

The newer structured error - handling approach provided by the Try statement has several advantages
over classic error handling. First, classic error handling doesn ’ t make it immediately obvious
whether a piece of code is protected by an error handler. To determine whether a statement is
protected, you must look back through the code until you fi nd an On Error statement. If you come
to a labeled line, you also must track down any places where a GoTo or a Resume line statement
could jump to that line and see what error handler might be installed at the time.

c19.indd 416c19.indd 416 12/30/09 7:08:13 PM12/30/09 7:08:13 PM

Classic error handling also doesn ’ t make it obvious whether the code is running in error - handling
mode. In some cases, it is impossible to tell until runtime. The following code uses an On Error
GoTo statement to protect itself and then initializes an integer from a value that the user enters
in a text box. If the user enters a valid integer, the code works normally and keeps running in
normal (not error - handling) mode. If the user enters a value that is not a valid integer, the program
jumps to the label BadFormat and enters error - handling mode. There ’ s no way to tell before
runtime whether the program will be in error - handling mode when it reaches the following
comment.

 Dim i As Integer
 On Error GoTo BadFormat
 i = CInt(txtNumber.Text)
BadFormat:
 ' Are we in error-handling mode here?
 ...

Finally, you cannot nest classic error - handling code. If you must perform a risky action in an error
handler, you must place the code in a separate subroutine that contains its own error - handling code
to protect itself.

Structured error handling addresses these shortcomings. By looking at the enclosing Try or Catch
block, you can easily tell whether a line of code is protected (inside the Try block) or part of an error
handler (in the Catch block).

You can even nest Try statements, as shown in the following code. The program tries to initialize an
integer from a value that the user entered in a text box. If the user enters an invalid value, the code
moves into the fi rst Catch block. There it tries to set the value of the integer using a calculation. If
that calculation fails (for example, if j is 0), the next Catch block sets the variable to a default value.

 ' Get the user's value.
Try
 i = Integer.Parse(txtNumber.Text)
Catch ex As Exception
 ' The user's value is no good.
 ' Calculate a different value.
 Try
 i = 1 \ j
 Catch ex2 As Exception
 ' The calculated value is no good.
 ' Use a default value.
 i = 3
 End Try
End Try

Finally, the Try block doesn ’ t have a bewildering error - handling mode. The potential for confusion
there alone is probably worth using structured error handling.

Structured versus Classic Error Handling ❘ 417

c19.indd 417c19.indd 417 12/30/09 7:08:14 PM12/30/09 7:08:14 PM

418 ❘ CHAPTER 19 ERROR HANDLING

One of the few advantages to classic error handling is that it is easier to ignore errors by using the
On Error Resume Next statement. The following code uses classic error handling to execute three
subroutines and ignore any errors they produce:

On Error Resume Next
DoSomething()
DoSomethingElse()
DoSomethingMore()
...

The following version shows the same code using structured error handling. This version is quite a
bit more verbose and much less readable.

Try
 DoSomething()
Catch
End Try

Try
 DoSomethingElse()
Catch
End Try

Try
 DoSomethingMore()
Catch
End Try
...

THE ERR OBJECT

When an error occurs, Visual Basic initializes an object named Err. You can use this object ’ s
properties to learn more about the error. These properties correspond to those provided by the
exception objects used by the Try statement ’ s Catch sections. The following table lists these
properties.

PROPERTY PURPOSE

Description A message describing the error.

Erl The line number at which the error occurred.

HelpContext The help context ID for the error.

HelpFile The full path to the help fi le describing the error.

LastDLLError A system error code generated by a call to a DLL (if appropriate).

Number The error number. The value 0 means no error has occurred.

Source The name of the object or application that caused the error.

c19.indd 418c19.indd 418 12/30/09 7:08:14 PM12/30/09 7:08:14 PM

The Err object also provides three useful methods for working with errors: Clear, Raise, and
GetException. The Clear method clears the object ’ s information and resets it for the next statement.
If the statement following an error does not raise an error itself, the Err object may still show the
previous error unless you clear it, as shown in the following code:

On Error Resume Next
X = Single.Parse(txtX.Text)
If Err.Number < > 0 Then
 MessageBox.Show(Err.Description) ' Display the error.
 Err.Clear ' Clear the error.
End If

Y = Single.Parse(txtY.Text)
If Err.Number < > 0 Then
 MessageBox.Show(Err.Description) ' Display the error.
 Err.Clear ' Clear the error.
End If
...

The Err object ’ s Raise method generates an error. For example, the following statement raises error
number 5, “ Procedure call or argument is invalid ” :

Err.Raise(5)

Finally, the GetException method returns an Exception object representing the Err object ’ s error.
You can use this object just as you can use any other exception object. In particular, you can use its
StackTrace property to get a trace showing where the error occurred.

If you use classic error handling, you can use the Err object to learn about the error. If you use
structured error handling with the Try statement, you can use the Exception objects provided by
Catch statements, and you can do without the Err object.

DEBUGGING

Visual Basic provides a rich set of tools for debugging an application. Using the development
environment, you can stop the program at different lines of code and examine variables, change
variable values, look at the call stack, and call routines to exercise different pieces of the application.
You can step through the program, executing the code one statement at a time to see what it
is doing. You can even make some modifi cations to the source code and let the program
continue running.

Chapter 7, “ Debugging, ” describes tools that the development environment provides to help you
debug an application. These include tools for stepping through the code, breakpoints, and windows
such as the Immediate, Locals, and Call Stack windows. See Chapter 7 for details.

In addition to setting breakpoints in the code, you can use the Stop statement to pause execution at
a particular line. This can be particularly useful for detecting unexpected values during testing. For

Debugging ❘ 419

c19.indd 419c19.indd 419 12/30/09 7:08:15 PM12/30/09 7:08:15 PM

420 ❘ CHAPTER 19 ERROR HANDLING

example, the following statement stops execution if the variable m_NumEmployees is less than 1 or
greater than 100:

If (m_NumEmployees < 1) Or (m_NumEmployees > 100) Then Stop

SUMMARY

In practice, it ’ s extremely diffi cult to anticipate every condition that can occur within a large
application. You should try to predict as many incorrect situations as possible, but you should also
plan for unforeseen errors. You should write error - checking code that makes bugs obvious when
they occur and recovers from them if possible. You may not be able to anticipate every possible bug,
but with a little thought you can make the program detect and report obviously incorrect values.

You should also look for unplanned conditions (such as the user entering a phone number in a
Social Security number fi eld) and make the program react gracefully. Your program cannot control
everything in its environment (such as the user ’ s actions, printer status, and network connectivity),
but it should be prepared to act when things aren ’ t exactly the way they should be.

When you do encounter an error, you can use tools such as breakpoints, watches, and the
development environment ’ s Locals, Auto, Immediate, and Call Stack windows to fi gure out where
the problem begins and how to fi x it. You may never be able to remove every last bug from a
100,000 - line program, but you can make any remaining bugs appear so rarely that the users can do
their jobs in relative safety.

Chapters 8 through 13 focus on controls, forms, and other user interface objects. Chapters 14 through
18 move the focus to the code that lies behind the user interface. Chapter 20, “ Database Controls
and Objects, ” covers database topics that fall into both the user interface and non - user interface
categories. It describes database controls that you can use to build an application ’ s user interface as
well as components and other objects that you can use behind the scenes to manipulate databases.

c19.indd 420c19.indd 420 12/30/09 7:08:15 PM12/30/09 7:08:15 PM

20
Database Controls and Objects

The Windows Forms controls described in Chapter 8, “ Selecting Windows Forms Controls, ”
allow the application and the user to communicate. They let the application display data to the
user, and they let the user control the application.

Visual Basic ’ s database controls play roughly the same role between the application and a
database. They move data from the database to the application, and they allow the application
to send data back to the database.

Database programming is an enormous topic, and many books have been written that focus
exclusively on database programming. This is such a huge fi eld that no general Visual Basic
book can adequately cover it in any real depth. However, database programming is also a very
important topic, and every Visual Basic programmer should know at least something about
using databases in applications.

This chapter explains how to build data sources and use drag - and - drop tasks to create simple
table - and record - oriented displays. It also explains the most useful controls and objects that
Visual Basic provides for working with databases. Although this chapter is far from the end of
the story, it will help you get started building basic database applications.

Note that the example programs described in this chapter refer to database
locations as they are set up on my test computer. If you download them from
the book’s web site (www.vb-helper.com/vb_prog_ref.htm), you will have to
modify many of them to work with the database locations on your computer.

AUTOMATICALLY CONNECTING TO DATA

Visual Studio provides tools that make getting started with databases remarkably easy.
Although the process is relatively straightforward, it does involve a lot of steps. The steps also
allow several variations, so describing every possible way to build a database connection takes

c20.indd 421c20.indd 421 12/30/09 7:09:06 PM12/30/09 7:09:06 PM

422 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

a long time. To make the process more manageable, the following two sections group the steps in
two pieces: connecting to the data source and adding data controls to the form.

Connecting to the Data Source

To build a simple database program, start a new application and select the Data menu ’ s Add New
Data Source command to display the Data Source Confi guration Wizard shown in Figure 20 - 1.

FIGURE 20-1: Select the data source type for a new

connection.

Visual Studio allows you to use databases, web services, and objects as data sources for your
application. The most straightforward choice is Database.

Select the type of data source you want add and click Next to select a data model on the page shown
in Figure 20 - 2.

FIGURE 20-2: Pick the type of data model you want to use.

c20.indd 422c20.indd 422 12/30/09 7:09:10 PM12/30/09 7:09:10 PM

FIGURE 20-3: Pick the data connection or click New

Connection to create a new one.

Select the type of data model that you want to use (this example assumes you pick Dataset) and click
Next to select a data connection on the page shown in Figure 20-3.

FIGURE 20-4: Select the data source type for a new

connection.

Automatically Connecting to Data ❘ 423

If you have previously created data connections, you can select one from the drop - down list. If you
have not created any data connections, click the New Connection button to open the Choose Data
Source dialog shown in Figure 20 - 4. This dialog lets you pick the type of data source you will use.
For example, you can use it to select Microsoft Access databases, ODBC data sources, Microsoft
SQL Server, and Oracle databases.

c20.indd 423c20.indd 423 12/30/09 7:09:11 PM12/30/09 7:09:11 PM

424 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

DOWNLOADING DATABASES

You don’t need to have Access to use an Access database in Visual Basic. However,
if you want to give Access a try, you can download a 60-day trial version at
us20.trymicrosoftoffice.com.

Another popular database choice is SQL Server. You can download the free
Express Edition at www.microsoft.com/express/sql.

You can also download the open source MySQL database at www.mysql.com.

If the dialog shown in Figure 20-5 appears fi rst, you can skip the dialog in
Figure 20-4 as long as it has selected the correct data source type. If you want to
change the data source, click the Change button shown in Figure 20-5 to open
the dialog shown in Figure 20-4.

After you select a data source type, the drop - down lists
available providers for that type. The data provider acts as a
bridge between the application and the data source, providing
methods to move data between the two. Pick a provider and
click Continue to show the dialog in
Figure 20 - 5.

Depending on the type of database you selected in
Figure 20 - 4, this dialog box may not look exactly
like Figure 20 - 5. For example, if you selected the SQL Server
database type, the Add Connection dialog asks
for a data source and server name rather than a database fi le
name.

Enter the necessary data in the Add Connection dialog
box. For a SQL Server database, select the server name,
authentication method, database name, and other information.
For a Microsoft Access database, enter the fi le name or click
the Browse button shown in
Figure 20 - 5 and fi nd the database fi le. Enter a user name and password if necessary.

After you enter all of the required information, click the Test Connection button to see if the wizard
can open the database. If the test fails, recheck the database path (if the database is on a network,
make sure the network connection is available), user name, and password and try again.

Once you can test the database connection, click OK.

When you return to the Data Source Confi guration Wizard shown in Figure 20 - 3, the new
connection should be selected in the drop - down list. If you click the plus sign next to the

FIGURE 20-5: Use the Add Connection

dialog box to create a data connection.

c20.indd 424c20.indd 424 12/30/09 7:09:11 PM12/30/09 7:09:11 PM

“ Connection string ” label, the wizard shows the connection information it will use to connect the
data source to the database. For example, this information might look like the following:

Provider=Microsoft.Jet.OLEDB.4.0;
DataSource=|DataDirectory|\ClassRecords.mdb

When you click Next, the wizard tells you that you have selected a local database fi le that is not part
of the project and it asks if you want to add it to the project. If you click Yes, the wizard adds the
database to the project so it shows up in Project Explorer. If you plan to distribute the database with
the application, you may want to do this to make it easier to manage the database and the Visual
Basic source code together.

Next, the wizard asks whether you want to save the connection string in the project ’ s confi guration
fi le. If you leave this check box selected, the wizard adds the confi guration string to the project ’ s
app.confi g fi le.

The following shows the part of the confi guration fi le containing the connection string:

< connectionStrings >
 < add name="StudentTest.My.MySettings.ClassRecordsConnectionString"
connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=|DataDirectory|\ClassRecords.mdb; Persist Security Info=True;
Jet OLEDB:Database Password=MyPassword" providerName="System.Data.OleDb" / >
< /connectionStrings >

Later, the program uses the Settings.Default.ClassRecordsConnectionString values to get this value
and connect to the database. You can easily make the program connect to another data source by
changing this confi guration setting and then restarting the application.

You should never save real database passwords in the confi guration fi le. The
fi le is stored in plain text and anyone can read it. If you need to use a password,
store a connection string that contains a placeholder for the real password.
At runtime, load the connection string and replace the placeholder with a real
password entered by the user.

Adding Data Controls to the Form

At this point you have defi ned the basic connection to the database. Visual Studio knows where
the database is and how to build an appropriate connection string to open it. Now you must decide
what data to pull out of the database and how to display it on the form.

Click Next to display the dialog box shown in Figure 20 - 6. This page shows the objects available in
the database. In this example, the database contains two tables named Students and TestScores. By
clicking the plus signs next to the objects, you can expand them to see what they contain. In
Figure 20 - 6, the tables are expanded so you can see the fi elds they contain.

Automatically Connecting to Data ❘ 425

c20.indd 425c20.indd 425 12/30/09 7:09:14 PM12/30/09 7:09:14 PM

426 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

FIGURE 20-6: Select the database objects that you want

included in the data source.

Select the database objects that you want to include in the data source. In Figure 20 - 6, both of the
tables are selected.

When you click Finish, the wizard adds a couple objects to the application. The Solution Explorer,
(which lists all of the solution ’ s fi les, now lists the new fi le ClassRecordsDataSet.xsd. This is a
schema defi nition fi le that describes the data source.

When you double - click the schema fi le, Visual Basic opens it in the editor shown in Figure 20 - 7.
This display shows the tables defi ned by the schema and their fi elds.

FIGURE 20-7: The Schema Editor shows the tables defi ned by

the schema and their relationships.

c20.indd 426c20.indd 426 12/30/09 7:09:15 PM12/30/09 7:09:15 PM

The line between the fi les with the little key on the left and the infi nity symbol on the right indicates
that the tables are joined by a one - to - many relationship. In this example, the Students.StudentId
fi eld and TestScores.StudentId fi eld form a foreign key relationship. That means every StudentId
value in the TestScores table must correspond to some StudentId value in the Students table. When
you double - click the relationship link or right - click it and select Edit Relation, the editor displays
the dialog box shown in Figure 20 - 8. You can use this editor to modify the relation.

FIGURE 20-8: Use this dialog box to edit relationships

among data source tables.

At the bottom of the tables shown in Figure 20 - 7, you can see two table
adapter objects containing the labels Fill, GetData(). These represent
data adapter objects that the program will later use to move data from
and to the data source.

In addition to adding the schema fi le to Solution Explorer,
the Data Source Confi guration Wizard also added a new DataSet object
to the Data Sources window shown in Figure 20 - 9.
(If this window is not visible, select the Data menu ’ s Show Data Sources
command.) FIGURE 20-9: The Data

Sources window lists the

new data source.

Automatically Connecting to Data ❘ 427

c20.indd 427c20.indd 427 12/30/09 7:09:16 PM12/30/09 7:09:16 PM

428 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

You can use the plus and minus signs to expand and collapse
the objects in the DataSet. In Figure 20 - 9, the DataSet is
expanded to show its tables, and the tables are expanded
to show their fi elds. Notice that the TestScores table is
listed below the Students table because it has a parent/child
relationship with that table.

It takes a lot of words and pictures to describe this process,
but using the wizard to build the data source is actually
quite fast. After you have created the data source, you can
build a simple user interface with almost no extra work.
Simply drag objects from the Data Sources window onto the
form.

When you click and drag a table from the Data Sources
window onto the form, Visual Basic automatically creates
BindingNavigator and DataGridView controls, and other
components to display the data from the table. Figure 20 - 10
shows the result at runtime.

Instead of dragging an entire table onto the form, you can drag
individual database columns. In that case, Visual Basic adds
controls to the form to represent the column. Figure 20 - 11 shows
the columns from the Students table dragged onto a form.

If you select a table in the Data Sources window, a drop - down arrow
appears on the right. Open the drop - down to give the table a different
display style, as shown in Figure 20 - 12. For example, if you set a table ’ s
style to Details and drag the table onto a form, Visual Basic displays the
table ’ s data using a record detail view similar to the one shown in Figure
20 - 11 instead of the grid shown in Figure 20 -10 .

Similarly, you can change the display styles for specifi c database
columns. Select a column in the Data Sources window and click its
drop - down arrow to make it display in a text box, label, link label,
combo box, or other control. Now, when you drag the column onto a
form, or when you drag the table onto the form to build a record view,
Visual Basic uses this type of control to display the column ’ s values.

AUTOMATICALLY CREATED OBJECTS

When you drag database tables and columns from the Data Sources window onto a form, Visual
Basic does a lot more than simply placing a DataGridView control on a form. It also creates about
two dozen other controls and components. Five of the more important of these objects are the
DataSet, TableAdapter, TableAdapterManager, BindingSource, and BindingNavigator.

FIGURE 20-10: Drag and drop a table

from the Data Sources window onto the

form to create a simple DataGridView.

FIGURE 20-11: Drag and drop

table columns onto a form to cre-

ate a record-oriented view instead

of a grid.

FIGURE 20-12: Use the

drop-down in the Data

Sources window to give

a table a diff erent display

style.

c20.indd 428c20.indd 428 12/30/09 7:09:17 PM12/30/09 7:09:17 PM

The program stores data in a DataSet object. A single DataSet object can represent an entire
database. It contains DataTable objects that represent database tables. Each DataTable contains
DataRow objects that represent rows in a table, and each DataRow contains items representing
column values for the row.

The TableAdapter object copies data between the database and the DataSet. It has methods for
performing operations on the database (such as selecting, inserting, updating, and deleting records).
Hidden inside the TableAdapter is a connection object that contains information on the database so
that the TableAdapter knows where to fi nd it.

The TableAdapterManager coordinates updates among different TableAdapters. This is most useful
for hierarchical data sets, a topic that is outside the scope of this book. The wizard - generated code
also uses the TableAdapterManager to update the single data set it creates.

The BindingSource object encapsulates all of the DataSet object ’ s data and provides programmatic
control functions. These perform such actions as moving through the data, adding and deleting
items, and so forth.

The BindingNavigator provides a user interface so the user can control the BindingSource.

Figure 20 - 13 shows the relationships among the DataSet, TableAdapter, BindingSource, and
BindingNavigator objects. The BindingNavigator is the only one of these components that has a
presence on the form. It is connected to the BindingSource with a dotted arrow to indicate that it
controls the BindingSource but does not actually transfer data back and forth. The other arrows
represent data moving between objects.

Database TableAdapter

DataSet BindingNavigator

B
in

di
ng

S
ou

rc
e

Ta
ble

s

R
ow

s

FIGURE 20-13: Visual Basic uses DataSet, TableAdapter, BindingSource, and

BindingNavigator objects to display data.

Even all these objects working together don ’ t quite do everything you need to make the program
display data. When it creates these objects, Visual Basic also adds the following code to the form:

public Class Form1
 Private Sub StudentsBindingNavigatorSaveItem_Click(
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles StudentsBindingNavigatorSaveItem.Click
 Me.Validate()
 Me.StudentsBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.ClassRecordsDataSet)

Automatically Created Objects ❘ 429

c20.indd 429c20.indd 429 12/30/09 7:09:17 PM12/30/09 7:09:17 PM

430 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 'TODO: This line of code loads data into the 'ClassRecordsDataSet.Students'
 ' table. You can move, or remove it, as needed.
 Me.StudentsTableAdapter.Fill(Me.ClassRecordsDataSet.Students)
 End Sub
End Class

code snippet MakeDataSourceTable

The StudentsBindingNavigatorSaveItem_Click event handler fi res when the user clicks the
BindingNavigator object ’ s Save tool. This routine makes the TableAdapter save any changes to the
Students table to the database.

The Form1_Load event handler makes the TableAdapter copy data from the database into the
DataSet when the form loads.

Visual Basic builds all this automatically, and if you ran the program at this point, it would display
data and let you manipulate it. It ’ s still not perfect, however. It doesn ’ t perform any data validation,
and it will let you close the application without saving any changes you have made to the data. It ’ s a
pretty good start for such a small amount of work, however.

OTHER DATA OBJECTS

If you want a simple program that can display and modify data, then the solution described in the
previous sections may be good enough. In that case, you can let Visual Basic do most of the work
for you, and you don ’ t need to dig into the lower - level details of database access.

You can also use objects similar to those created by Visual Basic to build your own solutions. You
can create your own DataSet, TableAdapter, BindingSource, and BindingNavigator objects to bind
controls to a database. (You can even modify the controls supplied by Visual Basic by overriding
their properties and methods, although that ’ s a very advanced topic so it isn ’ t covered here.)

If you need to manipulate the database directly with code, it doesn ’ t necessarily make sense to create
all these objects. If you simply want to modify a record programmatically, it certainly doesn ’ t make
sense to create DataGridView, BindingNavigator, and BindingSource objects.

For cases such as this, Visual Basic provides several other kinds of objects that you can use to
interact with databases. These objects fall into the following four categories:

Data containers hold data after it has been loaded from the database into the application
much as a DataSet does. You can bind controls to these objects to automatically display and
manipulate the data.

Connections provide information that lets the program connect to the database.

Data adapters move data between a database and a data container.

➤

➤

➤

c20.indd 430c20.indd 430 12/30/09 7:09:19 PM12/30/09 7:09:19 PM

Command objects provide instructions for manipulating data. A command object can
select, update, insert, or delete data in the database. It can also execute stored procedures in
the database.

Data container and adapter classes are generic and work with different kinds of databases, whereas
different types of connection and command objects are specifi c to different kinds of databases.
For example, the connection objects OleDbConnection, SqlConnection, OdbcConnection, and
OracleConnection work with Object Linking and Embedding Database (OLE DB); SQL Server,
including SQL Server Express; Open Database Connectivity (ODBC); and Oracle databases,
respectively. The SQL Server and Oracle objects work only with their specifi c brand of database, but
they are more completely optimized for those databases and may give better performance.

Aside from the different database types they support, the various objects work in more or less the
same way. The following sections explain how an application uses those objects to move data to and
from the database. They describe the most useful properties, methods, and events provided by the
connection, transaction, data adapter, and command objects.

Later sections describe the DataSet and DataView objects and tell how you can use them to bind
controls to display data automatically.

DATA OVERVIEW

An application uses three basic objects to move data to and from a database: a connection, a data
adapter, and a data container such as a DataSet.

The connection object defi nes the connection to the database. It contains information about the
database ’ s name and location, any user name and password needed to access the data, database
engine information, and fl ags that determine the kinds of access the program will need.

The data adapter object defi nes a mapping from the database to the DataSet. It determines
what data is selected from the database, and which database columns are mapped to which
DataSet columns.

The DataSet object stores the data within the application. It can hold more than one table and can
defi ne and enforce relationships among the tables. For example, the database used in the earlier
examples in this chapter has a TestScores table that has a StudentId fi eld. The values in this fi eld
must be values listed in the Students table. This is called a foreign key constraint. The DataSet can
represent this constraint and raise an error if the program tries to create a TestScores record with a
StudentId value that does not appear in the Students table. The section “ Constraints ” later in this
chapter says more about constraints.

When the connection, data adapter, and DataSet objects are initialized, the program can call the
data adapter ’ s Fill method to copy data from the database into the DataSet. Later it can call the data
adapter ’ s Update method to copy any changes to the data from the DataSet back into the database.
Figure 20 - 14 shows the process.

➤

Data Overview ❘ 431

c20.indd 431c20.indd 431 12/30/09 7:09:19 PM12/30/09 7:09:19 PM

432 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

If you compare Figure 20 - 14 to Figure 20 - 13, you ’ ll see several similarities. Both approaches
use an adapter to copy data between the database and a DataSet. At fi rst glance, it may seem that
Figure 20 - 13 doesn ’ t use a connection object, but actually the TableAdapter contains a connection
object internally that it uses to access the database.

One major difference is that Figure 20 - 13 uses a BindingSource to provide an extra layer between
the DataSet and the program ’ s controls. It also includes a Binding Navigator object that lets the user
control the BindingSource to move through the data.

As in the previous example, a program using the objects shown in Figure 20 - 14 could call the data
adapter ’ s Fill method in a form ’ s Load event handler. Later it could call the Update method when
the user clicked a Save button, in the form ’ s FormClosing event handler, or whenever you wanted to
save the data.

CONNECTION OBJECTS

The connection object manages the application ’ s connection to the database. It allows a data
adapter to move data in and out of a DataSet.

The different fl avors of connection object (OleDbConnection, SqlConnection, OdbcConnection,
OracleConnection, and so on) provide roughly the same features, but there are some differences.
Check the online help to see if a particular property, method, or event is supported by one of the
fl avors. The web page msdn.microsoft.com/32c5dh3b.aspx provides links to pages that explain
how to connect to SQL Server, OLE DB, ODBC, and Oracle data sources. Other links lead to
information on the SqlConnection, OleDbConnection, and OdbcConnection classes.

If you will be working extensively with a particular type of database (for example, SQL Server),
you should also review the features provided by its type of connection object to see if it has special
features for that type of database.

Some connection objects can work with more than one type of database. For example, the
OleDbConnection object works with any database that has an OLE DB (Object Linking and
Embedding Database) provider. Similarly the OdbcConnection object works with databases that
have ODBC (Open Database Connectivity) providers such as MySQL.

Generally, connections that work with a specifi c kind of database (such as SqlConnection and
OracleConnection) give better performance. If you think you might later need to change databases,

Database DataAdapter

(Data Connection)

DataSet

Ta
ble

s

R
ow

s

FIGURE 20-14: An application uses connection, data adapter, and DataSet objects to

move data to and from the database.

c20.indd 432c20.indd 432 12/30/09 7:09:20 PM12/30/09 7:09:20 PM

you can minimize the amount of work required by sticking to features that are shared by all the
types of connection objects.

The Toolbox window does not automatically display tools for these objects. To
add them, right-click the Toolbox tab where you want them and select Choose
Items. Select the check boxes next to the tools you want to add (for example,
OracleCommand or OdbcConnection) and click OK.

The following table describes the most useful properties provided by the OleDbConnection and
SqlConnection classes.

PROPERTY PURPOSE

ConnectionString Gets or sets the string that defi nes the connection to the database.

ConnectionTimeout Gets or sets the time the object waits while trying to connect to the

database. If this timeout expires, the object gives up and raises an error.

Database Returns the name of the current database.

DataSource Returns the name of the current database fi le or database server.

Provider (OleDbConnection only) Returns the name of the OLE DB database

provider (for example, Microsoft.Jet.OLEDB.4.0).

ServerVersion Returns the database server ’ s version number. This value is available only

when the connection is open and may look like 04.00.0000.

State Returns the connection ’ s current state. This value can be Closed,

Connecting, Open, Executing (executing a command), Fetching (fetching

data), and Broken (the connection was open but then broke; you can close

and reopen the connection).

The ConnectionString property includes many fi elds separated by semicolons. The following text
shows a typical ConnectionString value for an OleDbConnection object that will open an Access
database. The text here shows each embedded fi eld on a separate line, but the actual string would be
all run together in one long line.

Jet OLEDB:Global Partial Bulk Ops=2;
Jet OLEDB:Registry Path=;
Jet OLEDB:Database Locking Mode=1;
Data Source="C:\Personnel\Data\Personnel.mdb";
Mode=Share Deny None;
Jet OLEDB:Engine Type=5;
Provider="Microsoft.Jet.OLEDB.4.0";
Jet OLEDB:System database=;

Connection Objects ❘ 433

c20.indd 433c20.indd 433 12/30/09 7:09:21 PM12/30/09 7:09:21 PM

434 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

Jet OLEDB:SFP=False;
persist security info=False;
Extended Properties=;
Jet OLEDB:Compact Without Replica Repair=False;
Jet OLEDB:Encrypt Database=False;
Jet OLEDB:Create System Database=False;
Jet OLEDB:Don't Copy Locale on Compact=False;
User ID=Admin;
Jet OLEDB:Global Bulk Transactions=1"

The data source value will be different on your system. In this example, the
database is at C:\Personnel\Data\Personnel.mdb. You would need to change
it to match the location of the data on your system.

Many of these properties are optional and you can omit them. Remembering which ones are
optional (or even which fi elds are allowed for a particular type of connection object) is not always
easy. Fortunately, it ’ s also not necessary. Instead of typing all these fi elds into your code or in the
connection control ’ s ConnectString property in the Properties window, you can let Visual Basic
build the string for you.

Simply follow the steps described in the section “ Connecting to the Data Source ” earlier in this
chapter. After you build or select the database connection, click the plus sign in Figure 20 - 3 to see
its connection string. Use the mouse to highlight the connection string and then press Ctrl+C to
copy it to the clipboard.

The following code fragment shows how a program can create, open, use, and close an
OleDbConnection object. The code assumes the database name is in the text box txtDatabase .

' Make the connect string.
Dim connect_string As String =
 "Provider=Microsoft.Jet.OLEDB.4.0;" &
 "Data Source=""" & txtDatabase.Text & """;" &
 "Persist Security Info=False"

' Open a database connection.
Dim conn_people As New OleDb.OleDbConnection(connect_string)
conn_people.Open()

' Do stuff with the connection.
'...

' Close the connection.
conn_people.Close()
conn_people.Dispose()

code snippet CommandInsert

c20.indd 434c20.indd 434 12/30/09 7:09:22 PM12/30/09 7:09:22 PM

Example program CommandInsert, which is available for download on the book ’ s web site, uses
similar code to open a connection before inserting new data into the database.

The following table describes the most useful methods provided by the OleDbConnection and
SqlConnection classes.

METHOD PURPOSE

BeginTransaction Begins a database transaction and returns a transaction object

representing it. A transaction lets the program ensure that a series of

commands are either all performed or all canceled as a group. See the

section “ Transaction Objects ” later in this chapter for more information.

ChangeDatabase Changes the currently open database.

Close Closes the database connection.

CreateCommand Creates a command object that can perform some action on the database.

The action might select records, create a table, update a record, and

so forth.

Open Opens the connection using the values specifi ed in the ConnectionString

property.

The connection object ’ s most useful events are InfoMessage and StateChange. The InfoMessage
event occurs when the database provider issues a warning or informational message. The program
can read the message and take action or display it to the user. The StateChange event occurs when
the database connection ’ s state changes.

Note that the method for using a connection object shown in Figure 20 - 13 relies on the data
adapter ’ s Fill and Update methods, not on the connection object ’ s Open and Close methods. Fill
and Update automatically open the connection, perform their tasks, and then close the connection
so that you don ’ t need to manage the connection object yourself. For example, when the program
calls Fill, the data adapter quickly opens the connection, copies data from the database into the
DataSet, and then closes the database. When you use this model for database interaction, the data
connections are open only very briefl y.

TRANSACTION OBJECTS

A transaction defi nes a set of database actions that should be executed “ atomically ” as a single unit.
Either all of them should occur or none of them should occur, but no action should execute without
all of the others.

The classic example is a transfer of money from one account to another. Suppose that the program
tries to subtract money from one account and then add it to another. After it subtracts the money

Transaction Objects ❘ 435

c20.indd 435c20.indd 435 12/30/09 7:09:24 PM12/30/09 7:09:24 PM

436 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

from the fi rst account, however, the program crashes. The database has lost money — a bad
situation for the owners of the accounts.

On the other hand, suppose that the program performs the operations in the reverse order: fi rst
it adds money to the second account and then subtracts it from the fi rst. This time if the program
gets halfway through the operation before crashing, the database has created new money — a bad
situation for the bank.

The solution is to wrap these two operations in a database transaction. If the program gets halfway
through the transaction and then crashes, the database engine unwinds the transaction when the
database restarts, so the data looks as if nothing had happened. This isn ’ t as good as performing
the whole transaction fl awlessly, but at least the database is consistent and the money has been
conserved.

To use transactions in Visual Basic, the program uses a connection object ’ s BeginTransaction
method to open a transaction. It then creates command objects associated with the connection and
the transaction, and it executes them. When it has fi nished, the program can call the transaction
object ’ s Commit method to make all the actions occur, or it can call Rollback to cancel them all.

Example program Transactions, which is available for download on the book ’ s web site, uses the
following code to perform two operations within a single transaction. This code removes an amount
of money from one account and adds the same amount to another account.

 ' Make a transfer.
Private Sub btnUpdate_Click() Handles btnUpdate.Click
 ' Open the connection.
 Dim connAccounts As New OleDbConnection(MakeConnectString())
 connAccounts.Open()

 ' Make the transaction.
 Dim trans As OleDbTransaction =
 connAccounts.BeginTransaction(IsolationLevel.ReadCommitted)

 ' Make a Command for this connection.
 ' and this transaction.
 Dim cmd As New OleDbCommand(
 "UPDATE Accounts SET Balance=Balance + ? WHERE AccountName=?",
 connAccounts,
 trans)

 ' Create parameters for the first command.
 cmd.Parameters.Add(New OleDbParameter("Balance",
 Decimal.Parse(txtAmount.Text)))
 cmd.Parameters.Add(New OleDbParameter("AccountName",
 "Alice's Software Emporium"))

 ' Execute the second command.
 cmd.ExecuteNonQuery()

 ' Create parameters for the second command.
 cmd.Parameters.Clear()
 cmd.Parameters.Add(New OleDbParameter("Balance",

c20.indd 436c20.indd 436 12/30/09 7:09:25 PM12/30/09 7:09:25 PM

 -Decimal.Parse(txtAmount.Text)))
 cmd.Parameters.Add(New OleDbParameter("AccountName",
 "Bob's Consulting"))

 ' Execute the second command.
 cmd.ExecuteNonQuery()

 ' Commit the transaction.
 If MessageBox.Show(
 "Commit transaction?",
 "Commit?",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question) = indows.Forms.DialogResult.Yes _
 Then
 ' Commit the transaction.
 trans.Commit()
 Else
 ' Rollback the transaction.
 trans.Rollback()
 End If

 ' Display the current balances.
 ShowValues(connAccounts)

 ' Close the connection.
 connAccounts.Close()
End Sub

code snippet Transactions

The code fi rst creates a connection. It uses the MakeConnectString function to build an appropriate
connection string.

Next the code uses the connection ’ s BeginTransaction method to make the transaction object trans .

Next, the code defi nes an OleDbCommand object named cmd , setting its command text to the
following text:

UPDATE Accounts SET Balance=Balance + ? WHERE AccountName=?

Note that it passes the transaction object into the command object ’ s constructor to make the
command part of the transaction.

The question marks in the command text represent parameters to the command. The program
defi nes the parameters ’ values by adding two parameter objects to the command object. It then calls
the command ’ s ExecuteNonQuery method to perform the query.

The code clears the command ’ s parameters, adds two parameters with different values, and calls the
command ’ s ExecuteNonQuery method again.

Now the program displays a message box asking whether you want to commit the transaction.
When you click Yes, the program calls the transaction ’ s Commit method and both of the update

Transaction Objects ❘ 437

c20.indd 437c20.indd 437 12/30/09 7:09:25 PM12/30/09 7:09:25 PM

438 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

operations occur. When you click No, the program calls the transaction ’ s Rollback method and
both of the update operations are canceled.

The program fi nishes by calling ShowValues to display the updated data and by closing
the connection.

Instead of clicking Yes or No when the program asks if it should commit the transaction, you can
use the IDE to stop the program. When you then restart the program, you will see that neither
update was processed.

In addition to the Commit and Rollback methods, transaction objects may provide other methods
for performing more complex transactions. For example, the OleDbTransaction class has a Begin
method that enables you to create a nested transaction. Similarly, the SqlTransaction class has a
Save method that creates a “ savepoint ” that you can use to roll back part of the transaction. See the
online help for the type of transaction object you are using to learn about these methods. The web page
msdn.microsoft.com/2k2hy99x.aspx gives an overview of using transactions. Links at the bottom
lead to information about the OleDbTransaction, SqlTransaction, and OdbcTransaction classes.

DATA ADAPTERS

A data adapter transfers data between a connection and a DataSet. This object ’ s most important
methods are Fill and Update, which move data from and to the database. A data adapter also
provides properties and other methods that can be useful. The following table describes the object ’ s
most useful properties.

PROPERTY PURPOSE

DeleteCommand The command object that the adapter uses to delete rows.

InsertCommand The command object that the adapter uses to insert rows.

SelectCommand The command object that the adapter uses to select rows.

TableMappings A collection of DataTableMapping objects that determine how tables in the

database are mapped to tables in the DataSet. Each DataTableMapping

object has a ColumnMappings collection that determines how the columns in

the database table are mapped to columns in the DataSet table.

UpdateCommand The command object that the adapter uses to update rows.

You can create the command objects in a couple of ways. For example, if you use the Data
Adapter Confi guration Wizard (described shortly) to build the adapter at design time, the wizard
automatically creates these objects. You can select the adapter and expand these objects in the
Properties window to read their properties, including the CommandText property that defi nes
the commands.

c20.indd 438c20.indd 438 12/30/09 7:09:26 PM12/30/09 7:09:26 PM

Another way to create these commands is to use a command builder object. If you attach a
command builder to a data adapter, the adapter uses the command builder to generate the
commands it needs automatically.

Example program GenerateCommands uses the following code to determine the commands used
by a data adapter. The code creates a new OleDbCommandBuilder, passing its constructor the
data adapter. It then uses the command builder ’ s GetDeleteCommand, GetInsertCommand, and
GetUpdateCommand methods to learn about the automatically generated commands.

' Attach a command builder to the data adapter
' and display the generated commands.
Dim command_builder As New OleDbCommandBuilder(OleDbDataAdapter1)

Dim txt As String = ""

txt & = command_builder.GetDeleteCommand.CommandText & vbCrLf & vbCrLf
txt & = command_builder.GetInsertCommand.CommandText & vbCrLf & vbCrLf
txt & = command_builder.GetUpdateCommand.CommandText & vbCrLf & vbCrLf

txtCommands.Text = txt
txtCommands.Select(0, 0)

code snippet GenerateCommands

The following text shows the results of the previous Debug statements. The DELETE and UPDATE
statements are wrapped across multiple lines. The command builder generated these commands
based on the select statement SELECT * From Books that was used to load the DataSet.

DELETE FROM Books WHERE ((Title = ?) AND ((? = 1 AND URL IS NULL) OR (URL = ?))
AND ((? = 1 AND Year IS NULL) OR (Year = ?)) AND ((? = 1 AND ISBN IS NULL) OR
(ISBN = ?)) AND ((? = 1 AND Pages IS NULL) OR (Pages = ?)))

INSERT INTO Books (Title, URL, Year, ISBN, Pages) VALUES (?, ?, ?, ?, ?)

UPDATE Books SET Title = ?, URL = ?, Year = ?, ISBN = ?, Pages = ? WHERE
((Title = ?) AND ((? = 1 AND URL IS NULL) OR (URL = ?)) AND ((? = 1 AND Year IS
NULL) OR (Year = ?)) AND ((? = 1 AND ISBN IS NULL) OR (ISBN = ?)) AND ((? = 1
AND Pages IS NULL) OR (Pages = ?)))

A data adapter ’ s TableMappings property enables you to change how the adapter maps data in the
database to the DataSet. For example, you could make it copy the Employees table in the database
into a DataSet table named People. You don ’ t usually need to change the table and column names,
however, and you can make these changes interactively at design time more easily than you can do
this in code, so you will usually leave these values alone at runtime.

Data Adapters ❘ 439

c20.indd 439c20.indd 439 12/30/09 7:09:26 PM12/30/09 7:09:26 PM

440 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

To create a data adapter control at design time, open a form in the Windows Forms Designer, select
the Toolbox ’ s Data tab, and double - click the appropriate data adapter control. (If the data adapter
you want doesn ’ t appear in the Toolbox, right - click the Toolbox, select Choose Items, and pick the
data adapter that you want to use.)

When you create a data adapter, the Data Adapter Confi guration Wizard appears. The wizard ’ s fi rst
page lets you select or build a data connection much as the Data Source Confi guration Wizard does
in Figure 20 -3 . Select or create a connection as described in the section “ Connecting to the Data
Source ” earlier in this chapter.

Click Next to display the page shown in Figure 20 - 15. Use the option buttons to select the method
the adapter should use to work with the data source. This determines how the data adapter will
fetch, update, delete, and insert data in the database. Your options are:

Use SQL statements — Makes the adapter use simple SQL statements to manipulate
the data.

Create new stored procedures — Makes the wizard generate stored procedures in the
database to manipulate the data.

Use existing stored procedures — Makes the wizard use procedures you have already
created to manipulate the data.

In Figure 20 - 15, only the fi rst option is enabled because it is the only option available to the
OleDbDataAdapter that was used in this example.

When you select the “ Use SQL statements ” option and click Next, the form shown in
Figure 20 - 16 appears. If you are experienced at writing SQL statements, enter the SELECT
statement that you want the data adapter to use to select its data.

If you have less experience or are not familiar with the database ’ s structure, click the Query Builder
button to use the Query Builder shown in Figure 20 - 17. The area in the upper left shows the tables
currently selected for use by the SQL query. Check boxes indicate which fi elds in the tables are
selected. To add new tables to the query, right - click in this area and select Add Table.

Figure 20 - 17 shows the Query Builder. The top part shows that the Books table is included in the
query and that its Title, Year, and Pages fi elds are selected.

Below the table and fi eld selection area is a grid that lists the selected fi elds. Columns let you specify
modifi ers for each fi eld. A fi eld ’ s Alias indicates the name the fi eld is known by when it is returned
by the query. In Figure 20 - 17, the Year fi eld will be returned with the alias PubYear.

The Output check box determines whether the fi eld is selected. This check box does the same thing
as the one in the upper fi eld selection area.

➤

➤

➤

c20.indd 440c20.indd 440 12/30/09 7:09:27 PM12/30/09 7:09:27 PM

FIGURE 20-15: Select the method the data adapter will use to

manipulate database data.

FIGURE 20-16: Enter a SQL SELECT statement or click the

Query Builder button.

Data Adapters ❘ 441

c20.indd 441c20.indd 441 12/30/09 7:09:28 PM12/30/09 7:09:28 PM

442 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

The Sort Type column lets you indicate that the results should be sorted in either ascending or
descending order. Sort Order determines the order in which the fi elds are sorted. The query shown
in Figure 20 - 17 sorts fi rst by Year in descending order. If more than one book has the same Year,
they are ordered by Title in ascending order.

The Filter column lets you add conditions to the fi elds. The values in Figure 20 - 17 make the query
select records only where the Year is greater than 2005. Additional fi elds scrolled off to the right in
Figure 20 - 17 let you add more fi lters combined with OR . For example, you could select books where
the Year is greater than 2005 OR less than 1990.

If you place fi lters on more than one fi eld, their conditions are combined with AND . For example, the
values shown in Figure 20 - 17 select records where Year is greater than 2005 AND Pages is greater
than 400.

Below the grid is a text box that shows the SQL code for the query. If you look at the query, you can
see that it selects the fi elds checked in the fi eld selection area at the top, uses an appropriate WHERE
clause, and orders the results properly.

Click the Execute Query button to make the Query Builder run the query and display the results in
the bottom grid. You can use this button to test the query to verify that it makes some sense before
you fi nish creating the data adapter.

FIGURE 20-17: You can use the Query Builder to interactively defi ne the data

that a data adapter selects.

c20.indd 442c20.indd 442 12/30/09 7:09:28 PM12/30/09 7:09:28 PM

Click OK to close the Query Builder and return to the Data Adapter Confi guration Wizard.

When you click Next, the Data Adapter Confi guration Wizard displays a summary page indicating
what it did and did not do while creating the data adapter. Depending on the query you use to select
data, the wizard may not generate all the commands to select, update, insert, and delete data. For
example, if the query joins more than one table, the wizard will be unable to fi gure out how to
update the tables, so it won ’ t generate insert, update, or delete commands.

Click Finish to close the wizard and see the new data adapter and its new connection object. You
can see the adapter ’ s DeleteCommand, InsertCommand, SelectCommand, and UpdateCommand
objects in the Properties window. These objects ’ CommandText values show the corresponding
SQL statements used by the objects. The wizard also generates default table mappings to transform
database values into DataSet values.

COMMAND OBJECTS

The command object classes (OleDbCommand, SqlCommand, OdbcCommand, and
OracleCommand) defi ne database commands. The command can be a SQL query, or some non -
query statement such as an INSERT , UPDATE , DELETE , or CREATE TABLE statement.

The object ’ s Connection property gives the database connection object on which it will execute its
command. CommandText gives the SQL text that the command represents.

The CommandType property tells the database the type of command text the command holds.
This can be StoredProcedure (CommandText is the name of a stored procedure), TableDirect
(CommandText is the name of one or more tables from which the database should return data), or
Text (CommandText is a SQL statement).

The command object ’ s Parameters collection contains parameter objects that defi ne any values
needed to execute the command text.

Example program CommandInsert, which is available for download on the book ’ s web site, uses
the following code to create an OleDbCommand object that executes the bolded SQL statement
INSERT INTO PeopleNames (FirstName, LastName) VALUES (?, ?) . The question marks are
placeholders for parameters that will be added later. The code then adds two new OleDbParameter
objects to the command ’ s Parameters collection. When the code invokes the command ’ s
ExecuteNonQuery method, the adapter replaces the question marks with these parameter values
in the order in which they appear in the Parameters collection. In this example, the value of
txtFirstName.Text replaces the fi rst question mark and txtLastName.Text replaces the second.

Private Sub btnAdd_Click() Handles btnAdd.Click
 ' Make the connect string.
 Dim connect_string As String =
 "Provider=Microsoft.Jet.OLEDB.4.0;" &
 "Data Source=""" & txtDatabase.Text & """;" &
 "Persist Security Info=False"

 ' Open a database connection.
 Dim conn_people As New OleDb.OleDbConnection(connect_string)

Command Objects ❘ 443

c20.indd 443c20.indd 443 12/30/09 7:09:29 PM12/30/09 7:09:29 PM

444 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

 conn_people.Open()

 ' Make a Command to insert data.
 Dim cmd As New OleDbCommand(
 "INSERT INTO PeopleNames (FirstName, LastName) VALUES (?, ?)",
 conn_people)

 ' Create parameters for the command.
 cmd.Parameters.Add(New OleDbParameter("FirstName", txtFirstName.Text))
 cmd.Parameters.Add(New OleDbParameter("LastName", txtLastName.Text))

 ' Execute the command.
 Try
 cmd.ExecuteNonQuery()
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try

 ' Show the current values.
 ShowValues(conn_people)

 ' Close the connection.
 conn_people.Close()
 conn_people.Dispose()
End Sub

code snippet CommandInsert

The command object ’ s Transaction property gives the transaction object with which it is
associated. See the section “ Transaction Objects ” earlier in this chapter for more information about
transactions.

The command object provides three methods for executing its CommandText. ExecuteNonQuery
executes a command that is not a query and that doesn ’ t return any values.

ExecuteScalar executes a command and returns the fi rst column in the fi rst row selected. This is
useful for commands that return a single value such as SELECT COUNT * FROM Users .

ExecuteReader executes a SELECT statement and returns a data reader object (for example,
OleDbDataReader). The program can use this object to navigate through the returned rows of data.

The command object ’ s two other most useful methods are CreateParameter and Prepare. As you
may be able to guess, CreateParameter adds a new object to the command ’ s Parameters collection.
The Prepare method compiles the command into a form that the database may be able to execute
more quickly. It is often faster to execute a compiled command many times using different
parameter values than it is to execute many new commands.

DataSet

DataSet is the fl agship object when it comes to holding data in memory. It provides all the features
you need to build, load, store, manipulate, and save data similar to that stored in a relational
database. It can hold multiple tables related with complex parent/child relationships and uniqueness

c20.indd 444c20.indd 444 12/30/09 7:09:29 PM12/30/09 7:09:29 PM

constraints. It provides methods for merging DataSet objects, searching for records that satisfy
criteria, and saving data in different ways (such as into a relational database or an XML fi le). In
many ways, it is like a complete database stored in memory rather than on a disk.

One of the most common ways to use a DataSet object is to load it from a relational database
when the program starts, use various controls to display the data and let the user manipulate it
interactively, and then save the changes back into the database when the program ends.

In variations on this basic theme, the program can load its data from an XML fi le or build a
DataSet in memory without using a database. The program can use controls bound to the DataSet
to let the user view and manipulate complex data with little extra programming.

Example program MemoryDataSet, which is available for download on the book ’ s web site, uses
the following code to build and initialize a DataSet from scratch. It starts by creating a new DataSet
object named Scores . It creates a DataTable named Students and adds it to the DataSet object ’ s
Tables collection.

Private Sub Form1_Load() Handles MyBase.Load
 ' Make the DataSet.
 Dim scores_dataset As New DataSet("Scores")

 ' Make the Students table.
 Dim students_table As DataTable =
 scores_dataset.Tables.Add("Students")

 ' Add columns to the Students table.
 students_table.Columns.Add("FirstName", GetType(String))
 students_table.Columns.Add("LastName", GetType(String))
 students_table.Columns.Add("StudentId", GetType(Integer))

 ' Make the StudentId field unique.
 students_table.Columns("StudentId").Unique = True '

 ' Make the combined FirstName/LastName unique.
 Dim first_last_columns() As DataColumn = {
 students_table.Columns("FirstName"),
 students_table.Columns("LastName")
 }
 students_table.Constraints.Add(New UniqueConstraint(first_last_columns))

 ' Make the TestScores table.
 Dim test_scores_table As DataTable =
 scores_dataset.Tables.Add("TestScores")

 ' Add columns to the TestScores table.
 test_scores_table.Columns.Add("StudentId", GetType(Integer))
 test_scores_table.Columns.Add("TestNumber", GetType(Integer))
 test_scores_table.Columns.Add("Score", GetType(Integer))

 ' Make the combined StudentId/TestNumber unique.
 Dim studentid_testnumber_score_columns() As DataColumn = {
 test_scores_table.Columns("StudentId"),
 test_scores_table.Columns("TestNumber")
 }

Command Objects ❘ 445

c20.indd 445c20.indd 445 12/30/09 7:09:30 PM12/30/09 7:09:30 PM

446 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

 test_scores_table.Constraints.Add(
 New UniqueConstraint(studentid_testnumber_score_columns))

 ' Make a relationship linking the
 ' two tables' StudentId fields.
 scores_dataset.Relations.Add(
 "Student Test Scores",
 students_table.Columns("StudentId"),
 test_scores_table.Columns("StudentId"))

 ' Make some student data.
 students_table.Rows.Add(New Object() {"Art", "Ant", 1})
 students_table.Rows.Add(New Object() {"Bev", "Bug", 2})
 students_table.Rows.Add(New Object() {"Cid", "Cat", 3})
 students_table.Rows.Add(New Object() {"Deb", "Dove", 4})

 ' Make some random test scores.
 Dim score As New Random
 For id As Integer = 1 To 4
 For test_num As Integer = 1 To 10
 test_scores_table.Rows.Add(
 New Object() {id, test_num, score.Next(65, 100)})
 Next test_num
 Next id

 ' Attach the DataSet to the DataGrid.
 grdScores.DataSource = scores_dataset
End Sub

code snippet MemoryDataSet

Next, the code uses the DataTable object ’ s Columns.Add method to add FirstName, LastName, and
StudentId columns to the table. It then sets the StudentId column ’ s Unique property to True to make
the DataSet prohibit duplicated StudentId values.

The program then makes an array of DataColumn objects containing references to the FirstName
and LastName columns. It uses the array to create a UniqueConstraint and adds it to the table ’ s
Constraints collection. This makes the DataSet ensure that each record ’ s FirstName/LastName pair
is unique.

Similarly, the program creates the TestScores table, gives it StudentId, TestNumber, and Score
columns, and adds a uniqueness constraint on the StudentId/TestNumber pair of columns.

Next, the code adds a relationship linking the Students table ’ s StudentId column and the TestScores
table ’ s StudentId column.

The program then adds some Students records and some random TestScores records.

Finally, the program attaches the DataSet to a DataGrid control to display the result. The user can
use the DataGrid to examine and modify the data just as if it had been loaded from a database.

The following table describes the DataSet object ’ s most useful properties.

c20.indd 446c20.indd 446 12/30/09 7:09:30 PM12/30/09 7:09:30 PM

PROPERTY PURPOSE

CaseSensitive Determines whether string comparisons inside DataTable objects are

case - sensitive.

DataSetName The DataSet object ’ s name. Often, you don ’ t need to use this for much. If

you need to use the DataSet object ’ s XML representation, however, this

determines the name of the root element.

DefaultViewManager Returns a DataViewManager object that you can use to determine the

default settings (sort order, fi lter) of DataView objects you create later.

EnforceConstraints Determines whether the DataSet should enforce constraints while

updating data. For example, if you want to add records to a child

table before the master records have been created, you can set

EnforceConstraints to False while you add the data. You should be able to

avoid this sort of problem by adding the records in the correct order.

HasErrors Returns True if any of the DataSet object ’ s DataTable objects

contains errors.

Namespace The DataSet ’ s namespace. If this is nonblank, the DataSet object ’ s

XML data ’ s root node includes an xmlns attribute as in < Scores

xmlns= “ my_namespace “ > .

Prefix Determines the XML prefi x that the DataSet uses as an alias for its

namespace.

Relations A collection of DataRelation objects that represent parent/child relations

among the columns in diff erent tables.

Tables A collection of DataTable objects representing the tables stored in

the DataSet.

The DataSet object ’ s XML properties affect the way the object reads and writes its data in XML
form. For example, if the Namespace property is my_namespace and the Prefi x property is pfx , the
DataSet object ’ s XML data might look like the following:

< pfx:Scores xmlns:pfx="my_namespace" >
 < Students xmlns="my_namespace" >
 < FirstName > Art < /FirstName >
 < LastName > Ant < /LastName >
 < StudentId > 1 < /StudentId >
 < /Students >
 < Students xmlns="my_namespace" >
 < FirstName > Bev < /FirstName >
 < LastName > Bug < /LastName >
 < StudentId > 2 < /StudentId >
 < /Students >
 ...

Command Objects ❘ 447

c20.indd 447c20.indd 447 12/30/09 7:09:31 PM12/30/09 7:09:31 PM

448 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

 < TestScores xmlns="my_namespace" >
 < StudentId > 1 < /StudentId >
 < TestNumber > 1 < /TestNumber >
 < Score > 78 < /Score >
 < /TestScores >
 < TestScores xmlns="my_namespace" >
 < StudentId > 1 < /StudentId >
 < TestNumber > 2 < /TestNumber >
 < Score > 81 < /Score >
 < /TestScores >
 ...
< /pfx:Scores >

The following table describes the DataSet object ’ s most useful methods.

METHOD PURPOSE

AcceptChanges Accepts all changes to the data that were made since the data was loaded, or

since the last call to AcceptChanges. When you modify a row in the DataSet,

the row is fl agged as modifi ed. If you delete a row, the row is marked as

deleted but not actually removed. When you call AcceptChanges, new and

modifi ed rows are marked as Unchanged instead of Added or Modifi ed, and

deleted rows are permanently removed.

Clear Removes all rows from the DataSet object ’ s tables.

Clone Makes a copy of the DataSet including all tables, relations, and constraints, but

not including the data.

Copy Makes a copy of the DataSet including all tables, relations, constraints, and the

data.

GetChanges Makes a copy of the DataSet containing only the rows that have been

modifi ed. This method ’ s optional parameter indicates the type of changes that

the new DataSet should contain (added, modifi ed, deleted, or unchanged).

GetXml Returns a string containing the DataSet object ’ s XML representation.

GetXmlSchema Returns the DataSet object ’ s XML schema defi nition (XSD).

HasChanges Returns True if any of the DataSet object ’ s tables contains new, modifi ed, or

deleted rows.

Merge Merges a DataSet, DataTable, or array of DataRow objects into this DataSet.

ReadXml Reads XML data from a stream or fi le into the DataSet.

ReadXmlSchema Reads an XML schema from a stream or fi le into the DataSet.

c20.indd 448c20.indd 448 12/30/09 7:09:32 PM12/30/09 7:09:32 PM

PURPOSE METHOD

RejectChanges Undoes any changes made since the DataSet was loaded or since the last call

to AcceptChanges.

WriteXml Writes the DataSet object ’ s XML data into a fi le or stream. It can optionally

include the DataSet object ’ s schema.

WriteXmlSchema Writes the DataSet object ’ s XSD schema into an XML fi le or stream.

Several of these methods mirror methods provided by other fi ner - grained data objects. For
example, HasChanges returns True if any of the DataSet object ’ s tables contain changes. The
DataTable
and DataRow objects also have HasChanges methods that return True if their more limited scope
contains changes.

These mirrored methods include AcceptChanges, Clear, Clone, Copy, GetChanges, and
RejectChanges. See the following sections that describe the DataTable and DataRow objects for
more information.

DataTable

The DataTable class represents the data in one table within a DataSet. A DataTable contains
DataRow objects representing its data, DataColumn objects that defi ne the table ’ s columns,
constraint objects that defi ne constraints on the table ’ s data (for example, a uniqueness constraint
requires that only one row may contain the same value in a particular column), and objects
representing relationships between the table ’ s columns and the columns in other tables. This object
also provides methods and events for manipulating rows.

The following table describes the DataTable object ’ s most useful properties.

PROPERTY PURPOSE

CaseSensitive Determines whether string comparisons inside the DataTable are

case - sensitive.

ChildRelations A collection of DataRelation objects that defi ne parent/child relationships

where this table is the parent. For example, suppose the Orders table defi nes

order records and contains an OrderId fi eld. Suppose that the OrderItems

table lists the items for an order and it also has an OrderId fi eld. One Orders

record can correspond to many OrderItems records, all linked by the same

OrderId value. In this example, Orders is the parent table and OrderItems is

the child table.

Columns A collection of DataColumn objects that defi ne the table ’ s columns (column

name, data type, default value, maximum length, and so forth).

continues

Command Objects ❘ 449

c20.indd 449 c20.indd 449 12/30/09 7:09:32 PM12/30/09 7:09:32 PM

450 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

PROPERTY PURPOSE

Constraints A collection of Constraint objects represent restrictions on the table ’ s data.

A ForeignKeyConstraint requires that the values in some of the table ’ s

columns must be present in another table (for example, the Addresses

record ’ s State value must appear in the States table ’ s StateName column). A

UniqueConstraint requires that the values in a set of columns must be unique

within the table (for example, only one Student record can have a given

FirstName and LastName pair).

DataSet The DataSet object that contains this DataTable.

DefaultView Returns a DataView object that you can use to view, sort, and fi lter the

table ’ s rows.

HasErrors Returns True if any of the DataTable object ’ s rows contains an error.

MinimumCapacity The initial capacity of the table. For example, if you know you are about to

load 1000 records into the table, you can set this to 1000 to let the table

allocate space all at once instead of incrementally as the records are added.

That will be more effi cient.

Namespace The DataTable object ’ s namespace. If this is nonblank, the DataTable

object ’ s XML records ’ root nodes include an xmlns attribute as in < Students

xmlns= “ my_namespace “ > .

ParentRelations A collection of DataRelation objects that defi ne parent/child relationships

where this table is the child. See the description of the ChildRelations

property for more details.

Prefix Determines the XML prefi x that the DataTable uses as an alias for its

namespace.

PrimaryKey Gets or sets an array of DataColumn objects that defi ne the table ’ s primary

key. The primary key is always unique and provides the fastest access to

the records.

Rows A collection of DataRow objects containing the table ’ s data.

TableName The table ’ s name.

The DataTable object ’ s XML properties affect the way the object reads and writes its data in XML
form. For example, if the Namespace property is my_namespace and the Prefi x property is tbl1 , one
of the DataTable object ’ s XML records might look like the following:

(continued)

c20.indd 450c20.indd 450 12/30/09 7:09:33 PM12/30/09 7:09:33 PM

< pfx:Students xmlns:pfx="my_namespace" >
 < FirstName xmlns="my_namespace" > Art < /FirstName >
 < LastName xmlns="my_namespace" > Ant < /LastName >
 < StudentId xmlns="my_namespace" > 1 < /StudentId >
< /pfx:Students >

The following table describes the DataTable object ’ s most useful methods.

METHOD PURPOSE

AcceptChanges Accepts all changes to the table ’ s rows that were made since the data was

loaded or since the last call to AcceptChanges.

Clear Removes all rows from the table.

Clone Makes a copy of the DataTable, including all relations and constraints, but not

including the data.

Compute Computes the value of an expression using the rows that satisfy a

fi lter condition. For example, the statement tblTestScores.Compute

(“ SUM(Score) ” , “ StudentId = 1 ”) calculates the total of the tblTestScores

DataTable object ’ s Score column where the StudentId is 1.

Copy Makes a copy of the DataTable including all relations, constraints, and data.

GetChanges Makes a copy of the DataTable containing only the rows that have been

modifi ed. This method ’ s optional parameter indicates the type of changes that

the new DataSet should contain (added, modifi ed, deleted, or unchanged).

GetErrors Gets an array of DataRow objects that contain errors.

ImportRow Copies the data in a DataRow object into the DataTable.

LoadDataRow This method takes an array of values as a parameter. It searches the table for a

row with values that match the array ’ s primary key values. If it doesn ’ t fi nd such

a row, it uses the values to create the row. The method returns the DataRow

object it found or creates.

NewRow Creates a new DataRow object that matches the table ’ s schema. To add the

new row to the table, you can create a new DataRow, fi ll in its fi elds, and use

the table ’ s Rows.Add method.

RejectChanges Undoes any changes made since the DataTable was loaded or since the last

call to AcceptChanges.

Select Returns an array of DataRow objects selected from the table. Optional parameters

indicate a fi lter expression that the selected rows must match, sort columns and

sort order, and the row states to select (new, modifi ed, deleted, and so forth).

Command Objects ❘ 451

c20.indd 451c20.indd 451 12/30/09 7:09:33 PM12/30/09 7:09:33 PM

452 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

The DataTable object also provides several useful events, which are listed in the following table.

EVENT PURPOSE

ColumnChanged Occurs after a value has been changed in a column.

ColumnChanging Occurs when a value is being changed in a column.

RowChanged Occurs after a row has changed. A user might change several of a row ’ s

columns and ColumnChanged will fi re for each one. RowChanged fi res when

the user moves to a new row.

RowChanging Occurs when a row is being changed.

RowDeleted Occurs after a row has been deleted.

RowDeleting Occurs when a row is being deleted.

DataRow

A DataRow object represents the data in one record in a DataTable. This object is relatively
simple. It basically just holds data for the DataTable, and the DataTable object does most of the
interesting work.

The following table describes the DataRow object ’ s most useful properties.

PROPERTY PURPOSE

HasErrors Returns True if the row ’ s data has errors.

Item Gets or sets one of the row ’ s item values. Overloaded versions of this property

use diff erent parameters to identify the column. This parameter can be the

column ’ s zero - based index, its name, or a DataColumn object. An optional second

parameter can indicate the version of the row so, for example, you can read the

original value in a row that has been modifi ed.

ItemArray Gets or sets all of the row ’ s values by using an array of generic Objects.

RowError Gets or sets the row ’ s error message text.

RowState Returns the row ’ s current state: Added, Deleted, Modifi ed, or Unchanged.

Table Returns a reference to the DataTable containing the row.

If a row has an error message defi ned by its RowError property, the DataGrid control displays a red
circle containing a white exclamation point to the left of the row as an error indicator. If you hover

c20.indd 452c20.indd 452 12/30/09 7:09:34 PM12/30/09 7:09:34 PM

the mouse over the error indicator, a tooltip displays the RowError
text. In Figure 20 - 18, the third row has RowError set to “ Missing
registration. ”

Example program MemoryDataSetWithErrors, which is available
for download on the book ’ s web site, uses the following code to
set errors on the second row ’ s third column (remember, indexes
start at zero) and on the third row. The result is shown in Figure
20 - 17.

students_table.Rows(1).SetColumnError(2,
 "Bad name format")
students_table.Rows(2).RowError =
 "Missing registration"

The following table describes the DataRow object ’ s most useful methods.

METHOD PURPOSE

AcceptChanges Accepts all changes to the row that were made since the data was loaded or

since the last call to AcceptChanges.

BeginEdit Puts the row in data - editing mode. This suspends events for the row, so

your code or the user can change several fi elds without triggering validation

events. BeginEdit is implicitly called when the user modifi es a bound control ’ s

value and EndEdit is implicitly called when you invoke AcceptChanges.

Although the row is in edit mode, it stores the original and modifi ed values, so

you can retrieve either version, accept the changes with EndEdit, or cancel the

changes with CancelEdit.

CancelEdit Cancels the current edit on the row and restores its original values.

ClearErrors Clears the row ’ s column and row errors.

Delete Deletes the row from its table.

GetChildRows Returns an array of DataRow objects representing this row ’ s child rows as

specifi ed by a parent/child data relation.

GetColumnError Returns the error text assigned to a column.

GetParentRow Returns a DataRow object representing this row ’ s parent record as specifi ed

by a parent/child data relation.

GetParentRows Returns an array of DataRow objects representing this row ’ s parent records as

specifi ed by a data relation.

HasVersion Returns True if the row has a particular version (Current, Default, Original,

or Proposed). For example, while a row is being edited, it has Current and

Proposed versions.

FIGURE 20-18: The DataGrid

control marks a DataRow that

has a nonblank RowError.

continues

Command Objects ❘ 453

c20.indd 453c20.indd 453 12/30/09 7:09:35 PM12/30/09 7:09:35 PM

454 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

METHOD PURPOSE

IsNull Indicates whether a particular column contains a NULL value.

RejectChanges Removes any changes made to the row since the data was loaded or since the

last call to AcceptChanges.

SetColumnError Sets error text for one of the row ’ s columns. If a column has an error message,

then a DataGrid control displays a red circle containing a white exclamation

point to the left of the column ’ s value as an error indicator. In Figure 20 - 17, the

second row ’ s second column has a column error set. If you hover the mouse

over the error indicator, a tooltip displays the error ’ s text.

SetParentRow Sets the row ’ s parent row according to a data relation.

DataColumn

The DataColumn object represents a column in a DataTable. It defi nes the column ’ s name and data
type, and your code can use it to defi ne relationships among different columns.

The following table describes the DataColumn object ’ s most useful properties.

PROPERTY PURPOSE

AllowDBNull Determines whether the column allows NULL values.

AutoIncrement Determines whether new rows automatically generate auto - incremented

values for the column.

AutoIncrementSeed Determines the starting value for an auto - increment column.

AutoIncrementStep Determines the amount by which an auto - incrementing column ’ s value is

incremented for new rows.

Caption Gets or sets a caption for the column. Note that some controls may not

use this value. For example, the DataGrid control displays the column ’ s

ColumnName, not its Caption.

ColumnMapping Determines how the column is saved in the table ’ s XML data. This

property can have one of the values Attribute (save the column as

an attribute of the row ’ s element), Element (save the column as a

subelement), Hidden (don ’ t save the column), and SimpleContent (save

the column as XmlText inside the row ’ s element). If a column is hidden,

the DataGrid control doesn ’ t display its value. See the text following this

table for an example.

(continued)

c20.indd 454c20.indd 454 12/30/09 7:09:35 PM12/30/09 7:09:35 PM

PROPERTY PURPOSE

ColumnName Determines the name of the column in the DataTable. Note that data

adapters use the column name to map database columns to DataSet

columns, so, if you change this property without updating the table

mapping, the column will probably not be fi lled.

DataType Determines the column ’ s data type. Visual Basic raises an error if you

change this property after the DataTable begins loading data. Visual Basic

supports the data types Boolean, Byte, Char, DateTime, Decimal, Double,

Int16, Int32, Int64, SByte, Single, String, TimeSpan, UInt16, UInt32, and

UInt64.

DefaultValue Determines the default value assigned to the column in new rows.

Expression Sets an expression for the column. You can use this to create calculated

columns. For example, the expression Quantity * Price makes the

column display the value of the Quantity column times the value of the

Price column.

MaxLength Determines the maximum length of a text column.

Namespace The column ’ s namespace. If this is nonblank, the rows ’ XML

root nodes include an xmlns attribute as in < StudentId

xmlns= “ my_namespace “ > 12 < /StudentId > .

Ordinal Returns the column ’ s index in the DataTable object ’ s Columns collection.

Prefix Determines the XML prefi x that the DataColumn uses as an alias for its

namespace. For example, if Namespace is my_namespace and Prefi x is

pfx , then a row ’ s StudentId fi eld might be encoded in XML as < pfx:

StudentId xmlns:pfx= “ my_namespace “ > 12 < /pfx:StudentId > .

ReadOnly Determines whether the column allows changes after a record is created.

Table Returns a reference to the DataTable containing the column.

Unique Determines whether diff erent rows in the table can have the same value

for this column.

Example program MemoryDataSetXmlMappedColumns, which is available for download on the
book ’ s web site, uses the following code to defi ne XML column mappings for the Students table.
It indicates that the table ’ s FirstName and LastName columns should be saved as attributes of the
row elements, and that the StudentId column should be saved as XmlText. Note that you cannot
use the SimpleContent ColumnMapping if any other column has a ColumnMapping of Element or
SimpleContent.

Command Objects ❘ 455

c20.indd 455c20.indd 455 12/30/09 7:09:36 PM12/30/09 7:09:36 PM

456 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

students_table.Columns("FirstName").ColumnMapping = MappingType.Attribute
students_table.Columns("LastName").ColumnMapping = MappingType.Attribute
students_table.Columns("StudentId").ColumnMapping = MappingType.SimpleContent

code snippet MemoryDataSetXmlMappedColumns

The following text shows some of the resulting XML Students records:

< Students FirstName="Art" LastName="Ant" > 1 < /Students >
< Students FirstName="Bev" LastName="Bug" > 2 < /Students >
< Students FirstName="Cid" LastName="Cat" > 3 < /Students >
< Students FirstName="Deb" LastName="Dove" > 4 < /Students >

The following code makes the FirstName and LastName columns elements of the Students rows,
and it makes the StudentId an attribute:

students_table.Columns("FirstName").ColumnMapping = MappingType.Element
students_table.Columns("LastName").ColumnMapping = MappingType.Element
students_table.Columns("StudentId").ColumnMapping = MappingType.Attribute

code snippet MemoryDataSetXmlMappedColumns

The following shows the resulting records:

< Students StudentId="1" >
 < FirstName > Art < /FirstName >
 < LastName > Ant < /LastName >
< /Students >
< Students StudentId="2" >
 < FirstName > Bev < /FirstName >
 < LastName > Bug < /LastName >
< /Students >
< Students StudentId="3" >
 < FirstName > Cid < /FirstName >
 < LastName > Cat < /LastName >
< /Students >
< Students StudentId="4" >
 < FirstName > Deb < /FirstName >
 < LastName > Dove < /LastName >
< /Students >

DataRelation

A DataRelation object represents a parent/child relationship between sets of columns in different
tables. For example, suppose that a database contains a Students table containing FirstName,
LastName, and StudentId fi elds. The TestScores table has the fi elds StudentId, TestNumber, and
Score. The StudentId fi elds connect the two tables in a parent/child relationship. Each Students
record may correspond to any number of TestScores records. In this example, Students is the parent
table, and TestScores is the child table.

c20.indd 456c20.indd 456 12/30/09 7:09:37 PM12/30/09 7:09:37 PM

The following code defi nes this relationship. It uses the Students.StudentId fi eld as the parent fi eld
and the TestScores.StudentId fi eld as the child fi eld.

' Make a relationship linking the two tables' StudentId fields.
scores_dataset.Relations.Add(
 "Student Test Scores",
 students_table.Columns("StudentId"),
 test_scores_table.Columns("StudentId"))

code snippet MemoryDataSet

A DataRelation can also relate more than one column in the two tables. For example, two tables
might be linked by the combination of the LastName and FirstName fi elds.

Most programs don ’ t need to manipulate a relation after it is created. The DataSet object ’ s Relations
.Add method shown in the previous code creates a relation and thereafter the program can usually
leave it alone. However, the DataRelation object does provide properties and methods in case you do
need to modify one. The following table describes the DataRelation object ’ s most useful properties.

PROPERTY PURPOSE

ChildColumns Returns an array of DataColumn objects representing the child columns.

ChildKeyConstraint Returns the ForeignKeyConstraint object for this relation. You can use this

object to determine the relation ’ s behavior when the program updates,

deletes, or modifi es the values used in the relationship. For example,

if the StudentId fi eld links the Students and TestScores tables and you

delete a Students record, you can use this object to make the database

automatically delete any corresponding TestScores records.

ChildTable Returns a DataTable object representing the relation ’ s child table.

DataSet Returns a reference to the DataSet containing the relation.

Nested Determines whether the child data should be nested within parent rows in

the DataSet ’ s XML representation. See the text following this table for more

detail.

ParentColumns Returns an array of DataColumn objects representing the parent columns.

ParentKeyConstraint Returns the UniqueConstraint object for this relation. This object requires

that the values in the parent ’ s columns are unique within the parent table.

ParentTable Returns a DataTable object representing the relation ’ s parent table.

RelationName Determines the relation ’ s name.

Normally, tables are stored separately in a DataSet object ’ s XML representation, but you can use
the Nested property to make the XML include one table ’ s records inside another ’ s. For example,
suppose that the Students and TestScores tables are linked by a common StudentId fi eld. If you set

Command Objects ❘ 457

c20.indd 457c20.indd 457 12/30/09 7:09:37 PM12/30/09 7:09:37 PM

458 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

this relation ’ s Nested property to True, the XML data would include the TestScores for a student
within the Students record, as shown in the following:

< Students >
 < FirstName > Deb < /FirstName >
 < LastName > Dove < /LastName >
 < StudentId > 4 < /StudentId >
 < TestScores >
 < StudentId > 4 < /StudentId >
 < TestNumber > 1 < /TestNumber >
 < Score > 81 < /Score >
 < /TestScores >
 < TestScores >
 < StudentId > 4 < /StudentId >
 < TestNumber > 2 < /TestNumber >
 < Score > 68 < /Score >
 < /TestScores >
 ...
< /Students >

Example program MemoryDataSetNestedXml, which is available for download on the book ’ s web
site, demonstrates this nested XML structure.

Note that in this representation the TestScores table ’ s StudentId value is redundant because the
same value is contained in the Students element ’ s StudentId subelement. If you set the TestScores
.StudentId column ’ s ColumnMapping value to Hidden, you can remove the redundant values and
get the following result:

< Students >
 < FirstName > Deb < /FirstName >
 < LastName > Dove < /LastName >
 < StudentId > 4 < /StudentId >
 < TestScores >
 < TestNumber > 1 < /TestNumber >
 < Score > 81 < /Score >
 < /TestScores >
 < TestScores >
 < TestNumber > 2 < /TestNumber >
 < Score > 68 < /Score >
 < /TestScores >
 ...
< /Students >

c20.indd 458c20.indd 458 12/30/09 7:09:38 PM12/30/09 7:09:38 PM

Constraints

A constraint imposes a restriction on the data in a table ’ s columns. DataSets support two kinds of
constraint objects:

ForeignKeyConstraint restricts the values in one table based on the values in another table.
For example, you could require that values in the Addresses table ’ s State fi eld must exist
in the States table ’ s StateName fi eld. That would prevent the program from creating an
Addresses record where State is XZ.

UniqueConstraint requires that the combination of one or more fi elds within the same table
must be unique. For example, an Employee table might require that the combination of the
FirstName and LastName values be unique. That would prevent the program from creating
two Employees records with the same FirstName and LastName.

The following sections describe each of these types of constraint objects in greater detail.

ForeignKeyConstraint

In addition to requiring that values in one table must exist in another table, a ForeignKeyConstraint
can determine how changes to one table propagate to the other. For example, suppose that the
Addresses table has a ForeignKeyConstraint requiring that its State fi eld contain a value that is
present in the States table ’ s StateName fi eld. If you delete the States table ’ s record for Colorado, the
constraint could automatically delete all of the Addresses records that used that state ’ s name.

The following table describes the ForeignKeyConstraint object ’ s most useful properties.

PROPERTY PURPOSE

AcceptRejectRule Determines the action taken when the AcceptChanges method executes.

This value can be None (do nothing) or Cascade (update the child fi elds ’

values to match the new parent fi eld values).

Columns Returns an array containing references to the constraint ’ s child columns.

ConstraintName Determines the constraint ’ s name.

DeleteRule Determines the action taken when a row is deleted. This value can be Cascade

(delete the child rows), None (do nothing), SetDefault (change child fi eld values

to their default values), or SetNull (change child fi eld values to NULL).

RelatedColumns Returns an array containing references to the constraint ’ s parent columns.

RelatedTable Returns a reference to the constraint ’ s parent table.

Table Returns a reference to the constraint ’ s child table.

UpdateRule Determines the action taken when a row is updated. This value can be

Cascade (update the child rows ’ values to match), None (do nothing),

SetDefault (change child fi eld values to their default values), or SetNull

(change child fi eld values to NULL).

➤

➤

Command Objects ❘ 459

c20.indd 459c20.indd 459 12/30/09 7:09:38 PM12/30/09 7:09:38 PM

460 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

The following code makes a foreign key constraint relating the Students.StudentId parent fi eld to the
TestScores.StudentId child fi eld:

scores_dataset.Relations.Add(
 "Student Test Scores",
 students_table.Columns("StudentId"),
 test_scores_table.Columns("StudentId"))

code snippet MemoryDataSet

Example program MemoryDataSet uses similar code to defi ne a relationship between its Students
and TestScores tables.

UniqueConstraint

If you want to require the values in a single column to be unique, you can set the column ’ s
Unique property to True. This automatically creates a UniqueConstraint object and adds it to the
DataTable. The following code shows how a program can make the Students table ’ s StudentId
column require unique values:

students_table.Columns("StudentId").Unique = True

You can use the UniqueConstraint object ’ s constructors to require that a group of fi elds
has a unique combined value. The following code makes an array of DataColumn objects
representing the Students table ’ s FirstName and LastName fi elds. It passes the array into the
UniqueConstraint object ’ s constructor to require that the FirstName/LastName pair be unique
in the table.

' Make the combined FirstName/LastName unique.
Dim first_last_columns() As DataColumn = {
 students_table.Columns("FirstName"),
 students_table.Columns("LastName")
}
students_table.Constraints.Add(New UniqueConstraint(first_last_columns))

code snippet MemoryDataSet

After executing this code, the program could add two records with the same FirstName and
different LastNames or with the same LastName and different FirstNames, but it could not create
two records with the same FirstName and LastName values.

The following table describes the UniqueConstraint object ’ s properties.

c20.indd 460c20.indd 460 12/30/09 7:09:39 PM12/30/09 7:09:39 PM

PROPERTY PURPOSE

Columns Returns an array of DataColumn objects representing the columns that must be

unique. ConstraintName determines the name of the constraint.

IsPrimaryKey Returns True if the columns form the table ’ s primary key.

Table Returns a reference to the DataTable that contains the constraint.

Example program MemoryDataSet, which is available for download on the book ’ s web site, defi nes
several uniqueness constraints including a constraint requiring that StudentId be unique and a
constraint requiring that the FirstName and LastName combination be unique.

DATAVIEW

A DataView object represents a customizable view of the data contained in a DataTable. You can
use the DataView to select some or all of the DataTable ’ s data and display it sorted in some manner
without affecting the underlying DataTable.

A program can use multiple DataViews to select and order a table ’ s data in different ways. You can
then bind the DataViews to controls such as the DataGrid control to display the different views.
If any of the views modifi es its data, for example by adding or deleting a row, the underlying
DataTable object ’ s data is updated and any other views that need to see the change are updated
as well.

Example program DataGrids, which is available for download on the book ’ s web site, uses the
following code to demonstrate DataGrid controls:

Private Sub Form1_Load() Handles MyBase.Load
 ' Make a DataTable.
 Dim contacts_table As New DataTable("Contacts")

 ' Add columns.
 contacts_table.Columns.Add("FirstName", GetType(String))
 contacts_table.Columns.Add("LastName", GetType(String))
 contacts_table.Columns.Add("Street", GetType(String))
 contacts_table.Columns.Add("City", GetType(String))
 contacts_table.Columns.Add("State", GetType(String))
 contacts_table.Columns.Add("Zip", GetType(String))

 ' Make the combined FirstName/LastName unique.
 Dim first_last_columns() As DataColumn = {
 contacts_table.Columns("FirstName"),
 contacts_table.Columns("LastName")
 }
 contacts_table.Constraints.Add(New UniqueConstraint(first_last_columns))

 ' Make some contact data.
 contacts_table.Rows.Add(New Object() {"Art", "Ant",

DataView ❘ 461

c20.indd 461c20.indd 461 12/30/09 7:09:40 PM12/30/09 7:09:40 PM

462 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

 "1234 Ash Pl", "Bugville", "CO", "11111"})
 contacts_table.Rows.Add(New Object() {"Bev", "Bug",
 "22 Beach St", "Bugville", "CO", "22222"})
 contacts_table.Rows.Add(New Object() {"Cid", "Cat",
 "3 Road Place Lane", "Programmeria", "KS", "33333"})
 contacts_table.Rows.Add(New Object() {"Deb", "Dove",
 "414 Debugger Way", "Programmeria", "KS", "44444"})
 contacts_table.Rows.Add(New Object() {"Ed", "Eager",
 "5746 Elm Blvd", "Bugville", "CO", "55555"})
 contacts_table.Rows.Add(New Object() {"Fran", "Fix",
 "647 Foxglove Ct", "Bugville", "CO", "66666"})
 contacts_table.Rows.Add(New Object() {"Gus", "Gantry",
 "71762-B Gooseberry Ave", "Programmeria", "KS", "77777"})
 contacts_table.Rows.Add(New Object() {"Hil", "Harris",
 "828 Hurryup St", "Programmeria", "KS", "88888"})

 ' Attach grdAll to the DataTable.
 grdAll.DataSource = contacts_table
 grdAll.CaptionText = "All Records"

 ' Make a DataView for State = CO.
 Dim dv_co As New DataView(contacts_table)
 dv_co.RowFilter = "State = 'CO'"
 grdCO.DataSource = dv_co
 grdCO.CaptionText = "CO Records"

 ' Make a DataView for FirstName > = E.
 Dim dv_name As New DataView(contacts_table)
 dv_name.RowFilter = "FirstName > = 'E'"
 grdName.DataSource = dv_name
 grdName.CaptionText = "LastName > = E"
End Sub

code snippet DataGrids

The code builds a DataTable named Contacts containing the fi elds FirstName, LastName, Street,
City, State, and Zip. It places a uniqueness constraint on the FirstName/LastName pair and adds
some rows of data to the table. It then binds the DataTable to the DataGrid control named grdAll .
Next the program makes a DataView named dv_co based on the table, sets its RowFilter property to
make it select rows where the State fi eld has the value CO, and binds the DataView to the DataGrid
named grdCO . Finally, the code makes another DataView with RowFilter set to select records where
the FirstName fi eld is greater than or equal to E and binds that DataView to the grdName DataGrid.

Figure 20 - 19 shows the result. The DataGrid on the top is bound to the DataTable and shows all
the table ’ s rows. The second DataGrid is bound to the dv_co DataView and displays records where
State = CO. The bottom DataGrid is bound to the dv_name DataView, so it displays records where
FirstName > = E . If you use any of these DataGrid controls to modify the data, the other grids
immediately show the updates.

The DataView class is geared more toward data display than toward storage. It basically refers to
data stored in a DataTable object, so it doesn ’ t provide the same features for managing relations

c20.indd 462c20.indd 462 12/30/09 7:09:41 PM12/30/09 7:09:41 PM

and constraints that the DataTable does. It does, however, provide links to the DataRow objects it
represents. From those objects, you can get back to the rows ’ DataTable objects if necessary.

FIGURE 20-19: Diff erent DataView objects can show

diff erent views of the same data.

The following table describes the DataView object ’ s most useful properties.

PROPERTY PURPOSE

AllowDelete Determines whether the DataView allows row deletion. If this is False, any

bound controls such as the DataGrid will not allow the user to delete rows.

AllowEdit Determines whether the DataView allows row editing. If this is False, any bound

controls (such as the DataGrid) will not allow the user to edit rows.

AllowNew Determines whether the DataView allows new rows. If this is False, any bound

controls (such as the DataGrid) will not allow the user to add rows.

Count Returns the number of rows selected by the view.

Item Returns a DataRowView object representing a row in the view.

RowFilter A string that determines the records selected by the view.

continues

DataView ❘ 463

c20.indd 463c20.indd 463 12/30/09 7:09:41 PM12/30/09 7:09:41 PM

464 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

PROPERTY PURPOSE

RowStateFilter The state of the records that should be selected by the view. This can be Added,

CurrentRows (unchanged, new, and modifi ed rows), Deleted, Modifi edCurrent

(current version of modifi ed rows), Modifi edOriginal (original version of modifi ed

rows), None, OriginalRows (original, unchanged, and deleted rows), and Unchanged.

Sort A string giving the columns that should be used to sort the data. For example,

“ State, City, Zip ” sorts by State, then City, and then Zip in descending order.

Table Specifi es the underlying DataTable object.

The following table describes some of the most useful DataView methods.

METHOD PURPOSE

AddNew Adds a new row to the underlying DataTable.

Delete Deletes the row with a specifi c index from the underlying DataTable.

Find Returns the index of a row that matches the view ’ s sort key columns. This method

returns - 1 if no row matches the values it is passed. It raises an error if the number of

values it receives does not match the number of the DataView ’ s key values.

FindRows Returns an array of DataRowView objects representing rows that match the view ’ s

sort key columns.

The DataView object ’ s Sort property determines not only the fi elds by which the data is sorted
but also the key fi elds used by the Find method. The following code makes the dv_name DataView
sort by FirstName and LastName. It then uses the Find method to display the index of a row with
FirstName = Hil and LastName = Harris.

dv_name.Sort = "FirstName, LastName"
MessageBox.Show(dv_name.Find(New String() {"Hil", "Harris"}).ToString)

DATAROWVIEW

A DataRow object can hold data for more than one state. For example, if a DataTable row has been
modifi ed, its DataRow object contains the row ’ s original data and the new modifi ed values.

The DataRowView object represents a view of a DataRow object in a particular state. That state
can be Current (the current value), Default (if columns have defi ned default values), Original (the
original values), or Proposed (new values during an edit before EndEdit or CancelEdit is called).

A DataView object holds DataRowView objects representing a view of a DataTable selecting
particular rows in a particular state.

(continued)

c20.indd 464c20.indd 464 12/30/09 7:09:42 PM12/30/09 7:09:42 PM

The DataRowView object ’ s purpose is to represent a row in a specifi c state so this object is relatively
simple. It basically indicates the chosen state and refers to a DataRow.

The following table describes the DataRowView object ’ s most useful properties.

PROPERTY PURPOSE

DataView The DataView that contains the DataRowView.

IsEdit Returns True if the row is in editing mode.

IsNew Returns True if the row is new.

Item Gets or sets the value of one of the row ’ s fi elds.

Row The DataRow object that this DataRowView represents.

RowVersion The version of the DataRow represented by this object (Current, Default, Original,

or Proposed).

SIMPLE DATA BINDING

Binding a simple property such as Text to a data source is relatively easy. First, create a DataSet,
DataTable, or DataView to act as the data source. You can create this object at design time using
controls or at runtime using object variables.

If you build the data source at design time, you can also bind the
property at design time. Select the control that you want to bind
and open the Properties window. Expand the (DataBindings)
entry and fi nd the property you want to bind (for example,
Text). Click the drop - down arrow on the right, and use the pop -
up display to select the data source item that you want to bind to
the property.

Figure 20 - 20 shows the pop - up binding the txtTitle control ’ s
Text property to the dsBooks DataSet object ’ s Books table ’ s
Title fi eld.

At runtime, your code can bind a simple property to a data
source by using the control ’ s DataBindings collection. This
collection ’ s Add method takes as parameters the name of the
property to bind, the data source, and the name of the item in
the data source to bind.

The following statement binds the txtUrl control ’ s Text property
to the dsBooks DataSet object ’ s Books table ’ s URL fi eld:

txtUrl.DataBindings.Add("Text", dsBooks.Books, "URL")

FIGURE 20-20: You can bind a

simple control property to a data

source at design time.

Simple Data Binding ❘ 465

c20.indd 465c20.indd 465 12/30/09 7:09:43 PM12/30/09 7:09:43 PM

466 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

When you bind the fi rst property, Visual Basic adds a BindingSource to the
form. You can reuse this BindingSource to bind other properties. When you
open the dropdown shown in Figure 20–20, expand the existing BindingSource
to reuse it rather than creating a new one.

That ’ s all there is to binding simple properties. By itself, however, this binding doesn ’ t provide any
form of navigation. If you were to bind the Text properties of a bunch of TextBox controls and run
the program, you would see the data for the data source ’ s fi rst record and nothing else. To allow the
user to navigate through the data source, you must use a CurrencyManager object.

CURRENCYMANAGER

Some controls such as the DataGrid control provide their own forms of navigation. If you bind a
DataGrid to a DataSet, it allows the user to examine the DataSet object ’ s tables, view and edit data,
and follow links between the tables. The DataGrid provides its own methods for navigating through
the data. For simpler controls, such as the TextBox, which can display only one data value at a time,
you must provide some means for the program to navigate through the data source ’ s records.

A data source manages its position within its data by using a CurrencyManager object. The
CurrencyManager supervises the list of Binding objects that bind the data source to controls such as
TextBoxes.

The following table describes the CurrencyManager object ’ s most useful properties.

PROPERTY PURPOSE

Bindings A collection of the bindings that the object manages.

Count Returns the number of rows associated with the CurrencyManager.

Current Returns a reference to the current data object (row).

List Returns an object that implements the IList interface that provides the data for the

CurrencyManager. For example, if the data source is a DataSet or DataTable, this

object is a DataView.

Position Gets or sets the current position within the data. For example, in a DataTable this is

the row number.

The CurrencyManager also provides some methods for manipulating the data. The following table
describes the CurrencyManager object ’ s most useful methods.

c20.indd 466c20.indd 466 12/30/09 7:09:43 PM12/30/09 7:09:43 PM

METHOD PURPOSE

AddNew Adds a new item to the data source.

CancelCurrentEdit Cancels the current editing operation.

EndCurrentEdit Ends the current editing operation, accepting any changes.

Refresh Refi lls the bound controls.

RemoveAt Removes the data source item at a specifi ed index.

The CurrencyManager class raises a PositionChanged event when its position in the data changes.

Example program BindSimple, which is available for download on the book ’ s web site, uses the
following code to navigate through a DataSet:

Public Class Form1
 Private WithEvents m_CurrencyManager As CurrencyManager

 Private Sub Form1_Load() Handles MyBase.Load
 'TODO: This line of code loads data into the
 'BooksDataSet.Books' table. You can move, or remove it, as needed.
 Me.BooksTableAdapter.Fill(Me.BooksDataSet.Books)

 ' Get the CurrencyManager.
 m_CurrencyManager = DirectCast(Me.BindingContext(
 BooksBindingSource), CurrencyManager)

 ' Display the record number.
 m_CurrencyManager_PositionChanged()
 End Sub

 ' Move to the previous record.
 Private Sub btnPrev_Click() Handles btnPrev.Click
 If m_CurrencyManager.Position = 0 Then
 Beep()
 Else
 m_CurrencyManager.Position -= 1
 End If
 End Sub

 ' Move to the next record.
 Private Sub btnNext_Click() Handles btnNext.Click
 If m_CurrencyManager.Position > = m_CurrencyManager.Count - 1 Then
 Beep()
 Else
 m_CurrencyManager.Position += 1
 End If
 End Sub

 ' Go to the first record.
 Private Sub btnFirst_Click() Handles btnFirst.Click

CurrencyManager ❘ 467

c20.indd 467c20.indd 467 12/30/09 7:09:45 PM12/30/09 7:09:45 PM

468 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

 m_CurrencyManager.Position = 0
 End Sub

 ' Go to the last record.
 Private Sub btnLast_Click() Handles btnLast.Click
 m_CurrencyManager.Position = m_CurrencyManager.Count - 1
 End Sub

 Private Sub m_CurrencyManager_PositionChanged() _
 Handles m_CurrencyManager.PositionChanged
 lblPosition.Text =
 (m_CurrencyManager.Position + 1) & " of " & m_CurrencyManager.Count
 End Sub

 ' Add a record.
 Private Sub btnAdd_Click() Handles btnAdd.Click
 m_CurrencyManager.AddNew()
 txtTitle.Focus()
 End Sub

 ' Delete the current record.
 Private Sub btnDelete_Click() Handles btnDelete.Click
 If MessageBox.Show("Are you sure you want to remove this record?",
 "Confirm?", MessageBoxButtons.YesNo, MessageBoxIcon.Question) =
 Windows.Forms.DialogResult.Yes _
 Then
 m_CurrencyManager.RemoveAt(m_CurrencyManager.Position)
 End If
 End Sub
End Class

code snippet BindSimple

When the form loads, the program fi lls its data set and saves a reference to a CurrencyManager
object to control the data set ’ s Books table. It then calls subroutine m_CurrencyManager_
PositionChanged to display the current record ’ s index (this is described shortly).

The First, Last, Previous, and Next record buttons all work by changing the CurrencyManager ’ s
Position property. For example, the previous record button ’ s event handler checks whether the
current position is greater than zero and if it is the code decreases the position by one.

Similarly, the Next record button increases the current position by one if the CurrencyManager is
not already displaying the last record.

The First and Last record buttons set the position to the indexes of the fi rst and last records,
respectively.

Whenever the CurrencyManager ’ s position changes, its PositionChanged event handler executes.
This code displays the current record ’ s index in a label for the user to see.

When the user clicks the Add Record button, the code calls the CurrencyManager ’ s AddNew
method to make a new record. It also sets focus to the fi rst text box to make fi lling in the new
record easier.

c20.indd 468c20.indd 468 12/30/09 7:09:46 PM12/30/09 7:09:46 PM

Finally, when the user clicks the delete record button, the code
confi rms the deletion and then calls the CurrencyManager ’ s
RemoveAt method to delete the record.

Figure 20 - 21 shows the BindSimple program in action.

Example program BindSimpleMemoryDataSet, which is
available for download on the book ’ s web site, is similar to
program BindSimple except it uses a DataSet built in memory
rather than one loaded from a database.

COMPLEX DATA BINDING

For some controls (such as the TextBox and Label) binding the Text property is good enough. Other
controls, however, do not display a simple textual value.

For example, suppose that you have a database containing a Users table with fi elds FirstName,
LastName, and UserType. The UserTypes table has fi elds UserTypeId and UserTypeName. The
Users.UserType fi eld contains a value that should match UserTypes.UserTypeId. The UserTypes
.UserTypeName fi eld contains values such as Programmer, Project Manager, Department Manager,
Program Manager, and Lab Director.

When you build a form to display the Users table data, you would like to use a ComboBox to allow
the user to select only the allowed choices Programmer, Project Manager, and so on. However, the
Users table doesn ’ t store those string values. Instead it stores the UserTypeId value corresponding
to the UserTypeName value that the user selects. When the user picks a UserTypes.UserTypeName
value, the ComboBox should look up the corresponding UserTypes.UserTypeId value and save it in
the Users.UserType fi eld.

Clearly, the simple binding strategy used for TextBoxes won ’ t work here. Binding this control
requires two rather complicated steps: defi ning the DataSet and binding the control. Each piece of
the operation is easy, but you must do everything correctly. If you miss any detail, the ComboBox
won ’ t work, and Visual Basic ’ s error messages probably won ’ t give you enough information to fi gure
out how to fi x the problem.

Example program BindComboBox, which is available for download on the
book’s web site, demonstrates this technique. You may want to download
this example and copy the included database ComputerUsers.mdb into a new
directory so you can follow along.

The fi rst step is building a data connection. Select the Data menu ’ s Add New Data Source
command. Use the Data Source Confi guration Wizard to make a data source that selects both the
Users and UserTypes tables from the database.

FIGURE 20-21: This program’s but-

tons use a CurrencyManager to let

the user add, delete, and navigate

through a table’s records.

Complex Data Binding ❘ 469

c20.indd 469c20.indd 469 12/30/09 7:09:46 PM12/30/09 7:09:46 PM

470 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

Next, create a ComboBox named cboUserType to the form. In the Properties window, select the
control ’ s DataSource property and click the drop - down arrow on the right. Select the UserTypes
table as shown in Figure 20 - 22. This tells the ComboBox where to look up values.

When you set this property, Visual Basic also adds a DataSet, BindingSource, and TableAdapter to
the form. These components provide access to the UserTypes table.

Set the ComboBox ’ s DisplayMember property to the fi eld in the lookup table (specifi ed by
the DataSource property) that the control will display to the user. In this example, the fi eld is
UserTypeName.

Set the ComboBox ’ s ValueMember property to the fi eld in the lookup table that represents the
value that the ComboBox will need to read and write from the database. In this example, that ’ s the
UserTypeId fi eld.

Next, you need to bind the ComboBox to the fi eld that it must read and write in the database.
In this example, that ’ s the Users table ’ s UserType fi eld. To simplify this binding, add a new
BindingSource to the form. Change its name to UsersBindingSource and set its DataSource
property to the ComputerUsersDataSet as shown in Figure 20 - 23. Then set the BindingSource
object ’ s DataMember property to the Users table.

FIGURE 20-22: Set the ComboBox’s

DataSource property to the

UserTypes table.

FIGURE 20-23: Set the

BindingSource object’s DataSource

to the ComputerUsersDataSet.

c20.indd 470c20.indd 470 12/30/09 7:09:48 PM12/30/09 7:09:48 PM

The last ComboBox property you need to set is SelectedValue.
Click the ComboBox, open the Properties window, and expand
the (DataBindings) entry at the top. Click the drop - down arrow
to the right of the SelectedValue property and select the fi eld
that the control must read and write in the database. For this
example, that ’ s the UsersBindingSource object ’ s UserType fi eld.
Figure 20 - 24 shows the Property window setting
this property.

Next, create TextBox controls to display the Users table ’ s
FirstName and LastName fi elds. In the Properties window,
open their (Data Bindings) items and set their Text
properties to the UsersBindingSource object ’ s FirstName
and LastName fi elds.

Finally, to give the user a way to navigate through the data,
add a BindingNavigator to the form. Set this component ’ s
BindingSource property to UsersBindingSource and the program
is ready to run. Figure 20 - 25 shows the BindComboBox example
program, which is available for download on the book ’ s web site,
in action.

The choices allowed by the ComboBox are taken from the values
in the UserTypes table ’ s UserTypeName fi eld. If you select a new
user value from the ComboBox, the control automatically makes
the appropriate change to the Users table.

The steps for binding a ListBox control are exactly the same as
those for binding a ComboBox. Example program BindListBox,
which is available for download on the book ’ s web site, works
much as program BindComboBox does, except it uses a
ListBox instead of a ComboBox. As you move through the
records, the ListBox selects the appropriate user type for each
user record.

SUMMARY

Working with databases in Visual Basic is an enormous topic. This chapter does not cover every
detail of database programming, but it does explain the basics. It tells how to build data sources
and how to drag and drop tables and fi elds from the Data Sources window onto a form. It describes
the most important database controls and objects, such as connection, data adapter, DataSet, and
DataTable objects. It also explains the fundamentals of simple and complex data binding, and using
CurrencyManager objects to navigate through data.

For more information on database programming in Visual Basic .NET, see one or more books about
database programming. This is a very broad fi eld so you may want to look at several books about

FIGURE 20-24: Set the

BindingSource object’s

SelectedValue to the

UsersBindingSource object’s

UserType fi eld.

FIGURE 20-25: At runtime, the

ComboBox displays the fi eld

bound to its DisplayMember

property while updating the

fi eld bound to its SelectedValue

property.

Summary ❘ 471

c20.indd 471c20.indd 471 12/30/09 7:09:49 PM12/30/09 7:09:49 PM

472 ❘ CHAPTER 20 DATABASE CONTROLS AND OBJECTS

database design, database maintenance using your particular database (for example, Access or SQL
Server), Visual Basic database programming, and so forth.

Database programming has changed considerably in recent versions of Visual Basic, so be sure to
get a book that ’ s reasonably up - to - date. Older books explain many of the fundamental database
objects such as DataSet, DataTable, DataRow, and CurrencyManager, but they won ’ t cover new
objects such as TableAdapter, DataConnector, and DataNavigator. Books covering Visual Basic
2005 and more recent editions should be the most useful. For example, the book Expert One - on -
One Visual Basic 2005 Database Programming by Roger Jennings (Wrox, 2005) provides much
greater depth on this topic.

If you must build and maintain large databases, you should also read books about database
management. These can tell you how to design, build, and maintain a database throughout the
application ’ s lifetime. My book Beginning Database Design Solutions (Rod Stephens, Wrox, 2008)
explains how to analyze database needs and build a robust and effi cient database design.

You should also read about the particular kinds of databases that you need to use. For example,
if you are working with SQL Server databases, get a good book on using SQL Server, such as
Professional Microsoft SQL Server 2008 Programming by Robert Viera (Wrox, 2009).

Becoming an expert database developer is a big task, but the techniques described in this chapter
should at least get you started.

The controls and other objects described in this chapter help a program manipulate data in a
database. They help a program connect to a database, read and update data, and display the data on
a form.

Chapter 21, “ LINQ, ” explains another way to load and manipulate data. LINQ allows a program
to perform complex queries similar to those provided by SQL to select data from lists, collections,
arrays, and other data structures within the program ’ s code.

c20.indd 472c20.indd 472 12/30/09 7:09:50 PM12/30/09 7:09:50 PM

21
LINQ

LINQ (Language Integrated Query, pronounced “ link ”) is a data selection mechanism
designed to give programs the ability to select data in the same way from any data source.
Ideally the program would be able to use exactly the same method to fetch data whether it ’ s
stored in arrays, lists, relational databases, XML data, Excel worksheets, or some other data
store. Currently the LINQ API supports data stored in relational databases, objects within the
program stored in arrays or lists, and XML data.

LOTS OF LINQ

This chapter only covers the default LINQ providers included with Visual Basic,
but you can build providers to make LINQ work with just about anything.
For a list of some third party LINQ providers to Google, Amazon, Excel,
Active Directory, and more, see rshelton.com/archive/2008/07/11/list - of -
linq - providers.aspx.

LINQ is a complex topic. LINQ provides dozens of extension methods that apply to all sorts
of objects that hold data such as arrays, dictionaries, and lists. Visual Basic provides a LINQ
query syntax that converts SQL - like queries into calls to LINQ functions.

LINQ tools are divided into the three categories summarized in the following list:

LINQ to Objects refers to LINQ functions that interact with Visual Basic objects such
as arrays, dictionaries, and lists. Most of this chapter presents examples using these
kinds of objects to demonstrate LINQ concepts.

LINQ to XML refers to LINQ features that read and write XML data. Using LINQ,
you can easily move data between XML hierarchies and other Visual Basic objects.

LINQ to ADO.NET refers to LINQ features that let you write LINQ - style queries to
extract data from relational databases.

➤

➤

➤

c21.indd 473c21.indd 473 12/31/09 6:44:48 PM12/31/09 6:44:48 PM

474 ❘ CHAPTER 21 LINQ

The fi rst section, “ Introduction to LINQ, ” provides an intuitive introduction to LINQ. Many of the
details about LINQ functions are so complex and technical that they can be hard to understand, but
the basic ideas are really quite simple. The introduction gives examples that demonstrate the essen-
tial concepts to try to give you an understanding of the basics.

The section “ Basic LINQ Query Syntax ” describes the most useful LINQ query commands. These
let you perform complex queries that select, fi lter, and arrange data taken from program objects.
The next section, “ Advanced LINQ Query Syntax, ” describes additional LINQ query commands.

“ LINQ Functions ” describes functions that are provided by LINQ but that are not supported by
Visual Basic ’ s LINQ query syntax. To use these functions, you must apply them to the arrays, dic-
tionaries, lists, and other objects that they extend.

“ LINQ Extension Methods ” explains how LINQ extends objects such as arrays, dictionaries, and
lists. It describes method - based queries and explains how you can write your own extensions to
increase the power of method - based queries.

After describing the tools provided by LINQ, most of the rest of the chapter describes the three
main categories of LINQ usage: LINQ to Objects, LINQ to XML, and LINQ to ADO.NET. The
chapter fi nishes by describing Parallel LINQ (PLINQ).

LINQ to Objects is a bit easier to cover effectively than LINQ to XML and LINQ to ADO.NET
because it doesn ’ t require that you have any special knowledge beyond Visual Basic itself. To under-
stand LINQ to XML properly, you need to understand XML, which is a complex topic in its own
right. Similarly, to get the most out of LINQ to ADO.NET, you need to understand relational data-
bases such as SQL Server, a huge topic about which many books have been written.

Because LINQ to Objects is easiest to cover, this chapter focuses mostly on it, and most of the
examples throughout the chapter deal with LINQ to Objects. The fi nal sections of the chapter do
provide some information about LINQ to XML and LINQ to ADO.NET, however, to give you an
idea of what is possible in those arenas.

The book ’ s web site contains 20 example programs that demonstrate the techniques described in
this chapter.

INTRODUCTION TO LINQ

The LINQ API provides relatively low - level access to data in these storage formats. Visual Basic
provides a higher - level layer above the LINQ API that makes querying data sources easier. This
higher - level layer uses query expressions to defi ne the data that should be selected from a data
source. These expressions use a SQL - like syntax so they will be familiar to developers who have
worked with relational databases.

For example, suppose a program defi nes a Customer class that provides typical customer properties
such as Name, Phone, StreetAddress, AccountBalance, and so forth. Suppose also that the list
all_customers holds all of the application ’ s Customer objects. Then the following expression
defi nes a query that selects customers with negative account balances. The results are ordered by
balance in ascending order so customers with the most negative balances (who owe the most) are
listed fi rst. (Example program LinqLambda, which is available for download on the book ’ s web site,
defi nes a simple Customer class and performs a similar query.)

c21.indd 474c21.indd 474 12/31/09 6:44:51 PM12/31/09 6:44:51 PM

Dim overdue_custs =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance Ascending
 Select cust.Name, cust.AccountBalance

code snippet LinqLambda

Behind the scenes, Visual Basic transforms the query expression into calls to the LINQ API
and fetches the selected data. The program can then loop through the results as shown in the
following code:

For Each cust In overdue_custs
 Debug.WriteLine(cust.Name & ": " & cust.AccountBalance)
Next cust

There are a couple of interesting things to note about this code. First, the previous code fragments
do not declare data types for the expression or the looping variable cust in the For Each loop. The
data types for both of these variables are inferred automatically by Visual Basic. If you stop the pro-
gram while it is executing and use the TypeName function to see what types these variables have,
you ’ ll fi nd that they have the following ungainly names:

< SelectIterator > d__b(Of Customer,VB$AnonymousType_0(Of String,Decimal))
VB$AnonymousType_0(Of String,Decimal)

The fi rst line of this gibberish means the overdue_custs query result is an iterator that loops
through Customer objects and returns objects of an anonymous type (which is internally named
VB$AnonymousType_0) that contains String and Decimal fi elds. The second line indicates that the
cust variable used in the For Each loop has the same anonymous type VB$AnonymousType_0.

Because these variables have such awkward names, you don ’ t really want to try to guess them. It ’ s
much easier to leave Option Infer on and let Visual Basic infer them for you.

In fact, as the previous code fragments show, you never even need to know what these data types
are. The code can defi ne the query without declaring its types, and the For Each loop can iterate
through the results without knowing the data type of the looping variable.

Because the code doesn ’ t need to know what these data types really are, they are called
anonymous types.

A second interesting fact about this code is that the program doesn ’ t actually fetch any data when
the query expression is defi ned. It only accesses the data source (in this case the all_customers
list) when the code tries to access the result in the For Each loop. Many programs don ’ t really need
to distinguish between when the expression is declared and when it is executed. For example, if the
code iterates through the results right after defi ning the query, there isn ’ t much difference. However,
if it may be a long time between defi ning the query and using it or if the query takes a long time to
execute, the difference may matter.

Third, if you have any experience with relational databases, you ’ ll notice that the Select clause is
in a different position from where it would be in a SQL statement. In SQL the Select clause comes

Introduction to LINQ ❘ 475

c21.indd 475c21.indd 475 12/31/09 6:44:52 PM12/31/09 6:44:52 PM

476 ❘ CHAPTER 21 LINQ

fi rst whereas in LINQ it comes at the end. This placement is due to implementation issues Microsoft
encountered while implementing IntelliSense for LINQ. The concept is similar in SQL and LINQ. In
both cases the Select clause tells which “ fi elds ” you want to select from the data. As long as you remem-
ber the difference in position (or let IntelliSense help you remember), it shouldn ’ t be too confusing.

INTELLISENSE DEFERRED

Basically IntelliSense doesn ’ t know what “ fi elds ” you can select until it knows what
fi elds are available. In the preceding example, the From clause indicates that the
data will be selected from all_customers , a list of Customer objects. It isn ’ t until
after the From clause that IntelliSense knows that the Select statement can pick
from the Customer class ’ s properties.

Though it is a new language, LINQ is quite complicated. LINQ ’ s keywords are quite powerful and
fl exible, so they offer great opportunities for building powerful queries. LINQ ’ s fl exibility also
offers opportunities for creating confusing code that is diffi cult to understand and debug. Complex
LINQ queries are all the more diffi cult to debug because Visual Basic doesn ’ t let you step through
them while they execute as it does with code.

LINQ STEP - BY - STEP

Oddly, while Visual Basic programs cannot step through LINQ queries, C#
programs can. Hopefully Visual Basic will get this feature some day.

The rest of this chapter describes LINQ in greater detail. The following sections explain the most
useful LINQ keywords that are supported by Visual Basic. The next major section describes LINQ
extension functions that you can use to query objects such as arrays and lists but that are not sup-
ported by LINQ queries.

BASIC LINQ QUERY SYNTAX

The following text shows the typical syntax for a LINQ query:

From ... Where ... Order By ... Select ...

The following sections describe these four basic clauses. The sections after those describe some of
the other most useful LINQ clauses.

From

The From clause is the only one that is required. It tells where the data comes from and defi nes the
name by which it is known within the LINQ query. Its basic form is:

c21.indd 476c21.indd 476 12/31/09 6:44:52 PM12/31/09 6:44:52 PM

From query_variable In data_source

Here query_variable is a variable that you are declaring to manipulate the items selected from the
data_source. This is similar to declaring a looping variable in a For or For Each statement.

You can supply a data type for query_variable if you know its type, although due to the anonymous
types used by LINQ, it ’ s often easiest to let LINQ infer the data type automatically. For example,
the following query explicitly indicates that the query variable per is from the Person class:

Dim query = From cust As Customer In all_customers

The From clause can include more than one query variable and data source. In that case, the query
selects data from all of the data sources. For example, the following query selects objects from the
all_customers and all_orders lists:

Dim query = From cust In all_customers, ord In all_orders

This query returns the cross - product of the objects in the two lists. In other words, for every object
in the all_customers list, the query returns that object paired with every object in the all_orders
list. If all_customers contains Ann, Bob, and Cindy, and all_orders contains orders numbered 1,
2, 3, then the following text shows the results returned by this query:

Ann Order 1
Ann Order 2
Ann Order 3
Bob Order 1
Bob Order 2
Bob Order 3
Cindy Order 1
Cindy Order 2
Cindy Order 3

Usually, you will want to use a Where clause to join the objects selected from the two lists. For
example, if customers and orders are related by a common CustomerId property, you might use the
following query to select customers together with their orders rather than all orders:

Dim query = From cust In all_customers, ord In all_orders
 Where cut.CustomerId = ord.CustomerId

If Ann, Bob, and Cindy have CustomerId values 1, 2, 3, and the three orders have the corresponding
CustomerId values, the preceding query would return the following results:

Ann Order 1
Bob Order 2
Cindy Order 3

Basic LINQ Query Syntax ❘ 477

c21.indd 477c21.indd 477 12/31/09 6:44:54 PM12/31/09 6:44:54 PM

478 ❘ CHAPTER 21 LINQ

Where

The Where clause applies fi lters to the records selected by the From clause. It can include tests
involving the objects selected and properties of those objects. The last example in the preceding
section shows a particularly useful kind of query that joins objects from two data sources that are
related by common property values. Although the Where clause is often used for simple joins, it can
also execute functions on the selected objects and their properties.

For example, suppose the GoodCustomer class inherits from Customer, a class that has
AccountBalance and PaymentLate properties. Also suppose the all_customers list contains
Customer and GoodCustomer objects.

The OwesALot function defi ned in the following code returns True if a Customer owes more
than $50. The query that follows selects objects from all_customers where the objects is not a
GoodCustomer and has a PaymentLate property of True and for which function OwesALot
returns True.

Private Function OwesALot(ByVal cust As Customer) As Boolean
 Return cust.AccountBalance < -50
End Function

Dim query = From cust In all_customers
 Where Not (TypeOf cust Is GoodCustomer)
 AndAlso cust.PaymentLate _
 AndAlso OwesALot(cust)

code snippet SimpleSamples

The Where clause can include just about any Boolean expression, usually involving the selected
objects and their properties. As the preceding example shows, it can include Not, Is, AndAlso, and
function calls. It can also include And, Or, OrElse, Mod, and Like.

Expressions can use any of the arithmetic, date, string, or other comparison operators. The follow-
ing query selects Order objects from all_orderitems where the OrderDate property is after April
5, 2010:

Dim query = From ord In all_orders
 Where ord.OrderDate > #4/5/2010#

Order By

The Order By clause makes a query sort the objects selected according to one or more values.
Usually the values are properties of the objects selected. For example, the following query selects
Customer objects from the all_customers list and sorts them by their LastName and FirstName
properties:

Dim query = From cust In all_customers
 Order By cust.LastName, cust.FirstName

c21.indd 478c21.indd 478 12/31/09 6:44:54 PM12/31/09 6:44:54 PM

In this example, customers are sorted fi rst by last name. If two customers have the same last name,
they are sorted by fi rst name.

An Order By clause can also sort objects based on calculated values. For example, suppose some
customers ’ names are surrounded by parentheses. Because “ (” comes alphabetically before letters,
those customers would normally end up at the beginning of the sorted list. The following query uses
a String class ’ s Replace method to remove parentheses from the values used in sorting so all names
are positioned in the list as if they did not contain parentheses:

Dim query = From cust In all_customers
 Order By cust.LastName.Replace("(", "").Replace(")", ""),
 cust.FirstName.Replace("(", "").Replace(")", "")

code snippet OrderByExamples

Note that the values used for ordering results are not the values selected by the query. The two pre-
ceding queries do not specify what results they select so LINQ takes its default action and selects
the Customer objects in the all_customers list. See the next section, “ Select, ” for information on
determining the values that the query selects.

To arrange items in descending order, simply add the keyword Descending after an ordering expres-
sion. Each expression can have its own Descending keyword so you can arrange them indepen-
dently. The following query orders customers by LastName descending. If several customers have
the same LastName, they are arranged by their FirstName values in ascending order.

Dim query = From cust In all_customers
 Order By cust.LastName Descending, cust.FirstName

Select

The Select clause lists the fi elds that the query should select into its result. This can be an entire
record taken from a data source or it can be one or more fi elds taken from the data sources. It can
include the results of functions and calculations on the fi elds. It can even include more complicated
results such as the results of nested queries.

You can add an alias to any of the items that the query selects. This is particularly useful for calcu-
lated results.

The following query selects objects from all_customers . It gives the fi rst selected fi eld the alias
Name. That fi eld ’ s value is the customer ’ s fi rst and last name separated by a space. The query also
selects the customer ’ s AccountBalance property, giving it the alias Balance.

Dim query = From cust In all_customers
 Select Name = cust.FirstName & " " & cust.LastName,
 Balance = Cust.AccountBalance

code snippet SimpleSamples

Basic LINQ Query Syntax ❘ 479

c21.indd 479c21.indd 479 12/31/09 6:44:54 PM12/31/09 6:44:54 PM

480 ❘ CHAPTER 21 LINQ

The result of the query is an IEnumerable that contains objects of an anonymous type that holds
two fi elds: Name and Balance.

The following code shows how you might display the results. Notice that the code does not declare a
data type for the looping variable cust . The objects in the query result have an anonymous type, so
the code lets Visual Basic infer its data type.

For obj In query
 Debug.WriteLine(obj.Name & " " & FormatCurrency(obj.Balance))
Next obj

You can also use the New keyword to create objects of an anonymous type. The following query
builds a result similar to the earlier query but uses New:

Dim query = From cust In all_customers
 Select New With {
 .Name = cust.FirstName & " " & cust.LastName,
 .Balance = Cust.AccountBalance}

This version emphasizes that you are creating new objects, but it is more verbose and doesn ’ t seem
to have any other real benefi ts.

The earlier queries return objects of an anonymous type. If you like, you can defi ne a type to hold
the results and then create new objects of that type in the Select clause. For example, suppose the
CustInfo class has Name and Balance properties. The following query selects the same data as
the preceding query but this time saves the results in a new CustInfo object:

Dim query = From cust In all_customers
 Select New CustInfo With {
 .Name = cust.FirstName & " " & cust.LastName,
 .Balance = Cust.AccountBalance}

code snippet SimpleSamples

The result of this query contains CustInfo objects, not objects of an anonymous type. The following
code shows how a program can use an explicitly typed looping variable to display these results:

For ci As CustInfo In query
 Debug.WriteLine(ci.Name & " " & FormatCurrency(ci.Balance))
Next ci

code snippet SimpleSamples

c21.indd 480c21.indd 480 12/31/09 6:44:55 PM12/31/09 6:44:55 PM

If the CustInfo class provides a constructor that takes a name and account balance as parameters,
you can achieve a similar result by using the constructor instead of the With keyword. The follow-
ing query provides a result similar to the preceding one:

Dim query = From cust In all_customers
 Select New CustInfo(
 cust.FirstName & " " & cust.LastName,
 cust.AccountBalance)

code snippet SimpleSamples

From all of these different kinds of examples, you can see the power of LINQ. You can also see the
potential for confusion. The Select clause in particular can take a number of different forms and can
return a complicated set of results. If you stick to the simplest syntax, however, your code will be
reasonably easy to understand.

The following example shows one of the more complicated queries that uses only basic LINQ
syntax. It selects data from multiple sources, uses a common fi eld to join them, adds an additional
Where fi lter, uses multiple values to order the results, and returns the Customer and Order objects
that meet its criteria.

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId AndAlso
 cust.AccountBalance < 0
 Order By cust.CustId, ord.OrderDate
 Select cust, ord

Note that the Select clause changes the scope of the variables involved in the query. After the query
reaches the Select clause, it can only refer to items in that clause, later.

For example, the following query selects customer fi rst and last names. The Order By clause comes
after the Select clause so it can only refer to items included in the Select clause. This example orders
the results by the LastName and FirstName fi elds picked by the Select clause.

Dim query = From cust In all_customers
 Select cust.FirstName, cust.LastName
 Order By LastName, FirstName

code snippet OrderByExamples

Because the original cust variable is not chosen by the Select clause, the Order By clause cannot
refer to it.

Note also that if the Select clause gives a result an alias, then any later clause must refer to the alias.
For example, the following query selects the customers ’ last and fi rst names concatenated into a fi eld
known by the alias FullName so the Order By clause must use the alias FullName:

Basic LINQ Query Syntax ❘ 481

c21.indd 481c21.indd 481 12/31/09 6:44:56 PM12/31/09 6:44:56 PM

482 ❘ CHAPTER 21 LINQ

Dim query = From cust In all_customers
 Select FullName = cust.LastName & ", " & cust.FirstName
 Order By FullName

Usually, it is easiest to place Order By and other clauses before the Select clause to avoid confusion.

Using LINQ Results

A LINQ query expression returns an IEnumerable containing the query ’ s results. A program can
iterate through this result and process the items that it contains.

To determine what objects are contained in the IEnumerable result, you need to look carefully at the
Select clause, bolded in the following code. If this clause chooses a simple value such as a string or
integer, then the result contains those simple values.

For example, the following query selects customer fi rst and last names concatenated into a single
string. The result is a string, so the query ’ s IEnumerable result contains strings and the For Each
loop treats them as strings.

Dim query = From cust In all_customers
 Select cust.FirstName & " " & cust.LastName

For Each cust_name As String In query
 Debug.WriteLine(cust_name)
Next cust_name

Often the Select clause chooses some sort of object. The following query selects the Customer
objects contained in the all_customers list. The result contains Customer objects, so the code can
explicitly type its looping variable and treat it as a Customer.

Dim query = From cust In all_customers
 Select cust

For Each cust As Customer In query
 Debug.WriteLine(cust.LastName & " owes " & cust.AccountBalance)
Next cust

The preceding example selects objects with a known class: Customer. Many queries select objects of
an anonymous type. Any time a Select clause chooses more than one item, Visual Basic defi nes an
anonymous type to hold the results. In that case, the code should let Visual Basic infer the type of
the objects in the result (and the looping variable in a For Each statement). The code can then
access the fi elds picked by the Select clause and defi ned in the anonymous type.

c21.indd 482c21.indd 482 12/31/09 6:44:57 PM12/31/09 6:44:57 PM

The following query selects only the Customer objects ’ FirstName and LastName properties. The
result is an object with an anonymous type and having those two properties. The code lets Visual
Basic infer the type for the looping variable obj . It can then access the FirstName and LastName
properties defi ned for the anonymous type, but no other Customer properties area available because
the Select clause didn ’ t choose them.

Dim query = From cust In all_customers
 Select cust.FirstName, cust.LastName

For Each obj In query
 Debug.WriteLine(obj.LastName & ", " & obj.FirstName)
Next obj

ADVANCED LINQ QUERY SYNTAX

The earlier sections describe the basic LINQ commands that you might expect to use regularly.
Simple queries such as the following are reasonably intuitive and easy to use:

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId AndAlso
 cust.AccountBalance < 0
 Order By cust.CustId, ord.OrderDate
 Select cust, ord

However, there ’ s much more to LINQ than these simple queries. The following sections describe
some of the more advanced LINQ commands that are less intuitive and that you probably won ’ t
need to use as often.

Join

The Join keyword selects data from multiple data sources matching up corresponding fi elds. The
following pseudo - code shows the Join command ’ s syntax:

From variable1 In data source1
Join variable2 In data source2
On variable1.field1 Equals variable2.field2

For example, the following query selects objects from the all_customers list. For each object
it fi nds, it also selects objects from the all_orders list where the two records have the same
CustId value.

Advanced LINQ Query Syntax ❘ 483

c21.indd 483c21.indd 483 12/31/09 6:44:57 PM12/31/09 6:44:57 PM

484 ❘ CHAPTER 21 LINQ

Dim query = From cust As Customer In all_customers
 Join ord In all_orders
 On cust.CustId Equals ord.CustId

code snippet JoinExamples

A LINQ Join is similar to a SQL join except the On clause only allows you to select objects where
fi elds are equal and the Equals keyword is required.

The following query selects a similar set of objects without using the Join keyword. Here the Where
clause makes the link between the all_customer and all_orders lists:

Dim query = From cust As Customer In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId

code snippet JoinExamples

This is slightly more fl exible because the Where clause can make tests that are more complicated
than the Join statement ’ s Equals clause.

The Group Join statement selects data much as a Join statement does, but it returns the results dif-
ferently. The Join statement returns an IEnumerable object that holds whatever is selected by the
query (the cust and ord objects in this example).

The Group By statement returns the same objects but in a different arrangement. Each item in
the IEnumerable result contains an object of the fi rst type (cust in this example) plus another
IEnumerable that holds the corresponding objects of the second type (ord in this example).

Actually, the main result is a GroupJoinIterator, but that inherits from
IEnumerable, so you can treat it as such.

For example, the following query selects customers and their corresponding orders much as the
earlier examples do. The new clause Into CustomerOrders means the IEnumerable contain-
ing the orders for each customer should be called CustomerOrders. The = Group part means
CustomerOrders should contain the results of the grouping.

Dim query =
 From cust In all_customers
 Group Join ord In all_orders
 On cust.CustId Equals ord.CustId
 Into CustomerOrders = Group

code snippet JoinExamples

The following code shows how a program might display these results:

c21.indd 484c21.indd 484 12/31/09 6:44:58 PM12/31/09 6:44:58 PM

For Each c In query
 ' Display the customer.
 Debug.WriteLine(c.cust.ToString())

 ' Display the customer's orders.
 For Each o In c.CustomerOrders
 Debug.WriteLine(Space$(4) & "OrderId: " & o.OrderId &
 ", Date: " & o.OrderDate & vbCrLf
 Next o
Next c

code snippet JoinExamples

Each item in the main IEnumerable contains a cust object and an IEnumerable named
CustomerOrders. Each CustomerOrders object contains ord objects corresponding to the
cust object.

This code loops through the query ’ s results. Each time through the loop, it displays the cust
object ’ s information and then loops through its CustomerOrders, displaying each ord object ’ s
information indented.

Example program JoinExamples, which is available for download on the book ’ s web site, demon-
strates these types of Join queries.

Group By

Like the Group Join clause, the Group By clause lets a program select data from a fl at, relational
style format and build a hierarchical arrangement of objects. It also returns an IEnumerable that
holds objects, each containing another IEnumerable.

The following code shows the basic Group By syntax:

From variable1 In datasource1
Group items By value Into groupname = Group

Here items is a list of items whose properties you want selected into the group. In other words, the
properties of the items variables are added to the objects in the nested IEnumerable.

If you omit the items parameter, the query places the objects selected by the rest of the query into
the nested IEnumerable.

The value property tells LINQ on what fi eld to group objects. This value is also stored in the top -
level IEnumerable values.

The groupname parameter gives a name for the group. The objects contained in the top - level
IEnumerable get a property with this name that is an IEnumerable containing the grouped values.

Finally, the = Group clause indicates that the group should contain the fi elds selected by the query.

If this defi nition seems a bit confusing, an example should help. The following query selects objects
from the all_orders list. The Group By statement makes the query group orders with the same
CustId value.

Advanced LINQ Query Syntax ❘ 485

c21.indd 485c21.indd 485 12/31/09 6:45:01 PM12/31/09 6:45:01 PM

486 ❘ CHAPTER 21 LINQ

Dim query1 = From ord In all_orders
 Order By ord.CustId, ord.OrderId
 Group ord By ord.CustId Into CustOrders = Group

code snippet SimpleGroupBy

The result is an IEnumerable that contains objects with two fi elds. The fi rst fi eld is the CustId value
used to defi ne the groups. The second fi eld is an IEnumerable named CustOrders that contains the
group of order objects for each CustId value.

The following code shows how a program might display the results in a TreeView control:

Dim root1 As TreeNode = trvResults.Nodes.Add("Orders grouped by CustId")
For Each obj In query1
 ' Display the customer id.
 Dim cust_node As TreeNode = root1.Nodes.Add("Cust Id: " & obj.CustId)

 ' List this customer's orders.
 For Each ord In obj.CustOrders cust_node.Nodes.Add("OrderId: " & ord.OrderId &
 ", Date: " & ord.OrderDate)
 Next ord
Next obj

code snippet SimpleGroupBy

The code loops through the top - level IEnumerable. Each time through the loop, it displays the
group ’ s CustId and the loops through the group ’ s CustOrders IEnumerable displaying each order ’ s
ID and date.

The following example is a bit more complicated. It selects objects from the all_customers and
all_orders lists, and uses a Where clause to join the two. The Group By clause indicates that the
results should be grouped by the customer object cust . That means results that have the same cust
object are grouped together. It also means the cust object is included in the resulting top - level
IEnumerable ’ s objects much as CustId was included in the preceding example.

Dim query2 = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId
 Order By cust.CustId, ord.OrderId
 Group ord By cust Into CustomerOrders = Group

code snippet SimpleGroupBy

The following code displays the results:

Dim root2 As TreeNode = trvResults.Nodes.Add("Orders grouped by CustId")
For Each obj In query2
 ' Display the customer info.
 Dim cust_node As TreeNode = root2.Nodes.Add("Customer: " & obj.cust.ToString())

 ' List this customer's orders.

c21.indd 486c21.indd 486 12/31/09 6:45:02 PM12/31/09 6:45:02 PM

 For Each ord In obj.CustomerOrders cust_node.Nodes.Add("OrderId: " & ord.OrderId &
 ", Date: " & ord.OrderDate)
 Next ord
Next obj

code snippet SimpleGroupBy

The code loops through the top - level IEnumerable displaying each customer ’ s information. Notice
that the cust object is available at this level because it was used to group the results.

For each customer, the code loops through the CustomerOrders group and displays each order ’ s
information.

Example program SimpleGroupBy, which is available for download on the book ’ s web site, demon-
strates the previous two types of Group By statements.

Another common type of query uses the Group By clause to apply some aggregate function to the
items selected in a group. The following query selects order and order item objects, grouping each
order ’ s items and displaying each order ’ s total price:

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TotalPrice = Sum(ord_item.Quantity * ord_item.UnitPrice),
 OrderItems = Group

code snippet GroupByWithTotals

The query selects objects from the all_orders and all_order_items lists using a Where clause to
join them.

The Group ord_item piece places the fi elds of the ord_item object in the group. The By ord piece
makes each group hold items for a particular ord object.

The Into clause selects two values. The fi rst is a sum over all of the group ’ s ord_item objects adding
up the ord_item s ’ Quantity times UnitPrice fi elds. The second value selected is the group named
OrderItems.

The following code shows how a program might display the results in a TreeView control named
trvResults :

Dim root1 As TreeNode = trvResults.Nodes.Add("Orders")
For Each obj In query1
 ' Display the order id.
 Dim cust_node As TreeNode =
 root1.Nodes.Add("Order Id: " & obj.ord.OrderId &
 ", Total Price: " & FormatCurrency(obj.TotalPrice))
 ' List this order's items.
 For Each ord_item In obj.OrderItems

Advanced LINQ Query Syntax ❘ 487

c21.indd 487c21.indd 487 12/31/09 6:45:03 PM12/31/09 6:45:03 PM

488 ❘ CHAPTER 21 LINQ

 cust_node.Nodes.Add(ord_item.Description & ": " &
 ord_item.Quantity & " @ " & FormatCurrency(ord_item.UnitPrice))
 Next ord_item
Next obj

code snippet GroupByWithTotals

Each loop through the query results represents an order. For each order, the program creates a tree
node showing the order ’ s ID and the TotalPrice value that the query calculated for it.

Next, the code loops through the order ’ s items stored in the OrderItems group. For each item, it cre-
ates a tree node showing the item ’ s Description, Quantity, and TotalPrice fi elds.

Example program GroupByWithTotals, which is available for download on the book ’ s web site,
demonstrates this Group By statement.

Aggregate Functions

The preceding section explains how a Group By query can use the Sum aggregate function. LINQ
also supports the reasonably self - explanatory aggregate functions Average, Count, LongCount,
Max, and Min.

The following query selects order objects and their corresponding order items. It uses a Group By
clause to calculate aggregates for each of the orders ’ items.

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TheAverage = Average(ord_item.UnitPrice * ord_item.Quantity),
 TheCount = Count(ord_item.UnitPrice * ord_item.Quantity),
 TheLongCount = LongCount(ord_item.UnitPrice * ord_item.Quantity),
 TheMax = Max(ord_item.UnitPrice * ord_item.Quantity),
 TheMin = Min(ord_item.UnitPrice * ord_item.Quantity),
 TheSum = Sum(ord_item.Quantity * ord_item.UnitPrice)

code snippet AggregateExamples

The following code loops through the query ’ s results and adds each order ’ s aggregate values to a
string named txt . It displays the fi nal results in a text box named txtResults .

For Each obj In query1
 ' Display the order info.
 txt & = "Order " & obj.ord.OrderId &
 ", Average: " & obj.TheAverage &
 ", Count: " & obj.TheCount &
 ", LongCount: " & obj.TheLongCount &
 ", Max: " & obj.TheMax &
 ", Min: " & obj.TheMin &

c21.indd 488c21.indd 488 12/31/09 6:45:04 PM12/31/09 6:45:04 PM

 ", Sum: " & obj.TheSum &
 vbCrLf
Next obj
txtResults.Text = txt

code snippet AggregateExamples

Set Operations

If you add the Distinct keyword to a query, LINQ keeps only one instance of each value selected.
For example, the following query returns a list of IDs for customers who placed an order before
4/15/2010:

Dim query = From ord In all_orders
 Where ord.OrderDate < #4/15/2010#
 Select ord.CustId
 Distinct

code snippet SetExamples

The code examines objects in the all_orders list with OrderDate fi elds before 4/15/2010. It selects
those objects ’ CustId fi elds and uses the Distinct keyword to remove duplicates. If a particular cus-
tomer placed several orders before 4/15/2010, this query lists that customer ’ s ID only once.

LINQ also provides Union, Intersection, and Except extension methods, but they are not supported
by Visual Basic ’ s LINQ syntax. See the section “ LINQ Functions ” later in this chapter for more
information.

Example program SetExamples, which is available for download on the book ’ s web site, demon-
strates these set operations.

Limiting Results

LINQ includes several keywords for limiting the results returned by a query.

Take makes the query keep a specifi ed number of results and discard the rest.

Take While makes the query keep selected results as long as some condition holds and then
discard the rest.

Skip makes the query discard a specifi ed number of results and keep the rest.

Skip While makes the query discard selected results as long as some condition holds and
then keep the rest.

➤

➤

➤

➤

Advanced LINQ Query Syntax ❘ 489

c21.indd 489c21.indd 489 12/31/09 6:45:06 PM12/31/09 6:45:06 PM

490 ❘ CHAPTER 21 LINQ

The following code demonstrates each of these commands:

Dim q1 = From cust In all_customers Take 5
Dim q2 = From cust In all_customers Take While cust.FirstName.Contains("n")
Dim q3 = From cust In all_customers Skip 3
Dim q4 = From cust In all_customers Skip While cust.FirstName.Contains("n")

code snippet LimitingExamples

The fi rst query selects the fi rst fi ve customers and ignores the rest.

The second query selects customers as long as the FirstName fi eld contains the letter “ n. ” It then
discards any remaining results, even if a later customer ’ s FirstName contains an “ n. ”

The third query discards the fi rst three customers and then selects the rest.

The fi nal query skips customers as long as their FirstName values contain the letter “ n ” and then
keeps the rest.

Example program LimitingExamples, which is available for download on the book ’ s web site, dem-
onstrates these commands.

LINQ FUNCTIONS

LINQ provides several functions (implemented as extension methods) that are not supported by
Visual Basic ’ s LINQ syntax. Though you cannot use these in LINQ queries, you can apply them to
the results of queries to perform useful operations.

For example, the following code defi nes a query that looks for customers named Rod Stephens. It
then applies the FirstOrDefault extension method to the query to return either the fi rst object
selected by the query or Nothing if the query selects no objects.

Dim rod_query = From cust In all_customers
 Where cust.LastName = "Stephens" AndAlso cust.FirstName = "Rod"
Dim rod As Person = rod_query.FirstOrDefault()

code snippet FunctionExamples

The following list describes some of the more useful of these extension methods:

Aggregate — Uses a function specifi ed by the code to calculate a custom aggregate.

DefaultIfEmpty — If the query ’ s result is not empty, returns the result. If the result is
empty, returns an IEnumerable containing a default value. Optionally can also specify the
default value (for example, a new object rather than Nothing) to use if the query ’ s result is
empty.

Concat — Concatenates two sequences into a new sequence.

Contains — Determines whether the result contains a specifi c value.

➤

➤

➤

➤

c21.indd 490c21.indd 490 12/31/09 6:45:06 PM12/31/09 6:45:06 PM

ElementAt — Returns an element at a specifi c position in the query ’ s result. If there is no
element at that position, it throws an exception.

ElementAtOrDefault — Returns an element at a specifi c position in the query ’ s result. If
there is no element at that position, it returns a default value for the data type.

Empty — This Shared IEnumerable method creates an empty IEnumerable.

Except — Returns the items in one IEnumerable that are not in a second IEnumerable.

First — Returns the fi rst item in the query ’ s result. If the query contains no results, it
throws an exception.

FirstOrDefault — Returns the fi rst item in the query ’ s result. If the query contains no
results, it returns a default value for the data type. For example, the default value for an
Integer is 0 and the default value for object references is Nothing.

Intersection — Returns the intersection of two IEnumerable objects. In other words,
it returns an IEnumerable containing items that are in both of the original IEnumerable
objects.

Last — Returns the last item in the query ’ s result. If the query contains no results, it throws
an exception.

LastOrDefault — Returns the last item in the query ’ s result. If the query contains no
results, it returns a default value for the data type.

Range — This Shared IEnumerable method creates an IEnumerable containing a range of
integer values.

Repeat — This Shared IEnumerable method creates an IEnumerable containing a value of a
given type repeated a specifi c number of times.

SequenceEqual — Returns True if two sequences are identical.

Single — Returns the single item selected by the query. If the query does not contain
exactly one result, it throws an exception.

SingleOrDefault — Returns the single item selected by the query. If the query contains no
results, it returns a default value for the data type. If the query contains more than one item,
it throws an exception.

Union — Returns the union of two IEnumerable objects. In other words, it returns an
IEnumerable containing items that are in either of the original IEnumerable objects.

Example program FunctionExamples, which is available for download on the book ’ s web site,
demonstrates most of these functions. Example program SetExamples demonstrates Except,
Intersection, and Union.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

LINQ Functions ❘ 491

c21.indd 491c21.indd 491 12/31/09 6:45:08 PM12/31/09 6:45:08 PM

492 ❘ CHAPTER 21 LINQ

LINQ also provides conversion functions that convert results into new data types. The following list
describes these methods:

AsEnumerable — Converts the result into a typed IEnumerable(Of T).

AsQueryable — Converts an IEnumerable into an IQueryable.

OfType — Removes items that cannot be cast into a specifi c type.

ToArray — Places the results in an array.

ToDictionary — Places the results in a Dictionary using a selector function to set each
item ’ s key.

ToList — Converts the result into a List(Of T).

ToLookup — Places the results in a Lookup (one - to - many dictionary) using a selector
function to set each item ’ s key.

Note that the ToArray, ToDictionary, ToList, and ToLookup functions force the query to execute
immediately instead of waiting until the program accesses the results.

LINQ EXTENSION METHODS

Visual Basic doesn ’ t really execute LINQ queries. Instead it converts them into a series of function
calls (provided by extension methods) that perform the query. Though the LINQ query syntax is
generally easier to use, it is sometimes helpful to understand what those function calls look like.

The following sections explain the general form of these function calls. They explain how the func-
tion calls are built, how you can use these functions directly in your code, and how you can extend
LINQ to add your own LINQ query methods.

Method - Based Queries

Suppose a program defi nes a List(Of Customer) named all_customers and then defi nes the follow-
ing query expression. This query fi nds customers that have AccountBalance values less than zero,
orders them by AccountBalance, and returns an IEnumerable object that can enumerate their names
and balances. (Example program LinqLambda, which is available for download on the book ’ s web
site, defi nes a simple Customer class and performs a similar query.)

Dim q1 =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance
 Select cust.Name, cust.AccountBalance

code snippet LinqLambda

➤

➤

➤

➤

➤

➤

➤

c21.indd 492c21.indd 492 12/31/09 6:45:09 PM12/31/09 6:45:09 PM

To perform this selection, Visual Basic converts the query into a series of function calls to form a
method - based query that performs the same tasks as the original query. For example, the following
method - based query returns roughly the same results as the original LINQ query:

Dim q2 = all_customers.
 Where(AddressOf OwesMoney).
 OrderBy(AddressOf OrderByAmount).
 Select(AddressOf SelectFields)

code snippet LinqLambda

This code calls the all_customers list ’ s Where method. It passes that method the address of the
function OwesMoney , which returns True if a Customer object has a negative account balance.

The code then calls the OrderBy method of the result returned by Where. It passes the OrderBy
method the address of the function OrderByAmount , which returns a Decimal value that OrderBy
can use to order the results of Where.

Finally, the code calls the Select method of the result returned by OrderBy. It passes Select the
address of a function that returns a CustInfo object representing each of the selected Customer
objects. The CustInfo class contains the Customer ’ s Name and AccountBalance values.

The exact series of method calls generated by Visual Studio to evaluate the LINQ query is some-
what different from the one shown here. The version shown here uses OwesMoney , OrderByAmount ,
and SelectFields methods that I defi ned in the program to help pick, order, and select data. The
method - based query generated by Visual Basic uses automatically generated anonymous types and
lambda expressions, so it is much uglier.

The following code shows the OwesMoney , OrderByAmount , and SelectFields methods:

Private Function OwesMoney(ByVal c As Customer) As Boolean
 Return c.AccountBalance < 0
End Function

Private Function OrderByAmount(ByVal c As Customer) As Decimal
 Return c.AccountBalance
End Function

Private Function SelectFields(ByVal c As Customer, ByVal index As Integer)
As CustInfo
 Return New CustInfo() With {
 .CustName = c.Name, .Balance = c.AccountBalance}
End Function

code snippet LinqLambda

Function OwesMoney simply returns True if a Customer ’ s balance is less than zero. The Where
method calls OwesMoney to see if it should pick a particular Customer for output.

LINQ Extension Methods ❘ 493

c21.indd 493c21.indd 493 12/31/09 6:45:10 PM12/31/09 6:45:10 PM

494 ❘ CHAPTER 21 LINQ

Function OrderByAmount returns a Customer ’ s balance. The OrderBy method calls OrderByAmount
to order Customer objects.

Function SelectFields returns a CustInfo object representing a Customer.

That explains where the functions passed as parameters come from, but what are Where, OrderBy,
and Select? After all, Where is called as if it were a method provided by the all_customers object.
But all_customers is a List(Of Customer) and that has no such method.

In fact, Where is an extension method added to the IEnumerable interface by the LINQ library. The
generic List class implements IEnumerable so it gains the Where extension method.

Similarly, LINQ adds other extension methods to the IEnumerable interface such as Any, All,
Average, Count, Distinct, First, GroupBy, OfType, Repeat, Sum, Union, and many more.

Method - Based Queries with Lambda Functions

Lambda functions , or anonymous functions, make building method - based queries somewhat easier.
When you use lambda functions, you don ’ t need to defi ne separate functions to pass as parameters
to LINQ methods such as Where, OrderBy, and Select. Instead you can pass a lambda function
directly into the method.

The following code shows a revised version of the preceding method - based query. Here the method
bodies have been included as lambda functions.

Dim q3 = all_customers.
 Where(Function(c As Customer) c.AccountBalance < 0).
 OrderBy(Of Decimal)(Function(c As Customer) c.AccountBalance).
 Select(Of CustInfo)(
 Function(c As Customer, index As Integer)
 Return New CustInfo() With {
 {.CustName = c.Name, .Balance = c.AccountBalance}
 End Function
)

code snippet LinqLambda

Although this is more concise, not requiring you to build separate functions, it can also be a lot
harder to read and understand. Passing a simple lambda function to the Where or OrderBy method
may not be too confusing, but if you need to use a very complex function you may be better off
making it a separate routine.

The following code shows a reasonable compromise. This code defi nes three lambda functions but
saves them in delegate variables. It then uses the variables in the calls to the LINQ functions. This
version is more concise than the original version and doesn ’ t require separate functions, but it is
easier to read than the preceding version that uses purely inline lambda functions.

c21.indd 494c21.indd 494 12/31/09 6:45:11 PM12/31/09 6:45:11 PM

' Query with LINQ and inline function delegates.
Dim owes_money = Function(c As Customer) c.AccountBalance < 0
Dim cust_balance = Function(c As Customer) c.AccountBalance
Dim new_custinfo = Function(c As Customer) New CustInfo() With {
 .Name = c.Name, .Balance = c.AccountBalance}
Dim q4 = all_customers.
 Where(owes_money).
 OrderBy(Of Decimal)(cust_balance).
 Select(Of CustInfo)(new_custinfo)

code snippet LinqLambda

Note that LINQ cannot always infer a lambda function ’ s type exactly, so sometimes you need to
give it some hints. The Of Decimal and Of CustInfo clauses in this code tell LINQ the data types
returned by the cust_balance and new_custinfo functions.

HIDDEN GENERICS

The Of Decimal and Of CustInfo clauses use generic versions of the OrderBy and
Select functions. Generics let a function take a data type as a parameter, allowing
it to work more closely with objects of that type. For more information on generics,
see Chapter 29, “ Generics, ” or msdn.microsoft.com/w256ka79.aspx .

Instead of using these clauses, you could defi ne the functions ’ return types in their declarations. The
Func delegate types defi ned in the System namespace let you explicitly defi ne parameters and return
types for functions taking between zero and four parameters. For example, the following code
shows how you might defi ne the cust_balance function, indicating that it takes a Customer as a
parameter and returns a Decimal:

Dim cust_balance As Func(Of Customer, Decimal) =
 Function(c As Customer) c.AccountBalance

If you use this version of cust_balance , you can leave out the Of Decimal clause in the previous
query.

No matter which version of the method - based queries you use, the standard LINQ query
syntax is usually easier to understand, so you may prefer to use that version whenever possible.
Unfortunately, many references describe the LINQ extension methods as if you are going to use
them in method - based queries rather than in LINQ queries. For example, the description of the
OrderBy method might include the following defi nition:

< Extension() >
Public Shared Function OrderBy(Of TSource, TKey)
 (ByVal source As IEnumerable(Of TSource),
 ByVal key_selector As Func(Of TSource, TKey)) _
 As OrderedSequence(Of TSource)

LINQ Extension Methods ❘ 495

c21.indd 495c21.indd 495 12/31/09 6:45:12 PM12/31/09 6:45:12 PM

496 ❘ CHAPTER 21 LINQ

Here the Extension attribute indicates that this is a function that extends another class. The type of
the fi rst parameter, in this case the parameter source has type IEnumerable(Of TSource), gives the
class that this method extends. The other parameters are passed to this method. In other words, this
code allows you to call the OrderBy function for an object of type IEnumerable(Of TSource), pass-
ing it a key_selector of type Func(Of TSource, TKey). Confusing enough for you? For more infor-
mation on extension methods, see the section “ Extension Methods ” in Chapter 17, “ Subroutines
and Functions. ”

This description of how the method ’ s parameters work is technically correct but may be a bit too
esoteric to be intuitive. It may be easier to understand if you consider a concrete example.

If you look closely at the examples in the preceding section, you can see how this defi nition matches
up with the use of the OrderBy method and the OrderByAmount function. In those examples,
TSource corresponds to the Customer class and TKey corresponds to the Decimal type. In the defi -
nition of OrderBy shown here, the source parameter has type IEnumerable(Of Customer). The key_
selector parameter is the OrderByAmount function, which takes a Customer (TSource) parameter
and returns a Decimal (TKey). The OrderBy method itself returns an IEnumerable(Customer), cor-
responding to IEnumerable(TSource).

It all works but what a mess. The following syntax is much more intuitive:

Order By < value1 > [Ascending/Descending],
 < value2 > [Ascending/Descending],
 ...

Generally, you should try to use the LINQ query syntax whenever possible, so most of the rest of
this chapter assumes you will do so and describes LINQ methods in this manner rather than with
confusing method specifi cations.

One time when you cannot easily use this type of syntax specifi cation is when you want to extend
the results of a LINQ query to add new features. The following section explains how you can write
extension methods to provide new features for LINQ results.

Extending LINQ

LINQ queries return some sort of IEnumerable object. (Actually they return some sort of
SelectIterator creature but the result implements IEnumerable.) The items in the result may be
simple types such as Customer objects or strings, or they may be of some bizarre anonymous type
that groups several selected fi elds together, but whatever the items are, the result is some sort of
IEnumerable.

Because the result is an IEnumerable, you can add new methods to the result by creating extension
methods for IEnumerable.

For example, the following code defi nes a standard deviation function. It extends the
IEnumerable(Of Decimal) interface so the method applies to the results of a LINQ query that
fetches Decimal values.

c21.indd 496c21.indd 496 12/31/09 6:45:13 PM12/31/09 6:45:13 PM

' Return the standard deviation of
' the values in an IEnumerable(Of Decimal).
< Extension() >
Public Function StdDev(ByVal source As IEnumerable(Of Decimal)) As Decimal
 ' Get the total.
 Dim total As Decimal = 0
 For Each value As Decimal In source
 total += value
 Next value

 ' Calculate the mean.
 Dim mean As Decimal = total / source.Count

 ' Calculate the sums of the deviations squared.
 Dim total_devs As Decimal = 0
 For Each value As Decimal In source
 Dim dev As Decimal = value - mean
 total_devs += dev * dev
 Next value
 ' Return the standard deviation.
 Return Math.Sqrt(total_devs / (source.Count - 1))
End Function

code snippet LinqFunctions

NON - STANDARD STANDARDS

There are a couple of different defi nitions for standard deviation. This topic is
outside the scope of this book so it isn ’ t explored here. For more information, see
mathworld.wolfram.com/StandardDeviation.html .

Now, the program can apply this method to the result of a LINQ query that selects Decimal values.
The following code uses a LINQ query to select AccountBalance values from the all_customers
list where the AccountBalance is less than zero. It then calls the query ’ s StdDev extension method
and displays the result.

Dim bal_due =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust.AccountBalance
MessageBox.Show(bal_due.StdDev())

LINQ Extension Methods ❘ 497

c21.indd 497c21.indd 497 12/31/09 6:45:14 PM12/31/09 6:45:14 PM

498 ❘ CHAPTER 21 LINQ

The following code performs the same operations without storing the query in an intermediate
variable:

MessageBox.Show(
 (From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust.AccountBalance).StdDev())

Similarly, you can make other extension methods for IEnumerable to perform other calculations on
the results of LINQ queries.

The following version of the StdDev extension method extends IEnumerable(Of T). To process an
IEnumerable(Of T), this version also takes as a parameter a selector function that returns a Decimal
value for each of the objects in the IEnumerable(Of T).

< Extension() >
Public Function StdDev(Of T)(ByVal source As IEnumerable(Of T),
 ByVal selector As Func(Of T, Decimal)) As Decimal
 ' Get the total.
 Dim total As Decimal = 0
 For Each value As T In source
 total += selector(value)
 Next value
 ' Calculate the mean.
 Dim mean As Decimal = total / source.Count
 ' Calculate the sums of the deviations squared.
 Dim total_devs As Decimal = 0
 For Each value As T In source
 Dim dev As Decimal = selector(value) - mean
 total_devs += dev * dev
 Next value
 ' Return the standard deviation.
 Return Math.Sqrt(total_devs / (source.Count - 1))
End Function

code snippet LinqFunctions

For example, if a LINQ query selects Customer objects, the result implements IEnumerable(Of
Customer). In that case, the selector function should take as a parameter a Customer object and
it should return a Decimal. The following code shows a simple selector function that returns a
Customer ’ s AccountBalance:

Private Function TotalBalance(ByVal c As Customer) As Decimal
 Return c.AccountBalance
End Function

c21.indd 498c21.indd 498 12/31/09 6:45:15 PM12/31/09 6:45:15 PM

The following code shows how a program can use this version of StdDev with this selector function.
The LINQ query selects Customer objects with AccountBalance values less than zero. The code
then calls the query ’ s StdDev method, passing it the address of the selector function. The new ver-
sion of StdDev uses the selector to calculate the standard deviation of the selected Customer objects ’
AccountBalance values, and then the code displays the result.

Dim stddev_due =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust
Dim result As Decimal = stddev_due.StdDev(AddressOf TotalBalance)
MessageBox.Show(result)

For a fi nal example, consider the following Randomize method, which also extends IEnumerable(Of
T). It uses the IEnumerable ’ s ToArray method to copy the values into an array, randomizes the
array, and returns the array.

< Extension() >
Public Function Randomize(Of T) _
 (ByVal source As IEnumerable(Of T)) As IEnumerable(Of T)
 Dim rand As New Random
 Dim values() As T = source.ToArray()
 Dim num_values As Integer = values.Length
 For i As Integer = 0 To num_values - 2
 Dim j As Integer = rand.Next(i, num_values)
 Dim temp As T = values(i)
 values(i) = values(j)
 values(j) = temp
 Next i
 Return values
End Function

code snippet LinqFunctions

The following code shows how a program might use this method to select Customer objects
from the all_customers list and then randomize the result. You could add Where and other clauses
to the LINQ query without changing the way Randomize is used.

Dim random_custs =
 (From cust In all_customers
 Select cust).Randomize()

For more information on extension methods, see the section “ Extension Methods ” in Chapter 17,
“ Subroutines and Functions. ”

LINQ Extension Methods ❘ 499

c21.indd 499c21.indd 499 12/31/09 6:45:15 PM12/31/09 6:45:15 PM

500 ❘ CHAPTER 21 LINQ

LINQ TO OBJECTS

LINQ to Objects refers to methods that let a program extract data from objects that are extended
by LINQ extension methods. These methods extend IEnumerable(Of T) so that they apply to any
class that implements IEnumerable(Of T) including Dictionary(Of T), HashSet(Of T), LinkedList(Of
T), Queue(Of T), SortedDictionary(Of T), SortedList(Of T), Stack(Of T), and others.

For example, the following code searches the all_customers list for customers with negative
account balances. It orders them by account balance and returns their names and balances.

Dim overdue_custs =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance Ascending
 Select cust.Name, cust.AccountBalance

The result of this query is an IEnumerable object that the program can iterate through to take action
for the selected customers.

All of the examples shown previously in this chapter use LINQ to Objects, so this section says no
more about them. See the previous sections for more information and examples.

LINQ TO XML

LINQ to XML refers to methods that let a program move data between XML objects and other
data - containing objects. For example, using LINQ to XML you can select customer data and use it
to build an XML document.

LINQ provides a new selection of XML elements. These classes contained in the System.Xml
.Linq namespace correspond to the classes in the System.Xml namespace. The names of the new
classes begin with “ X ” instead of “ Xml. ” For example, the LINQ class representing an element is
XElement whereas the System.Xml class is XmlElement.

The LINQ versions of the XML classes provide many of the same features as the System.Xml
versions, but they also provide support for new LINQ features.

The following section describes one of the most visible features of the LINQ XML classes: XML
literals. The two sections after that introduce methods for using LINQ to move data into and out of
XML objects.

XML Literals

In addition to features similar to those provided by the System.Xml classes, the new System.Xml
.Linq classes provide new LINQ - oriented features. One of the most visible of those features is the
ability to use XML literal values. For example, the following code creates an XDocument object
that contains three Customer elements:

c21.indd 500c21.indd 500 12/31/09 6:45:16 PM12/31/09 6:45:16 PM

Dim xml_literal As XElement = _
 < AllCustomers >
 < Customer FirstName="Ann" LastName="Archer" > 100.00 < /Customer >
 < Customer FirstName="Ben" LastName="Best" > -24.54 < /Customer >
 < Customer FirstName="Carly" LastName="Cant" > 62.40 < /Customer >
 < /AllCustomers >

code snippet CustomersToXml

Visual Basic LINQ translates this literal into an XML object hierarchy holding a root element
named AllCustomers that contains three Customer elements. Each Customer element has two attri-
butes, FirstName and LastName.

To build the same hierarchy using System.Xml objects would take a lot more work. The
CustomersToXml example program, which is available for download on the book ’ s web site,
includes a System.Xml version in addition to the previous LINQ literal version. The System.Xml
version takes 26 lines of code and is much harder to read than the LINQ literal version.

Other LINQ XML classes such as XDocument, XComment, XCdata, and XProcessingInstruction
also have literal formats, although usually it ’ s easier to use an XElement instead of an XDocument,
and the others are usually contained in an XElement or XDocument.

The Visual Basic code editor also provides some extra enhancements to make writing XML liter-
als easier. For example, if you type a new XML tag, when you type the closing “ < ” character the
editor automatically adds a corresponding closing tag. If you type “ < Customer > ” the editor adds
the “ < /Customer > ” tag. Later if you change a tag ’ s name, the code editor automatically changes the
corresponding closing tag.

Together these LINQ XML literal tools make building hard - coded XML data much easier than it is
using the System.Xml objects.

LINQ Into XML

To select data into XML objects, you can use syntax similar to the syntax you use to build an XML
literal. You then add the special characters < %= ... % > to indicate a “ hole ” within the literal. Inside
the hole, you replace the ellipsis with a LINQ query that extracts data from Visual Basic objects and
uses them to build new XML objects.

For example, suppose the all_customers list contains Customer objects. The following code builds
an XElement object that contains Customer XML elements for all of the Customer objects:

Dim x_all As XElement = _
 < AllCustomers >
 < %= From cust In all_customers
 Select New XElement("Customer",
 New XAttribute("FirstName", cust.FirstName),
 New XAttribute("LastName", cust.LastName),
 New XText(cust.Balance.ToString("0.00")))
 % >
 < /AllCustomers >

code snippet CustomersToXml

LINQ to XML ❘ 501

c21.indd 501c21.indd 501 12/31/09 6:45:16 PM12/31/09 6:45:16 PM

502 ❘ CHAPTER 21 LINQ

The following text shows a sample of the resulting XML element:

< AllCustomers >
< Customer FirstName="Ann" LastName="Archer" > 100.00 < /Customer >
< Customer FirstName="Ben" LastName="Best" > -24.54 < /Customer >
< Customer FirstName="Carly" LastName="Cant" > 62.40 < /Customer >
< /AllCustomers >

You can have more than one hole within the XML literal. Within the hole, you can add LINQ
query code as usual. For example, you can use a Where clause to fi lter the objects copied into the
XML element.

The following code uses an XML literal that contains two holes. The fi rst uses a Where clause to
select customers with non - negative balances and the second selects customers with negative
balances. It places these two groups of customers inside different sub - elements within the
resulting XML.

' Separate customers with positive and negative balances.
Dim separated As XElement = _
 < AllCustomers >
 < PositiveBalances >
 < %= From cust In x_all.Descendants("Customer")
 Where CDec(cust.Value) < = 0
 Order By CDec(cust.Value) Descending
 Select New XElement("Customer",
 New XAttribute("FirstName",
 CStr(cust.Attribute("FirstName"))),
 New XAttribute("LastName",
 CStr(cust.Attribute("LastName"))),
 New XText(cust.Value))
 % >
 < /PositiveBalances >
 < NegativeBalances >
 < %= From cust In x_all.Descendants("Customer")
 Where CDec(cust.Value) < 0
 Order By CDec(cust.Value) Descending
 Select New XElement("Customer",
 New XAttribute("FirstName",
 CStr(cust.Attribute("FirstName"))),
 New XAttribute("LastName",
 CStr(cust.Attribute("LastName"))),
 New XText(cust.Value))
 % >
 < /NegativeBalances >
 < /AllCustomers >

code snippet LinqToXml

The following text shows the resulting XML element:

c21.indd 502c21.indd 502 12/31/09 6:45:19 PM12/31/09 6:45:19 PM

<AllCustomers>
 <PositiveBalances>
 <Customer FirstName=“Dan” LastName=“Dump”>117.95</Customer>
 <Customer FirstName=“Ann” LastName=“Archer”>100.00</Customer>
 <Customer FirstName=“Carly” LastName=“Cant”>62.40</Customer>
 </PositiveBalances>
 <NegativeBalances>
 <Customer FirstName=“Ben” LastName=“Best”>-24.54</Customer>
 <Customer FirstName=“Frank” LastName=“Fix”>-150.90</Customer>
 <Customer FirstName=“Edna” LastName=“Ever”>-192.75</Customer>
 </NegativeBalances>
</AllCustomers>

Example program LinqToXml, which is available for download on the book ’ s web site,
demonstrates these XML literals containing holes.

LINQ Out Of XML

The LINQ XML objects provide a standard assortment of LINQ functions that make moving data
from those objects into IEnumerable objects simple. Using these functions, it ’ s about as easy to
select data from the XML objects as it is from IEnumerable objects such as arrays and lists.

Because the XML objects represent special hierarchical data structures, they also provide methods
to help you search those data structures. For example, the XElement object provides a Descendants
function that searches the object ’ s descendants for elements of a certain type.

The following code extracts the x_all XElement object ’ s Customer descendants. It selects their
FirstName and LastName attributes, and the balance saved as each element ’ s value.

Dim select_all = From cust In x_all.Descendants("Customer")
 Order By CDec(cust.Value)
 Select FName = cust.Attribute("FirstName").Value,
 LName = cust.Attribute("LastName").Value,
 Balance = cust.Value

code snippet LinqToXml

The program can now loop through the select_all object just as it can loop through any other
IEnumerable selected by a LINQ query.

The following query selects only customers with a negative balance:

Dim x_neg = From cust In x_all.Descendants("Customer")
 Where CDec(cust.Value) < 0
 Select FName = cust.Attribute("FirstName").Value,
 LName = cust.Attribute("LastName").Value,
 Balance = cust.Value

code snippet LinqToXml

LINQ to XML ❘ 503

c21.indd 503c21.indd 503 12/31/09 6:45:19 PM12/31/09 6:45:19 PM

504 ❘ CHAPTER 21 LINQ

Example program LinqToXml, which is available for download on the book ’ s web site, demon-
strates these XML literals containing holes.

The following table describes other methods supported by XElement that a program can use to
navigate through an XML hierarchy. Most of the functions return IEnumerable objects that you
can then use in LINQ queries.

FUNCTION RETURNS

Ancestors IEnumerable containing all ancestors of the element.

AncestorsAndSelf IEnumerable containing this element followed by all ancestors of the

element.

Attribute The element ’ s attribute with a specifi c name.

Attributes IEnumerable containing the element ’ s attributes.

Descendants IEnumerable containing all descendants of the element.

DescendantsAndSelf IEnumerable containing this element followed by all descendants of

the element.

DescendantNodes IEnumerable containing all descendant nodes of the element. These

include all nodes such as XElement and XText.

DescendantNodesAndSelf IEnumerable containing this element followed by all descendant nodes

of the element. These include all nodes such as XElement and XText.

Element The fi rst child element with a specifi c name.

Elements IEnumerable containing the immediate children of the element.

ElementsAfterSelf IEnumerable containing the siblings of the element that come after

this element.

ElementsBeforeSelf IEnumerable containing the siblings of the element that come before

this element.

Nodes IEnumerable containing the nodes that are immediate children of the

element. These include all nodes such as XElement and XText.

NodesAfterSelf IEnumerable containing the sibling nodes of the element that come

after this element.

NodesBeforeSelf IEnumerable containing the sibling nodes of the element that come

before this element.

Most of these functions that return an IEnumerable take an optional parameter that you can use to
indicate the names of the elements to select. For example, if you pass the Descendants function the
parameter “ Customer, ” the function returns only the descendants of the element that are named Customer.

c21.indd 504c21.indd 504 12/31/09 6:45:20 PM12/31/09 6:45:20 PM

Example program LinqToXmlFunctions, which is available for download on the book ’ s web site,
demonstrates these XML functions.

In addition to these functions, Visual Basic ’ s LINQ query syntax recognizes several axis selectors.
In XML, an axis is a “ direction ” in which you can move from a particular node. These include such
directions as the node ’ s descendants, the node ’ s immediate children, and the node ’ s attributes.

The following table gives examples of shorthand expressions for node axes and their functional
equivalents.

SHORTHAND MEANING EQUIVALENT

x... < Customer > Descendants named Customer. x.Descendants(“ Customer “)

x. < Child > An element named Child that is a child

of this node.

x.Attributes(“ Child “)

x.@ < FirstName > The value of the FirstName attribute. x.Attributes(“ FirstName “).

Value

x.@FirstName The value of the FirstName attribute. x.Attributes(“ FirstName “).

Value

For example, consider the following XElement literal:

Dim x_all As XElement = _
 <AllCustomers>
 <PositiveBalances>
 <Customer FirstName=“Dan” LastName=“Dump”>117.95</Customer>
 <Customer FirstName=“Ann” LastName=“Archer”>100.00</Customer>
 <Customer FirstName=“Carly” LastName=“Cant”>62.40</Customer>
 </PositiveBalances>
 <NegativeBalances>
 <Customer FirstName=“Ben” LastName=“Best”>-24.54</Customer>
 <Customer FirstName=“Frank” LastName=“Fix”>-150.90</Customer>
 <Customer FirstName=“Edna” LastName=“Ever”>-192.75</Customer>
 </NegativeBalances>
 </AllCustomers>

code snippet LinqAxes

The following code uses axis shorthand to make several different selections:

' Select all Customer descendants of x_all.
Dim desc = x_all.Descendants("Customer") ' Functional version.
Dim desc2 = x_all. < Customer > ' LINQ query version.

' Select Customer descendants of x_all where FirstName attribute is Ben.
Dim ben = From cust In x_all.Descendants("Customer")
 Where cust.@FirstName = "Ben"

LINQ to XML ❘ 505

c21.indd 505c21.indd 505 12/31/09 6:45:21 PM12/31/09 6:45:21 PM

506 ❘ CHAPTER 21 LINQ

' Select Customer descendants of x_all where FirstName attribute is Ann.
Dim ann = From cust In x_all. < Customer >
 Where cust.@ < FirstName > = "Ann"

' Starting at x_all, go to the NegativeBalances node and find
' its descendants that are Customer elements. Select those with
' value less than -50.
Dim neg_desc2 = From cust In x_all. < NegativeBalances > ... < Customer >
 Where CDec(cust.Value) < -50

code snippet LinqAxes

Example program LinqAxes, which is available for download on the book ’ s web site, demonstrates
these LINQ query XML axes.

Note that IEnumerable objects allow indexing so you can use an index to select a particular item
from the results of any of these functions that returns an IEnumerable. For example, the follow-
ing statement starts at element x_all , goes to descendants named NegativeBalances , gets that
element ’ s Customer children, and then selects the second of them (indexes are numbered starting
with zero):

Dim neg_cust1 = x_all. < NegativeBalances > . < Customer > (1)

Together the LINQ XML functions and query axes operators let you explore XML hierarchies quite
effectively.

In addition to all of these navigational features, the LINQ XML classes provide the usual assort-
ment of methods for manipulating XML hierarchies. Those functions let you fi nd an element ’ s
parent, add and remove elements, and so forth. For more information, see the online help or the
MSDN web site.

LINQ TO ADO.NET

LINQ to ADO.NET, formerly known as DLinq, provides tools that let your applications apply
LINQ - style queries to objects used by ADO.NET to store and interact with relational data.

LINQ to ADO.NET includes three components: LINQ to SQL, LINQ to Entities, and LINQ to
DataSet. The following sections briefl y give additional detail about these three pieces.

LINQ to SQL and LINQ to Entities

LINQ to SQL and LINQ to Entities are object - relational mapping (O/RM) tools that build strongly
typed classes for modeling databases. They generate classes to represent the database and the tables
that it contains. LINQ features provided by these classes allow a program to query the database
model objects.

c21.indd 506c21.indd 506 12/31/09 6:45:22 PM12/31/09 6:45:22 PM

For example, to build a database model for use by LINQ to SQL, select the Project menu ’ s Add New
Item command and add a new “ LINQ to SQL Classes ” item to the project. This opens a designer
where you can defi ne the database ’ s structure.

Now you can drag SQL Server database objects from the Server Explorer to build the database
model. If you drag all of the database ’ s tables onto the designer, you should be able to see all of the
tables and their fi elds, primary keys, relationships, and other structural information.

LINQ to SQL defi nes a DataContext class to represent the database. Suppose a program defi nes a
DataContext class named dcTestScores and creates an instance of it named db . Then the following
code selects all of the records from the Students table ordered by fi rst and last name:

Dim query = From stu In db.Students
 Order By stu.FirstName, stu.LastName

Microsoft intends LINQ to SQL to be a quick tool for building LINQ - enabled classes for use with
SQL Server databases. The designer can quickly take a SQL Server database, build a model for it,
and then create the necessary classes.

The Entity Framework that includes LINQ to Entities is designed for use in more complicated enter-
prise scenarios. It allows extra abstraction that decouples a data object model from the underly-
ing database. For example, the Entity Framework allows you to store pieces of a single conceptual
object in more than one database table.

Building and managing SQL Server databases and the Entity Framework are topics too large to
cover in this book so LINQ to SQL and LINQ to Entities are not described in more detail here. For
more information, consult the online help or Microsoft ’ s web site. Some of Microsoft ’ s relevant web
sites include:

The LINQ Project (msdn2.microsoft.com/netframework/aa904594.aspx)

A LINQ to SQL overview (msdn.microsoft.com/bb425822.aspx)

The ADO.NET Entity Framework Overview (msdn.microsoft.com/aa697427.aspx)

LINQ to DataSet

LINQ to DataSet lets a program use LINQ - style queries to select data from DataSet objects. A
DataSet contains an in - memory representation of data contained in tables. Although a DataSet rep-
resents data in a more concrete format than is used by the object models used in LINQ to SQL and
LINQ to Entities, DataSets are useful because they make few assumptions about how the data was
loaded. A DataSet can hold data and provide query capabilities whether the data was loaded from
SQL Server, some other relational database, or by the program ’ s code.

The DataSet object itself doesn ’ t provide many LINQ features. It is mostly useful because it holds
DataTable objects that represent groupings of items, much as IEnumerable objects do.

The DataTable class does not directly support LINQ either, but it has an AsEnumerable method that
converts the DataTable into an IEnumerable, which you already know supports LINQ.

➤

➤

➤

LINQ to ADO.NET ❘ 507

c21.indd 507c21.indd 507 12/31/09 6:45:22 PM12/31/09 6:45:22 PM

508 ❘ CHAPTER 21 LINQ

WHERE ’ S IENUMERABLE?

Actually, the AsEnumerable method converts the DataTable into an
EnumerableRowCollection object but that object implements IEnumerable.

Example program LinqToDataSetScores, which is available for download on the book ’ s web site,
demonstrates LINQ to DataSet concepts. This program builds a DataSet that contains two tables.
The Students table has fi elds StudentId, FirstName, and LastName. The Scores table has fi elds
StudentId, TestNumber, and Score.

The example program defi nes class - level variables dtStudents and dtScores that hold references to
the two DataTable objects inside the DataSet.

The program uses the following code to select Students records where the LastName fi eld comes
before “ D ” alphabetically:

Dim before_d =
 From stu In dtStudents.AsEnumerable()
 Where stu!LastName < "D"
 Order By stu.Field(Of String)("LastName")
 Select First = stu!FirstName, Last = stu!LastName

dgStudentsBeforeD.DataSource = before_d.ToList

code snippet LinqToDataSetScores

There are only a few differences between this query and previous LINQ queries. First, the From
clause calls the DataTable object ’ s AsEnumerable method to convert the table into something that
supports LINQ.

Second, the syntax stu!LastName lets the query access the LastName fi eld in the stu object. The
stu object is a DataRow within the DataTable.

Third, the Order By clause uses the stu object ’ s Field(Of T) method. The Field(Of T) method
provides strongly typed access to the DataRow object ’ s fi elds. In this example the LastName fi eld
contains string values. You could just as well have used stu!LastName in the Order By clause, but
Visual Basic wouldn ’ t provide strong typing.

Finally, the last line of code in this example sets a DataGrid control ’ s DataSource property equal to
the result returned by the query so the control will display the results. The DataGrid control cannot
display the result directly so the code calls the ToList method to convert the result into a list, which
the DataGrid can use.

The following list summarizes the key differences between a LINQ to DataSet query and a normal
LINQ to Objects query:

c21.indd 508c21.indd 508 12/31/09 6:45:23 PM12/31/09 6:45:23 PM

The LINQ to DataSet query must use the DataTable object ’ s AsEnumerable method to
make the object queryable.

The code can access the fi elds in a DataRow as in stu!LastName or as in stu.Field(Of
String)(“ LastName “) .

If you want to display the results in a DataGrid control, use the query ’ s ToList method.

If you understand these key differences, the rest of the query is similar to those used by LINQ to
Objects. The following code shows two other examples:

' Select all students and their scores.
Dim joined =
 From stu In dtStudents.AsEnumerable()
 Join score In dtScores.AsEnumerable()
 On stu!StudentId Equals score!StudentId
 Order By stu!StudentId, score!TestNumber
 Select
 ID = stu!StudentId,
 Name = stu!FirstName & stu!LastName,
 Test = score!TestNumber,
 score!Score
dgJoined.DataSource = joined.ToList

' Select students with average scores > = 90.
Dim letter_grade =
 Function(num_score As Double)
 Return Choose(num_score \ 10,
 New Object() {"F", "F", "F", "F", "F", "D", "C", "B", "A", "A"})
 End Function

' Add Where Ave > = 90 after the Group By statement
' to select students getting an A.
Dim grade_a =
 From stu In dtStudents.AsEnumerable()
 Join score In dtScores.AsEnumerable()
 On stu!StudentId Equals score!StudentId
 Group score By stu Into
 Ave = Average(CInt(score!Score)), Group
 Order By Ave
 Select Ave,
 Name = stu!FirstName & stu!LastName,
 ID = stu!StudentId,
 Grade = letter_grade(Ave)
dgAverages.DataSource = grade_a.ToList

code snippet LinqToDataSetScores

The fi rst query selects records from the Students table and joins them with the corresponding
records in the Scores table. It displays the results in the dgJoined DataGrid control.

Next, the code defi nes an inline function and saves a reference to it in the variable letter_grade .
This function returns a letter grade for numeric scores between 0 and 100.

➤

➤

➤

LINQ to ADO.NET ❘ 509

c21.indd 509c21.indd 509 12/31/09 6:45:24 PM12/31/09 6:45:24 PM

510 ❘ CHAPTER 21 LINQ

The next LINQ query selects corresponding Students and Scores records, and groups them by the
Students records, calculating each Student ’ s average score at the same time. The query orders
the results by average and selects the students ’ names, IDs, and averages. Finally, the code
displays the result in the dgAverages DataGrid.

LINQ to DataSet not only allows you to pull data out of a DataSet, it also provides a way to put
data into a DataSet. If the query selects DataRow objects, then its CopyToDataTable method con-
verts the query results into a new DataTable object that you can then add to a DataSet.

The following code selects records from the Students table for students with last name less than
“ D. ” It then uses CopyToDataTable to convert the result into a DataTable and displays the results in
the dgNewTable DataGrid control. It sets the new table ’ s name and adds it to the dsScores DataSet
object ’ s collection of tables.

' Make a new table.
Dim before_d_rows =
 From stu In dtStudents.AsEnumerable()
 Where stu!LastName < "D"
 Select stu
Dim new_table As DataTable = before_d_rows.CopyToDataTable()
dgNewTable.DataSource = new_table

new_table.TableName = "NewTable"
dsScores.Tables.Add(new_table)

code snippet LinqToDataSetScores

The LinqToDataSetScores example program displays a tab control. The fi rst tab holds a DataGrid
control that uses the dsScores DataSet as its data source, so you can see all of the DataSet ’ s tables
including the new table.

PLINQ

PLINQ (Parallel LINQ, pronounced “ plink ”) allows a program to execute LINQ queries across
multiple processors or cores in a multi - core system. If you have a multi - core CPU and a nicely paral-
lelizable query, PLINQ may improve your performance considerably.

So what kinds of queries are “ nicely parallelizable? ” The short, glib answer is, it doesn ’ t really mat-
ter. Microsoft has gone to great lengths to minimize the overhead of PLINQ so using PLINQ may
help and shouldn ’ t hurt you too much.

Simple queries that select items from a data source often work well. If the items in the source can be
examined, selected, and otherwise processed independently, then the query is parallelizable.

Queries that must use multiple items at the same time do parallelize nicely. For example, adding an
OrderBy function to the query forces the program to gather all of the results before sorting them so
that part of the query at least will not benefi t from PLINQ.

c21.indd 510c21.indd 510 12/31/09 6:45:25 PM12/31/09 6:45:25 PM

THE NEED FOR SPEED

Some feel that adding parallelism to LINQ is kind of like giving caffeine to a snail.
A snail is slow. Giving it caffeine might speed it up a bit, but you ’ d get a much
bigger performance gain if you got rid of the snail and got a cheetah instead.

Similarly, LINQ isn ’ t all that fast. Adding parallelism will speed it up but you will
probably get a larger speed improvement by moving the data into a database or
using special - purpose algorithms designed to manage your particular data.

This argument is true, but you don ’ t use LINQ because it ’ s fast; you use it because
it ’ s convenient, easy to use, and fl exible. Adding parallelism makes it a bit faster
and, as you ’ ll see shortly, makes it so easy that it doesn ’ t cost you much effort.

If you really need signifi cant performance improvements, you should consider
moving the data into a database or more sophisticated data structure, but if you ’ re
using LINQ anyway, you may as well take advantage of PLINQ when you can.

Adding parallelism to LINQ is remarkably simple. First, add a reference to the System.Threading
library to your program. Then add a call to AsParallel to the enumerable object that you ’ re search-
ing. For example, the following code uses AsParallel to select the even numbers from the array
numbers :

Dim evens =
 From num In numbers.AsParallel()
 Where num Mod 2 = 0

PUZZLING PARALLELISM

Note that for small enumerable objects (lists containing only a few items) and
on computers that have only a single CPU, the overhead of using AsParallel may
actually slow down execution.

SUMMARY

LINQ provides the ability to perform SQL - like queries within Visual Basic. Depending on which
form of LINQ you are using, the development environment may provide strong type checking and
IntelliSense support.

LINQ to Objects allows a program to query arrays, lists, and other objects that implement the
IEnumerable interface. LINQ to XML and the new LINQ XML classes allow a program to extract
data from XML objects and to use LINQ to generate XML hierarchies. LINQ to ADO.NET (which
includes LINQ to SQL, LINQ to Entities, and LINQ to DataSet) allow a program to perform

Summary ❘ 511

c21.indd 511c21.indd 511 12/31/09 6:45:25 PM12/31/09 6:45:25 PM

512 ❘ CHAPTER 21 LINQ

queries on objects representing data in a relational database. Together these LINQ tools allow a
program to select data in powerful new ways.

Visual Basic includes many features that support LINQ. Extension methods, inline or lambda func-
tions, anonymous types, type inference, and object initializers all help make LINQ possible. If
misused, some of these features can make code harder to read and understand, but used judiciously,
they give you new options for program development.

For much more information on the various LINQ technologies, see the online help and the Web.
The following list includes several useful Microsoft web pages that you can follow to learn more
about LINQ. Some are a bit old but they still provide invaluable information.

Hooked On LINQ (a wiki with some useful information, particularly its “ 5 Minute
Overviews”) — www.hookedonlinq.com/LINQtoSQL5MinuteOverview.ashx .

The LINQ Project — msdn.microsoft.com/vbasic/aa904594.aspx .

101 LINQ Samples (in C#) — msdn.microsoft.com/vcsharp/aa336746.aspx .

LINQ jump page — msdn.microsoft.com/bb397926.aspx .

Visual Studio 2008 Samples (including hands - on LINQ labs) — msdn.microsoft.com/
vbasic/bb330936.aspx .

Visual Studio 2010 Samples (not many now but there should be more later) —
http://msdn.microsoft.com/en-us/vstudio/dd238515.aspx

The .NET Standard Query Operators — msdn.microsoft.com/bb394939.aspx .

LINQ to DataSet (by Erick Thompson, ADO.NET Program Manager, in the ADO.NET
team blog) — blogs.msdn.com/adonet/archive/2007/01/26/querying-datasets-
introduction-to-linq-to-dataset.aspx .

LINQ to SQL overview — msdn.microsoft.com/bb425822.aspx .

The ADO.NET Entity Framework Overview — msdn.microsoft.com/aa697427.aspx .

PLINQ — msdn.microsoft.com/dd460688(VS.100).aspx .

A LINQ query returns an IEnumerable object containing a list of results. If you call the result ’ s
ToList method, you can convert the result into a form that can be displayed by a DataGrid control.
That is a technique used by several of the examples described in the section “ LINQ to DataSet ” ear-
lier in this chapter.

Other chapters describe other controls provided by Visual Basic. Chapter 20, “ Database Controls
and Objects, ” describes many objects and controls that you can use to display and manipulate
data from a relational database. Earlier chapters describe the many controls that you can put on
Windows and WPF forms.

Even all of these different kinds of controls cannot satisfy every application ’ s needs. Chapter 22,
“ Custom Controls, ” explains how you can build controls of your own to satisfy unfulfi lled needs.
These controls can implement completely new features or combine existing controls to provide a
tidy package that is easy to reuse.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c21.indd 512c21.indd 512 12/31/09 6:45:27 PM12/31/09 6:45:27 PM

22
Custom Controls

Visual Basic .NET provides a rich assortment of controls that you can use to build
applications. Nevertheless, those controls may not always be able to do what you need. In that
case, you may want to build a control of your own. Building your own control lets you get
exactly the behavior and appearance that you want.

Custom controls solve three signifi cant problems. First, they let you package a particular
behavior or appearance so that you can easily reuse it later. If you need to draw one engineering
diagram, you can draw it on a PictureBox. If you need to draw many engineering diagrams
(possibly in different applications), it would be easier to make an EngineeringDiagram control
that can make all of the diagrams.

Second, developers are familiar with controls and comfortable using them. Any experienced
Visual Basic developer understands how to create instances of a control, set its properties, call
its methods, and respond to its events. If you build a custom control to perform some complex
task, developers already know a lot about how to use it. You just need to explain the specifi c
features of your control.

Finally, controls can easily save and restore property information at design time. A developer
can set properties for a control at design time, and the control uses those properties at
runtime. This is useful for graphical controls, where properties such as Text, BackColor, and
BorderStyle determine the controls ’ appearance. It is also useful for non - graphical controls
such as database connection, data adapter, DataSet, and DataView controls that use properties
to determine what data is loaded and how it is arranged.

This chapter explains how to build custom controls. There are three main approaches to
building custom controls.

First, you can derive a control from an existing control. If a control already does most
of what you want your custom control to do, you may be able to inherit from the
existing control and avoid reimplementing all of its useful features.

Second, you can compose your control out of existing controls. For example, you
might want to make a color selection control that enables the user to select red, green,

➤

➤

c22.indd 513c22.indd 513 12/31/09 6:46:20 PM12/31/09 6:46:20 PM

514 ❘ CHAPTER 22 CUSTOM CONTROLS

and blue color components by using scroll bars, and then displays a sample of the resulting
color. You could build this control using three scroll bars and a PictureBox. This gives you
the advantages provided by the constituent controls without requiring you to reimplement
their functionality.

Third, you can build a custom control from scratch. This is the most work but gives you
absolute control over everything that the control does.

This chapter explains the basics of building a control library project and testing its controls. It
also describes the three approaches to building custom controls: deriving from an existing control,
composing existing controls, and building a control from scratch.

A component is similar to a control that is invisible at runtime. Like controls, you can place
components on a form at design time. Unlike controls, however, components do not sit on the form
itself. Instead, they sit in the component tray below the form at design time, and they are invisible to
the user at runtime. Most of this chapter ’ s discussion of custom controls applies equally to custom
components.

CUSTOM CONTROLS IN GENERAL

Building a custom control requires six basic steps:

1. Create the control project.

2. Make a Toolbox icon.

3. Test in the UserControl Test Container.

4. Make a test project.

5. Test the control in the test project.

6. Implement properties, methods, and events.

The following sections describe these steps.

Create the Control Project

To make a new control library in Visual Basic, select the File menu ’ s New Project command, select
the Windows Forms Control Library template, enter the project ’ s name, and click OK. The library
can contain several controls, so it may not always make sense to name the library after a single
control. This example assumes that you are building a control that displays a smiley face. In that
case, you might name the library FaceControls in case you want to add bored, sad, and other faces
later.

Initially, Visual Basic gives the control library a single UserControl object named UserControl1.
Change this fi le ’ s name to something more descriptive such as SmileyFace. If you look at the fi le in
the code editor, you should fi nd that Visual Basic has automatically changed the control ’ s class
name to match.

➤

c22.indd 514c22.indd 514 12/31/09 6:46:23 PM12/31/09 6:46:23 PM

Add code to the control to make it do whatever you want it to do. For a SmileyFace control, you
might add properties such as FaceColor, NoseColor, and EyeColor. The control ’ s Paint event
handler will draw the smiley face.

Next use the Build menu to compile the control library. The project ’ s bin directory contains the
library ’ s compiled .dll fi le.

Make a Toolbox Icon

If you add the control to the Toolbox now, you ’ ll see a default image that looks like a gear. To make
your control display something more meaningful, you must set its Toolbox icon.

You can set the control ’ s Toolbox icon by adding a ToolboxBitmap attribute to the control ’ s class.
The constructor for the ToolboxBitmap attribute can take as parameters the name of the bitmap
fi le, or a class that contains the bitmap resource to use, or a class and the name of a bitmap resource
to use (if the class contains more than one bitmap resource). This section assumes that you will use
the last method. See the online help for more information. The web page msdn.microsoft.com/
system.drawing.toolboxbitmapattribute.aspx describes the ToolboxBitmapAttribute class and
its constructors.

Open Solution Explorer and double - click the My Project entry to view the project ’ s property pages.
Click the Resources tab and open the Add Resource drop - down list. Select the Add Existing File
command, and select the bitmap fi le to create a new bitmap resource. Double - click the new bitmap
to open it in the integrated Bitmap Editor and modify it if necessary. Use the Properties window to
make the bitmap 16 × 16 pixels in size.

Set the pixel in the lower - left corner to the color that you want to use as the Toolbox bitmap ’ s
transparent color. Visual Basic will replace the pixels having this color with the Toolbox ’ s
background color. Draw and save the bitmap, and then close it.

Click the bitmap fi le in Solution Explorer and open the Properties window. Select the fi le ’ s Build
Action property, click the drop - down arrow on the right, and select Embedded Resource. Now
when you compile the control library, this bitmap will be embedded as a resource inside the .dll fi le.

Next, open the control ’ s module in the code editor, and insert a ToolboxBitmap attribute in front
of the control ’ s class declaration, as shown in the following code. This example tells Visual Basic
that the control ’ s Toolbox icon should come from the SmileyFaceTool.bmp resource embedded in
the SmileyFace class. Note the line continuation character at the end of the fi rst line so that the
ToolboxBitmap statement is on the same code line as the class declaration.

< ToolboxBitmap(GetType(SmileyFace), "SmileyFaceTool.bmp") >
Public Class SmileyFace
...
End Class

Now when you build the control library, the SmileyFace control includes the information it needs to
display its Toolbox bitmap.

Custom Controls in General ❘ 515

c22.indd 515c22.indd 515 12/31/09 6:46:24 PM12/31/09 6:46:24 PM

516 ❘ CHAPTER 22 CUSTOM CONTROLS

Test in the UserControl Test Container

If you use the Debug menu ’ s Start command to execute a control library project, Visual Studio
displays a sample control in the UserControl Test Container shown in Figure 22 - 1. The drop - down
list at the top lets you select different controls in the project. You can use the property grid on the
right to experiment with different property values to see how the control behaves.

FIGURE 22-1: Visual Basic lets you preview controls

in the UserControl Test Container.

Example project FaceControls, which is available for download on the book ’ s web site, contains the
SmileyFace control shown in Figure 22 - 1.

As its name implies, the UserControl Test Container only displays UserControls. If you create
a control that inherits from the Control class or from some other control, the UserControl Test
Container does not list it and will not display it. In that case, you must skip this step and move on to
the next one, making a test project.

Make a Test Project

The UserControl Test Container only lets you test UserControls, not those that inherit from the
Control class or some other control. It also only lets you test a control ’ s properties. You can see
the control ’ s design - time behavior, but not how its methods and events work at runtime.

To test controls that are not UserControls and to test the control ’ s runtime behavior, you must build
a test project. You can either build a completely separate project, or you can add a new Windows
application to the control ’ s project.

c22.indd 516c22.indd 516 12/31/09 6:46:24 PM12/31/09 6:46:24 PM

To add an application to the control ’ s project, open the File menu ’ s Add submenu and select New
Project. Select the Windows Application template, give the project a meaningful name (such as
FaceControlsTest), and click OK. This adds the test project to the same solution that already
contains the control library.

To make Visual Basic start execution with the test project, open the Solution Explorer, right - click
the new project, and select Set as StartUp Project.

The FaceControls example solution, which is available for download on the book ’ s web site,
contains the FaceControls control library in addition to the test application FaceControlsTest.

When you open the new project ’ s form, the Toolbox will contain a FaceControls Components section
(assuming that the control project is named FaceControls) that holds icons representing the controls
defi ned by the control library. You can use these tools just as you would use any other control tools.

Test the Control in the Test Project

After you add it to the Toolbox, you can use the control on the test project ’ s form just as you can
use any other control. Click the Toolbox icon to select the control, and click and drag to place an
instance of the control on the form. Double - click the control to place an instance of the control in
a default location with a default size. Initially, Visual Basic sets the controls ’ names to their class ’ s
name followed by a number, as in SmileyFace1, SmileyFace2, and so forth.

Use the Properties window to set the controls ’ properties at design time. Use code to examine and
modify the controls ’ properties, methods, and events at runtime.

Implement Properties, Methods, and Events

At this point, you can test the control, but if you haven ’ t given it any properties, methods, and
events, you can only work with the default behavior that it inherits from its parent class. If the
control is to do something useful, you must give it new properties, methods, and events.

Controls implemented from scratch often use Paint event handlers to draw the control.
Composite controls often respond to events raised by their constituent controls and take actions,
which may include raising new events for the form containing the control. (A composite control
combines several other controls into a new control. For more information, see the section
“ Composite Controls ” later in this chapter.)

When a developer places the control on a form, the Properties window automatically displays any
public properties that are not read - only. This feature is remarkably intelligent. If a property has
the Integer data type, the Properties window will only allow the developer to enter an integer. If a
property has an enumerated type, the Properties window automatically displays a drop - down list
containing the allowed values.

If a property has the Font data type, the Properties window automatically provides an ellipsis to the
right of the property ’ s value and displays a font selection dialog box if the user clicks it. Similarly, if
the property is a Color, Image, or Date, the Properties window provides an appropriate dialog box
or drop - down list to let the user select the property ’ s value.

If a property ’ s data type is OleDbDataConnection, DataSet, TextBox, Label, or some other control
or component type, the Properties window provides a drop - down list that lets the developer select

Custom Controls in General ❘ 517

c22.indd 517c22.indd 517 12/31/09 6:46:25 PM12/31/09 6:46:25 PM

518 ❘ CHAPTER 22 CUSTOM CONTROLS

from any appropriate item on the form. If the data type is TextBox, the drop - down will list all of
the form ’ s TextBoxes.

In fact, the Properties window can even handle custom controls and components that you build
yourself. For example, suppose that you create a control named EmployeeRegister. You can then
create another control that has a property of type EmployeeRegister. If the developer selects the
control, opens the Properties window, clicks that property, and clicks the drop - down arrow on the
right, Visual Basic will display a list of any EmployeeRegister controls on the form.

Even more miraculously, the Properties window can handle collections of objects that you defi ne.
For example, suppose your code defi nes a WorkItem class. It then defi nes a UserControl class named
WorkItemLister that has a property named WorkItems of type List(Of WorkItem).

If you add a WorkItemLister object to a form and select it, the Properties window lists the
WorkItems property ’ s value as (Collection) and displays a drop - down arrow to the right. If you click
the arrow, Visual Basic displays the collection editor shown in Figure 22 - 2. This collection editor
lets you build WorkItem objects at design time.

FIGURE 22-2: Visual Basic automatically provides

collection editors for collection properties.

Similarly, the UserControl Test Container can let you view and edit the control ’ s WorkItem property.

TOSTRING TIP

The WorkItem class ’ s ToString function lets objects know what to display for an
instance of the class. The collection editor uses this function to display Grade
foundation, Pour foundation, and the other work item names, instead of merely the
class name.

c22.indd 518c22.indd 518 12/31/09 6:46:26 PM12/31/09 6:46:26 PM

Example project WorkItemControls, which is available for download on the book ’ s web site,
includes a control project containing WorkItem controls in addition to a test project.

OTHER CUSTOM CONTROL TASKS

After you perform the six basic steps for building a custom control, there are a couple more steps
you may want to take.

Add the Control to the Toolbox

When you create a control library, Visual Studio automatically adds the control to any other
projects that are part of the same solution. If you create separate applications that are not part of
the control library ’ s solution, however, you must add the controls to the Toolbox manually. To
add the controls, follow these steps.

1. Open a form in the form designer.

2. Right - click the Toolbox and select Choose Items.

3. On the Choose Toolbox Items dialog box shown in Figure 22 - 3, click the Browse button.

4. Select the .dll fi le in the control library ’ s bin folder, and click Open to make the controls
appear in the dialog ’ s .NET Framework Components tab.

5. Select the check boxes next to the controls (they should be checked by default), and click OK.

If you change the control ’ s Toolbox icon, you must rebuild the control library ’ s .dll fi le. Then open
the test project ’ s form, right - click the Toolbox, select Add/Remove Items again, click the Browse
button, and reselect the control library ’ s .dll fi le.

FIGURE 22-3: Use the Choose Toolbox Items dialog

box to add your control to the Toolbox.

Other Custom Control Tasks ❘ 519

c22.indd 519c22.indd 519 12/31/09 6:46:27 PM12/31/09 6:46:27 PM

520 ❘ CHAPTER 22 CUSTOM CONTROLS

Assign Attributes

You can modify a control ’ s behavior by adding attributes to its properties, methods, and events,
and to its Class statement. The following code demonstrates some of the most useful control (or
component) and property attributes for a UserControl named EmployeeRegister:

Imports System.ComponentModel

< ToolboxBitmap(GetType(EmployeeRegister), "EmployeeRegisterTool.bmp"),
 DefaultProperty("TextValue"),
 DefaultEvent("TheEvent"),
 DesignTimeVisible(True) >
Public Class EmployeeRegister
 ' Declare a public event.
 Public Event TheEvent()
 ' The TextValue property.
 Private m_TextValue As String = "Default Value"
 < Description("The object's text value."),
 Category("String Values"),
 Browsable(True),
 DefaultValue("Default Value") >
 Public Property TextValue() As String
 Get
 Return m_TextValue
 End Get
 Set(ByVal value As String)
 m_TextValue = value
 End Set
 End Property
End Class

code snippet EmployeeRegisterTest

The ToolboxBitmap attribute tells Visual Basic that it can fi nd a Toolbox bitmap for the class
in the assembly containing the EmployeeRegister type, and that the bitmap resource ’ s name is
EmployeeRegisterTool.bmp.

The DefaultProperty attribute sets the component ’ s default property. If you click an
EmployeeRegister control in the form designer, the property named TextValue is initially selected in
the Properties window.

DEFECTIVE DEFAULTS

The DefaultProperty doesn ’ t always work as advertised because the Properties
window tries to display the same property when you select different controls. For
example, suppose that you click a TextBox control and select its Name property
in the Properties window. If you then click an EmployeeRegister control, the
Properties window shows its Name property because EmployeeRegister also has a
Name property. On the other hand, if you select a TextBox ’ s MultiLine property
and then click an EmployeeRegister control, the Properties window selects the
TextValue property because EmployeeRegister doesn ’ t have a MultiLine property.

c22.indd 520c22.indd 520 12/31/09 6:46:31 PM12/31/09 6:46:31 PM

The DefaultEvent attribute indicates the component ’ s default event. If you double - click an
EmployeeRegister control in the form designer, Visual Basic opens the code editor and displays the
control ’ s default event handler.

The DesignTimeVisible attribute determines whether the component is visible on the form designer
at design time. If you set this to False, the control or component does not appear in the Toolbox.
You can use this attribute to build a control that the program can create and manipulate at runtime
but that the developer cannot create at design time.

The TextValue property ’ s Description attribute gives the text displayed at the bottom of the
Properties window when you select the property.

The Category attribute determines the category that contains the property when you select the
Property window ’ s Categorized button. This attribute ’ s value can be any string. The Property
window will make a new category with this name if it doesn ’ t name an existing category.

The Browsable attribute determines whether the Property window displays the property. If you set
this value to False, developers cannot set the property ’ s value at design time.

Finally, the DefaultValue property determines the default value for the property. If you set a
control ’ s property to this value, Visual Basic does not store the property ’ s value with the form.
Later, when it reloads the form, Visual Basic does not load any value for the property. This code
shows one way to initialize a property ’ s value when it declares Private m_TextValue As String =
“ Default Value ” . To avoid confusion, you should generally initialize the private variable representing
a property to the same value you set with DefaultValue attribute.

When you right - click a property in the Properties window and select the Reset command, Visual
Basic sets the property to the value defi ned by the DefaultValue attribute. This is particularly useful
for images and other objects where you might want to make the default value Nothing.

Example project EmployeeRegisterTest, which is available for download on the book ’ s web site,
includes the EmployeeRegister control.

You can learn more about the ToolboxBitmap attribute at msdn.microsoft.com/system
.drawing.toolboxbitmapattribute.aspx . You can learn more about other attribute classes at
msdn2.microsoft.com/library/2e39z096.aspx .

Manage Design Time and Runtime

A control or component can use its predefi ned DesignMode property to determine whether it is
running at design time or runtime and take different actions if that is appropriate. For example, a
control might allow the developer to manipulate its data directly at design time but prevent the user
from changing the data at runtime.

The following code shows how the control can check whether it is running at design or runtime:

If Me.DesignMode Then
 ' Let the developer manipulate the data at design time.
 ...
Else
 ' Don't let the user change the data at run time.
 ...
End If

Other Custom Control Tasks ❘ 521

c22.indd 521c22.indd 521 12/31/09 6:46:33 PM12/31/09 6:46:33 PM

522 ❘ CHAPTER 22 CUSTOM CONTROLS

Example project ShowModeTest, which is available for download on the book ’ s web site, includes a
simple control that displays a label indicating whether it is running in design mode or run mode.

DERIVED CONTROLS

If an existing control does almost what you need to do, you can derive a new control from the
existing one. That enables you to take advantage of all of the existing control ’ s features while
adding new ones of your own.

To make a derived control, start a control library project as usual and give the library a meaningful
name. Discard the default UserControl1 class, add a new class, and give it an appropriate Inherits
statement. For example, the following code derives the RowSortingListView class from the
ListView class:

Public Class RowSortingListView
 Inherits ListView

End Class

That ’ s about all there is to building a derived control. Now you just need to write code that
implements new features and modifi es inherited features. One particularly common task
for derived controls is overriding the functionality provided by the parent control class. The
RowSortingListView control provides a good example.

The standard ListView control lets a program display data items with subitems in a variety of
ways. The control can display items as large icons, small icons, a list showing the items ’ names, or
a detail list showing the items and their subitems. The list and detail displays even allow you to sort
the items in ascending and descending order. Unfortunately, the ListView control doesn ’ t use the
subitems in the sort even to break ties. It sorts only on the main items ’ names.

For example, suppose that several items all have the item value Book and their fi rst subitems
contain book titles. If you set the ListView control ’ s Sorting property to Ascending or Descending,
the control will group these items together because they all have the same item value: Book.
Unfortunately, the items ’ order in the list is arbitrary. The control does not sort the Book items by
their titles.

Fortunately, the ListView control provides a back door for implementing custom sort orders. To
implement a custom sort order, you set the ListView control ’ s ListViewItemSorter property to an
object that implements the IComparer interface. To satisfy the interface, this object must provide a
Compare function that compares two ListView items and returns - 1 , 0 , or 1 to indicate whether the
fi rst item should be considered less than, equal to, or greater than the second item.

The ListViewComparerAllColumns class shown in the following code implements the
IComparer interface. Its private m_SortOrder variable tells the object whether to sort in
ascending or descending order. The class ’ s constructor takes a parameter that sets this value. The
Compare function converts the generic Objects that it is passed into ListViewItems. It calls the
ListViewItemValue helper function to get strings containing the items and their subitems separated

c22.indd 522c22.indd 522 12/31/09 6:46:34 PM12/31/09 6:46:34 PM

by Tab characters. It then uses the String class ’ s Compare method to determine which value should
come fi rst in the sort order.

' Implements a ListViewItem comparer
' that sorts on all columns.
Private Class ListViewComparerAllColumns
 Implements IComparer

 ' Ascending or Descending.
 Private m_SortOrder As SortOrder

 ' Initialize with a sort order.
 Public Sub New(ByVal sort_order As SortOrder)
 m_SortOrder = sort_order
 End Sub

 ' Compare two items' subitems.
 Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer _
 Implements System.Collections.IComparer.Compare
 ' Get the ListViewItems.
 Dim item_x As ListViewItem = DirectCast(x, ListViewItem)
 Dim item_y As ListViewItem = DirectCast(y, ListViewItem)
 ' Get the ListViewItems' values.
 Dim values_x As String = ListViewItemValue(item_x)
 Dim values_y As String = ListViewItemValue(item_y)

 ' Compare the values.
 If m_SortOrder = SortOrder.Ascending Then
 Return String.Compare(values_x, values_y)
 Else
 Return String.Compare(values_y, values_x)
 End If
 End Function
 ' Return a delimited string containing all of
 ' the ListViewItem's values.
 Private Function ListViewItemValue(ByVal lvi As ListViewItem,
 Optional ByVal delimiter As String = vbTab) As String
 Dim txt As String = ""
 For i As Integer = 0 To lvi.SubItems.Count - 1
 txt & #38;= delimiter & #38; lvi.SubItems(i).Text
 Next i
 Return txt.Substring(delimiter.Length)
 End Function
End Class

code snippet RowSortingListViewTest

The RowSortingListView control uses the ListViewComparerAllColumns class and the
following code to sort its data using all of the items ’ values and their subitems ’ values. To provide
the new sorting behavior, the control must override the Sorting property defi ned by the parent
ListView class.

Derived Controls ❘ 523

c22.indd 523c22.indd 523 12/31/09 6:46:34 PM12/31/09 6:46:34 PM

524 ❘ CHAPTER 22 CUSTOM CONTROLS

' Reimplement the Sorting property.
Private m_Sorting As SortOrder
Public Shadows Property Sorting() As SortOrder
 Get
 Return m_Sorting
 End Get
 Set(ByVal Value As SortOrder)
 ' Save the new value.
 m_Sorting = Value
 ' Make a new ListViewItemSorter if necessary.
 If m_Sorting = SortOrder.None Then
 MyBase.ListViewItemSorter = Nothing
 Else
 MyBase.ListViewItemSorter =
 New ListViewComparerAllColumns(m_Sorting)
 End If
 End Set
End Property

code snippet RowSortingListViewTest

The control defi nes a private m_Sorting variable to store the property ’ s value and declares property
procedures to let the program get and set it. The property is declared with the Shadows keyword,
so it hides the defi nition of the parent class ’ s Sorting property. That prevents the developer or a
program that uses the RowSortingListView control from using the original ListView version of
the property.

The Sorting Property Get procedure simply returns the value of m_Sorting .

The Property Set procedure saves the new value. Then if the new Sorting value is None, the code
sets the control ’ s inherited ListViewItemSorter property to Nothing to remove any previously
installed sorter object. If Sorting is not None, the code sets the control ’ s ListViewItemSorter
property to a new ListViewComparerAllColumns object confi gured to sort the items in the
proper order.

Adding new properties and methods that don ’ t shadow those of the base class is even easier. Simply
declare the property or method as you would for any other class. You can also create new events for
the derived control just as you would add events to any other class.

Example program RowSortingListViewTest, which is available for download on the book ’ s web site,
demonstrates the RowSortingListView control.

Shadowing Parent Features

The RowSortingListView control ’ s code implements a Sorting property that shadows the property in
its parent class. You can provide new versions of methods and events in the same way.

For example, normally, the ListView control raises a ColumnClick event when the user clicks a
column header. By default, the RowSortingListView control inherits that behavior, so it also raises
the event when the user clicks a column header.

c22.indd 524c22.indd 524 12/31/09 6:46:35 PM12/31/09 6:46:35 PM

The following code replaces the parent class ’ s ColumnClick event with a new version. The event
declaration uses the Shadows keyword so this version hides the parent ’ s version from the program
that uses the RowSortingListView control so the program cannot receive the original version
of the event.

The inherited version of ColumnClick passes the event handler a parameter that gives information
about the event. The new version just returns the index of the column clicked. The control ’ s
ColumnClick event handler (which handles the MyBase.ColumnClick event) raises the new event
handler. The control could also raise the event from some other code or not at all.

Public Shadows Event ColumnClick(ByVal column_number As Integer)

Private Sub RowSortingListView_ColumnClick(ByVal sender As Object,
 ByVal e As System.Windows.Forms.ColumnClickEventArgs) _
 Handles MyBase.ColumnClick
 RaiseEvent ColumnClick(e.Column)
End Sub

code snippet RowSortingListViewTest

The following code shows how a program could handle the new event. This code simply displays the
column number that the user clicked.

Private Sub RowSortingListView1_ColumnClick(ByVal column_number As Integer) _
 Handles RowSortingListView1.ColumnClick
 MessageBox.Show(column_number)
End Sub

code snippet RowSortingListViewTest

Example program RowSortingListViewTest demonstrates this technique.

In the same way, you can shadow a method provided by the parent class. The following code shows
how the RowSortingListView class can replace its parent ’ s Clear method. Instead of removing all of
the data from the control, this version removes only items with text value “ Book. ”

Public Shadows Sub Clear()
 For Each item As ListViewItem In Me.Items
 If item.Text = "Book" Then item.Remove()
 Next item
End Sub

code snippet RowSortingListViewTest

Hiding Parent Features

Sometimes you might want to completely hide a parent feature rather than replace it with a new
version. For example, suppose you want to make a grid - like control that uses some of the special
features of the ListView control. You decide to derive your control from the ListView control, but

Derived Controls ❘ 525

c22.indd 525c22.indd 525 12/31/09 6:46:36 PM12/31/09 6:46:36 PM

526 ❘ CHAPTER 22 CUSTOM CONTROLS

you don ’ t want to write code to handle any of the control ’ s display modes except the detail view.
You can rely on developers ’ common sense and ask them not to use features that involve other
display modes, or you can hide those features to prevent the developers who use your control from
doing something stupid. In that case, you need to hide the properties, methods, and events that deal
with the other display modes.

Hiding an event is easy. Declare a new event with the Shadows keyword as described in the previous
section and then never raise the event. A program using the control can write an event handler for
the event, but it will never be called.

Unfortunately, you cannot completely hide inherited properties and methods from the program
using the control, but you can shadow them and make the new version do nothing or throw an
exception. The following code declares a shadowing version of the ListView control ’ s Clear method.
If the program invokes this method, the control throws the MissingMethodException.

Public Shadows Sub Clear()
 Throw New System.MissingMethodException("RowSortingListView", "Clear")
End Sub

The following code defi nes a shadowing version of the Tag property. It gives the property the
BrowsableAttribute with the value False. This prevents the property from appearing in the
Properties window at design time. If the program tries to read or set the control ’ s Tag property at
runtime, the control throws a MissingFieldException.

< System.ComponentModel.BrowsableAttribute(False) >
Public Shadows Property Tag() As Object
 Get
 Throw New System.MissingFieldException("RowSortingListView", "Tag")
 End Get
 Set(ByVal Value As Object)
 Throw New System.MissingFieldException("RowSortingListView", "Tag")
 End Set
End Property

COMPOSITE CONTROLS

A composite control combines several existing controls into one
new control. For example, the ColorScrollerTest program, which
is available for download on the book ’ s web site and shown
in Figure 22 - 4, defi nes a ColorScroller control that contains
three labels, three scroll bars, and a panel. At runtime, the user
can drag the scroll bars to select a color ’ s red, green, and blue
components. The control displays a sample of the color in the
panel on the right.

FIGURE 22-4: The ColorScroller

control lets the user select a

color interactively by dragging

scroll bars.

c22.indd 526c22.indd 526 12/31/09 6:46:36 PM12/31/09 6:46:36 PM

To build a composite control, start a new control library project as usual. Give the library a
meaningful name, and change the name of the default control UserControl1 to something
more descriptive.

Next, in Solution Explorer, double - click the control to open it in the form designer. Use the Toolbox
to add constituent controls to the UserControl just as you would add controls to a form. Set the
controls ’ design - time properties using the Properties window.

Edit the code of the UserControl to make the constituent controls work together to provide the
behavior that you want. For the ColorScroller control shown in Figure 22 - 4, you would make the
scroll bars ’ events adjust the color displayed in the sample area on the right. You can handle the
constituent controls ’ events, get and set their property values, and invoke their methods. You can
also defi ne new properties, methods, and events for the composite control.

The following code shows how the ColorScroller control works. It starts by declaring the
ColorChanged event to tell the program when the user changes the control ’ s selected color. It then
includes property procedures that defi ne the SelectedColor property. The Property Get procedure
uses the Color class ’ s FromArgb to convert the scroll bars ’ values into a color. The Property Set
procedure sets the control ’ s Red, Green, and Blue properties to the components of the new Color
value. The Red Property Get procedure returns the value of the red scroll bar. The Property Set
procedure sets the red scroll bar ’ s value, displays the value in the red label, displays a sample of the
current color, and raises the ColorChanged event. The Green and Blue property procedures are
basically the same so they are not shown here. When the user changes the red scroll bar ’ s value, the
hbarRed_Scroll event handler sets the control ’ s new Red property value. The event handlers for
the Green and Blue scroll bars are similar, so they are not shown here.

Public Class ColorScroller
 ' Tell the program that the color has changed.
 Public Event ColorChanged(ByVal new_color As Color)

 ' Get or set the currently selected Color.
 Public Property SelectedColor() As Color
 Get
 Return Color.FromArgb(
 255,
 hbarRed.Value,
 hbarGreen.Value,
 hbarBlue.Value)
 End Get
 Set(ByVal value As Color)
 Red = value.R
 Green = value.G
 Blue = value.B
 End Set
 End Property
 ' Get: Return the color component value.
 ' Set: Set the scroll bar value,
 ' display the color, and

Composite Controls ❘ 527

c22.indd 527c22.indd 527 12/31/09 6:46:37 PM12/31/09 6:46:37 PM

528 ❘ CHAPTER 22 CUSTOM CONTROLS

 ' raise the ColorChanged event.
 Public Property Red() As Byte
 Get
 Return CByte(hbarRed.Value)
 End Get
 Set(ByVal Value As Byte)
 hbarRed.Value = Value
 lblRed.Text = hbarRed.Value.ToString
 panSample.BackColor = SelectedColor
 RaiseEvent ColorChanged(SelectedColor)
 End Set
 End Property
 ' Green and Blue property procedures omitted...

 ' The user has changed a color value.
 ' Set the appropriate color component value.
 Private Sub hbarRed_Scroll() Handles hbarRed.Scroll
 Red = CByte(hbarRed.Value)
 End Sub

 ' Green and Blue scroll bar Scroll event handlers omitted..
End Class

code snippet ColorScrollerTest

Composite controls are useful when you can build the behavior you want by using existing controls.
They are most useful when you will need to use the combined controls many times, either in the
same application or in several applications. If you need to implement these features only once, you
can simply place the constituent controls right on a form and include code to handle their events.

Composite controls are also useful for keeping the related controls and their code together. This
keeps the details of the controls and their code separate from the rest of the application. If the
interactions among the controls are complex, it may make sense to build a separate UserControl to
simplify the project.

Composite controls (or any control, for that matter) also provide a nice, clean separation between
developers. If you build a complex control and add it to a large project, other developers can interact
with the control only through the properties, methods, and events that it exposes. They cannot
access the constituent controls directly, and that removes a potential source of bugs.

CONTROLS BUILT FROM SCRATCH

If no existing control or group of controls can provide the behavior that you want, you can build a
control completely from scratch.

c22.indd 528c22.indd 528 12/31/09 6:46:38 PM12/31/09 6:46:38 PM

EXTRA WORK WARNING

Building a control from scratch is more work than building one by one of the other
methods. You ’ ll need to provide more features in your code and that means you ’ ll
need to perform a lot more testing and debugging to make sure the code works.
It you build a composite control using some scrollbars, you have some reason to
believe the scrollbars work. If you build a scrollbar - like control from scratch, you
need to provide all of the scrollbar functionality yourself.

To build a control from scratch, start a new control library project as usual. Give the library a
meaningful name and remove the default control UserControl1.

Add a new class, open it in the code editor, and add the statement Inherits Control. Then add
whatever code you need to make the control do what you want.

The following code shows how the SimpleSmiley control works. When the control receives a Paint
or Resize event, it calls subroutine DrawFace, passing it the Graphics object on which it should
draw. Subroutine DrawFace clears the control using the parent ’ s background color. It then calls a
series of Graphics object methods to draw a smiley face on the control ’ s surface. This drawing code
isn ’ t terribly relevant for this discussion, so it is omitted here to save space.

< ToolboxBitmap(GetType(SimpleSmiley), "SmileyFaceTool.bmp") >
Public Class SimpleSmiley
 Inherits Control
 Private Sub SimpleSmiley_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 DrawFace(e.Graphics)
 End Sub
 Private Sub SimpleSmiley_Resize(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Resize
 Me.Invalidate()
 End Sub
 ' Draw the smiley face.
 Private Sub DrawFace(ByVal gr As Graphics)
 If (Me.ClientSize.Width = 0) Or
 (Me.ClientSize.Height = 0) Then Exit Sub

 gr.Clear(Me.BackColor)
 gr.SmoothingMode = Drawing2D.SmoothingMode.HighQuality
 ' Drawing code omitted...
 End Sub
End Class

code snippet SimpleSmileyControls

Example solution SimpleSmileyControls uses similar code to build a SimpleSmiley control. The test
program SimpleSmileyControls demonstrates the control.

Controls Built from Scratch ❘ 529

c22.indd 529c22.indd 529 12/31/09 6:46:38 PM12/31/09 6:46:38 PM

530 ❘ CHAPTER 22 CUSTOM CONTROLS

When you build your own control from scratch, you can make it do just about anything that you
like. The obvious drawback is that you need to write code to make it do everything that you want.
If there ’ s already a control that does almost what you need, it is generally easier to derive a control
from that one rather than building one from scratch.

If you can display the data in standard controls such as Label, TextBox, or TreeView controls, it
would be easier to build a composite control. If you must display information by drawing it yourself
anyway, a composite control won ’ t help, so you might want to use this kind of control. For example,
if you are building a mapping or drafting system, you might want to build a control from scratch to
load and display maps and architectural drawings.

COMPONENTS

A component is basically a control with no visible appearance at runtime. Instead of appearing on
the form at design time, a component appears in the component tray below the form. Figure 22 - 5
shows a form containing several components.

FIGURE 22-5: The form designer displays components in the component tray below

the form.

You can select a component in the component tray and then view and modify its properties in
the Properties window. In Figure 22 - 5, the FontDialog1 component is selected, so the Properties
window is displaying that component ’ s properties.

Building a component is just as easy as building a control. In fact, components are often easier to
build because they don ’ t have any visible components to implement and debug.

c22.indd 530c22.indd 530 12/31/09 6:46:40 PM12/31/09 6:46:40 PM

To make a new component, open the Project menu and select Add Component. Leave the
Component Class template selected, enter the name you want to give the component, and click OK.

Because a component is invisible at runtime, the component designer (the component ’ s equivalent
of the form designer) does not display a visible area. The designer does have a component tray,
however, and you can place other components there to build composite components much as you
can build composite controls.

You can add properties, methods, and events to the component just as you would add them to
a control. You can also use the same attributes to modify the component and its properties and
events. For example, you can give the component a Toolbox bitmap, a default property and event,
add descriptions to properties, and assign properties to categories. In addition to displaying the
bitmap in the Toolbox, Visual Basic also displays it in the component tray below the form when you
add an instance of the component to the form.

INVISIBLE CONTROLS

You can make a control invisible at runtime by setting its Visible property to False. For example, the
following code shows how the InvisibleControl class works. Whenever it needs to draw itself, the
control ’ s DrawControl method sets the control ’ s Visible property equal to its DesignMode property,
so the control is visible at design time and hidden at runtime.

Public Class InvisibleControl
 Private Sub InvisibleControl_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 DrawControl(e.Graphics)
 End Sub

 Private Sub InvisibleControl_Resize() Handles Me.Resize
 Me.Invalidate()
 End Sub

 Private Sub DrawControl(ByVal gr As Graphics)
 Me.Visible = Me.DesignMode

 gr.Clear(Me.BackColor)
 Dim pen_wid As Integer =
 (Me.ClientSize.Width + Me.ClientSize.Height) \ 20
 Using the_pen As New Pen(Me.ForeColor, pen_wid)
 gr.DrawEllipse(the_pen,
 pen_wid \ 2, pen_wid \ 2,
 Me.ClientSize.Width — pen_wid,
 Me.ClientSize.Height — pen_wid)
 End Using
 End Sub
End Class

code snippet InvisibleControlTest

Invisible Controls ❘ 531

c22.indd 531c22.indd 531 12/31/09 6:46:40 PM12/31/09 6:46:40 PM

532 ❘ CHAPTER 22 CUSTOM CONTROLS

Example program InvisibleControlTest, which is available for download on the book ’ s web site, uses
similar code in its InvisibleControl.

If you want a control to be invisible at runtime, you should consider making it a component instead
of a control. Components take fewer resources and don ’ t take up space on the form at design time.
The only reason you should use the Visible property to make a control invisible is if you want it to
display some sort of complex data at design time, instead of an icon in the component tray, and you
want the data hidden from the user at runtime.

PICKING A CONTROL CLASS

There are several ways you can build objects that sit on a form at design time. Depending on the
features you need, these objects can inherit from the Component, Control, and UserControl classes.
They can also inherit from an existing control class such as a Button, TextBox, or ListView.

The Component class is the simplest of these classes. It doesn ’ t take up space on the form at design time,
so it is appropriate when you don ’ t want an object that is visible to the user. If you want a class with
properties that you can set at design time, but that should be invisible at runtime, build a Component.

The Control class is visible on the form at design and runtime but it is simpler than the UserControl
class and uses fewer resources. Unlike a UserControl, it cannot contain constituent controls. If you
want a control that draws itself without using any constituent controls, make your control inherit
from the Control class.

The UserControl class is visible on the form at design and runtime. Unlike the Control class, it can
contain constituent controls. If you want a control that uses constituent controls, make your control
inherit from the UserControl class.

Finally, if some existing class provides some of the features that you need to use, make your control
inherit from that class. The standard Visual Basic controls are very powerful and extensively tested, so
you can save yourself a considerable amount of time by taking advantage of their existing features.

CONTROLS AND COMPONENTS IN EXECUTABLE PROJECTS

Most of this chapter explains how to build a control library containing any number of controls and
components. You can compile the library into a .dll fi le and use it in executable applications.

You can also build custom controls or components within an executable project. In that case, the
controls or components are compiled into the executable rather than a separate .dll fi le, so you
cannot use them in other applications. If these are very specialized objects that you probably won ’ t
need to use in other applications, this is not a major disadvantage and saves you the trouble of
installing an extra .dll fi le with the application.

UserControls in Executable Projects

To add a custom UserControl to a project, open the Project menu and select Add User Control.
Leave the User Control template selected, enter a name for the control, and click Add. Add
constituent controls to the UserControl as usual.

c22.indd 532c22.indd 532 12/31/09 6:46:41 PM12/31/09 6:46:41 PM

Initially, the control does not appear in the Toolbox, so you cannot use it on a form. Select the Build
menu ’ s Build command to compile the control and the rest of the project. Visual Basic places the
new control in a Toolbox section named after the project. If the project ’ s name is Billing, it places
the control in a Toolbox section named Billing Components. Now you can use the control as usual.

Inherited UserControls in Executable Projects

To build a UserControl that inherits from an existing UserControl class, select the Project menu ’ s Add
New Item command. In the resulting dialog, select the Inherited User Control template, enter a name
for the control, and click Add. The Inheritance Picker dialog box shown in Figure 22 - 6 lists compiled
components in the current project. Select the control from which you want to inherit and click OK.

FIGURE 22-6: Use the Inheritance Picker to make a control that

inherits from an existing UserControl.

TEMPLATE HUNT

You may need to hunt a bit to fi nd the Inherited User Control template in the Add
New Item dialog. If you can ’ t fi nd it, type “Inherited” in the “Search Installed
Templates” box in the Add New Item dialog’s upper right corner.

Add properties, methods, and events to the control as usual. Select the Build menu ’ s Build command
to compile the control and add it to the Toolbox.

Alternatively, you can create a new class and add an Inherits statement that makes the class inherit
from the previously built UserControl.

Controls in Executable Projects

To build a control that inherits from the Control class in an executable project, select the Project
menu ’ s Add Class command. Leave the Class template selected, enter a name for the control, and
click Add. Add the statement Inherits Control to the control ’ s code.

Controls and Components in Executable Projects ❘ 533

c22.indd 533c22.indd 533 12/31/09 6:46:42 PM12/31/09 6:46:42 PM

534 ❘ CHAPTER 22 CUSTOM CONTROLS

Add properties, methods, and events to the control as usual. For example, you may want to give
the control Paint and Resize event handlers so that it can draw itself. Select the Build menu ’ s Build
command to compile the control and add it to the Toolbox.

Inherited Controls in Executable Projects

To build a control that inherits from a predefi ned control, select the Project menu ’ s Add Class
command. Leave the Class template selected, enter a name for the control, and click Add. Add an
Inherits statement that makes the class inherit from another control.

Add properties, methods, and events to the control as usual. For example, you may want to override
the parent class ’ s behaviors. Select the Build menu ’ s Build command to compile the control and add
it to the Toolbox.

Components in Executable Projects

To add a component to an executable project, select the Project menu ’ s Add Component command.
Leave the Component Class template selected, enter a name for the component, and click Add.

Add properties, methods, and events to the component as usual. Then select the Build menu ’ s Build
command to compile the component and add it to the Toolbox.

CUSTOM COMPONENT SECURITY

This chapter implicitly assumes that any custom controls or components that you build are safe
and trustworthy. It assumes that you don ’ t need to worry about a control installing a virus on your
computer or deleting a bunch of fi les. That ’ s certainly true when you use a control that you write
yourself (unless for some reason you want to destroy your operating system).

It ’ s also true when you build a custom component inside an executable application. If a project ’ s fi les
include a custom control that the program uses, you know that the control is as safe as you write it.

In contrast, suppose you download a control library DLL from the Internet. If you use the controls
in the DLL in your application, you cannot tell if the controls are safe. You can ’ t even always tell if
the DLL you download is the one that the author originally posted. It is possible that some scoffl aw
replaced the original DLL with a virus - infested version. In fact, it ’ s possible that a prankster
has replaced a DLL that you built yourself with another version that looks similar but that has
malicious side effects.

Visual Studio provides two approaches for combating these problems: making a strongly named
assembly and using a signature authority.

Strongly Named Assemblies

A strongly named assembly includes a manifest identifying the fi les that the assembly contains and
a digital signature. Another program can verify the digital signature to verify that the assembly has
not been tampered with since it was created.

c22.indd 534c22.indd 534 12/31/09 6:46:43 PM12/31/09 6:46:43 PM

Unfortunately, that doesn ’ t guarantee that the assembly is actually what you think it is. An attacker
could make a new assembly and then strongly sign it. If you verify the signature, you can tell that
the attacker ’ s version of the assembly hasn ’ t been tampered with since it was written and that the
viruses it contains are the original ones. The Microsoft web page Code Security and Signing in
Components at msdn2.microsoft.com/txzh776x(vs.71).aspx says:

Although providing a strong name for your assembly guarantees its identity, it is by
no means a guarantee that the code can be trusted. Put another way, the strong name
uniquely identifi es and guarantees the identity of the assembly, but does not guarantee
that you wrote it. Nevertheless, a trust decision can reasonably be made based on strong -
name identity alone, provided that the assembly is a well - known assembly.

(Go to msdn.microsoft.com/en-us/library/txzh776x.aspx for the most recent version of this
Web page.)

Although this is a pretty big loophole, it ’ s still better than nothing.

To sign an assembly, start a new Visual Basic project as usual. Typically the assembly will be a DLL,
control library, or other code project rather than a main program such as a Windows Forms or WPF
application.

In Project Explorer, double - click My Project to open the project ’ s Property pages and select the
Signing tab, as shown in Figure 22 - 7.

FIGURE 22-7: Use the Signing tab to sign an assembly.

Custom Component Security ❘ 535

c22.indd 535c22.indd 535 12/31/09 6:46:43 PM12/31/09 6:46:43 PM

536 ❘ CHAPTER 22 CUSTOM CONTROLS

Select the “ Sign the assembly ” check box. Then, open the key fi le drop - down list and select < New
. . . > . On the resulting dialog box, enter the name that you want to give the fi le and optionally enter
a password to protect the fi le. Then click OK.

At this point, Visual Studio builds the key fi le. It looks like gibberish, but contains all the
ingredients needed to sign the assembly. When you build the assembly, Visual Studio uses the key
fi le to sign the result. Build a main program, reference the assembly, and use its methods as you
normally would.

When the executable program needs to use the assembly, it loads the assembly, hashes it, and verifi es
that the hash matches the signature. If the hash doesn ’ t match, the program assumes the assembly
has been corrupted and refuses to use it.

Using a Signature Authority

Signing an assembly ensures that some villain hasn ’ t meddled with the assembly since it was signed.
If you built the assembly yourself, that gives you some assurance that the code is safe.

However, if someone else built the assembly and posted it on the Web, the signature only
guarantees that the assembly contains whatever the original author put in it. It doesn ’ t guarantee
that that author didn ’ t insert a virus. In fact, it doesn ’ t guarantee that a hacker didn ’ t replace the
original author ’ s assembly with a spoofed version signed by the hacker.

If you write an assembly that you want to share with others, you can make using your assembly
safer by using a certifi cate authority.

A certifi cate authority is a company that sells digital certifi cates that guarantee the authenticity of a
piece of signed code. The company verifi es your identity, so it is certain that you are who you claim
you are. It then gives you a certifi cate that you can use to sign assemblies. Later, when someone uses
your assembly, they cannot only verify that it has been signed and that it has not been corrupted
since you wrote it, but they can also verify that you wrote it.

Hackers won ’ t use certifi cate authorities to spread viruses because they would have to identify
themselves to the authority, and that would give you a way to track them down and sue them. The
certifi cate still doesn ’ t guarantee that the code is safe, but it does establish accountability if the code
turns out to be dangerous.

For information on signing assemblies and using certifi cate authorities, see the Microsoft web pages
Signing an Assembly with a Strong Name at msdn2.microsoft.com/library/aa719592.aspx and
Code Security and Signing in Components at msdn2.microsoft.com/library/txzh776x.aspx .

SUMMARY

Visual Basic provides a large assortment of controls that you can use on your forms. When they
don ’ t do exactly what you need, you can build others.

If an existing control does most of what you need, derive a new control from that one. If a group of
controls together with their properties, methods, and events can do what you need, combine them
into a composite control that inherits from the UserControl class. If you want to build a new control

c22.indd 536c22.indd 536 12/31/09 6:46:44 PM12/31/09 6:46:44 PM

from scratch, make a class that inherits from the Control class. Finally, if you want an object that is
available at design time but invisible at runtime, build a component.

When you build a control or component, you can use attributes to give extra information to Visual
Studio. The ToolboxBitmap, DefaultProperty, DefaultEvent, DesignTimeVisible, Description,
Category, Browsable, and DefaultValue attributes are some of the more useful attributes for control
and component classes.

Visual Basic provides many other features that you can use to build other kinds of control - related
classes and their properties. An extender provider class adds new properties to the other controls
on a form much as the ErrorProvider and ToolTip controls do. A type converter (which translates
data from one type to another) can translate between values and text for display in the Properties
window and can generate a customized list of choices for a property drop - down list. A UI type
editor enables you to build a graphical editor that the developer can use to view and manipulate
special property values. These are more advanced topics that lie beyond the scope of this book. My
book Expert One - on - One Visual Basic 2005 Design and Development (Stephens, Wrox, 2006)
explains these techniques. For more information, see the book ’ s web pages on Wrox.com or www
.vb-helper.com/one_on_one.htm .

Controls provide an interface between the user and the program. The user views controls to get
information from the program and manipulates the controls to provide information to the program.
Chapter 23, “ Drag and Drop, and the Clipboard, ” covers another important way for the user to
move data in and out of the program. It explains how the user can use drag and drop and the
clipboard to move data between the program and other applications.

Summary ❘ 537

c22.indd 537c22.indd 537 12/31/09 6:46:45 PM12/31/09 6:46:45 PM

c22.indd 538c22.indd 538 12/31/09 6:46:45 PM12/31/09 6:46:45 PM

23
Drag and Drop, and the
Clipboard

The clipboard is an object where programs can save and restore data. A program can save data
in multiple formats and retrieve it later, or another program might retrieve the data. Windows,
rather than Visual Basic, provides the clipboard, so it is available to every application running
on the system, and any program can save or fetch data from the clipboard.

The clipboard can store remarkably complex data types. For example, an application can store
a representation of a complete object in the clipboard for use by other applications that know
how to use that kind of object.

Drag - and - drop support enables the user to drag information from one control to another.
The controls may be in the same application or in different applications. For example, your
program could let the user drag items from one list to another, or it could let the user drag fi les
from Windows Explorer into a fi le list inside your program.

A drag occurs in three main steps. First, a drag source control starts the drag, usually when
the user presses the mouse down on the control. The control starts the drag, indicating the
data that it wants to drag and the type of drag operations it wants to perform (such as Copy,
Link, or Move).

When the user drags over a control, that control is a possible drop target. The control
examines the kind of data being dragged and the type of drag operation requested (such as
Copy, Link, or Move). The drop target then decides whether it will allow the drop and what
type of feedback it should give to the user. For example, if the user drags a picture over a label
control, the label might refuse the drop and display a no drop icon (a circle with a line through
it). If the user drags the picture over a PictureBox that the program is using to display images,
it might display a drop link icon (a box with a curved arrow in it).

Finally, when the user releases the mouse, the current drop target receives the data and does
whatever is appropriate. For example, if the drop target is a TextBox control and the data is

c23.indd 539c23.indd 539 12/31/09 6:47:36 PM12/31/09 6:47:36 PM

540 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

a string, the TextBox control might display the string. If the same TextBox control receives a fi le
name, it might read the fi le and display its contents.

The following sections describe drag - and - drop events in more detail and give several examples of
common drag - and - drop tasks. The section “ Using the Clipboard ” near the end of the chapter
explains how to use the clipboard. Using it is very similar to using drag and drop, although it doesn ’ t
require as much user feedback, so it is considerably simpler.

DRAG - AND - DROP EVENTS

The drag source control starts a drag operation by calling its DoDragDrop method. It passes this
method the data to be dragged and the type of drag operation that the control wants to perform.
The drag type can be Copy, Link, or Move.

If you are dragging to other general applications, the data should be a standard data type such as
a String or Bitmap so that the other application can understand it. If you are dragging data within a
single application or between two applications that you have written, you can drag any type of data.
This won ’ t necessarily work with general objects and arbitrary applications. For example, WordPad
doesn ’ t know what an Employee object is, so you can ’ t drop an Employee on it.

As the user drags the data around the screen, Visual Basic sends events to the controls it moves
over. Those controls can indicate whether they will accept the data and how they can accept it. For
example, a control might indicate that it will allow a Copy, but not a Move. The following table
describes the events that a drop target receives as data is dragged over it.

EVENT PURPOSE

DragEnter The drag is entering the control. The control can examine the type of data

available and set e.Eff ect to indicate the types of drops it can handle. These can

include All, Copy, Move, Link, and None. The control can also display some sort of

highlighting to indicate that the data is over it. For example, it might display a dark

border or shade the area where the new data would be placed.

DragLeave The drag has left the control. If the control displays some sort of highlighting or

other indication that the drag is over it in the DragEnter event, it should remove

that highlight now.

DragOver The drag is over the control. This event continues to fi re a few times per second

until the drag is no longer over the control. The control may take action to

indicate how the drop will be processed much as the DragEnter event handler

does. For example, as the user moves the mouse over a ListBox, the control

might highlight the list item that is under the mouse to show that this item will

receive the data. The program can also check for changes to the mouse or

keyboard. For example, it might allow a Copy if the Ctrl key is pressed and a

Move if the Ctrl key is not pressed.

DragDrop The user has dropped the data on the control. The control should process the data.

c23.indd 540c23.indd 540 12/31/09 6:47:39 PM12/31/09 6:47:39 PM

A drop target with simple needs can specify the drop actions it will allow in its DragEnter event
handler and not provide a DragOver event handler. It knows whether it will allow a drop based
solely on the type of item being dropped. For example, a graphical application might allow the user
to drop a bitmap on it, but not a string.

A more complex target that must track such items as the keyboard state, mouse position, and mouse
button state can provide a DragOver event handler and skip the DragEnter event handler. For
example, a circuit design application might check the drag ’ s position over its drawing surface, and
highlight the location where the dragged item would be positioned. As the user moves the object
around, the DragOver event would continue to fi re so the program could update the drop highlighting.

After the drag and drop fi nishes, the drag source ’ s DoDragDrop method returns the last type of
action that was displayed when the user dropped the data. That lets the drag source know what the
drop target expects the source to do with the data. For example, if the drop target accepted a Move,
the drag source should remove the data from its control. If the drop target accepted a Copy, the drag
source should not remove the data from its control.

The following table describes the two events that the drag source control receives to help it control
the drop.

EVENT PURPOSE

GiveFeedback The drag has entered a valid drop target. The source can take action to

indicate the type of drop allowed. For example, it might allow a Copy if the

target is a Label and allow Move or Copy if the target is a TextBox.

QueryContinueDrag The keyboard or mouse button state has changed. The drag source can

decide whether to continue the drag, cancel the drag, or drop the data

immediately.

The following sections describe some examples that demonstrate common drag - and - drop scenarios.

A Simple Example

The following code shows one of the simplest examples possible that contains both a drag source
and a drop target. To build this example, start a new project and add two Label controls named
lblDragSource and lblDropTarget.

Public Class Form1
 ' Start a drag.
 Private Sub lblDragSource_MouseDown() Handles lblDragSource.MouseDown
 lblDragSource.DoDragDrop("Here's the drag data!",
 DragDropEffects.Copy)
 End Sub

 ' Make sure the drag is coming from lblDragSource.
 Private Sub lblDropTarget_DragEnter(ByVal sender As Object,

Drag - and - Drop Events ❘ 541

c23.indd 541c23.indd 541 12/31/09 6:47:39 PM12/31/09 6:47:39 PM

542 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragEnter
 e.Effect = DragDropEffects.Copy
 End Sub

 ' Display the dropped data.
 Private Sub lblDropTarget_DragDrop(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragDrop
 MessageBox.Show(e.Data.GetData("Text").ToString)
 End Sub
End Class

code snippet LabelDrag

Note that the lblDropTarget control must have its AllowDrop property set to True either at design
time or at runtime or it will not receive any drag - and - drop events. When the user presses a mouse
button down over the lblDragSource control, the MouseDown event handler calls that control ’ s
DoDragDrop method, passing it the text (“ Here ’ s the drag data! ”) and indicating that it wants to
perform a Copy. When the user drags the data over the lblDropTarget control, its DragEnter event
handler executes. The event handler sets the routine ’ s e.Effect value to indicate that the control will
allow a Copy operation. If the user drops the data over the lblDropTarget control, its DragDrop
event handler executes. This routine uses the e.Data.GetData method to get a text data value and
displays it in a message box.

Example program LabelDrag uses this code to demonstrate a simple drag - and - drop operation.

As it is, this program lets you drag and drop data from the lblDragSource control to the
lblDropTarget control. You can also drag data from the lblDragSource control into Word, WordPad,
and any other application that can accept a drop of text data.

Similarly, the lblDropTarget control can act as a drop target for any application that provides drag
sources. For example, if you open WordPad, enter some text, select it, and then click and drag it
onto the lblDropTarget control, the application will display the text you dropped in a message box.

This example is a bit too simple to be really useful. If the drop target does nothing more, it should
check the data it will receive and ensure that it is text. When you drag a fi le from Windows Explorer
and drop it onto the lblDropTarget control, the e.Data.GetData method returns Nothing so the
program cannot display its value. Because the program cannot display a fi le, it is misleading for
the lblDropTarget control to display a Copy cursor when the user drags a fi le over it.

Example program LabelDrag2 uses the following code to make drag - and - drop a bit safer. The
new lblDropTarget_DragEnter event handler uses the e.Data.GetDataPresent method to see if the
data being dragged has a textual format. If a text format is available, the control allows a Copy
operation. If the data does not come in a textual form, the control doesn ’ t allow a drop.

c23.indd 542c23.indd 542 12/31/09 6:47:40 PM12/31/09 6:47:40 PM

' Make sure the drag is coming from lblDragSource.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter
 ' See if the drag data includes text.
 If e.Data.GetDataPresent("Text") Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If
End Sub

code snippet LabelDrag

Now, if you drag a fi le from Windows Explorer onto lblDropTarget, the control displays a no
drop icon.

The lblDropTarget_DragDrop event handler doesn ’ t need to change because Visual Basic doesn ’ t
raise the event if the control does not allow any drop operation. For example, if the user drags a fi le
from Windows Explorer onto lblDropTarget, that control ’ s DragEnter event handler sets e.Effect to
DragDropEffects.None, so Visual Basic doesn ’ t raise the DragDrop event handler if the user drops
the fi le there.

Example program DragBetweenListBoxes, which is also available for download, provides a more
complete example than program LabelDrag2 and demonstrates many of the drag - and - drop events.
It allows the user to drag items between two ListBoxes. It also allows the user to drag an item to
a specifi c position in its new ListBox and to drag an item from one position to another within the
same ListBox.

Example program DragBetweenListBoxes2, which is also available for download, adds the ability
to make copies of items. If the user holds down the Ctrl key while dragging an item, the program
displays a plus sign drag icon to indicate that dropping the item will make a copy. If the user drops
the item while pressing the Ctrl key, the program copies the item and leaves the original item where
it started.

Learning Data Types Available

When the user drags data over a drop target, the target ’ s DragEnter event handler decides which
kinds of drop to allow. The event handler can use the e.GetDataPresent method to see whether the
data is available in a particular format and then decide whether it should allow a drop accordingly.

GetDataPresent takes as a parameter a string giving the desired data type. An optional second
parameter indicates whether the program will accept another format if the system can derive it from
the original format. For example, the system can convert Text data into System.String data so you
can decide whether to allow the system to make this conversion.

The DataFormats class provides standardized string values specifying various data types. For
example, DataFormats.Text returns the string Text representing the text data type.

If you use a DataFormats value, you don ’ t need to worry about misspelling one of these formats.
Some of the most commonly used DataFormats include Bitmap, Html, StringFormat, and Text. See

Drag - and - Drop Events ❘ 543

c23.indd 543c23.indd 543 12/31/09 6:47:41 PM12/31/09 6:47:41 PM

544 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

the online help for other formats. The web page msdn2.microsoft.com//system.windows.forms
.dataformats_members.aspx lists the DataFormats class ’ s supported formats.

GetDataPresent can also take as a parameter a data type. For example, the following code fragment
uses GetDataPresent to allow a Copy operation if the drag data contains an Employee object:

if e.Data.GetDataPresent(GetType(Employee)) Then
 ' Allow Copy.
 e.Effect = DragDropEffects.Copy
Else
 ' Allow no other drops.
 e.Effect = DragDropEffects.None
End if

In addition to GetDataPresent, you can use the e.Data.GetFormats method to get an array of strings
giving the names of the available formats. The following code shows how a program can list the
formats available. It clears its lstWithoutConversion ListBox and then loops through the values
returned by e.Data.GetFormats, adding them to the ListBox. It passes GetFormats the parameter
False to indicate that it should return only data formats that are directly available, not those that
can be derived from others. The program then repeats these steps, this time passing GetFormats the
parameter True to include derived formats.

Private Sub lblDropTarget_DragEnter(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter
 lstWithoutConversion.Items.Clear()
 For Each fmt As String In e.Data.GetFormats(False)
 lstWithoutConversion.Items.Add(fmt)
 Next fmt

 lstWithConversion.Items.Clear()
 For Each fmt As String In e.Data.GetFormats(True)
 lstWithConversion.Items.Add(fmt)
 Next fmt
End Sub

Dragging within an Application

Sometimes, you may want a drop target to accept only data dragged from within the same
application. The following code shows one way to handle this. Before it calls DoDragDrop, the
program sets its m_Dragging variable to True. The lblDropTarget control ’ s DragEnter event checks
m_Dragging. If the user drags data from a program other than this one, m_Dragging will be False
and the program sets e.Effect to DragDropEffects.None, prohibiting a drop. If m_Dragging is True,
that means this program started the drag, so the program allows a Copy operation. After the drag
and drop fi nishes, the lblDragSource control ’ s MouseDown event handler sets m_Dragging to False,
so the drop target will refuse future drags from other applications.

c23.indd 544c23.indd 544 12/31/09 6:47:41 PM12/31/09 6:47:41 PM

Public Class Form1
 ' True while we are dragging.
 Private m_Dragging As Boolean

 ' Start a drag.
 Private Sub lblDragSource_MouseDown() _
 Handles lblDragSource.MouseDown
 m_Dragging = True
 lblDragSource.DoDragDrop("Some text", DragDropEffects.Copy)
 m_Dragging = False
 End Sub
 ' Only allow Copy if we are dragging.
 Private Sub lblDropTarget_DragEnter(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragEnter
 If m_Dragging Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If
 End Sub

 ' Display the dropped text.
 Private Sub lblDropTarget_DragDrop(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragDrop
 MessageBox.Show(e.Data.GetData(DataFormats.Text).ToString)
 End Sub
End Class

code snippet DragWithinApp

Example program DragWithinApp uses this code to provide restricted drag - and - drop.

There is no easy way to allow your program to drag data to its own controls, but not allow it
to drag data to another program. The philosophy is that a drag source provides data for any
application that can handle it, not just for its own use.

If you don ’ t want other applications to read data dragged from your application, you can package
the data in an object and drag the object as described in the section “ Dragging Serializable Objects ”
later in this chapter. This will make it very diffi cult for most applications to understand the data,
even if they try to accept it.

Accepting Dropped Files

Many applications let you drop fi les onto them. When you drag fi les over a drop target, the data
object contains data of several types, including FileDrop. This data is an array of strings containing
the names of the fi les being dragged.

Example program AcceptDroppedFiles uses the following code to process fi les dragged onto it. The
lblDropTarget control ’ s DragEnter event handler uses the GetDataPresent method to see if the drag
contains FileDrop data, and allows the Copy operation if it does. The control ’ s DragDrop event

Drag - and - Drop Events ❘ 545

c23.indd 545c23.indd 545 12/31/09 6:47:42 PM12/31/09 6:47:42 PM

546 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

handler uses GetData to get the data in FileDrop format. It converts the data from a generic object
into an array of strings, and then loops through the entries, adding each to the lstFiles ListBox.

Public Class Form1
 ' Allow Copy if there is FileDrop data.
 Private Sub lblDropTarget_DragEnter(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragEnter
 If e.Data.GetDataPresent(DataFormats.FileDrop) Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If
 End Sub

 ' Display the dropped file names.
 Private Sub lblDropTarget_DragDrop(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragDrop
 lstFiles.Items.Clear()
 Dim file_names As String() =
 DirectCast(e.Data.GetData(DataFormats.FileDrop), String())
 For Each file_name As String In file_names
 lstFiles.Items.Add(file_name)
 Next file_name
 End Sub
End Class

code snippet AcceptDroppedFiles

A more realistic application would do something more useful than simply listing the fi les. For
example, it might delete them, move them into the wastebasket, copy them to a backup directory,
display thumbnails of image fi les, and so forth.

Dragging Serializable Objects

Dragging text is simple enough. Simply pass the text into the DoDragDrop method and you ’ re fi nished.

You can drag an arbitrary object in a similar manner, as long as the drag source and drop target are
within the same application. If you want to drag objects between applications, however, you must
use serializable objects. A serializable object is one that provides methods for translating the object
into and out of a stream - like format. Usually, this format is text, and lately XML is the preferred
method for storing text streams.

XML XPLAINED

XML (eXtensible Markup Language) is language that uses matching opening and
closing tokens to delimit pieces of data in a hierarchical data structure. XML is a
simple, fl exible, and powerful way to store data so it makes an ideal medium for
serializing objects. For more information on XML, see msdn.microsoft.com/xml
and en.wikipedia.org/wiki/XML .

c23.indd 546c23.indd 546 12/31/09 6:47:43 PM12/31/09 6:47:43 PM

You can use drag and drop to move a serializable object between applications. The drag source
converts the object into its serialization and sends the resulting text to the drop target. The drop
target uses the serialization to re - create the object.

You might think it would be hard to make an object serializable. Fortunately, Visual Basic .NET
can serialize and deserialize many classes automatically. In most cases, all you need to do is add the
Serializable attribute to the class, as shown in the following code:

< Serializable() >
Public Class Employee
 ...
End Class

The drag source can pass objects of this type to the DoDragDrop method.

Example program DragEmployee allows you to drag and drop Employee objects. The program ’ s
code starts by defi ning the constant DATA_EMPLOYEE. This value, DragEmployee.frmDragEm
ployee+Employee, is the name of the data format type assigned to the Employee class. This name
combines the project name, the module name where the class is defi ned, and the class name.

Public Const DATA_EMPLOYEE As String =
 "DragEmployee.frmDragEmployee+Employee"

The following code shows the program ’ s serializable Employee class:

< Serializable() >
Public Class Employee
 Public FirstName As String
 Public LastName As String
 Public Sub New()
 End Sub
 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

code snippet DragEmployee

The following code shows how an application can act as a drag source and a drop target for objects
of the Employee class. It starts by defi ning the Employee class. It also defi nes the string constant
DATA_EMPLOYEE. This value, DragEmployee.frmDragEmployee+Employee, is the name of the
data format type assigned to the Employee class. This name combines the project name, the module
name where the class is defi ned, and the class name.

When the user presses the mouse down over the lblDragSource control, the following Mouse-
Down event handler creates an Employee object, initializing it with the values contained in the
txtFirstName and txtLastName text boxes. It then calls the lblDragSource control ’ s DoDragDrop
method, passing it the Employee object and allowing the Move and Copy operations. If DoDrag-
Drop returns the value Move, the user performed a Move rather than a Copy, so the program
removes the values from the text boxes.

Drag - and - Drop Events ❘ 547

c23.indd 547c23.indd 547 12/31/09 6:47:44 PM12/31/09 6:47:44 PM

548 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

' Start dragging the Employee.
Private Sub lblDragSource_MouseDown() Handles lblDragSource.MouseDown
 Dim emp As New Employee(txtFirstName.Text, txtLastName.Text)

 If lblDragSource.DoDragDrop(emp,
 DragDropEffects.Copy Or DragDropEffects.Move) =
 DragDropEffects.Move _
 Then
 ' A Move succeeded. Clear the TextBoxes.
 txtFirstName.Text = ""
 txtLastName.Text = ""
 End If
End Sub

code snippet DragEmployee

When the user drags over the lblDropTarget control, the following DragOver event handler executes.
The routine fi rst uses the GetDataPresent method to verify that the dragged data contains an Employee
object. It then checks the Ctrl key ’ s state and allows a Copy or Move operation as appropriate.

 ' If an Employee object is available, allow a Move
 ' or Copy depending on whether the Ctrl key is pressed.
Private Sub lblDropTarget_DragOver(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragOver
 If e.Data.GetDataPresent(DATA_EMPLOYEE) Then
 ' Display the Move or Copy cursor.
 Const KEY_CTRL As Integer = 8
 If (e.KeyState And KEY_CTRL) < > 0 Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.Move
 End If
 End If
End Sub

code snippet DragEmployee

If the user drops the data on the lblDropTarget control, the following DragDrop event handler
executes. It uses the GetData method to retrieve the Employee object. GetData returns a generic
Object, so the program uses DirectCast to convert the result into an Employee object. The event
handler fi nishes by displaying the object ’ s FirstName and LastName properties in its text boxes.

 ' Display the dropped Employee object.
Private Sub lblDropTarget_DragDrop(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragDrop
 Dim emp As Employee =
 DirectCast(e.Data.GetData(DATA_EMPLOYEE), Employee)
 lblFirstName.Text = emp.FirstName
 lblLastName.Text = emp.LastName
End Sub

code snippet DragEmployee

c23.indd 548c23.indd 548 12/31/09 6:47:45 PM12/31/09 6:47:45 PM

If you compile this program, you can run two copies of the executable program and drag from the
drag source in one to the drop target in the other.

If you remove the Serializable attribute from the Employees class, the program still works if you
drag from the drag source to the drop target within the same instance of the application. If you run
two instances and drag from one to the other, however, the drop target gets the value Nothing from
the GetData method, so the drag and drop fails.

Changing Format Names

The previous example dragged data with the rather unwieldy data format name DragEmployee
.frmDragEmployee+Employee. This name identifi es the class reasonably well, so it is unlikely that
another application will try to load this data if it has some other defi nition for the Employee class.

On the other hand, the name is rather awkward. It is also problematic if you want to drag objects
between two different applications, because each will use its project and module name to defi ne
the data format type. If you want to drag Employee objects between the TimeSheet program and the
EmployeePayroll program, the names of the data formats generated by the two programs
won ’ t match.

The DataObject class provides more control over how the data is represented. Instead of dragging
an Employee object directly, you create a DataObject, store the Employee object inside it with the
data format name of your choosing, and then drag the DataObject.

Example program DragEmployee2 uses the following code fragment to demonstrate this technique.
It creates an Employee object as before and then creates a DataObject. It calls the DataObject
object ’ s SetData method, passing it the Employee object and the data format name.

Dim emp As New Employee(txtFirstName.Text, txtLastName.Text)
Dim data_object As New DataObject()
data_object.SetData("Employee", emp)

If lblDragSource.DoDragDrop(data_object,
 DragDropEffects.Copy Or DragDropEffects.Move) = DragDropEffects.Move _
Then
 ' A Move succeeded. Clear the TextBoxes.
 txtFirstName.Text = ""
 txtLastName.Text = ""
End if

code snippet DragEmployee2

In general, you should try to avoid very generic names such as Employee for data types. Using such
a simple name increases the chances that another application will use the same name for a different
class. Another program will not be able to convert your Employee data into a different type of
Employee class.

Drag - and - Drop Events ❘ 549

c23.indd 549c23.indd 549 12/31/09 6:47:45 PM12/31/09 6:47:45 PM

550 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

To ensure consistency across applications, you must defi ne a naming convention that can identify
objects across projects. To ensure that different applications use exactly the same object defi nitions,
you might also want to defi ne the objects in a separate DLL used by all of the applications. That
simplifi es the naming problem, because you can use the DLL ’ s name as part of the object ’ s name.

For example, suppose that you build an assortment of billing database objects such as Employee,
Customer, Order, OrderItem, and so forth. If the objects are defi ned in the module BillingObjects.
dll, you could give the objects names such as BillingObjects.Employee, BillingObjects.Customer,
and so forth.

Dragging Multiple Data Formats

The DataObject not only allows you to pick the data form name used by a drag; it also allows
you to associate more than one piece of data with a drag. To do this, the program simply calls the
object ’ s SetData method more than once, passing it data in different formats.

Example program DragRichText uses the following code to drag the text in a RichTextBox control
in three data formats: RTF, plain text, and HTML. (RTF, the Rich Text Format, allows text to
include different fonts, sizes, styles, and colors.) The lblDragSource control ’ s MouseDown event
handler makes a DataObject and calls its SetData method, passing it the rchSource control ’ s
contents in the RTF and Text formats. It then builds an HTML string and passes that to the
SetData method as well.

' Start a drag.
Private Sub lblDragSource_MouseDown() Handles lblDragSource.MouseDown

' Make a DataObject.
Dim data_object As New DataObject
' Add the data in various formats.
data_object.SetData(DataFormats.Rtf, rchSource.Rtf)
data_object.SetData(DataFormats.Text, rchSource.Text)

' Build the HTML version.
Dim html_text As String
html_text = " < HTML > " & vbCrLf

" & vbCrLfhtml_text & = " < HEAD > The Quick Brown Fox < /HEAD >
html_text & = " < BODY > " & vbCrLf
html_text & = rchSource.Text & vbCrLf
html_text & = " < /BODY > " & vbCrLf & " < /HTML > "
data_object.SetData(DataFormats.Html, html_text)

' Start the drag.
lblDragSource.DoDragDrop(data_object, DragDropEffects.Copy)

End Sub

code snippet DragRichText

The following code shows the lblDropTarget control ’ s DragEnter event handler. If the data includes
the RTF, Text, or HTML data formats, the control allows a Copy operation.

c23.indd 550 c23.indd 550 12/31/09 6:47:46 PM12/31/09 6:47:46 PM

' Allow drop of Rtf, Text, and HTML.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles lblDropTarget.DragEnter
 If e.Data.GetDataPresent(DataFormats.Rtf) Or
 e.Data.GetDataPresent(DataFormats.Text) Or
 e.Data.GetDataPresent(DataFormats.Html) _
 Then
 e.Effect = DragDropEffects.Copy
 End If
End Sub

code snippet DragRichText

The following code shows how a program can read these formats. If the dropped data includes the
DataFormats.Rtf format, the code displays it in the RichTextControl rchTarget. It also displays
the RTF data in the lblRtf Label. This lets you see the Rich Text codes. If the data includes the Text
format, the program displays it in the lblTarget label. Finally, if the data includes HTML,
the program displays it in the lblHtml label.

' Display whatever data we can.
Private Sub lblDropTarget_DragDrop(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragDrop
 If e.Data.GetDataPresent(DataFormats.Rtf) Then
 rchTarget.Rtf = e.Data.GetData(DataFormats.Rtf).ToString
 lblRtf.Text = e.Data.GetData(DataFormats.Rtf).ToString
 Else
 rchTarget.Text = ""
 lblRtf.Text = ""
 End If

 If e.Data.GetDataPresent(DataFormats.Text) Then
 lblTarget.Text = e.Data.GetData(DataFormats.Text).ToString
 Else
 lblTarget.Text = ""
 End If

 If e.Data.GetDataPresent(DataFormats.Html) Then
 lblHtml.Text = e.Data.GetData(DataFormats.Html).ToString
 Else
 lblHtml.Text = ""
 End If
End Sub

code snippet DragRichText

Figure 23 - 1 shows the DragRichText program in action. The RichTextBox on the top shows the
original data in rchSource. Below the drag source and drop target labels, other controls show
the dropped results. The fi rst control is a RichTextBox that shows the RTF data. The second control

Drag - and - Drop Events ❘ 551

c23.indd 551c23.indd 551 12/31/09 6:47:47 PM12/31/09 6:47:47 PM

552 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

is a label displaying the Rich Text codes. The third control is
a label showing the Text data, and the fi nal control is a label
showing the HTML data.

If you drag data from another application onto the drop target,
this program displays only the data that is available. For example,
if you drag data from WordPad, this program will display only
RTF and Text data, because those are the only compatible
formats provided by WordPad.

USING THE CLIPBOARD

Using the clipboard is very similar to using drag and drop. To save
a single piece of data, call the Clipboard object ’ s SetDataObject
method, passing it the data that you want to save. For example,
the following code copies the text in the txtLastName control
to the clipboard:

Clipboard.SetDataObject(txtLastName.Text)

Copying data to the clipboard in multiple formats is very similar to dragging and dropping multiple
data formats. First, create a DataObject and use its SetData method to store the data exactly as
before. Then call the Clipboard object ’ s SetDataObject method, passing it the DataObject.

The following code adds RTF, plain text, and HTML data to the clipboard:

 ' Copy data to the clipboard.
Private Sub btnCopy_Click() Handles btnCopy.Click
 ' Make a DataObject.
 Dim data_object As New DataObject

 ' Add the data in various formats.
 data_object.SetData(DataFormats.Rtf, rchSource.Rtf)
 data_object.SetData(DataFormats.Text, rchSource.Text)

 ' Build the HTML version.
 Dim html_text As String
 html_text = " < HTML > " & vbCrLf
 html_text & = " < HEAD > The Quick Brown Fox < /HEAD > " & vbCrLf
 html_text & = " < BODY > " & vbCrLf
 html_text & = rchSource.Text & vbCrLf
 html_text & = " < /BODY > " & vbCrLf & " < /HTML > "
 data_object.SetData(DataFormats.Html, html_text)

 ' Copy data to the clipboard.
 Clipboard.SetDataObject(data_object)
End Sub

code snippet CopyPasteRichText

FIGURE 23-1: This program drags

and drops data in Text, RTF, and

HTML formats.

c23.indd 552c23.indd 552 12/31/09 6:47:47 PM12/31/09 6:47:47 PM

To retrieve data from the clipboard, use the GetDataObject method to get an IDataObject
representing the data. Use that object ’ s GetDataPresent method to see if a data type is present, and
use its GetData method to get data with a particular format.

The following code displays RTF, plain text, and HTML data from the clipboard:

 ' Paste data from the clipboard.
Private Sub btnPaste_Click() Handles btnPaste.Click
 Dim data_object As IDataObject = Clipboard.GetDataObject()

 If data_object.GetDataPresent(DataFormats.Rtf) Then
 rchTarget.Rtf = data_object.GetData(DataFormats.Rtf).ToString
 lblRtf.Text = data_object.GetData(DataFormats.Rtf).ToString
 Else
 rchTarget.Text = ""
 lblRtf.Text = ""
 End If

 If data_object.GetDataPresent(DataFormats.Text) Then
 lblTarget.Text = data_object.GetData(DataFormats.Text).ToString
 Else
 lblTarget.Text = ""
 End If

 If data_object.GetDataPresent(DataFormats.Html) Then
 lblHtml.Text = data_object.GetData(DataFormats.Html).ToString
 Else
 lblHtml.Text = ""
 End If
End Sub

code snippet CopyPasteRichText

Example program CopyPasteRichText uses similar code to copy and paste data in RTF, HTML, and
plain text formats.

The IDataObject returned by the GetDataObject method also provides a GetFormats method that
returns an array of the data formats available. This array is very similar to the one returned by the
GetFormats method provided by the DragEnter event described earlier in this chapter.

You can copy and paste objects using the clipboard much as you drag and drop objects. Simply
make the object ’ s class serializable and add an instance of the class to the DataObject.

Example program CopyPasteEmployee uses the following code to copy and paste an Employee
object. The btnCopy_Click event handler makes an Employee object and a DataObject. It passes
the Employee object to the DataObject object ’ s SetData method, giving it the data format name
Employee. The program then passes the DataObject to the Clipboard object ’ s SetDataObject
method. The btnPaste_Click event handler retrieves the clipboard ’ s data object and uses its
GetDataPresent method to see if the clipboard is holding data with the Employee format. If the data
is present, the program uses the data object ’ s GetData method to fetch the data, casts it into an
Employee object, and displays the object ’ s property values.

Using the Clipboard ❘ 553

c23.indd 553c23.indd 553 12/31/09 6:47:48 PM12/31/09 6:47:48 PM

554 ❘ CHAPTER 23 DRAG AND DROP, AND THE CLIPBOARD

' Copy the Employee to the clipboard.
Private Sub btnCopy_Click() Handles btnCopy.Click
 Dim emp As New Employee(txtFirstName.Text, txtLastName.Text)
 Dim data_object As New DataObject
 data_object.SetData("Employee", emp)
 Clipboard.SetDataObject(data_object)
End Sub

' Paste data from the clipboard.
Private Sub btnPaste_Click() Handles btnPaste.Click
 Dim data_object As IDataObject = Clipboard.GetDataObject()
 If data_object.GetDataPresent("Employee") Then
 Dim emp As Employee =
 DirectCast(data_object.GetData("Employee"), Employee)
 txtPasteFirstName.Text = emp.FirstName
 txtPasteLastName.Text = emp.LastName
 End If
End Sub

code snippet CopyPasteEmployee

The following table lists the most useful methods provided by the Clipboard object, including
several that make working with common data types easier.

METHOD PURPOSE

Clear Removes all data from the clipboard.

ContainsAudio Returns True if the clipboard contains audio data.

ContainsData Returns True if the clipboard contains data in a particular format.

ContainsFileDropList Returns True if the clipboard contains a fi le drop list.

ContainsImage Returns True if the clipboard contains an image.

ContainsText Returns True if the clipboard contains text.

GetAudioStream Returns the audio stream contained in the clipboard.

GetData Returns data in a specifi c format.

GetDataObject Returns the clipboard ’ s DataObject.

GetFileDropList Returns the fi le drop list contained in the clipboard.

GetImage Returns the image contained in the clipboard.

GetText Returns the text contained in the clipboard.

SetAudio Saves audio bytes or an audio stream in the clipboard.

SetData Saves data in a particular format in the clipboard.

SetDataObject Saves the data defi ned by a DataObject in the clipboard.

c23.indd 554c23.indd 554 12/31/09 6:47:49 PM12/31/09 6:47:49 PM

 METHOD PURPOSE

 SetFileDropList Saves a fi le drop list in the clipboard. The data should be

a StringCollection containing the fi le names.

 SetImage Saves an image in the clipboard.

 SetText Saves text in the clipboard.

 Example program PasteFileList uses the following code to retrieve fi le drop list data from
the clipboard:

 Private Sub btnPaste_Click() Handles btnPaste.Click
 lstFiles.Items.Clear()
 If Clipboard.ContainsFileDropList() Then
 Dim file_names As StringCollection = Clipboard.GetFileDropList()
 For Each file_name As String In file_names
 lstFiles.Items.Add(file_name)
 Next file_name
 End If
End Sub

code snippet PasteFileList

 SUMMARY

 Drag - and - drop events and the clipboard both move data from a source to a destination. The source
and destination can be in the same program or in two different applications.

 The clipboard lets a program save and retrieve data in a central, shared location. Data copied to the
clipboard may remain in the clipboard for a long time so that the user can paste it into the same or
another application later.

 Providing drag - and - drop support with appropriate feedback is more work than using the clipboard,
but it provides the user with more direct control, and it doesn ’ t replace whatever data currently sits
in the clipboard.

 Together, these two tools let you provide the user with more control over the application ’ s data.
They let the user move data between different parts of an application and between different
applications. Although drag - and - drop support and the clipboard are usually not the main purpose
of an application, they can give the user an extra dimension of hands - on control.

 The chapters in the book so far focus on specifi c Visual Basic programming details. They explain
the Visual Basic development environment, language syntax, standard controls and forms, custom
controls, drag and drop, and the clipboard.

 Chapter 24, “ UAC Security, ” examines applications at a slightly higher level in the context of the
operating system. It explains the User Account Control (UAC) security system provided by
the Windows 7 operating system and tells how UAC can prevent your application from running
properly. Unless you understand how UAC works and how to interact with it, the operating system
may not allow your program to perform the tasks that it should.

Summary ❘ 555

c23.indd 555c23.indd 555 12/31/09 6:47:50 PM12/31/09 6:47:50 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

c23.indd 556c23.indd 556 12/31/09 6:47:50 PM12/31/09 6:47:50 PM

24
UAC Security

The previous chapters have dealt with general Visual Basic programming tasks. They show
how to write the Visual Basic code needed to build an application.

This chapter discusses User Account Control (UAC) security issues. UAC is a system
implemented by recent versions of Windows operating systems that allows programs to elevate
their privileges only when they absolutely must.

In earlier operating systems that don ’ t have UAC, users often logged in with administrator
privileges to perform fairly routine tasks because the programs they used might need
administrator privileges. Now, with UAC, users can run with normal user privileges and only
elevate their privileges to perform the specifi c tasks that need them.

UAC OVERVIEW

In general, a program cannot perform actions that require privileges that the user doesn ’ t
have. If the user doesn ’ t have permission to delete fi les in the Windows directory, a program
that the user can run should not be able to delete those fi les either. Otherwise, the user could
perform actions that are supposed to be prohibited.

Developers have long known that an application should require the fewest privileges possible
to get its job done. If a program needs a lot of privileges, only the users who have those
privileges can use it.

Unfortunately, many applications occasionally perform some fairly powerful operations.
They may sometimes need to create or delete a fi le in the Windows directory, access
system - related parts of the Registry, or modify environment settings. If the program needs
those privileges, the users running the program must have those privileges. That means that
many users run programs while logged in as a system administrator so that they have the
necessary permissions.

c24.indd 557c24.indd 557 12/31/09 6:48:38 PM12/31/09 6:48:38 PM

558 ❘ CHAPTER 24 UAC SECURITY

Carrying around all of those permissions comes with some additional risk. If the program
misbehaves, it could wreak havoc on the operating system. Even if the program itself works
properly, the user might accidentally do something disastrous while logged on as an administrator.
An inadvertent keystroke or mouse click could delete important fi les or drag them into oblivion,
making it diffi cult to restore the system.

A better solution would be to allow a program to temporarily increase its privileges while it
performs these powerful operations. If the program made a mistake while running some other part
of its code, it would not have enough privileges to do serious harm. The user would not need to
constantly have administrative privileges, so system - destroying accidents would be much less likely.

This chapter describes some of the new tools that you can use to minimize the user ’ s exposure to
administrator privileges. It explains how to write applications that normally run with normal user
privileges, but can use more powerful administrative privileges when necessary.

In older versions of the Windows operating system, when you logged in, the system gave you an
access token that later determined the kinds of operations you were allowed to perform. If you
logged in as an administrator, your token would let you do just about everything.

The Windows 7 operating system ’ s UAC system takes a slightly different approach. Now, when you
log in as an administrator, the system creates two tokens. The fi rst token has only standard user
privileges, and the second has full administrative privileges. You begin running using the fi rst token,
and the second is saved in case it is needed later.

When you try to perform a task that requires extra privileges, UAC displays a dialog box asking for
your approval. If you approve the action, your privileges are elevated to the full administrator token
until you fi nish the action. Then your privileges return to the normal user - level token.

If you are a logged in as a normal user without administrative privileges, you may still be able to
perform administrative tasks. When you try to execute a command that requires elevated privileges,
UAC presents a dialog box warning you and allowing you to log in as an administrator. If you log in
successfully, you are granted administrator privileges until you fi nish the action.

The difference between these two scenarios is small. If you are logged in as an administrator, UAC
only asks you to confi rm that you want elevated privileges. If you are logged in as another user,
UAC requires you to enter an administrator ’ s password.

DESIGNING FOR UAC

UAC will not elevate an application ’ s privileges after it is running. UAC assigns privileges when the
application starts, and will not change the privileges after that. If an application needs to run with
elevated privileges, it must obtain those privileges when it starts.

To avoid giving your application more privileges than necessary, you should separate your code into
the pieces that require elevated privileges and those that do not. The main program should run with
normal user privileges. Later, it should execute other applications that run with elevated privileges
when necessary.

c24.indd 558c24.indd 558 12/31/09 6:48:40 PM12/31/09 6:48:40 PM

For example, a program that saves data into its local database or into a SQL Server database doesn ’ t
need administrator privileges. However, the Windows directory is protected, so a program that creates
a summary fi le in that directory needs administrator privileges. You could separate this program into a
piece that performs most of the work and another program that writes the summary information into
the log fi le. Before closing, the fi rst program would run the second to write into the fi le.

If possible, it ’ s better to rewrite an application slightly to avoid requiring special privileges. For
example, consider that many applications are installed in the Program Files directory. That
directory is protected, so an application requires special privileges to write into it. That means if the
application saves information into a fi le located where its executable is, it will need extra privileges.
You can work around this problem by making the program write to a fi le located in the current
user ’ s directory hierarchy.

Other operations that require elevated privileges include writing into other protected directories,
interacting directly with hardware, and modifying protected sections of the Registry such as
HKEY_LOCAL_MACHINE.

Breaking an application into privileged and non - privileged parts not only lets the main program
run with the fewest privileges possible, but separating the application into high - and low - privileges
sections will probably help you reduce the number of places that you need extra privileges. That
should simplify the riskiest parts of your code and make them easier to debug. It will also improve
the separation between the two pieces, making them even easier to debug.

Example programs ShellUAC and ExecuteMe, which are available for download on the book ’ s web
site, demonstrate this handoff. Program ShellUAC uses the following code to run the ExecuteMe
program, which is fl agged for execution with elevated privileges. (How to fl ag an application in this
way is described in the following sections.)

Private Sub btnRun_Click() Handles btnRun.Click
 Try
 ' Start the process.
 Dim pro As System.Diagnostics.Process
 pro = System.Diagnostics.Process.Start(
 txtProgram.Text, txtArguments.Text)

 ' Wait for the process to exit.
 pro.WaitForExit()

 ' Display the process's exit code.
 MessageBox.Show("Exit code: " & pro.ExitCode)

 Catch ex As System.ComponentModel.Win32Exception
 ' This happens if the user fails to elevate to Administrator.
 MessageBox.Show("Operation canceled",
 "Canceled", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

code snippet ShellUAC

Designing for UAC ❘ 559

c24.indd 559c24.indd 559 12/31/09 6:48:41 PM12/31/09 6:48:41 PM

560 ❘ CHAPTER 24 UAC SECURITY

The code uses the System.Diagnostics.Process.Start function to execute the application. It passes
the function the path to the program to execute, and the command - line parameters for the program
that are entered in text boxes.

The code calls the returned object ’ s WaitForExit method, so it waits until the other program
has fi nished. It then checks the process ’ s ExitCode property to see what value the ExecuteMe
application returned.

The following code shows the ExecuteMe program ’ s Main subroutine:

Function Main(ByVal cmdArgs() As String) As Integer
 Dim frm As New frmChoices
 ' Display the arguments.
 For Each str As String In cmdArgs
 frm.lstArguments.Items.Add(str)
 Next str

 ' Select the first item.
 If frm.lstArguments.Items.Count > 0 Then
 frm.lstArguments.SelectedIndex = 0
 End If

 ' Return the index of the selected item.
 If frm.ShowDialog() = DialogResult.Cancel Then
 Return -1
 Else
 Return frm.lstArguments.SelectedIndex
 End If
End function

code snippet ExecuteMe

The program starts by creating a frmChoices form and adding its command - line arguments to the
form ’ s lstArguments list box. It selects the fi rst item in the list and displays the form modally.

If the user clicks the form ’ s Cancel button, the program returns – 1. If the user clicks OK, the
program returns the index of the selected list item. The Process object in calling program ShellUAC
receives the return value in its ExitCode parameter.

SAFETY FIRST

Remember that the program that runs with elevated privileges can potentially
do a lot of damage to the system. To make this program as safe as possible, you
should try to restrict its capabilities as much as you can and still get the job done.
If you make the program too general, a bug in the calling program or a malicious
program written by a hacker might be able to use it to cause a lot of damage. For
example, if the program ’ s command - line arguments give it the names of fi les to
delete, a bug in the caller can delete important system fi les.

c24.indd 560c24.indd 560 12/31/09 6:48:41 PM12/31/09 6:48:41 PM

As part of the UAC user experience, any action that requires privilege elevation (and, therefore, a
UAC dialog box) should be marked with the standard UAC shield. Figure 24 - 1 shows the ShellUAC
example program displaying a button with this shield. The button displays the UAC shield to warn
the user that clicking it launches an application
that requires privilege elevation.

Unfortunately, there currently isn ’ t a really
simple way to display the UAC shield in Visual
Basic applications. However, you can use an API
call to make a button display the shield. The
ShellUAC program uses the AddShieldToButton
subroutine shown in the following code to make
a button display the shield:

Imports System.Runtime.InteropServices

Module UacStuff
 Declare Auto Function SendMessage Lib "user32.dll" _
 (ByVal hWnd As HandleRef, ByVal msg As Int32, _
 ByVal wParam As IntPtr, ByVal lParam As IntPtr) As Int32
 ' Make the button display the UAC shield.
 Public Sub AddShieldToButton(ByVal btn As Button)
 Const BCM_SETSHIELD As Int32 = & H160C

 btn.FlatStyle = Windows.Forms.FlatStyle.System
 SendMessage(New HandleRef(btn, btn.Handle),
 BCM_SETSHIELD, IntPtr.Zero, CType(1, IntPtr))
 End Sub
End Module

code snippet ShellUAC

The module declares the SendMessage API function. Subroutine AddShieldToButton sets
the button ’ s FlatStyle property to System, and then uses SendMessage to send the button the
BCM_SHIELD message. Example programs RunStartAs and ShellUAC, which are available for
download on the book ’ s web site, demonstrate this code to add the UAC shield to their buttons.

Microsoft provides no method for adding the UAC shield to
controls other than buttons. For example, if you want to add a
shield to a menu item or link label, you ’ re on your own. You could
make a shield image and simply place it on your controls, but the
image would not change when the system ’ s version of the image
changes. If the user changes the system ’ s font size, the standard
shield may grow smaller or larger on the system.

Example program AddShields, which is also available for
download on the book ’ s web site, works around this problem. It
uses the previously described method to add a UAC shield to a
button. It then makes the button draw itself onto a bitmap and
extracts the shield graphic from the bitmap. You Can see the result
in Figure 24-2. Download the example to see the details.

FIGURE 24-1: Buttons that launch actions that require

privilege elevation should display the UAC shield.

Designing for UAC ❘ 561

FIGURE 24-2: The AddShields

program adds UAC shields to

Button, PictureBox, and menu

item.

c24.indd 561c24.indd 561 12/31/09 6:48:43 PM12/31/09 6:48:43 PM

562 ❘ CHAPTER 24 UAC SECURITY

 ELEVATING PROGRAMS

 The following sections describe three methods for running a program with elevated privileges.
These methods differ in who decides that the called program should be elevated: the user, the calling
program, or the called program.

 User

 To elevate an application by using the Run As command, the user can right - click the executable and
select the “ Run as administrator ” command. The operating system displays the UAC dialog box
and, after the user enters an administrator password, the program executes with elevated privileges.

 This method is simple and requires no extra action on your part, but it does require the user
to perform an extra step, so it is not always the best solution. Nevertheless, if the user runs the
program only very rarely, it may make sense to require this extra step. This will discourage the user
from using the program too often.

 Calling Program

 Just as a user can start a program with elevated privileges, another application can start a program
with elevated privileges. This technique is similar to the one used by the user: the program executes
the program, asking the operating system to run the program as an administrator.

 The StartRunAs example program uses the following code to execute another program. This
program is intended for use with program NoPrivs, which is also available for download. Program
NoPrivs does not request privilege elevation itself so the StartRunAs program uses the following
code to do so:

Try
 ' Use the runas verb to start the process.
 Dim psi As New ProcessStartInfo
 psi.Verb = "runas"
 psi.UseShellExecute = True
 psi.FileName = txtProgram.Text
 psi.Arguments = txtArguments.Text

 Dim pro As System.Diagnostics.Process
 pro = System.Diagnostics.Process.Start(psi)

 ' Wait for the process to exit.
 pro.WaitForExit()

 ' Display the process's exit code.
 MessageBox.Show("Exit code: " & pro.ExitCode)

Catch ex As System.ComponentModel.Win32Exception
 ' This happens if the user fails to elevate to Administrator.

c24.indd 562c24.indd 562 12/31/09 6:48:43 PM12/31/09 6:48:43 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

 MessageBox.Show("Operation canceled",
 "Canceled", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Try

code snippet StartRunAs

This code builds a ProcessStartInfo object describing the program that the code needs to start.
The code sets the object ’ s Verb property to “ runas ” to indicate that the program should run as an
administrator. The code also sets the name of the program and arguments to pass to it, and then
calls Process.Start to start the program. The code then waits for the called program to fi nish and
displays its exit status.

Called Program

If you always know that a program must run with elevated permissions, you can make the program
request its own elevation so the user and calling program don ’ t need to do it. This technique uses a
manifest embedded within the application to request elevation.

To create the manifest, open Solution Explorer and double - click My Project. On the Application
tab, click the View UAC Settings button to open the fi le app.manifest. The following code shows the
initial manifest (with comments slightly reformatted to fi t on the page):

< ?xml version="1.0" encoding="utf-8"? >
< asmv1:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 < assemblyIdentity version="1.0.0.0" name="MyApplication.app"/ >
 < trustInfo xmlns="urn:schemas-microsoft-com:asm.v2" >
 < security >
 < requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3" >
 <-- UAC Manifest Options
 If you want to change the Windows User Account Control level
 replace the requestedExecutionLevel node with one of
 the following.
 < requestedExecutionLevel level="asInvoker" uiAccess=”false” / >
 < requestedExecutionLevel level="requireAdministrator" uiAccess=”false”/ >
 < requestedExecutionLevel level="highestAvailable" uiAccess=”false” / >

 If you want to utilize File and Registry Virtualization
 for backward compatibility then delete the
 requestedExecutionLevel node.
 -- >
 < requestedExecutionLevel level="asInvoker" uiAccess=”false” / >
 < /requestedPrivileges >
 < /security >
 < /trustInfo >
< /asmv1:assembly >

code snippet ExecuteMe

Elevating Programs ❘ 563

c24.indd 563c24.indd 563 12/31/09 6:48:44 PM12/31/09 6:48:44 PM

564 ❘ CHAPTER 24 UAC SECURITY

To make the program request UAC elevation, change the uncommented requestedExecutionLevel
so the level is requireAdministrator. Now when you compile the program, Visual Studio fl ags the
executable as requiring administrator privilege. When the user or another program executes
this program, the system automatically tries to elevate it to administrator privileges and displays
the UAC elevation dialog.

SUMMARY

The UAC programming standards require an application to use the fewest privileges necessary to get
the job done. An application should run with normal user privileges if possible.

If the application must perform some task that requires greater privileges, it can execute a separate
application that has elevated privileges.

This chapter shows three methods for running a program with elevated privileges. First, you can
ask the user to right - click the executable program and select “ Run as administrator. ” This is not
the most convenient strategy, but should be acceptable for programs that the user only needs to run
rarely, or that only rarely need administrator privileges.

Second, you can make the calling application start the new one with elevated privileges. This
is more convenient for the user because he or she doesn ’ t need to right - click the program and
select “ Run as administrator, ” but this still allows you to run the called program with or without
privileges as needed.

Third, you can embed a manifest inside the called application that makes it always request privilege
elevation. This is most appropriate when the called program should never run without elevated
privileges.

The chapters in the book so far focus on specifi c Visual Basic programming details that you need
to understand to write Visual Basic applications. They explain the Visual Basic development
environment, language syntax, standard controls and forms, custom controls, drag and drop, and
the clipboard. This chapter describes some UAC security issues that you need to be aware of if you
want to perform tasks that require elevated user privileges.

The chapters in the next part of the book deal with higher - level object - oriented programming
(OOP) issues. They explain fundamental concepts in object - oriented development and how they
apply to Visual Basic. They tell how to build and use classes and objects, and they describe some
of the standard classes that Visual Basic and the .NET Framework provide to perform common
programming tasks.

Chapter 25 starts by explaining fundamental ideas behind object - oriented programming, such as
the three main features of OOP: encapsulation, polymorphism, and inheritance. It explains the
benefi ts of these features and tells how you can take advantage of them in Visual Basic.

c24.indd 564c24.indd 564 12/31/09 6:48:45 PM12/31/09 6:48:45 PM

PART III

Object-Oriented Programming

CHAPTER 25: OOP Concepts

CHAPTER 26: Classes and Structures

CHAPTER 27: Namespaces

CHAPTER 28: Collection Classes

CHAPTER 29: Generics

�

�

�

�

�

c25.indd 565c25.indd 565 12/30/09 7:38:41 PM12/30/09 7:38:41 PM

c25.indd 566c25.indd 566 12/30/09 7:38:45 PM12/30/09 7:38:45 PM

25
OOP Concepts

This chapter explains the fundamental ideas behind object - oriented programming (OOP).
It describes the three main features of OOP languages: encapsulation, inheritance, and
polymorphism. It explains the benefi ts of these features and describes how you can take
advantage of them in Visual Basic.

This chapter also describes method overloading. In a sense, overloading provides another form
of polymorphism. It lets you create more than one defi nition of the same class method, and
Visual Basic decides which version to use based on the parameters the program passes to the
method.

Many of the techniques described in this chapter help you defi ne a new class, but extension
methods let you modify an existing class. For example, you could use extension methods to add
new features to the String class, perhaps to make it encrypt and decrypt text.

Many of the ideas described in this chapter will be familiar to you from your experiences
with forms, controls, and other building blocks of the Visual Basic language. Those
building blocks are object - oriented constructs in their own rights, so they provide you
with the benefi ts of encapsulation, inheritance, and polymorphism whether you knew
about them or not.

CLASSES

A class is a programming entity that gathers all the data and behavior that characterizes some
sort of programming abstraction. It wraps the abstraction in a nice, neat package with well -
defi ned interfaces to outside code. Those interfaces determine exactly how code outside of
the class can interact with the class. A class determines which data values are visible outside
of the class and which are hidden. It determines the routines that the class supports and their
availability (visible or hidden).

c25.indd 567c25.indd 567 12/30/09 7:38:45 PM12/30/09 7:38:45 PM

568 ❘ CHAPTER 25 OOP CONCEPTS

A class defi nes properties, methods, and events that let the program work with the class:

A property is some sort of data value. It may be a simple value (such as a name or number),
or it may be a more complex item (such as an array, collection, or object containing its own
properties, methods, and events).

A method is a subroutine or function. It is a piece of code that makes the object defi ned by
the class do something.

An event is an action notifi cation defi ned by the class. An event calls some other piece of
code to tell it that some condition in a class object has occurred.

For a concrete example, imagine a Job class that represents a piece of work to be done by an
employee. This class might have the properties shown in the following table.

PROPERTY PURPOSE

JobDescription A string describing the job

EstimatedHours The number of hours initially estimated for the job

ActualHours The actual number of hours spent on the job

Status The job ’ s status (New, Assigned, In Progress, or Done)

ActionTaken A string describing the work performed, parts installed, and so forth

JobCustomer An object of the Customer class that describes the customer (name, address,

phone number, service contract number, and so on)

AssignedEmployee An object of the Employee class that describes the employee assigned to

the job (name, employee ID, Social Security number, and so on)

The JobDescription, EstimatedHours, ActualHours, Status, and ActionTaken properties are
relatively simple string and numeric values. The JobCustomer and AssignedEmployee properties are
objects themselves with their own properties, methods, and events.

This class might provide the methods shown in the following table.

METHOD PURPOSE

AssignJob Assign the job to an employee

BillJob Print an invoice for the customer after the job is fi nished

EstimatedCost Returns an estimated cost based on the customer ’ s service contract type and

EstimatedHours

➤

➤

➤

c25.indd 568c25.indd 568 12/30/09 7:38:47 PM12/30/09 7:38:47 PM

The class could provide the events shown in the following table to keep the main program informed
about the job ’ s progress.

EVENT PURPOSE

Created Occurs when the job is fi rst created

Assigned Occurs when the job is assigned to an employee

Rejected Occurs if an employee refuses to do the job, perhaps because the employee

doesn ’ t have the right skills or equipment to do the work

Canceled Occurs if the customer cancels the job before it is worked

Finished Occurs when the job is fi nished

In a nutshell, a class is an entity that encapsulates the data and behavior of some programming
abstraction such as a Job, Employee, Customer, LegalAction, TestResult, Report, or just about
anything else you could reasonably want to manipulate as a single entity.

After you have defi ned a class, you can create instances of the class. An instance of the class is an
object of the class type. For example, if you defi ne a Job class, you can then make an instance of
the class that represents the specifi c job of installing a new computer for a particular customer. The
process of creating an instance is called instantiation.

There are a couple of common analogies to describe instantiation. One compares the class to a
blueprint. After you defi ne the class, you can use it to create any number of instances of the class,
much as you can use the blueprint to make any number of similar houses (instances).

Another analogy compares a class defi nition to a cookie cutter. When you defi ne the cookie cutter,
you can use it to make any number of cookies (instances).

Note that Visual Basic is jam - packed with classes. Every type of control and component (Form,
TextBox, Label, Timer, ErrorProvider, and so forth) is a class. The parent classes Control and
Component are classes. Even Object, from which all other classes derive, is a class. Whenever you
work with any of these (getting or setting properties, calling methods, and responding to events),
you are working with instances of classes.

Because all of these ultimately derive from the Object class, they are often simply called objects. If
you don ’ t know or don ’ t care about an item ’ s class, you can simply refer to it as an object.

OUTSTANDING OBJECTS

When you read the section “ Polymorphism ” later in this chapter, you ’ ll see that
this makes technical as well as intuitive sense. Because all classes eventually derive
from the Object class, all instances of all classes are in fact Objects.

Classes ❘ 569

c25.indd 569c25.indd 569 12/30/09 7:38:47 PM12/30/09 7:38:47 PM

570 ❘ CHAPTER 25 OOP CONCEPTS

The following sections describe some of the features that OOP languages in general, and Visual
Basic in particular, add to this bare - bones defi nition of a class.

ENCAPSULATION

A class ’ s public interface is the set of properties, methods, and events that are visible to code
outside of the class. The class may also have private properties, methods, and events that it uses
to do its job. For example, the Job class described in the previous section provides an AssignJob
method. That method might call a private FindQualifi edEmployee function, which looks through an
employee database to fi nd someone who has the skills and equipment necessary to do the job. That
routine is not used outside of the class, so it can be declared private.

The class may also include properties and events hidden from code outside of the class. These
hidden properties, methods, and events are not part of the class ’ s public interface.

The class encapsulates the programming abstraction that it represents (a Job in this ongoing
example). Its public interface determines what is visible to the application outside of the class.
It hides the ugly details of the class ’ s implementation from the rest of the world. Because the class
hides its internals in this way, encapsulation is also sometimes called information hiding.

By hiding its internals from the outside world, a class prevents exterior code from messing around
with those internals. It reduces the dependencies between different parts of the application, allowing
only those dependencies that are explicitly permitted by its public interface.

Removing dependencies between different pieces of code makes the code easier to modify and
maintain. If you must change the way the Job class assigns a job to an employee, you can modify
the AssignJob method appropriately. The code that calls the AssignJob routine doesn ’ t need to know
that the details have changed. It simply continues to call the method and leaves the details up to the
Job class.

Removing dependencies also helps break the application into smaller, more manageable pieces.
A developer who calls the AssignJob method can concentrate on the job at hand, rather than on
how the routine works. This makes developers more productive and less likely to make mistakes
while modifying the encapsulated code.

The simpler and cleaner a class ’ s public interface is, the easier it is to use. You should try to hide as
much information and behavior inside a class as possible while still allowing the rest of the program
to do its job. Keep properties, methods, and events as simple and focused as possible. When you
write code that the class needs to use to perform its tasks, do not expose that code to the outside
program unless it is really necessary. Adding extra features complicates the class ’ s public interface
and makes the programmer ’ s job more diffi cult.

This can be a troublesome concept for beginning programmers. Exposing more features for
developers to use gives them more power, so you might think it would make their jobs easier.
Actually, it makes development more diffi cult. Rather than thinking in terms of giving the developer

c25.indd 570c25.indd 570 12/30/09 7:38:48 PM12/30/09 7:38:48 PM

more power, you should think about giving the developer more things to worry about and more
ways to make mistakes. Ideally, you should not expose any more features than the developer will
actually need.

Note that you can achieve many of the benefi ts of encapsulation without classes. Decades
before the invention of object - oriented languages, programmers were making code libraries that
encapsulated functionality. For example, a library of trigonometry functions would expose public
function calls to calculate sines, cosines, tangents, arctangents, and so forth. To perform its
calculations, the library might contain private lookup tables and helper functions that calculate
series expansions. The tables and helper functions were hidden from the main program calling the
library functions.

One big benefi t of classes over this sort of library encapsulation is intuitiveness. When you make
a class named Job, Customer, or Employee, anyone familiar with your business can make a lot of
assumptions about what the class represents. Even if you don ’ t know how the Job class works, you
can probably guess what a new ReassignJob method would do. As long as everyone has a common
vision of what the class does, you get an extra level of intuitive encapsulation that you don ’ t
necessarily get with a more procedural approach.

INHERITANCE

Inheritance is the process of deriving a child class from a parent class. The child class inherits all
of the properties, methods, and events of the parent class. It can then modify, add to, or subtract
from the parent class. Making a child class inherit from a parent class is also called deriving the
child class from the parent, and subclassing the parent class to form the child class.

For example, you might defi ne a Person class that includes variables named FirstName, LastName,
Street, City, State, Zip, Phone, and Email. It might also include a DialPhone method that dials the
person ’ s phone number on the phone attached to the computer ’ s modem.

You could then derive the Employee class from the Person class. The Employee class inherits the
FirstName, LastName, Street, City, State, Zip, Phone, and Email variables. It then adds new
EmployeeId, SocialSecurityNumber, Offi ceNumber, Extension, and Salary variables. This class
might override the Person class ’ s DialPhone method, so it dials the employee ’ s offi ce extension
instead of the home phone number.

You can continue deriving classes from these classes to make as many types of objects as you need.
For example, you could derive the Manager class from the Employee class and add fi elds such as
Secretary, which is another Employee object that represents the manager ’ s secretary. Similarly,
you could derive a Secretary class that includes a reference to a Manager object. You could derive
ProjectManager, DepartmentManager, and DivisionManager from the Manager class, Customer
from the Person class, and so on for other types of people that the application needed to use.
Figure 25 - 1 shows these inheritance relationships.

Inheritance ❘ 571

c25.indd 571c25.indd 571 12/30/09 7:38:49 PM12/30/09 7:38:49 PM

572 ❘ CHAPTER 25 OOP CONCEPTS

Inheritance Hierarchies

One of the key benefi ts of inheritance is code reuse. When you derive a class from a parent
class, the child class inherits the parent ’ s properties, methods, and events, so the child class gets
to reuse the parent ’ s code. That means you don ’ t need to implement separate FirstName and
LastName properties for the Person, Employee, Manager, Secretary, and other classes shown in
Figure 25 - 1. These properties are defi ned only in the Person class, and all of the other classes
inherit them.

Code reuse not only saves you the trouble of writing more code but also makes maintenance of
the code easier. Suppose that you build the hierarchy shown in Figure 25 - 1 and then decide that
everyone needs a new BirthDate property. Instead of adding a new property to every class, you can
simply add it to the Person class and all of the other classes inherit it.

Similarly, if you need to modify or delete a property or method, you only need to make the change
in the class where it is defi ned, not in all of the classes that inherit it. If the Person class defi nes a
SendEmail method and you must modify it so that it uses a particular e - mail protocol, you only
need to change the routine in the Person class, not in all the classes that inherit it.

Employee

Person

Customer

Manager

Project
Manager

Department
Manager

Division
Manager

Secretary

FIGURE 25-1: You can derive classes from other classes to form

quite complex inheritance relationships.

c25.indd 572c25.indd 572 12/30/09 7:38:49 PM12/30/09 7:38:49 PM

MULTIPLE INHERITANCE

Some languages allow multiple inheritance, where one class can be derived from
more than one parent class. For example, suppose that you create a Vehicle class
that defi nes properties of vehicles (number of wheels, horsepower, maximum speed,
acceleration, and so forth) and a House class that defi nes properties of living spaces
(square feet, number of bedrooms, number of bathrooms, and so forth). Using
multiple inheritance, you could derive a MotorHome class from both the Vehicle
and House classes. This class would have the features of both Vehicles and Houses.

Visual Basic does not allow multiple inheritance, so a class can have at most one
parent class. That means relationships such as those shown in Figure 25 - 1 are
treelike and form an inheritance hierarchy.

If you think you need multiple inheritance, you can use interface inheritance.
Instead of defi ning multiple parent classes, defi ne parent interfaces. Then you can
make the child class implement as many interfaces as you like. The class doesn ’ t
inherit any code from the interfaces, but at least its behavior is defi ned by the
interfaces. See the section “ Implements interface ” in Chapter 26, “ Classes and
Structures, ” for more information on interfaces.

Refi nement and Abstraction

You can think about the relationship between a parent class and its child classes in two different
ways. First, using a top - down view of inheritance, you can think of the child classes as refi ning the
parent class. They provide extra detail that differentiates among different types of the parent class.

For example, suppose that you start with a broadly defi ned class such as Person. The Person class
would need general fi elds such as name, address, and phone number. It would also need more
specifi c fi elds that do not apply to all types of person. For example, employees would need
employee ID, Social Security number, offi ce number, and department fi elds. Customers would need
customer ID, company name, and discount code fi elds. You could dump all these fi elds in the Person
class, but that would mean stretching the class to make it play two very different roles. A Person
acting as an Employee would not use the Customer fi elds, and vice versa.

A better solution is to derive new Employee and Customer classes that refi ne the Person class and
differentiate between the types of Person.

A bottom - up view of inheritance considers the parent class as abstracting common features out of
the child classes into the parent class. Common elements in the child classes are removed and placed
in the parent class. Because the parent class is more general than the child classes (it includes a
larger group of objects), abstraction is sometimes called generalization.

Suppose that you are building a drawing application and you defi ne classes to represent various
drawing objects such as Circle, Ellipse, Polygon, Rectangle, and DrawingGroup (a group of objects
that should be drawn together). After you work with the code for a while, you may discover that
these classes share a lot of functionality. Some, such as Ellipse, Circle, and Rectangle, are defi ned

Inheritance ❘ 573

c25.indd 573c25.indd 573 12/30/09 7:38:50 PM12/30/09 7:38:50 PM

574 ❘ CHAPTER 25 OOP CONCEPTS

by bounding rectangles. All the classes need methods for drawing the object with different pens and
brushes on the screen or on a printer.

You could abstract these classes and create a new parent class named Drawable. That class might
provide basic functionality such as a simple variable to hold a bounding rectangle. This class would
also defi ne a DrawObject routine for drawing the object on the screen or printer. It would declare
that routine with the MustOverride keyword, so each child class would need to provide its own
DrawObject implementation, but the Drawable class would defi ne its parameters.

Sometimes you can pull variables and methods from the child classes into the parent class. In this
example, the Drawable class might include Pen and Brush variables that the objects would use to
draw themselves. Putting code in the parent class reduces the amount of redundant code in the child
classes, making debugging and maintenance easier.

To make the classes more consistent, you could even change their names to refl ect their shared
ancestry. You might change their names to DrawableEllipse, DrawablePolygon, and so forth. This
not only makes it easier to remember that they are all related to the Drawable class but also helps
avoid confusion with class names such as Rectangle that are already used by Visual Basic.

The Drawable parent class also allows the program to handle the drawing objects more uniformly.
It can defi ne a collection named AllObjects that contains references to all the current drawing ’ s
objects. It could then loop through the collection, treating the objects as Drawables, and calling
their DrawObject methods. The section “ Polymorphism ” later in this chapter provides more details.

Usually application architects defi ne class hierarchies using refi nement. They start with broad
general classes and then refi ne them as necessary to differentiate among the kinds of objects that the
application will need to use. These classes tend to be relatively intuitive, so you can easily imagine
their relationships.

Abstraction often arises during development. As you build the application ’ s classes, you notice that
some have common features. You abstract the classes and pull the common features into a parent
class to reduce redundant code and make the application more maintainable.

Refi nement and abstraction are useful techniques for building inheritance hierarchies, but they have
their dangers. Designers should be careful not to get carried away with unnecessary refi nement or
overrefi nement. For example, suppose that you defi ne a Vehicle class. You then refi ne this class by
creating Auto, Truck, and Boat classes. You refi ne the Auto class into Wagon and Sedan classes and
further refi ne those for different drive types (four - wheel drive, automatic, and so forth). If you really
go crazy, you could defi ne classes for specifi c manufacturers, body styles, and color.

The problem with this hierarchy is that it captures more detail than the application needs. If the
program is a repair dispatch application, it might need to know whether a vehicle is a car or truck.
It will not need to differentiate between wagons and sedans, different manufacturers, or colors.
Vehicles with different colors have the same behaviors as far as this application is concerned.
Creating many unnecessary classes makes the object model harder to understand and can lead to
confusion and mistakes. (I even worked on one project that failed due to an overly complicated
object model.)

Avoid unnecessary refi nement by only refi ning a class when doing so lets you capture new
information that the application actually needs to know.

c25.indd 574c25.indd 574 12/30/09 7:38:52 PM12/30/09 7:38:52 PM

Just as you can take refi nement to ridiculous extremes, you can also overdo class abstraction.
Because abstraction is driven by code rather than intuition, it sometimes leads to unintuitive
inheritance hierarchies. For example, suppose that your application needs to mail work orders to
remote employees and invoices to customers. If the WorkOrder and Invoice classes have enough
code in common, you might decide to give them a common parent class named MailableItem that
contains the code needed to mail a document to someone.

This type of unintuitive relationship can confuse developers. Because Visual Basic doesn ’ t allow
multiple inheritance, it can also cause problems if the classes are already members of other
inheritance hierarchies. You can avoid some of those problems by moving the common code into
a library and having the classes call the library code. In this example, the WorkOrder and Invoice
classes would call a common set of routines for mailing documents and would not be derived from a
common parent class.

Unnecessary refi nement and overabstracted classes lead to overinfl ated inheritance hierarchies.
Sometimes the hierarchy grows very tall and thin. Other times, it may include several root classes
(with no parents) on top of only one or two small classes each. Either of these can be symptoms of
poor designs that include more classes than necessary. If your inheritance hierarchy starts to take
on one of these forms, you should spend some time reevaluating the classes. Ensure that each adds
something meaningful to the application and that the relationships are reasonably intuitive. Too
many classes with confusing relationships can drag a project to a halt as developers spend more time
trying to understand the hierarchy than they spend implementing the individual classes.

If you are unsure whether to add a new class, leave it out. It ’ s usually easier to add a new class later
if you discover that it is necessary than it is to remove a class after developers start using it.

“ Has - a ” and “ Is - a ” Relationships

Refi nement and abstraction are two useful techniques for generating inheritance hierarchies. The
“ has - a ” and “ is - a ” relationships can help you understand whether it makes sense to make a new
class using refi nement or abstraction.

The “ is - a ” relationship means one object is a specifi c type of another class. For example, an
Employee “ is - a ” specifi c type of Person object. The “ is - a ” relation maps naturally into inheritance
hierarchies. Because an Employee “ is - a ” Person, it makes sense to derive the Employee class from
the Person class.

The “ has - a ” relationship means that one object has some item as an attribute. For example, a Person
object “ has - a ” street address, city, state, and ZIP code. The “ has - a ” relation maps most naturally
to embedded objects. For example, you could give the Person class Street, City, State, and Zip
properties.

Suppose that the program also works with WorkOrder, Invoice, and other classes that also have
street, city, state, and ZIP code information. Using abstraction, you might make a HasPostalAddress
class that contains those values. Then you could derive Person, WorkOrder, and Invoice as child
classes. Unfortunately, that makes a rather unintuitive inheritance hierarchy. Deriving the Person,
WorkOrder, and Invoice classes from HasPostalAddress makes those classes seem closely related
when they are actually related almost coincidentally.

Inheritance ❘ 575

c25.indd 575c25.indd 575 12/30/09 7:38:52 PM12/30/09 7:38:52 PM

576 ❘ CHAPTER 25 OOP CONCEPTS

A better solution would be to encapsulate the postal address data in its own PostalAddress class and
then include an instance of that class in the Person, WorkOrder, and Invoice classes. The following
code shows how the Person class would include an instance of the PostalAddress class:

Public Class Person
 Public MailingAddress As PostalAddress
 ...

End Class

You make a parent class through abstraction in part to avoid duplication of code. The parent class
contains a single copy of the common variables and code, so the child classes don ’ t need to have
their own separate versions for you to debug and maintain. Placing an instance of the PostalAddress
class in each of the other classes provides the same benefi t without confusing the inheritance
hierarchy.

You can often view a particular relationship as either an “ is - a ” or “ has - a ” relationship. A Person
“ has - a ” postal address. At the same time, a Person “ is - a ” thing that has a postal address. Use your
intuition to decide which view makes more sense. One hint is that postal address is easy to describe
whereas thing that has a postal address is more awkward and ill - defi ned. Also, think about how
the relationship might affect other classes. Do you really want Person, WorkOrder, and Invoice
to be siblings in the inheritance hierarchy? Or would it make more sense for them to just share an
embedded class?

Adding and Modifying Class Features

Adding new properties, methods, and events to a child class is easy. You simply declare them as you
would in any other class. The parent class knows nothing about them, so the new items are added
only to the child class.

The following code shows how you could implement the Person and Employee classes in Visual
Basic. The Person class includes variables that defi ne the FirstName, LastName, Street, City, State,
Zip, Phone, and Email values. It also defi nes the DialPhone method. The version shown here simply
displays the Person object ’ s Phone value. A real application could connect to the computer ’ s modem
and dial the number.

The Employee class inherits from the Person class. It declares its own EmployeeId,
SocialSecurityNumber, Offi ceNumber, Extension, and Salary variables. It also defi nes a new version
of the DialPhone method that displays the Employee object ’ s Extension value rather than its Phone
value. The DialPhone method in the Person class is declared with the Overridable keyword to
allow derived classes to override it. The version defi ned in the Employee class is declared with the
Overrides keyword to indicate that it should replace the version defi ned by the parent class.

Public Class Person
 Public FirstName As String
 Public LastName As String
 Public Street As String
 Public City As String
 Public State As String
 Public Zip As String

c25.indd 576c25.indd 576 12/30/09 7:38:53 PM12/30/09 7:38:53 PM

 Public Phone As String
 Public Email As String

 ' Dial the phone using Phone property.
 Public Overridable Sub DialPhone()
 MessageBox.Show("Dial " & Me.Phone)
 End Sub
End Class

Public Class Employee
 Inherits Person
 Public EmployeeId As Integer
 Public SocialSecurityNumber As String
 Public OfficeNumber As String
 Public Extension As String
 Public Salary As Single

 ' Dial the phone using Extension property.
 Public Overrides Sub DialPhone()
 MessageBox.Show("Dial " & Me.Extension)
 End Sub
End Class

A class can also shadow a feature defi ned in a parent class. When you declare a property, method,
or event with the Shadows keyword, it hides any item in the parent that has the same name. This
is very similar to overriding, except that the parent class does not have to declare the item as
overridable and the child item needs only to match the parent item ’ s name.

For example, the parent might defi ne a SendMail subroutine that takes no parameters. If the child
class defi nes a SendMail method that takes some parameters and uses the Shadows keyword, the
child ’ s version hides the parent ’ s version.

In fact, the child and parent items don ’ t even need to be the same kind of item. For example, the
child class could make a subroutine named FirstName that shadows the parent class ’ s FirstName
variable. This type of change can be confusing, however, so usually you should only shadow items
with similar items.

The following code shows how the Employee class might shadow the Person class ’ s SendMail
subroutine. The Person class displays the mailing address where it would send a letter. A real
application might print a letter on a specifi c printer for someone to mail. The Employee class
shadows this routine with one of its own, which displays the employee ’ s offi ce number instead of a
mailing address.

Public Class Person
 ...
 ' Send some mail to the person's address.
 Public Sub SendMail()
 MessageBox.Show("Mail " & Street & ", " & City & ", " &
 State & " " & Zip)
 End Sub
End Class

Inheritance ❘ 577

c25.indd 577c25.indd 577 12/30/09 7:38:54 PM12/30/09 7:38:54 PM

578 ❘ CHAPTER 25 OOP CONCEPTS

Public Class Employee
 Inherits Person
 ...
 ' Send some mail to the person's office.
 Public Shadows Sub SendMail()
 MessageBox.Show("Mail " & OfficeNumber)
 End Sub
End Class

Interface Inheritance

When you derive one class from another, the child class inherits the properties, methods, and events
defi ned by the parent class. It inherits both the defi nition of those items as well as the code that
implements them.

Visual Basic also enables you to defi ne an interface. An interface defi nes a class ’ s behaviors, but does
not provide an implementation. After you have defi ned an interface, a class can use the Implements
keyword to indicate that it provides the behaviors specifi ed by the interface. It ’ s then up to you to
provide the code that implements the interface.

For example, consider again the MotorHome class. Visual Basic does not allow a class to inherit
from more than one parent class, but a class can implement as many interfaces as you like. You
could defi ne an IVehicle interface (by convention, interface names begin with the capital letter I)
that defi nes properties of vehicles (number of wheels, horsepower, maximum speed, acceleration,
and so forth) and an IHouse interface that defi nes properties of living spaces (square feet, number
of bedrooms, number of bathrooms, and so forth). Now, you can make the MotorHome class
implement both of those interfaces. The interfaces do not provide any code, but they do declare that
the MotorHome class implements the interface ’ s features.

Like true inheritance, interface inheritance provides polymorphism (see the next section,
“ Poly morphism, ” for more details on this topic). You can use a variable having the type of the interface
to refer to objects that defi ne the interface. For example, suppose that the Employee class implements
the IPerson interface. Then you can use a variable of type IPerson to refer to an object of type Employee.

Suppose that the people collection contains Employee objects. The following code uses a variable of
type IPerson to display the objects ’ names:

For Each person As IPerson In people
 Debug.WriteLine(person.FirstName & " " & person.LastName)
Next person

POLYMORPHISM

Roughly speaking, polymorphism means treating one object as another. In OOP terms, it means
that you can treat an object of one class as if it were from a parent class.

For example, suppose that Employee and Customer are both derived from the Person class. Then
you can treat Employee and Customer objects as if they were Person objects because in a sense

c25.indd 578c25.indd 578 12/30/09 7:38:54 PM12/30/09 7:38:54 PM

they are Person objects. They are specifi c types of Person objects. After all, they provide all of the
properties, methods, and events of a Person object.

Visual Basic enables you to assign a value from a child class to a variable of the parent class. In
this example, you can place an Employee or Customer object in a Person variable, as shown in the
following code:

Dim emp As New Employee ' Create an Employee.
Dim cust As New Customer ' Create a Customer.
Dim per As Person ' Declare a Person variable.
per = emp ' Okay. An Employee is a Person.
per = cust ' Okay. A Customer is a Person.
emp = per ' Not okay. A Person is not necessarily an Employee.

One common reason to use polymorphism is to treat a collection of objects in a uniform way that
makes sense in the parent class. For example, suppose that the Person class defi nes the FirstName
and LastName fi elds. The program could defi ne a collection named AllPeople and add references
to Customer and Employee objects to represent all the people that the program needs to work with.
The code could then iterate through the collection, treating each object as a Person, as shown in the
following code:

For Each per As Person In AllPeople
 Debug.WriteLine(per.FirstName & " " & per.LastName)
Next Per

You can only access the features defi ned for the type of variable you actually use to refer to an
object. For example, if you use a Person variable to refer to an Employee object, you can only use
the features defi ned by the Person class, not those added by the Employee class.

If you know that a particular object is of a specifi c subclass, you can convert the variable into a
more specifi c variable type. The following code loops through the AllPeople collection and uses the
TypeOf statement to test each object ’ s type. If the object is an Employee, the code uses DirectCast
to convert the object into an Employee object. It can then use the Employee object to perform
Employee - specifi c tasks.

Similarly, the code determines whether the object is a Customer object. If it is, the code converts the
generic Person variable into a Customer variable and uses the new variable to perform Customer -
specifi c tasks, as shown here:

For Each per As Person In AllPeople
 If TypeOf per Is Employee Then
 Dim emp As Employee = DirectCast(per, Employee)
 ' Do something Employee-specific.
 ...
 ElseIf TypeOf per Is Customer Then
 Dim cust As Customer = DirectCast(per, Customer)
 ' Do something Customer-specific.
 ...
 End If
Next per

Polymorphism ❘ 579

c25.indd 579c25.indd 579 12/30/09 7:38:54 PM12/30/09 7:38:54 PM

580 ❘ CHAPTER 25 OOP CONCEPTS

METHOD OVERLOADING

Visual Basic .NET enables you to give a class more than one method with the same name but
with different parameters. The program decides which version of the method to use based on the
parameters being passed to the method.

For example, the Person class shown in the following code has two constructors named New. The
fi rst takes no parameters and initializes the object ’ s FirstName and LastName variables to default
values. The second overloaded constructor takes two strings as parameters and uses them to
initialize FirstName and LastName.

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New()
 FirstName = " < first > "
 LastName = " < last > "
 End Sub

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

The following code uses these constructors. The fi rst statement passes no parameters to the
constructor, so Visual Basic uses the fi rst version of the New method. The second statement passes
two strings to the constructor, so Visual Basic uses the second constructor.

Dim person1 As New Person()
Dim person2 As New Person("Rod", "Stephens")

A common technique for providing constructors that take different numbers of arguments is to
make the simpler constructors call those with more parameters. In the following code, the empty
constructor calls a constructor that takes two parameters, passing it default values:

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New()
 Me.New(" < first > ", " < last > ")
 End Sub

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

c25.indd 580c25.indd 580 12/30/09 7:38:55 PM12/30/09 7:38:55 PM

Two overloaded methods cannot differ only by optional parameters. For example, the fi rst_name
and last_name parameters in the previous constructor could not both be optional. If they were,
Visual Basic .NET could not tell which version of the New subroutine to call if the program
passed it no parameters. Although you cannot make the parameters optional in the second
constructor, you can get a similar result by combining the two constructors, as shown in the
following code:

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(
 Optional ByVal first_name As String = " < first > ",
 Optional ByVal last_name As String = " < last > ")
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

Overloaded functions also cannot differ only in their return types. For example, you cannot have
two versions of a function with the same name and parameters but different return types.

If you have Option Strict set to Off, there are many circumstances where Visual Basic performs
automatic type conversion. In that case, it might not be able to decide which of two functions to use
if they differ only in return type. For example, suppose that one version of the TotalCost function
returns an Integer and another version returns a Double. If you set a string variable equal to the
result of the function, Visual Basic wouldn ’ t know whether to use the Integer version or the Double
version.

EXTENSION METHODS

Extension methods let you add new subroutines or functions to an existing class without rewriting
it or deriving a new class from it even if you don ’ t have access to the class ’ s source code.

To make an extension method, place the System.Runtime.CompilerServices.Extension attribute
before the method ’ s declaration. Then make a normal subroutine or function that takes one or
more parameters. The fi rst parameter determines the class that the method extends. The method
can use that parameter to learn about the item for which them method was called. The other
parameters are passed into the method so it can use them to perform its chores.

For example, the following code adds a MatchesRegexp subroutine to the String class. The
Extension attribute tells Visual Basic that this is an extension method. The method ’ s fi rst parameter
is a String so this method extends the String class. The second parameter is a regular expression.
The method returns True if the String matches the regular expression.

Extension Methods ❘ 581

c25.indd 581c25.indd 581 12/30/09 7:38:55 PM12/30/09 7:38:55 PM

582 ❘ CHAPTER 25 OOP CONCEPTS

' Return True if a String matches a regular expression.
< Extension() >
Public Function MatchesRegexp(ByVal the_string As String,
 ByVal regular_expression As String) As Boolean
 Dim reg_exp As New Regex(regular_expression)
 Return reg_exp.IsMatch(the_string)
End Function

The program can use the extension methods just as if they were part of the String class. The
following code uses the MatchesRegexp method to decide whether the phone_number variable
contains a value that looks like a valid United States phone number:

If Not phone_number.MatchesRegexp("^[2-9]\d{2}-\d{4}$") Then
 MessageBox.Show("Not a valid phone number")
End If

If used haphazardly, extension methods can blur the purpose of a class. They can make the class do
things for which it was never intended. They add behaviors that the class ’ s original authors did not
have in mind. The result may be a class that does too many poorly defi ned or unrelated things, and
that is confusing and hard to use properly. They weaken the class ’ s encapsulation by adding new
features that are not hidden within the control ’ s code.

If you have access to the class ’ s source code, make changes to the class within that code. Then if
there is a problem, at least all of the code is together within the class. If you really need to add new
methods to a class that is outside of your control, such as adding new methods to String and other
classes defi ned by Visual Basic and the .NET Framework, you can use extension methods.

SUMMARY

Classes are programming abstractions that group data and related behavior in nicely encapsulated
packages. After you defi ne a class, you can instantiate it to create an instance of the class. You can
interact with the new object by using its properties, methods, and events.

Inheritance enables you to derive one class from another. You can then add, remove, or modify
the behavior that the child class inherits from the parent class. Sometimes it makes sense to think
of the classes in inheritance hierarchies in a top - down manner, so child classes refi ne the features of
their parents. At other times, it makes sense to use a bottom - up view and think of a parent class as
abstracting the features of its children.

Interface inheritance lets you defi ne some of the features of a class without using true class
inheritance. This gives you another method for using polymorphism and lets you build classes that,
in a sense, appear to inherit from multiple parents.

Polymorphism enables you to treat an object as if it were of an ancestor ’ s type. For example, if
the Manager class inherits from Employee and Employee inherits from Person, then you can treat
a Manager object as if it were a Manager, Employee, or Person.

c25.indd 582c25.indd 582 12/30/09 7:38:56 PM12/30/09 7:38:56 PM

In addition to these features, Visual Basic .NET enables you to overload a class ’ s subroutines,
functions, and operators. It lets you create different methods with the same name but different
parameters. The compiler selects the right version of the method based on the parameters you pass
to it. Extension methods even let you add new subroutines and functions to existing classes when
you don ’ t have access to the class ’ s source code.

These object - oriented concepts provide the general background you need to understand classes in
Visual Basic. Chapter 26, “ Classes and Structures, ” describes the specifi cs of classes and structures
in Visual Basic .NET. It shows how to declare and instantiate classes and structures and explains
the differences between the two.

Summary ❘ 583

c25.indd 583c25.indd 583 12/30/09 7:38:56 PM12/30/09 7:38:56 PM

c25.indd 584c25.indd 584 12/30/09 7:38:56 PM12/30/09 7:38:56 PM

26
Classes and Structures

A variable holds a single value. It may be a simple value such as an Integer or String, or a
reference that points to a more complex entity. Two kinds of more complex entities are classes
and structures.

Classes and structures are both container types . They group several related data values into a
convenient package that you can manipulate as a group.

For example, an EmployeeInfo structure might contain fi elds that hold information about an
employee (such as fi rst name, last name, employee ID, offi ce number, extension, and so on).
If you make an EmployeeInfo structure and fi ll it with the data for a particular employee,
you can then move the structure around as a single unit instead of passing around a bunch of
separate variables holding the fi rst name, last name, and the rest.

This chapter explains how to declare classes and structures, and how to create instances
of them (instantiate them). It explains the differences between classes and structures and
provides some advice about which to use under different circumstances.

Finally, this chapter describes some of the mechanical issues that you ’ ll face when building
classes. It explains how garbage collection affects objects. It fi nishes by explaining how to
implement some of the most basic features of classes: constants, properties, methods,
and events.

CLASSES

A class packages data and related behavior. For example, a WorkOrder class might store data
describing a customer ’ s work order in its properties. It could contain methods (subroutines
and functions) for manipulating the work order. It might provide methods for scheduling the
work, modifying the order ’ s requirements, and setting the order ’ s priority.

c26.indd 585c26.indd 585 12/31/09 6:49:39 PM12/31/09 6:49:39 PM

586 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Here is the syntax for declaring a class:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
 Class name[(Of type_list)]
 [Inherits parent_class]
 [Implements interface]
 statements
End Class

The only things that all class declarations must include are the Class clause (including the class ’ s
name) and the End Class statement. Everything else is optional. The following code describes a valid
(albeit not very interesting) class:

Class EmptyClass
End Class

The following sections describe the pieces of the general declaration in detail.

Attribute_list

The optional attribute_list is a comma - separated list of attributes that apply to the class. An
attribute further refi nes the defi nition of a class to give more information to the compiler and
the runtime system.

AVOID COMMA DRAMA

Instead of using commas to separate multiple attributes inside one set of brackets,
you can place each attribute inside its own brackets. For example, the two code
snippet defi nes two classes that each has two attributes: Serializable and Obsolete.

< Serializable(),
 Obsolete("No longer supported. Use Sku instead") >
Public Class SkuNumber
 ...
End Class

< Serializable() >
< Obsolete("No longer supported. Use ProductType instead") >
Public Class Product
 ...
End Class

Which style you should use is a matter of personal preference, although it ’ s slightly
easier to insert or remove attributes with the second style because you can add or
remove whole lines at a time without messing up the commas.

c26.indd 586c26.indd 586 12/31/09 6:49:42 PM12/31/09 6:49:42 PM

Attributes are rather specialized. They address issues that arise when you perform very specifi c
programming tasks. For example, if your application must use drag - and - drop support to copy
instances of the class from one application to another, you must mark the class as serializable, as
shown in the following code:

< Serializable() >
Class Employee
 Public FirstName As String
 Public LastName As String
End Class

Some attributes are particular to specifi c kinds of classes. For example, the DefaultEvent attribute
gives the form designer extra information about component classes. If you double - click a component
on a form, the code designer opens to the component ’ s default event.

Because attributes are so specialized, they are not described in more detail here. For more
information, see the sections in the online help that are related to the tasks you need to perform.

For more information on attributes, see Microsoft ’ s “ Attributes in Visual Basic ” web page at
msdn.microsoft.com/39967861.aspx . For a list of attributes that you can use, go to Microsoft ’ s
“ Attribute Class ” web page at msdn.microsoft.com/system.attribute.aspx and look at the
“ Inheritance Hierarchy ” section.

Partial

The Partial keyword tells Visual Basic that the current declaration defi nes only part of the class.
The following code shows the Employee class broken into two pieces:

Partial Public Class Employee
 Public FirstName As String
 Public LastName As String
 ...
End Class

... other code, possibly unrelated to the Employee class ...

Partial Public Class Employee
 Public Email As String
 ...
End Class

The program could contain any number of other pieces of the Employee class, possibly in different
code modules. At compile time, Visual Basic fi nds these pieces and combines them to defi ne the class.

One of the primary benefi ts of classes is that they hold the code and data associated with the
class together in a nice package. Scattering the pieces of a class in this way makes the package
less self - contained and may lead to confusion. To prevent confusion, you should avoid splitting

Classes ❘ 587

c26.indd 587c26.indd 587 12/31/09 6:49:43 PM12/31/09 6:49:43 PM

588 ❘ CHAPTER 26 CLASSES AND STRUCTURES

a class unless you have a good reason to (for example, to allow different developers to work on
different pieces of the class at the same time or if one piece must have Option Strict turned off).

At least one of the pieces of the class must be declared with the Partial keyword, but in the other
pieces it is optional. Explicitly providing the keyword in all of the class ’ s partial defi nitions
emphasizes the fact that the class is broken into pieces and may minimize confusion.

Accessibility

A class ’ s accessibility clause can take one of the following values: Public, Protected, Friend,
Protected Friend, or Private.

Public indicates that the class should be available to all code inside or outside of the class ’ s module.
This enables the most access to the class. Any code can create and manipulate instances of the class.

You can use the Protected keyword only if the class you are declaring is contained inside another
class. For example, the following code defi nes an Employee class that contains a protected
EmployeeAddress class:

Public Class Employee
 Public FirstName As String
 Public LastName As String
 Protected Address As EmployeeAddress

 Protected Class EmployeeAddress
 Public Street As String
 Public City As String
 Public State As String
 Public Zip As String
 End Class

 ... other code ...
End Class

Because the EmployeeAddress class is declared with the Protected keyword, it is visible only within
the enclosing Employee class and any derived classes. For example, if the Manager class inherits
from the Employee class, code within the Manager class can access the Address variable.

The Friend keyword indicates that the class should be available to all code inside or outside of the
class ’ s module within the same project. The difference between this and Public is that Public allows
code outside of the project to access the class. This is generally only an issue for code libraries (.dll
fi les) and control libraries. For example, suppose that you build a code library containing dozens of
routines and then you write a program that uses the library. If the library declares a class with the
Public keyword, the code in the library and the code in the main program can use the class. If
the library declares a class with the Friend keyword, only the code in the library can access the
class, not the code in the main program.

c26.indd 588c26.indd 588 12/31/09 6:49:44 PM12/31/09 6:49:44 PM

Protected Friend is the union of the Protected and Friend keywords. A class declared Protected
Friend is accessible only to code within the enclosing class or a derived class and only within
the same project.

A class declared Private is accessible only to code in the enclosing module, class, or structure. If the
EmployeeAddress class were declared Private, only code within the Employee class could use that class.

If you do not specify an accessibility level, it defaults to Friend.

Shadows

The Shadows keyword indicates that the class hides the defi nition of some other entity in the
enclosing class ’ s base class.

The following code shows an Employee class that declares a public class Offi ceInfo and defi nes an
instance of that class named Offi ce. The derived class Manager inherits from Employee. It declares
a new version of the Offi ceInfo class with the Shadows keyword. It defi nes an instance of this class
named ManagerOffi ce.

Public Class Employee
 Public Class OfficeInfo
 Public OfficeNumber As String
 Public Extension As String
 End Class

 Public FirstName As String
 Public LastName As String
 Public Office As New OfficeInfo
End Class

Public Class Manager
 Inherits Employee

 Public Shadows Class OfficeInfo
 Public OfficeNumber As String
 Public Extension As String
 Public SecretaryOfficeNumber As String
 Public SecretaryExtension As String
 End Class

 Public ManagerOffice As New OfficeInfo
End Class

The following code uses the Employee and Manager classes. It creates instances of the two
classes and sets their Offi ce.Extension properties. Both of those values are part of the Employee
class ’ s version of the Offi ceInfo class. Next, the code sets the Manager object ’ s ManagerOffi ce
.SecretaryExtension value.

Classes ❘ 589

c26.indd 589c26.indd 589 12/31/09 6:49:44 PM12/31/09 6:49:44 PM

590 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Dim emp As New Employee
Dim mgr As New Manager
emp.Office.Extension = "1111"
mgr.Office.Extension = "2222"
mgr.ManagerOffice.SecretaryExtension = "3333"

Note that the Manager class contains two different objects of type Offi ceInfo. Its Offi ce property
is the Employee class ’ s fl avor of Offi ceInfo class. Its ManagerOffi ce value is the Manager class ’ s
version of Offi ceInfo.

The presence of these different classes with the same name can be confusing. Usually, you are better
off not using the Shadows keyword in the declarations and giving the classes different names. In this
case, you could call the Manager class ’ s included class ManagerOffi ceInfo.

Inheritance

A class ’ s inheritance clause can take the value MustInherit or NotInheritable.

MustInherit prohibits the program from creating instances of the class. The program should create
an instance of a derived class instead. This kind of class is sometimes called an abstract class.

By using MustInherit, you can make a parent class that defi nes some of the behavior that should be
implemented by derived classes without implementing the functionality itself. The parent class is not
intended to be used itself, just to help defi ne the derived classes.

For example, the following code defi nes the Vehicle class with the MustInherit keyword. This
class defi nes features that are common to all vehicles. It defi nes a NumWheels variable and a Drive
subroutine declared with the MustOverride keyword. The real world doesn ’ t contain generic vehicles,
however. Instead, it contains cars, trucks, and other specifi c kinds of vehicles. The code defi nes a
Car class that inherits from the Vehicle class. When you enter the Inherits statement and press Enter,
Visual Basic automatically adds the empty Drive subroutine required by the Vehicle class.

Public MustInherit Class Vehicle
 Public NumWheels As Integer
 Public MustOverride Sub Drive()
End Class

Public Class Car
 Inherits Vehicle

 Public Overrides Sub Drive()

 End Sub
End Class

c26.indd 590c26.indd 590 12/31/09 6:49:44 PM12/31/09 6:49:44 PM

The following code uses these classes. It declares a Vehicle and a Car variable. The fi rst assignment
statement causes an error because it tries to make a new Vehicle object. This is not allowed, because
Vehicle is declared with the MustInherit keyword. The program sets variable a_car to a new Car
variable and then sets variable a_vehicle to a_car. This works because a Car is a type of Vehicle, so
the a_vehicle variable can refer to a Car object. In its last line, the code assigns a_vehicle directly to
a new Car object.

Dim a_vehicle As Vehicle
Dim a_car As Car

a_vehicle = New vehicle ' Error. Vehicle is MustInherit.
a_car = New Car ' This works.
a_vehicle = a_car ' This works.
a_vehicle = New Car ' This works.

The NotInheritable keyword does the opposite of the MustInherit keyword. MustInherit says that a
class must be inherited to be instantiated. NotInheritable says no class can inherit from this one.

You can use NotInheritable to stop other developers from making new versions of the classes you
have built. This isn ’ t really necessary if you design a well - defi ned object model before you start
programming and if everyone obeys it. NotInheritable can prevent unnecessary proliferation
of classes if developers don ’ t pay attention, however. For example, declaring the Car class
NotInheritable would prevent overeager developers from deriving FrontWheelDriveCar, RedCar,
and Subaru classes from the Car class.

EXTENSION TENSION

Extension methods allow developers to add new subroutines and functions to a
class even if it is marked NotInheritable. This can ruin the class ’ s focus of purpose,
making it harder to understand and use safely. It also violates the intent of the
NotInheritable keyword so you should avoid it if possible. For more information,
see the section “ Extension Methods ” in Chapter 25, “ OOP Concepts. ”

Of type_list
The Of type_list clause makes the class generic. It allows the program to create instances of the class
that work with specifi c data types. For example, the following code defi nes a generic Tree class.
The class includes a public variable named RootObject that has the data type given in the class ’ s Of
data_type clause.

Public Class Tree(Of data_type)
 Public RootObject As data_type
 ...
End Class

Classes ❘ 591

c26.indd 591c26.indd 591 12/31/09 6:49:45 PM12/31/09 6:49:45 PM

592 ❘ CHAPTER 26 CLASSES AND STRUCTURES

When you read this declaration, you should think “ Tree of something, ” where something is defi ned
later when you make an instance of the class.

The following code fragment declares the variable my_tree to be a “ Tree of Employee. ” It then
instantiates my_tree and sets its RootObject variable to an Employee object.

Dim my_tree As Tree(Of Employee)
my_tree = New Tree(Of Employee)
my_tree.RootObject = New Employee
...

Chapter 29, “ Generics, ” discusses generic classes further.

Inherits parent_class

The Inherits statement indicates that the class (the child class) is derived from another class
(the parent class). The child class automatically inherits the parent ’ s properties, methods, and events.

The following code defi nes an Employee class that contains LastName, FirstName, Offi ceNumber,
and Phone variables. It then derives the Manager class from the Employee class. Because it
inherits from the Employee class, the Manager class automatically has LastName, FirstName,
Offi ceNumber, and Phone variables. It also adds new SecretaryOffi ceNumber and SecretaryPhone
variables. These are available to instances of the Manager class but not to the Employee class.

Public Class Employee
 Public FirstName As String
 Public LastName As String
 Public OfficeNumber As String
 Public Phone As String
End Class

Public Class Manager
 Inherits Employee

 Public SecretaryOfficeNumber As String
 Public SecretaryPhone As String
End Class

If a class inherits from another class, the Inherits statement must be the fi rst statement after the
Class statement that is not blank or a comment. Also note that a class can inherit from at most one
parent class, so a class defi nition can include at most one Inherits statement.

For more information on inheritance, see the section “ Inheritance ” in Chapter 25.

c26.indd 592c26.indd 592 12/31/09 6:49:46 PM12/31/09 6:49:46 PM

Implements interface

The Implements keyword indicates that a class will implement an interface. An interface defi nes
behaviors that the implementing class must provide, but it does not provide any implementation for
the behaviors.

For example, the following code defi nes the IDomicile interface. By convention, the names
of interfaces should begin with the capital letter I. This interface defi nes the SquareFeet,
NumBedrooms, and NumBathrooms properties, and the Clean subroutine.

Public Interface IDomicile
 Property SquareFeet() As Integer
 Property NumBedrooms() As Integer
 Property NumBathrooms() As Integer
 ReadOnly Property NeedsFireSystem() As Boolean
 Sub Clean()
End Interface

The interface also defi nes the read - only property NeedsFireSystem. Usually, a read - only property
calculates its return value from other property values. For example, NeedsFireSystem might return
True if a house has more than a certain number of square feet.

The House class shown in the following code implements the IDomicile interface. When you type
the Implements statement and press Enter, Visual Basic automatically generates empty routines to
provide the features defi ned by the interface.

Public Class House
 Implements IDomicile

 Public Sub Clean() Implements IDomicile.Clean

 End Sub

 Public Property NumBathrooms() As Integer Implements IDomicile.NumBathrooms
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public Property NumBedrooms() As Integer Implements IDomicile.NumBedrooms
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set

Classes ❘ 593

c26.indd 593c26.indd 593 12/31/09 6:49:46 PM12/31/09 6:49:46 PM

594 ❘ CHAPTER 26 CLASSES AND STRUCTURES

 End Property

 Public Property SquareFeet() As Integer Implements IDomicile.SquareFeet
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public ReadOnly Property NeedsFireSystem() As Boolean _
 Implements IDomicile.NeedsFireSystem
 Get

 End Get
 End Property
End Class

An interface defi nes behaviors but does not supply them. When you derive a class from a parent
class, the derived class inherits all the code that the parent class uses to implement its features.
When you implement an interface, the behavior is defi ned, but not supplied for you. That makes
interfaces more diffi cult to use than inheritance, so inheritance is generally preferred whenever it
is possible.

One case where the inheritance of Visual Basic is insuffi cient is when you need to implement
multiple inheritance. In multiple inheritance, one child class can inherit from more than one
parent class. For example, you might defi ne a Domicile class and a Boat class, and then make the
HouseBoat class inherit from both. You can do this in some languages but not in Visual Basic.
However, you can make a class implement more than one interface. Simply defi ne IDomicile and
IBoat interfaces and then have the HouseBoat class implement them both.

The IDomicile interface was shown earlier. The following code defi nes the IBoat interface:

Public Interface IBoat
 Property HasMotor() As Boolean
 Property HorsePower() As Integer
 Property Capacity() As Integer
 Sub Sail()
End Interface

The following code shows parts of the HouseBoat class. It begins with two Implements statements
that indicate that the class implements both the IDomicile and IBoat interfaces. It then includes
implementations of the methods specifi ed by IDomicile and IBoat.

c26.indd 594c26.indd 594 12/31/09 6:49:46 PM12/31/09 6:49:46 PM

Public Class HouseBoat
 Implements IDomicile
 Implements IBoat

 Public Sub Clean() Implements IDomicile.Clean

 End Sub

 Public ReadOnly Property NeedsFireSystem() As Boolean Implements _
 IDomicile.NeedsFireSystem
 Get

 End Get
 End Property

 Public Property NumBathrooms() As Integer Implements IDomicile.NumBathrooms
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public Property NumBedrooms() As Integer Implements IDomicile.NumBedrooms
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public Property SquareFeet() As Integer Implements IDomicile.SquareFeet
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public Property Capacity() As Integer Implements IBoat.Capacity
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public Property HasMotor() As Boolean Implements IBoat.HasMotor
 Get

Classes ❘ 595

c26.indd 595c26.indd 595 12/31/09 6:49:47 PM12/31/09 6:49:47 PM

596 ❘ CHAPTER 26 CLASSES AND STRUCTURES

 End Get
 Set(ByVal Value As Boolean)

 End Set
 End Property

 Public Property HorsePower() As Integer Implements IBoat.HorsePower
 Get

 End Get
 Set(ByVal Value As Integer)

 End Set
 End Property

 Public Sub Sail() Implements IBoat.Sail

 End Sub
End Class

Using an interface in place of inheritance is sometimes called interface inheritance. The class
doesn ’ t inherit a parent class ’ s code, but it does inherit the defi nition of the features that it
must provide.

Note that a class can inherit from one class and also implement one or more interfaces. To save
coding, you could make one of the parent interfaces into a class. For example, if the IDomicile
interface defi nes more behaviors than the IBoat interface, and if those behaviors are generic enough
to provide help for derived classes, you can turn IDomicile into a Domicile class that provides those
features. Then the HouseBoat class could inherit the Domicile class ’ s features and implement the
IBoat interface.

If a class declaration uses any Implements statements, they must come after any Inherits statement
and before any other statements (other than blank lines and comments).

For more information on interfaces and how you can use them to mimic inheritance, see the section
“ Interface Inheritance ” in Chapter 25.

STRUCTURES

Structures are very similar to classes. The syntax for declaring a structure is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] _
Structure name [(Of type_list)]
 [Implements interface]
 Statements
End Structure

c26.indd 596c26.indd 596 12/31/09 6:49:47 PM12/31/09 6:49:47 PM

The only thing that all structure declarations must include is the Structure clause (including the
structure ’ s name) and the End Structure statement. The rest is optional.

Unlike a class, however, a structure cannot be empty. It must contain at least one variable or event
declaration. The following code describes a valid structure. Its only member is a Private variable, so
this structure wouldn ’ t be of much use, but it is valid.

Structure EmptyStructure
 Private m_Num As Integer
End Structure

The structure ’ s attribute_list and accessibility clauses, Shadows and Partial keywords, and the
Implements statement are the same as those for classes. See the earlier sections discussing these
keywords for details.

There are two main differences between a structure and a class: structures cannot inherit and
structures are value types rather than reference types.

Structures Cannot Inherit

Unlike a class, a structure cannot inherit so it cannot use the MustInherit, NotInheritable,
or Inherits keywords; however, like a class, a structure can implement any number of interfaces.
You can use interface inheritance to defi ne inheritance - mimicking hierarchies of structures,
and you can simulate multiple inheritance by making a structure implement multiple
interfaces.

Structures Are Value Types

The biggest difference between a structure and a class is
in how each allocates memory for its data. Classes are
reference types. That means an instance of a class is actually
a reference to the object ’ s storage in memory. When you
create an instance of a class, Visual Basic actually creates
a reference that points to the object ’ s actual location
in memory.

On the other hand, structures are value types. An instance
of a structure contains the data inside the structure rather
than simply pointing to it. Figure 26 - 1 illustrates the
difference.

The difference between reference and value type has several
important consequences that are described in the following
sections.

Structure Class Object

(Reference)

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FIGURE 26-1: A structure contains the

data, whereas a class object contains

a reference that points to data.

Structures ❘ 597

c26.indd 597c26.indd 597 12/31/09 6:49:48 PM12/31/09 6:49:48 PM

598 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Memory Required

The difference in memory required by classes and structures is small when you consider only a
single object. If you look at an array, however, the distinction is more important. An array of
class objects contains references to data in some other part of memory. When you fi rst declare
the array, the references all have the value Nothing, so they don ’ t point to any data and no
memory is allocated for the data. The references take 4 bytes each, so the array uses only 4 bytes
per array entry.

ONE SIZE DOESN ’ T FIT ALL

Actually, the size of a reference is not necessarily 4 bytes. On a 64 - bit system,
references are larger. In general, you should not assume a reference has a particular
size. Just be aware that references take relatively little memory.

An array of structure instances, on the other
hand, allocates space for the data inside the array.
If each structure object takes up 1000 bytes
of memory, then an array containing N items
uses 1000 * N bytes of memory. Each structure
object ’ s memory is allocated, whether or not its
fi elds contain meaningful data.

Figure 26 - 2 illustrates this situation. The
array of class objects on the left uses very little
memory when the references are Nothing. The
array of structure objects on the right uses a lot
of memory even if its elements have not been
initialized.

If you must use a large array of objects where
only a few at a time will have values other than
Nothing, using a class may save the program a
considerable amount of memory. If you will need
most of the objects to have values other than
Nothing at the same time, it may be faster to
allocate all the memory at once using a structure.
This will also use slightly less memory, because
an array of class references requires 4 extra bytes
per entry to hold the references.

StructureClass

Reference <Nothing>

<Nothing>

<Nothing>

Reference

Reference

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FIGURE 26-2: An array of class objects contains

small references to data, many of which may

be Nothing. An array of structures takes up a

signifi cant amount of memory.

c26.indd 598c26.indd 598 12/31/09 6:49:48 PM12/31/09 6:49:48 PM

PERFORMANCE ANXIETY

In theory, you may see a slight performance benefi t to using an array of structures
if you want them initialized to default values. The array will be allocated and later
freed in a single step, and its memory will be contiguous, so for some applications,
this kind of array may reduce paging.

The garbage collector can also mark the array ’ s memory as in use in a single step,
whereas it must follow the references to class objects separately.

In practice, however, the differences are so small that you should not use
performance to decide which approach to use. Usually, you are best off picking the
method that makes the most logical sense, and not worrying too much about
the slight performance difference.

Heap and Stack Performance

Visual Basic programs allocate variables from two pools of memory called the stack and the heap.
They take memory for value types (such as integers and dates) from the stack.

Space for reference types comes from the heap. More than one reference can point to the
same chunk of memory allocated on the heap. That makes garbage collection and other heap -
management issues more complex than using the stack, so using the heap is generally slower than
using the stack.

Because structures are value types and classes are reference types, structures are allocated on the
stack and class objects are allocated from the heap. That makes structures faster than classes.
The exact difference for a particular program depends on the application.

Note that arrays are themselves reference types, so all arrays are allocated from the heap whether
they contain structures or references to class objects. The memory for an array of structures is
allocated all at once, however, so there is still some benefi t to using structures. All the memory in an
array of structures is contiguous, so the program can access its elements more quickly than it would
if the memory were scattered throughout the heap.

Object Assignment

When you assign one reference type variable to another, you make a new reference to an existing
object. When you are fi nished, the two variables point to the same object. If you change the object ’ s
fi elds using one variable, the fi elds shown by the other are also changed.

On the other hand, if you set one value type variable equal to another, Visual Basic copies the
data from one to the other. If you change the fi elds in one object, the fi elds in the other remain
unchanged. Figure 26 - 3 illustrates the difference for classes and structures.

Structures ❘ 599

c26.indd 599c26.indd 599 12/31/09 6:49:50 PM12/31/09 6:49:50 PM

600 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Example program StructuresAndClasses uses the following code to demonstrate this difference:

Dim cperson1 As New CPerson
Dim cperson2 As CPerson
cperson1.FirstName = "Alice"
cperson2 = cperson1
cperson2.FirstName = "Ben"
MessageBox.Show(cperson1.FirstName & vbCrLf & cperson2.FirstName)

Dim sperson1 As New SPerson
Dim sperson2 As SPerson
sperson1.FirstName = "Alice"
sperson2 = sperson1
sperson2.FirstName = "Ben"
MessageBox.Show(sperson1.FirstName & vbCrLf & sperson2.FirstName)

code snippet StructuresAndClasses

The code creates a CPerson object and sets its fi rst name value. It then assigns another CPerson
variable to the same object. Because CPerson is a class, the two variables refer to the same piece
of memory so when the code sets the new variable ’ s fi rst name value it overwrites the previous
variable ’ s fi rst name value. The message box displays the name Ben twice.

The code performs the same steps again but this time it uses structure variables instead of class
variables. The code makes an SPerson structure and sets its fi rst name value. When it sets the second
SPerson variable equal to the fi rst one, it makes a copy of the structure. Now when the code sets the
second variable ’ s fi rst name to Ben, it does not overwrite the previous variable ’ s fi rst name value.
The message box displays the names Alice and Ben.

Class

A B A B

Structure

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FIGURE 26-3: Assigning one class reference to another makes

them both point to the same object. Assigning one structure

variable to another makes a new copy of the data.

c26.indd 600c26.indd 600 12/31/09 6:49:51 PM12/31/09 6:49:51 PM

Parameter Passing

When you pass a parameter to a function or subroutine, you can pass it by reference using the ByRef
keyword, or by value using the ByVal keyword. If you pass a parameter by reference, any changes
that the routine makes are refl ected in the original parameter passed into the routine.

For example, consider the following code. Subroutine TestByRef creates an integer named i and sets
its value to 1. It then calls subroutine PassByVal. That routine declares its parameter with the ByVal
keyword, so i is passed by value. PassByVal multiplies its parameter by 2 and ends. Because the
parameter was declared ByVal, the original variable i is unchanged, so the message box displays the
value 1. Next the program calls subroutine PassByRef, passing it the variable i. Subroutine PassByRef
declares its parameter with the ByRef keyword, so a reference to the variable is passed into the
routine. PassByRef doubles its parameter and ends. Because the parameter is declared with the ByRef
keyword, the value of variable i is modifi ed so the message box displays the value 2.

Public Sub TestByRef()
Dim i As Integer = 1

 PassByVal(i)
 MessageBox.Show(i.ToString) ' i = 1.

 PassByRef(i)
 MessageBox.Show(i.ToString) ' i = 2.
End Sub

Public Sub PassByVal(ByVal the_value As Integer)
 the_value *= 2
End Sub

Public Sub PassByRef(ByRef the_value As Integer)
 the_value *= 2
End Sub

When you work with class references and structures, you must think a bit harder about how ByRef
and ByVal work. There are four possible combinations: reference ByVal, structure ByVal, reference
ByRef, and structure ByRef.

If you pass a class reference to a routine by value, the routine receives a copy of the reference. If it
changes the reference (perhaps making it point to a new object), the original reference passed into
the routine remains unchanged. It still points to the same object it did when it was passed to the
routine. However, the routine can change the values in the object to which the reference points. If
the reference points to a Person object, the routine can change the object ’ s FirstName, LastName,
and other fi elds. It cannot change the reference itself to make it point to a different Person object,
but it can change the object ’ s data.

On the other hand, suppose that you pass a structure into a routine by value. In that case, the
routine receives a copy of the entire structure. The routine can change the values contained in its

Structures ❘ 601

c26.indd 601c26.indd 601 12/31/09 6:49:52 PM12/31/09 6:49:52 PM

602 ❘ CHAPTER 26 CLASSES AND STRUCTURES

copy of the structure, but the original structure ’ s values remain unchanged. It cannot change the
original structure ’ s fi elds the way it could if the parameter were a reference type.

If you pass a class reference variable by reference, the routine can not only modify the values in
the reference ’ s object but it can also make the reference point to a different object. For example, the
routine could use the New keyword to make the variable point to a completely new object.

If you pass a structure by reference, the routine receives a pointer to the structure ’ s data. If it
changes the structure ’ s data, the fi elds in the original variable passed into the routine are modifi ed.

In addition to these differences in behavior, passing class references and structures by reference or
by value can make differences in performance. When you pass a reference to data, Visual Basic only
needs to send the routine a 4 - byte value. If you pass a structure into a routine by value, Visual Basic
must duplicate the entire structure, so the routine can use its own copy. If the structure is very large,
that may take a little extra time.

Boxing and Unboxing

Visual Basic allows a program to treat any variable as an object. For example, a collection class
stores objects. If you add a simple value type such as an Integer to a collection, Visual Basic wraps
the Integer in an object and adds that object to the collection.

The process of wrapping the Integer in an object is called boxing. Later, if you need to use
the Integer as a value type again, the program unboxes it. Because structures are value types, the
program must box and unbox them whenever it treats them as objects, and that adds some extra
overhead.

Some operations that require boxing and possibly unboxing include assigning a structure to an
Object variable, passing a structure to a routine that takes an Object as a parameter, or adding
a structure to a collection class. Note that this last operation includes adding a structure to a
collection used by a control or other object. For example, adding a structure to a ListBox control ’ s
Items collection requires boxing.

Note that arrays are themselves reference types, so treating an array as an object doesn ’ t require
boxing.

CLASS INSTANTIATION DETAILS

When you declare a reference variable, Visual Basic allocates space for the reference. Initially,
that reference is set to Nothing, so it doesn ’ t point to anything and no memory is allocated for an
actual object.

You create an object by using the New keyword. Creating an actual object is called instantiating
the class.

The following code shows a simple object declaration and instantiation. The fi rst line declares the
reference variable. The second line makes the variable point to a new Employee object.

c26.indd 602c26.indd 602 12/31/09 6:49:52 PM12/31/09 6:49:52 PM

Dim emp As Employee ' Declare a reference to an Employee object.
emp = New Employee ' Make a new Employee object and make emp point to it.

Visual Basic also enables you to declare and initialize a variable in a single statement. The following
code shows how to declare and initialize an object reference in one statement:

Dim emp As Employee = New Employee ' Declare and instantiate an object.

Visual Basic lets you declare a variable to be of a new object type, as shown in the following
statement. This version has the same effect as the preceding one but is slightly more compact.

Dim emp As New Employee ' Declare and instantiate an object.

Both of these versions that defi ne and initialize an object in a single statement ensure that the
variable is initialized right away. They guarantee that the object is instantiated before you try to use
it. If you place these kinds of declarations immediately before the code where the object is used, they
also make it easy to see where the object is defi ned.

Although you can declare and instantiate a reference variable separately, value type variables are
allocated when they are declared. Because structures are value types, when you declare one you also
allocate space for its data, so you don ’ t need to use the New keyword to initialize a structure variable.

Both classes and structures can provide special subroutines called constructors . A constructor is a
special subroutine named New that Visual Basic calls when a new instance of the class or structure
is created. The constructor can perform initialization tasks to get the new object ready for use.

A constructor can optionally take parameters to help in initializing the object. For example, the
Person class shown in the following code has a constructor that takes as parameters fi rst and last
names and saves them in the control ’ s FirstName and LastName variables:

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

The following code shows how a program might use this constructor to create a new Person object:

Dim author As New Person("Rod", "Stephens")

You can overload the New method just as you can overload other class methods. The different
overloaded versions of the constructor must have different parameter lists so that Visual Basic can
decide which one to use when it creates a new object.

Class Instantiation Details ❘ 603

c26.indd 603c26.indd 603 12/31/09 6:49:53 PM12/31/09 6:49:53 PM

604 ❘ CHAPTER 26 CLASSES AND STRUCTURES

The following code shows a Person class that provides two constructors. The fi rst takes no
parameters and sets the object ’ s FirstName and LastName values to < unknown > . The second version
takes two strings as parameters and copies them into the object ’ s FirstName and LastName values.

 Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New()
 Me.New(" < unknown > ", " < unknown > ")
 End Sub

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

The following code uses each of these constructors:

Dim person1 As New Person ' < unknown > < unknown > .
Dim person2 As New Person("Olga", "O'Toole") ' Olga O'Toole.

If you do not provide any constructors for a class, Visual Basic allows the program to use the New
keyword with no parameters. If you create any constructor, however, Visual Basic does not allow the
program to use this default empty constructor (without parameters) unless you build one explicitly.
For example, if the previous version of the Person class did not include an empty constructor, the
program could not use the fi rst declaration in the previous code that doesn ’ t include any parameters.

You can use this feature to ensure that the program assigns required values to an object. In this
case, it would mean that the program could not create a Person object without assigning FirstName
and LastName values.

If you want to allow an empty constructor in addition to other constructors, an alternative is to
create a single constructor with optional parameters. The following code shows this approach.
With this class, the program could create a new Person object, passing its constructor zero, one, or
two parameters.

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(
 Optional ByVal first_name As String = " < unknown > ",
 Optional ByVal last_name As String = " < unknown > ")
 FirstName = first_name

c26.indd 604c26.indd 604 12/31/09 6:49:53 PM12/31/09 6:49:53 PM

 LastName = last_name
 End Sub
End Class

When you use a class ’ s empty constructor to create an object, you can also include a With clause
to initialize the object ’ s properties. The following code uses the Person class ’ s parameter - less
constructor to make a new Person object. The With statement then sets values for the object ’ s
FirstName and LastName values.

Dim author As New Person() With {.FirstName = "Rod", .LastName = "Stephens"}

STRUCTURE INSTANTIATION DETAILS

Structures handle instantiation somewhat differently from object references. When you declare a
reference variable, Visual Basic does not automatically allocate the object to which the variable
points. In contrast, when you declare a value type such as a structure, Visual Basic automatically
allocates space for the variable ’ s data. That means you never need to use the New keyword to
instantiate a structure.

However, the Visual Basic compiler warns you if you do not explicitly initialize a structure variable
before using it. To satisfy the compiler, you can use the New keyword to initialize the variable when
you declare it.

A structure can also provide constructors, and you can use those constructors to initialize the
structure. The following code defi nes the SPerson structure and gives it a constructor that takes two
parameters, the second optional:

Public Structure SPerson
 Public FirstName As String
 Public LastName As String

 Public Sub New(
 ByVal first_name As String,
 Optional ByVal last_name As String = " < unknown > ")
 FirstName = first_name
 LastName = last_name
 End Sub
End Structure

To use a structure ’ s constructor, you initialize the structure with the New keyword much as you
initialize a reference variable. The following code allocates an SPerson structure variable using the
two - parameter constructor:

Dim artist As New SPerson("Sergio", "Aragones")

Structure Instantiation Details ❘ 605

c26.indd 605c26.indd 605 12/31/09 6:49:54 PM12/31/09 6:49:54 PM

606 ❘ CHAPTER 26 CLASSES AND STRUCTURES

You can also use structure constructors later to reinitialize a variable or set its values, as shown here:

' Allocate the artist variable.
Dim artist As SPerson

' Do something with artist.
...

' Reset FirstName and LastName to Nothing.
artist = New SPerson
...

' Set FirstName and LastName to Bill Amend.
artist = New SPerson("Bill", "Amend")

As is the case with classes, you can use a With clause to set structure values when you initialize
a structure variable. For example, the following code creates a new SPerson structure and sets its
FirstName and LastName values:

Dim artist As New SPerson() With {.FirstName = "Anna", .LastName = "Aux"}

NEW NEEDED

Although you can create a structure without using the New keyword, you cannot
include a With clause unless you use New.

Structure and class constructors are very similar, but there are some major differences.

A structure cannot declare a constructor that takes no parameters.

A structure cannot provide a constructor with all optional parameters, because that would
allow the program to call it with no parameters.

Visual Basic always allows the program to use a default empty constructor to declare a
structure variable, but you cannot make it use your empty constructor. Unfortunately, that
means you cannot use a default constructor to guarantee that the program always initializes
the structure ’ s values as you can with a class. If you need that feature, you should use a class
instead of a structure.

You also cannot provide initialization values for variables declared within a structure as you
can with a class. That means you cannot use this technique to provide default values for the
structure ’ s variables.

The following code demonstrates these differences. The CPerson class defi nes initial values for its
FirstName and LastName variables, provides an empty constructor, and provides a two - parameter
constructor. The SPerson structure cannot defi ne initial values for FirstName and LastName and
cannot provide an empty constructor.

➤

➤

➤

➤

c26.indd 606c26.indd 606 12/31/09 6:49:54 PM12/31/09 6:49:54 PM

' Class.
Public Class CPerson
 Public FirstName As String = " < unknown > " ' Initialization value allowed.
 Public LastName As String = " < unknown > " ' Initialization value allowed.

 ' Empty constructor allowed.
 Public Sub New()
 End Sub

 ' Two-parameter constructor allowed.
 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

' Structure.
Public Structure SPerson
 Public FirstName As String ' = " < unknown > " ' Initialization NOT allowed.
 Public LastName As String ' = " < unknown > " ' Initialization NOT allowed.

 '' Empty constructor NOT allowed.
 'Public Sub New()
 'End Sub

 ' Two-parameter constructor allowed.
 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Structure

GARBAGE COLLECTION

When a program starts, the system allocates a chunk of memory for the program called the
managed heap. When it allocates data for reference types (class objects), Visual Basic uses memory
from this heap. (For more information about the stack and heap and their relative performance, see
the section “ Heap and Stack Performance ” earlier in this chapter.)

When the program no longer needs to use a reference object, Visual Basic does not mark the heap
memory as free for later use. If you set a reference variable to Nothing so that no variable points
to the object, the object ’ s memory is no longer available to the program, but Visual Basic does not
reuse the object ’ s heap memory, at least not right away.

The optimizing engine of the garbage collector determines when it needs to clean up the heap. If the
program allocates and frees many reference objects, a lot of the heap may be full of memory that is
no longer used. In that case, the garbage collector will decide to clean house.

Garbage Collection ❘ 607

c26.indd 607c26.indd 607 12/31/09 6:49:55 PM12/31/09 6:49:55 PM

608 ❘ CHAPTER 26 CLASSES AND STRUCTURES

When it runs, the garbage collector examines all the program ’ s reference variables, parameters
that are object references, CPU registers, and other items that might point to heap objects. It uses
those values to build a graph describing the heap memory that the program can still access. It then
compacts the objects in the heap and updates the program ’ s references so they can fi nd any moved
items. The garbage collector then updates the heap itself so that the program can allocate memory
from the unused portion.

When it destroys an object, the garbage collector frees the object ’ s memory and any managed
resources it contains. It may not free unmanaged resources, however. You can determine when
and how an object frees its managed and unmanaged resources by using the Finalize and Dispose
methods.

Finalize

When it destroys an object, the garbage collector frees any managed resources used by that object.
For example, suppose that an unused object contains a reference to an open fi le stream. When the
garbage collector runs, it notices that the fi le stream is inaccessible to the program, so it destroys the
fi le stream as well as the object that contains its reference.

However, suppose that the object uses an unmanaged resource that is outside of the scope of objects
that Visual Basic understands. For example, suppose the object holds an integer representing a fi le
handle, network connection, or channel to a hardware device that Visual Basic doesn ’ t understand.
In that case, the garbage collector doesn ’ t know how to free that resource.

You can tell the garbage collector what to do by overriding the class ’ s Finalize method, which is
inherited from the Object class. The garbage collector calls an object ’ s Finalize method before
permanently removing the object from the heap. Note that there are no guarantees about exactly
when the garbage collector calls this method, or the order in which different objects ’ methods are
called. Two objects ’ Finalize methods may be called in either order even if one contains a reference
to the other or if one was freed long before the other. If you must guarantee a specifi c order, you
must provide more specifi c clean - up methods of your own.

Example program GarbageCollection uses the following code to demonstrate the Finalize method:

Public Class Form1
 Public Running As Boolean

 Private Class Junk
 Public MyForm As Form1

 Public Sub New(ByVal my_form As Form1)
 MyForm = my_form
 End Sub

 ' Garbage collection started.
 Protected Overrides Sub Finalize()
 ' Stop making objects.
 MyForm.Running = False

c26.indd 608c26.indd 608 12/31/09 6:49:56 PM12/31/09 6:49:56 PM

 End Sub
 End Class

 ' Make objects until garbage collection starts.
 Private Sub btnCreateObjects_Click() Handles btnCreateObjects.Click
 Running = True

 Dim new_obj As Junk
 Dim max_i As Long
 For i As Long = 1 To 100000
 new_obj = New Junk(Me)

 If Not Running Then
 max_i = i
 Exit For
 End If
 Next i
 MessageBox.Show("Allocated " & max_i.ToString & " objects")
 End Sub
End Class

code snippet GarbageCollection

The Form1 class defi nes the public variable Running. It then defi nes the Junk class, which contains
a variable referring to the Form1 class. This class ’ s constructor saves a reference to the Form1 object
that created it. Its Finalize method sets the Form1 object ’ s Running value to False.

When the user clicks the form ’ s Create Objects button, the btnCreateObjects_Click event handler
sets Running to True and starts creating Junk objects, passing the constructor this form as a
parameter. The routine keeps creating new objects as long as Running is True. Note that each
time it creates a new object, the old object that the variable new_obj used to point to becomes
inaccessible to the program so it is available for garbage collection.

Eventually the program ’ s heap runs low, so the garbage collector executes. When it destroys one
of the Junk objects, the object ’ s Finalize subroutine executes and sets the form ’ s Running value
to False. When the garbage collector fi nishes, the btnCreateObjects_Click event handler sees that
Running is False, so it stops creating new Junk objects. It displays the number of the last Junk object
it created and is done.

In one test, this program created 30,456 Junk objects before the garbage collector ran. In a second
trial run immediately after the fi rst, the program created 59,150 objects, and in a third it created
26,191. The garbage collector gives you little control over when it fi nalizes objects.

Visual Basic also calls every object ’ s Finalize method when the program ends. Again, there are no
guarantees about the exact timing or order of the calls to different objects ’ Finalize methods.

Example program FinalizeObjects, which is available for download on the book ’ s web site, uses the
following code to test the Finalize method when the program ends:

 Garbage Collection ❘ 609

c26.indd 609c26.indd 609 12/31/09 6:49:57 PM12/31/09 6:49:57 PM

610 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Public Class Form1
 Private Class Numbered
 Private m_Number As Integer
 Public Sub New(ByVal my_number As Integer)
 m_Number = my_number
 End Sub

 ' Garbage collection started.
 Protected Overrides Sub Finalize()
 ' Display the object's number.
 Debug.WriteLine("Finalized object " & m_Number)
 End Sub
 End Class

 ' Make objects until garbage collection starts.
 Private Sub btnGo_Click() Handles btnGo.Click
 Static i As Integer = 0
 i += 1
 Dim new_numbered As New Numbered(i)
 Debug.WriteLine("Created object " & i.ToString)
 End Sub
End Class

code snippet FinalizeObjects

The Numbered class contains a variable m_Number and initializes that value in its constructor. Its
Finalize method writes the object ’ s number in the Output window.

The btnGo_Click event handler creates a new Numbered object, giving it a new number. When the
event handler ends, the new_numbered variable referring to the Numbered object goes out of scope,
so the object is no longer available to the program. If you look at the Output window at this time, you
will probably fi nd that the program has not bothered to fi nalize the object yet. If you click the button
several times and then close the application, Visual Basic calls each object ’ s Finalize method. If you
click the button fi ve times, you should see fi ve messages displayed by the objects ’ Finalize methods.

If your class allocates unmanaged resources, you should give it a Finalize method to free them.

MEMORY MADNESS

Better still, use and free unmanaged resources as quickly as possible, not even wait-
ing for fi nalization if you can. Unmanaged resources, in particular memory allo-
cated in strange ways such as by using Marshal, can cause strange behaviors and
leaks if you don ’ t free them properly and promptly.

Dispose

Because Visual Basic doesn ’ t keep track of whether an object is reachable at any given moment,
it doesn ’ t know when it can permanently destroy an object until the program ends or the garbage
collector reclaims it. That means the object ’ s memory and resources may remain unused for quite

c26.indd 610c26.indd 610 12/31/09 6:49:57 PM12/31/09 6:49:57 PM

a while. The memory itself isn ’ t a big issue. If the program ’ s heap runs out of space, the garbage
collector runs to reclaim some of the unused memory.

If the object contains a reference to a resource, however, that resource is not freed until the object
is fi nalized. That can have dire consequences. You generally don ’ t want control of a fi le, network
connection, scanner, or other scarce system resource left to the whims of the garbage collector.

By convention, the Dispose subroutine frees an object ’ s resources. Before a program frees an object that
contains important resources, it can call that object ’ s Dispose method to free the resources explicitly.

To handle the case where the program does not call Dispose, the class should also free any
unmanaged resources that it holds in its Finalize subroutine. Because Finalize is executed whether
or not the program calls Dispose, it must also be able to execute both the Dispose and Finalize
subroutines without harm. For example, if the program shuts down some piece of unusual
hardware, it probably should not shut down the device twice.

To make building a Dispose method a little easier, Visual Basic defi nes the IDisposable interface,
which declares the Dispose method. If you enter the statement Implements IDisposable and press
Enter, Visual Basic creates an empty Dispose method for you.

Example program UseDispose, which is available for download on the book ’ s web site, uses the
following code to demonstrate the Dispose and Finalize methods:

Public Class Form1
 Private Class Named
 Implements IDisposable

 ' Save our name.
 Public Name As String
 Public Sub New(ByVal new_name As String)
 Name = new_name
 End Sub

 ' Free resources.
 Protected Overrides Sub Finalize()
 Dispose()
 End Sub

 ' Display our name.
 Public Sub Dispose() Implements System.IDisposable.Dispose
 Static done_before As Boolean = False
 If done_before Then Exit Sub
 done_before = True

 Debug.WriteLine(Name)
 End Sub
 End Class

 ' Make an object and dispose it.
 Private Sub btnDispose_Click() Handles btnDispose.Click
 Static i As Integer = 0
 i += 1
 Dim obj As New Named("Dispose " & i)

Garbage Collection ❘ 611

c26.indd 611c26.indd 611 12/31/09 6:49:58 PM12/31/09 6:49:58 PM

612 ❘ CHAPTER 26 CLASSES AND STRUCTURES

 obj.Dispose()
 End Sub

 ' Make an object and do not dispose it.
 Private Sub btnNoDispose_Click() Handles btnNoDispose.Click
 Static i As Integer = 0
 i += 1
 Dim obj As New Named("No Dispose " & i)
 End Sub
End Class

code snippet UseDispose

The Named class has a Name variable that contains a string identifying an object. Its Finalize
method simply calls its Dispose method. Dispose uses a static variable named done_before to ensure
that it performs its task only once. If it has not already run, the Dispose method displays the object ’ s
name. In a real application, this method would free whatever resources the object holds. Whether
the program explicitly calls Dispose, or whether the garbage collector calls the object ’ s Finalize
method, this code is executed exactly once.

The main program has two buttons labeled Dispose and No Dispose. When you click the Dispose
button, the btnDispose_Click event handler makes a Named object, giving it a new name, and then
calls the object ’ s Dispose method, which immediately displays the object ’ s name.

When you click the No Dispose button, the btnNoDispose_Click event handler makes a new
Named object with a new name and then ends without calling the object ’ s Dispose method. Later,
when the garbage collector runs or when the program ends, the object ’ s Finalize method executes
and calls Dispose, which displays the object ’ s name.

If your class allocates managed or unmanaged resources and you don ’ t want to wait for the garbage
collector to get around to freeing them, you should implement a Dispose method and use it when
you no longer need an object.

CONSTANTS, PROPERTIES, AND METHODS

Declaring constants, properties, and methods within a class is the same as declaring them outside a
class. The main difference is that the context of the declaration is the class rather than a namespace.
For example, a variable declared Private within a class is available only to code within the class.

For information on declaring variables and constants, see Chapter 15, “ Data Types, Variables, and
Constants. ” For information on declaring methods, see Chapter 17, “ Subroutines and Functions, ”
which also describes property procedures, special routines that implement a property for a class.

One issue that is sometimes confusing is that the unit scope of a class is the class ’ s code , not the
code within a specifi c instance of the class. If you declare a variable within a class Private, then
all code within the class can access the variable, whether or not that code belongs to the instance of
the object that contains the variable.

For example, consider the following Student class. The m_Scores array is Private to the class, so
you might think that a Student object could only access its own scores. In fact, any Student object

c26.indd 612c26.indd 612 12/31/09 6:49:59 PM12/31/09 6:49:59 PM

can access any other Student object ’ s m_Scores array as well. The CompareToStudent subroutine
calculates the total score for the current Student object. It then calculates the total score for another
student and displays the results.

Public Class Student
 Public FirstName As String
 Public LastName As String
 Private m_Scores() As Integer
 ...
 Public Sub CompareToStudent(ByVal other_student As Student)
 Dim my_score As Integer = 0
 For i As Integer = 0 To m_Scores.GetUpperBound(0)
 my_score += m_Scores(i)
 Next i

 Dim other_score As Integer = 0
 For i As Integer = 0 To other_student.m_Scores.GetUpperBound(0)
 other_score += other_student.m_Scores(i)
 Next i

 Debug.WriteLine("My score: " & my_score)
 Debug.WriteLine("Other score: " & other_score)
 End Sub
 ...
End Class

Breaking the encapsulation provided by the objects in this way can lead to unnecessary confusion.
It is generally better to try to access an object ’ s Private data only from within that object. You can
provide access routines that make using the object ’ s data easier.

The following version of the Student class includes a TotalScore function that returns the total of a
Student object ’ s scores. This function works only with its own object ’ s scores, so it does not pry into
another object ’ s data. The CompareToStudent subroutine uses the TotalScore function to display the
total score for its object and for a comparison object.

Public Class Student
 Public FirstName As String
 Public LastName As String
 Private m_Scores() As Integer
 ...
 Public Sub CompareToStudent(ByVal other_student As Student)
 Debug.WriteLine("My score: " & TotalScore())
 Debug.WriteLine("Other score: " & other_student.TotalScore())
 End Sub

 ' Return the total of this student's scores.
 Private Function TotalScore() As Integer
 Dim total_score As Integer = 0
 For i As Integer = 0 To m_Scores.GetUpperBound(0)
 total_score += m_Scores(i)
 Next i

Constants, Properties, and Methods ❘ 613

c26.indd 613c26.indd 613 12/31/09 6:50:00 PM12/31/09 6:50:00 PM

614 ❘ CHAPTER 26 CLASSES AND STRUCTURES

 Return total_score
 End Function
 ...
End Class

Function TotalScore is itself declared Private, so only code within the class can use it. In this
example, the CompareToStudent subroutine calls another object ’ s Private TotalScore function, so
the separation between the two objects is not absolute, but at least CompareToStudent doesn ’ t need
to look directly at the other object ’ s data.

EVENTS

Properties let the application view and modify an object ’ s data. Methods let the program invoke
the object ’ s behaviors and perform actions. Together, properties and methods let the program send
information (data values or commands) to the object.

In a sense, events do the reverse: They let the object send information to the program. When
something noteworthy occurs in the object ’ s code, it can raise an event to tell the main program
about it. The main program can then decide what to do about the event.

The following sections describe events. They explain how a class declares events and how other
parts of the program can catch events.

Declaring Events

A class object can raise events whenever it needs to notify to the program of changing
circumstances. Normally, the class declares the event using the Event keyword. The following text
shows the Event statement ’ s syntax:

[attribute_list] [accessibility] [Shadows] _
Event event_name ([parameters]) [Implements interface.event]

The following sections describe the pieces of this declaration. Some of these are similar to earlier
sections that describe constant, variable, and class declarations. By now, you should notice some
familiarity in the use of the attribute_list and accessibility clauses. For more information on
constant and variable declarations, see Chapter 15. For more information on class declarations,
refer to the section “ Classes ” earlier in this chapter.

attribute_list

The attribute_list defi nes attributes that apply to the event. For example, the following declaration
defi nes a description that the code editor should display for the ScoreAdded event:

Imports System.ComponentModel

Public Class Student

c26.indd 614c26.indd 614 12/31/09 6:50:00 PM12/31/09 6:50:00 PM

 < Description("Occurs when a score is added to the object") >
 Public Event ScoreAdded(ByVal test_number As Integer)
 ...
End Class

accessibility

The accessibility value can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can catch the event.

The meanings of these keywords is very similar to that of the class accessibility keywords described
earlier in this chapter. See the subsection “ Accessibility ” inside the “ Classes ” section earlier in this
chapter for details.

Shadows

The Shadows keyword indicates that this event replaces an event in the parent class that has the
same name but not necessarily the same parameters.

parameters

The parameters clause gives the parameters that the event will pass to event handlers. The syntax
for the parameter list is the same as the syntax for declaring the parameter list for a subroutine
or function.

If an event declares a parameter with the ByRef keyword, the code that catches the event can modify
that parameter ’ s value. When the event handler ends, the class code that raised the event can read
the new parameter value.

Implements interface.event

If the class implements an interface and the interface defi nes an event, this clause identifi es this
event as the one defi ned by the interface. For example, the IStudent interface shown in the following
code defi nes the ScoreChanged event handler. The Student class implements the IStudent interface.
The declaration of the ScoreChanged event handler uses the Implements keyword to indicate that
this event handler provides the event handler defi ned by the IStudent interface.

Public Interface IStudent
 Event ScoreChanged()
 ...

End Interface

Public Class Student
 Implements IStudent

 Public Event ScoreChanged() Implements IStudent.ScoreChanged
 ...
End Class

Events ❘ 615

c26.indd 615c26.indd 615 12/31/09 6:50:01 PM12/31/09 6:50:01 PM

616 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Raising Events

After it has declared an event, a class raises it with the RaiseEvent keyword. It should pass the event
whatever parameters were defi ned in the Event statement.

For example, the Student class shown in the following code declares a ScoreChange event. Its
AddScore method makes room for a new score, adds the score to the Scores array, and then raises
the ScoreChanged event, passing the event handler the index of the score in the Scores array.

Public Class Student
 Private Scores() As Integer
 ...
 Public Event ScoreChanged(ByVal test_number As Integer)
 ...
 Public Sub AddScore(ByVal new_score As Integer)
 ReDim Preserve Scores(Scores.Length)
 Scores(Scores.Length - 1) = new_score
 RaiseEvent ScoreChanged(Scores.Length - 1)
 End Sub
 ...
End Class

Catching Events

You can catch an object ’ s events in two ways. First, you can declare the object variable using the
WithEvents keyword, as shown in the following code:

Private WithEvents TopStudent As Student

In the code editor, click the left drop - down list and select the variable ’ s name. In the right drop - down
list, select the event. This makes the code editor create an empty event handler similar to the following
one. When the object raises its ScoreChanged event, the event handler executes.

Private Sub TopStudent_ScoreChanged(ByVal test_number As Integer) _
 Handles TopStudent.ScoreChanged

End Sub

The second method for catching events is to use the AddHandler statement to defi ne an event
handler for the event. First, write the event handler subroutine. This subroutine must take
parameters of the proper type to match those defi ned by the event ’ s declaration in the class.
The following code shows a subroutine that can handle the ScoreChanged event. Note that the
parameter ’ s name has been changed, but its accessibility (ByRef or ByVal) and data type must match
those declared for the ScoreChanged event.

Private Sub HandleScoreChanged(ByVal quiz_num As Integer)

End Sub

c26.indd 616c26.indd 616 12/31/09 6:50:01 PM12/31/09 6:50:01 PM

If the event handler ’ s parameter list is long and complicated, writing an event handler can be
tedious. To make this easier, you can declare an object using the WithEvents keyword and use the
drop - down lists to give it an event handler. Then you can edit the event handler to suit your needs
(change its name, remove the Handles clause, change parameter names, and so forth).

After you build the event handler routine, use the AddHandler statement to assign the routine to a
particular object ’ s event. The following statement makes the HandleScoreChanged event handler
catch the TopStudent object ’ s ScoreChanged event:

AddHandler TopStudent.ScoreChanged, AddressOf HandleScoreChanged

Using AddHandler is particularly handy when you want to use the same event handler with more
than one object. For example, you might write an event handler that validates a TextBox control ’ s
contents to ensure that it contains a valid phone number. By repeatedly using the AddHandler
statement, you can make the same event handler validate any number of TextBox controls.

AddHandler is also convenient if you want to work with an array of objects. The following
code shows how a program might create an array of Student objects and then use the
HandleScoreChanged subroutine to catch the ScoreChanged event for all of them:

' Create an array of Student objects.
Const MAX_STUDENT As Integer = 30
Dim students(MAX_STUDENT) As Student
For i As Integer = 0 To MAX_STUDENT
 students(i) = New Student
Next i

' Add ScoreChanged event handlers.
For i As Integer = 0 To MAX_STUDENT
 AddHandler students(i).ScoreChanged, AddressOf HandleScoreChanged
Next i
...

If you plan to use AddHandler in this way, you may want to ensure that the events provide enough
information for the event handler to fi gure out which object raised the event. For example, you
might modify the ScoreChanged event so that it passes a reference to the object raising the event
into the event handler. Then the shared event handler can determine which Student object had
a score change.

If you add an event handler with AddHandler, you can later remove it with the RemoveHandler
statement. The syntax is the same as the syntax for AddHandler, as shown here:

RemoveHandler TopStudent.ScoreChanged, AddressOf HandleScoreChanged

Note that relaxed delegates allow an event handler to declare its parameters to have different data
types from those provided by the event, as long as the new data types are compatible, or to omit
the parameters entirely.

Events ❘ 617

c26.indd 617c26.indd 617 12/31/09 6:50:02 PM12/31/09 6:50:02 PM

618 ❘ CHAPTER 26 CLASSES AND STRUCTURES

For example, suppose the Student class defi nes a ScoreChanged event that takes an Integer
parameter. The following three subroutines could all catch this event. The fi rst matches the
event ’ s parameters precisely. The second version declares its quiz_num parameter to be a Long.
Long is compatible with Integer so, when it invokes the event handler, Visual Basic can convert
the Integer value into a Long parameter safely. The third version of the event handler declares no
parameters so the event ’ s Integer value is ignored.

Private Sub HandleScoreChanged1(ByVal quiz_num As Integer)

End Sub

Private Sub HandleScoreChanged2(ByVal quiz_num As Long)

End Sub

Private Sub HandleScoreChanged3()

End Sub

STRICTLY SPEAKING

The second version works because you can always store an Integer value in a Long
parameter. The reverse is not always true: a Long value won ’ t necessarily fi t in an
Integer. If the event is declared with a Long parameter but the event handler is
declared with an Integer parameter, the result depends on the Option Strict setting.
If Option Strict is off, Visual Basic allows the code and tries to convert the Long
value into an Integer parameter, possibly crashing at runtime. If Option Strict is on,
Visual Basic fl ags this as an error.

For more information, see the section “ Relaxed Delegates ” in Chapter 17.

Declaring Custom Events

A second form of event declaration provides more control over the event. This version is quite a bit
more complicated and at fi rst can seem very confusing. Skim through the syntax and description
that follow and then look at the example. Then if you go back and look at the syntax and
description again, they should make more sense. This version is also more advanced and you may
not need it often (if ever), so you can skip it for now if you get bogged down.

This version enables you to defi ne routines that are executed when the event is bound to an event
handler, removed from an event handler, and called. The syntax is as follows:

[attribute_list] [accessibility] [Shadows] _
 Custom Event event_name As delegate_name [Implements interface.event]
 [attribute_list] AddHandler(ByVal value As delegate_name)
 ...
 End AddHandler

c26.indd 618c26.indd 618 12/31/09 6:50:02 PM12/31/09 6:50:02 PM

 [attribute_list] RemoveHandler(ByVal value As delegate_name)
 ...
 End RemoveHandler
 [attribute_list] RaiseEvent(delegate_signature)
 ...
 End RaiseEvent
End Event

The attribute_list , accessibility , Shadows, and Implements interface.event parts have the same
meaning as in the previous, simpler event declaration. See the section, “ Declaring Events, ” earlier in
this chapter for information on these pieces.

The delegate_name tells Visual Basic the type of event handler that will catch the event. For
example, the delegate might indicate a subroutine that takes as a parameter a String variable named
new_name. The following code shows a simple delegate for this routine. The delegate ’ s name is
NameChangedDelegate. It takes a String parameter named new_name.

Public Delegate Sub NameChangedDelegate(ByVal new_name As String)

For more information on delegates, see the section “ Delegates ” in Chapter 15.

The main body of the custom event declaration defi nes three routines named AddHandler,
RemoveHandler, and RaiseEvent. You can use these three routines to keep track of the event
handlers assigned to an object (remember that the event declaration is declaring an event for a class)
and to call the event handlers when appropriate.

The AddHandler routine executes when the program adds an event handler to the object. It takes
as a parameter a delegate variable named value. This is a reference to a routine that matches the
delegate defi ned for the event handler. For example, if the main program uses the AddHandler
statement to add the subroutine Employee_NameChanged as an event handler for this object, the
parameter to AddHandler is a reference to the Employee_NameChanged subroutine.

Normally, the AddHandler subroutine saves the delegate in some sort of collection so the
RaiseEvent subroutine described shortly can invoke it.

The RemoveHandler subroutine executes when the program removes an event handler from the
object. It takes as a parameter a delegate variable indicating the event handler that should be
removed. Normally, the RemoveHandler subroutine deletes the delegate from the collection that
AddHandler used to originally store the delegate.

Finally, the RaiseEvent subroutine executes when the object ’ s code uses the RaiseEvent statement
to raise the event. For example, suppose that the Employee class defi nes the NameChanged event.
When the class ’ s FirstName or LastName property procedure changes an Employee object ’ s
name, it uses the RaiseEvent statement to raise the NameChanged event. At that point, the custom
RaiseEvent subroutine executes.

Normally, the RaiseEvent subroutine calls the delegates stored by the AddHandler subroutine in
the class ’ s collection of event delegates.

Example program CustomEvent, which is available for download on the book ’ s web site, uses the
following code to implement a custom NameChanged event. It begins with the FirstName and

Events ❘ 619

c26.indd 619c26.indd 619 12/31/09 6:50:03 PM12/31/09 6:50:03 PM

620 ❘ CHAPTER 26 CLASSES AND STRUCTURES

LastName property procedures. The Property Set procedures both use the RaiseEvent statement to
raise the NameChanged event. This is fairly straightforward and works just as it would if the class
used the simpler event declaration.

Public Class Employee
 ' The FirstName property.
 Private m_FirstName As String
 Public Property FirstName() As String
 Get
 Return m_FirstName
 End Get
 Set(ByVal value As String)
 m_FirstName = value
 RaiseEvent NameChanged(m_FirstName & " " & m_LastName)
 End Set
 End Property

 ' The LastName property.
 Private m_LastName As String
 Public Property LastName() As String
 Get
 Return m_LastName
 End Get
 Set(ByVal value As String)
 m_LastName = value
 RaiseEvent NameChanged(m_FirstName & " " & m_LastName)
 End Set
 End Property

 ' List to hold the event handler delegates.
 Private m_EventDelegates As New ArrayList

 ' Defines the event handler signature.
 Public Delegate Sub NameChangedDelegate(ByVal new_name As String)

 ' Define the custom NameChanged event.
 Public Custom Event NameChanged As NameChangedDelegate
 AddHandler(ByVal value As NameChangedDelegate)
 Debug.WriteLine("AddHandler")
 m_EventDelegates.Add(value)
 End AddHandler

 RemoveHandler(ByVal value As NameChangedDelegate)
 Debug.WriteLine("RemoveHandler")
 m_EventDelegates.Remove(value)
 End RemoveHandler

 RaiseEvent(ByVal new_name As String)
 Debug.WriteLine("RaiseEvent (" & new_name & ")")
 For Each a_delegate As NameChangedDelegate In m_EventDelegates
 a_delegate(new_name.Replace(" ", "+"))
 Next a_delegate

c26.indd 620c26.indd 620 12/31/09 6:50:04 PM12/31/09 6:50:04 PM

 End RaiseEvent
 End Event
End Class

code snippet CustomEvent

Next, the code defi nes an ArrayList named m_EventDelegates that it will use to store the event
handler delegates. It then uses a Delegate statement to defi ne the types of event handlers that this
event will call. In this example, the event handler must be a subroutine that takes a String parameter
passed by value.

Now, the code defi nes the NameChanged custom event. Notice that the Custom Event statement
ends with the delegate NameChangedDelegate. If you type this fi rst line and press Enter, Visual
Basic creates empty AddHandler, RemoveHandler, and RaiseEvent subroutines for you.

Subroutine AddHandler displays a message and saves the delegate in the m_EventDelegates list.
When AddHandler is called, the value parameter refers to an event handler routine that has the
proper type.

The subroutine RemoveHandler displays a message and removes a delegate from the m_
EventDelegates list. In a real application, this routine would need some error - handling code in case
the delegate is not in m_EventDelegates.

When the FirstName and LastName property set procedures use the RaiseEvent statement, the
RaiseEvent subroutine executes. This routine ’ s parameter takes whatever value the class used when
it used the RaiseEvent statement. This subroutine displays a message and then loops through all the
delegates stored in the m_EventDelegates list, invoking each. It passes each delegate the new_name
value it received in its parameter, with spaces replaced by plus signs.

The following code demonstrates the NameChanged event handler. It creates a new Employee object
and then uses two AddHandler statements to assign the event Employee_NameChanged handler to
the object ’ s NameChanged event. This makes the custom AddHandler subroutine execute twice and
save two references to the Employee_NameChanged subroutine in the delegate list.

Next, the program sets the Employee object ’ s FirstName. The FirstName property set procedure
raises the NameChanged event so the RaiseEvent subroutine executes. RaiseEvent loops through
the delegate list and calls the delegates. In this example, that means the subroutine Employee_
NameChanged executes twice.

The program then uses a RemoveHandler statement to remove an Employee_NameChanged
event handler. The custom RemoveHandler subroutine executes and removes one instance of the
Employee_NameChanged subroutine from the delegate list. Next the program sets the Employee
object ’ s LastName. The LastName property set procedure uses the RaiseEvent statement so the
RaiseEvent subroutine executes. Now there is only one instance of the Employee_NameChanged
subroutine in the delegate list, so it is called once. Finally, the code uses the RemoveHandler
statement to remove the remaining instance of Employee_NameChanged from the delegate list.
The RemoveHandler subroutine executes and removes the instance from the delegate list.

Events ❘ 621

c26.indd 621c26.indd 621 12/31/09 6:50:04 PM12/31/09 6:50:04 PM

622 ❘ CHAPTER 26 CLASSES AND STRUCTURES

Dim emp As New Employee
AddHandler emp.NameChanged, AddressOf Employee_NameChanged
AddHandler emp.NameChanged, AddressOf Employee_NameChanged
emp.FirstName = "Rod"
RemoveHandler emp.NameChanged, AddressOf Employee_NameChanged
emp.LastName = "Stephens"
RemoveHandler emp.NameChanged, AddressOf Employee_NameChanged

code snippet CustomEvent

The following text shows the result in the Debug window. It shows where the AddHandler,
RaiseEvent, and RemoveHandler subroutines execute. You can also see where the Employee_
NameChanged event handler executes and displays its name.

AddHandler
AddHandler
RaiseEvent (Rod)
Employee_NameChanged: Rod+
Employee_NameChanged: Rod+
RemoveHandler
RaiseEvent (Rod Stephens)
Employee_NameChanged: Rod+Stephens
RemoveHandler

Shared Variables

If you declare a variable in a class with the Shared keyword, all objects of the class share a single
instance of that variable. You can get or set the variable ’ s value through any instance of the class.

For example, suppose the Student class declares a shared NumStudents variable, as shown in the
following code:

Public Class Student
 Shared NumStudents As Integer
 ...
End Class

In this case, all instances of the Student class share the same NumStudents value. The following
code creates two Student objects. It uses one to set the shared NumStudents value and uses the other
to display the result.

Dim student1 As New Student
Dim student2 As New Student
student1.NumStudents = 100
MessageBox.Show(student2.NumStudents)

Because all instances of the class share the same variable, any changes to the value that you make
using one object are visible to all the others. Figure 26 - 4 illustrates this idea. Each Student class
instance has its own FirstName, LastName, Scores, and other individual data values, but they all
share the same NumStudents value.

c26.indd 622c26.indd 622 12/31/09 6:50:05 PM12/31/09 6:50:05 PM

Because a shared variable is associated with the
class as a whole and not a specifi c instance
of the class, Visual Basic lets you refer to it
using the class ’ s name in addition to using
specifi c instance variables. In fact, if you try
to access a shared variable through a specifi c
instance rather than through the class, Visual
Basic fl ags the code with a warning, although it
will run the code.

The following code defi nes a new Student
object and uses it to set NumStudents to 100.
It then uses the class name to display the
NumStudents value.

Dim student1 As New Student
student1.NumStudents = 100
MessageBox.Show(Student.NumStudents)

Shared Methods

Shared methods are a little less intuitive than shared variables. Like shared variables, shared
methods are accessible using the class ’ s name. For example, the NewStudent function shown in the
following code is declared with the Shared keyword. This function creates a new Student object,
initializes it by adding it to some sort of database, and then returns the new object.

Public Class Student
 ...
 ' Return a new Student.
 Public Shared Function NewStudent() As Student
 ' Instantiate the Student.
 Dim new_student As New Student

 ' Add the new student to the database.
 ' ...

 ' Return the new student.
 Return new_student
 End Function
 ...
End Class

This type of function that creates a new instance of a class is sometimes called a factory method . In
some cases, you can use an appropriate constructor instead of a factory method. One time when a
factory method is useful is when object creation might fail. If data passed to the method is invalid,
some resource (such as a database) prohibits the new object (perhaps a new Student has the same
name as an existing Student), or the object may come from more than one place (for example, it may

S
tu

de
nt

 In
st

an
ce

s

NumStudents

FirstName

LastName

Scores

...

NumStudents

NumStudents

FirstName

LastName

Scores

...

NumStudents

FirstName

LastName

Scores

...

Student Class

FIGURE 26-4: If a variable in a class is declared

Shared, all instances of a class share the same value.

Events ❘ 623

c26.indd 623c26.indd 623 12/31/09 6:50:06 PM12/31/09 6:50:06 PM

624 ❘ CHAPTER 26 CLASSES AND STRUCTURES

be either a new object or one taken from a pool of existing objects). In those cases, a factory method
can return Nothing. A constructor could raise an error, but it cannot return Nothing if it fails.

If you want to force the program to use a factory method rather than creating an instance of the
object directly, give the class a private constructor. Code that lies outside of the class cannot use
the constructor because it is private. It also cannot use the default constructor associated with the
New statement because the class has an explicit constructor. The code must create new objects by
using the factory method, which can use the private constructor because it ’ s inside the class.

As is the case with shared variables, you can access a shared method by using any instance of the
class or by using the class ’ s name. As is also the case with shared variables, if you access a shared
method from an instance of the class, Visual Basic fl ags it with a warning.

The following code declares the student1 variable and initializes it by calling the NewStudent
factory method using the class ’ s name. Next, the code declares student2 and uses the student1
object ’ s NewStudent method to initialize it.

Dim student1 As Student = Student.NewStudent()
Dim student2 As Student = student1.NewStudent()

One oddity of shared methods is that they can use class variables and methods only if they are
also shared. If you think about accessing a shared method through the class name rather than an
instance of the class, this makes sense. If you don ’ t use an instance of the class, there is no instance
to give the method data.

In the following code, the Student class declares the variable NumStudents with the Shared keyword
so shared methods can use that value. It declares the instance variables FirstName and LastName
without the Shared keyword, so shared methods cannot use those values. The shared NewStudent
method starts by incrementing the shared NumStudents value. It then creates a new Student object
and initializes its FirstName and LastName values. It can initialize those values because it is using a
specifi c instance of the class and that instance has FirstName and LastName values.

Public Class Student
 Public Shared NumStudents As Integer
 Public FirstName As String
 Public LastName As String
 ...
 ' Return a new Student.
 Public Shared Function NewStudent() As Student
 ' Increment the number of Students loaded.
 NumStudents += 1

 ' Instantiate the Student.
 Dim new_student As New Student
 new_student.FirstName = " < unknown > "
 new_student.LastName = " < unknown > "

 ' Add the new student to the database.
 ...

 ' Return the new student.

c26.indd 624c26.indd 624 12/31/09 6:50:06 PM12/31/09 6:50:06 PM

 Return new_student
 End Function
 ...
End Class

Figure 26 - 5 illustrates the situation. The
shared NewStudent method is contained
within the class itself and has access to the
NumStudents variable. If it wanted to use
a FirstName, LastName, or Scores value,
however, it needs to use an instance of
the class.

SUMMARY

Classes and structures are very similar.
Both are container types that group related
variables, methods, and events in a single
entity.

Most developers use classes exclusively,
primarily because structures are relatively new
and developers are more familiar with classes. Structures also cannot take advantage of inheritance.

Another signifi cant factor when picking between classes and structures, however, is their difference
in type. Classes are reference types, whereas structures are value types. This gives them different
behaviors when defi ning and initializing objects, and when passing objects to routines by value and
by reference.

When you understand the differences between classes and structures, you can select the one that is
more appropriate for your application.

If you build enough classes and structures, you may start to have naming collisions. It is common
for developers working on different projects to defi ne similar business classes such as Employee,
Customer, Order, and InventoryItem. Although these objects may be similar, they may differ in
important details. The Customer class defi ned for a billing application might include lots of account
and billing address information, whereas a repair assignment application might focus on the
customer ’ s equipment and needs.

Having two Customer classes around can result in confusion and programs that cannot easily
interact with each other. Namespaces can help categorize code and differentiate among classes. You
can defi ne separate namespaces for the billing and repair assignment applications, and use them to
tell which version of the Customer class you need for a particular purpose.

Chapter 27, “ Namespaces, ” describes namespaces in detail. It explains how to create namespaces
and how to use them to refer to classes created in other modules.

S
tu

de
nt

 In
st

an
ce

s

NumStudents

FirstName

LastName

Scores

...

NumStudents

NumStudents

FirstName

LastName

Scores

...

NumStudents

FirstName

LastName

Scores

...

Student Class

NewStudent method

FIGURE 26-5: A shared method can only access other

shared variables and methods.

Summary ❘ 625

c26.indd 625c26.indd 625 12/31/09 6:50:07 PM12/31/09 6:50:07 PM

c26.indd 626c26.indd 626 12/31/09 6:50:07 PM12/31/09 6:50:07 PM

27
Namespaces

In large applications, it is fairly common to have name collisions. One developer might
create an Employee class, while another makes a function named Employee that returns the
employee ID for a particular person ’ s name. Or two developers might build different Employee
classes that have different properties and different purposes. When multiple items have the
same name, this is called a namespace collision or namespace pollution .

These sorts of name confl icts are most common when programmers are not working closely
together. For example, different developers working on the payroll and human resources
systems might both defi ne Employee classes with slightly different purposes.

Namespaces enable you to classify and distinguish among programming entities that have the
same name. For example, you might build the payroll system in the Payroll namespace and the
human resources system in the HumanResources namespace. Then, the two Employee classes
would have the fully qualifi ed names Payroll.Employee and HumanResources.Employee, so
they could coexist peacefully and the program could tell them apart.

The following code shows how an application would declare these two types of
Employee objects:

Dim payroll_emp As Payroll.Employee
Dim hr_emp As HumanResources.Employee

Namespaces can contain other namespaces, so you can build a hierarchical structure that
groups different entities. You can divide the Payroll namespace into pieces to give developers
working on that project some isolation from each other.

Namespaces can be confusing at fi rst, but they are really fairly simple. They just break up
the code into manageable pieces so that you can group parts of the program and tell different
parts from each other.

This chapter describes namespaces. It explains how to use namespaces to categorize
programming items and how to use them to select the right versions of items with the same name.

c27.indd 627c27.indd 627 12/31/09 6:51:00 PM12/31/09 6:51:00 PM

628 ❘ CHAPTER 27 NAMESPACES

 THE IMPORTS STATEMENT

 Visual Studio defi nes thousands of variables, classes, routines, and other entities to provide tools for
your applications. It categorizes them in namespaces to prevent name collisions and to make it easier
for you to fi nd the items you need.

 The Visual Studio root namespaces are named Microsoft and System. The Microsoft namespace
includes namespaces that support different programming languages and tools. For example, typical
namespaces include CSharp, JScript, and VisualBasic, which contain types and other tools that
support the C#, JScript, and Visual Basic languages. The Microsoft namespace also includes the
Win32 namespace, which provides classes that handle operating system events and that manipulate
the Registry.

 The System namespace contains a huge number of useful programming items, including many
nested namespaces. For example, the System.Drawing namespace contains classes related to
drawing, System.Data contains classes related to databases, System.Threading holds classes
dealing with multithreading, and System.Security includes classes for working with security and
cryptography.

 Note that these namespaces are not necessarily available to your program at all times. For example,
by default, the Microsoft.JScript namespace is not available to Visual Basic programs. To use it, you
must fi rst add a reference to the Microsoft.JScript.dll library.

 Visual Studio includes so many programming tools that the namespace hierarchy is truly enormous.
Namespaces are refi ned into sub - namespaces, which may be further broken into more namespaces
until they reach a manageable size. Although this makes it easier to differentiate among all of
the different programming entities, it makes the fully qualifi ed names of some classes rather
cumbersome.

 Example program DrawDashes uses the following code to draw a rectangle inside its form. Fully
qualifi ed names such as System.Drawing.Drawing2D.DashStyle.DashDotDot are so long that
they make the code hard to read.

Private Sub DrawDashedBox(ByVal gr As System.Drawing.Graphics)
 gr.Clear(Me.BackColor)

 Dim rect As System.Drawing.Rectangle = Me.ClientRectangle
 rect.X += 10
 rect.Y += 10
 rect.Width - = 20
 rect.Height - = 20

 Using my_pen As New System.Drawing.Pen(System.Drawing.Color.Blue, 5)
 my_pen.DashStyle = System.Drawing.Drawing2D.DashStyle.DashDotDot
 gr.DrawRectangle(my_pen, rect)
 End Using
End Sub

code snippet DrawDashes

c27.indd 628c27.indd 628 12/31/09 6:51:02 PM12/31/09 6:51:02 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

You can use the Imports statement at the top of the fi le to make using namespaces easier. After
you import a namespace, your code can use the items it contains without specifying the
namespace.

Example program DrawDashesWithImports uses the following code. It imports the System.Drawing
and System.Drawing.Drawing2D namespaces so it doesn ’ t need to mention the namespaces in its
object declarations. This version is much easier to read.

Imports System.Drawing
Imports System.Drawing.Drawing2D
...
Private Sub DrawDashedBox(ByVal gr As Graphics)
 gr.Clear(Me.BackColor)

 Dim rect As Rectangle = Me.ClientRectangle
 rect.X += 10
 rect.Y += 10
 rect.Width - = 20
 rect.Height - = 20

 Using my_pen As New Pen(Color.Blue, 5)
 my_pen.DashStyle = DashStyle.DashDotDot
 gr.DrawRectangle(my_pen, rect)
 End Using
End Sub

code snippet DrawDashesWithImports

DRAWING DEFAULTS

System.Drawing is automatically imported by default in Windows Forms
applications so you normally don ’ t need to import it. See the following section for
more information on automatic imports.

A fi le can include any number of Imports statements. The statements must appear at the beginning
of the fi le, and they defi ne namespace shortcuts for the entire fi le. If you want different pieces of
code to use different sets of Imports statements, you must place the pieces of code in different fi les.
If the pieces of code are in the same class, use the Partial keyword so you can split the class into
multiple fi les.

The Imports Statement ❘ 629

c27.indd 629c27.indd 629 12/31/09 6:51:03 PM12/31/09 6:51:03 PM

630 ❘ CHAPTER 27 NAMESPACES

COLLISION PROVISION

If a program imports two namespaces that defi ne classes with the same names,
Visual Basic may become confused and give you an ambiguous reference error. To
fi x the problem, the code must use fully qualifi ed names to select the right versions.

For example, suppose that the Payroll and HumanResources modules both defi ne
Employee classes. Then you must use the fully qualifi ed names Payroll.Employee and
HumanResources.Employee to differentiate between the two within the same fi le.

Sometimes this problem occurs even with namespaces built by Microsoft.
For example, both the System.Windows.Forms and System.Web.UI.Controls
namespaces defi ne a CheckBox class, so if you r program includes both namespaces,
you may encounter an ambiguous reference.

The complete syntax for the Imports statement is as follows:

Imports [alias =] namespace [.element]

Later sections in this chapter describe namespace aliases and elements in detail.

Automatic Imports

Visual Basic lets you quickly import a namespace for all of the modules in a project. In Solution
Explorer, double - click My Project. Click the References tab to display the page shown in Figure 27 - 1.

FIGURE 27-1: Use the My Project References tab to import namespaces for

every module in a project.

c27.indd 630c27.indd 630 12/31/09 6:51:04 PM12/31/09 6:51:04 PM

In the Imported namespaces list at the bottom, select the check box next to the namespaces that you
want to import. The program ’ s fi les will be able to use the objects defi ned in these namespaces, even
though they do not include Imports statements.

This is most useful when most of the program ’ s modules need to import the same namespaces.
Including the Imports statement in the fi les makes it easier for developers to see which namespaces
are available, however, so you might want to do this instead, particularly if you use unusual
namespaces.

By default, Visual Basic loads imports for the type of application you are building. For example,
when you start a Windows Form application, Visual Basic imports the following namespaces:

Microsoft.VisualBasic

System

System.Collections

System.Collections.Generic

System.Data

System.Drawing

System.Diagnostics

System.Windows.Forms

You can use the upper half of the References property page to manage project references. Use the
Add and Remove buttons (scrolled off to the right in Figure 27 - 1) to add and remove references.

Click the Unused References button (scrolled off to the right in Figure 27 - 1) to see a list of
referenced libraries not currently used by the project. Before you distribute the program, you can
remove the unused references.

Namespace Aliases

You can use the alias clause to defi ne a shorthand notation for the namespace. For instance, the
following code imports the System.Drawing.Drawing2D namespace and gives it the alias D2. Later,
it uses D2 as shorthand for the fully qualifi ed namespace.

Imports D2 = System.Drawing.Drawing2D
...
Dim dash_style As D2.DashStyle = D2.DashStyle.DashDotDot

This technique is handy if you need to use two namespaces that defi ne different classes with the
same name. Normally, if two namespaces defi ne classes with the same name, you must use the fully
qualifi ed class names so that Visual Basic can tell them apart. You can use aliases to indicate the
namespaces more concisely.

Suppose that the JobClasses and FinanceStuff namespaces both defi ne an Employee class. If you
declare a variable using the unqualifi ed class Employee, Visual Basic would not know which version

➤

➤

➤

➤

➤

➤

➤

➤

The Imports Statement ❘ 631

c27.indd 631c27.indd 631 12/31/09 6:51:05 PM12/31/09 6:51:05 PM

632 ❘ CHAPTER 27 NAMESPACES

to use. The following code shows how you can declare fully qualifi ed versions of the Employee class
in the JobNamespaces application:

Imports JobNamespaces.JobClasses
Imports JobNamespaces.FinanceStuff
...
Dim job_emp As JobNamespaces.JobClasses.Employee
Dim finance_emp As JobNamespaces.FinanceStuff.Employee
...

Example program JobNamespaces uses aliases to simplify these declarations. This program uses Job
as an alias for MyApplication.JobClasses and Finance as an alias for MyApplication.FinanceStuff.

Now suppose that the JobClasses namespace also defi nes the Dispatcher class. The FinanceStuff
namespace does not defi ne a Dispatcher class, so there is no name confl ict between the namespaces.
You could use the Job alias to refer to the Dispatcher class, or you could import the JobClasses
namespace again without an alias as shown in the following code:

Imports JobNamespaces.JobClasses
Imports Job = JobNamespaces.JobClasses
Imports Finance = JobNamespaces.FinanceStuff
...
Dim job_emp As Job.Employee
Dim finance_emp As Finance.Employee
Dim job_dispatcher As Dispatcher
...

code snippet JobNamespaces

Namespace Elements

In addition to importing a namespace, you can import an element within the namespace. This is
particularly useful for enumerated types.

For example, the following code imports the System.Drawing.Drawing2D namespace, which defi nes
the DrawStyle enumeration. It declares the variable dash_style to be of the DashStyle type and sets
its value to DashStyle.DashDotDot.

Imports System.Drawing.Drawing2D
...
Dim dash_style As DashStyle = DashStyle.DashDotDot
...

Example program DrawDashesImportsDashStyle, which is available for download on the
book ’ s web site, uses the following code to import the System.Drawing.Drawing2D.DashStyle
enumeration. That allows it to set the value of my_pen.DashStyle to DashDotDot without needing
to specify the name of the enumeration (DashStyle).

c27.indd 632c27.indd 632 12/31/09 6:51:05 PM12/31/09 6:51:05 PM

Imports System.Drawing.Drawing2D
Imports System.Drawing.Drawing2D.DashStyle
...
my_pen.DashStyle = DashDotDot
...

code snippet DrawDashesImportsDashStyle

THE ROOT NAMESPACE

Every project has a root namespace, and every item in the project is contained directly or indirectly
within that namespace. To view or change the project ’ s root namespace, open Solution Explorer
and double - click the My Projects entry. View or modify the root namespace on the Application tab ’ s
“ Root namespace ” text box.

MAKING NAMESPACES

You can create new namespaces nested within the root namespace to further categorize your code.
The easiest way to create a namespace is by using the Namespace statement. The following code
declares a namespace called SchedulingClasses. It includes the defi nition of the TimeSlot class and
possibly other classes.

Namespace SchedulingClasses
 Public Class TimeSlot
 ...
 End Class
 ...
End Namespace

Code inside the namespace can refer to the TimeSlot class as simply TimeSlot. Code outside of the
namespace can refer to the class using the namespace as shown in the following code (assuming
MyApplication is the project ’ s root namespace):

Dim time_slot As New MyApplication.SchedulingClasses.TimeSlot

You can nest namespaces within other namespaces to any depth. In fact, because all of your
application ’ s code is contained within the root namespace, any namespace you create is already
contained within another namespace. There is no way to make a namespace that is not contained
within the root namespace.

If you want to make a namespace that lies outside of the application ’ s root namespace, you must
create a library project. Then the code in that project lies within its own root namespace.

The following code defi nes the DispatchClasses namespace. That namespace contains the
AppointmentClasses and JobClasses namespaces, each of which defi nes some classes.

Making Namespaces ❘ 633

c27.indd 633c27.indd 633 12/31/09 6:51:06 PM12/31/09 6:51:06 PM

634 ❘ CHAPTER 27 NAMESPACES

Namespace DispatchClasses
 Namespace AppointmentClasses
 Public Class AppointmentWindow
 ...
 End Class
 ...
 End Namespace

 Namespace JobClasses
 Public Class SkilledJob
 ...
 End Class
 ...
 End Namespace
End Namespace

The following code shows how an application could create references to AppointmentWindow and
SkilledJob objects using the class ’ s fully qualifi ed names:

Dim appt As New MyApplication.DispatchClasses.AppointmentClasses.AppointmentWindow
Dim job As New MyApplication.DispatchClasses.JobClasses.SkilledJob

A Namespace statement can only appear at the namespace level. You cannot create a namespace
within a module, class, structure, or method.

Inside a namespace, you can defi ne other namespaces, classes, structures, modules, enumerated
types, and interfaces. You cannot directly defi ne variables, properties, subroutines, functions, or
events. Those items must be contained within some other entity (such as a class, structure, module,
or interface).

You can use more than one Namespace statement to defi ne pieces of the same namespace.
For example, the following code uses a Namespace statement to make the OrderEntryClasses
namespace, and it defi nes the Employee class inside it. Later, the code uses another Namespace
statement to add the Customer class to the same namespace. In this case, the single namespace
contains both classes.

Namespace OrderEntryClasses
 Public Class Employee
 ...
 End Class
End Namespace
 ...
Namespace OrderEntryClasses
 Public Class Customer
 ...
 End Class
End Namespace

Example program NamespaceHierarchy, which is available for download on the book ’ s web site,
defi nes several nested namespaces.

c27.indd 634c27.indd 634 12/31/09 6:51:07 PM12/31/09 6:51:07 PM

Scattering pieces of a namespace throughout your code will probably confuse other developers.
One case where it might make sense to break a namespace into pieces would be if you want to put
different classes in different code fi les, either to prevent any one fi le from becoming too big or to
allow different programmers to work on the fi les at the same time. In that case, it might make sense
to place related pieces of the application in the same namespace but in different fi les.

CLASSES, STRUCTURES, AND MODULES

Classes, structures, and modules create their own name contexts that are similar in some ways
to namespaces. For example, a class or structure can contain the defi nition of another class or
structure, as shown in the following code:

Public Class Class1
 Public Class Class2
 ...
 End Class

 Public Structure Struct1
 Public Name As String

 Public Structure Struct2
 Public Name As String
 End Structure
 End Structure
End Class

You can access public module members and shared class or structure members using a fully
qualifi ed syntax similar to the one used by namespaces. For example, the following code creates the
GlobalValues module and defi nes the public variable MaxJobs within it. Later, the program can set
MaxJobs using its fully qualifi ed name.

Module GlobalValues
 Public MaxJobs As Integer
 ...
End Module
...
MyApplication.GlobalValues.MaxJobs = 100

Although these cases look very similar to namespaces, they really are not. One big difference is that
you cannot use a Namespace statement inside a class, structure, or module.

IntelliSense gives another clue that Visual Basic treats classes, structures, and modules differently
from namespaces. The IntelliSense popup shown in Figure 27 - 2 displays curly braces ({}) next to the
FinanceStuff and JobClasses namespaces, but it displays different icons for the classes Employer and
Form1, and the module Module1. When you select a namespace, IntelliSense also displays a tooltip
(on the right in Figure 27 - 2) giving the namespace ’ s name.

Classes, Structures, and Modules ❘ 635

c27.indd 635c27.indd 635 12/31/09 6:51:07 PM12/31/09 6:51:07 PM

636 ❘ CHAPTER 27 NAMESPACES

RESOLVING NAMESPACES

Normally, Visual Basic does a pretty good job of resolving namespaces, and you don ’ t need to
worry too much about the process. If you import a namespace, you can omit the namespace in any
declarations that you use. If you have not imported a namespace, you can fully qualify declarations
that use the namespace and you ’ re done. There are some in - between cases, however, that can
be confusing. To understand them, it helps to know a bit more about how Visual Basic resolves
namespaces.

When Visual Basic sees a reference that uses a fully qualifi ed namespace, it looks in that namespace
for the item it needs and that ’ s that. It either succeeds or fails. For example, the following code
declares a variable of type System.Collections.Hashtable. Visual Basic looks in the System.Collections
namespace and tries to fi nd the Hashtable class. If the class is not there, the declaration fails.

Dim hash_table As New System.Collections.Hashtable

When Visual Basic encounters a qualifi ed namespace, it fi rst assumes that it is fully qualifi ed. If it
cannot resolve the reference as described in the previous paragraph, it tries to treat the reference as
partially qualifi ed and it looks in the current namespace for a resolution. For example, suppose you
declare a variable as shown in the following code:

Dim emp As JobClasses.Employee

FIGURE 27-2: IntelliSense displays curly braces ({}) to the left of namespaces such as

FinanceStuff and JobClasses.

c27.indd 636c27.indd 636 12/31/09 6:51:07 PM12/31/09 6:51:07 PM

In this case, Visual Basic searches the current namespace for a nested namespace called JobClasses.
If it fi nds such a namespace, it looks for the Employee class in that namespace.

If Visual Basic cannot resolve a namespace using these methods, it moves up the namespace
hierarchy and tries again. For example, suppose that the current code is in the MyApplication
.JobStuff.EmployeeClasses.TimeSheetRoutines namespace. Now, suppose that the SalaryLevel class
is defi ned in the MyApplication.JobStuff namespace and consider the following code:

Dim salary_level As New SalaryLevel

Visual Basic examines the current namespace MyApplication.JobStuff.EmployeeClasses
.TimeSheetRoutines and doesn ’ t fi nd a defi nition for SalaryLevel. It moves up the namespace
hierarchy and searches the MyApplication.JobStuff.EmployeeClasses namespace, again failing to
fi nd SalaryLevel. It moves up the hierarchy again to the MyApplication.JobStuff namespace, and
there it fi nally fi nds the SalaryLevel class.

Movement up the namespace hierarchy can sometimes be a bit confusing. It may lead Visual Basic to
resolve references in an ancestor of the current namespace, in some sort of “ uncle/aunt ” namespace,
or in a “ cousin ” namespace.

For example, consider the namespace hierarchy shown in Figure 27 - 3. The root
namespace MyApplication contains the namespaces BusinessClasses and AssignmentStuff
.BusinessClasses defi nes the Employee and Customer classes. AssignmentStuff contains the
AssignmentGlobals module, which defi nes the MakeAssignment subroutine and a different version
of the Employee class.

MyApplication

BusinessClasses AssignmentStuff

AssignmentGlobals

AssignEmployee

CustomerEmployee

Namespace

NamespaceNamespace

Module

Subroutine

MakeAssignment
Subroutine

ClassClass

Employee
Class

FIGURE 27-3: Visual Basic may search all over the namespace hierarchy to

resolve a declaration.

Resolving Namespaces ❘ 637

c27.indd 637c27.indd 637 12/31/09 6:51:08 PM12/31/09 6:51:08 PM

638 ❘ CHAPTER 27 NAMESPACES

Now, suppose that the Customer class contains the following subroutine:

Public Sub AssignEmployee()
 AssignmentStuff.AssignmentGlobals.MakeAssignment(Me)
 ...
End Sub

This code lies in the MyApplication.BusinessClasses namespace. Visual Basic cannot fi nd a meaning
for the AssignmentStuff namespace locally in that context, so it moves up the namespace hierarchy
to MyApplication, where it fi nds the AssignmentStuff namespace. Within that namespace, it fi nds
the AssignmentGlobals module and the MakeAssignment subroutine that it contains.

Visual Basic can also peer into modules as if their public contents were part of the namespace itself.
That means you can rewrite the previous code in the following slightly simpler version:

Public Sub AssignEmployee()
 AssignmentStuff.MakeAssignment(Me)
 ...
End Sub

In this example, there is only one MakeAssignment subroutine, so there ’ s little doubt that Visual
Basic has found the correct one. If different namespaces defi ne items with the same names, the
situation can be somewhat more confusing. Suppose that the Customer class declares an object that
is from the Employee class defi ned in the MyApplication.AssignmentStuff namespace, as shown in
the following code:

Dim emp As New AssignmentStuff.Employee

If you understand how Visual Basic performs namespace resolution, you can fi gure out that the
object is of the Employee class defi ned in the MyApplication.AssignmentStuff namespace. This isn ’ t
completely obvious, however.

If you add an Imports statements to the program, the situation gets more confusing. Suppose
that the program imports the AssignmentStuff namespace and then the Customer class declares
a variable of type Employee. Because this code is in the BusinessClasses namespace, Visual Basic
uses that namespace ’ s version of Employee. If the code is in some other namespace (such as
MyApplication), the program uses the imported AssignmentStuff version of the class.

Finally, suppose that the program imports both BusinessClasses and AssignmentStuff
.AssignmentGlobals and then makes the following declaration in another namespace. In this case,
Visual Basic cannot decide which version of the class to use, so it generates an error.

Dim emp As Employee

This example is so confusing, however, that you would probably be better off restructuring the
namespaces and possibly renaming one of the versions of the Employee class rather than trying to
fi gure out how Visual Basic is resolving the namespaces.

c27.indd 638c27.indd 638 12/31/09 6:51:09 PM12/31/09 6:51:09 PM

You can simplify these issues by avoiding duplicate names across all namespaces. When you do
use duplicate names, you can use fully qualifi ed namespaces to avoid ambiguity. You can also use
Imports statements to make namespace aliases and then use the aliases to avoid ambiguity more
concisely.

SUMMARY

Namespaces are everywhere in Visual Basic. Every piece of code you write is contained in some
namespace, even if it is only the application ’ s root namespace. Despite their pervasiveness, many
developers never need to use namespaces explicitly, so they fi nd them somewhat mystifying.

Namespaces are really quite simple, however. They merely divide programming items into a
hierarchy. They enable you to categorize related items and resolve name collisions in different parts
of the application.

You can use the Imports statement to allow the program to refer to items in a namespace without
giving fully qualifi ed names. A namespace alias lets you explicitly specify an item ’ s namespace in an
abbreviated form. This is particularly useful to resolve ambiguous names that appear in more than
one namespace included in Imports statements.

This chapter describes namespaces in general. Chapter 28 “ Collection Classes, ” describes some of
the useful classes for grouping object classes, including those in the System.Collections and System
.Collections.Generic namespaces.

Summary ❘ 639

c27.indd 639c27.indd 639 12/31/09 6:51:09 PM12/31/09 6:51:09 PM

c27.indd 640c27.indd 640 12/31/09 6:51:09 PM12/31/09 6:51:09 PM

28
Collection Classes

Visual Basic .NET includes a large assortment of pre - built classes that store and manage
groups of objects. These collection classes provide a wide variety of different features, so the
right class for a particular purpose depends on your application.

For example, an array is good for storing objects in a particular fi xed order. An ArrayList
enables you to add, remove, and rearrange its objects much more easily than an array does. A
Queue lets a program easily add items and remove them in fi rst in, fi rst out order. In contrast,
a Stack lets the program remove items in last in, fi rst out order.

This chapter describes these different kinds of collection classes and provides tips for selecting
the right one for various purposes.

WHAT IS A COLLECTION?

The word collection means a group of objects that should be kept together. For example, a
coin collection is a group of coins that you keep together because they are rare, valuable, or
otherwise interesting.

Unfortunately, the idea of a collection is such a useful concept that Visual Basic adopted the
word and made a specifi c class named Collection. The Collection class does keep a group of
objects together, but it reserves for its own use the perfect word for other similar kinds of
groups of objects.

That leads to some semantic ambiguity when you talk about collection classes. Do you mean
the Collection class? Or do you mean some other class that groups objects? Even the Visual
Basic documentation has this problem and sometimes uses collection classes to mean classes
that group things together.

This chapter describes the Collection class as well as other collection classes.

c28.indd 641c28.indd 641 12/30/09 7:45:09 PM12/30/09 7:45:09 PM

642 ❘ CHAPTER 28 COLLECTION CLASSES

One of the most basic Visual Basic entities that groups objects is an array . An array stores data
values or references to objects in a simple block of memory with one entry directly following
another. The Array class provides some special methods for manipulating arrays (such as reversing,
sorting, or searching an array).

The Collection class provides a few specifi c features for working with its group of objects. It enables
you to add an item to the Collection, optionally specifying a key for the item. You can then search
for the item or remove the item using its key or its index in the Collection.

One of the most useful features of the Collection class is that it supports enumerators and For Each
loops. That lets you easily loop over the objects in a Collection without worrying about the number
of objects it contains.

Other classes derived from the Collection class provide additional features. For example, the
Hashtable class can store a large number of objects with associated keys very effi ciently. Dictionary
is essentially a strongly - typed generic Hashtable so, although the Hashtable uses the Object data
type for its key/value pairs, the Dictionary uses more specifi c data types that you specify such as
Strings or Employees. The section “ Dictionaries ” later in this chapter describes the Dictionary class
in more detail.

The Queue class makes it easy to work with objects on a fi rst in, fi rst out (FIFO) basis, whereas the
Stack class helps you work with objects in a last in, fi rst out order (LIFO).

The remainder of this chapter describes these classes in detail.

ARRAYS

Visual Basic .NET provides two basic kinds of arrays. First, it provides the normal arrays that you
get when you declare a variable by using parentheses. For example, the following code declares an
array of Integers named “ squares. ” The array contains 11 items with indexes ranging from 0 to 10.
The code loops over the items, setting each one ’ s value. Next, it loops over the values again, adding
them to a string. When it has fi nished building the string, the program displays the result.

Private Sub ShowSquaresNormalArray()
 Dim squares(10) As Integer

 For i As Integer = 0 To 10
 squares(i) = i * i
 Next i

 Dim txt As String = ""
 For i As Integer = 0 To 10
 txt & = squares(i).ToString & vbCrLf
 Next i
 MessageBox.Show(txt)
End Sub

code snippet ShowSquares

c28.indd 642c28.indd 642 12/30/09 7:45:12 PM12/30/09 7:45:12 PM

INITIALIZING ARRAYS

You can initialize an array as in the following code:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

If you have Option Infer turned on, you can omit the data type as in the following:

Dim numbers() = {1, 2, 3}

For more information on array initialization, see the section “Initializing Arrays”
in Chapter 15, “Data Types, Variables, and Constants.”

The Visual Basic Array class provides another kind of array. This kind of array is actually an object
that provides methods for managing the items stored in the array.

The following code shows the previous version of the code rewritten to use an Array object. This
version creates the array by using the Array class ’ s shared CreateInstance method, passing it the
data type that the array should contain and the number of items that it should hold. The code
then loops over the items using the array ’ s SetValue method to set the items ’ values. If you have
Option Strict turned off, the code can set the items ’ values exactly as before by using the statement
squares(i) = i * i. If Option Strict is on, you need to use SetValue. Next, the program loops over
the items again, using the array ’ s GetValue method to add the item values to a string. If Option
Strict is off, you can use the same syntax as before: txt & = squares(i).ToString & vbCrLf. If
Option Strict is on, you need to use the array ’ s GetValue method. After building the string, the
program displays it in a message box as before.

Private Sub ShowSquaresArrayObject()
 Dim squares As Array =
 Array.CreateInstance(GetType(Integer), 11)

 For i As Integer = 0 To 10
 squares.SetValue(i * i, i)
 Next i

 Dim txt As String = ""
 For i As Integer = 0 To 10
 txt & = squares.GetValue(i).ToString & vbCrLf
 Next i
 MessageBox.Show(txt)
End Sub

code snippet ShowSquares

Example program ShowSquares uses similar code to build a list of squares by using a normal
array and by using an Array object.

The following sections describe the similarities and differences between normal arrays and
Array objects.

Arrays ❘ 643

c28.indd 643c28.indd 643 12/30/09 7:45:13 PM12/30/09 7:45:13 PM

644 ❘ CHAPTER 28 COLLECTION CLASSES

Array Dimensions

Both normal variable arrays and Array objects can support multiple dimensions. The following
statement declares a three - dimensional array with 11 items in the fi rst dimension, 11 in the second,
and 21 in the third. It then sets the value for the item in position (1, 2, 3).

Dim values(10, 10, 20) As Integer
values(1, 2, 3) = 100

The following code does the same thing with an Array object:

Dim values As Array =
 Array.CreateInstance(GetType(Integer), 11, 21, 31)
values.SetValue(100, 1, 2, 3)

If Option Strict is off, the code can use the same syntax for getting and setting the Array item ’ s
value. The following code sets the (1, 2, 3) item ’ s value to 100 and then displays its value (100):

Option Strict Off
. . .
values(1, 2, 3) = 100
Debug.WriteLine(values(1, 2, 3))

Lower Bounds

A normal array of variables always has lower bound 0 in every dimension. The following code
declares an array with indexes ranging from 0 to 10:

Dim values(10) As Integer

You can fake a variable array that has nonzero lower bounds, but it requires extra work on your
part. You must add or subtract an appropriate amount from each index to map the indexes you
want to use to the underlying zero - based indexes.

Array objects can handle nonzero lower bounds for you. The following code creates a two -
dimensional array with indexes ranging from 1 to 10 in the fi rst dimension, and 101 to 120 in the
second dimension:

Dim dimension_lengths() As Integer = {10, 20}
Dim lower_bounds() As Integer = {1, 101}
Dim values As Array =
 Array.CreateInstance(GetType(Integer), dimension_lengths, lower_bounds)

The code fi rst defi nes an array containing the number of elements it wants for each dimension (10
in the fi rst dimension and 20 in the second dimension). It then creates an array containing the lower
bounds it wants to use for each dimension (the fi rst dimension starts with index 1 and the second
dimension starts with index 101).

c28.indd 644c28.indd 644 12/30/09 7:45:14 PM12/30/09 7:45:14 PM

The code then calls the Array class ’ s shared CreateInstance method, passing it the data type of the
array ’ s objects, the array of dimension lengths, and the array of lower bounds. The CreateInstance
method uses the arrays of lower bounds and dimensions to create an Array object with the
appropriate bounds.

The following code sets the values in this array. The last two parameters in the call to SetValue give
the items ’ positions in the Array.

For i As Integer = 1 To 10
 For j As Integer = 101 To 120
 values.SetValue(i * 100 + j, i, j)
 Next j
Next i

If Option Strict is off, the program can use the following simpler syntax:

For i As Integer = 1 To 10
 For j As Integer = 101 To 120
 values(i, j) = i * 100 + j
 Next j
Next i

Resizing

You can use the ReDim statement to change a normal array ’ s dimensions. Add the Preserve keyword
if you want the array to keep its existing values, as shown here:

Dim values(100) As Integer
. . .
ReDim Preserve values(200)

An Array object cannot resize itself, but it is relatively easy to copy an Array object ’ s items to
another Array object. The following code creates a values array containing 101 items with
indexes ranging from 0 to 100. Later, it creates a new Array object containing 201 items and uses
the values array ’ s CopyTo method to copy its values into the new array. The second parameter to
CopyTo gives the index in the destination array where the copy should start placing values.

Dim values As Array =
 Array.CreateInstance(GetType(Integer), 101)
. . .

Dim new_array As Array =
 Array.CreateInstance(GetType(Integer), 201)
values.CopyTo(new_array, 0)
values = new_array

Arrays ❘ 645

c28.indd 645c28.indd 645 12/30/09 7:45:14 PM12/30/09 7:45:14 PM

646 ❘ CHAPTER 28 COLLECTION CLASSES

The Array class ’ s shared Copy method allows you greater control. It lets you specify the index in the
source array where the copy should start, the index in the destination array where the items should
be copied, and the number of items to be copied.

Although building a new Array object and copying items into it is more cumbersome than using
ReDim to resize a variable array, the process is surprisingly fast.

Speed

There ’ s no doubt that arrays of variables are much faster than Array objects. In one test, setting
and getting values in an Array object took more than 100 times as long as performing the same
operations in a variable array.

If your application performs only a few hundred or a thousand array operations, the difference is
unimportant. If your application must access array values many millions of times, you may need
to consider using an array of variables even if the Array class would be more convenient for other
reasons (such as nonzero lower bounds).

THE NEED FOR SPEED

Normally I don’t recommend that you focus too much on speed issues until you’re
certain there will be a problem. Usually it’s much more important to make the
program work correctly than it is to squeeze the last iota of performance out of it.
Many applications fail because they don’t work reliably or correctly, but I’ve only
seen a few fail because they weren’t fast enough.

However, the difference in speed between arrays and the Array class is huge. If you
know your program is array-intensive, you can save some effort by using normal
arrays instead of the Array class from the beginning.

Microsoft has also optimized one - dimensional variable arrays, so they are
faster than multidimensional arrays. The difference is much less dramatic
than the difference between variable arrays and Array classes, however.

Example program ArraySpeeds, which is available for download on the
book ’ s web site, compares the speeds of variable arrays and Array objects.
Enter the number of items that you want to use in the arrays and click Go.
The program builds one - and two - dimensional arrays and Array objects
holding integers. It then fi lls the arrays and displays the elapsed time.

Figure 28 - 1 shows the results. Variable arrays are much faster than array
classes. One - dimensional variable arrays generally seem to be slightly faster
than two - dimensional arrays.

FIGURE 28-1: Variable

arrays are faster than

array classes.

c28.indd 646c28.indd 646 12/30/09 7:45:15 PM12/30/09 7:45:15 PM

Other Array Class Features

The Array class provides several other useful shared methods. For example, the IndexOf and
LastIndexOf methods return the position of a particular item in an Array.

Methods such as IndexOf and LastIndexOf would be a strong argument supporting Array objects over
normal arrays of variables if it weren ’ t for one somewhat surprising fact: Those same methods work
with regular arrays of variables, too! The following code fi lls an array of integers and then uses Array
methods to display the indexes of the fi rst item with value 6 and the last item with value 3:

Dim values(10) As Integer
For i As Integer = 0 To 10
 values(i) = i
Next i

MessageBox.Show(Array.IndexOf(values, 6).ToString)
MessageBox.Show(Array.LastIndexOf(values, 3).ToString)

The following sections describe some of the Array class ’ s other useful shared methods. All of these
work both for arrays of variables and Array objects.

Example program ArrayTests, which is available for download on the book ’ s web site,
demonstrates the Array class ’ s IndexOf, LastIndexOf, Reverse, and BinarySearch methods. It
also demonstrates the Sort method for arrays containing integers, objects that implement the
IComparable interface, and objects that can be sorted with IComparer objects.

Array.Reverse

The Array.Reverse method reverses the order of the items in an array. There ’ s nothing particularly
confusing about this method. It can easily reverse its items even if the items are not things that you
can reasonably compare. For example, it can reverse an array of integers, strings, StockOption
objects, or TreeView controls.

Array.Sort

The Array.Sort method sorts the items in the array. To sort the items, this method must compare
them to each other. That means the items must be things that can be reasonably compared, such
as integers, strings, or dates. More precisely, the method can sort the items if they implement the
IComparable interface, meaning they contain the means to compare themselves to each other.

The following code shows a Person class that implements the IComparable interface. The class
defi nes two public strings, FirstName and LastName. For convenience, it also defi nes a constructor
and a ToString function. The code then defi nes the CompareTo function that is required by the
IComparable interface. This function should compare the value of the current object to the value of
the object passed as a parameter. It should return – 1 if the current object should come before the
parameter, 0 if neither object must come before the other, and 1 if the parameter should come before
the current object. The String.Compare function makes exactly that calculation for two strings, so

Arrays ❘ 647

c28.indd 647c28.indd 647 12/30/09 7:45:16 PM12/30/09 7:45:16 PM

648 ❘ CHAPTER 28 COLLECTION CLASSES

the CompareTo function uses it to compare the two Person objects ’ names. You could use a more
complicated CompareTo function to order just about anything.

Public Class Person
 Implements IComparable

 Public FirstName As String
 Public LastName As String

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub

 Public Overrides Function ToString() As String
 Return LastName & ", " & FirstName
 End Function

 Public Function CompareTo(ByVal obj As Object) As Integer _
 Implements System.IComparable.CompareTo
 Dim other_Person As Person = DirectCast(obj, Person)
 Return String.Compare(Me.ToString, other_Person.ToString)
 End Function
End Class

code snippet ArrayTests

If a program has an array of Person objects, the Array.Sort method will sort the objects by last
name followed by fi rst name.

You can sort objects that do not implement the IComparable interface if you pass the Sort method an
object that can sort them. For example, suppose you defi ne a Manager class that does not implement
the IComparable interface. The following code shows a ManagerComparer class that implements the
IComparer interface. Its Compare method compares two Manager objects and returns – 1, 0, or 1 to
indicate the one that should come fi rst. The call to DirectCast converts the Compare method ’ s parameters
from Objects (specifi ed by the IComparer interface) to Managers.

Public Class ManagerComparer
 Implements IComparer

 Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer _
 Implements System.Collections.IComparer.Compare
 Dim mgr1 As Manager = DirectCast(x, Manager)
 Dim mgr2 As Manager = DirectCast(y, Manager)

 Return String.Compare(mgr1.ToString, mgr2.ToString)
 End Function
End Class

code snippet ArrayTests

c28.indd 648c28.indd 648 12/30/09 7:45:16 PM12/30/09 7:45:16 PM

The following code uses a ManagerComparer object to sort an array of Manager objects named
dept_managers:

' Sort.
Array.Sort(dept_managers, New ManagerComparer)

' Display the results.
Dim txt As String = ""
For i As Integer = 0 To dept_managers.GetUpperBound(0)
 txt & = dept_managers(i).ToString() & vbCrLf
Next i
MessageBox.Show(txt)

code snippet ArrayTests

Other overloaded versions of the Sort method let you sort two arrays (one containing keys and the
other values) in tandem or sort only parts of the array.

Array.BinarySearch

If the array contains items that are sorted, and the items implement the IComparable interface, then the
Array.BinarySearch method uses a binary search algorithm to locate a specifi c item within the array.

For example, suppose that the array contains Person objects as defi ned in the previous section.
Then you could use the following code to fi nd the object representing Rod Stephens in the people
array. The code starts by using Array.Sort to sort the array. Next the program makes a new Person
object that has the name Rod Stephens to represent the target value. The program calls the Array.
BinarySearch method to fi nd the index of the object with the target name.

' Sort the array.
Array.Sort(people)

' Find Rod Stephens.
Dim target_person As New Person("Rod", "Stephens")
Dim target_index As Integer = Array.BinarySearch(people, target_person)
MessageBox.Show(people(target_index).ToString)

code snippet ArrayTests

Binary search is extremely fast, so it works well if you need to fi nd an item within a sorted array. If
the items are not sorted, you should consider using a database or Hashtable object to store and fi nd
items. See the section “ Hashtable ” later in this chapter for more information.

COLLECTIONS

The Visual Basic collection classes basically hold items and don ’ t provide a lot of extra functionality.
Other classes described later in this chapter provide more features.

The following sections describe the simple collection classes in Visual Basic: ArrayList,
StringCollection, and NameValueCollection. They also describe strongly typed collections that you
can build to make code that uses these classes a bit easier to debug and maintain.

Collections ❘ 649

c28.indd 649c28.indd 649 12/30/09 7:45:17 PM12/30/09 7:45:17 PM

650 ❘ CHAPTER 28 COLLECTION CLASSES

ArrayList

The ArrayList class is a resizable array. You can add and remove items from any position in the
list and it resizes itself accordingly. The following table describes some of the class ’ s more useful
properties and methods.

PROPERTY/METHOD PURPOSE

Add Adds an item at the end of the list.

AddRange Adds the items in an object implementing the ICollection interface to the end

of the list.

BinarySearch Returns the index of an item in the list. The items must implement the

IComparable interface, or you must provide the Sort method with an

IComparer object.

Capacity Gets or sets the number of items that the list can hold. For example, if you

know that you will need to add 1000 items to the list, you may get better

performance by setting Capacity to 1000 before starting, rather than letting

the object grow incrementally as you add the items.

Clear Removes all of the items from the list. The Capacity property remains

unchanged, so the ArrayList keeps any space it has previously allocated to

improve performance.

Contains Returns True if a specifi ed item is in the list.

CopyTo Copies some or the entire list into a one - dimensional Array object.

Count Returns the number of items currently in the list. This is always less than or

equal to Capacity.

GetRange Returns an ArrayList containing the items in part of the list.

IndexOf Returns the zero - based index of the fi rst occurrence of a specifi ed item

in the list.

Insert Adds an item at a particular position in the list.

InsertRange Adds the items in an object implementing the ICollection interface to a

particular position in the list.

Item Returns the item at a particular position in the list.

LastIndexOf Returns the zero - based index of the last occurrence of a specifi ed item

in the list.

Remove Removes the fi rst occurrence of a specifi ed item from the list.

c28.indd 650c28.indd 650 12/30/09 7:45:18 PM12/30/09 7:45:18 PM

PROPERTY/METHOD PURPOSE

RemoveAt Removes the item at the specifi ed position in the list.

RemoveRange Removes the items in the specifi ed positions from the list.

Reverse Reverses the order of the items in the list.

SetRange Replaces the items in part of the list with new items taken from an

ICollection object.

Sort Sorts the items in the list. The items must implement the IComparable

interface, or you must provide the Sort method with an IComparer object.

ToArray Copies the list ’ s items into a one - dimensional array. The array can be an array

of objects, an array of a specifi c type, or an Array object (holding objects).

TrimToSize Reduces the list ’ s allocated space so that it is just big enough to hold its

items. This sets Capacity = Count.

A single ArrayList object can hold objects of many different kinds. The following code creates an
ArrayList and adds a string, Form object, integer, and Bitmap to it. It then loops through the
items in the list and displays their types.

Dim array_list As New ArrayList
array_list.Add("What?")
array_list.Add(Me)
array_list.Add(1001)
array_list.Add(New Bitmap(10, 10))
For Each obj As Object In array_list
Debug.WriteLine(obj.GetType.ToString)
Next obj

code snippet UseArrayList

The following text shows the results:

System.String
UseArrayList.Form1
System.Int32
System.Drawing.Bitmap

The value displayed for the second item depends on the name of the project (in this case,
UseArrayList).

Example program UseArrayList demonstrates several ArrayList methods.

Collections ❘ 651

c28.indd 651 c28.indd 651 12/30/09 7:45:19 PM12/30/09 7:45:19 PM

652 ❘ CHAPTER 28 COLLECTION CLASSES

StringCollection

A StringCollection is similar to an ArrayList, except that it can hold only strings. Because it works
only with strings, this class provides some extra type checking that the ArrayList does not. If your
program tries to add an Employee object to a StringCollection, the collection raises an error.

To take advantage of this extra error checking, you should always use a StringCollection instead
of an ArrayList if you are working with strings. Of course, if you need other features (such as the
fast lookups provided by a Hashtable), you should use one of the classes described in the following
sections.

Strongly Typed Collections

A strongly typed collection is a collection class built to work with a particular data type. An
ArrayList can store objects of any data type. A StringCollection is strongly typed to work only with
strings. That gives you extra error checking that makes fi nding and fi xing programming mistakes
easier. If the program tries to insert an IncidentReport object into a StringCollection, the collection
immediately raises an error and the problem is relatively easy to fi nd.

Similarly, you can defi ne your own collection classes that are strongly typed. For example, you
could make an OrderCollection class that holds Order items. If the program tries to add a Manager
or Secretary object to it, the collection raises an error.

To build a strongly typed collection from scratch, create a new class that inherits from System.
Collections.CollectionBase. Inheriting from this class automatically gives your class an ArrayList
object named List. It also gives your class some inherited routines that do not depend on the type
of object you want the collection to hold. For example, the RemoveAt method removes the object at
a specifi c index in the list.

Your class can implement other methods for adding and retrieving items in the collection. For
example, it can implement the Add, Remove, and Item methods.

Fortunately, you don ’ t need to build these methods from scratch. You can simply delegate them to
the inherited List object. For example, the Add method can simply call List.Add, as shown in the
following code:

' Add an Employee.
Public Sub Add(ByVal value As Employee)
 List.Add(value)
End Sub

This code does nothing other than call the List object ’ s methods. The only magic here is that the
EmployeeCollection class ’ s Add method takes a parameter of a particular type (Employee), whereas
the List object ’ s Add method takes a generic Object as a parameter. It is the EmployeeCollection
class ’ s insistence on Employee objects that makes the collection strongly typed.

The Add and Item methods are about the minimum useful feature set you can provide for a strongly
typed collection class.

c28.indd 652c28.indd 652 12/30/09 7:45:19 PM12/30/09 7:45:19 PM

The following table lists the standard methods provided by a strongly typed collection class. The
third column indicates whether the CollectionBase parent class automatically provides the method,
or whether you must delegate the method to the List object.

METHOD PURPOSE PROVIDED BY

Add Adds an item to the collection List

Capacity Returns the amount of space in the collection CollectionBase

Clear Removes all items from the collection CollectionBase

Contains Returns True if the collection contains a particular item List

CopyTo Copies items from the collection into an array List

Count Returns the number of items in the collection CollectionBase

IndexOf Returns the index of an item List

InnerList Returns an ArrayList holding the collection ’ s objects CollectionBase

Insert Inserts an item at a specifi c position List

Item Returns the item at a specifi c position List

List Returns an IList holding the collection ’ s objects CollectionBase

Remove Removes an item List

RemoveAt Removes the item at a specifi c position CollectionBase

You can also add other more specialized methods if they would be useful in your application. For
example, you could add methods for working with object fi eld values rather than with the objects
themselves. You might make an overloaded version of the Item method that takes as parameters a
fi rst and last name and returns the corresponding Employee object if it is in the list. You could also
modify the simple Add method shown previously so that it doesn ’ t allow duplicates. And you could
make an Add function that takes fi rst and last names as parameters, creates a new Employee object
using those names, and returns the new object.

Example program EmployeeCollection, which is available for download on the book ’ s web site,
builds a strongly typed collection of Employee objects that inherits from the CollectionBase class.

An additional benefi t that comes with inheriting from the CollectionBase class is For Each support.
The following code shows how a program might use an EmployeeCollection class named emp_list.
It creates the collection and adds some Employee objects to the list. It then uses a For Each loop to
display the Employees.

Dim emp_list As New EmployeeCollection
emp_list.Add(New Employee("Ann", "Anderson"))
emp_list.Add(New Employee("Bart", "Baskerville"))

Collections ❘ 653

c28.indd 653c28.indd 653 12/30/09 7:45:20 PM12/30/09 7:45:20 PM

654 ❘ CHAPTER 28 COLLECTION CLASSES

. . .

For Each emp As Employee In emp_list
 Debug.WriteLine(emp.ToString)
Next emp

code snippet MakeEmployeeCollection

Generics provide another method for building strongly typed collections. Refer to the section
“ Generics ” later in this chapter for more information on generic collections. For more general
information on generics, see Chapter 29, “ Generics. ”

Read - Only Strongly Typed Collections

The CollectionBase class enables you to build a strongly typed collection class that allows a
program to store and retrieve values. In some cases, you might want a function to return a collection
of objects that the calling program cannot modify. For example, suppose that your function
returns a list of your company ’ s production locations. You don ’ t want the program to modify the
list because it cannot change the locations. In this case, you can build a read - only strongly typed
collection.

You can do this much as you build a strongly typed collection. Instead of deriving the new collection
class from CollectionBase, however, derive it from the ReadOnlyCollectionBase class. Provide read -
only Item methods, but do not provide any Add or Remove methods. The class itself can access its
inherited InnerList object to add and remove items, but it must not give the program using your
class access to that object.

Your program still needs a way to get objects into the collection, however. One method is to
build the collection class in a separate library project and give it initialization methods declared
with the Friend keyword. Other code in the library project could use those methods while the main
program could not.

Another technique is to pass initialization data to the class ’ s constructor. Your code creates
the collection and returns it to the main program. The main program cannot change the
collection ’ s contents. It can create an instance of the collection of its own, but it cannot modify
the one you built.

NameValueCollection

The NameValueCollection class is a collection that can hold more than one string value for a
particular key (name). For example, you might use employee names as keys. The string values
associated with a particular key could include extension, job title, employee ID, and so forth. Of
course, you could also store the same information by putting extension, job title, employee ID, and
the other fi elds in an object or structure, and then storing the objects or structures in some sort of
collection class such as an ArrayList. A NameValueCollection, however, is very useful if you don ’ t
know ahead of time how many strings will be associated with each key.

c28.indd 654c28.indd 654 12/30/09 7:45:21 PM12/30/09 7:45:21 PM

The following table describes some of the NameValueCollection ’ s most useful properties
and methods.

PROPERTY/METHOD DESCRIPTION

Add Adds a new name/value pair to the collection. If the collection already holds

an entry for the name, it adds the new value to that name ’ s values.

AllKeys Returns a string array holding all of the key values.

Clear Removes all names and values from the collection.

CopyTo Copies items starting at a particular index into a one - dimensional Array object.

This copies only the items (see the Item property), not the keys.

Count Returns the number of key/value pairs in the collection.

Get Gets the item for a particular index or name as a comma - separated list

of values.

GetKey Returns the key for a specifi c index.

GetValues Returns a string array containing the values for a specifi c name or index.

HasKeys Returns True if the collection contains any non - null keys.

Item Gets or sets the item for a particular index or name as a comma - separated

list of values.

Keys Returns a collection containing the keys.

Remove Removes a particular name and all of its values.

Set Sets the item for a particular index or name as a comma - separated

list of values.

Note that there is no easy way to remove a particular value from a name. For example, if a
person ’ s name is associated with extension, job title, and employee ID, it is not easy to remove only
the job title.

The following statement shows one approach to removing a person ’ s JobTitle entry, although you
would need to modify it slightly if you didn ’ t know whether the JobTitle entry was last in the list (so
it might or might not be followed by a comma):

nvc.Item("RodStephens") = nvc.Item("RodStephens").Replace("JobTitle,", "")

Example program UseNameValueCollection, which is available for download on the book ’ s web
site, demonstrates NameValueCollection class features.

Collections ❘ 655

c28.indd 655c28.indd 655 12/30/09 7:45:21 PM12/30/09 7:45:21 PM

656 ❘ CHAPTER 28 COLLECTION CLASSES

DICTIONARIES

A dictionary is a collection that associates keys with values. You look up a key, and the dictionary
provides you with the corresponding value. This is similar to the way a NameValueCollection
works, except that a dictionary ’ s keys and values need not be strings, and a dictionary associates
each key with a single value object.

Visual Studio provides several different kinds of dictionary classes that are optimized for different
uses. Their differences come largely from the ways in which they store data internally. Though you
don ’ t need to understand the details of how the dictionaries work internally, you do need to know
how they behave so that you can pick the best one for a particular purpose.

Because all of the dictionary classes provide the same service (associating keys with values), they
have roughly the same properties and methods. The following table describes some of the most
useful of these.

PROPERTY/METHOD DESCRIPTION

Add Adds a key/value pair to the dictionary.

Clear Removes all key/value pairs from the dictionary.

Contains Returns True if the dictionary contains a specifi c key.

CopyTo Copies the dictionary ’ s data starting at a particular position into a

one - dimensional array of DictionaryEntry objects. The DictionaryEntry class

has Key and Value properties.

Count Returns the number of key/value pairs in the dictionary.

Item Gets or sets the value associated with a key.

Keys Returns a collection containing all of the dictionary ’ s keys.

Remove Removes the key/value pair with a specifi c key.

Values Returns a collection containing all of the dictionary ’ s values.

The following sections describe different Visual Studio dictionary classes in more detail.

ListDictionary

A ListDictionary stores its data in a linked list. In a linked list, each item is held in an object that
contains its data plus a reference or link to the next item in the list. Figure 28 - 2 illustrates a linked
list. This list contains the key/value pairs Appetizer/Salad, Entr é e/Sandwich, Drink/Water, and
Dessert/Cupcake. The link out of the Dessert/Cupcake item is set to Nothing, so the program can

c28.indd 656c28.indd 656 12/30/09 7:45:22 PM12/30/09 7:45:22 PM

tell when it has reached the end of the list. A reference variable inside the
ListDictionary class, labeled Top in Figure 28 - 2, points to the fi rst item
in the list.

The links in a linked list make adding and removing items relatively
easy. The ListDictionary simply moves the links to point to new objects,
add objects, remove objects, or insert objects between two others.
For example, to add a new item at the top of the list, you create the new
item, set its link to point to the item that is currently at the top, and then
make the list ’ s Top variable point to the new item. Other rearrangements
are almost as easy. For more information on how linked lists work, see
a book on algorithms and data structures such as Data Structures and
Algorithms Using Visual Basic.NET (McMillan, Cambridge University
Press, 2005).

Unfortunately, if the list grows long, fi nding items in it can take a long time.
To fi nd an item in the list, the program starts at the top and works its way
down, following the links between items, until it fi nds the one it wants. If
the list is short, that doesn ’ t take very long. If the list holds 100,000 items,
this means potentially a 100,000 - item crawl from top to bottom. That
means a ListDictionary object ’ s performance degrades if it contains too
many items.

If you only need to store a few hundred items in the dictionary and you don ’ t need to access them
frequently, a ListDictionary is fi ne. If you need to store 100,000 entries, or if you need to access
the dictionary ’ s entries a huge number of times, you may get better performance using a “ heavier ”
object such as a Hashtable. A Hashtable has more overhead than a ListDictionary but is faster at
accessing its entries.

Hashtable

A Hashtable looks a lot like a ListDictionary on the outside, but internally it stores its data in a very
different way. Rather than using a linked list, this class uses a hash table to hold data.

A hash table is a data structure that allows extremely fast access to items using their keys. It works
by mapping an object ’ s key into a bucket by calculating the key ’ s hash value.

For example, suppose that you want to make a dictionary associating Employee objects with
their Social Security numbers. You could make an array holding 10 buckets and then map
employees to bucket numbers using the last digit of their Social Security numbers. Employee
123 - 45 - 6789 goes in bucket 9, employee 111 - 22 - 3333 goes in bucket 3, and employee
865 - 29 - 8361 goes in bucket 1.

This kind of hash table is easy to enlarge. If you add a few dozen employees, you might use 100
buckets and map Social Security numbers using their last two digits. Then employee 123 - 45 - 6789
goes in bucket 89, employee 111 - 22 - 3333 goes in bucket 33, and employee 865 - 29 - 8361 goes in
bucket 61.

Top

Appetizer/Salad

Entrée/Sandwich

Drink/Water

Dessert/Cupcake

FIGURE 28-2: Each item

in a linked list keeps a

reference to the next

item in the list.

Dictionaries ❘ 657

c28.indd 657c28.indd 657 12/30/09 7:45:23 PM12/30/09 7:45:23 PM

658 ❘ CHAPTER 28 COLLECTION CLASSES

More employees? Make more buckets! You can use 1000, 10,000, or more buckets if necessary.

To fi nd an employee ’ s data in the dictionary, you only need to calculate the hash value (last digits of
Social Security number) and then look in that bucket. For a large dictionary, this is much faster than
digging through a linked list. If you have 10,000 employees perfectly divided one to a bucket in a
table of 10,000 buckets, you only need to look in one bucket to fi nd the data you want. That ’ s a lot
faster than slogging through a 10,000 - item linked list.

Of course, there is a catch. Actually, there are two catches.

First, if you have too many employees, you are eventually going to fi nd two that map to the same
bucket. Suppose that you have 10 buckets and two employees with Social Security numbers 732 -
45 - 7653 and 145 - 76 - 4583. These both map to bucket 3. This is called a key collision, and the hash
table must use some sort of collision resolution policy to fi gure out what to do when two keys map
to the same bucket. This policy is generally some simple method such as making a linked list in the
bucket or letting the second item spill over into the following bucket. Whatever collision resolution
scheme you use, it takes a little extra time to search through full buckets.

You can make the buckets less full if you use more of them. In this example, if you switched to 100
buckets, the two employees would map to buckets 53 and 83, so no collision occurs. That makes
looking up these items faster.

The second catch is that you can make a hash table faster by adding more buckets, but using more
buckets means using more space. When a hash table starts to fi ll up, collisions are common, so
performance suffers. Add more space and performance improves, but there may be a lot of wasted
space not occupied by any data. If the table grows too big, it may start to use up all of the system ’ s
memory and starve the application for memory. The application must then page memory to disk
when it needs more room, a process that can make the program extremely slow.

Those are the advantages and disadvantages of the Hashtable class. A Hashtable gives better
performance than a ListDictionary, but takes more space.

In addition to the usual dictionary properties and methods, the Hashtable has a few that help
manage the internal hash table that it uses to store its items.

One overloaded version of the Hashtable class ’ s constructor takes a parameter that tells how many
items the table should initially be able to hold. If you know you are going to load 1000 items,
you might make the table initially hold room for 1500. Then the program could add all the items
without fi lling the table too much, so it would still give good performance. If you don ’ t set an initial
size, the hash table might start out too small and need to resize itself many times before it could
hold 1000 items, and that will slow it down.

Another version of the constructor lets you specify the hash table ’ s load factor . The load factor
is a number between 0.1 and 1.0 that gives the largest ratio of elements to buckets that the
Hashtable will allow before it enlarges its internal table. For example, suppose that the hash
table ’ s capacity is 100 and its load factor is 0.8. Then when it holds 80 elements, the Hashtable
will enlarge its internal table.

For high - performance lookups, the Hashtable class is a great solution.

c28.indd 658c28.indd 658 12/30/09 7:45:23 PM12/30/09 7:45:23 PM

HybridDictionary

A HybridDictionary is a cross between a ListDictionary and a Hashtable. If the dictionary is
small, the HybridDictionary stores its data in a ListDictionary. If the dictionary grows too large,
HybridDictionary switches to a Hashtable.

If you know that you will only need a few items, you can use a ListDictionary. If you know you will
need to use a very large number of items, you can use a Hashtable. If you are unsure whether you
will have few or many items, you can hedge your bet with a HybridDictionary. It ’ ll take a bit of
extra time to switch from a list to a Hashtable if you add a lot of items, but you ’ ll save time in the
long run if the list does turn out to be enormous.

Strongly Typed Dictionaries

Just as you can make strongly typed collections, you can also make strongly typed dictionaries.
The idea is exactly the same. You derive your strongly typed class from a class that supports
basic dictionary functionality. In this case, that parent class is DictionaryBase, and it provides a
Dictionary object that your class can use to implement its dictionary features.

Next, you implement dictionary methods such as Add, Item, Keys, and so forth. Your code requires
specifi c data types and uses the parent class ’ s Dictionary variable to do all the hard work through
delegation.

The following table lists the standard methods provided by a strongly typed dictionary class. The
third column indicates whether the DictionaryBase parent class automatically provides the method
or whether you must delegate the method to the Dictionary object.

METHOD PURPOSE PROVIDED BY

Add Adds a key/value pair to the dictionary Dictionary

Clear Removes all key/value pairs from the dictionary DictionaryBase

Contains Returns True if the dictionary contains a specifi c key Dictionary

CopyTo Copies elements from the dictionary into an array of

DictionaryEntry objects

DictionaryBase

Count Returns the number of key/value pairs in the dictionary DictionaryBase

Dictionary Returns a Dictionary holding the dictionary ’ s key/value pairs DictionaryBase

InnerHashtable Returns a Hashtable holding the dictionary ’ s key/value pairs DictionaryBase

Item Returns the value corresponding to a specifi c key Dictionary

Keys Returns an ICollection containing the dictionary ’ s keys Dictionary

Remove Removes the key/value pair for a specifi c key Dictionary

Values Returns an ICollection containing the dictionary ’ s values Dictionary

Dictionaries ❘ 659

c28.indd 659c28.indd 659 12/30/09 7:45:24 PM12/30/09 7:45:24 PM

660 ❘ CHAPTER 28 COLLECTION CLASSES

As is the case with strongly typed collections, you can add other, more specialized methods if they
would be useful in your application.

Example program MakeEmployeeDictionary, which is available for download on the book ’ s web
site, shows how to build a strongly typed dictionary of Employee objects that inherits from the
DictionaryBase class.

Other Strongly Typed Derived Classes

How a class stores its data internally is generally not a developer ’ s concern. As long as it does its job,
you shouldn ’ t care whether the DictionaryBase class stores its data in a linked list, hash table, or
some other data structure. (Although the DictionaryBase class has an InnerHashtable method that
returns its data in a Hashtable form, so perhaps that ’ s a hint.)

However, if you really want a strongly typed class that you know uses a ListDictionary instead of
a hash table (or whatever CollectionBase uses), you could derive a strongly typed class from the
ListDictionary class.

The following code shows the EmployeeListDictionary class, which is derived from the
ListDictionary class. It uses the Shadows keyword to replace the ListDictionary class ’ s Add, Item,
Contains, and Remove methods with new strongly typed versions. Those methods simply pass their
requests along to the base class ListDictionary.

Public Class EmployeeListDictionary
 Inherits ListDictionary

 ' Add a Dictionary entry.
 Public Shadows Sub Add(ByVal new_key As String,
 ByVal new_employee As Employee)
 MyBase.Add(new_key, new_employee)
 End Sub

 ' Return an object with the given key.
 Default Public Shadows Property Item(ByVal key As String) As Employee
 Get
 Return DirectCast(MyBase.Item(key), Employee)
 End Get
 Set(ByVal Value As Employee)
 MyBase.Item(key) = Value
 End Set
 End Property

 ' Return True if the Dictionary contains this Employee.
 Public Shadows Function Contains(ByVal key As String) As Boolean
 Return MyBase.Contains(key)
 End Function

 ' Remove this entry.
 Public Shadows Sub Remove(ByVal key As String)
 MyBase.Remove(key)
 End Sub
End Class

code snippet MakeEmployeeListDictionary

c28.indd 660c28.indd 660 12/30/09 7:45:25 PM12/30/09 7:45:25 PM

Example program MakeEmployeeListDictionary, which is available for download on the book ’ s
web site, builds a strongly typed ListDictionary that holds Employee objects.

StringDictionary

The StringDictionary class uses a hash table to manage keys and values that are all strings. Because
it uses a hash table, it can handle very large data sets quickly.

Its methods are strongly typed to require strings, so they provide extra type checking that can make
fi nding potential bugs easier. For that reason, you should use a StringDictionary instead of a generic
ListDictionary or Hashtable if you want to work exclusively with strings.

SortedList

The SortedList class acts as a Hashtable/Array hybrid. When you access a value by key, it acts as
a hash table. When you access a value by index, it acts as an array containing items sorted by key
value. For example, suppose that you add a number of Job objects to a SortedList named jobs using
their priorities as keys. Then jobs(0) always returns the job with the smallest priority value.

Example program UseSortedList, which is available for download on the book ’ s web site,
demonstrates the SortedList class.

A SortedList is more complicated than a Hashtable or an array, so you should only use it if you need
its special properties.

COLLECTIONSUTIL

Normally Hashtables and SortedLists are case - sensitive. The CollectionsUtil class provides two
shared methods, CreateCaseInsensitiveHashtable and CreateCaseInsensitiveSortedList, that create
Hashtables and SortedLists objects that are case - insensitive.

Example program UseCaseInsensitiveSortedList, which is available for download on the book ’ s
web site, uses code similar to the following to create a normal case - sensitive SortedList. It then
adds two items with keys that differ only in their capitalization. This works because a case -
sensitive SortedList treats the two keys as different values. The code then creates a case - insensitive
SortedList. When it tries to add the same two items, the list raises an exception, complaining that it
already has an object with key value Sport.

Dim sorted_list As SortedList

' Use a normal, case - sensitive SortedList.
sorted_list = New SortedList
sorted_list.Add("Sport", "Volleyball")
sorted_list.Add("sport", "Golf") ' Okay because Sport < > sport.

' Use a case - insensitive SortedList.
sorted_list = CollectionsUtil.CreateCaseInsensitiveSortedList()
sorted_list.Add("Sport", "Volleyball")
sorted_list.Add("sport", "Golf") ' Error because Sport = sport.

code snippet UseCaseInsensitiveSortedList

CollectionsUtil ❘ 661

c28.indd 661c28.indd 661 12/30/09 7:45:25 PM12/30/09 7:45:25 PM

662 ❘ CHAPTER 28 COLLECTION CLASSES

If you can use case - insensitive Hashtables and SortedLists, you should generally do so. This
prevents the program from adding two entries that are supposed to be the same but have different
capitalization. For example, if one routine spells a key value “ Law Suit ” and another spells it “ law
suit, ” the case - insensitive Hashtable or SortedList will quickly catch the error. Neither will notice
an error if part of your program spells this “ LawSuit. ” (You could also add extra logic to remove
spaces and special symbols to increase the chances of fi nding similar terms that should be the same,
but a discussion of these sorts of methods is beyond the scope of this book.)

STACKS AND QUEUES

Stacks and queues are specialized data structures that are useful in many programming applications
that need to add and remove items in a particular order. The Visual Basic Stack and Queue classes
implement stacks and queues.

The difference between a stack and a queue is the order in which they return the items stored in them.
The following two sections describe stacks and queues and explain the ways in which they return items.

Stack

A stack returns items in last - in, fi rst - out (LIFO, pronounced
life - o) order. Because of the LIFO behavior, a stack is sometimes
called a LIFO list or simply a LIFO.

Adding an item to the stack is called pushing the item onto the
stack and removing an item is called popping the item off of the
stack. These operations have the names push and pop because
a stack is like a spring - loaded stack of plates in a cafeteria or
buffet. You push new plates down onto the top of the stack and
the plates sink into the counter. You pop the top plate off and the
stack rises to give you the next plate.

Figure 28 - 3 illustrates this kind of stack. If you haven ’ t seen this
sort of thing before, don ’ t worry about it. Just remember that
push adds an item and pop removes the top item.

Normally, you use a Stack object ’ s Push and Pop methods to add and remove items, but the Stack class
also provides some cheating methods that let you peek at the Stack ’ s top object or convert the Stack into
an array. The following table describes the Stack class ’ s most useful properties and methods.

PROPERTY/METHOD PURPOSE

Clear Removes all items from the Stack.

Contains Returns True if the Stack contains a particular object.

CopyTo Copies some or all of the Stack class ’ s objects into a one - dimensional array.

Push Pop

FIGURE 28-3: A Stack lets you

remove items in last-in, fi rst-out

(LIFO) order.

c28.indd 662c28.indd 662 12/30/09 7:45:26 PM12/30/09 7:45:26 PM

PROPERTY/METHOD PURPOSE

Count Returns the number of items in the Stack.

Peek Returns a reference to the Stack class ’ s top item without removing it from

the Stack.

Pop Returns the Stack class ’ s top item and removes it from the Stack.

Push Adds an item to the top of the Stack.

ToArray Returns a one - dimensional array containing references to the objects in the

Stack. The Stack class ’ s top item is placed fi rst in the array.

A Stack allocates memory to store its items. If you Push an object onto a Stack that is completely
full, the Stack must resize itself to make more room and that slows down the operation.

To make memory management more effi cient, the Stack class provides three overloaded constructors.
The fi rst takes no parameters and allocates a default initial capacity. The second takes as a
parameter the number of items it should initially be able to hold. If you know that you will add 10,000
items to the Stack, you can avoid a lot of resizing by initially allocating room for 10,000 items.

The third version of the constructor takes as a parameter an object that implements the ICollection
interface. The constructor allocates enough room to hold the items in the collection and copies them
into the Stack.

Example program UseStack, which is available for download on the book ’ s web site, uses a Stack to
reverse the characters in a string.

Queue

A queue returns items in fi rst - in, fi rst - out (FIFO, pronounced fi fe - o) order. Because of the FIFO
behavior, a queue is sometimes called a FIFO list or simply a FIFO.

A queue is similar to a line at a customer service desk. The fi rst person in line is the fi rst person to
leave it when the service desk is free. Figure 28 - 4 shows the idea graphically.

Customer enters queue here

Next customer served Service
Desk

FIGURE 28-4: Customers leave a queue in fi rst-in, fi rst-out (FIFO) order.

Stacks and Queues ❘ 663

c28.indd 663c28.indd 663 12/30/09 7:45:27 PM12/30/09 7:45:27 PM

664 ❘ CHAPTER 28 COLLECTION CLASSES

Queues are particularly useful for processing items in the order in which they were created. For
example, an order - processing application might keep orders in a queue so that customers who place
orders fi rst are satisfi ed fi rst (or at least their order is shipped fi rst, whether they are satisfi ed or not).

Historically, the routines that add and remove items from a queue are called Enqueue and Dequeue.
The following table describes these methods and the Queue class ’ s other most useful properties
and methods.

PROPERTY/METHOD PURPOSE

Clear Removes all items from the Queue.

Contains Returns True if the Queue contains a particular object.

CopyTo Copies some or all of the Queue class ’ s objects into a one - dimensional array.

Count Returns the number of items in the Queue.

Dequeue Returns the item that has been in the Queue the longest and removes it from

the Queue.

Enqueue Adds an item to the back of the Queue.

Peek Returns a reference to the Queue class ’ s oldest item without removing it from

the Queue.

ToArray Returns a one - dimensional array containing references to the objects in the

Queue. The Queue class ’ s oldest item is placed fi rst in the array.

TrimToSize Frees empty space in the Queue to set its capacity equal to the number of

items it actually contains.

A Queue allocates memory to store its items. If you Enqueue an object while the queue ’ s memory is
full, the Queue must resize itself to make more room, and that slows down the operation.

To make memory management more effi cient, the Queue class provides four overloaded
constructors. The fi rst takes no parameters and allocates a default initial capacity. If the Queue is
full, it enlarges itself by a default growth factor.

The second constructor takes as a parameter its initial capacity. If you know that you will add 600
items to the Queue, you can save some time by initially allocating room for 600 items. With this
constructor, the Queue also uses a default growth factor.

The third constructor takes as a parameter an object that implements the ICollection interface. The
constructor allocates enough room to hold the items in the collection and copies them into the Queue.
It also uses a default growth factor.

The fi nal version of the constructor takes as parameters an initial capacity and a growth factor
between 1.0 and 10.0. A larger growth factor will mean that the Queue resizes itself less often, but
it may contain a lot of unused space.

c28.indd 664c28.indd 664 12/30/09 7:45:27 PM12/30/09 7:45:27 PM

Queues are useful for scheduling items in a FIFO order. For example, a shared network
computer uses a queue. Users on different computers send jobs to the printer, and they are
printed in FIFO order.

Example program UseQueue, which is available for download on the book ’ s web site, demonstrates
a Queue.

GENERICS

Chapter 29 explains how you can build and use generic classes to perform similar actions for
objects of various types. For example, you could build a Tree class that can build a tree of any
specifi c kind of object. Your program could then make a tree of Employees, a tree of Customers, a
tree of Punchlines, or even a tree of trees. Visual Basic comes with a useful assortment of pre - built
generic collection classes.

The System.Collections.Generic namespace provides several generic collection classes that you can
use to build strongly typed collections. These collections work with a specifi c data type that you
supply in a variable ’ s declaration. For example, the following code makes a List that holds strings:

Imports System.Collections.Generic

. . .
Dim places As New List(Of String)
places.Add("Chicago")

The places object ’ s methods are strongly typed and work only with strings, so they provide extra
error protection that a less specialized collection doesn ’ t provide. To take advantage of this
extra protection, you should use generic collections or strongly typed collections derived from the
CollectionBase class whenever possible.

When you derive a strongly typed collection from the CollectionBase class, you can add extra
convenience functions to it. For example, an EmployeeCollection class could include an overloaded
version of the Add method that accepts fi rst and last names as parameters, makes a new Employee
object, and adds it to the collection.

You cannot directly modify a generic collection class, but you can add extension methods to it. For
example, the following code adds an AddPerson method to the generic List(Of Person) class. This
method takes as parameters a fi rst and last name, uses those values to make a Person object, and
adds it to the list.

Module PersonListExtensions
 < Extension() >
 Public Sub AddPerson(ByVal person_list As List(Of Person),
 ByVal first_name As String, ByVal last_name As String)
 Dim per As New Person() With _
 {.FirstName = first_name, .LastName = last_name}
 person_list.Add(per)
 End Sub
End Module

Generics ❘ 665

c28.indd 665c28.indd 665 12/30/09 7:45:28 PM12/30/09 7:45:28 PM

666 ❘ CHAPTER 28 COLLECTION CLASSES

For more information on extension methods, see the section “ Extension Methods ” in Chapter 17,
“ Subroutines and Functions. ”

In addition to adding extension methods to a generic class, you can also derive an enhanced
collection from a generic class. For example, the following code defi nes an EmployeeCollection class
that inherits from the generic Collection(Of Employee). It then adds an overloaded version of the
Add method that takes fi rst and last names as parameters.

Imports System.Collections.Generic

Public Class EmployeeList
 Inherits List(Of Employee)

 Public Overloads Sub Add(
 ByVal first_name As String, ByVal last_name As String)
 Dim emp As New Employee(first_name, last_name)
 MyBase.Add(emp)
 End Sub
End Class

code snippet GenericEmployeeList

NO OVERLOADS ALLOWED

Note that extension methods cannot overload a class’s methods. If you want
multiple versions of the Add method as in this example, you need to use a
derived class.

The following table lists the some of the most useful collection classes defi ned by the System.
Collections.Generic namespace.

COLLECTION PURPOSE

Comparer Compares two objects of the specifi c type and returns – 1 , 0 , or 1 to

indicate whether the fi rst is less than, equal to, or greater than the second

Dictionary A strongly typed dictionary

LinkedList A strongly typed linked list

LinkedListNode A strongly typed node in a linked list

List A strongly typed list

Queue A strongly typed queue

c28.indd 666c28.indd 666 12/30/09 7:45:29 PM12/30/09 7:45:29 PM

COLLECTION PURPOSE

SortedDictionary A strongly typed sorted dictionary

SortedList A strongly typed sorted list

Stack A strongly typed stack

Example program GenericStringList, which is available for download on the book ’ s web site,
demonstrates a generic List(Of String). Example program GenericEmployeeList, which is also
available for download, derives a strongly typed EmployeeList class from a generic
List(Of Employee).

For more information on generics (including instructions for writing your own generic classes), see
Chapter 29.

COLLECTION INITIALIZERS

A new feature in Visual Basic 2010 allows you to easily initialize collection classes that have an Add
method. To initialize a collection, follow the variable ’ s instantiation with the keyword From and
then a series of comma - separated values inside braces.

For example, the following code snippet initializes an ArrayList, StringCollection, and generic
List(Of Person). Notice how the generic List ’ s initializer includes a series of new Person objects that
are initialized with the With keyword.

Dim numbers As New ArrayList() From {1, 2, 3}
Dim names As New StringCollection() From {"Alice", "Bob", "Cynthia"}
Dim authors As New List(Of Person) From {
 New Person() With {.FirstName = "Simon", .LastName = "Green"},
 New Person() With {.FirstName = "Christopher", .LastName = "Moore"},
 New Person() With {.FirstName = "Terry", .LastName = "Pratchett"}
}

If a collection ’ s Add method takes more than one parameter, simply include the appropriate values
for each item inside their own sets of braces. The following code uses this method to initialize a
NameValueCollection and a Dictionary with Integer keys and String values:

Dim phone_numbers As New NameValueCollection() From {
 {"Ashley", "502 - 253 - 3748"},
 {"Jane", "505 - 847 - 2984"},
 {"Mike", "505 - 847 - 3984"},
 {"Shebly", "502 - 487 - 4939"}
}
Dim greetings As New Dictionary(Of Integer, String) From {
 {1, "Hi"},
 {2, "Hello"},
 {3, "Holla"}
}

Collection Initializers ❘ 667

c28.indd 667c28.indd 667 12/30/09 7:45:30 PM12/30/09 7:45:30 PM

668 ❘ CHAPTER 28 COLLECTION CLASSES

The same technique works for other collections that need two values such as ListDictionary,
Hashtable, HybridDiction, StringDictionary, and SortedList.

Unfortunately, you cannot use this method to initialize the Stack and Queue classes. For historical
reasons, the methods in those classes that add new items are called Push and Enqueue rather than
Add, and this method requires the class to have an Add method.

Fortunately, you can write extension methods to give those classes Add methods. The following
code creates Add methods for the Stack and Queue classes:

Module Extensions
 < Extension() >
 Public Sub Add(ByVal the_stack As Stack, ByVal value As Object)
 the_stack.Push(value)
 End Sub

 < Extension() >
 Public Sub Add(ByVal the_queue As Queue, ByVal value As Object)
 the_queue.Enqueue(value)
 End Sub
End Module

After you create these extension methods, you can initialize Stacks and Queues as in the
following code:

Dim people_stack As New Stack() From {"Electra", "Storm", "Rogue"}
Dim people_queue As New Queue() From {"Xavier", "Anakin", "Zaphod"}

SUMMARY

This chapter describes fi ve types of objects: arrays, collections, dictionaries, stacks, and queues.
It also explains how to convert any of these into strongly typed classes and how to use generic
collections.

Arrays store objects sequentially. They allow fast access at any point in the array. The Array
class lets you make arrays indexed with nonzero lower bounds, although they provide slower
performance than arrays of variables, which require lower bounds of zero. The Array class provides
several useful methods for working with Array objects and normal variable arrays, including Sort,
Reverse, IndexOf, LastIndexOf, and BinarySearch.

Collections store data in ways that are different from those used by arrays. An ArrayList stores
items in a linked list. That works well for short lists, but slows down when the list grows large. A
StringCollection holds a collection of strings. StringCollection is an example of a strongly typed
collection (it holds only strings). The NameValueCollection class is a specialized collection that can
hold more than one string value for a given key value.

Dictionaries associate key values with corresponding data values. You look up the key to fi nd the
data much as you might look up a word in the dictionary to fi nd its defi nition. The ListDictionary
class stores its data in a linked list. It is fast for small data sets but slow when it contains too much

c28.indd 668c28.indd 668 12/30/09 7:45:30 PM12/30/09 7:45:30 PM

data. A Hashtable, on the other hand, has substantial overhead, but is extremely fast for large
dictionaries. A HybridDictionary acts as a ListDictionary if it doesn ’ t contain too much data, and
switches to a Hashtable when it gets too big. The StringDictionary class is basically a Hashtable that
is strongly typed to work with strings. The SortedList class is a Hashtable/Array hybrid that lets you
access values by key or in sorted order.

Stack classes provide access to items in last - in, fi rst - out (LIFO) order, whereas Queue classes give
access to their items in fi rst - in, fi rst - out (FIFO) order.

The generic Dictionary, LinkedList, List, Queue, SortedDictionary, SortedList, and Stack classes
enable you to use strongly typed data structures without going to the trouble of building your own
strongly typed classes.

Although these classes have very different features for adding, removing, fi nding, and ordering
objects, they share some common traits. For example, those that provide an Add method support
collection initialization, a feature new in Visual Basic 2010.

All of these classes, plus other strongly typed collections that you can derive from the
CollectionBase, DictionaryBase, and other classes, provide signifi cant fl exibility and options, so
you can pick the class that best satisfi es your needs. Deciding which class is best can be tricky, but
making the right choice can mean the difference between a program that processes a large data set
in seconds, hours, or not at all. Spend some time reviewing the different characteristics of the class
so that you can make the best choice possible.

This chapter explains how you can use the generic collection classes provided by the System
.Collections.Generic namespace to build strongly typed collection classes of several useful
types. Chapter 29, “ Generics, ” explains how you can build generic classes of your own. Using
generics, you can build strongly typed classes that manipulate all sorts of objects in any way you
can imagine.

Summary ❘ 669

c28.indd 669c28.indd 669 12/30/09 7:45:30 PM12/30/09 7:45:30 PM

c28.indd 670c28.indd 670 12/30/09 7:45:31 PM12/30/09 7:45:31 PM

29
Generics

Classes are often described as cookie cutters for creating objects. You defi ne a class, and then
you can use it to make any number of objects that are instances of the class.

Similarly, a generic is like a cookie cutter for creating classes. You defi ne a generic, and then
you can use it to create any number of classes that have similar features.

For example, Visual Basic comes with a generic List class. You can use it to make lists of
strings, lists of integers, lists of Employee objects, or lists of just about anything else.

This chapter explains generics. It shows how you defi ne generics of your own and how you
can use them.

ADVANTAGES OF GENERICS

A generic class takes one or more data types as parameters. An instance of a generic class has
those parameters fi lled in with specifi c data types such as String, TextBox, or Employee.

For example, you can build a list of OrderItem objects, a hash table containing
PurchaseOrders identifi ed by number, or a Queue that contains Customer objects.

Tying generics to specifi c data types gives them a few advantages over more traditional classes:

Strong typing — Methods can take parameters and return values that have the class ’ s
instance type. For example, a List(Of String) can hold only string values, and its Item
method returns string values. This makes it more diffi cult to accidentally add the
wrong type of object to the collection.

IntelliSense — By providing strong typing, a class built from a generic lets Visual
Studio provide IntelliSense. If you make a List(Of Employee), Visual Studio knows
that the items in the collection are Employee objects, so it can give you appropriate
IntelliSense.

➤

➤

c29.indd 671c29.indd 671 12/30/09 7:46:17 PM12/30/09 7:46:17 PM

672 ❘ CHAPTER 29 GENERICS

 No boxing — Because the class manipulates objects with a specifi c data type, Visual Basic
doesn ’ t need to convert items to and from the plain Object data type. For example, if a
program stores TextBox controls in a normal collection, the program must convert the
TextBox controls to and from the Object class when it adds and uses items in the collection.
Avoiding these steps makes the code more effi cient.

 Code reuse — You can use a generic class with more than one data type. For example,
if you have built a generic PriorityQueue class, you can make a PriorityQueue holding
Employee, Customer, Order, or Objection objects. Without generics, you would need to
build four separate classes to build strongly typed priority queues for each of these types of
objects. Reusing this code makes it easier to write, test, debug, and maintain the code.

 The main disadvantage to generics is that they are slightly more complicated and confusing than
non - generic classes. If you know that you will only ever need to provide a class that works with a
single type, you can simplify things slightly by not using a generic class. If you think you might want
to reuse the code later for another data type, it ’ s easier to just build the class generically from the start.

 DEFINING GENERICS

 Visual Basic allows you to defi ne generic classes, structures, interfaces, procedures, and delegates.
The basic syntax is similar, so when you understand how to make generic classes, the others should
be fairly easy.

 To defi ne a generic class, make a class declaration as usual. After the class name, add a parenthesis,
the keyword Of, and a placeholder for a data type. For example, the following code shows the outline
of a generic MostRecentList class. Its declaration takes one type that the class internally names
ItemType. This is similar to a parameter name that you would give to a subroutine. The class ’ s code
can use the name ItemType to refer to the type associated with the instance of the generic class.

Public Class MostRecentList(Of ItemType)
 ...
End Class

 For example, suppose that you want to make a list that can act as a most recently used (MRU) fi le
list. It should be able to hold at most four items. New items are added at the top of the list, and the
others are bumped down one position with the last item being dropped if the list contains too many
items. If you add an existing item to the list, it jumps to the top of the list.

 Example program GenericMruList uses the following code to build a generic MostRecentList class:

 ' A list of at most MaxItems items.
Public Class MostRecentList(Of ItemType)
 ' The Item property.
 Private m_Items As New List(Of ItemType)
 Public Property Item(ByVal index As Integer) As ItemType
 Get
 Return m_Items(index)
 End Get

➤

➤

c29.indd 672c29.indd 672 12/30/09 7:46:20 PM12/30/09 7:46:20 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

 Set(ByVal value As ItemType)
 m_Items(index) = value
 End Set
 End Property

 ' The MaxItems property.
 Private m_MaxItems As Integer = 4
 Public Property MaxItems() As Integer
 Get
 Return m_MaxItems
 End Get
 Set(ByVal value As Integer)
 m_MaxItems = value

 ' Resize appropriately.
 Do While m_Items.Count > m_MaxItems
 m_Items.RemoveAt(m_Items.Count - 1)
 Loop
 End Set
 End Property

 ' The current number of items.
 Public ReadOnly Property Count() As Integer
 Get
 Return m_Items.Count
 End Get
 End Property

 ' Add an item to the top of the list.
 Public Sub Add(ByVal value As ItemType)
 ' Remove the item if it is present.
 If m_Items.Contains(value) Then m_Items.Remove(value)

 ' Add the item to the top of the list.
 m_Items.Insert(0, value)

 ' Make sure there are at most MaxItems items.
 If m_Items.Count > m_MaxItems Then m_Items.RemoveAt(m_Items.Count - 1)
 End Sub

 ' Remove an item.
 Public Sub Remove(ByVal value As ItemType)
 m_Items.Remove(value)
 End Sub

 ' Remove an item at a specific position.
 Public Sub RemoveAt(ByVal index As Integer)
 m_Items.RemoveAt(index)
 End Sub
End Class

code snippet GenericMruList

Defi ning Generics ❘ 673

c29.indd 673c29.indd 673 12/30/09 7:46:21 PM12/30/09 7:46:21 PM

674 ❘ CHAPTER 29 GENERICS

The Of ItemType clause indicates that the class will take a single type that it internally names
ItemType. The class stores its items in a private list named m_Items. It declares this list using the
generic list class defi ned in the System.Collections.Generic namespace, and it indicates that this
is a list that will hold ItemType objects. This refers to the ItemType parameter used in the generic
MostRecentList class ’ s declaration. If the program makes a MostRecentList of strings, then m_Items
is a list of strings.

In this code, the Item property procedures simply let the main program get and set the values in the
m_Items list. The MaxItems property lets the program determine the number of items that the list
can hold. The property Set routine saves the new size and then resizes the m_Items list appropriately
if necessary. The Count property returns the number of items currently in the list. The subroutine
Add fi rst removes the new item if it is already in the list. It then adds the new item at the top of the
list and removes the last item if the list now contains too many items. The Remove and RemoveAt
routines simply call the m_Items list ’ s Remove and RemoveAt methods.

The following code creates a new MostRecentList of strings and then adds some values to it:

Dim the_items As New MostRecentList(Of String)
the_items.Add("Apple")
the_items.Add("Banana")
the_items.Add("Cherry")
the_items.Add("Date")
the_items.Add("Banana")
the_items.Add("Fig")

After this code executes, the list contains the values in the following order: Fig, Banana,
Date, Cherry.

Generic Constructors

Generic classes can have constructors just as any other class can. For example, the following
constructor initializes the MostRecentList class ’ s MaxItem property:

' Initialize MaxItems for the new list.
Public Sub New(ByVal max_items As Integer)
 MaxItems = max_items
End Sub

To use the constructor, the main program adds normal parameters after the type parameters in the
object declaration. The following statement creates a new MostRecentList of strings, passing its
constructor the value 4:

Dim the_items As New MostRecentList(Of String)(4)

Multiple Types

If you want the class to work with more than one type, you can add other types to the declaration
separated by commas. For example, suppose that you want to create a list of items where each key
is associated with a pair of data items. Example program GenericPairDictionary uses the following

c29.indd 674c29.indd 674 12/30/09 7:46:21 PM12/30/09 7:46:21 PM

code to defi ne the generic PairDictionary class. This class acts as a dictionary that associates a key
value with a pair of data values. Notice how the class declaration includes three data types named
KeyType, DataType1, and DataType2.

' A Dictionary that associates
' a pair of data values with each key.
Public Class PairDictionary(Of KeyType, DataType1, DataType2)
 ' A structure to hold paired data.
 Private Structure DataPair
 Public Data1 As DataType1
 Public Data2 As DataType2
 Public Sub New(ByVal data_value1 As DataType1,
 ByVal data_value2 As DataType2)
 Data1 = data_value1
 Data2 = data_value2
 End Sub
End Structure

 ' A Dictionary to hold the paired data.
 Private m_Dictionary As New Dictionary(Of KeyType, DataPair)

 ' Return the number of data pairs.
 Public ReadOnly roperty Count() As Integer
 Get
 Return m_Dictionary.Count
 End Get
 End Property

 ' Add a key and data pair.
 Public Sub Add(ByVal key As KeyType,
 ByVal data_value1 As DataType1,
 ByVal data_value2 As DataType2)
 m_Dictionary.Add(key, New DataPair(data_value1, data_value2))
 End Sub

 ' Remove all data.
 Public Sub Clear()
 m_Dictionary.Clear()
 End Sub

 ' Return True if the PairDictionary contains this key.
 Public Function ContainsKey(ByVal key As KeyType) As Boolean
 Return m_Dictionary.ContainsKey(key)
 End Function

 ' Return a data pair.
 Public Sub GetItem(ByVal key As KeyType,
 ByRef data_value1 As DataType1,
 ByRef data_value2 As DataType2)
 Dim data_pair As DataPair = m_Dictionary.Item(key)
 data_value1 = data_pair.Data1
 data_value2 = data_pair.Data2
 End Sub

Defi ning Generics ❘ 675

c29.indd 675c29.indd 675 12/30/09 7:46:22 PM12/30/09 7:46:22 PM

676 ❘ CHAPTER 29 GENERICS

 ' Set a data pair.
 Public Sub SetItem(ByVal key As KeyType,
 ByVal data_value1 As DataType1,
 ByVal data_value2 As DataType2)
 m_Dictionary.Item(key) = New DataPair(data_value1, data_value2)
 End Sub

 ' Return a collection containing the keys.
 Public ReadOnly Property Keys() As System.Collections.ICollection
 Get
 Return m_Dictionary.Keys()
 End Get
 End Property

 ' Remove a particular entry.
 Public Sub Remove(ByVal key As KeyType) m_Dictionary.Remove(key)
 End Sub
End Class

code snippet GenericPairDictionary

The PairDictionary class defi nes its own private DataPair class to hold data pairs. The DataPair
class has two public variables of types DataType1 and DataType2. Its only method is a constructor
that makes initializing the two variables easier.

After defi ning the DataPair class, the PairDictionary class declares a generic Dictionary object
named m_Dictionary using the key type KeyType and data type DataPair.

PairDictionary provides Count, Add, Clear, ContainsKey, GetItem, SetItem, Keys, and Remove
methods. Notice how it delegates these to the m_Dictionary object and how it uses the DataPair
class to store values in m_Dictionary.

The following code creates an instance of the generic PairDictionary class that uses integers as keys
and strings for both data values. It adds three entries to the PairDictionary and then retrieves and
displays the entry with key value 32.

' Create the PairDictionary and add some data.
Dim pair_dictionary As New PairDictionary(Of Integer, String, String)
pair_dictionary.Add(10, "Ann", "Archer")
pair_dictionary.Add(32, "Bill", "Beach")
pair_dictionary.Add(17, "Cynthia", "Campos")

' Print the values for index 32.
Dim value1 As String = ""
Dim value2 As String = ""
pair_dictionary.GetItem(32, value1, value2)
Debug.WriteLine(value1 & ", " & value2)

Constrained Types

To get the most out of your generic classes, you should make them as fl exible as possible. Depending
on what the class will do, however, you may need to constrain the types used to create instances of
the generic.

c29.indd 676c29.indd 676 12/30/09 7:46:22 PM12/30/09 7:46:22 PM

For example, consider the generic MostRecentList class described earlier in this chapter. It stores at
most a certain number of objects in a list. When you add an object to the list, the class fi rst removes
the object from the list if it is already present.

That works with simple data types such as integers and strings. However, suppose that you want the
list to hold Employee objects. When you add a new Employee object, the list tries to remove the item
if it is already present in its m_Items list. However, you are adding a new instance of the Employee
class. The object may have the same values as an object that is already in the list, but the list won ’ t
know that because the values are stored in two different objects.

What the list needs is a way to compare objects in the list to see if they are equal. It can then look
through the list and remove an existing item if it matches the new one.

One way to allow the list to compare items is to guarantee that the items implement the IComparable
interface. Then the program can use their CompareTo methods to see if two objects match.

Example program GenericMruList2 uses the following code to make a new version of the
MostRecentList class. Instead of calling the m_Items list ’ s Remove method directly, the Add
method now calls the class ’ s Remove method. That method loops through the list using each item ’ s
CompareTo method to see if the item matches the target item. If there is a match, the program
removes the item from the list.

Public Class MostRecentList(Of ItemType As IComparable)
 ...
 ' Add an item to the top of the list.
 Public Sub Add(ByVal value As ItemType)
 ' Remove the item if it is present.
 Remove(value)

 ' Add the item to the top of the list.
 m_Items.Insert(0, value)

 ' Make sure there are at most MaxItems items.
 If m_Items.Count > > m_MaxItems Then m_Items.RemoveAt(m_Items.Count - 1)
 End Sub

 ' Remove an item.
 Public Sub Remove(ByVal value As ItemType)
 ' Find the item.
 For i As Integer = m_Items.Count - 1 To 0 Step - 1
 If value.CompareTo(m_Items(i)) = 0 Then
 m_Items.RemoveAt(i)
 End If
 Next i
 End Sub
 ...
End Sub

code snippet GenericMruList2

Defi ning Generics ❘ 677

c29.indd 677c29.indd 677 12/30/09 7:46:23 PM12/30/09 7:46:23 PM

678 ❘ CHAPTER 29 GENERICS

A type ’ s As clause can specify any number of interfaces and at most one class from which the type
must be derived. It can also include the keyword New to indicate that the type used must provide
a constructor that takes no parameters. If you include more than one constraint, the constraints
should be separated by commas and enclosed in brackets.

The following code defi nes the StrangeGeneric class that takes three type parameters. The fi rst type
must implement the IComparable interface and must provide an empty constructor. The second
type has no constraints, and the third type must be a class that inherits from Control.

Public Class StrangeGeneric(Of Type1 As {IComparable, New}, Type2,
 Type3 As Control)
 ...
End Class

The following code declares an instance of the StrangeGeneric class:

Dim my_strange_generic As New StrangeGeneric(Of Integer, Employee, Button)

Constraining a type gives Visual Basic more information about that type, so it lets you use the
properties and methods defi ned by the type. In the previous code, for example, if a variable is of
type Type3, then Visual Basic knows that it inherits from the Control class, so you can use Control
properties and methods such as Anchor, BackColor, Font, and so forth.

USING GENERICS

The previous sections have already shown a few examples of how to use a generic class. The program
declares the class and includes whatever data types are required in parentheses. The following code
shows how a program might create a generic list of strings:

Imports System.Collections.Generic
...
Dim names As New List(Of String)

To use a generic class ’ s constructor, add a second set of parentheses and any parameters after the
type specifi cations. The following statement creates an IntStringList object, passing it the types
Integer, String, and Employee. It calls the class ’ s constructor, passing it the value 100.

Dim the_employees As New IntStringList(Of Integer, String, Employee)(100)

If the program needs to use only a few generic classes (for example, a single collection of strings),
this isn ’ t too bad. If the program needs to use many instances of the class, however, the code
becomes cluttered.

c29.indd 678c29.indd 678 12/30/09 7:46:23 PM12/30/09 7:46:23 PM

For example, suppose that the TreeNode class shown in the following code represents a node in a
tree. Its MyData fi eld holds some piece of data and its Children list holds references to child nodes.

Public Class TreeNode(Of DataType)
 Public MyData As DataType
 Public Children As New List(Of TreeNode(Of DataType))

 Public Sub New(ByVal new_data As DataType)
 MyData = new_data
 End Sub
End Class

The following code uses this class to build a small tree of Employee objects:

Dim root As New TreeNode(Of Employee)(New Employee("Annabelle", "Ant"))
Dim child1 As New TreeNode(Of Employee)(New Employee("Bert", "Bear"))
Dim child2 As New TreeNode(Of Employee)(New Employee("Candice", "Cat"))

root.Children.Add(child1)
root.Children.Add(child2)

Example program GenericTree, which is available for download on the book ’ s web site, uses similar
code to build a generic Tree(Of DataType) class.

Repeating the nodes ’ data types in the fi rst three lines makes the code rather cluttered. Two techniques
that you can use to make the code a bit simpler are using an imports alias and deriving a new class.
Both of these let you create a simpler name for the awkward class name TreeNode(Of Employee).

Imports Aliases

Normally, you use an Imports statement to make it easier to refer to namespaces and the symbols
they contain. However, the Imports statement also lets you defi ne an alias for a namespace entity.
To use this to make using generics easier, create an Imports statement that refers to the type of
generic class you want to use and give it a simple alias.

For example, the following code is in the DataTreeTest namespace. It uses an Imports statement to
refer to a TreeNode of Employee. It gives this entity the alias EmployeeNode. Later, the program
can use the name EmployeeNode to create a TreeNode of Employee.

Imports EmployeeNode = DataTreeTest.TreeNode(Of DataTreeTest.Employee)
...
Dim root As New EmployeeNode(New Employee("Annabelle", "Ant"))
Dim child1 As New EmployeeNode(New Employee("Bert", "Bear"))
Dim child2 As New EmployeeNode(New Employee("Candice", "Cat"))

root.Children.Add(child1)
root.Children.Add(child2)
...

code snippet GenericTreeImportsAlias

Using Generics ❘ 679

c29.indd 679c29.indd 679 12/30/09 7:46:24 PM12/30/09 7:46:24 PM

680 ❘ CHAPTER 29 GENERICS

Example program GenericTreeImportsAlias demonstrates this approach.

Derived Classes

A second method that simplifi es using generics is to derive a class from the generic class. The
following code derives the EmployeeNode class from TreeNode(Of Employee). Later, it creates
instances of this class to build the tree.

Public Class EmployeeNode
 Inherits TreeNode(Of Employee)
 Public Sub New(ByVal new_data As Employee)
 MyBase.New(new_data)
 End Sub
End Class
...
Dim root As New EmployeeNode(New Employee("Annabelle", "Ant"))
Dim child1 As New EmployeeNode(New Employee("Bert", "Bear"))
Dim child2 As New EmployeeNode(New Employee("Candice", "Cat"))

root.Children.Add(child1)
root.Children.Add(child2)
...

code snippet GenericTreeSubclass

Example program GenericTreeSubclass demonstrates this approach.

If you use this technique, you can also add extra convenience functions to the derived class. For
example, the following code shows a new EmployeeNode constructor that creates the Employee
object that it holds:

Public Sub New(ByVal first_name As String, ByVal last_name As String)
 MyBase.New(New Employee(first_name, last_name))
End Sub

PREDEFINED GENERIC CLASSES

The System.Collections.Generic namespace defi nes several generic classes. These are basically
collection classes that use generics to work with the data type you specify. See the section
“ Generics ” near the end of Chapter 28, “ Collection Classes, ” for more information and a list of the
predefi ned generic collection classes.

c29.indd 680c29.indd 680 12/30/09 7:46:24 PM12/30/09 7:46:24 PM

GENERIC METHODS

Generics are usually used to build classes that are not data type – specifi c such as the generic
collection classes. You can also give a class (generic or otherwise) a generic method. Just as a generic
class is not tied to a particular data type, the parameters of a generic method are not tied to a
specifi c data type.

The method ’ s declaration includes an Of clause similar to the one used by generic classes, followed
by the method ’ s parameter list.

Example program UseSwitcher uses the following code to defi ne a generic Switch subroutine. This
subroutine defi nes the type T and takes two parameters of type T. If this were a function, you
could use the type T for its return value if you wanted. Subroutine Switch declares a variable temp
of type T and uses it to switch the values of its parameters.

Public Class Switcher
 Public Sub Switch(Of T)(ByRef thing1 As T, ByRef thing2 As T)
 Dim temp As T = thing1
 thing1 = thing2
 thing2 = temp
 End Sub
End Class

code snippet UseSwitcher

GENERIC CLASSES AND METHODS

The Switcher class is not generic but it contains a generic method. Note that a
generic class can also contain generic and non - generic methods.

The following code uses a Switcher object to switch the values of two Person variables. In the call to
the Switch method, Visual Basic uses the fi rst parameter to infer that the type T is Person and then
requires the second parameter to have the same type.

Dim person1 As New Person("Anna")
Dim person2 As New Person("Bill")
Dim a_switcher As New Switcher
a_switcher.Switch(person1, person2)

GENERICS AND EXTENSION METHODS

Just as extension methods allow you to add new features to existing classes, they also
allow you to add new features to generic classes. For example, suppose you have an
application that uses a List(Of Person). This List class is a generic collection class defi ned in
the System.Collections.Generic namespace.

Generics and Extension Methods ❘ 681

c29.indd 681c29.indd 681 12/30/09 7:46:25 PM12/30/09 7:46:25 PM

682 ❘ CHAPTER 29 GENERICS

The generic class is not defi ned in your code so you cannot modify it, but you can add extension
methods to it. The following code adds an AddPerson method to List(Of Person) that takes as
parameters a fi rst and last name, uses those values to make a Person object, and adds it to the list:

Module PersonListExtensions
 < Extension() >
 Public Sub AddPerson(ByVal person_list As List(Of Person),
 ByVal first_name As String, ByVal last_name As String)
 Dim per As New Person() With _
 {.FirstName = first_name, .LastName = last_name}
 person_list.Add(per)
 End Sub
End Module

This example adds an extension method to a specifi c instance of a generic class. In this example, the
code adds the method to List(Of Person). With a little more work, you can add a generic extension
method to a generic class itself instead of adding it to an instance of the class.

Example program GenericNumDistinct uses the following code to add a NumDistinct function to
the generic List(Of T) class for any type T. The declaration identifi es its generic type T. The fi rst
parameter has type List(Of T) so this method extends List(Of T). The function has an Integer return
type.

Module ListExtensions
 < Extension() >
 Public Function NumDistinct(Of T)(ByVal the_list As List(Of T)) As Integer
 Return the_list.Distinct().Count()
 End Function
End Module

code snippet GenericNumDistinct

The generic List(Of T) class provides a Distinct method that returns a new list containing the
distinct objects in the original list. The NumDistinct function calls that method and returns the new
list ’ s Count value.

The following code shows how a program could call this function. It creates a new List(Of String)
and gives it some data. It then calls the list ’ s NumDistinct function.

Dim name_list As New List(Of String)
name_list.Add("Llamaar Aarchibald")
name_list.Add("Dudley Eversol")
...

MessageBox.Show("The list contains " & name_list.NumDistinct() &
 " distinct entries")

For more information on extension methods, see the section “ Extension Methods ” in Chapter 17,
“ Subroutines and Functions. ”

c29.indd 682c29.indd 682 12/30/09 7:46:26 PM12/30/09 7:46:26 PM

SUMMARY

A class abstracts the properties and behaviors of a set of objects to form a template that you can use
to make objects that implement those properties and behaviors. After you defi ne the class, you can
make many instances of it, and they will all have the features defi ned by the class.

Generics take abstraction one level higher. A generic class abstracts the features of a set of classes
defi ned for specifi c data types. It determines the properties and methods that any class in the generic
group provides. After you defi ne the generic class, you can easily make classes that work with
different data types but that all provide the common set of features defi ned by the generic.

By defi ning common functionality, generic classes let you reuse code to perform similar actions
for different data types. By allowing you to parameterize the class instances with a data type,
they let you build strongly typed classes quickly and easily. That, in turn, lets Visual Basic provide
IntelliSense to make programming faster and easier.

Together these benefi ts — easier code reuse, strong typing, and IntelliSense support — help you
write, test, debug, and maintain code more easily.

Up to this point, the book ’ s chapters describe fairly general Visual Basic programming topics
such as building forms, using controls, using loops to repeat a series of instructions, and building
classes. The chapters in the next part of the book move to a slightly more specifi c topic: graphics
programming. They explain how to draw lines, ellipses, curves, and text. They show how to use
different colors, line styles, and brush types. They also explain how to manipulate bitmapped images,
print, and generate reports. Though the techniques are not needed in as many situations as are the
techniques described in previous chapters, they are still useful under a wide variety of circumstances.

Chapter 30 explains the fundamentals of drawing graphics in Visual Basic. It provides the
information you need to start drawing simple shapes and curves. The chapters that follow build on
these techniques and use them to carry out more specifi c graphical tasks.

Summary ❘ 683

c29.indd 683c29.indd 683 12/30/09 7:46:26 PM12/30/09 7:46:26 PM

c29.indd 684c29.indd 684 12/30/09 7:46:27 PM12/30/09 7:46:27 PM

PART IV

Graphics

CHAPTER 30: Drawing Basics

CHAPTER 31: Brushes, Pens, and Paths

CHAPTER 32: Text

CHAPTER 33: Image Processing

CHAPTER 34: Printing

�

�

�

�

�

CH030.indd 685CH030.indd 685 12/31/09 6:52:21 PM12/31/09 6:52:21 PM

CH030.indd 686CH030.indd 686 12/31/09 6:52:26 PM12/31/09 6:52:26 PM

30
Drawing Basics

Visual Basic .NET provides a large assortment of objects for drawing and for controlling
drawing attributes. The Graphics object provides methods that enable you to draw and fi ll
rectangles, ellipses, polygons, curves, lines, and other shapes. Pen and Brush objects determine
the appearance of lines (solid, dashed, dotted) and fi lled areas (solid colors, hatched, fi lled
with a color gradient).

This chapter provides an overview of the drawing process and a survey of the most important
drawing namespaces and their classes. It describes in detail the most central of these classes,
the Graphics object, and provides examples showing how to use it. You can download
example programs demonstrating most of the methods described in this chapter on the book ’ s
web site. The examples also include code to draw the fi gures in this chapter.

Chapter 31, “ Brushes, Pens, and Paths, ” describes some of the other important drawing
classes in greater detail.

FOR MORE INFORMATION

If you are new to graphics, this chapter and those that follow may involve a lot
of new concepts and unfamiliar terms. The examples available on the book’s web
site will help make many of the concepts more concrete. If you fi nd some terms
confusing, you can fi nd additional details by using the advanced Microsoft search
page search.microsoft.com/AdvancedSearch.aspx. The advanced Google
search page www.google.com/advanced_search also returns excellent results and
you can enter one of the Microsoft sites www.microsoft.com, msdn.microsoft
.com, or support.microsoft.com in the “Search within a site or domain” fi eld if
you want to restrict the search to Microsoft sites. You can also consult
online glossaries such as the Webopedia (www.webopedia.com) and Wikipedia
(www.wikipedia.org) for basic defi nitions.

CH030.indd 687CH030.indd 687 12/31/09 6:52:26 PM12/31/09 6:52:26 PM

688 ❘ CHAPTER 30 DRAWING BASICS

DRAWING OVERVIEW

Whenever you draw something in Visual Basic, you must use a Graphics object. This object
represents the surface where you are drawing, whether it is a PictureBox, Form, or PrintDocument.
Sometimes you will have to create a Graphics object, and other times (as in a Paint event handler)
one is provided for you.

The Graphics Device Interface+ (GDI+), or the .NET version of GDI drawing routines, uses two
classes, Pen and Brush, to determine the appearance of lines and fi lled shapes.

A Pen object determines how lines are drawn. A Pen sets a line ’ s color, thickness, dash style, end cap
style, and other properties. The Pen applies to all lines drawn by a GDI+ routine. For example, the
DrawPolygon subroutine draws a series of lines, and its Pen parameter determines how all the lines
are drawn.

A Brush object determines how areas are fi lled. A Brush sets the area ’ s fi ll color, hatch pattern, color
gradient, and texture. Chapter 31 provides more advanced details of these and provides fi gures
showing examples. The Brush applies to GDI+ routines that fi ll closed areas such as FillRectangle,
FillEllipse, and FillPolygon.

The basic steps for drawing a simple shape are:

1. Obtain a Graphics object.

2. Defi ne a Brush object and fi ll with it.

3. Defi ne a Pen object and draw with it.

For example, the Paint event handler shown in the following code runs when the form needs to
redraw itself. The Paint event handler ’ s e.Graphics parameter gives the Graphics object on which the
program should draw. When the event handler is fi nished, Visual Basic copies the contents drawn
in this Graphics object onto the parts of the form that must be redrawn. The event handler creates
an orange SolidBrush object. SolidBrush is a class derived from the Brush class, so it will serve as a
Brush. The program uses the brush to fi ll the circle bounded by the square with upper - left corners at
(10, 10) and 100 pixels wide and 100 pixels tall. The code then creates a pen representing a 10 - pixel
wide blue line and uses it to draw the outline of the same circle. The result is an orange fi lled circle
with a thick blue border.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Using circle_brush As New SolidBrush(Color.Orange)
 e.Graphics.FillEllipse(circle_brush, 10, 10, 100, 100)
 End Using

 Using circle_pen As New Pen(Color.Blue, 10)
 e.Graphics.DrawEllipse(circle_pen, 10, 10, 100, 100)
 End Using
End Sub

CH030.indd 688CH030.indd 688 12/31/09 6:52:29 PM12/31/09 6:52:29 PM

Whenever the form is hidden and exposed, partially covered and exposed, minimized and restored
or maximized, or resized to expose a new part of the form, the Paint event handler executes and
redraws the circle.

The Graphics object ’ s fi lling and drawing methods provide several overloaded versions. Most
can take an object parameter that defi nes the shape to draw. For example, the FillEllipse and
DrawEllipse methods can take a Rectangle as a parameter to defi ne the ellipse ’ s bounding rectangle.

This provides a convenient method for ensuring that a fi lled area and its outline match exactly. The
following code draws the same circle as the previous example, but it uses a Rectangle method to
defi ne the circle. It uses the same Rectangle for its calls to FillEllipse and DrawEllipse, so it ’ s easy
to tell that they defi ne exactly the same circle. If you modify this code to change the circle, you don ’ t
need to remember to change its coordinates everywhere they occur, because the circle is defi ned in
only one place (the Rectangle).

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim rect As New Rectangle(10, 10, 100, 100)
 Using circle_brush As New SolidBrush(Color.Orange)
 e.Graphics.FillEllipse(circle_brush, rect)
 End Using

 Using circle_pen As New Pen(Color.Blue, 10)
 e.Graphics.DrawEllipse(circle_pen, rect)
 End Using
End Sub

All GDI+ drawing is based on these simple steps, but there are a lot of variations. Pens and brushes
can be much more complicated. For example, you can fi ll a polygon with a color gradient that
follows a path you defi ne and then outline it with a custom dash pattern. The Graphics object also
provides some fairly exotic drawing routines such as DrawBezier, which draws a B é zier curve.

The following sections describe the namespaces containing the most useful GDI+ objects. Chapter 31
provides additional details and contains pictures of the results produced by many of these objects.

BEAUTIFUL BÉZIERS

A Bézier curve is a smooth curve guided by a set of four control points. The curve
starts at the fi rst point and ends at the last. The middle two points control the
curve’s direction and curvature. The section “DrawBezier” later in this chapter
gives more information on Bézier curves, and Figure 30-4 shows an example.

Drawing Overview ❘ 689

CH030.indd 689CH030.indd 689 12/31/09 6:52:29 PM12/31/09 6:52:29 PM

690 ❘ CHAPTER 30 DRAWING BASICS

DRAWING NAMESPACES

Before jumping into GDI+ graphics, it ’ s worth taking a moment to learn which namespaces
contain which objects. By default, the System.Drawing namespace is imported into new Windows
Forms applications, so you don ’ t need to import it explicitly to work with Graphics, Pen, Brush,
and the other basic drawing objects. However, if you want to create custom dash patterns, linear
gradient color fi lls, or advanced image fi les, you must know which namespaces to import into your
application.

System.Drawing

The System.Drawing namespace contains the most important and basic GDI+ classes. These classes
include Graphics, Pen, Brush, Font, FontFamily, Bitmap, Icon, and Image. The following table
describes the most useful System.Drawing classes.

CLASS DESCRIPTION

Graphics This is without doubt the most important class you ’ ll use when creating graphics. An

object of this class represents the surface you ’ re going to draw on. That could be a

PictureBox, form, bitmap in memory, or whatever. The class provides the methods

for drawing lines, rectangles, ellipses, and so forth.

Pen This class represents the drawing characteristics of a line, including the line ’ s color,

thickness, dash style, and so forth.

Pens This class provides a large number of predefi ned pens with diff erent colors and

width 1. For example, you can use Pens.Blue as a standard blue pen.

Brush This class represents how solid areas are fi lled. It determines whether the area is

solidly colored, hatched, fi lled with a pattern, and so on.

Brushes This class provides a large number of predefi ned solid brushes with diff erent colors.

For example, you can use Brushes.Green to fi ll an area with green.

SolidBrush This class represents a solid brush. When you want to fi ll an object with a solid

color, you use a SolidBrush class. This is by far the most common type of fi ll for

most applications.

Bitmap This class represents a bitmap image defi ned by pixel data rather than drawn lines.

Icon This class represents a Windows icon similar to a bitmap.

Metafile This class represents a graphic metafi le that contains graphical operations that a

program can record, save to a fi le, load from a fi le, and play back later.

CH030.indd 690CH030.indd 690 12/31/09 6:52:30 PM12/31/09 6:52:30 PM

CLASS DESCRIPTION

Image This is an abstract base class from which Bitmap, Icon, and Metafi le inherit.

Some routines can work with any of these kinds of objects, so they take an

Image parameter. (In brief, a bitmap is a typical picture. An icon has additional

transparency and possibly hot - spot information so it can act as a form or application

icon or mouse pointer. A metafi le defi nes a drawing in terms of lines, curves, and

fi lled areas rather than using pixels in a bitmap. This lets the program later redraw

the image scaled, rotated, or otherwise transformed smoothly without the distortion

that would occur in a bitmapped image.)

Font This class represents a particular font. It defi nes the font ’ s name, size, and style

(such as italic or bold).

FontFamily This class represents a group of typefaces with similar characteristics.

Region This class defi nes a shape created from rectangles and paths. You can fi ll a region,

use it to perform hit testing, or clip a drawing to a region.

The System.Drawing namespace also defi nes some structures that a program can use for
drawing. The following table describes the most useful of these structures.

STRUCTURE DESCRIPTION

Color This object defi nes a color ’ s red, green, and blue components as values

between 0 and 255, plus an alpha value that indicates the color ’ s

transparency. An alpha value of 0 means the object is completely

transparent, and a value of 255 means it is totally opaque.

Point This object defi nes a point ’ s X and Y coordinates.

Size This object defi nes a width and height.

Rectangle This object defi nes a rectangle using a Point and a Size.

GDI+ routines work in pixels on the screen, printer, or whatever object they are drawing on, so
the Point, Size, and Rectangle structures hold integral coordinates and sizes. However, the System
.Drawing namespace also defi nes PointF, SizeF, and RectangleF classes to work with fl oating - point
values.

The Color class provides a large number of predefi ned color values. For example, Color.PaleGreen
defi nes a light green color. You can use these predefi ned colors instead of creating a new
color object.

Drawing Namespaces ❘ 691

CH030.indd 691CH030.indd 691 12/31/09 6:52:31 PM12/31/09 6:52:31 PM

692 ❘ CHAPTER 30 DRAWING BASICS

System.Drawing.Drawing2D

The System.Drawing.Drawing2D namespace contains most of the other objects you ’ ll need to draw
more advanced two - dimensional graphics. Some of these classes refi ne the more basic drawing
classes, or defi ne values for those classes. For example, the HatchBrush class represents a specialized
type of Brush that fi lls with a hatch pattern. The following table describes this namespace ’ s most
useful classes.

CLASS DESCRIPTION

HatchBrush This class defi nes a Brush that fi lls an area with a hatch pattern.

It defi nes the pattern, a foreground color, and a background color.

LinearGradientBrush This class defi nes a Brush that fi lls an area with a linear color

gradient. By default the fi ll shades smoothly from one color to

another along a line that you defi ne, but it can also represent

multicolor gradients.

Blend This class represents a blend pattern for a LinearGradientBrush

or PathGradientBrush. For example, suppose that you defi ne

a gradient running from red to yellow. Normally the gradient is

smooth and linear, but you can use a Blend to change this. For

example, you might want the color to change from red to yellow

very quickly, so it is 80 percent yellow only 20 percent of the way

across the gradient.

PathGradientBrush This class is similar to a LinearGradientBrush except its gradient

follows a path rather than a line.

ColorBlend This class defi nes colors and positions for LinearGradientBrush or

PathGradientBrush. This lets you make the colors vary between

several diff erent colors along the brush ’ s path.

GraphicsPath This class represents a series of connected lines and curves. You

can draw, fi ll, or clip to a GraphicsPath. For example, you could add

text to a GraphicsPath and then draw its outline or clip a drawing

so that it only shows within the text ’ s path.

Matrix This class represents a 3 × 3 transformation matrix. You can use

matrixes to translate, scale, and rotate graphics operations. See

the section “ Transformation Basics ” later in this chapter for more

information.

Chapter 31 has more to say about the gradient brushes. It includes sample images.

CH030.indd 692CH030.indd 692 12/31/09 6:52:31 PM12/31/09 6:52:31 PM

Drawing Namespaces ❘ 693

The System.Drawing.Drawing2D namespace also defi nes some enumerations that are
useful for more advanced drawing. The following table describes the most useful of these
enumerations.

ENUMERATION DESCRIPTION

DashCap These values determine how the

ends of a dash in a dashed line are

drawn. DashCap values include Flat,

Round, and Triangle. These give the

same appearance as the Flat, Round,

and Triangle LineCap enumerations

shown in Figure 30 - 1.

FIGURE 30-1: The LineCap enumeration

determines how a line’s end point is drawn.

DashStyle These values determine how a dashed line is drawn. DashStyle values include

Dash, DashDot, DashDotDot, Dot, Solid, and Custom. If you set a Pen ’ s

DashStyle property to DashStyle.Custom, you should also set its DashPattern

property to an array telling the Pen how many to pixels to draw and skip.

For example, the array {10, 20, 5, 2} means draw 10, skip 2, draw 5, skip 2,

and then repeat as necessary.

LineCap These values determine how the ends of a line are drawn. Values include

ArrowAnchor, DiamondAnchor, Flat, NoAnchor, Round, RoundAnchor, Square,

SquareAnchor, Triangle, and Custom. If LineCap is Custom, you should use

a CustomLineCap object to defi ne the cap. Figure 30 - 1 shows the standard

LineCaps.

LineJoin These values determine how lines are

joined by a GDI+ method that draws

connected lines. For example, the

DrawPolygon and DrawLines methods

use this property. Figure 30 - 2 shows

the possible values Bevel, Miter,

Round, and MiterClipped. MiterClipped

produces either a mitered or beveled

corner, depending on whether the

miter ’ s length exceeds a certain limit

determined by the Pen class ’ s MiterLimit

property. The MiterClipped example

in Figure 30 - 2 shows one join that

exceeds this limit and one that

does not.

FIGURE 30-2: The LineJoin

enumeration determines how lines

are joined.

continues

CH030.indd 693CH030.indd 693 12/31/09 6:52:32 PM12/31/09 6:52:32 PM

694 ❘ CHAPTER 30 DRAWING BASICS

ENUMERATION DESCRIPTION

HatchStyle These values defi ne the hatch style used by a HatchBrush object to fi ll an area. This

enumeration includes 54 values, so they are not all listed here. Example program

HatchStyles, which is available for download on the book ’ s web site and shown in

Figure 30 - 3, lists them and shows samples.

FIGURE 30-3: The HatchStyle enumeration determines how HatchBrush objects fi ll areas.

System.Drawing.Imaging

The System.Drawing.Imaging namespace contains classes that deal with more advanced bitmap
graphics. It includes classes that defi ne image fi le formats such as GIF and JPG, classes that manage
color palettes, and classes that defi ne metafi les. The following table describes this namespace ’ s most
useful classes.

(continued)

CH030.indd 694CH030.indd 694 12/31/09 6:52:33 PM12/31/09 6:52:33 PM

Drawing Namespaces ❘ 695

CLASS DESCRIPTION

ImageFormat This class specifi es an image ’ s format. This can be one of BMP,

EMF, EXIF, GIF, ICON, JPEG, memory bitmap, PNG, TIFF, or WMF. For

descriptions of these image format types, try searching for them at

web sites such as Webopedia (www.webopedia.com). The page

www.webopedia.com/DidYouKnow/Internet/2002/

JPG_GIF_PNG.asp discusses the diff erences between the three

most common web image formats: GIF, JPEG, and PNG. The

Microsoft web site has a comparison of the BMP, GIF, JPEG, Exif,

PNG, and TIFF formats at msdn.microsoft.com/ms536393.aspx .

ColorMap This class defi nes a mapping from old color values to new ones. You

can use the ColorMap class to change some colors in an image to

others.

ColorPalette This class represents a palette of color values. (A palette is a

collection of color values that are used in a particular image. For

example, 8 - bit color images can contain only 256 diff erent colors.

The image ’ s color palette lists the colors used, and an 8 - bit numeric

value gives each pixel ’ s color index in the palette. Recently, higher

color models such as 16 - , 24 - , and 32 - bit color have become more

common. In those color models, the bits give each pixel ’ s red, green,

and blue color components directly rather than referring to a color

palette, so no palette is needed.)

Metafile This class represents a graphic metafi le that contains drawing

instructions. You can create, save, reload, and play back metafi le

information.

MetafileHeader This class defi nes the attributes of a Metafi le object.

MetaHeader This class contains information about a Windows metafi le (WMF).

WmfPlaceableFileHeader This class defi nes how a metafi le should be mapped to an output

device. You can use this to ensure that the metafi le is properly sized

when you import it into a drawing program such as CorelDRAW.

System.Drawing.Text

The System.Drawing.Text namespace contains only three classes. These three classes provide
a somewhat awkward method for learning about the fonts installed on the system or the fonts
installed for an application. The following table describes these three classes.

CH030.indd 695CH030.indd 695 12/31/09 6:52:34 PM12/31/09 6:52:34 PM

696 ❘ CHAPTER 30 DRAWING BASICS

CLASS DESCRIPTION

FontCollection A base class for the derived InstalledFontCollection and

PrivateFontCollection classes. It provides a method that returns an

array of FontFamily objects.

InstalledFontCollection This is derived from the FontCollection class. This class ’ s

Families method returns an array containing FontFamily objects

representing the fonts installed on the system.

PrivateFontCollection This is also derived from the FontCollection class. Objects from

this class represent fonts installed by an application from font

fi les. The program can use this object to install fonts just for the

use of the application and not for the rest of the system. This class

provides methods for installing and listing the application ’ s fonts.

It is rather odd that this class is defi ned just to provide one method that returns an array of
FontFamily objects. It would have made more sense to give the FontCollection class a method such
as ListInstalledFonts or to give the InstalledFontCollection class a shared method that creates such a
FontCollection object. That ’ s not the way these classes work, however.

Example program ListInstalledFonts uses the following code to list the system ’ s installed fonts.
The program creates an instance of the InstalledFontCollection and uses that object ’ s Families
method to get an array of the installed FontFamily objects. The program then loops through the
array to list the fonts.

Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' Get the installed fonts collection.
 Dim installed_fonts As New InstalledFontCollection

 ' Get an array of the system's font families.
 Dim font_families() As FontFamily = installed_fonts.Families()

 ' Display the font families.
 For Each font_family As FontFamily In font_families
 lstFonts.Items.Add(font_family.Name)
 Next font_family
 lstFonts.SelectedIndex = 0
End Sub

code snippet ListInstalledFonts

The System.Drawing.Text namespace also defi nes the TextRenderingHint enumeration. Anti -
aliasing is a process that uses pixels of different shades to make jagged edges and curves appear
smoother. You can set a Graphics object ’ s TextRenderingHint property to tell Visual Basic whether
it should use anti - aliasing to smooth the text.

CH030.indd 696CH030.indd 696 12/31/09 6:52:34 PM12/31/09 6:52:34 PM

Drawing Namespaces ❘ 697

The following table describes the TextRenderingHint enumeration values.

ENUMERATION VALUE DESCRIPTION

AntiAlias Characters are drawn anti - aliased without hinting.

AntiAliasGridFit Characters are drawn anti - aliased with hinting to improve stems

and curves.

ClearTypeGridFit Characters are drawn using ClearType glyphs with hinting. This

takes advantage of ClearType font features. (In this context, a

glyph is the image of a letter. Some fonts are drawn as glyphs and

others such as TrueType fonts are drawn as outlines. TrueType

was developed jointly by Microsoft and Apple. ClearType is a

newer type of glyph font developed by Microsoft.)

SingleBitPerPixel Characters are drawn without anti - aliasing or hinting. This is the

fastest and lowest - quality setting.

SingleBitPerPixelGridFit Characters are drawn without anti - aliasing, but with hinting.

SystemDefault Characters are drawn using the system default setting.

The following code shows how a program can display text with and without anti - aliasing. First it
creates a large font. It sets the Graphics object ’ s TextRenderingHint property to AntiAliasGridFit
and draws some text. Then it sets TextRenderingHint to SingleBitPerPixel and draws the text again.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Make a big font.
 Using the_font As New Font(Me.Font.FontFamily,
 40, FontStyle.Bold, GraphicsUnit.Pixel)

 ' Draw without anti - aliasing.
 e.Graphics.TextRenderingHint = TextRenderingHint.AntiAliasGridFit
 e.Graphics.DrawString("Alias", the_font, Brushes.Black, 5, 5)

HELPFUL HINTS

Some fonts include extra hints to help the system produce smoother text.
If you set TextRenderingHint to include hints, you’ll get smoother text but
possibly with slight performance cost. Unless you’re drawing a lot of text,
however, you may not notice the difference in speed. For more information
on font hinting, see en.wikipedia.org/wiki/Font_hinting and damieng
.com/blog/2009/05/07/font-hinting-and-instructing-a-primer.

CH030.indd 697CH030.indd 697 12/31/09 6:52:35 PM12/31/09 6:52:35 PM

698 ❘ CHAPTER 30 DRAWING BASICS

 ' Draw with anti - aliasing.
 e.Graphics.TextRenderingHint = TextRenderingHint.SingleBitPerPixel
 e.Graphics.DrawString("Alias", the_font, Brushes.Black, 5, 50)
 End Using
End Sub

code snippet AntiAliasing

Figure 30 - 4 shows the result, greatly enlarged
to emphasize the difference. Notice how the
anti - aliased version uses different shades of
gray to make the text appear smoother.

For information on anti - aliasing as it applies
to shapes other than text, see the section
“ Anti - Aliasing ” later in this chapter.

System.Drawing.Printing

The System.Drawing.Printing namespace
contains objects for printing and managing
the printer ’ s characteristics.

Normally, to generate a printed document,
you create a PrintDocument object. You
set the object ’ s properties to defi ne printing
attributes and then call its Print method. As it prints, the PrintDocument object generates PrintPage
events that let you draw on the printout ’ s pages.

Other classes in this namespace defi ne properties for the PrintDocument object. The following table
describes the most useful of these property objects.

CLASS DESCRIPTION

PageSettings This class defi nes the page settings for either an entire

PrintDocument or for a particular page. This object has

properties that are Margins, PaperSize, PaperSource,

PrinterResolution, and PrinterSettings objects.

Margins This class defi nes the margins for the printed page through

its Top, Bottom, Left, and Right properties.

PaperSize This class defi nes the paper ’ s size. You can set the object ’ s

Kind property to a standard value such as A2, Legal, or

Letter. Alternatively, you can set the object ’ s Height and

Width properties explicitly.

PaperSource This class defi nes the printer ’ s paper source. You can set

this object ’ s Kind property to such values as AutomaticFeed,

Upper, Middle, Lower, Envelope, and ManualFeed.

FIGURE 30-4: Anti-aliasing (top) makes characters

appear smoother.

CH030.indd 698CH030.indd 698 12/31/09 6:52:36 PM12/31/09 6:52:36 PM

CLASS DESCRIPTION

PrinterResolution This class defi nes the printer ’ s resolution.

PrinterSettings This class defi nes the printer ’ s settings. You can use this

class to get setting values such as whether the printer

can print double - sided (CanDuplex), the names of the

installed printers (InstalledPrinters), and the printer ’ s

supported resolutions (PrinterResolutions). You can use

other properties to control the printer. For example, you

can set the number of copies (Copies), set the minimum and

maximum page number the user can select in a print dialog

(MinimumPage and MaximumPage), and determine whether

the printer collates its output (Collate).

GRAPHICS

Whenever you draw in Visual Basic .NET, you need a Graphics object. A Graphics object
represents a drawing surface, whether it is a Form, PictureBox, Bitmap in memory, metafi le, or
printer surface.

The Graphics class provides many methods for drawing shapes and fi lling areas. It also includes
properties and methods that modify the graphics results. For example, its transformation methods
enable you to scale, translate, and rotate the drawing output.

The following sections describe the Graphics object ’ s properties and methods for drawing, fi lling,
and otherwise modifying the drawing.

Drawing Methods

The Graphics object provides many methods for drawing lines, rectangles, curves, and other
shapes. The following table describes these methods.

METHOD DESCRIPTION

DrawArc Draws an arc of an ellipse.

DrawBezier Draws a B é zier curve. See the section “ DrawBezier ” later in this chapter

for an example.

DrawBeziers Draws a series of B é zier curves. See the section “ DrawBezier ” later in this

chapter for an example.

DrawClosedCurve Draws a closed curve that joins a series of points, connecting the fi nal

point to the fi rst point. See the section “ DrawClosedCurve ” later in this

chapter for an example.

Graphics ❘ 699

continues

CH030.indd 699CH030.indd 699 12/31/09 6:52:37 PM12/31/09 6:52:37 PM

700 ❘ CHAPTER 30 DRAWING BASICS

METHOD DESCRIPTION

DrawCurve Draws a smooth curve that joins a series of points. This is similar to a

DrawClosedCurve, except that it doesn ’ t connect the fi nal point to the

fi rst point.

DrawEllipse Draws an ellipse. To draw a circle, draw an ellipse with a width equal to its

height.

DrawIcon Draws an Icon onto the Graphics object ’ s drawing surface.

DrawIconUnstretched Draws an Icon object onto the Graphics object ’ s drawing surface without

scaling. If you know that you will not resize the icon, this may be faster

than the DrawIcon method.

DrawImage Draws an Image object onto the Graphics object ’ s drawing surface. Note

that Bitmap is a subclass of Image, so you can use this method to draw a

Bitmap on the surface.

DrawImageUnscaled Draws an Image object onto the drawing surface without scaling. If

you know that you will not resize the image, this may be faster than the

DrawImage method.

DrawLine Draws a line.

DrawLines Draws a series of connected lines. If you need to draw a series of

connected lines, this is much faster than using DrawLine repeatedly.

DrawPath Draws a GraphicsPath object. See the section “ DrawPath ” later in this

chapter for an example.

DrawPie Draws a pie slice taken from an ellipse.

DrawPolygon Draws a polygon. This is similar to DrawLines, except that it connects the

last point to the fi rst point.

DrawRectangle Draws a rectangle.

DrawRectangles Draws a series of rectangles. If you need to draw a series of rectangles,

this is much faster than using DrawRectangle repeatedly.

DrawString Draws text on the drawing surface.

The following sections provide examples of some of the more complicated of these drawing methods.

DrawBezier

The DrawBezier method draws a B é zier curve. A B é zier curve is a smooth curve defi ned by four
control points. The curve starts at the fi rst point and ends at the last point. The line between the
fi rst and second points gives the curve ’ s initial direction. The line connecting the third and fourth
points gives its fi nal direction as it enters the fi nal point.

(continued)

CH030.indd 700CH030.indd 700 12/31/09 6:52:38 PM12/31/09 6:52:38 PM

The following code draws a B é zier curve. It starts by defi ning the curve ’ s control points. It then draws
dashed lines connecting the points, so you can see where the control points are in the fi nal drawing.
You would omit this step if you just wanted to draw the curve. Next the program sets the Graphics
object ’ s SmoothingMode property to HighQuality, so the program draws a smooth, anti - aliased
curve. The SmoothingMode property is described in the section “ SmoothingMode ” later in this
chapter. The program creates a black pen three pixels wide and draws the B é zier curve.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Define the Bezier curve's control points.
 Dim pts() As Point = {
 New Point(10, 10),
 New Point(200, 10),
 New Point(50, 200),
 New Point(200, 150)
 }
 ' Connect the points with dashed lines.
 Using dashed_pen As New Pen(Color.Black, 0)
 dashed_pen.DashStyle = Drawing2D.DashStyle.Dash
 For i As Integer = 0 To 2
 e.Graphics.DrawLine(dashed_pen, pts(i), pts(i + 1))
 Next i
 End Using

 ' Draw the Bezier curve.
 e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.HighQuality
 Using bez_pen As New Pen(Color.Black, 3)
 e.Graphics.DrawBezier(bez_pen, pts(0), pts(1), pts(2), pts(3))
 End Using
End Sub

code snippet Bezier

Figure 30 - 5 shows the result. You can see in the picture how the control
points determine the curve ’ s end points and the direction it takes at them.

DrawBeziers

The DrawBeziers method draws a series of B é zier curves with common
end points. It takes as parameters an array of points that determine the
curves ’ end points and interior control points. The fi rst four entries in
the array represent the fi rst curve ’ s starting point, its two interior control
points, and the curve ’ s end point. The next curve uses the fi rst curve ’ s
end point as its starting point, provides two interior control points, and
its own end point. This pattern repeats for each of the curves. To draw N
curves, the array should contain 3 * N + 1 points.

FIGURE 30-5 The

DrawBezier method draws

a smooth curve defi ned

by four control points.

Graphics ❘ 701

CH030.indd 701CH030.indd 701 12/31/09 6:52:39 PM12/31/09 6:52:39 PM

702 ❘ CHAPTER 30 DRAWING BASICS

Figure 30 - 6 shows two B é zier curves drawn by the DrawBeziers
method. Notice that the two curves share a common end point,
but they do not meet smoothly. To make them meet smoothly, you
would need to ensure that the last two points in the fi rst curve and
the fi rst two points in the second curve (one of which is the same
as the last point in the fi rst curve) all lie along the same line.

DrawClosedCurve

Using the DrawBeziers method, you can draw a series of connected
curves, but joining them smoothly is diffi cult. The DrawClosedCurve
method connects a series of points with a smooth curve.

DrawClosedCurve takes as parameters a pen and an array of
points to connect. Figure 30 - 7 shows an example. Notice that the
curve is smooth and that it passes through each of the control
points exactly. If you just want to connect a series of points
smoothly, it is easier to use a closed curve than B é zier curves.

The DrawCurve method is similar to DrawClosedCurve, except
that it doesn ’ t connect the last point to the fi rst.

Overloaded versions of the DrawClosedCurve method take a
tension parameter that indicates how tightly the curve bends.
Usually this value is between 0 and 1. The value 0 makes the
method connect the curve ’ s points with straight lines. The value
1 draws a nicely rounded curve. Tension values greater than 1
produce some strange (but sometimes interesting) results.

Figure 30 - 8 shows closed curves drawn with tension set to 0.0,
0.25, 0.5, 0.75, and 1.0. It uses progressively thicker lines so you
can see which curves are which. You can see the curves growing
smoother as the tension parameter increases and the pen thickens.

Overloaded versions of the DrawCurve method also take
tension parameters.

DrawPath

The DrawPath method draws a GraphicsPath object as shown
in the following code. The program creates a new, empty
GraphicsPath object and uses its AddString method to add a
string to the path. This method takes as parameters a string,
FontFamily, font style, font size, point where the text should
start, and a string format. The code sets the Graphics object ’ s
SmoothingMode property to draw anti - aliased curves. It
then calls the FillPath method to fi ll the area defi ned by the
GraphicsPath object with white and uses the DrawPath method
to draw the path ’ s outline in black.

FIGURE 30-6: The DrawBeziers

method draws a series of Bézier

curves with common end points.

FIGURE 30-7: The DrawClosedCurve

method draws a smooth curve

connecting a series of points.

FIGURE 30-8: The

DrawClosedCurve method’s tension

parameter determines how tightly

the curve bends.

CH030.indd 702CH030.indd 702 12/31/09 6:52:39 PM12/31/09 6:52:39 PM

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Create a GraphicsPath.
 Using graphics_path As New Drawing2D.GraphicsPath
 ' Add some text to the path.
 graphics_path.AddString("GraphicsPath",
 New FontFamily("Times New Roman"),
 CInt(FontStyle.Bold),
 80, New Point(10, 10),
 StringFormat.GenericTypographic)

 ' Draw the path.
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
 e.Graphics.FillPath(Brushes.White, graphics_path)
 Using thick_pen As New Pen(Color.Black, 3)
 e.Graphics.DrawPath(thick_pen, graphics_path)
 End Using
 End Using
End Sub

code snippet DrawTextPath

Figure 30 - 9 shows the result.

FIGURE 30-9: The DrawPath method draws the outline

defi ned by a GraphicsPath object.

You can use GraphicsPath objects to make all sorts of interesting effects. For example, you could fi ll
a GraphicsPath with a color gradient, hatch pattern, or bitmap.

Filling Methods

The Graphics object provides many methods for fi lling areas. These correspond exactly to the
drawing methods that defi ne a closed shape. For example, DrawRectangle draws a rectangle and
FillRectangle fi lls one.

Graphics ❘ 703

CH030.indd 703CH030.indd 703 12/31/09 6:52:40 PM12/31/09 6:52:40 PM

Corresponding draw and fi ll methods take exactly the same parameters, except that the fi lling
methods use a Brush object instead of a Pen object. For example, the following statements fi ll and
draw a GraphicsPath object. The only difference in the parameters is the Pen or Brush.

e.Graphics.FillPath(Brushes.White, graphics_path)
e.Graphics.DrawPath(Pens.Black, graphics_path)

The Graphics object provides the following methods for fi lling areas: FillClosedCurve, FillEllipse,
FillPath, FillPie, FillPolygon, FillRectangle, and FillRectangles. These methods work the same way
as the corresponding drawing methods (DrawClosedCurve, DrawEllipse, DrawPath, DrawPie,
DrawPolygon, DrawRectangle, and DrawRectangles), except they fi ll an area with a brush
rather than drawing it with a pen. See the section “ Drawing Methods ” earlier in this chapter for
descriptions of these methods.

Other Graphics Properties and Methods

The following table describes the Graphics object ’ s most useful properties and methods, other than
those that draw or fi ll shapes.

AddMetafileComment If the Graphics object is attached to a metafi le, this adds a comment to

it. Later, if an application enumerates the metafi le ’ s records, it can view

the comments.

Clear Clears the Graphics object and fi lls it with a specifi c color. For example,

a form ’ s Paint event handler might use the statement e.Graphics

.Clear(Me.BackColor) to clear the form using its background color.

Clip Determines the Region object used to clip a drawing on the Graphics

surface. Any drawing command that falls outside of this Region is

clipped off and not shown in the output.

Dispose Releases the resources held by the Graphics object. You can use this

method to free the resources of an object that you no longer need

sooner than they would be freed by garbage collection. For a more

detailed discussion, see the section “ Dispose ” in Chapter 26, “ Classes

and Structures. ”

DpiX Returns the horizontal number of dots per inch (DPI) for this Graphics

object ’ s surface.

DpiY Returns the vertical number of DPI for this Graphics object ’ s surface.

EnumerateMetafile If the Graphics object is attached to a metafi le, this sends the metafi le ’ s

records to a specifi ed callback subroutine one at a time.

ExcludeClip Updates the Graphics object ’ s clipping region to exclude the area

defi ned by a Region or Rectangle.

704 ❘ CHAPTER 30 DRAWING BASICS

PROPERTIES/METHODS DESCRIPTION

CH030.indd 704CH030.indd 704 12/31/09 6:52:41 PM12/31/09 6:52:41 PM

FromHdc Creates a new Graphics object from a handle to a device context

(DC). (A device context is a structure that defi nes an object ’ s graphic

attributes: pen, color, fi ll, and so forth.)

FromHwnd Creates a new Graphics object from a window handle (hWnd).

Graphics ❘ 705

HANDLING HANDLES

The device context handle (hDC) and window handle (hWnd) have been around
since the dawn of Windows. They were originally used by C and C++ programmers
so they have a very different feel from modern .NET programming objects.

Usually, you can use the GDI+ drawing routines and ignore DCs. They’re most use-
ful when you need to use the older GDI functions or when using P/Invoke. These
are advanced topics so they aren’t covered here.

FromImage Creates a new Graphics object from an Image object. This is a very

common way to make a new Graphics object to manipulate a bitmap.

InterpolationMode Determines whether drawing routines use anti-aliasing when drawing

images. See the section “InterpolationMode” later in this chapter for

an example.

IntersectClip Updates the Graphics object’s clipping region to be the intersection

of the current clipping region and the area defi ned by a Region or

Rectangle. (The clipping region determines where GDI+ will draw

output. If a line falls outside of the clipping region, GDI+ doesn’t draw

the part that sticks out. Normally, an image’s clipping region includes

its whole visible area, but you can redefi ne it so that, for example,

parts of the visible area are not drawn.)

IsVisible Returns True if a specifi ed point is within the Graphics object’s visible

clipping region.

MeasureCharacterRanges Returns an array of Region objects that show where each character in

a string will be drawn.

MeasureString Returns a SizeF structure that gives the size of a string drawn on the

Graphics object with a particular font.

MultiplyTransform Multiplies the Graphics object’s current transformation matrix by

another transformation matrix.

continues

(continued)

CH030.indd 705CH030.indd 705 12/31/09 6:52:42 PM12/31/09 6:52:42 PM

706 ❘ CHAPTER 30 DRAWING BASICS

PageScale Determines the amount by which drawing commands are scaled. For

example, if you set this to 2, every coordinate and measurement is

scaled by a factor of 2 from the origin.

PageUnits Determines the units of measurement. This can be Display (1/75 inch),

Document (1/300 inch), Inch, Millimeter, Pixel, or Point (1/72 inch).

RenderingOrigin Determines the point used as a reference when hatching. Normally

this is (0, 0), so all HatchBrushes use the same RenderingOrigin and,

if you draw two overlapping hatched areas, their hatch patterns line

up. If you change this property, you can make their hatch patterns not

line up.

ResetClip Resets the object’s clipping region, so the drawing is not clipped.

ResetTransformation Resets the object’s transformation matrix to the identity matrix, so the

drawing is not transformed.

Restore Restores the Graphics object to a state saved by the Save method.

See the section “Saving and Restoring Graphics State” later in this

chapter for an example.

RotateTransform Adds a rotation to the object’s current transformation. This rotates

all drawing by a specifi ed amount. See the section “Transformation

Basics” later in this chapter for an example.

Save Saves the object’s current state in a GraphicsState object, so you can

later restore it by calling the Restore method. See the section “Saving

and Restoring Graphics State” later in this chapter for an example.

ScaleTransform Adds a scaling transformation to the Graphics object’s current

transformation. This scales all drawing by a specifi ed factor in the X

and Y directions. See the section “Transformation Basics” later in this

chapter for an example.

SetClip Sets or merges the Graphics object’s clipping area to another

Graphics object, a GraphicsPath object, or a Rectangle. Only parts of

drawing commands that lie within the clipping region are displayed.

SmoothingMode Determines whether drawing routines use anti-aliasing when drawing

lines and curves. See the section “SmoothingMode” later in this

chapter for an example.

TextRenderingHint Determines whether text is drawn with anti-aliasing and hinting. See

the section “TextRenderingHint” later in this chapter and the section

“System.Drawing.Text” earlier in this chapter for more details.

(continued)

CH030.indd 706CH030.indd 706 12/31/09 6:52:43 PM12/31/09 6:52:43 PM

The following sections give examples of some of the more important (but confusing) Graphics
properties and methods.

Anti - Aliasing

Aliasing is an effect caused when you draw lines, curves, and text that do not line up exactly with
the screen ’ s pixels. For example, if you draw a vertical line, it neatly fi lls in a column of pixels. If
you draw a line at a 45 - degree angle, it also fi lls a series of pixels that are nicely lined up, but the
pixels are a bit farther apart and that makes the line appear lighter on the screen. If you draw a
line at some other angle (for example, 30 degrees), the line does not line up exactly with the pixels.
The line will contain some runs of two or three pixels in a horizontal group. The result is a line that
is lighter than the vertical line and that is noticeably jagged.

A similar effect occurs when you resize a bitmap or other image. If you enlarge an image by simply
drawing each pixel as a larger block of the same color, the result is blocky. If you shrink an image
by removing some pixels, the result may have tears and gaps.

Anti - aliasing is a process that smoothes out lines, text, and images. Instead of drawing a series of
pixels that all have the same color, the drawing routines give pixels different shades of color to make
the result smoother.

The Graphics object provides three properties that control anti - aliasing for lines and curves, text,
and images: SmoothingMode, TextRenderingHint, and InterpolationMode.

SmoothingMode

The SmoothingMode property controls anti - aliasing for drawn lines and curves, and for fi lled
shapes. This property can take the values AntiAlias, Default, HighQuality, HighSpeed, and None.
The following code shows how a program might draw a circle ’ s outline and a fi lled circle using the
HighQuality SmoothingMode:

gr.SmoothingMode = SmoothingMode.HighQuality
gr.DrawEllipse(Pens.Black, 10, 10, 20, 20)
gr.FillEllipse(Brushes.Black, 30, 10, 20, 20)

Graphics ❘ 707

Transform Gets or sets the Graphics object’s transformation matrix. This matrix

represents all scaling, translation, and rotation applied to the object.

TransformPoints Applies the object’s current transformation to an array of points.

TranslateTransform Adds a translation transformation to the Graphics object’s current

transformation. This off sets all drawing a specifi ed distance in the X

and Y directions. See the section “Transformation Basics” later in this

chapter for an example.

CH030.indd 707CH030.indd 707 12/31/09 6:52:44 PM12/31/09 6:52:44 PM

708 ❘ CHAPTER 30 DRAWING BASICS

It ’ s hard to see any difference in a book, although the difference is clear on the screen. It ’ s not clear
whether there ’ s any difference between the Default, HighSpeed, and None modes, or between
HighQuality and AntiAlias, at least on this computer. The HighQuality and AntiAlias modes are
noticeably smoother than the others, however.

TextRenderingHint

The TextRenderingHint property controls anti - aliasing for text. This property can take the values
AntiAlias, AntiAliasGridFit, ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit,
and SystemDefault. The following code shows how a program can draw text using the
TextRenderingHint value AntiAliasGridFit:

gr.TextRenderingHint = TextRenderingHint.AntiAliasGridFit
gr.DrawString("TextRenderingHint", Me.Font, Brushes.Black, 10, 10)

As is the case with SmoothingMode values, it ’ s hard to see any difference in a book, but the
difference is clear on the screen. The TextRenderingHint value SingleBitPerPixel produces a poor
result. SystemDefault and SingleBitPerPixelGridFit give an acceptable result (the default appears to
be AntiAliasGridFit on this computer). AntiAlias and AntiAliasGridFit give the best results.

Most of the differences are quite subtle. The “ grid fi t ” versions use hinting about where the
characters are positioned to try to improve stems and curves. If you look extremely closely (perhaps
with a magnifying glass), you can see that the base of a T is a bit cleaner and more solid in the
AntiAliasGridFit and ClearTypeGridFit modes than in the AntiAlias mode. The “ grid fi t ” modes
also provide text that is slightly more compact horizontally than the AntiAlias mode.

InterpolationMode

The InterpolationMode property controls anti - aliasing when a program shrinks or enlarges an
image. This property can take the values Bicubic, Bilinear, Default, High, HighQualityBicubic,
HighQualityBilinear, Low, and NearestNeighbor.

Example program InterpolationModes, which is available for download on the book ’ s web site,
draws a smiley face in a bitmap. It then draws the bitmap ’ s image at enlarged and reduced scales
using InterpolationMode values. The differences are hard to see in a book but are obvious on
the screen.

For enlarged images, the NearestNeighbor interpolation mode gives a sharply blocky result.
All of the other modes give a slightly fuzzier image that looks a little smoother but that is still
somewhat blocky.

For reduced images, the three high - quality modes (High, HighQualityBilinear, and
HighQualityBicubic) produce very nice results. The other modes cause gaps in the lines in the
reduced images.

All of the interpolation modes produce better results on photographic images instead of the line
drawings used in this example.

CH030.indd 708CH030.indd 708 12/31/09 6:52:45 PM12/31/09 6:52:45 PM

Speed Considerations

The anti - aliasing settings for all three of these properties provide smoother results, but they are
slower. For a few lines, strings, and images, the difference in performance won ’ t be an issue.
However, if you build a more intensive application (such as a mapping program that draws several
thousand street segments on the form), you may notice a difference in speed. In that case, you may
be willing to accept slightly worse appearance in exchange for better performance.

Transformation Basics

Graphical transformations modify the coordinates and sizes you use to draw graphics to produce a
result that is scaled, translated, or rotated. For example, you could apply a scaling transformation
that multiplies by 2 in the X direction and 3 in the Y direction. If you then drew a line between
the points (10, 10) and (20, 20), the result drawn on the screen would connect the points (10 *
2, 10 * 3) = (20, 30) and (20 * 2, 20 * 3) = (40, 60). This stretches the line so it is larger overall,
but it stretches its height more than its width (a factor of 3 versus a factor of 2). Notice that
this also moves the line farther from the origin [from (10, 10) to (20, 30)]. In general, a scaling
transformation moves an object farther from the origin unless it lies on the origin.

You don ’ t really need to understand all the details of the mathematics of transformations to use
them, but a little background is quite helpful.

Transformation Mathematics

In two dimensions, you can represent scaling, translation, and rotation with 3 × 3 matrixes. You
represent a point with a vector of three entries, two for the X and Y coordinates and a fi nal 1 that
gives the vector three entries so that it matches the matrices.

When you multiply a point ’ s coordinates by a transformation matrix, the result is the
transformed point.

To multiply a point by a matrix, you multiply the point ’ s coordinates by the corresponding entries
in the matrix ’ s columns. The fi rst transformed coordinate is the point ’ s coordinates times the fi rst
column, the second transformed coordinate is the point ’ s coordinates times the second column, and
the third transformed coordinate is the point ’ s coordinates times the third column.

The following calculation shows the result when you multiply a generic vector < A, B, C > by a
matrix. When you work with two - dimensional transformations, the value C is always 1.

 m11 m12 m13
< A, B, C > * m21 m22 m23
 m31 m32 m33

= < A * m11 + B * m21 + C * m31,
 A * m12 + B * m22 + C * m32,
 A * m13 + B * m23 + C * m33 >

Graphics ❘ 709

CH030.indd 709CH030.indd 709 12/31/09 6:52:45 PM12/31/09 6:52:45 PM

710 ❘ CHAPTER 30 DRAWING BASICS

The following matrix represents scaling by a factor of Sx in the X direction and a factor of Sy in the
Y direction:

 Sx 0 0
 0 Sy 0
 0 0 1

The following example shows the point (10, 20) multiplied by a matrix that represents scaling by a
factor of 2 in the X direction and 3 in the Y direction. The result is the vector < 20, 60, 1 > , which
represents the point (20, 60) as you should expect.

 2 0 0
< 10, 20, 1 > * 0 3 0
 0 0 1

= < 10 * 2 + 20 * 0 + 1 * 0,
 10 * 0 + 20 * 3 + 1 * 0,
 10 * 0 + 20 * 0 + 1 * 1 >

= < 20, 60, 1 >

The following matrix represents translation through the distance Tx in the X direction and Ty in
the Y direction:

 1 0 0
 0 1 0
 Tx Ty 1

The following matrix represents rotation through the angle t :

 Cos(t) Sin(t) 0
- Sin(t) Cos(t) 0

 0 0 1

Finally, the following transformation, called the identity transformation , leaves the point
unchanged. If you multiply a point by this matrix, the result is the same as the original point.

 1 0 0
 0 1 0
 0 0 1

You can work through some examples to verify that these matrices represent translation, scaling,
rotation, and the identity, or consult an advanced graphics programming book for proofs.

One of the most useful and remarkable properties of matrix/point multiplication is that it is
associative. If p is a point and T1 and T2 are transformation matrices, p * T1 * T2 = (p * T1) *
T2 = p * (T1 * T2).

This result means that you can multiply any number of transformation matrices together to create
a single combined matrix that represents all of the transformations applied one after the other.
You can then apply this single matrix to all the points that you need to draw. This can save a
considerable amount of time over multiplying each point by a long series of matrices one at a time.

CH030.indd 710CH030.indd 710 12/31/09 6:52:46 PM12/31/09 6:52:46 PM

Transformation Code

The Graphics object maintains a current transformation matrix at all times, and it provides
several methods that let you add more transformations to that matrix. The ScaleTransform,
TranslateTransform, and RotateTransform methods add a new transformation to the current
transformation. These methods take parameters that specify the amount by which points should be
scaled, translated, or rotated.

A fi nal parameter indicates whether you want to prepend the new transformation on the
left (MatrixOrder.Prepend) or append it on the right (MatrixOrder.Append) of the current
transformation. If you prepend the new transformation on the left, that transformation is
applied before any that are already part of the current transformation. If you append the new
transformation on the right, that transformation is applied after any that are already part of the
current transformation.

Strangely, the default if you omit this parameter is to prepend the new transformation on the left.
That means transformations that you add last are applied fi rst. That, in turn, means that you must
compose a combined transformation backward. If you want to rotate, then scale, then translate,
you need to prepend the translation fi rst, the scaling second, and the rotation last. That seems very
counterintuitive.

A more natural approach is to explicitly set this fi nal parameter to MatrixOrder.Append so that
later transformations are applied after existing ones.

The following code shows how a program can use transformations to draw a complex result with a
simple drawing routine. Subroutine DrawArrow draws an arrow within the rectangle 0 < = X < = 4, 0
< = Y < = 4. If you were to call this routine without any transformations, you would see a tiny arrow
four pixels long and four pixels wide drawn in the upper - left corner of the form.

' Draw an arrow outline.
Private Sub DrawArrow(ByVal gr As Graphics, ByVal hatch_style As HatchStyle)
 Dim pts() As Point = {
 New Point(0, 1),
 New Point(2, 1),
 New Point(2, 0),
 New Point(4, 2),
 New Point(2, 4),
 New Point(2, 3),
 New Point(0, 3)
 }
 Using hatch_brush As New HatchBrush(hatch_style, Color.Black, Color.White)
 gr.FillPolygon(hatch_brush, pts)
 End Using

 Using black_pen As New Pen(Color.Black, 0)
 gr.DrawPolygon(black_pen, pts)
 End Using
End Sub

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Scale by a factor of 30.

Graphics ❘ 711

CH030.indd 711CH030.indd 711 12/31/09 6:52:46 PM12/31/09 6:52:46 PM

712 ❘ CHAPTER 30 DRAWING BASICS

 e.Graphics.ScaleTransform(30, 30, MatrixOrder.Append)
 DrawArrow(e.Graphics, HatchStyle.Horizontal)

 ' Translate 150 horizontally and 60 vertically.
 e.Graphics.TranslateTransform(150, 60, MatrixOrder.Append)
 DrawArrow(e.Graphics, HatchStyle.Vertical)

 ' Rotate 30 degrees.
 e.Graphics.RotateTransform(30, MatrixOrder.Append)
 DrawArrow(e.Graphics, HatchStyle.Cross)
End Sub

code snippet TransformArrow

This form ’ s Paint event handler uses the ScaleTransform method to give the Graphics object
a transformation that scales by a factor of 30 in both the X and Y directions. It then calls the
DrawArrow routine, passing it the parameter HatchStyle.Horizontal. The result is an arrow near
the upper - left corner but 30 times larger than the original arrow and fi lled with a horizontal hatch
pattern.

Next the program uses the TranslateTransform method to add a transformation that translates
150 pixels in the X direction and 60 pixels vertically. It appends this transformation so that the
drawing is fi rst scaled (the scaling transformation is still part of the Graphics object ’ s current
transformation) and then translated. It calls DrawArrow again, passing it the parameter HatchStyle.
Vertical, so the result is an arrow 30 times larger than the original, moved 150 pixels to the right
and 60 pixels down, and fi lled with a vertical hatch pattern.

Finally, the program uses the RotateTransform method to add a transformation that rotates the
drawing by 30 degrees clockwise around the origin in the upper - left corner. It again appends
the transformation so that the drawing is fi rst scaled, then translated, and then rotated. It calls
DrawArrow, passing it the parameter HatchStyle.Cross, so the
result is an arrow 30 times larger than the original, moved 150
pixels to the right and 60 pixels down, rotated 30 degrees, and
fi lled with a crosshatch pattern.

Figure 30 - 10 shows the result.

The Graphics object ’ s methods for working with transformations
include MultiplyTransform, PageScale, PageUnits,
ResetTransformation, RotateTransform, ScaleTransform,
Transform, TransformPoints, and TranslateTransform. See the
section “ Other Graphics Properties and Methods ” earlier in this
chapter for descriptions of those methods.

Note also that the transformations apply to text as well as
drawn lines and fi lled shapes so a program can easily draw text
that is stretched, scaled, and rotated.

FIGURE 30-10: This program

draws arrows scaled, translated,

and rotated.

CH030.indd 712CH030.indd 712 12/31/09 6:52:47 PM12/31/09 6:52:47 PM

Advanced Transformations

You can build very complex transformations by combining simple ones. For example, you can scale
around an arbitrary point by combining simple translation and scaling transformations.

A normal scaling transformation moves an object farther away from the origin. If you scale the
point (10, 20) by a factor of 20 in the X and Y directions, you get the point (200, 400), which is
much farther from the origin. Similarly, if you scale all the points in a shape, all the points move
farther from the origin.

To scale the object around some point other than the origin, fi rst translate it so the point of rotation
is centered at the origin. Then scale it and translate it back to its original position.

The following code scales a diamond around its center. The DrawDiamond subroutine draws a
diamond centered at the point (125, 125). The form ’ s Paint event handler calls DrawDiamond to
draw the original diamond. It then translates to move the diamond ’ s center to the origin, scales by a
factor of 2 vertically and horizontally, and then reverses the fi rst translation to move the origin back
to the diamond ’ s original center.

Private Sub DrawDiamond(ByVal gr As Graphics)
 Dim pts() As Point = {
 New Point(75, 125),
 New Point(125, 75),
 New Point(175, 125),
 New Point(125, 175)
 }
 gr.DrawPolygon(Pens.Black, pts)
End Sub

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Draw the original diamond.
 DrawDiamond(e.Graphics)

 ' Translate to center at the origin.
 e.Graphics.TranslateTransform(- 125, - 125, MatrixOrder.Append)

 ' Scale by a factor of 2.
 e.Graphics.ScaleTransform(2, 2, MatrixOrder.Append)

 ' Translate the center back to where it was.
 e.Graphics.TranslateTransform(125, 125, MatrixOrder.Append)

 ' Draw the diamond.
 DrawDiamond(e.Graphics)
End Sub

code snippet ScaleDiamond

Notice that line widths are also scaled by scaling transformations, so in this example, the enlarged
diamond ’ s borders are two pixels wide. The Pen object ’ s Width property is a Single, so you can use
fractional pen widths if necessary. For example, if you want to scale an object by a factor of 4 and
you want the result to have a line width of 2, you can set the Pen ’ s Width to 0.5 and let it scale.

Graphics ❘ 713

CH030.indd 713CH030.indd 713 12/31/09 6:52:48 PM12/31/09 6:52:48 PM

714 ❘ CHAPTER 30 DRAWING BASICS

If you want the fi nal result to have a line width of 1, you can also set the Pen ’ s Width to 0. This
value tells the GDI+ routines to use a single pixel line width, no matter how the drawing is scaled.

Note also that the line width will not go below 1 if you use a scaling transformation to reduce the
size of the drawing.

A particularly useful transformation maps a specifi c rectangle in world coordinates (the coordinates
in which you draw) to a specifi c rectangle in device coordinates (the coordinates on the drawing
surface). For example, you might graph a function in the world coordinates – 1 < = X < = 1, – 1 < = Y
< = 1 and want to map it to the drawing surface rectangle 10 < = X < = 200, 10 < = Y < = 200.

To do this, you can fi rst translate to center the world coordinate rectangle at the origin, scale to
resize the rectangle to match the size of the device coordinate rectangle, and then translate to move
the origin to the center of the device coordinate rectangle.

The MapRectangles subroutine shown in the following code maps a world coordinate rectangle
into a device coordinate rectangle for a Graphics object. It begins by resetting the Graphics object ’ s
transformation to clear out anything that may already be in there. Next, the routine translates
the center of the world coordinate rectangle to the origin, scales to stretch the world coordinate
rectangle to the device coordinate rectangle ’ s size, and then translates to move the origin to the
center of the device - coordinate rectangle.

' Map a world coordinate rectangle to a device coordinate rectangle.
Private Sub MapRectangles(ByVal gr As Graphics,
 ByVal world_rect As Rectangle, ByVal device_rect As Rectangle)
 ' Reset the transformation.
 gr.ResetTransform()

 ' Translate to center the world coordinate
 ' rectangle at the origin.
 gr.TranslateTransform(
 CSng(- (world_rect.X + world_rect.Width / 2)),
 CSng(- (world_rect.Y + world_rect.Height / 2)),
 MatrixOrder.Append)

 ' Scale.
 gr.ScaleTransform(
 CSng(device_rect.Width / world_rect.Width),
 CSng(device_rect.Height / world_rect.Height),
 MatrixOrder.Append)

 ' Translate to move the origin to the center
 ' of the device coordinate rectangle.
 gr.TranslateTransform(
 CSng(device_rect.X + device_rect.Width / 2),
 CSng(device_rect.Y + device_rect.Height / 2),
 MatrixOrder.Append)
End Sub

code snippet MapRectangle

The following code shows how a program can use this subroutine to position a drawing. The
DrawSmiley subroutine draws a smiley face within the area 0 < = X < = 1, 0 < = Y < = 1. The Paint

CH030.indd 714CH030.indd 714 12/31/09 6:52:48 PM12/31/09 6:52:48 PM

event handler creates a Rectangle representing the device coordinates where it wants to draw the
smiley face. It draws the rectangle so that you can see where the target is. The code then creates a
world coordinate rectangle representing the area where the DrawSmiley subroutine draws the face.

' Draw a smiley face in the rectangle
' 0 < = X < = 1, 0 < = Y < = 1.
Private Sub DrawSmiley(ByVal gr As Graphics)
 Using the_pen As New Pen(Color.Black, 0)
 gr.FillEllipse(Brushes.Yellow, 0, 0, 1, 1) ' Face.
 gr.DrawEllipse(the_pen, 0, 0, 1, 1)
 gr.DrawArc(the_pen, 0.2, 0.2, 0.6, 0.6, 0, 180) ' Smile.
 gr.FillEllipse(Brushes.Black, 0.4, 0.4, 0.2, 0.25) ' Nose
 gr.FillEllipse(Brushes.White, 0.25, 0.15, 0.2, 0.25) ' Left eye.
 gr.DrawEllipse(the_pen, 0.25, 0.15, 0.2, 0.25)
 gr.FillEllipse(Brushes.Black, 0.35, 0.2, 0.1, 0.15)
 gr.FillEllipse(Brushes.White, 0.55, 0.15, 0.2, 0.25) ' Right eye.
 gr.DrawEllipse(the_pen, 0.55, 0.15, 0.2, 0.25)
 gr.FillEllipse(Brushes.Black, 0.65, 0.2, 0.1, 0.15)
 End Using
End Sub

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Draw the target rectangle.
 Dim device_rect As New Rectangle(50, 50, 150, 150)
 e.Graphics.DrawRectangle(Pens.Black, device_rect)

 ' Map between world and device coordinate rectangles.
 Dim world_rect As New Rectangle(0, 0, 1, 1)
 MapRectangles(e.Graphics, world_rect, device_rect)

 ' Draw the smiley face.
 DrawSmiley(e.Graphics)
End Sub

code snippet MapRectangle

Figure 30 - 11 shows the result. Note that the smiley face fi ts the target
device coordinate rectangle nicely.

The preceding example uses subroutine MapRectangles to scale
and translate a drawing, but the routine can also stretch or fl ip
the drawing. For example, if the previous code used the following
statement to defi ne the device rectangle, the result has width 50 and
height 150 so it is tall and thin:

Dim device_rect As New Rectangle(50, 50, 50, 150)

Subroutine MapRectangles can be particularly handy if you need
to graph an equation. Normally, in device coordinates, the origin
is in the upper - left corner and Y values increase downward. When
you draw a graph, however, the origin is in the lower - left corner and
Y values increase upward. You could work out how to modify the

FIGURE 30-11: This program

uses the MapRectangles

subroutine to map a smiley

face in world coordinates into a

rectangle in device coordinates.

Graphics ❘ 715

CH030.indd 715CH030.indd 715 12/31/09 6:52:49 PM12/31/09 6:52:49 PM

716 ❘ CHAPTER 30 DRAWING BASICS

equation you are trying to draw so that it comes out in the proper orientation, but it ’ s much easier to
use subroutine MapRectangles to fl ip the Y coordinates.

To invert the Y coordinates, set the device coordinate Rectangle structure ’ s Y property to the largest
Y coordinate you want to use, and set its height to the negative of the height you really want to
use. For example, suppose that you want the graph to fi ll the device coordinate rectangle 50 < = X
< = 200, 50 < = Y < = 200. The rectangle has width and height 150, so you would use the following
statement to map the coordinate windows:

Dim device_rect As New Rectangle(50, 200, 150, - 150)

You could also use subroutine MapRectangles to fl ip a drawing ’ s X coordinates, although the need
for that is much less common.

Saving and Restoring Graphics State

The Graphics object ’ s Save method takes a snapshot of the object ’ s state and stores it in a
GraphicsState object. Later, you can pass this GraphicsState object to the Graphics object ’ s Restore
method to return to the saved state.

Note that you can pass a particular GraphicsState object to the Restore method only once. If you
want to use the same state again, you can call the Save method to save it again right after you
restore it. That ’ s the approach used by the following code. The program creates transformations
that scale by a factor of 90 and then translate to move the origin to the center of the form. It then
starts a loop to draw a rectangle rotated by angles between 5 degrees and 90 degrees.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Using black_pen As New Pen(Color.Black, 0)
 ' Scale by a factor of 90.
 e.Graphics.ScaleTransform(90, 90, MatrixOrder.Append)

 ' Translate to center on the form.
 e.Graphics.TranslateTransform(
 Me.ClientRectangle.Width \ 2,
 Me.ClientRectangle.Height \ 2,
 MatrixOrder.Append)

 For i As Integer = 5 To 90 Step 5
 ' Save the state.
 Dim graphics_state As GraphicsState = e.Graphics.Save()

 ' Rotate i degrees.
 e.Graphics.RotateTransform(i, MatrixOrder.Prepend)

 ' Draw a rectangle.
 e.Graphics.DrawRectangle(black_pen, - 1, - 1, 2, 2)

 ' Restore the saved state.
 e.Graphics.Restore(graphics_state)
 Next i
 End Using
End Sub

code snippet SaveRestore

CH030.indd 716CH030.indd 716 12/31/09 6:52:50 PM12/31/09 6:52:50 PM

Within the loop it calls the Save method to record the Graphics object ’ s current state. That
state includes the initial scaling and translation. The loop then adds a rotation transformation
to the Graphics object. It passes the RotateTransform method the value MatrixOrder.Prepend,
so the rotation is added to the front of the transformation matrix. That makes the combined
transformation apply the rotation before the scaling and translation. In other words, drawings are
rotated, then scaled, and then translated.

The loop then draws the rectangle – 1 < = X < = 1, – 1 < = Y < = 1, and then calls Restore to restore the
saved graphics state that holds just the scaling and translation.

Figure 30 - 12 shows the result.

There are usually many other ways to achieve the same effect
in graphics programming. Though changing the order of
transformations generally does not give the same result, you can
always use different sets of transformations to produce the same
outcome.

The following code shows a simpler For loop that creates the same
result as the previous version. Rather than using Restore to remove
the Graphics object ’ s current rotation and replacing it with a new
one, this version simply adds another 5 - degree rotation to the
current rotation. For example, a single 10 - degree rotation is
the same as two 5 - degree rotations.

For i As Integer = 5 To 90 Step 5
 ' Rotate 5 degrees.
 e.Graphics.RotateTransform(5, MatrixOrder.Prepend)

 ' Draw a rectangle.
 Using black_pen As New Pen(Color.Black, 0)
 e.Graphics.DrawRectangle(black_pen, - 1, - 1, 2, 2)
 End Using
Next i

code snippet SaveRestore

Normally, you would not use Save and Restore if such a simple solution is available without them.
Save and Restore are more useful when you want to perform several operations using the same
transformation and other transformations are interspersed.

DRAWING EVENTS

When part of a control must be redrawn, it generates a Paint event. For example, if you minimize a
form and then restore it, partially cover a form with another form, or enlarge a form, parts of the
form must be redrawn.

The Paint event handler provides a parameter e of type PaintEventArgs. That parameter ’ s Graphics
property holds a reference to a Graphics object that the event handler should use to redraw the

FIGURE 30-12: This program

saves and restores the Graphics

object’s state containing a

scaling and translation, adding

an extra rotation as needed.

Drawing Events ❘ 717

CH030.indd 717CH030.indd 717 12/31/09 6:52:51 PM12/31/09 6:52:51 PM

718 ❘ CHAPTER 30 DRAWING BASICS

control. This Graphics object has its clipping region set to the part of the control that must be
redrawn. For example, if you make a form wider, the Graphics object is clipped, so it only draws
on the new piece of form on the right that was just exposed. Clipping the Graphics object makes
drawing faster because the GDI+ routines can ignore drawing commands outside of the clipping
region more quickly than they can draw them.

Clipping the Graphics object sometimes leads to unexpected results, particularly if the Paint event
handler draws something that depends on the form ’ s size. The following code draws a rectangle
with an X in it, fi lling the form whenever the form resizes:

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 e.Graphics.Clear(Me.BackColor)
 e.Graphics.DrawRectangle(Pens.Black, 0, 0,
 Me.ClientSize.Width - 1,
 Me.ClientSize.Height - 1)
 e.Graphics.DrawLine(Pens.Black, 0, 0,
 Me.ClientSize.Width - 1,
 Me.ClientSize.Height - 1)
 e.Graphics.DrawLine(Pens.Black,
 Me.ClientSize.Width - 1, 0,
 0, Me.ClientSize.Height - 1)
End Sub

code snippet PaintResizeX

Figure 30 - 13 shows the result after the form has been resized several times. Each time the form
resizes, the Paint event handler draws the newly exposed region, but the existing drawing remains,
giving the appearance of stacked envelopes.

Some computers generate Paint events every time the
mouse moves during a resize, so the newly exposed areas
are fi lled with a densely packed series of lines.

Paint event handlers also don ’ t execute when the form
shrinks. If the form shrinks, no new areas are exposed,
so no Paint events fi re.

Paint event handlers work well if the image on the
control does not depend on the control ’ s size. For
example, if you want to draw an ellipse with bounds 10
< = X < = 300, 10 < = Y < = 10, then a Paint event handler
works nicely. If a drawing depends on the control ’ s size,
you must also draw the picture in the control ’ s Resize
event handler.

You could implement the drawing code in the Paint and
Resize event handlers, or call a drawing subroutine from those event handlers, but Visual Basic
provides an easier way to deal with these issues. The following code shows how to make the form
use its Paint event handler to draw itself whenever it is exposed or resized.

FIGURE 30-13: Paint event handlers that

adjust their drawings based on the form’s

size may produce unexpected results.

CH030.indd 718CH030.indd 718 12/31/09 6:52:52 PM12/31/09 6:52:52 PM

When the form loads, its Load event handler sets the form ’ s ResizeRedraw property to True to
indicate that the form should redraw itself when it is resized. Next the code calls the form ’ s
SetStyle method to set the AllPaintingInWmPaint style to True. This tells Visual Basic that the form
does all of its drawing in its Paint event handler. Now, when the form resizes, Visual Basic raises
the Paint event, so the program can do all of its drawing in the Paint event and not worry about the
Resize event.

Private Sub Form1_Load() Handles MyBase.Load
 Me.ResizeRedraw = True
 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)
End Sub

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 e.Graphics.Clear(Me.BackColor)
 e.Graphics.DrawRectangle(Pens.Black, 0, 0,
 Me.ClientSize.Width - 1,
 Me.ClientSize.Height - 1)
 e.Graphics.DrawLine(Pens.Black, 0, 0,
 Me.ClientSize.Width - 1,
 Me.ClientSize.Height - 1)
 e.Graphics.DrawLine(Pens.Black,
 Me.ClientSize.Width - 1, 0,
 0, Me.ClientSize.Height - 1)
End Sub

code snippet PaintResizeX

SUMMARY

Visual Basic .NET provides a huge number of graphical classes. This chapter provides an overview
of these classes. It also focuses on the most important graphics class: Graphics. The Graphics class
provides methods that let you draw and fi ll rectangles, ellipses, polygons, curves, lines, and other
shapes. Pen and Brush objects determine the appearance of lines and fi lled areas. Other Graphics
properties and methods let you determine the types of anti - aliasing used when drawing different
kinds of objects, and how drawings are transformed.

Chapter 31 describes the next two most important graphics classes: Brush and Pen. It also
explains the GraphicsPath object that you can use to draw and fi ll paths consisting of lines, shapes,
curves, and text.

Summary ❘ 719

CH030.indd 719CH030.indd 719 12/31/09 6:52:52 PM12/31/09 6:52:52 PM

CH030.indd 720CH030.indd 720 12/31/09 6:52:53 PM12/31/09 6:52:53 PM

31
Brushes, Pens, and Paths

After Graphics, Pen and Brush are the two most important graphics classes. Whenever you perform
any drawing operation that does not manipulate an image ’ s pixels directly, you use a Pen or a Brush.

Pen classes control the appearance of lines. They determine a line ’ s color, thickness,
dash style, and caps.

Brush classes control the appearance of fi lled areas. They can fi ll an area with solid
colors, hatched colors, a tiled image, or different kinds of color gradients.

This chapter describes the Pen and Brush classes in detail. It shows how to use these classes to
draw and fi ll all sorts of interesting shapes.

This chapter also describes the GraphicsPath class that represents a series of lines, shapes,
curves, and text. You can fi ll a GraphicsPath using Pen and Brush classes.

EXAMPLES GALORE!

You can download example programs demonstrating most of the methods
described in this chapter on the book ’ s web site. The examples also include code to
draw the fi gures in this chapter.

PEN

The Pen object determines how lines are drawn. It determines the lines ’ color, thickness, dash
style, join style, and end cap style.

A program can explicitly create Pen objects, but often it can simply use one of the more than
280 pens that are predefi ned by the Pens class. For example, the following code draws a
rectangle using a hot pink line that ’ s one pixel wide:

gr.DrawRectangle(Pens.HotPink, 10, 10, 50, 50)

➤

➤

CH031.indd 721CH031.indd 721 12/31/09 6:53:40 PM12/31/09 6:53:40 PM

722 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

Pen objects are scaled by transformations applied to a Graphics object, however, so the result is not
necessarily one pixel thick. If the Graphics object applies a transformation that scales by a factor of
10, the resulting line will have thickness 10.

One solution to this problem is to create a new Pen object setting its thickness to 0.1, as shown in
the following code. The thickness is scaled to 0.1 * 10 = 1.

gr.DrawRectangle(New Pen(Color.HotPink, 0.1), 10, 10, 50, 50)

Another solution is to create a pen with thickness 0. The GDI + routines always draw lines that
have 0 thickness as one pixel wide.

The Pen class provides several overloaded constructors, which are described in the following table.

CONSTRUCTORS DESCRIPTION

Pen(brush) Creates a pen of thickness 1 using the indicated Brush. Lines are

drawn as rectangles fi lled with the Brush. This makes the most sense

for relatively thick lines, so the fi ll is visible. It produces sometimes

irregular dashed or dotted results for thin lines.

Pen(color) Creates a pen of thickness 1 using the indicated color.

Pen(brush, thickness) Creates a pen with the indicated thickness (a Single) using a Brush.

Pen(color, thickness) Creates a pen with the indicated thickness (a Single) using the

indicated color.

The following table describes some of the Pen class ’ s most useful properties and methods.

PROPERTY OR METHOD PURPOSE

Alignment Determines whether the line is drawn inside or centered on the

theoretical perfectly thin line specifi ed by the drawing routine. See the

section “ Alignment ” later in this chapter for examples.

Brush Determines the Brush used to fi ll lines.

Color Determines the lines ’ color.

CompoundArray Lets you draw lines that are striped lengthwise. See the section

“ CompoundArray ” later in this chapter for examples.

CustomEndCap Determines the line ’ s end cap. See the section “ Custom Line Caps ”

later in this chapter for examples.

CustomStartCap Determines the line ’ s start cap. See the section “ Custom Line Caps ”

later in this chapter for examples.

CH031.indd 722CH031.indd 722 12/31/09 6:53:43 PM12/31/09 6:53:43 PM

PROPERTY OR METHOD PURPOSE

DashCap Determines the cap drawn at the ends of dashes. This can be Flat,

Round, or Triangle.

DashOffset Determines the distance from the start of the line to the start of the

fi rst dash.

DashPattern An array of Singles that specifi es a custom dash pattern. The array

entries tell how many pixels to draw, skip, draw, skip, and so forth. Note

that these values are scaled if the pen is not one pixel wide.

DashStyle Determines the line ’ s dash style. This value can be Dash, DashDot,

DashDotDot, Dot, Solid, or Custom. If you set the DashPattern

property, this value is set to Custom. Note that the dashes and gaps

between them are scaled if the pen is not one pixel wide.

EndCap Determines the cap used at the end of the line. This value can be

ArrowAnchor, DiamondAnchor, Flat, NoAnchor, Round, RoundAnchor,

Square, SquareAnchor, Triangle, and Custom. If LineCap is Custom, you

should use a CustomLineCap object to defi ne the cap. Figure 30 - 1 in

Chapter 30 shows the standard LineCap values.

LineJoin Determines how lines are joined by a GDI+ method that draws

connected lines. For example, the DrawPolygon and DrawLines

methods use this property. This value can be Bevel, Miter, and Round.

Figure 30 - 2 in Chapter 30 shows these values.

MultiplyTransform Multiplies the Pen class ’ s current transformation by another

transformation matrix. See the section “ Pen Transformations ” later in

this chapter for more information and examples.

ResetTransform Resets the Pen class ’ s transformation to the identity transformation.

See the section “ Pen Transformations ” later in this chapter for more

information and examples.

RotateTransform Adds a rotation transformation to the Pen class ’ s current

transformation. See the section “ Pen Transformations ” later in this

chapter for more information and examples.

ScaleTransform Adds a scaling transformation to the Pen class ’ s current transformation.

See the section “ Pen Transformations ” later in this chapter for more

information and examples.

SetLineCap This method takes parameters that let you specify the Pen class ’ s

StartCap, EndCap, and LineJoin properties at the same time.

StartCap Determines the cap used at the start of the line. See the EndCap

property for details.

continues

Pen ❘ 723

CH031.indd 723CH031.indd 723 12/31/09 6:53:44 PM12/31/09 6:53:44 PM

724 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

PROPERTY OR METHOD PURPOSE

Transform Determines the transformation applied to the initially circular “ pen tip ”

used to draw lines. The transformation lets you draw with an elliptical

tip. See the section “ Pen Transformations ” later in this chapter for more

information and examples.

TranslateTransform Adds a translation transformation to the Pen class ’ s current

transformation. Pen objects ignore any translation component in

their transformations, so this method has no eff ect on the Pen class ’ s

fi nal appearance and was probably added for consistency and

completeness. See the section “ Pen Transformations ” later in this

chapter for more information and examples.

Width The width of the pen. This value is scaled if the pen is transformed

either by its own transformation or by the transformation of the

Graphics object that uses it.

The following sections describe some of the Pen class ’ s more confusing properties and methods.

Alignment

The Alignment property determines whether thick lines for closed curves are drawn inside or
centered on the theoretical perfectly thin line specifi ed by the drawing routine. This property can
take the values Center or Inset.

The following code draws a circle with a thick white line and its pen ’ s Alignment set to Center.
It then draws the same circle with a thin black line. Next, the code repeats these steps, drawing its
thick white circle with Alignment set to Inset.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Using the_pen As New Pen(Color.LightGray, 20)
 the_pen.Alignment = PenAlignment.Center
 e.Graphics.DrawEllipse(the_pen, 25, 25, 100, 100)
 e.Graphics.DrawEllipse(Pens.Black, 25, 25, 100, 100)

 the_pen.Alignment = PenAlignment.Inset
 e.Graphics.DrawEllipse(the_pen, 150, 25, 100, 100)
 e.Graphics.DrawEllipse(Pens.Black, 150, 25, 100, 100)
 End Using
End Sub

code snippet PenAlignments

(continued)

CH031.indd 724CH031.indd 724 12/31/09 6:53:44 PM12/31/09 6:53:44 PM

Figure 31 - 1 shows a more elaborate program that
draws samples of all of the Alignment values. Notice
that all of the Alignment values produce the same
result as Center, except for the value Inset.

The Alignment property applies only to closed fi gures
such as ellipses, rectangles, and polygons. Open
fi gures such as line segments, arcs, and unclosed
curves are always drawn centered.

CompoundArray

The CompoundArray property lets a program draw
lines that are striped lengthwise. This property is an
array of Single values that determine where the solid
and empty parts of the line lie as a fraction of the line ’ s
width. For example, an array containing the values {0.0, 0.25, 0.75, 1.0} makes the fi rst quarter of
the line solid (0.0 – 0.25), the next half of the line not drawn (0.25 – 0.75), and the last quarter of the
line solid (0.75 – 1.0).

The following code demonstrates the CompoundArray property. It creates a thick pen, sets
its CompoundArray property to draw a line with a thin empty stripe down the middle, and
draws a line. Next, the code sets the CompoundArray property to draw three equally sized
and spaced stripes, and draws a rectangle and circle. Finally, the code sets the Graphics object ’ s
SmoothingMode property to AntiAlias, resets CompoundArray to draw a line with two thin
empty stripes, and draws another circle.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias

 Using the_pen As New Pen(Color.Black, 10)
 the_pen.CompoundArray = New Single() {0.0, 0.45, 0.55, 1.0}
 e.Graphics.DrawLine(the_pen, 10, 20, 400, 20)

 the_pen.CompoundArray = New Single() {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
 e.Graphics.DrawRectangle(the_pen, 20, 50, 100, 100)
 e.Graphics.DrawEllipse(the_pen, 150, 50, 100, 100)

 the_pen.CompoundArray = New Single() {0.0, 0.1, 0.2, 0.8, 0.9, 1.0}
 e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias
 e.Graphics.DrawEllipse(the_pen, 300, 50, 100, 100)
 End Using
End Sub

code snippet CompoundArrays

FIGURE 31-1: A Pen class’s Alignment property

determines whether the line is drawn on or

inside its theoretical perfectly thin line.

Pen ❘ 725

CH031.indd 725CH031.indd 725 12/31/09 6:53:45 PM12/31/09 6:53:45 PM

726 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

Figure 31 - 2 shows the result.

Custom Line Caps

The Pen class ’ s CustomEndCap and
CustomStartCap properties let you defi ne your own
end caps for lines. To make a custom cap, make a
GraphicsPath object that defi nes the cap ’ s drawing
commands. This object should use a coordinate
system where X increases to the left of the line, and
Y increases in the direction of the line, as shown in
Figure 31 - 3.

Next, create a CustomLineCap object, passing its constructor the
GraphicsPath object. Pass the GraphicsPath as the fi rst parameter if
it defi nes a fi ll for the cap. Pass it as the second parameter if it defi nes
drawn lines for the cap. Pass Nothing for the other parameter.

You can use the CustomLineCap object ’ s properties and methods to
modify its appearance. For example, its StrokeJoin property determines
the style used to join the lines in the GraphicsPath, and its SetStrokeCaps
method lets you specify the end caps for the lines in the GraphicsPath.

The following code shows an example. It defi nes an array of points
that defi nes lines that make an X. It makes a GraphicsPath object
and uses its AddLines method to add the lines to it. It then creates a CustomLineCap object,
passing its constructor this GraphicsPath. The code makes a Pen and sets its CustomStartCap
and CustomEndCap properties to the CustomLineCap object. It then draws four lines with
different widths.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Make a GraphicsPath that draws an X.
 Dim pts() As Point = {
 New Point(-2, -2),
 New Point(0, 0),
 New Point(-2, 2),
 New Point(0, 0),
 New Point(2, 2),
 New Point(0, 0),
 New Point(2, -2)
 }

 Using cap_path As New GraphicsPath
 cap_path.AddLines(pts)

 ' Make the CustomLineCap.
 Using x_cap As New CustomLineCap(Nothing, cap_path)
 ' Draw some lines with x_cap.
 Using the_pen As New Pen(Color.Black, 1)
 the_pen.CustomStartCap = x_cap

FIGURE 31-2: A Pen class’s CompoundArray prop-

erty lets you draw line that are striped lengthwise.

Lin
e

X

Y

FIGURE 31-3: When build-

ing a custom line cap, X

increases to the line’s left

and Y increases in the

line’s direction.

CH031.indd 726CH031.indd 726 12/31/09 6:53:45 PM12/31/09 6:53:45 PM

 the_pen.CustomEndCap = x_cap
 e.Graphics.DrawLine(the_pen, 50, 10, 200, 10)

 the_pen.Width = 5
 e.Graphics.DrawLine(the_pen, 50, 40, 200, 40)

 the_pen.Width = 10
 e.Graphics.DrawLine(the_pen, 50, 100, 200, 100)

 the_pen.Width = 20
 e.Graphics.DrawLine(the_pen, 50, 200, 200, 200)
 End Using
 End Using
End Sub

code snippet CompoundArrays

Figure 31 - 4 shows the result.

Pen Transformations

The Pen class has properties and methods that let you defi ne a
transformation. The Pen class applies this transformation to its
initially circular tip when drawing lines. (For basic information
on transformations, see the section “ Transformation Basics ” in
Chapter 30, “ Drawing Basics. ”)

The Pen class ignores any translation component in the
transformation, so the result is always an ellipse. (With some
thought, you can probably convince yourself that any combination
of scaling and rotation applied to a circle always gives an ellipse.)
When the program draws with the transformed pen, its lines may
have thick and thin elements similar to the ones you get when you
draw with a calligraphy pen.

The following code uses a transformed Pen to draw a circle. It begins by defi ning some constants
to make working with the circle easier. It defi nes the circle ’ s center (Cx, Cy) and its radius R. It
also defi nes a constant to represent the Pen ’ s Width. Next, the program creates a new Pen with
the desired width. It applies a scaling transformation to the pen, scaling by a factor of 4 in the Y
direction. For the purposes of scaling Pens, the X and Y directions match those on the screen. This
transformation stretches the Pen class ’ s tip vertically on the screen. Next, the program rotates the
Pen ’ s tip by 45 degrees.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Const Cx As Integer = 120
 Const Cy As Integer = 120
 Const R As Integer = 100
 Const PEN_WID As Integer = 10

 ' Draw a circle with a transformed Pen.
 Using the_pen As New Pen(Color.Black, PEN_WID)

FIGURE 31-4: This program uses

a CustomLineCap that draws an

X at the end of lines.

Pen ❘ 727

CH031.indd 727CH031.indd 727 12/31/09 6:53:46 PM12/31/09 6:53:46 PM

728 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

 the_pen.ScaleTransform(1, 4, MatrixOrder.Append)
 the_pen.RotateTransform(45, MatrixOrder.Append)
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
 e.Graphics.DrawEllipse(the_pen, Cx - R, Cx - R, R * 2, R * 2)
 End Using

 ' Draw "Pen tips" on the circle.
 e.Graphics.ScaleTransform(1, 4, MatrixOrder.Append)
 e.Graphics.RotateTransform(45, MatrixOrder.Append)

 For angle As Single = 0 To 2 * PI Step PI / 8
 Dim graphics_state As GraphicsState = e.Graphics.Save
 e.Graphics.TranslateTransform(
 CSng(Cx + R * Cos(angle)),
 CSng(Cy + R * Sin(angle)),
 MatrixOrder.Append)
 e.Graphics.DrawEllipse(Pens.White,
 -PEN_WID / 2, -PEN_WID / 2, PEN_WID, PEN_WID)
 e.Graphics.Restore(graphics_state)
 Next angle
End Sub

code snippet TransformedPen

The program sets the Graphics object ’ s SmoothingMode property to AntiAlias and draws a circle
centered at (Cx, Cy) with radius R.

Next, the program draws some ellipses showing where the Pen ’ s tip was while it was drawing the
circle. It starts by applying the same scaling and rotation transformations to the Graphics object.
The program will later draw a circle with a diameter equal to the line ’ s thickness and centered at the
origin. These transformations give the circle the same shape as the Pen class ’ s transformed tip.
The fi nal step is to translate these ellipses so that they lie along the path of the circle drawn earlier
with the transformed Pen class.

The program uses a loop to make an angle vary from 0 to 2 *PI radians
in steps of PI / 8. For each angle, the code saves the Graphics object ’ s
state so it doesn ’ t lose the scaling and rotation it already applied. It
then applies a translation transformation to move the origin to a point
on the circle drawn earlier. The center of the circle is at (Cx, Cy). The
points on the circle are offset from that point by R * Cos(angle) in the
X direction and R * Sin(angle) in the Y direction.

Having defi ned all these transformations, the program draws a white
ellipse centered at the origin and with diameter matching the Pen class ’ s
width. The transformations scale, rotate, and translate the ellipse to
match one of the Pen class ’ s tip positions while it drew the large ellipse.
Finally, the code restores the saved graphics state so it is ready for the
next trip through the loop.

Figure 31 - 5 shows the result. The small white ellipses show the
positions that the Pen object ’ s tip took while drawing the large black
circle. This picture should give you a good intuition for how transformed Pens work.

FIGURE 31-5: The white

ellipses show where the Pen

object’s transformed tip was

as it drew the large black

circle.

CH031.indd 728CH031.indd 728 12/31/09 6:53:47 PM12/31/09 6:53:47 PM

BRUSH

The Brush object determines how areas are fi lled when you draw them using the Graphics
object ’ s methods FillClosedCurve, FillEllipse, FillPath, FillPie, FillPolygon, FillRectangle, and
FillRectangles. Different types of Brushes fi ll areas with solid colors, hatch patterns, and
color gradients.

The Brush class itself is an abstract or MustInherit class, so you cannot make instances of the Brush
class itself. Instead, you can create instances of one of the derived classes SolidBrush, TextureBrush,
HatchBrush, LinearGradientBrush, and PathGradientBrush. The following table briefl y describes
these classes.

CLASS PURPOSE

SolidBrush Fills areas with a single solid color

TextureBrush Fills areas with a repeating image

HatchBrush Fills areas with a repeating hatch pattern

LinearGradientBrush Fills areas with a linear gradient of two or more colors

PathGradientBrush Fills areas with a color gradient that follows a path

The following sections describe these classes in more detail and provide examples.

SolidBrush

A SolidBrush class fi lls areas with a single solid color. This class is extremely simple. It provides
a single constructor that takes a parameter giving the brush ’ s color. Its only commonly useful
property is Color, which determines the brush ’ s color.

A program can create a SolidBrush using its constructor, or it can use one of the 280+ predefi ned
solid brushes defi ned by the Brushes class. The following code demonstrates both techniques.
First, it creates a red SolidBrush and uses it to fi ll a rectangle. Then, it uses the Brushes class ’ s Blue
property to get a standard blue solid brush and fi lls another rectangle with that brush.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim red_brush As New SolidBrush(Color.Red)
 e.Graphics.FillRectangle(red_brush, 10, 10, 200, 100)

 Dim blue_brush As Brush = Brushes.Blue
 e.Graphics.FillRectangle(blue_brush, 10, 120, 200, 100)
End Sub

code snippet UseSolidBrush

TextureBrush

A TextureBrush class fi lls areas with an image, usually a Bitmap. The following table describes this
class ’ s most useful properties and methods.

Brush ❘ 729

CH031.indd 729CH031.indd 729 12/31/09 6:53:48 PM12/31/09 6:53:48 PM

730 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

PROPERTY OR METHOD PURPOSE

Image The image that the brush uses to fi ll areas.

MultiplyTransform Multiplies the brush ’ s current transformation by another transformation

matrix.

ResetTransform Resets the brush ’ s transformation to the identity transformation.

RotateTransform Adds a rotation transformation to the brush ’ s current transformation.

ScaleTransform Adds a scaling transformation to the brush ’ s current transformation.

Transform A transformation that the brush applies to its image before using it to

fi ll areas.

TranslateTransform Adds a translation transformation to the brush ’ s current transformation.

WrapMode Determines how the brush wraps the image. This property can take the

values Clamp (use a single copy that overlaps the origin of the shape ’ s

bounding rectangle), Tile (tile normally), TileFlipX (tile fl ipping every

other column of images over horizontally), TileFlipY (tile fl ipping

every other row of images over vertically), and TileFlipXY (tile

fl ipping every other column horizontally and every other row vertically).

Figure 31 - 6 shows examples of these settings.

FIGURE 31-6: The TextureBrush class’s WrapMode property

determines how the brush tiles its image.

If you look closely at Figure 31 - 6, you ’ ll see that the images do not always begin in the upper - left
corner of the shape being fi lled. The brush essentially sets its tiling origin to the form ’ s
upper - left corner and then spaces its images accordingly.

If you want to move the tiling origin, you can apply a translation transformation to the brush to
move the image to the new origin. The following code creates a TextureBrush using a PictureBox ’ s
Image property to defi ne its image and sets WrapMode to TileFlipXY. It translates the brush to the
point (50, 100) and then fi lls a rectangle with its upper - left corner at this same point. This ensures
that the fi rst copy of the brush ’ s image is placed exactly in the rectangle ’ s upper - left corner. It also
ensures that the fi rst image is not fl ipped vertically or horizontally.

' Make a TextureBrush using the smiley face.
Using texture_brush As New TextureBrush(picSmiley.Image)
 texture_brush.WrapMode = System.Drawing.Drawing2D.WrapMode.TileFlipXY

CH031.indd 730CH031.indd 730 12/31/09 6:53:49 PM12/31/09 6:53:49 PM

 texture_brush.TranslateTransform(50, 100)
 DrawSample(e.Graphics, texture_brush, 50, 100)
End Using

The following code uses a transformed TextureBrush. First, it generates points to defi ne a star -
shaped polygon and creates a TextureBrush using a PictureBox Image property to defi ne its image.
Next, the program scales the brush by a factor of 2 in the X direction, making the smiley face wider
than normal. It then rotates the brush by 30 degrees, fi lls the star - shaped polygon with the brush,
and then outlines the polygon in black.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Generate points to draw a star shape.
 Dim cx As Integer = Me.ClientSize.Width \ 2
 Dim cy As Integer = Me.ClientSize.Height \ 2
 Dim r1 As Integer = Min(cx, cy) - 10
 Dim r2 As Integer = Min(cx, cy) \ 2
 Dim pts(9) As Point
 For i As Integer = 0 To 9 Step 2
 pts(i).X = cx + CInt(r1 * Cos(i * PI / 5 - PI / 2))
 pts(i).Y = cy + CInt(r1 * Sin(i * PI / 5 - PI / 2))
 pts(i + 1).X = cx + CInt(r2 * Cos((i + 1) * PI / 5 - PI / 2))
 pts(i + 1).Y = cy + CInt(r2 * Sin((i + 1) * PI / 5 - PI / 2))
 Next i

 ' Make a TextureBrush using the smiley face.
 Using texture_brush As New TextureBrush(picSmiley.Image)
 texture_brush.ScaleTransform(2, 1, MatrixOrder.Append)
 texture_brush.RotateTransform(30, MatrixOrder.Append)
 e.Graphics.FillPolygon(texture_brush, pts)
 End Using

 e.Graphics.DrawPolygon(Pens.Black, pts)
End Sub

code snippet UseSolidBrush

Figure 31 - 7 shows the result. Note that not only is the image
transformed, but the tiled rows and columns are also transformed.

HatchBrush

A hatch pattern fi lls an area with a simple pattern of lines, dots, or
other shapes. For example, you could fi ll a rectangle with a series
of black lines drawn at a 45 degree angle.

A TextureBrush class gives you complete control over every pixel
in the fi lled area so you could use a simple image to build hatch
patterns. However, for standard hatch patterns it ’ s a lot easier to
use the HatchBrush class. FIGURE 31-7: This star is fi lled

with a TextureBrush that is

scaled and rotated.

Brush ❘ 731

CH031.indd 731CH031.indd 731 12/31/09 6:53:50 PM12/31/09 6:53:50 PM

732 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

HatchBrush is a relatively simple class. Its three most useful properties are BackgroundColor,
ForegroundColor, and HatchStyle. ForegroundColor and BackgroundColor determine the colors the
brush uses. HatchStyle can take one of 54 values. Example program HatchStyles, which is available
for download on the book ’ s web site, lists the HatchStyle values and shows samples.

The following code shows how a program can fi ll a rectangle with a HatchBrush. It makes a brush
using the LargeConfetti style with a blue foreground and light blue background. It calls a Graphics
object ’ s FillRectangle method to fi ll a rectangle with this brush, and then calls DrawRectangle to
outline the rectangle in black.

Using the_brush As New HatchBrush(HatchStyle.LargeConfetti, Color.Blue,
 Color.LightBlue)
 gr.FillRectangle(the_brush, 10, 10, 200, 200)
 gr.DrawRectangle(Pens.Black, 10, 10, 200, 200)
End Using

Figure 30 - 3 in Chapter 30 shows the available hatch patterns.

LinearGradientBrush

A LinearGradientBrush class fi lls areas with a linear gradient of two or more colors. The simplest
of these brushes shades an area smoothly from one color to another along a specifi ed direction. For
example, a rectangle might be red at one end and shade smoothly to blue at the other.

With some extra work, you can specify exactly how the colors blend from one to the other. For
example, you could make the colors blend quickly at the start and then slowly across the rest of the
rectangle.

You can also specify more than two colors for the brush. You could make the colors blend from red
to green to blue.

The following table describes the LinearGradientBrush class ’ s most useful properties and methods.

PROPERTY OR METHOD PURPOSE

Blend A Blend object that determines how quickly the colors blend across

the brush. By default, this is a simple linear blending.

InterpolationColors A ColorBlend object that determines the colors (possibly more than

two) that the brush blends and their positions within the blend.

LinearColors An array of two colors that determines the starting and ending colors

for a simple linear blend.

MultiplyTransform Multiplies the brush ’ s current transformation by another

transformation matrix.

ResetTransform Resets the brush ’ s transformation to the identity transformation.

CH031.indd 732CH031.indd 732 12/31/09 6:53:51 PM12/31/09 6:53:51 PM

PROPERTY OR METHOD PURPOSE

RotateTransform Adds a rotation transformation to the brush ’ s current transformation.

ScaleTransform Adds a scaling transformation to the brush ’ s current transformation.

SetBlendTriangularShape Makes the brush use a midpoint gradient where the color blends

from the start color to the end color, and then back to the start color.

You could do something similar with the Blend property, but this

is easier.

SetSigmaBellShape Makes the brush ’ s color gradient change according to a bell curve

instead of linearly.

Transform A transformation that the brush applies to its gradient before using it

to fi ll areas.

TranslateTransform Adds a translation transformation to the brush ’ s current

transformation.

WrapMode Determines how the brush wraps when it doesn ’ t completely fi ll

the area. This property can take the values Clamp, Tile, TileFlipX,

TileFlipY, and TileFlipXY. Because the brush is infi nitely tall in the

direction perpendicular to the line that determines its direction, not

all of these values make a diff erence for all brushes.

The following code draws the assortment of fi lled rectangles shown in Figure 31 - 8. As you step
through the code, refer to the fi gure to see the result.

FIGURE 31-8: LinearGradientBrush objects can

produce all these eff ects and more.

Brush ❘ 733

CH031.indd 733CH031.indd 733 12/31/09 6:53:51 PM12/31/09 6:53:51 PM

734 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim y As Integer = 10
 Dim x As Integer = 10
 Dim wid As Integer = 200
 Dim hgt As Integer = 50

 ' Make a rectangle that shades from black to white.

 e.Graphics.DrawString("Simple", Me.Font, Brushes.Black, x, y)
 y += 15
 Using black_white_brush As New LinearGradientBrush(
 New Point(x, y), New Point(x + wid, y), Color.Black, Color.White)
 e.Graphics.FillRectangle(black_white_brush, x, y, wid, hgt)
 y += hgt + 10

 ' ColorBlend.
 e.Graphics.DrawString("ColorBlend", Me.Font, Brushes.Black, x, y)
 y += 15
 Dim color_blend As New ColorBlend(3)
 color_blend.Colors = New Color() {Color.Red, Color.Green, Color.Blue}
 color_blend.Colors = New Color() _
 {Color.Black, Color.White, Color.Black}
 color_blend.Positions = New Single() {0.0, 0.2, 1.0}
 black_white_brush.InterpolationColors = color_blend
 e.Graphics.FillRectangle(black_white_brush, x, y, wid, hgt)
 y += hgt + 10

 ' Make a brush that makes 50 percent of the color change
 ' in the first 20 percent of the distance, stays there
 ' until 80 percent of the distance, and then finishes
 ' in the remaining distance.
 e.Graphics.DrawString("Blend", Me.Font, Brushes.Black, x, y)
 y += 15
 Dim the_blend As New Blend(4)
 the_blend.Factors = New Single() {0.0, 0.5, 0.5, 1.0}
 the_blend.Positions = New Single() {0.0, 0.2, 0.8, 1.0}
 black_white_brush.Blend = the_blend
 e.Graphics.FillRectangle(black_white_brush, x, y, wid, hgt)
 y += hgt + 10

 ' This brush's line is too short to cross the whole rectangle.
 e.Graphics.DrawString("Short", Me.Font, Brushes.Black, x, y)
 y += 15
 Using short_brush As New LinearGradientBrush(
 New Point(x, y), New Point(x + 50, y),
 Color.Black, Color.White)
 e.Graphics.FillRectangle(short_brush, x, y, wid, hgt)
 y += hgt + 10

 x += wid + 10
 y = 10

 ' Change the brush's WrapMode.
 e.Graphics.DrawString("WrapMode = TileFlipX", Me.Font,
 Brushes.Black, x, y)

CH031.indd 734CH031.indd 734 12/31/09 6:53:52 PM12/31/09 6:53:52 PM

 y += 15
 short_brush.WrapMode = WrapMode.TileFlipX
 e.Graphics.FillRectangle(short_brush, x, y, wid, hgt)
 y += hgt + 10
 End Using ' short_brush

 ' Trangular brush.
 e.Graphics.DrawString("SetBlendTriangularShape", Me.Font,
 Brushes.Black, x, y)
 y += 15
 black_white_brush.SetBlendTriangularShape(0.5)
 e.Graphics.FillRectangle(black_white_brush, x, y, wid, hgt)
 y += hgt + 10
 End Using ' black_white_brush

 ' Sigma bell shape.
 e.Graphics.DrawString("SetSigmaBellShape", Me.Font, Brushes.Black, x, y)
 y += 15
 black_white_brush.SetSigmaBellShape(0.5, 1)
 e.Graphics.FillRectangle(black_white_brush, x, y, wid, hgt)
 y += hgt + 10

 ' A diagonal brush.
 x += wid + 10
 y = 10
 wid = hgt
 e.Graphics.DrawString("Diagonal", Me.Font, Brushes.Black, x, y)
 y += 15
 Dim diag_brush As New LinearGradientBrush(
 New Point(x, y), New Point(x + wid, y + hgt), Color.Black, Color.White)
 e.Graphics.FillRectangle(diag_brush, x, y, wid, hgt)
 y += hgt + 10
End Sub

code snippet LinearGradientBrushes

The code begins by making a relatively straightforward LinearGradientBrush shading from black
to white along the line starting at (9, 10) and ending at (210, 10). It then fi lls a rectangle with
the brush. Notice that the points defi ning the brush determine the brush ’ s drawing origin. The
rectangle ’ s X coordinates cover the same range as those of the brush, so the brush ’ s origin lines up
nicely with the rectangle. If the two did not line up, the brush would fi nish its gradient before it
reached the end of the rectangle and it would need to wrap. Usually, you will want the brush to line
up with the object it is fi lling. You can arrange that by carefully defi ning the brush to fi t over the
object or by using a transformation to make it fi t.

Next, the code creates a ColorBlend object. It passes the object ’ s constructor the value 3 to indicate
that it will use three colors. The code sets the ColorBlend object ’ s Colors property to an array
containing the three colors black, white, and black. This example uses black and white, so the result
will show up well in the book, but you could use any colors here such as orange, hot pink, and blue.
Next, the code sets the ColorBlend object ’ s Positions property to an array of Singles that defi ne the
positions within the blend where the colors should be located. In this example, the fi rst color (black)
begins 0.0 of the way through the blend, the second color (white) sits 0.2 or 20 percent of the
distance through the blend, and the third color (black again) sits at the end of the blend. You can see
in Figure 31 - 8 that the white area is to the left of the center in this rectangle.

Brush ❘ 735

CH031.indd 735CH031.indd 735 12/31/09 6:53:53 PM12/31/09 6:53:53 PM

736 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

The code then creates a Blend object, passing its constructor the parameter 4 to indicate that the
program will set four blend points. It sets the object ’ s Factors property to an array of Singles that
determine the fraction of the blend that should occur at the four points. It then sets the object ’ s
Positions property to an array that sets the positions of the blend points. In this example, the point
0.0 of the distance through the blend has factor 0.0, so the blend has not begun and that point has
the start color. The point 0.2 of the distance through the blend has a factor of 0.5, so the blend
should be half done at that point. The point 0.8 of the distance through the blend has a factor of
0.5, so the blend should still be only half done at that point. Finally, the point at the end of the
blend should have the end color. The result is a blend that changes quickly initially, remains fi xed
for a stretch in the middle, and then fi nishes quickly. (An optical illusion makes the area on the left
of the fl at region in the middle appear brighter than it really is, and the area on the right appears
darker than it really is.)

Next, the program makes a LinearGradientBrush that is defi ned by points too close together to
cover its whole rectangle. The brush repeats its gradient as many times as necessary to cover
the rectangle.

The program then changes the previous brush ’ s WrapMode property to TileFlipX. When the brush
must repeat its gradient to fi ll the rectangle, it reverses the start and end colors to produce a series of
gradient bands.

Next, the program calls a brush ’ s SetBlendTriangularShape method. This makes the gradient shade
from the start color to the end color and back. The SetBlendTriangularShape method ’ s parameter
gives the position in the gradient where the end color should occur. You could get a similar effect
using a Blend, but this method is easier for this kind of fi ll.

The program then calls the brush ’ s SetSigmaBellShape method. It uses the same position parameter
0.5 as the previous call to SetBlendTriangularShape, so it places the end color in the middle of the
gradient. The effect is similar to the triangular brush, except that the colors vary according to a bell
curve instead of linear relationship. These two rectangles are lined up vertically in Figure 31 - 8, so it
is easy to see the difference.

The code defi nes the fi nal brush with a line that is not horizontal, so its gradient moves diagonally
across its rectangle.

PathGradientBrush

A PathGradientBrush object fi lls areas with a color gradient that blends colors from a center point
to the points along a path. For example, you might shade from white in the middle of an ellipse to
blue along its edges.

The Blend, InterpolationColors, SetBlendTriangularShape, SetSigmaBellShape, and other properties
and methods that deal with the characteristics of the blend work along lines running from the center
point to the points on the path. For example, you can use this object ’ s Blend property to determine
how quickly colors blend across the brush. In the LinearGradientBrush class, this property
determines how the colors blend from one side of the brush to the other. In a PathGradientBrush, it
controls how the colors blend from the center point to the path ’ s points.

CH031.indd 736CH031.indd 736 12/31/09 6:53:53 PM12/31/09 6:53:53 PM

The following table describes the PathGradientBrush object ’ s most useful properties and methods.

PROPERTY OR METHOD PURPOSE

Blend A Blend object that determines how quickly the colors blend

across the brush. By default, this is a simple linear blending.

CenterColor Determines the color at the center point.

CenterPoint Determines the location of the center point. By default, this point

is set to the center of the path.

InterpolationColors A ColorBlend object that determines the colors (possibly

more than two) that the brush blends and their positions within

the blend.

MultiplyTransform Multiplies the brush ’ s current transformation by another

transformation matrix.

ResetTransform Resets the brush ’ s transformation to the identity transformation.

RotateTransform Adds a rotation transformation to the brush ’ s current

transformation.

ScaleTransform Adds a scaling transformation to the brush ’ s current

transformation.

SetBlendTriangularShape Makes the brush use a midpoint gradient where the color blends

from the start color to the end color and then back to the start

color. You could do something similar with the Blend property,

but this is easier.

SetSigmaBellShape Makes the brush ’ s color gradient change according to a bell curve

instead of linearly.

SurroundColors An array of Colors that correspond to the points on the path.

The color gradient blends from the CenterColor to these colors

around the edge of the path. If there are more points in the path

than colors, the fi nal color is repeated as needed. Note that

curves such as ellipses defi ne a large number of colors that you

do not explicitly specify, so making these colors match up with

points on the curve can be diffi cult. This property is easier to

understand for polygons.

Transform A transformation that the brush applies to its gradient before

using it to fi ll areas.

Brush ❘ 737

continues

CH031.indd 737CH031.indd 737 12/31/09 6:53:54 PM12/31/09 6:53:54 PM

738 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

PROPERTY OR METHOD PURPOSE

TranslateTransform Adds a translation transformation to the brush ’ s current

transformation.

WrapMode Determines how the brush wraps when it doesn ’ t completely fi ll

the area. This property can take the values Clamp, Tile, TileFlipX,

TileFlipY, and TileFlipXY. Because the brush is infi nitely tall in the

direction perpendicular to the line that determines its direction,

not all of these values make a diff erence for all brushes.

Example program PathGradientBrushes, which is available for
download on the book ’ s web site, uses PathGradientBrush objects
to draw the shapes shown in Figure 31 - 9.

The following code fi lls the shapes shown in Figure 31 - 9. As you
step through the code, refer to the fi gure to see the result.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) _
Handles MyBase.Paint
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias

 Dim x As Integer = 10
 Dim y As Integer = 10
 Dim wid As Integer = 50
 Dim hgt As Integer = 100

 ' Fill a rectangle.
 Dim rect_pts() As Point = {
 New Point(x, y),
 New Point(x + wid, y),
 New Point(x + wid, y + hgt),
 New Point(x, y + hgt)
 }
 Dim path_brush As New PathGradientBrush(rect_pts)
 e.Graphics.FillPolygon(path_brush, rect_pts)
 x += wid + 10

 ' Fill an ellipse setting CenterColor and SurroundColors.
 Dim ellipse_path As New GraphicsPath
 ellipse_path.AddEllipse(x, y, wid, hgt)
 path_brush = New PathGradientBrush(ellipse_path)
 path_brush.CenterColor = Color.White
 path_brush.SurroundColors = New Color() {Color.Black}
 e.Graphics.FillEllipse(path_brush, x, y, wid, hgt)
 x += wid + 10

 ' Fill an ellipse using SetBlendTriangularShape.
 ellipse_path = New GraphicsPath

FIGURE 31-9: PathGradientBrush

objects can produce all these

eff ects and more.

(continued)

CH031.indd 738CH031.indd 738 12/31/09 6:53:55 PM12/31/09 6:53:55 PM

 ellipse_path.AddEllipse(x, y, wid, hgt)
 path_brush = New PathGradientBrush(ellipse_path)
 path_brush.CenterColor = Color.White
 path_brush.SurroundColors = New Color() {Color.Black}
 path_brush.SetBlendTriangularShape(0.5)
 e.Graphics.FillEllipse(path_brush, x, y, wid, hgt)
 x += wid + 10

 ' Fill an ellipse using SetSigmaBellShape.
 ellipse_path = New GraphicsPath
 ellipse_path.AddEllipse(x, y, wid, hgt)
 path_brush = New PathGradientBrush(ellipse_path)
 path_brush.CenterColor = Color.White
 path_brush.SurroundColors = New Color() {Color.Black}
 path_brush.SetSigmaBellShape(0.5, 1)
 e.Graphics.FillEllipse(path_brush, x, y, wid, hgt)
 x += wid + 10

 ' Fill a star shape.
 wid = 150
 hgt = 150
 Dim cx As Integer = x + wid \ 2
 Dim cy As Integer = y + hgt \ 2
 Dim r1 As Integer = CInt(wid * 0.5)
 Dim r2 As Integer = CInt(hgt * 0.25)
 Dim star_pts(9) As Point
 For i As Integer = 0 To 9 Step 2
 star_pts(i).X = cx + CInt(r1 * Cos(i * PI / 5 - PI / 2))
 star_pts(i).Y = cy + CInt(r1 * Sin(i * PI / 5 - PI / 2))
 star_pts(i + 1).X = cx + CInt(r2 * Cos((i + 1) * PI / 5 - PI / 2))
 star_pts(i + 1).Y = cy + CInt(r2 * Sin((i + 1) * PI / 5 - PI / 2))
 Next i
 Dim star_path As New GraphicsPath
 star_path.AddPolygon(star_pts)
 Dim star_brush As New PathGradientBrush(star_pts)
 star_brush.CenterColor = Color.Black
 star_brush.SurroundColors = New Color() {
 Color.Black, Color.White,
 Color.Black, Color.White,
 Color.Black, Color.White,
 Color.Black, Color.White,
 Color.Black, Color.White
 }

 e.Graphics.FillPolygon(star_brush, star_pts)
 x += wid + 10

 ' Fill a star shape.
 cx = x + wid \ 2
 cy = y + hgt \ 2
 r1 = CInt(wid * 0.5)
 r2 = CInt(hgt * 0.25)
 For i As Integer = 0 To 9 Step 2
 star_pts(i).X = cx + CInt(r1 * Cos(i * PI / 5 - PI / 2))

Brush ❘ 739

CH031.indd 739CH031.indd 739 12/31/09 6:53:56 PM12/31/09 6:53:56 PM

740 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

 star_pts(i).Y = cy + CInt(r1 * Sin(i * PI / 5 - PI / 2))
 star_pts(i + 1).X = cx + CInt(r2 * Cos((i + 1) * PI / 5 - PI / 2))
 star_pts(i + 1).Y = cy + CInt(r2 * Sin((i + 1) * PI / 5 - PI / 2))
 Next i
 star_path = New GraphicsPath
 star_path.AddPolygon(star_pts)
 star_brush = New PathGradientBrush(star_pts)
 star_brush.CenterColor = Color.White
 star_brush.SurroundColors = New Color() {
 Color.White, Color.Black,
 Color.White, Color.Black,
 Color.White, Color.Black,
 Color.White, Color.Black,
 Color.White, Color.Black
 }
 Dim star_blend As New Blend
 star_blend.Positions = New Single() {0.0, 0.25, 0.5, 0.75, 1.0}
 star_blend.Factors = New Single() {0.0, 1.0, 0.0, 1.0, 0.0}
 star_brush.Blend = star_blend
 e.Graphics.FillPolygon(star_brush, star_pts)

 ' Draw the outline in white to remove some
 ' incorrectly drawn pixels.
 e.Graphics.DrawPolygon(Pens.White, star_pts)

 path_brush.Dispose()
 ellipse_path.Dispose()
 star_brush.Dispose()
 star_path.Dispose()
End Sub

code snippet PathGradientBrushes

The code fi rst creates an array of Point objects initialized to form a rectangle. It passes those points
to the constructor for a PathGradientBrush and then uses the brush to fi ll that rectangle. This is
about the simplest PathGradientBrush you can build, so it ’ s worth studying a bit before moving on
to more confusing examples. Notice that the color shades smoothly from black in the center to white
on the rectangle ’ s edges (those are the default colors).

Next, the program makes a GraphicsPath object and adds an ellipse to it. It passes the GraphicsPath
to the PathGradientBrush object ’ s constructor. It then sets the brush ’ s CenterColor and
SurroundColors properties. The SurroundColors array doesn ’ t contain enough values for every
point on the elliptical path, so the last color (black) is repeated as much as necessary. The program
fi lls the ellipse with this brush.

The code then creates a new GraphicsPath object, adds a new ellipse, and uses it to make a
PathGradientBrush as before. It also sets the brush ’ s CenterColor and SurroundColors properties as
before. The program then calls the brush ’ s SetBlendTriangularShape method to make the colors along
the lines from the center point to the path ’ s edges blend from the end color to the start color and
back. The parameter 0.5 makes the start color appear halfway from the center point to the edge.

CH031.indd 740CH031.indd 740 12/31/09 6:53:56 PM12/31/09 6:53:56 PM

Next, the program repeats these same steps, except that it calls the brush ’ s SetSigmaBellShape
method instead of SetBlendTriangularShape. The result is similar to the previous result, except that
the colors vary according to a bell curve instead of a linear relationship.

The code then generates an array of points that defi nes a star shape. It creates a new GraphicsPath
object and calls its AddPolygon method to add the star. It passes this GraphicsPath object to the
PathGradientBrush object ’ s constructor to make the brush use the star as its path. The program
then sets the brush ’ s SurroundPoints property to an array containing the Colors it should use for
each of the star ’ s points. The code fi lls the star using this brush to draw a star where the tips of the
star are black and the rest of the shape ’ s points vary from white to black.

Finally, the program repeats the previous steps to defi ne a new star - shaped brush. It creates a
new Blend object and sets its Position and Factors properties to indicate how the gradient should
progress from the center point to the shape ’ s edges. The Positions values give locations along a
line from the center to an edge point. The Factors values indicate how far the blend should have
progressed for the corresponding point. For example, this code ’ s second entries for those arrays are
0.25 and 1.0 to indicate that the point one quarter of the distance from the center point to an edge
point should have blended completely to the end color. This example sets its Factors values so the
color blends from the start color to the end color several times.

GRAPHICSPATH OBJECTS

A GraphicsPath object represents a path defi ned by lines, curves, text, and other drawing
commands. A GraphicsPath can even include other GraphicsPath objects.

You can use a Graphics object ’ s DrawPath and FillPath methods to draw or fi ll a GraphicsPath.
For example, the following code creates a GraphicsPath object and adds a string to it. It creates
a TextureBrush from a PictureBox image and uses the FillPath method to fi ll the path with the
TextureBrush. It fi nishes by calling the DrawPath method to outline the path in black.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Make a GraphicsPath containing text.
 Dim txt As String = "Path"
 Using graphics_path As New GraphicsPath()
 graphics_path.AddString(txt,
 New FontFamily("Times New Roman"),
 FontStyle.Bold, 150,
 New Point(0, 0),
 New StringFormat)

 ' Fill the path with an image.
 Using smiley_brush As New TextureBrush(picSmiley.Image)
 e.Graphics.FillPath(smiley_brush, graphics_path)
 End Using
 e.Graphics.DrawPath(Pens.Black, graphics_path)
 End Using
End Sub

code snippet GraphicsPathTextureBrush

GraphicsPath Objects ❘ 741

CH031.indd 741CH031.indd 741 12/31/09 6:53:57 PM12/31/09 6:53:57 PM

742 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

Figure 31 - 10 shows the result.

In addition to drawing and fi lling a GraphicsPath, you
can also use one to defi ne a region. The following code
creates a GraphicsPath representing text much as the
previous example does. It then sets the form ’ s Region
property equal to a new Region object created from the
GraphicsPath. This restricts the form to the region. Any
pieces of the form that lie outside of the textual path are
chopped off, so they are not drawn and mouse events in
those areas fall through to whatever lies below the form.

When you use a path to defi ne a form ’ s region, the path is taken relative to the form ’ s origin, which
is not the same as the origin of the form ’ s client area. The form ’ s origin is at the upper - left corner of
the form, including its borders and title bar. To allow for this difference in origins, the code uses the
PointToScreen method to get the screen coordinates of the client area ’ s origin.

The code applies a translation transformation to the Graphics object so the client area origin is
mapped to the form ’ s origin. It then sets the Graphics object ’ s SmoothingMode, fi lls the path with
light gray, and then outlines the path with a thick black pen. Because the 5 - pixel - wide line around
the path is centered on the edge of the form ’ s region, half of it is cut off.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Make a GraphicsPath containing text.
 Dim txt As String = "Path"
 Using graphics_path As New GraphicsPath()
 graphics_path.AddString(txt,
 New FontFamily("Times New Roman"),
 FontStyle.Bold, 150,
 New Point(0, 0),
 New StringFormat)

 ' Set the form's region to the path.
 Me.Region = New Region(graphics_path)

 ' Fill the path with white and outline it in black.
 Dim origin As Point = Me.PointToScreen(New Point(0, 0))
 e.Graphics.TranslateTransform(Me.Left - origin.X, Me.Top - origin.Y)
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
 e.Graphics.FillPath(Brushes.LightGray, graphics_path)

 Using black_pen As New Pen(Color.Black, 5)
 e.Graphics.DrawPath(black_pen, graphics_path)
 End Using
 End Using
End Sub

code snippet GraphicsPathTextRegion

FIGURE 31-10: A program can use a Graphics

object’s FillPath and DrawPath methods to fi ll

and draw a GraphicsPath object.

CH031.indd 742CH031.indd 742 12/31/09 6:53:57 PM12/31/09 6:53:57 PM

The result is a form shaped to fi t the text in the GraphicsPath. Note that the path used in this
example cuts the form ’ s borders and title bar off, so the user has no way to resize, move, or close
this form. If you use this technique in an application, be sure to at least provide some method for the
user to close the form such as a button or context menu.

One more use for GraphicsPath objects is to defi ne clipping regions. The following code creates a
GraphicsPath containing text much as the previous examples do. It then calls the Graphics object ’ s
SetClip method to make this path the form ’ s clipping region. Next, the program draws 200 lines
between randomly generated points on the form. Only the parts of the lines inside the clipping
region are drawn.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Make a GraphicsPath containing text.
 Dim txt As String = "Path"
 Using graphics_path As New GraphicsPath
 graphics_path.AddString(txt,
 New FontFamily("Times New Roman"),
 FontStyle.Bold, 150,
 New Point(0, 0),
 New StringFormat)
 e.Graphics.SetClip(graphics_path)
 End Using

 ' Fill the ClientRectangle with white.
 e.Graphics.FillRectangle(Brushes.White, Me.ClientRectangle)

 ' Draw a bunch of random lines on the form.
 Dim rnd As New Random
 Dim x1, y1, x2, y2 As Integer
 For i As Integer = 1 To 200
 x1 = rnd.Next(0, Me.ClientSize.Width - 1)
 y1 = rnd.Next(0, Me.ClientSize.Height - 1)
 x2 = rnd.Next(0, Me.ClientSize.Width - 1)
 y2 = rnd.Next(0, Me.ClientSize.Height - 1)
 e.Graphics.DrawLine(Pens.Black, x1, y1, x2, y2)
 Next i
End Sub

code snippet GraphicsPathClip

The GraphicsPath class provides many methods for adding lines, curves, text, and other shapes to
the path. These methods include AddArc, AddBezier, AddBeziers, AddClosedCurve, AddCurve,
AddEllipse, AddLine, AddLines, AddPath, AddPie, AddPolygon, AddRectangle, AddRectangles,
and AddString. These are roughly analogous to the Draw and Fill methods provided by the Graphics
object. For example, DrawEllipse draws an ellipse, FillEllipse fi lls an ellipse, and AddEllipse adds an
ellipse to a path.

The following table describes the GraphicsPath object ’ s other most useful properties and methods.

GraphicsPath Objects ❘ 743

CH031.indd 743CH031.indd 743 12/31/09 6:53:58 PM12/31/09 6:53:58 PM

744 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

PROPERTY OR METHOD PURPOSE

CloseAllFigures Closes all open fi gures by connecting their last points with their

fi rst points, and then starts a new fi gure.

CloseFigure Closes the current fi gure by connecting its last point with its fi rst

point, and then starts a new fi gure. For example, if you draw a

series of lines and arcs, this method closes the fi gure.

FillMode Determines how the path

handles overlaps when you

fi ll it. This property can take

the values Alternate and

Winding. Figure 31 - 11

shows the diff erence.

Flatten Converts any curves in the path into a sequence of lines. For

example, this lets you explicitly calculate colors for every

point in the path when setting a PathGradientBrush object’s

SurroundColors property.

GetBounds Returns a RectangleF structure representing the path’s

bounding box.

GetLastPoint Returns the last PointF structure in the PathPoints array.

IsOutlineVisible Returns True if the indicated point lies beneath the path’s

outline.

IsVisible Returns True if the indicated point lies within the path’s interior.

PathData Returns a PathData object that encapsulates the path’s graphical

data. It holds arrays similar to those returned by the PathPoints

and PathTypes properties.

PathPoints Returns an array of PointF structures giving the points in the

path.

PathTypes Returns an array of Bytes representing the types of the points in

the path.

PointCount Returns the number of points in the path.

Reset Clears the path data and resets FillMode to Alternate.

FIGURE 31 - 11: The GraphicsPath

object ’ s FillMode property

determines how areas between

the lines are fi lled.

CH031.indd 744CH031.indd 744 12/31/09 6:53:59 PM12/31/09 6:53:59 PM

PROPERTY OR METHOD PURPOSE

Reverse Reverses the order of the path’s data.

StartFigure Starts a new fi gure so future data is added to the new fi gure.

Later, calling CloseFigure will close this fi gure, but not the

previous one.

Transform Applies a transformation matrix to the path.

Warp Applies a warping transformation to the path. The transformation

is defi ned by mapping a parallelogram to a rectangle.

Widen Enlarges the curves in the path to enclose a line drawn by a

specifi c pen.

GARBAGE - COLLECTION ISSUES

Objects such as brushes contain references to memory and graphics resources. If you allocate a lot
of brushes and then let them go out of scope, they become candidates for garbage collection. Later,
when the system decides it needs to free some memory, it walks through all of the objects that you
have previously allocated and determines which ones are not reachable by your code. It frees those
objects and makes their memory available for future use.

Unfortunately, if those objects contain references to other objects, the garbage collector may think
those second - hand objects are still referenced by the original object, so it will not collect them until
it runs a second time.

For example, suppose that your program allocates a brush, uses it, and lets it fall out of scope.
When the garbage collector runs, it sees that the brush refers to some resources, so it doesn ’ t reclaim
them. It sees that your program is no longer using the brush, however, so it frees that memory. The
next time the garbage collector runs, the brush is gone, so nothing refers to the brush ’ s secondary
resources and the garbage collector can free those, too.

Although the garbage collector eventually frees all of the memory, it takes longer than necessary. It
ties up memory longer and that may force more frequent garbage collection.

You can speed up the process greatly by explicitly calling the brush object ’ s Dispose method.
Dispose makes the brush free its internal resources and prepare for garbage collection. Now, when
the garbage collector runs, it frees both the brush and its secondary resources in a single pass.

The following code shows how to use the Dispose method. When the form loads, this code makes a
new Bitmap object to fi t the form. It attaches a Graphics object to the Bitmap, makes a HatchBrush
and Pen, and uses them to draw a fi lled ellipse on the Bitmap. The program then sets the form ’ s
BackgroundImage property to the Bitmap. Finally, the code calls the Dispose method for the
HatchBrush, Pen, and Graphics objects.

Garbage - Collection Issues ❘ 745

CH031.indd 745CH031.indd 745 12/31/09 6:53:59 PM12/31/09 6:53:59 PM

746 ❘ CHAPTER 31 BRUSHES, PENS, AND PATHS

Private Sub Form1_Load() Handles MyBase.Load
 ' Make a new bitmap to fit the form.
 Dim bm As New Bitmap(Me.ClientRectangle.Width, Me.ClientRectangle.Height)
 Dim gr As Graphics = Graphics.FromImage(bm)
 gr.Clear(Me.BackColor)

 ' Fill an ellipse.
 Dim hatch_brush As New HatchBrush(HatchStyle.LargeConfetti,
 Color.Blue, Color.Yellow)
 Dim rect As New Rectangle(10, 10,
 Me.ClientRectangle.Width - 20,
 Me.ClientRectangle.Height - 20)
 gr.FillEllipse(hatch_brush, rect)

 ' Outline the ellipse.
 Dim thick_pen As New Pen(Color.Black, 5)
 gr.DrawEllipse(thick_pen, rect)

 ' Set the result as the form's BackgroundImage.
 Me.BackgroundImage = bm

 ' Free resources.
 hatch_brush.Dispose()
 thick_pen.Dispose()
 gr.Dispose()
End Sub

code snippet UseDispose

Whenever you can call an object ’ s Dispose method, you should do so. This lets the garbage collector
reclaim memory more effi ciently.

You cannot always call Dispose, however. If you call Dispose on an object that is still needed by
some other object, the program will crash. For example, the preceding code uses a Bitmap object.
It ’ s not obvious from the code, but the form ’ s BackgroundImage property continues to reference
that object after this subroutine exits. If the program calls the Bitmap object ’ s Dispose method, the
form will later be unable to redraw itself and will either crash or display a panicked error message
depending on your operating system and .NET Framework version.

Instead of calling Dispose explicitly, you can use the Using statement. Declare the variable that
you must dispose of with a Using statement. When you have fi nished with the variable, end the
Using block with an End Using statement. When Visual Basic reaches the End Using statement, it
automatically calls the variable ’ s Dispose method.

The following code is similar to the previous version, except that it uses Using statements instead of
calling the Dispose method explicitly:

Private Sub Form1_Load() Handles MyBase.Load
 ' Make a new bitmap to fit the form.
 Dim bm As New Bitmap(Me.ClientRectangle.Width, Me.ClientRectangle.Height)
 Using gr As Graphics = Graphics.FromImage(bm)
 gr.Clear(Me.BackColor)
 Dim rect As New Rectangle(10, 10,

CH031.indd 746CH031.indd 746 12/31/09 6:54:00 PM12/31/09 6:54:00 PM

 Me.ClientRectangle.Width - 20,
 Me.ClientRectangle.Height - 20)

 ' Fill an ellipse.
 Using hatch_brush As New HatchBrush(HatchStyle.LargeConfetti,
 Color.Blue, Color.Yellow)
 gr.FillEllipse(hatch_brush, rect)
 End Using

 ' Outline the ellipse.
 Using thick_pen As New Pen(Color.Black, 5)
 gr.DrawEllipse(thick_pen, rect)
 End Using

 ' Set the result as the form's BackgroundImage.
 Me.BackgroundImage = bm
 End Using ' gr
End Sub

code snippet UseUsing

The Using statement increases the nesting depth of the code. In this example, the FillEllipse and
DrawEllipse calls are contained in two nested Using blocks, so they are indented twice. That makes
the code a little harder to read, but it makes it less likely that you will forget to call the objects ’
Dispose methods. In most cases, the increase is a small price to pay, particularly for graphics
programs that may use hundreds or thousands of pens and brushes very quickly.

SUMMARY

Visual Basic .NET provides a huge variety of objects for drawing graphics. The three most
important drawing classes are Graphics, Pen, and Brush.

The Graphics object represents the canvas on which you will draw. It provides methods that let you
draw and fi ll all sorts of shapes including lines, rectangles, ellipses, polygons, text, and curves. It
also provides methods for transforming those commands to translate, scale, and rotate the results.

The Pen object determines the appearance of lines. It sets the lines ’ color, thickness, dash style, fi ll
pattern, and caps.

Various kinds of brush objects determine the appearance of fi lled areas. They can fi ll areas with solid
colors, tiled images, hatch patterns, linear color gradients, and color gradients that follow a path.

These classes and the others described in this chapter give you powerful tools for drawing graphics
of practically unlimited complexity and sophistication.

This chapter discusses the brushes, pens, and paths that you use to draw lines, curves, and other
shapes. Chapter 32, “ Text, ” explains how to draw text. Although you can display simple text in a
Label, TextBox, or other control, when you draw text using GDI+ routines you have greater control
over exactly how the text appears.

Summary ❘ 747

CH031.indd 747CH031.indd 747 12/31/09 6:54:01 PM12/31/09 6:54:01 PM

CH031.indd 748CH031.indd 748 12/31/09 6:54:01 PM12/31/09 6:54:01 PM

32
Text

Text is different from the lines, rectangles, ellipses, and other kinds of shapes that a program
typically draws. A program normally draws and fi lls a rectangle in separate steps. On the
other hand, a program typically draws text in a single step, usually with a solid color.

Text also differs in the way it is drawn by the GDI+ routines. To draw a line, rectangle, or
ellipse, the program specifi es the shape ’ s location, and the GDI+ routines draw it accordingly.
Text is not specifi ed by simple location data. A program can specify the text ’ s general location
but has only limited control over its size. Different characters may have different widths in a
particular font, so strings containing the same number of characters may have different sizes
when displayed.

Even if you know every character ’ s nominal size, you may not be able to add them up to
calculate the size of a string. Fonts sometimes use special algorithms that adjust the spacing
between certain pairs of letters to make the result look better. For example, a font might
decrease the spacing between the characters A and W when they appear next to each other
(as in AW) to allow the W to lean over the A.

HINTING HINTS

Adjusting the spacing between characters is a form of “hinting” used to make
text look better. For more information on font hinting, see en.wikipedia.org/
wiki/Font_hinting and damieng.com/blog/2009/05/07/font-hinting-
and-instructing-a-primer.

This chapter describes some of the tools that Visual Basic provides for controlling text. It
explains how to draw text aligned and formatted in various ways, and how to measure text so
that you can fi gure out more exactly where it will appear.

CH032.indd 749CH032.indd 749 12/30/09 7:49:56 PM12/30/09 7:49:56 PM

750 ❘ CHAPTER 32 TEXT

Note that several examples use the Graphics object ’ s TextRenderingHint property to make text
appear smoother. For more information on this property, see the section “ System.Drawing.Text ” in
Chapter 30, “ Drawing Basics. ”

DRAWING TEXT

The Graphics object ’ s DrawString method draws text. It provides several overloaded versions that
let you specify the string, font, positioning, and alignment information.

One of the simplest versions of DrawString takes only four parameters: the text to draw, the font
to use, the brush to use when fi lling the text, and the position where the text should start. The
following code draws some text starting at the point (10, 10) on the form. It then draws a circle
around this point.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim txt As String = "The quick brown fox jumps over the lazy dog."
 Using big_font As New Font("Times New Roman", 30, FontStyle.Bold)
 e.Graphics.TextRenderingHint =
 System.Drawing.Text.TextRenderingHint.AntiAliasGridFit
 e.Graphics.DrawString(txt, big_font, Brushes.Black, 10, 10)
 e.Graphics.DrawEllipse(Pens.Black, 8, 8, 4, 4)
 End Using
End Sub

code snippet DrawSimpleString

Figure 32 - 1 shows the result. Note that the text doesn ’ t
begin exactly at the point (10, 10). The text contains some
leading space on the top and bottom that moves it slightly
right and downward from the starting point.

Note also that the text runs blithely off the edge of the
form. The following section describes ways you can format
text so it automatically provides alignment and wrapping
as necessary.

DrawString automatically starts a new line when it
encounters a Carriage Return/Line Feed pair in the text. It also advances to the next tab stop when
it encounters a Tab character, making it slightly easier to align text in rows and columns.

TEXT FORMATTING

Some of the overloaded versions of the Graphics object ’ s DrawString method take additional
parameters that help format the text. The fi rst of these parameters is a layout rectangle. This is a
RectangleF structure that indicates the area where the text should be drawn. The second parameter
is a StringFormat object that determines how the text is formatted.

FIGURE 32-1: Text doesn’t begin exactly

at the starting point passed to the

DrawString method.

CH032.indd 750CH032.indd 750 12/30/09 7:49:59 PM12/30/09 7:49:59 PM

The following code draws text inside a rectangle. It begins by defi ning the layout rectangle, text,
and font. It then creates a StringFormat object. It sets the object ’ s Alignment property to Center
so it is centered horizontally in the layout rectangle. It sets the object ’ s LineAlignment property to
Near so text is aligned vertically at the top of the rectangle. The program calls DrawString to draw
the text and then uses DrawRectangle to display the layout rectangle.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim layout_rect As New RectangleF(10, 10,
 Me.ClientSize.Width - 20, Me.ClientSize.Height - 20)
 Dim txt As String = "The quick brown fox jumps over the lazy dog."
 Using big_font As New Font("Times New Roman", 30, FontStyle.Bold)
 Using string_format As New StringFormat
 string_format.Alignment = StringAlignment.Center
 string_format.LineAlignment = StringAlignment.Near

 e.Graphics.DrawString(txt, big_font,

Brushes.Black,
 layout_rect, string_format)
 e.Graphics.DrawRectangle(Pens.Black,

Rectangle.Round(layout_rect))
 End Using ' string_format
 End Using ' big_font
End Sub

code snippet DrawSimpleLayoutRect

Figure 32 - 2 shows the result. Notice that the text is centered
horizontally and aligned to the top of the layout rectangle.

The StringFormat object provides several other properties and
methods that you can use to position text. The following table
describes the most useful of these.

PROPERTY OR METHOD PURPOSE

Alignment Determines the text ’ s horizontal alignment. This can be Near

(left), Center (middle), or Far (right).

FormatFlags Gets or sets fl ags that modify the StringFormat object ’ s

behavior. See the section “ FormatFlags ” later in this chapter

for more information.

GetTabStops Returns an array of Singles, giving the positions of tab stops.

See the section “ Tab Stops ” later in this chapter for more

information.

FIGURE 32-2: The DrawString

method can use a layout

rectangle and a StringFormat

object to format text.

continues

Text Formatting ❘ 751

CH032.indd 751CH032.indd 751 12/30/09 7:50:00 PM12/30/09 7:50:00 PM

752 ❘ CHAPTER 32 TEXT

PROPERTY OR METHOD PURPOSE

HotkeyPrefix Determines how the hotkey prefi x character is displayed. (In

a menu caption or label, the hotkey is underlined to show

that pressing Alt+ < hotkey > performs some special action. For

example, in most applications Alt+F opens the File menu. A

program specifi es a control ’ s hotkey character by placing an

ampersand in front of it. For example, “ & File ” is displayed

as “ File. ”) If HotkeyPrefi x is Show, any character that follows

an ampersand is drawn as an underlined hotkey (a double

ampersand is drawn as a single ampersand). If this is None,

any ampersands are drawn as ampersands. If this is Hide,

hotkey ampersands are hidden.

LineAlignment Determines the text ’ s vertical alignment. This can be Near

(top), Center (middle), or Far (bottom).

SetMeasureableCharacterRanges Sets an array of CharacterRange structures representing

ranges of characters that will later be measured by the

Graphics object ’ s MeasureCharacterRanges method.

SetTabStops Sets an array of Singles giving the positions of tab stops.

See the section “ Tab Stops ” later in this chapter for more

information.

Trimming Determines how the text is trimmed if it cannot fi t in the

layout rectangle. See the section “ Trimming ” later in this

chapter for more information.

The following sections describe some of the more complex formatting issues in greater detail.

FormatFlags

The StringFormat object ’ s FormatFlags property determines the object ’ s behavior. This property
can take a bitwise combination of the values described in the following table.

FORMATFLAGS VALUE PURPOSE

DirectionRightToLeft Indicates that the text is drawn from right to left.

DirectionVertical Indicates that the text is drawn vertically.

FitBlackBox Indicates that no character should extend beyond the layout rectangle.

If this is not set, some characters in certain fonts may stick out a bit.

(continued)

CH032.indd 752 CH032.indd 752 12/30/09 7:50:01 PM12/30/09 7:50:01 PM

FORMATFLAGS VALUE PURPOSE

LineLimit If the last line displayed in the layout rectangle is too tall to fi t, this fl ag

indicates that it should be omitted. By default, that line is clipped to

show whatever parts will fi t.

MeasureTrailingSpaces Indicates that the Graphics object ’ s MeasureString method should

include spaces at the ends of lines. By default, it does not.

NoClip Indicates that parts of characters that hang over the layout rectangle

are not clipped.

NoFontFallback If a character is missing from the selected font, the GDI+ normally

looks for an equivalent character in another font. This fl ag prevents

that and forces the character to be displayed as the font ’ s missing

character glyph (usually an open square).

NoWrap Indicates that text should not be wrapped.

Figure 32 - 3 shows the difference between the FitBlackBox, NoClip, and LineLimit fl ags. If the
last visible line won ’ t fi t within the layout rectangle, the default behavior is to clip the line to show
whatever fi ts. If FormatFlags is NoClip, that line is displayed entirely. If FormatFlags is LineLimit,
the line is omitted entirely.

FIGURE 32-3: The FitBlackBox, NoClip, and LineLimit fl ags change how

a StringFormat object handles the text’s last displayed line.

The following code fragment sets a StringFormat object ’ s DirectionVertical fl ag and then draws
some text. Example program DirectionVertical uses this code to produce the picture shown
in Figure 32 - 4.

string_format.FormatFlags =
 StringFormatFlags.DirectionVertical Or
 StringFormatFlags.DirectionRightToLeft
e.Graphics.DrawString(txt, the_font, Brushes.Black, layout_rect, string_format)

code snippet DirectionVertical

Text Formatting ❘ 753

CH032.indd 753CH032.indd 753 12/30/09 7:50:02 PM12/30/09 7:50:02 PM

754 ❘ CHAPTER 32 TEXT

This code fragment sets the FormatFlags property to DirectionVertical
plus DirectionRightToLeft. If you omit the second fl ag, the lines of text
are drawn left to right. That means the line “ The quick ” appears on the
left and the subsequent lines appear moving to the right, so the lines are
drawn in the reverse of the order that you might expect.

Note that you can also draw vertical text by applying a transformation
to the Graphics object that translates the text to the origin, rotates it,
and translates the text back to where it belongs.

The following code demonstrates this technique. It defi nes its
layout rectangle, text, and font. It uses the form ’ s width to defi ne the
rectangle ’ s height and the form ’ s height to defi ne the rectangle ’ s width,
so the rectangle will fi t the form after it is rotated. The code creates a
StringFormat object to center the text and applies the transformations
to the Graphics object. Finally, the code draws the text. The result is
similar to the text produced by the previous example.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Define the layout rectangle. It's slightly smaller
 ' than the form rotated 90 degrees so the rotated
 ' text will fit the form nicely.
 Dim rect_wid As Integer = Me.ClientSize.Height - 20
 Dim rect_hgt As Integer = Me.ClientSize.Width - 20
 Dim layout_rect As New RectangleF(
 (Me.ClientSize.Width - rect_wid) \ 2,
 (Me.ClientSize.Height - rect_hgt) \ 2,
 rect_wid, rect_hgt)
 ' Define the text and font.
 Dim txt As String = "The quick brown fox jumps over the lazy dog."
 Using the_font As New Font("Times New Roman", 30,
 FontStyle.Bold, GraphicsUnit.Pixel)

 ' Set the StringFormat to center the text.
 Using string_format As New StringFormat
 string_format.Alignment = StringAlignment.Center
 string_format.LineAlignment = StringAlignment.Center

 ' Translate to the origin, rotate, and translate back.
 e.Graphics.TranslateTransform(
 -Me.ClientSize.Width \ 2,
 -Me.ClientSize.Height \ 2,
 MatrixOrder.Append)
 e.Graphics.RotateTransform(90, Matri xOrder.Append)
 e.Graphics.TranslateTransform(
 Me.ClientSize.Width \ 2,
 Me.ClientSize.Height \ 2,
 MatrixOrder.Append)
 ' Draw the text and layout rectangle.
 e.Graphics.TextRenderingHint =
 System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

FIGURE 32-4: Setting the

StringFormat object’s

FormatFlags property to

DirectionVertical produces

vertical text.

CH032.indd 754CH032.indd 754 12/30/09 7:50:03 PM12/30/09 7:50:03 PM

 e.Graphics.DrawString(txt, the_font, Brushes.Black,
 layout_rect, string_format)
 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(layout_rect))
 End Using ' string_format
 End Using ' the_font
End Sub

code snippet TransformedText

This approach is a bit more complicated than the previous method
of setting the StringFormat object ’ s FormatFlags property to
DirectionVertical, but it gives you more fl exibility. Simply by
changing the rotation transformation, you can draw text at any
angle, not just rotated 90 degrees. Figure 32 - 5 shows this program
with the angle of rotation changed from 90 to 60 degrees.

Tab Stops

The StringFormat object ’ s GetTabStops and SetTabStops methods
let you get and set an array of Singles that determine the position
of the layout rectangle ’ s tab stops. Each entry in the array gives
the distance between two tab stops. For example, the values {50,
50, 50} specify tab stops 50, 100, and 150 pixels from the left
edge of the layout rectangle.

The following code fragment sets two tab stops for a StringFormat object named string_format. It
sets two tab stops 60 and 140 (60 + 80) pixels from the left edge of the layout rectangle.

Dim tab_stops() As Single = {60, 80}
string_format.SetTabStops(0, tab_stops)

code snippet SetTabs

Example program SetTabs uses this code to display some randomly
generated data aligned in columns. The code simply builds a string that
uses vbTab to move characters horizontally to the next tab stop and that
uses vbCrLf to start a new line. Figure 32 - 6 shows the result.

Trimming

Normally, a string is wrapped as necessary until its layout rectangle is full.
If there is still text that has not been displayed, the Trimming property
determines how that text is handled. The following table describes the
values this property can take.

FIGURE 32-6: The

SetTabStops method lets

you easily align text.

FIGURE 32-5: Transformations can

produce text rotated at any angle.

Text Formatting ❘ 755

CH032.indd 755CH032.indd 755 12/30/09 7:50:03 PM12/30/09 7:50:03 PM

756 ❘ CHAPTER 32 TEXT

TRIMMING VALUE PURPOSE

Character The text is trimmed to the nearest character.

EllipsisCharacter The text is trimmed to the nearest character and an ellipsis is displayed at

the end of the line.

EllipsisPath The center of the line is removed and replaced with an ellipsis. This is

sometimes a good choice when displaying fi le paths because it shows

the beginning of the path and the fi le name. This method keeps as much

of the last backslash (\) delimited part of the text as possible (it assumes

that this is a fi le name).

EllipsisWord The text is trimmed to the nearest word and an ellipsis is displayed at the

end of the line.

None The text is not trimmed. Instead, it is wrapped to the next line, which is

hidden because it is below the bottom of the layout rectangle. If the last

visible line contains a word break, the line will wrap after the last word that

fi ts. That makes this seem similar to the Word setting.

Word The text is trimmed to the nearest word.

Example program Trimming, available for
download on the book ’ s web site, draws
samples of each of the Trimming values.
Figure 32 - 7 shows the program in action.
Each sample contains the letters A through Z
in groups of three separated by backslashes
(left column) or spaces (right column).

MEASURESTRING

The Graphics object ’ s MeasureString method
returns a SizeF structure holding the string ’ s
width and height drawn in a particular font.
You can use that information to arrange the
text and other drawn objects on the form.

The following code shows how a program might center text on its form. It starts by defi ning the
text it will draw and the font it will use (in this case, a bold, 40 - pixel - tall, Times New Roman
font). Next, the program uses the Graphics object ’ s MeasureString method to get the string ’ s size in
that font. It uses the size to determine where it needs to draw the text to center it, and then draws
the text. The code then makes a Rectangle object using the text ’ s position and the size it got from
MeasureString. It fi nishes by drawing the rectangle around the string.

FIGURE 32-7: The StringFormat object’s Trimming

property determines how text is trimmed.

CH032.indd 756CH032.indd 756 12/30/09 7:50:04 PM12/30/09 7:50:04 PM

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim the_string As String = "MeasureString"
 ' Define the font and text we will use.
 Using the_font As New Font("Times New Roman", 40,
 FontStyle.Bold, GraphicsUnit.Pixel)

 ' Get the text's size.
 Dim string_size As SizeF =
 e.Graphics.MeasureString("MeasureString", the_font)
 ' Draw the text centered on the form.
 Dim x As Integer = (Me.ClientSize.Width - CInt(string_size.Width)) \ 2
 Dim y As Integer =
 (Me.ClientSize.Height - CInt(string_size.Height)) \ 2
 e.Graphics.DrawString(the_string, the_font, Brushes.Black, x, y)
 ' Draw a rectangle around the text.
 Dim string_rect As New Rectangle(x, y,
 CInt(string_size.Width), CInt(string_size.Height))
 e.Graphics.DrawRectangle(Pens.Black,

string_rect)
 End Using
End Sub

code snippet MeasureString

Figure 32 - 8 shows the result. Notice that the rectangle
includes some extra space above, below, and to the sides of
the string. The section “ Font Metrics ” later in this chapter
has more to say about this extra space.

EASIER ALIGNMENT

An easier way to center text on a form is to use a StringFormat object with
Alignment and LineAlignment properties set to Center. Then use the form’s client
area for the formatting rectangle.

Occasionally, it is useful to know where parts of a string will be drawn. For example, you might
want to draw a box around certain words or know when the user has clicked a particular letter.

The Graphics object provides a MeasureCharacterRanges method that returns an array of Regions
representing the positions of ranges of characters within a string. To use MeasureCharacterRanges,
the program must fi rst create an array of CharacterRange objects defi ning the ranges of interest. It
calls a StringFormat object ’ s SetMeasurableCharacterRanges method, passing it this array. Finally,
it calls MeasureCharacterRanges.

The following code uses MeasureCharacterRanges to show the positions of all of the characters in a
short string. It begins by defi ning its text, layout rectangle, font, and StringFormat object as usual. It
then creates an array of CharacterRange objects, one for each character in the string. It loops through
this array, fi lling it with new CharacterRange objects, each of which represents a single character. When

FIGURE 32-8: You can use the Graphics

object’s MeasureString method to see

how big a string will be when drawn in a

particular font.

MeasureString ❘ 757

CH032.indd 757CH032.indd 757 12/30/09 7:50:05 PM12/30/09 7:50:05 PM

758 ❘ CHAPTER 32 TEXT

it has fi lled the array, the code passes it to the StringFormat object ’ s SetMeasurableCharacterRanges
method. The program then calls the Graphics object ’ s MeasureCharacterRanges method to get Region
objects representing the characters ’ positions. It loops through this array, calling each Region object ’ s
GetBounds method to convert the region into a RectangleF structure. It transforms the RectangleF into
a Rectangle and draws it. Finally, the program draws the string.

Private Sub Form1_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim txt As String = "Great Galloping Giraffes"
 Dim layout_rect As New RectangleF(0, 0,
 Me.ClientSize.Width, Me.ClientSize.Height)
 e.Graphics.TextRenderingHint =
 System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

 Using the_font As New Font("Times New Roman", 50,
 FontStyle.Bold Or FontStyle.Italic, GraphicsUnit.Pixel)
 Using string_format As New StringFormat
 string_format.LineAlignment = StringAlignment.Center
 string_format.Alignment = StringAlignment.Center

 ' Define an array of CharacterRange objects,
 ' one for each character.
 Dim character_ranges(txt.Length - 1) As CharacterRange
 For i As Integer = 0 To txt.Length - 1
 character_ranges(i) = New CharacterRange(i, 1)
 Next i '
 Set the ranges in the StringFormat object.
 string_format.SetMeasurableCharacterRanges(character_ranges)
 ' Get the character range regions.
 Dim character_regions() As Region =
 e.Graphics.MeasureCharacterRanges(txt,
 the_font, layout_rect, string_format)
 ' Draw each region's bounds.
 For Each rgn As Region In character_regions
 ' Convert the region into a Rectangle.
 Dim character_bounds As RectangleF = rgn.GetBounds(e.Graphics)
 Dim character_rect As Rectangle =
 Rectangle.Round(character_bounds)
 ' Draw the bounds.
 e.Graphics.DrawRectangle(Pens.White,

character_rect)
 Next rgn

 ' Draw the text.
 e.Graphics.DrawString(txt, the_font,

Brushes.Black,
 layout_rect, string_format)
 End Using ' string_format
 End Using ' the_font
End Sub

code snippet MeasureCharacterRanges

Figure 32 - 9 shows the result.

FIGURE 32-9: The Graphics

object’s MeasureCharacterRanges

method shows where ranges of

characters will be drawn in a string.

CH032.indd 758CH032.indd 758 12/30/09 7:50:06 PM12/30/09 7:50:06 PM

CHALLENGING CHARACTERS

For some reason, the array of CharacterRange objects you pass to the
SetMeasurableCharacterRanges method can hold at most 32 items. If the array is
larger, SetMeasurableCharacterRanges throws an overfl ow error. Microsoft says
this behavior is by design and doesn’t plan to change it. If you need to measure the
positions of individual characters in a longer string, you should break the string
into pieces smaller than 32 characters, probably at word boundaries, and arrange
the pieces yourself.

Note that characters do not necessarily stay within their assigned regions. Depending on the font,
they may stick out slightly. In Figure 32 - 9, the ff pair is particularly shameless in its trespassing,
overlapping both the previous and following characters.

FONT METRICS

The Graphics object ’ s MeasureString method tells you approximately how big a string will be when
drawn on that object. Its MeasureCharacterRanges method enables you to get more information
about the positioning of ranges within a string.

The FontFamily class provides some additional methods that a program can use to get even more
information about how characters are drawn. Before you can use these values, you must understand
a bit of extra character anatomy.

Figure 32 - 10 shows how a font ’ s internal leading, ascent, descent, and external leading values help
determine a character ’ s position.

Internal Leading

Em Height

Ascent

Descent

Cell Height

External Leading

Line Spacing

Baseline

FIGURE 32-10: How text is positioned depends on many font metrics, including internal

leading, ascent, descent, and external leading.

Font Metrics ❘ 759

CH032.indd 759CH032.indd 759 12/30/09 7:50:07 PM12/30/09 7:50:07 PM

760 ❘ CHAPTER 32 TEXT

The following table describes these font metrics.

VALUE MEANING

Internal Leading Extra space left above the characters but considered part of

the string.

Em Height The height within which the characters are drawn.

Ascent The part of the character cell above the baseline.

Baseline The line on which the character sits. Normally a font lines up all the

characters in a string so their baselines align.

Descent The part of the character cell below the baseline.

Cell Height The height of the character area including internal leading.

External Leading Extra space left below one line and above the next.

Line Spacing The distance between one line and the next.

MISLEADING LEADING

In the terms “internal leading” and “external leading,” the word “leading” is
pronounced “led-ing” not “leed-ing.” It comes from a printer term that meant a
thin strip of metal called lead or leading, (you guessed it, pronounced “led” or
“led-ing”) used to increase the spacing between lines.

From the fi gure, you can verify the following relationships:

Cell Height = Ascent + Descent = Internal Leading + Em Height
Line Spacing = Cell Height + External Leading

The FontFamily object provides several methods for determining font metric values. These methods
include GetCellAscent, GetCellDescent, GetEmHeight, and GetLineSpacing.

All of these methods return values in font design units . The key to converting them into some other
unit is to realize that the Font object ’ s Size property returns the font ’ s em size in whatever units the
font is currently using. For example, if you specify the font ’ s size in pixels, then Font.Size returns
the em size in pixels.

CH032.indd 760CH032.indd 760 12/30/09 7:50:08 PM12/30/09 7:50:08 PM

AUNTY EM

Traditionally, em size was the height of the metal block used to hold a letter.
Sometimes an em is said to be the width of the letter “M,” although this isn’t strictly
true, particularly in modern computerized fonts in which the M tends to be less than
an em wide. An en is half an em. For more information, see en.wikipedia.org/
wiki/Em_(typography).

Using Font.Size and the value returned by the FontFamily class ’ s GetEmHeight method, you can
convert the other values into pixels. For example, the following equation shows how to calculate a
font family ’ s ascent in pixels:

Ascent Pixels = FontFamily.GetCellAscent * Font.Size / FontFamily.GetEmHeight

Example program FontMetrics calls the MeasureCharacters subroutine shown in the following code
to display the font metrics for text in three different fonts:

Public Sub MeasureCharacters(ByVal gr As Graphics, ByVal the_font As Font,
 ByVal txt As String, ByVal layout_rect As RectangleF,
 ByVal string_format As StringFormat)
 ' Define an array of CharacterRange objects,
 ' one for each character.
 Dim character_ranges(txt.Length - 1) As CharacterRange
 For i As Integer = 0 To txt.Length - 1
 character_ranges(i) = New CharacterRange(i, 1)
 Next i
 ' Set the ranges in the StringFormat object.
 string_format.SetMeasurableCharacterRanges(character_ranges)

 ' Get the character range regions.
 Dim character_regions() As Region =
 gr.MeasureCharacterRanges(txt,
 the_font, layout_rect, string_format)

 ' Get the font's ascent.
 Dim em_height As Integer = the_font.FontFamily.GetEmHeight(FontStyle.Bold)
 Dim em_height_pix As Single = the_font.Size
 Dim design_to_pixels As Single = the_font.Size / em_height
 Dim ascent As Integer = the_font.FontFamily.GetCellAscent(FontStyle.Bold)
 Dim ascent_pix As Single = ascent * design_to_pixels
 Dim descent As Integer = the_font.FontFamily.GetCellDescent(FontStyle.Bold)
 Dim descent_pix As Single = descent * design_to_pixels
 Dim cell_height_pix As Single = ascent_pix + descent_pix
 Dim internal_leading_pix As Single = cell_height_pix - em_height_pix
 Dim line_spacing As Integer = the_font.FontFamily.GetLineSpacing(FontStyle.Bold)
 Dim line_spacing_pix As Single = line_spacing * design_to_pixels
 Dim external_leading_pix As Single = line_spacing_pix - cell_height_pix

Font Metrics ❘ 761

CH032.indd 761CH032.indd 761 12/30/09 7:50:09 PM12/30/09 7:50:09 PM

762 ❘ CHAPTER 32 TEXT

 ' Draw each region's bounds.
 For Each rgn As Region In character_regions
 ' Convert the region into a Rectangle.
 Dim character_bounds As RectangleF = rgn.GetBounds(gr)
 Dim character_rect As Rectangle =
 Rectangle.Round(character_bounds)
 ' Draw the bounds.
 gr.DrawRectangle(Pens.Black, character_rect)

 ' Draw the internal leading.
 gr.DrawLine(Pens.Black,
 character_rect.X,
 character_rect.Y + internal_leading_pix,
 character_rect.Right,
 character_rect.Y + internal_leading_pix)

 ' Draw the ascent.
 gr.DrawLine(Pens.Black,
 character_rect.X,
 character_rect.Y + ascent_pix,
 character_rect.Right,
 character_rect.Y + ascent_pix)

 ' Draw the descent.
 gr.DrawLine(Pens.Orange,
 character_rect.X,
 character_rect.Y + ascent_pix + descent_pix,
 character_rect.Right,
 character_rect.Y + ascent_pix + descent_pix)

 ' Draw the external leading.
 gr.FillRectangle(Brushes.Red,
 character_rect.X,
 character_rect.Y + ascent_pix + descent_pix,
 character_rect.Width,
 external_leading_pix)
 Next rgn
 ' Draw the text.
 gr.DrawString(txt, the_font, Brushes.Black,
 layout_rect, string_format)
End Sub

code snippet FontMetrics

MeasureCharacters defi nes an array of CharacterRange objects and initializes them so that they
each refer to a single character in the string. The program calls SetMeasurableCharacterRanges and
then MeasureCharacterRanges, as described in the section “ MeasureString ” earlier in this chapter.

Next, the code calculates the font ’ s em height, ascent, descent, cell height, internal leading,
line spacing, and external leading. The subroutine then loops through the Regions returned by
MeasureCharacterRanges, converting each Region into a Rectangle and drawing it.

CH032.indd 762CH032.indd 762 12/30/09 7:50:10 PM12/30/09 7:50:10 PM

The program then draws lines showing the
internal leading, ascent, and descent values,
and fi lls an area representing the external
leading space. It draws the descent in orange
and fi lls the external leading in red so you
can tell them apart where they overlap in the
left font.

The subroutine fi nishes by drawing the text.
Figure 32 - 11 shows the result.

Note that the font metrics are not always
rigidly followed. For example, sometimes
a character may extend into the external
leading space.

SUMMARY

When you draw lines, rectangles, and other shapes, you can completely defi ne the shape by giving its
size and position. Text is different. Different fonts may produce very different results, even for the
same text. A single font sometimes even produces different results for a character, depending on
the characters that surround it and the area in which it is drawn.

This chapter describes some of the methods you can use to position and measure text in Visual
Basic. Layout rectangles and StringFormat objects let you easily draw text that is centered or aligned
vertically and horizontally. The DrawString method automatically wraps text if necessary and can
understand Tabs and Carriage Return/Line Feed characters contained in the text.

The StringFormat object ’ s fl ags let you determine how text is aligned, wrapped, and trimmed. The
StringFormat object ’ s methods let you read and defi ne tab stops.

The Graphics object ’ s MeasureString method lets you determine roughly how big a string will be
when drawn on the object. Its MeasureCharacterRanges method lets you determine the placement
of regions of text within a string.

With all of these methods at your disposal, you can position text almost exactly where you want it.

Chapters 30 through 32 explain how to draw objects such as lines, ellipses, and text at a relatively
high level. When you draw a line from one point to another, you don ’ t need to specify exactly how
the pixels on the screen should be colored. You set values for higher - level properties such as the pen
color and dash style, brush color and style, and so forth. Then Visual Basic fi gures out the details.

Chapter 33, “ Image Processing, ” explains how you can read and manipulate images on a pixel - by -
pixel basis. It tells how to load and save image fi les in different formats (such as BMP, GIF, JPEG,
and PNG) and how to get and set the colors of individual pixels.

FIGURE 32-11: The FontFamily and Font classes provide

the methods you need to calculate font metrics.

Summary ❘ 763

CH032.indd 763CH032.indd 763 12/30/09 7:50:10 PM12/30/09 7:50:10 PM

CH032.indd 764CH032.indd 764 12/30/09 7:50:10 PM12/30/09 7:50:10 PM

33
Image Processing

The Graphics class represents a drawing surface at a logical level. Below that level, a Graphics
object is attached to a Bitmap or Metafi le object. Those objects understand the slightly lower -
level needs of managing more physical data structures. For example, a Bitmap object maps
abstract drawing commands such as DrawLine and DrawEllipse to colored pixels that can be
displayed on a PictureBox or saved into a fi le. Similarly, a Metafi le maps the Graphics object ’ s
abstract commands into metafi le records that you can play back on a drawing surface, or save
in a graphical metafi le.

This chapter describes the more down - to - earth Bitmap and Metafi le classes. It explains
methods for building, modifying, and manipulating these objects. It shows how to load and
save them from graphics fi les and, in the case of Bitmap classes, how to work with fi les saved
in a variety of graphic formats such as BMP, GIF, JPEG, TIFF, and PNG.

IMAGE

An Image object represents some sort of picture that you can draw on, copy, transform,
and display. Image is an abstract (MustInherit) class, so you cannot create instances of this
class directly. Instead you must make instances of its derived classes Bitmap and Metafi le.

 You can also derive your own class from Image if you want, although that ’ s a
fairly advanced technique, so it isn ’ t covered here.

The Image class provides useful graphical methods that the Bitmap and Metafi le classes
inherit. Many other objects can work with any type of Image object, so you can pass them
either a Bitmap or a Metafi le. For example, the Graphics object ’ s FromImage method takes
an Image object as a parameter and returns a Graphics object attached to that Image. This

CH033.indd 765CH033.indd 765 12/31/09 6:54:48 PM12/31/09 6:54:48 PM

766 ❘ CHAPTER 33 IMAGE PROCESSING

parameter can be either a Bitmap or a Metafi le. The following code creates a new Bitmap object,
attaches a Graphics object to it, and then uses the Graphics object to draw a rectangle on the
Bitmap:

Dim bm As New Bitmap(100, 100)
Using gr As Graphics = Graphics.FromImage(bm)
 gr.DrawRectangle(Pens.Black, 10, 10, 80, 80)
End Using

The Image class itself provides several useful methods, particularly Load and Save. The following
table describes these and some of the class ’ s other useful properties and methods.

PROPERTY OR METHOD PURPOSE

Dispose Frees the resources associated with this image. See the sections

“ Loading Bitmaps ” and “ Saving Bitmaps ” later in this chapter for more

information.

Flags Returns attribute fl ags for the image. These provide information such

as whether the pixel data contains alpha values and whether the

image is a gray scale. For more information, see msdn.microsoft

.com/system.drawing.imaging.imageflags.aspx .

FromFile This shared function loads an image from a fi le as in bm = Bitmap

.FromFile(file - name) .

FromHbitmap This shared function loads a Bitmap image from a Windows bitmap

handle. (A bitmap handle is a 32 - bit integer that gives a value

associated with the bitmap in the GDI environment. Windows uses

the handle to refer to the bitmap when it needs to manipulate it. In the

.NET environment, you generally work with Bitmap and Image objects

and don ’ t need to worry about bitmap handles. It ’ s useful to know

about this method, however, in case you need to manipulate a bitmap

loaded using older GDI routines.)

FromStream This shared function loads an image from a data stream.

GetBounds Returns a RectangleF structure representing the rectangle ’ s bounds.

GetPixelFormatSize Returns the color resolution (bits per pixel) for a specifi ed PixelFormat.

GetThumbnailImage Returns a thumbnail representation of the image.

Height Returns the image ’ s height.

HorizontalResolution Returns the horizontal resolution of the image in pixels per inch.

IsAlphaPixelFormat Returns True if the specifi ed PixelFormat contains alpha information.

Palette Determines the ColorPalette object used by the image.

CH033.indd 766CH033.indd 766 12/31/09 6:54:52 PM12/31/09 6:54:52 PM

PROPERTY OR METHOD PURPOSE

PhysicalDimension Returns a SizeF structure giving the image ’ s dimensions in pixels for

Bitmaps and 0.01 millimeter units for Metafi les.

PixelFormat Returns the image ’ s pixel format. This property can take such values

as Format24bppRgb (24 - bit red/green/blue data), Format32bppArgb

(32 - bit alpha/red/green/blue data), and Format8bppIndexed

(8 - bit index into a 256 - color table). For more information, see msdn

.microsoft.com/system.drawing.imaging.pixelformat.aspx .

RawFormat Returns an ImageFormat object representing the image ’ s raw format.

The ImageFormat class has shared members for each of the standard

image types. For example, the following code checks whether

the Bitmap bm was loaded from a JPEG fi le: If bm.RawFormat

.Equals(ImageFormat.Jpeg) Then . . .

RotateFlip Rotates, fl ips, or rotates and fl ips the image. The parameter indicates

which combination of fl ips (vertical, horizontal, or both) and rotation

(0, 90, 180, or 270 degrees) to use.

Save Saves the image in a fi le or stream with a given data format (BMP, GIF,

JPEG, and so on). See the sections “ Loading Bitmaps ” and “ Saving

Bitmaps ” later in this chapter for more information.

Size Returns a Size structure containing the image ’ s width and height

in pixels.

VerticalResolution Returns the vertical resolution of the image in pixels per inch.

Width Returns the image ’ s width.

BITMAP

The Bitmap class represents an image defi ned by pixel data. You can use a Bitmap to create, load,
modify, and save image data to sources that display pixel data such as screen objects (PictureBoxes,
Forms, UserControls, and so on) and image fi les (BMP, GIF, JPEG, PNG, TIFF, and so on).

Many of the Bitmap class ’ s most useful properties and methods are inherited from the
Image class. These include Height, HorizontalResolution, Palette, RawFormat, Size, Width,
GetThumbnailImage, RotateFlip, and Save. See the section “ Image ” earlier in this chapter for
information about those and other inherited properties and methods.

The following table describes some of the most useful methods that the Bitmap class adds to those
inherited from the Image class.

Bitmap ❘ 767

CH033.indd 767CH033.indd 767 12/31/09 6:54:52 PM12/31/09 6:54:52 PM

768 ❘ CHAPTER 33 IMAGE PROCESSING

METHOD PURPOSE

FromHicon This shared function loads a Bitmap image from a Windows icon handle.

(An icon handle is a 32 - bit integer that gives a value associated with the icon

in the GDI environment. Windows uses the handle to refer to the icon when it

needs to manipulate it. In the .NET environment, you generally work with Icon

objects and don ’ t need to worry about icon handles. It ’ s useful to know about

this method, however, in case you need to manipulate an icon loaded using

older GDI routines.)

FromResource This shared function loads a Bitmap image from a Windows resource.

GetPixel Returns a specifi ed pixel ’ s Color.

LockBits Locks the Bitmap class ’ s data in memory, so it cannot move until the program

calls UnlockBits.

MakeTransparent Makes all pixels with a specifi ed color transparent by setting their alpha

components to 0.

SetPixel Sets a specifi ed pixel ’ s Color value.

SetResolution Sets the Bitmap class ’ s horizontal and vertical resolution in dots per

inch (DPI).

UnlockBits Unlocks the Bitmap class ’ s data in memory so the system can relocate

it if necessary.

For most applications, the GetPixel and SetPixel methods provide adequate performance when
manipulating pixels, but there is some overhead in moving through the different layers between the
program ’ s code and the actual pixel data. For applications that work with very large images or that
need to process pixel data on many images very quickly, performance may be an issue.

In cases where speed is an issue, you can access the pixel data more directly using so - called
unsafe access. The program locks the Bitmap class ’ s data, reads and updates the pixel values, and
then unlocks the data. See the section “ Pixel - by - Pixel Operations ” later in this chapter for more
information and examples.

Loading Bitmaps

Loading a Bitmap from a fi le is simple. Simply pass the fi le ’ s name into the Bitmap class ’ s
constructor. The following code loads the bitmap fi le whose name is stored in the variable
fi le_name, and then displays it in the PictureBox control named picImage:

Dim bm As New Bitmap(file_name)
picImage.Image = bm

CH033.indd 768CH033.indd 768 12/31/09 6:54:53 PM12/31/09 6:54:53 PM

After you have loaded a Bitmap, you can attach a Graphics object to it, draw on it, display it, and
save the results in a new bitmap fi le. The following code loads the bitmap fi le, attaches a Graphics
object to it, uses that object to draw an ellipse, and displays the result in the picImage control:

Dim bm As New Bitmap(file_name)
Using gr As Graphics = Graphics.FromImage(bm)
 gr.DrawEllipse(Pens.White, 0, 0, bm.Width - 1, bm.Height - 1)
End Using
picImage.Image = bm

Unfortunately, the Bitmap object holds some sort of attachment to the bitmap fi le. If you try
to delete the fi le while the program is running and still using the Bitmap, the operating system
complains that the fi le is locked by another process. Similarly, if you open the fi le in a program such
as Microsoft Paint, make some changes, and try to save the fi le, the operating system complains
about a sharing violation.

To release the fi le for other programs to use, you must dispose of the Bitmap object that opened
it. However, if you assign the Bitmap to a property (such as Image property of a PictureBox), the
property keeps a reference to the Bitmap and will later generate an error when it tries to use the
Bitmap that you have disposed.

One solution to this problem is to create a second Bitmap that is a copy of the fi rst Bitmap, as shown
in the following code. Then you can safely dispose of the fi rst Bitmap. Because the second Bitmap
was never associated with the bitmap fi le, the fi le is not locked.

' Load the bitmap file.
Dim bm As New Bitmap(file_name)

' Make a copy.
Dim new_bm As New Bitmap(bm)

' Dispose of the original Bitmap.
bm.Dispose

' Draw on the new Bitmap and display the result.
Using gr As Graphics = Graphics.FromImage(new_bm)
 gr.DrawEllipse(Pens.White, 0, 0, new_bm.Width - 1, new_bm.Height - 1)
End Using
picImage.Image = new_bm

code snippet LoadPicture

Saving Bitmaps

You can use a Bitmap object ’ s Save method to save the bitmap into a fi le or data stream. By default
the image is saved in PNG format, so if you want to use the PNG format you only need to pass
Save the name of the fi le. To save the image in some other format, pass the format as the Save
method ’ s second parameter.

Bitmap ❘ 769

CH033.indd 769CH033.indd 769 12/31/09 6:54:53 PM12/31/09 6:54:53 PM

770 ❘ CHAPTER 33 IMAGE PROCESSING

 The Save method uses its second parameter, not the fi le name ’ s extension, to
determine the fi le format. For example, if you pass the Save method only the
string “ Test.bmp. ” you ’ ll get a PNG fi le with a .bmp extension. To avoid
confusion, explicitly specify the data type that matches the fi le name ’ s extension.

The following code generates a 256 × 256 pixel bitmap from scratch and saves it in a JPEG fi le.
Because the program doesn ’ t specify a path for the fi le, it is created in the program ’ s current directory.

' Make a 256x256 pixel Bitmap.
Dim bm As New Bitmap(256, 256)

' Draw on it.
Using gr As Graphics = Graphics.FromImage(bm)
 gr.Clear(Color.White)
 gr.DrawEllipse(Pens.Red, 0, 0, bm.Width - 1, bm.Height - 1)
 gr.DrawLine(Pens.Green, 0, 0, bm.Width - 1, bm.Height - 1)
 gr.DrawLine(Pens.Blue, bm.Width - 1, 0, 0, bm.Height - 1)
End Using

' Save the result as a JPEG file.
bm.Save("test.jpg", ImageFormat.Jpeg)

code snippet SaveJpeg

The ImageFormat enumeration defi nes the values Bmp, Emf, Exif, Icon, Jpeg, MemoryBmp, Png,
Tiff, and Wmf.

METAFILE MIX - UP

ImageFormat ’ s Wmf (Windows Metafi le) and Emf (Enhanced Metafi le) formats
don ’ t really work. If you try to save in those formats, you get the Png format instead.
See the “ Remarks ” section at msdn.microsoft.com/system.drawing.imaging
.metafile.aspx for details.

You can still produce a metafi le, it ’ s just more work. See the section “ Metafi le
Objects ” later in this chapter for more information.

You can fi nd information about the different fi le formats on the Web. For example, you can fi nd
some general descriptions of various formats at en.wikipedia.org/wiki/Graphics_file_format .
Also see Microsoft ’ s article “ Guidelines for selecting the appropriate picture format ” at support
.microsoft.com/kb/272399 .

If you save a Bitmap image in the Wmf (Windows metafi le) or Emf (Enhanced metafi le) format, the
Save method creates a metafi le that contains a bitmapped image. If you create a metafi le by using
a Metafi le object, on the other hand, the result is a metafi le that contains records that draw lines,
curves, text, and so forth. The difference can have a couple of important consequences.

CH033.indd 770CH033.indd 770 12/31/09 6:54:54 PM12/31/09 6:54:54 PM

First, if the image is large, the bitmapped version may take up a lot more space than the version that
records only drawing commands. It may also take a lot longer to draw a large bitmap than it would
to draw a few circles and lines.

Second, you can transform a metafi le that contains commands more readily than you can transform
a metafi le that contains a bitmap. If you enlarge a metafi le containing commands, the result
contains enlarged lines, curves, and other output. If you enlarge a metafi le containing a bitmap,
the result is a relatively blocky enlarged bitmap. Anti - aliasing may help a little, but the metafi le
containing drawing commands will produce a much better result.

On the other hand, not all programs understand all metafi le commands. You may load a metafi le
containing drawing commands into another application and fi nd that your ellipses and text don ’ t
work. Although a metafi le containing a bitmap won ’ t resize nicely, at least it should look similar to
what you created.

See the section “ Metafi le Objects ” later in this chapter for more information on metafi les.

Implementing AutoRedraw

In Visual Basic 6 and earlier versions, the Form and PictureBox objects had an AutoRedraw
property. If you set this property to True, anything you drew on the object was automatically saved.
If the object was later obscured and redrawn, the drawing was automatically restored.

This method required Visual Basic to allocate a chunk of internal memory to store the image, so
it was not free. However, it could be a lot easier and faster than redrawing a complex image from
scratch every time the drawing is exposed. For example, drawing a Mandelbrot set or other complex
fractal may take 10 or 20 seconds even on a relatively fast computer. Some of the complex images
used in modern computer animated movies take hours or days to build. Redrawing these images
from scratch every time a form was exposed would be impractical.

The bad news is that Visual Basic .NET has no AutoRedraw property. If you want similar
functionality, you must implement it yourself. The good news is that Visual Basic .NET has a couple
of controls that can display a persistent image, and they can do a lot of the work for you.

The Form object ’ s BackgroundImage property holds an image that covers the form ’ s background.
If the image is too big to fi t, it is cropped. If the image is too small to cover the whole form, it is
repeated to tile the form.

The PictureBox object ’ s Image property also displays a persistent image. The control ’ s SizeMode
property determines how Visual Basic uses the image to cover the control. This property can take
the values Normal (the image is drawn at full scale in the upper - left corner of the PictureBox and is
cropped if it is too big), StretchImage (the image is stretched or squashed to fi t the control, possibly
changing its shape), AutoSize (the PictureBox resizes to fi t the image), and CenterImage (the image is
drawn at full scale in the center of the PictureBox and is cropped if it is too big).

One relatively easy method for implementing AutoRedraw is to make a Bitmap and assign it to
a PictureBox object ’ s Image property. Then the PictureBox automatically redisplays the image
whenever it is exposed.

Some programs don ’ t need to redraw their images when the form resizes. For example, a mapping
application might display its map at a specifi c size. In that case, you don ’ t need to redraw the map in
the form ’ s Resize event handler. Instead, you would probably add menus and buttons to let the user

Bitmap ❘ 771

CH033.indd 771CH033.indd 771 12/31/09 6:54:56 PM12/31/09 6:54:56 PM

772 ❘ CHAPTER 33 IMAGE PROCESSING

zoom in and out, and scroll to different parts of the map. In an application such as that one, the
code would need to draw images only when the content changed. The rest is automatic.

Other applications draw in several routines and not just in the form ’ s Load and Resize event
handlers. For example, a drawing program might let the user draw various shapes (such as lines,
rectangles, ellipses, and free - form curves). The program would add these shapes to a Bitmap as they
were drawn and then display the result.

In programs such as this, you can create Bitmap and Graphics objects at a module or application
level and then use them whenever the user modifi es the image.

The Scribble example program, which is available for download on the book ’ s web site, uses
this approach to allow the user to draw free - form curves. When it starts and when the user selects
the File menu ’ s Clear command, the program makes Bitmap and Graphics objects at the module
level. It displays the Bitmap in a PictureBox control ’ s Image property.

The program ’ s MouseDown, MouseMove, and MouseUp event handlers allow the user to draw
lines on the Bitmap. Each time the program makes a change it re - displays the Bitmap in the
PictureBox.

Figure 33 - 1 shows program Scribble in action.

A fi nal issue related to AutoRedraw is resizing. If the user makes
the form larger or smaller, you need to fi gure out what to do
about the AutoRedraw image. There are several approaches you
can take, depending on your application.

The simplest approach is to not allow the user to resize the form or
at least not to resize the PictureBox that displays the AutoRedraw
image. Then you can ignore the whole issue.

A second approach is to create a new Bitmap of the new correct
size. Use a Graphics object ’ s Clear method to erase the new
Bitmap. Then use the object ’ s DrawImage method to copy the
contents of the old Bitmap into the new one.

In this approach, if the new Bitmap is larger than the old one, all
of its data is saved. If the new Bitmap is smaller, some of the old
drawing is lost. You can preserve that information if you only allow the Bitmap to grow and never
shrink. When the user resizes the form, you make the new Bitmap object ’ s width and height the
larger of the old Bitmap object ’ s size and the form ’ s new size.

Finally, if you think the program will often run maximized, you could just allocate a really big
Bitmap when the program begins and forget the whole resizing issue.

Pixel - by - Pixel Operations

The Bitmap object provides two methods, GetPixel and SetPixel, that let a program easily read
and write pixel values in the image. The following discussion describes an example that uses these
methods to invert an image.

GetPixel and SetPixel are easy to use and fast enough for many applications. For high - performance
graphics, however, they are relatively slow. The section “ Unsafe Pixel Manipulation ” later in this

FIGURE 33-1: Program Scribble

automatically redisplays its

image when the form is hidden

and exposed.

CH033.indd 772CH033.indd 772 12/31/09 6:54:56 PM12/31/09 6:54:56 PM

chapter explains how you can use unsafe methods to access pixel data more directly. This is a bit
more diffi cult, but it is much faster for large images.

GetPixel and SetPixel

The Bitmap object ’ s GetPixel method returns a Color structure for a pixel in a specifi c X and Y
location. SetPixel sets the Color of a pixel at a particular position. These two methods are quite easy
to use and provide good enough performance for many applications.

Example program InvertImageGetSetPixels uses the InvertImage subroutine shown in the following
code to invert the pixel colors in a Bitmap:

Private Sub InvertImage(ByVal bm As Bitmap)
 ' Process the image's pixels.
 For y As Integer = 0 To bm.Height - 1
 For x As Integer = 0 To bm.Width - 1
 ' Get this pixel's color.
 Dim clr As Color = bm.GetPixel(x, y)

 ' Invert the color's components.
 clr = Color.FromArgb(255,
 255 - clr.R,
 255 - clr.G,
 255 - clr.B)
 ' Set the result pixel's color.
 bm.SetPixel(x, y, clr)
 Next x
 Next y
End Sub

code snippet InvertImageGetSetPixels

Subroutine InvertImage loops over all of the pixels in the image. It uses the bitmap ’ s GetPixel
function to get the color of each pixel. It inverts the red, green, and blue components of the pixel ’ s
color by subtracting them from the maximum allowed value 255. It then calls the destination
Bitmap ’ s SetPixel method to set the result
pixel ’ s value.

The fi rst argument to the SetPixel method is
the new color ’ s alpha value, which gives the
color ’ s opacity. Setting alpha = 0 means
the color should be completely transparent.
Setting alpha = 255 means the color should
be completely opaque. Subroutine InvertImage
sets alpha to 255 for each pixel so the result is
completely opaque.

Figure 33 - 2 shows the program in action. The
output image on the right is essentially the
photographic negative of the original image
on the left.

FIGURE 33-2: This program uses GetPixel and SetPixel

to invert an image’s pixel values.

Bitmap ❘ 773

CH033.indd 773CH033.indd 773 12/31/09 6:54:57 PM12/31/09 6:54:57 PM

774 ❘ CHAPTER 33 IMAGE PROCESSING

Unsafe Pixel Manipulation

The GetPixel and SetPixel methods are very easy to use, and they are fast enough for many
applications. For example, a program that generates fractals such as the Mandelbrot set spends a
considerable amount of time calculating colors for each individual pixel. If it takes the program 5
seconds to generate the image and a tenth of a second of that time is spent by the SetPixel method,
then SetPixel is probably fast enough. Using unsafe array methods may shave a few hundredths of a
second off the total time, but the program ’ s time is dominated by the code that calculates the pixels ’
colors, so it ’ s hardly worth the extra complication.

However, suppose that you need to transform a series of images very quickly to display an animated
sequence. In that case, the time spent by GetPixel and SetPixel may be signifi cant. In that case, you
may get much better performance using unsafe methods.

The basic idea is to directly access the array of bytes containing the red, green, and blue component
values for the image ’ s pixels. The Bitmap object ’ s LockBits method copies the pixel data for a
rectangular part of the image into a temporary buffer where you can manipulate it. Later, you call
the UnlockBits method to copy any changes you made back into the bitmap.

Unfortunately, the LockBits method returns the buffer of data as a pointer to memory and Visual
Basic cannot work directly with that kind of pointer. To resolve this problem, you can use the
Marshal class ’ s Copy method to move the data into a Visual Basic array. You can then modify the
data and, when you are fi nished, use Marshal.Copy to move the results back into the buffer.

The following code shows the BitmapBytesRGB24 class that makes this somewhat simpler for
the main program. This class works with 24 - bit image representations. Your call to LockBits can
specify other formats, but this one is particularly easy to work with because it uses one byte for each
of the pixels ’ red, green, and blue components.

Imports System.Drawing.Imaging
Imports System.Runtime.InteropServices

Public Class BitmapBytesRGB24
 ' Provide public access to the picture's byte data.
 Public ImageBytes() As Byte
 Public RowSizeBytes As Integer
 Public Const PixelDataSize As Integer = 24

 ' A reference to the Bitmap.
 Private m_Bitmap As Bitmap

 ' Save a reference to the bitmap.
 Public Sub New(ByVal bm As Bitmap)
 m_Bitmap = bm
 End Sub
 ' Bitmap data.
 Private m_BitmapData As BitmapData

 ' Lock the bitmap's data.
 Public Sub LockBitmap()
 ' Lock the bitmap data.
 Dim bounds As Rectangle = New Rectangle(

CH033.indd 774CH033.indd 774 12/31/09 6:54:58 PM12/31/09 6:54:58 PM

 0, 0, m_Bitmap.Width, m_Bitmap.Height)
 m_BitmapData = m_Bitmap.LockBits(bounds,
 Imaging.ImageLockMode.ReadWrite,
 Imaging.PixelFormat.Format24bppRgb)
 RowSizeBytes = m_BitmapData.Stride

 ' Allocate room for the data.
 Dim total_size As Integer = m_BitmapData.Stride * m_BitmapData.Height
 ReDim ImageBytes(total_size)

 ' Copy the data into the ImageBytes array.
 Marshal.Copy(m_BitmapData.Scan0, ImageBytes, 0, total_size)
 End Sub

 ' Copy the data back into the Bitmap
 ' and release resources.
 Public Sub UnlockBitmap()
 ' Copy the data back into the bitmap.
 Dim total_size As Integer = m_BitmapData.Stride * m_BitmapData.Height
 Marshal.Copy(ImageBytes, 0,
 m_BitmapData.Scan0, total_size)

 ' Unlock the bitmap.
 m_Bitmap.UnlockBits(m_BitmapData)

 ' Release resources.

 ImageBytes = Nothing
 m_BitmapData = Nothing
 End Sub
End Class

code snippet InvertImageUnsafe

The class ’ s ImageBytes array will contain the pixel data stored as a one - dimensional array. Each
pixel is represented by a byte for its blue component, a byte for its green component, and a byte for
its red component, in that order.

The RowSizeBytes property tells how many bytes are stored in the array per row of pixels. The
system may pad the array, so the number of bytes in each row is a multiple of four or some other
number that is convenient for the operating system. Thus, RowSizeBytes may not always be three
times the number of pixels in each row.

The constant PixelDataSize is 24 for this class because it works with 24 - bit (3 - byte) pixel data.

The class ’ s constructor takes as a parameter a reference to a Bitmap and saves that reference for
later use.

The class next declares a BitmapData object named m_BitmapData. This object will contain data
describing the bitmap.

The LockBitmap method creates a Rectangle bounding the bitmap. This is the area in the bitmap
that the routine will lock. This class doesn ’ t mess around with pieces of the image, so it simply locks
the entire bitmap.

Bitmap ❘ 775

CH033.indd 775CH033.indd 775 12/31/09 6:54:59 PM12/31/09 6:54:59 PM

776 ❘ CHAPTER 33 IMAGE PROCESSING

LockBitmap calls the Bitmap object ’ s LockBits method, passing it the bounding Rectangle, a fl ag
indicating that it wants to lock the data for reading and writing, and a fl ag indicating that we want
to work with 24 - bit pixel data. LockBits returns information about the bitmap in a BitmapData
object, which the routine saves in m_BitmapData. The routine sets the RowSizeBytes value so that it
is easy for the main program to use.

LockBitmap then calculates the total number of bytes needed to hold the pixel data, makes the
ImageBytes array big enough, and calls Marshal.Copy to copy the pixel data into the array.

The class ’ s UnlockBitmap method copies the modifi ed pixel data back into the bitmap. It
recalculates the size of the array and uses Marshal.Copy to copy the data from the ImageBytes
array back into the buffer allocated by LockBits. Finally, it calls the Bitmap object ’ s
UnlockBits method.

The following code shows how a main program can use the BitmapBytesRGB24 class to invert
an image ’ s pixels. The code creates a new BitmapBytesRGB24 object, passing the constructor the
Bitmap that it wants to modify. It then calls the object ’ s LockBitmap method to copy the pixel data
into the object ’ s ImageBytes array. Next, the program loops over the rows in the image. For each
row, the code calculates the position in the pixel data that holds the row ’ s fi rst pixel ’ s information.
It then loops over the pixels in the row, modifying each pixel ’ s blue, green, and red components.
Remember that the components are in stored in the order blue, green, red. When it has fi nished
modifying the pixel data, the program calls the BitmapBytesRGB24 object ’ s UnlockBitmap method
to copy the results back into the bitmap.

' Invert the pixel values in this Bitmap.
Private Sub InvertImage(ByVal bm As Bitmap)
 ' Make a BitmapBytesRGB24 object.
 Dim bm_bytes As New BitmapBytesRGB24(bm)

 ' Lock the bitmap.
 bm_bytes.LockBitmap()

 Dim pix As Integer
 For y As Integer = 0 To bm.Height - 1
 pix = y * bm_bytes.RowSizeBytes
 For x As Integer = 0 To bm.Width - 1
 ' Blue component.
 bm_bytes.ImageBytes(pix) = CByte(255) - bm_bytes.ImageBytes(pix)
 pix += 1
 ' Green component.
 bm_bytes.ImageBytes(pix) = CByte(255) - bm_bytes.ImageBytes(pix)
 pix += 1
 ' Red component.
 bm_bytes.ImageBytes(pix) = CByte(255) - bm_bytes.ImageBytes(pix)
 pix += 1
 Next x
 Next y
 ' Unlock the bitmap.
 bm_bytes.UnlockBitmap()
End Sub

code snippet InvertImageUnsafe

CH033.indd 776CH033.indd 776 12/31/09 6:54:59 PM12/31/09 6:54:59 PM

This is quite a bit more complicated than the previous program that uses GetPixel and SetPixel,
so it ’ s not the best method for simple applications. For high - performance image processing,
however, the extra complication is sometimes worth it. In one set of tests on a 798 - MHz Athlon
64 processor, the previous version using GetPixel and SetPixel took roughly 1.109 seconds to
invert an 800 × 600 pixel image, while the version using the BitmapBytesRGB24 class took
only 0.047 seconds.

METAFILE OBJECTS

The Metafi le class represents image data defi ned by metafi le records. These records encapsulate
typical graphics commands that scale, rotate, draw lines, display text, and so forth. Using a Metafi le
object, you can build the metafi le records and save them into a metafi le, load a metafi le, and play
the metafi le records on a display surface such as a Bitmap.

Many of the Metafi le ’ s most useful properties and methods are inherited from the Image
class. These include Height, HorizontalResolution, Palette, RawFormat, Size, Width,
GetThumbnailImage, RotateFlip, and Save. See the section “ Image ” earlier in this chapter for
information about those and other inherited properties and methods.

The following table describes some of the most useful methods that the Metafi le class adds to those
inherited from the Image class.

METHOD PURPOSE

GetMetafileHeader Returns the Metafi leHeader object associated with this Metafi le. See

the following text for more information on the Metafi leHeader class.

PlayRecord Plays a metafi le record. To play the whole metafi le, you can use a

Graphics object ’ s DrawImage method to copy the metafi le ’ s image

onto a Bitmap and then display the Bitmap. PlayRecord lets you

selectively play metafi le records.

To build a Metafi le, you create a Metafi le object, attach a Graphics object to it, and then use drawing
methods to draw into the metafi le. In that respect, the Metafi le behaves just like a Bitmap does.

The Graphics object also provides two special methods for working with its Metafi le.
AddMetafi leComment adds a comment to the metafi le. EnumerateMetafi le sends the metafi le ’ s
records to a callback subroutine one at a time. You can use that routine if you want to play back
only some of the Metafi le ’ s records.

Example program MakeMetafi le uses the following code to make and use a metafi le. It starts
by building a fi le name for the metafi le. If the fi le already exists, the program deletes it. Next the
program makes a Graphics object to get a handle to its device context. It uses that handle as
a parameter to the Metafi le object ’ s constructor. It also passes the constructor the name of the
fi le, a RectangleF that defi nes the metafi le ’ s bounds, and the units used by the bounds.

Metafi le Objects ❘ 777

CH033.indd 777CH033.indd 777 12/31/09 6:55:00 PM12/31/09 6:55:00 PM

778 ❘ CHAPTER 33 IMAGE PROCESSING

Private Sub Form1_Load() Handles MyBase.Load
 ' Make a bitmap.
 Const WID As Integer = 200
 Dim bm As New Bitmap(WID, WID)

 ' Find the WMF file's path and delete the file if it exists.
 Dim path_name As String = Application.StartupPath
 If path_name.EndsWith("\bin") Then
 path_name = path_name.Substring(0, path_name.Length - 4)
 End If
 Dim file_name As String = path_name & #38; "\test.wmf"
 If Len(Dir$(file_name)) > 0 Then Kill(file_name)

 ' Make a Graphics object so we can use its hDC as a reference.
 Using me_gr As Graphics = Me.CreateGraphics
 Dim me_hdc As IntPtr = me_gr.GetHdc

 ' Make the Metafile, using the reference hDC.
 Dim bounds As New RectangleF(0, 0, WID, WID)
 Using mf As New Metafile(file_name, me_hdc,
 bounds, MetafileFrameUnit.Pixel)
 me_gr.ReleaseHdc(me_hdc)

 ' Make a Graphics object and draw.
 Using gr As Graphics = Graphics.FromImage(mf)
 gr.PageUnit = GraphicsUnit.Pixel
 gr.Clear(Color.White)
 gr.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias
 Using thick_pen As New Pen(Color.Red, 5)
 gr.DrawEllipse(thick_pen, bounds)
 thick_pen.Color = Color.Green
 gr.DrawLine(thick_pen, 0, 0, WID, WID)
 thick_pen.Color = Color.Blue
 gr.DrawLine(thick_pen, WID, 0, 0, WID)
 End Using
 End Using ' gr
 End Using ' mf

 ' Reload the metafile and copy it into a Bitmap.
 Using mf As New Metafile(file_name)
 Using gr As Graphics = Graphics.FromImage(bm)
 Dim dest_bounds As New RectangleF(0, 0, WID, WID)
 Dim source_bounds As New RectangleF(0, 0, WID + 1, WID + 1)
 gr.DrawImage(mf, bounds, source_bounds, GraphicsUnit.Pixel)
 picOrig.SizeMode = PictureBoxSizeMode.AutoSize
 picOrig.Image = bm
 End Using ' gr
 End Using ' mf

 ' Redisplay the result shrunk by 50%.
 Using mf As New Metafile(file_name)
 picSmall.SetBounds(
 picOrig.Right + 10, picOrig.Top,
 picOrig.Width \ 2, picOrig.Height \ 2)

CH033.indd 778CH033.indd 778 12/31/09 6:55:01 PM12/31/09 6:55:01 PM

 bm = New Bitmap(
 picSmall.ClientSize.Width,
 picSmall.ClientSize.Height)
 Using gr As Graphics = Graphics.FromImage(bm)
 Dim source_bounds As New RectangleF(0, 0, WID + 1, WID + 1)
 gr.ScaleTransform(0.5, 0.5)
 gr.DrawImage(mf, bounds, source_bounds, GraphicsUnit.Pixel)
 picSmall.Image = bm
 gr.Dispose()
 End Using ' gr
 End Using ' mf
 End Using ' me_gr
End Sub

code snippet MakeMetafi le

After creating the Metafi le object, the program attaches a Graphics object to it. It uses the Graphics
object to clear the metafi le in white and to draw a circle and two lines.

The program then disposes of the Graphics and Metafi le objects. That closes the metafi le.

The program then calls the Metafi le constructor again, passing it the fi le ’ s name. It makes a Bitmap
and associated Graphics object, and defi nes source and
destination RectangleF structures to use when copying the
image. It enlarges the source rectangle slightly so the metafi le
doesn ’ t crop off the circle ’ s right and bottom pixels.

Next, the code uses the Graphics object ’ s DrawImage method
to copy the metafi le onto the Bitmap. It then sets the picOrig
control ’ s Image property to the Bitmap to display the result.

The program then repeats these steps to display the metafi le
on the picSmall control. This time it makes the control half as
large as the full - scale image and uses a scaling transformation
to shrink the metafi le data when it calls DrawImage.

Figure 33 - 3 shows program MakeMetafi le in action.

SUMMARY

The Image class represents a generic image. Its two child classes, Bitmap and Metafi le, represent
specifi c fi le types.

The Bitmap class lets you manipulate pixel - oriented image data. Its GetPixel and SetPixel methods
let you get and set a pixel ’ s color. Those methods are fast enough for most applications, but when
performance is really critical, you can use unsafe methods to access the pixel data more directly and
manipulate pixels much faster. When you are fi nished, you can use the Bitmap object ’ s Save method
to save the result in many different kinds of graphics fi les including Bmp, Emf, Exif, Icon, Jpeg,
MemoryBmp, Png, Tiff, and Wmf.

FIGURE 33-3: Program MakeMetafi le

creates a metafi le and then draws

two copies of it.

Summary ❘ 779

CH033.indd 779CH033.indd 779 12/31/09 6:55:01 PM12/31/09 6:55:01 PM

780 ❘ CHAPTER 33 IMAGE PROCESSING

The Metafi le class represents a collection of drawing commands. Metafi les are reasonably
standardized, so you can use them to import and export graphic data between your application and
external programs (such as Microsoft Word and CorelDRAW).

Chapters 30 through 33 explain how to draw shapes, text, and images on the screen. Chapter 34,
“ Printing, ” shows how to generate similar output on a printer. The basic approach you use for
printing shapes, text, and images is the same as it is for displaying those objects on the screen, but
when and where you generate printed output requires some new techniques.

CH033.indd 780CH033.indd 780 12/31/09 6:55:02 PM12/31/09 6:55:02 PM

34
Printing

Visual Basic .NET provides several good tools for printing. String formatting objects enable
you to determine how text is wrapped and truncated if it won ’ t fi t in a printing area. Methods
provided by Graphics objects enable you to easily scale, rotate, and translate drawing
commands.

The basic process, however, seems somewhat backward to many programmers. Rather than
issuing commands to a printer object, a program responds to requests to draw pages generated
by a PrintDocument object. Instead of telling the printer what to do, the program responds to
the PrintDocument object ’ s requests for data.

In some cases, generating a printout using only Visual Basic commands can be diffi cult. The
following section explains alternative methods for generating a printout and tells when you
might want to use those methods. If you just want to print several pages of text, it ’ s often
easier to pull the text into Microsoft Word or some other application that specializes in
formatting text rather than writing your own.

Another option used by many developers is to purchase a third - party printing application.
Some of these tools help with certain kinds of printing such as report generation.
Chapter 35, “ Reporting, ” provides an introduction to Crystal Reports, a report generation
and printing tool that is available with some versions of Visual Basic and that you can
purchase separately.

In some cases, however, you cannot take an easy way out. If the program generates very
complex images and graphs, or produces text that is positioned and formatted in a complex
manner, you probably need to work through the Visual Basic printing system. The rest of
this chapter explains the techniques that you use to generate printouts in Visual Basic.
It shows how to draw graphics and text on the printer and how to scale and center
the results.

CH034.indd 781CH034.indd 781 12/31/09 6:55:48 PM12/31/09 6:55:48 PM

782 ❘ CHAPTER 34 PRINTING

HOW NOT TO PRINT

Although Visual Basic provides many tools for arranging graphics on a printout, it does not always
provide the best approach to printing. The general method for printing in Visual Basic requires you
to generate each page of output in turn. For simple documents (such as a line drawing containing a
few lines and circles on a single page), this is easy.

On the other hand, suppose you want to print several dozen pages of text interspersed with tables
and pictures. Figuring out where to put line breaks, page breaks, tables, and fi gures could be a huge
undertaking. To do the job right, you might need to consider orphan lines (when the fi rst line of a
paragraph sits at the bottom of a page), widow lines (the last line of a paragraph sits at the top of
a page), orphan and widow words (when the fi rst or last word in a sentence sits on a separate line),
inserting extra space between words to make a line look nicer, page numbers, headers and footers,
hyphenation, different left and right margins, mirrored margins, page gutters, bulleted
and numbered lists, indentation and justifi cation, different font sizes and styles, and a host
of other issues.

Word processing and text - formatting applications such as Microsoft Word spend a great deal of
effort on these issues — effort that you probably don ’ t want to duplicate. In fact, Word is so good
at handling these issues that you should consider using it to print your output instead of writing an
elaborate Visual Basic program to do it.

If your output is simple text, your program can write it into a text fi le so you can use Word to
open, format, and print it. For printouts that you don ’ t need to generate too frequently, and for
printouts where the user may want to edit the results before printing anyway, this is a simple,
fl exible solution that doesn ’ t require you to write, debug, and maintain a lot of complicated
formatting code.

For more elaborate printouts, programs such as Word may still be useful. Using Visual Studio Tools
for Offi ce (VSTO), you can open a Microsoft Word application and control it from your Visual
Basic program. Your program can use the Word object model to add text, insert pictures, build
tables, set page printing options, and even print the result. You can then save the document for later
use or discard it.

Using VSTO, not only can you control Microsoft Word, but you can also use the other Microsoft
Offi ce applications. For example, you can load information into Excel so that you can use its
tools to analyze and graph the data, copy information into Access for analysis by other database
applications, or compose e - mail messages in Outlook.

VSTO is relatively complicated and outside of the scope of this book, so it isn ’ t described here. For
more information, see the VTSO web site at msdn2.microsoft.com/office/aa905533.aspx . You
can also learn more in a book about VSTO such as Professional VSTO 2005: Visual Studio 2005
Tools for Offi ce by Alvin Bruney (Wiley, 2006).

CH034.indd 782CH034.indd 782 12/31/09 6:55:50 PM12/31/09 6:55:50 PM

BASIC PRINTING

The PrintDocument class sits at the heart of the printing process in Visual Basic. The program
creates an instance of this class and installs event handlers to catch its events. When the object must
perform printing - related tasks, it raises events to ask the program for help.

The PrintDocument object raises four key events:

BeginPrint — The PrintDocument raises its BeginPrint event when it is about to start
printing. The program can initialize data structures, load data, connect to databases, and
perform any other chores it must do to get ready to print.

QueryPageSettings — Before it prints a page, the PrintDocument object raises its
QueryPageSettings event. A program can catch this event and modify the document ’ s
margins for the page that it is about to print.

PrintPage — The PrintDocument object raises its PrintPage event to generate a page.
The program must catch this event and use the Graphics object provided by the event
handler ’ s parameters to generate output. When it is fi nished, the event handler should set
the value e.HasMorePages to True or False to tell the PrintDocument whether there are
more pages to generate.

EndPrint — Finally, when it has fi nished printing, the PrintDocument object raises its
EndPrint event. The program can catch this event to clean up any resources it used while
printing. It can free data structures, close data fi les and database connections, and perform
any other necessary cleanup chores.

Having created a PrintDocument object and
its event handlers, you can do three things
with it. First you can call the object ’ s Print
method to immediately send a printout to the
currently selected printer. The PrintDocument
object raises its events as necessary as it
generates the printout.

Second, you can set a PrintPreviewDialog
control ’ s Document property to the
PrintDocument object and then call
the dialog ’ s ShowDialog method. The
PrintPreviewDialog displays the print
preview window shown in Figure 34 - 1,
using the PrintDocument object to
generate the output it displays.

The preview dialog box ’ s printer button on the left sends the printout to the printer. Note that
this makes the PrintDocument object regenerate the printout using its events, this time sending the
results to the printer instead of to the print preview dialog box. The magnifying glass button displays
a drop - down list where the user can select various scales for viewing the printout. The next fi ve

➤

➤

➤

➤

Basic Printing ❘ 783

FIGURE 34-1: The PrintPreviewDialog control lets the user

zoom in and out, and view the printout’s various pages.

CH034.indd 783CH034.indd 783 12/31/09 6:55:51 PM12/31/09 6:55:51 PM

784 ❘ CHAPTER 34 PRINTING

buttons let the user display one, two, three, four,
or six of the printout ’ s pages at the same time. The
Close button closes the dialog box and the Page
up/down arrows let the user move through the
printout ’ s pages.

The PrintPreviewControl displays a print preview
much as the PrintPreviewDialog control does,
except that it sits on your form. It does not provide
all the buttons that the dialog box does, but it
does provide methods that let you implement
similar features. For example, it lets your program
set the zoom level, number of columns in the
display, and so forth.

The third task you can do with a PrintDocument
is assign it to a PrintDialog object ’ s Document
property and then call the dialog box ’ s
ShowDialog method to display the dialog box
shown in Figure 34 - 2. The user can select the
printer and set its properties (for example, selecting landscape or portrait orientation). When the
user clicks Print, the dialog box uses the PrintDocument object to send the printout to the printer.

PREVIEW POSSIBILITIES

Your results could look different from those shown here. The print preview adjusts
its appearance based on such factors as the type of printer you are using, its
settings, the size of the paper you are using, and the paper ’ s orientation.

Example program UsePrintPreviewDialog uses the following code to preview and print a page
showing the page ’ s bounds and margin bounds. This is just about the smallest program that
demonstrates all three uses for a PrintDocument object: printing immediately, displaying a print
preview dialog box, and displaying a print dialog box.

Imports System.Drawing.Printing

Public Class Form1
 Private WithEvents m_PrintDocument As PrintDocument

 ' Print now.
 Private Sub btnPrintNow_Click() Handles btnPrintNow.Click
 m_PrintDocument = New PrintDocument
 m_PrintDocument.Print()
 End Sub

 ' Display a print preview dialog.

FIGURE 34-2: The PrintDialog control lets the user

send a printout to a printer.

CH034.indd 784CH034.indd 784 12/31/09 6:55:52 PM12/31/09 6:55:52 PM

 Private Sub btnPrintPreview_Click() Handles btnPrintPreview.Click
 m_PrintDocument = New PrintDocument
 dlgPrintPreview.Text = "UsePrintPreviewDialog"
 dlgPrintPreview.Document = m_PrintDocument
 dlgPrintPreview.ShowDialog()
 End Sub

 ' Display a print dialog.
 Private Sub btnPrintDialog_Click() Handles btnPrintDialog.Click
 m_PrintDocument = New PrintDocument
 dlgPrint.Document = m_PrintDocument
 dlgPrint.ShowDialog()
 End Sub

 ' Print a page with a diamond on it.
 Private Sub m_PrintDocument_PrintPage(ByVal sender As Object,
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles m_PrintDocument.PrintPage
 Using the_pen As New Pen(Color.Black, 20)
 e.Graphics.DrawRectangle(the_pen, e.MarginBounds)

 the_pen.DashStyle = Drawing2D.DashStyle.Dash
 the_pen.Alignment = Drawing2D.PenAlignment.Inset
 e.Graphics.DrawRectangle(the_pen, e.PageBounds)
 End Using

 e.HasMorePages = False
 End Sub
End Class

code snippet UsePrintPreviewDialog

The code declares a PrintDocument object named m_PrintDocument. It uses the WithEvents
keyword, so it can easily catch the object ’ s events.

When the user clicks the Print Now button, the btnPrintNow_Click event handler assigns
m_PrintDocument to a new PrintDocument object and calls its Print method.

If the user clicks the Print Preview button, the btnPrintPreview_Click event handler assigns
m_PrintDocument to a new PrintDocument object, sets the PrintPreviewDialog object ’ s Document
property equal to the new object, and invokes the dialog box ’ s ShowDialog method.

When the user clicks the Print Dialog button, the btnPrintDialog_Click event handler assigns
m_PrintDocument to a new PrintDocument object, sets the PrintDialog object ’ s Document property
equal to the new object, and calls the dialog box ’ s ShowDialog method.

In all three cases, the PrintDocument object raises its PrintPage event when it is ready to print
a page. The program ’ s event handler creates a 20 - pixel - wide pen and uses it to draw a rectangle
around the page ’ s margin bounds. It changes the pen so that it is dashed and inset (so it draws

Basic Printing ❘ 785

CH034.indd 785CH034.indd 785 12/31/09 6:55:53 PM12/31/09 6:55:53 PM

786 ❘ CHAPTER 34 PRINTING

inside the borders of a rectangle), and then draws a
rectangle around the page ’ s bounds. It fi nishes by setting
e.HasMorePages to False to tell the PrintDocument that the
printout is complete.

The PrintDocument object ’ s PrintPage event handler
provides a parameter of type PrintPageEventArgs to let the
program control the printout and to give information about
the printer. This object ’ s PageBounds and MarginBounds
properties give the location of the printer ’ s printable surface
and the page ’ s margins, respectively. Typically, the printable
area might be a quarter inch smaller than the paper ’ s
physical size, and the margins might be an inch or more
inside the paper ’ s physical size.

Figure 34 - 3 shows these rectangles in a print preview.
The MarginBounds are drawn with a thick line, and the
PageBounds are shown with a thick dashed line.

PRINTING TEXT

The printing application described in the previous section is extremely simple. It prints a very
straightforward shape on a single page. You know the positions of the diamond before starting,
so the program needs to perform little arranging and formatting. The only formatting it does is to
make its diamond fi t the page ’ s margins.

This section describes a more useful example that prints a long series of paragraphs using
different font sizes. The PrintBooklet example program, which is available for download on
the book ’ s web site, must fi gure out how to break the text into pages. It also assumes that you
will print the pages double - sided and then later bind the results into a booklet. To allow extra
room for the binding, the program adds a gutter to the margin of edge on each page on the side
where the binding will be. The program assumes that you will place the fi rst page on the outside
of the booklet, so it adds the gutter to the left margin on odd - numbered pages and to the right
margin on even - numbered pages. Finally, the program displays a page number in the upper corner
opposite the gutter.

Figure 34 - 4 shows the PrintBooklet program ’ s print preview dialog box, so you can understand
the goals. If you look closely, you can see that the left margins on the fi rst and third pages
and the right margin on the second page are enlarged to allow room for the gutter. You can also
see that the page numbers are in the upper corner on the side that doesn ’ t have the gutter.
Imagine the second page printed on the back of the fi rst, so their gutters lie on the same edge
of the paper.

FIGURE 34-3: The e.PageBounds and

e.MarginBounds parameters give the

paper’s printable area and margins.

CH034.indd 786CH034.indd 786 12/31/09 6:55:53 PM12/31/09 6:55:53 PM

The program ’ s Print Preview, Print Dialog, and Print Now buttons work much as the previous
program ’ s does, displaying the appropriate dialog boxes or calling the PrintDocument object ’ s Print
method. The most interesting differences between this program and the previous one are in how it
stores its text to print and how it generates pages of printout.

The program uses the following ParagraphInfo structure to store information about the text it will print:

' Information about the paragraphs to print.
Private Structure ParagraphInfo
 Public FontSize As Integer
 Public Text As String
 Public Sub New(ByVal font_size As Integer, ByVal txt As String)
 FontSize = font_size
 Text = txt
 End Sub
End Structure

code snippet PrintBooklet

In the following code, the program declares its PrintDocument object. It uses the WithEvents
keyword so it will be easy to catch the object ’ s events. The code also declares collections to hold all
of the ParagraphInfo structures that it will print and those that have not yet been printed. When
the program ’ s form loads, the code initializes these variables and adds a series of ParagraphInfo
structures containing the text it will print to the m_Paragraphs collection.

' The PrintDocument.
Private WithEvents m_PrintDocument As New PrintDocument

' The paragraphs.
Private m_Paragraphs As Collection

FIGURE 34-4: This preview shows text broken across pages with a gutter and displaying

page numbers along the outside edges.

Printing Text ❘ 787

CH034.indd 787CH034.indd 787 12/31/09 6:55:54 PM12/31/09 6:55:54 PM

788 ❘ CHAPTER 34 PRINTING

Private m_ParagraphsToPrint As Collection
Private m_PagesPrinted As Integer

' Load the paragraph info.
Private Sub Form1_Load() Handles MyBase.Load
 ' Attach the PrintDocument to the
 ' PrintDialog and PrintPreviewDialog.
 dlgPrint.Document = m_PrintDocument
 dlgPrintPreview.Document = m_PrintDocument

 ' Make the text to print.
 m_Paragraphs = New Collection
 m_Paragraphs.Add(New ParagraphInfo(45, "23"))
 m_Paragraphs.Add(New ParagraphInfo(27, "Printing"))
 ... Code omitted...
End Sub

code snippet PrintBooklet

When the PrintDocument object starts drawing a printout, the BeginPrint event handler shown in
the following code executes. This code resets the page number variable m_PagesPrinted. It then
copies the ParagraphInfo structures from the m_Paragraphs collection (which holds all of the data)
into the m_ParagraphsToPrint collection (which holds those that have not yet been printed).

' Get ready to print pages.
Private Sub m_PrintDocument_BeginPrint() _
 Handles m_PrintDocument.BeginPrint
 ' We have not yet printed any pages.
 m_PagesPrinted = 0

 ' Make a copy of the text to print.
 m_ParagraphsToPrint = New Collection
 For Each para_info As ParagraphInfo In m_Paragraphs
 m_ParagraphsToPrint.Add(
 New ParagraphInfo(para_info.FontSize, para_info.Text))
 Next para_info
End Sub

code snippet PrintBooklet

After the BeginPrint event handler fi nishes, the PrintDocument object starts printing pages. Before it
prints each page, the object raises its QueryPageSettings event. The program uses the following code
to catch this event and prepare the next page for printing. This code determines whether the next
page will be odd or even numbered and adjusts the page ’ s margin appropriately to create the gutter.

' Set the margins for the following page.
Private Sub m_PrintDocument_QueryPageSettings(ByVal sender As Object,
 ByVal e As System.Drawing.Printing.QueryPageSettingsEventArgs) _
 Handles m_PrintDocument.QueryPageSettings
 ' Use a 1 inch gutter (printer units are 100 per inch).
 Const gutter As Integer = 100

 ' See if the next page will be the first, odd, or even.

CH034.indd 788CH034.indd 788 12/31/09 6:55:55 PM12/31/09 6:55:55 PM

 If m_PagesPrinted = 0 Then
 ' The next page is the first.
 ' Increase the left margin.
 e.PageSettings.Margins.Left += gutter
 ElseIf (m_PagesPrinted Mod 2) = 0 Then
 ' The next page will be odd.
 ' Shift the margins right.
 e.PageSettings.Margins.Left += gutter
 e.PageSettings.Margins.Right -= gutter
 Else
 ' The next page will be even.
 ' Shift the margins left.
 e.PageSettings.Margins.Left -= gutter
 e.PageSettings.Margins.Right += gutter
 End If
End Sub

code snippet PrintBooklet

After each QueryPageSettings event, the PrintDocument object raises its PrintPage event to generate
the corresponding page. The following code shows the most complicated part of the program, the
PrintPage event handler:

' Print the next page.
Private Sub m_PrintDocument_PrintPage(ByVal sender As Object,
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles m_PrintDocument.PrintPage
 ' Increment the page number.
 m_PagesPrinted += 1

 ' Draw the margins (for debugging).
 'e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds)

 ' Print the page number right justified
 ' in the upper corner opposite the gutter
 ' and outside of the margin.
 Dim x As Integer
 Using string_format As New StringFormat
 ' See if this is an odd or even page.
 If (m_PagesPrinted Mod 2) = 0 Then
 ' This is an even page.
 ' The gutter is on the right and
 ' the page number is on the left.
 x = (e.MarginBounds.Left + e.PageBounds.Left) \ 2
 string_format.Alignment = StringAlignment.Near
 Else
 ' This is an odd page.
 ' The gutter is on the left and
 ' the page number is on the right.
 x = (e.MarginBounds.Right + e.PageBounds.Right) \ 2
 string_format.Alignment = StringAlignment.Far
 End If

 ' Print the page number.
 Using the_font As New Font("Times New Roman", 20,

Printing Text ❘ 789

CH034.indd 789CH034.indd 789 12/31/09 6:55:55 PM12/31/09 6:55:55 PM

790 ❘ CHAPTER 34 PRINTING

 FontStyle.Regular, GraphicsUnit.Point)
 e.Graphics.DrawString(m_PagesPrinted.ToString,
 the_font, Brushes.Black, x,
 (e.MarginBounds.Top + e.PageBounds.Top) \ 2,
 string_format)
 End Using ' the_font

 ' Draw the rest of the text left justified,
 ' wrap at words, and don't draw partial lines.
 string_format.Alignment = StringAlignment.Near
 string_format.FormatFlags = StringFormatFlags.LineLimit
 string_format.Trimming = StringTrimming.Word

 ' Draw some text.
 Dim paragraph_info As ParagraphInfo
 Dim ymin As Integer = e.MarginBounds.Top
 Dim layout_rect As RectangleF
 Dim text_size As SizeF
 Dim characters_fitted As Integer
 Dim lines_filled As Integer
 Do While m_ParagraphsToPrint.Count > 0
 ' Print the next paragraph.
 paragraph_info = DirectCast(m_ParagraphsToPrint(1), ParagraphInfo)
 m_ParagraphsToPrint.Remove(1)

 ' Get the area available for this paragraph.
 layout_rect = New RectangleF(
 e.MarginBounds.Left, ymin,
 e.MarginBounds.Width,
 e.MarginBounds.Bottom - ymin)

 ' See how big the text will be and
 ' how many characters will fit.
 ' Get the font.
 Using the_font As New Font("Times New Roman",
 paragraph_info.FontSize, FontStyle.Regular, GraphicsUnit.Point)
 text_size = e.Graphics.MeasureString(
 paragraph_info.Text, the_font,
 New SizeF(layout_rect.Width, layout_rect.Height),
 string_format, characters_fitted, lines_filled)

 ' See if any characters will fit.
 If characters_fitted > 0 Then
 ' Draw the text.
 e.Graphics.DrawString(paragraph_info.Text,
 the_font, Brushes.Black,
 layout_rect, string_format)

 ' Debugging: Draw a rectangle around the text.
 'e.Graphics.DrawRectangle(Pens.Green,
 ' layout_rect.Left,
 ' layout_rect.Top,
 ' text_size.Width,
 ' text_size.Height)

 ' Increase the location where we can start.

CH034.indd 790CH034.indd 790 12/31/09 6:55:56 PM12/31/09 6:55:56 PM

 ' Add a little interparagraph spacing.
 ymin += CInt(text_size.Height +
 e.Graphics.MeasureString("M", the_font).Height / 2)
 End If
 End Using ' the_font

 ' See if some of the paragraph didn't fit on the page.
 If characters_fitted < Len(paragraph_info.Text) Then
 ' Some of the paragraph didn't fit.
 ' Prepare to print the rest on the next page.
 paragraph_info.Text = paragraph_info.Text.
 Substring(characters_fitted)
 m_ParagraphsToPrint.Add(paragraph_info, Before:=1)

 ' That's all that will fit on this page.
 Exit Do
 End If
 Loop
 End Using ' string_format

 ' If we have more paragraphs, we have more pages.
 e.HasMorePages = (m_ParagraphsToPrint.Count > 0)
End Sub

code snippet PrintBooklet

The PrintPage event handler starts by incrementing the number of pages printed. It then includes
commented code to draw a rectangle around the page ’ s margins. When you are debugging a
printing routine, drawing this rectangle can help you see where your drawing is in relation to the
page ’ s margins.

Next, the routine creates a font for the page number. Depending on whether this page is odd or
even numbered, it calculates an X coordinate halfway between the non - gutter margin and the edge
of the printable page. It sets a StringFormat object ’ s Alignment property to make numbers in the
left margin left - justifi ed and to make numbers in the right margin right - justifi ed. It then draws the
page number at the calculated X position, halfway between the top margin and the paper ’ s top
printable boundary.

The program then prepares to draw the text for this page. It sets the StringFormat object ’ s
properties so that the text is left - justifi ed and lines wrap at word boundaries instead of in the middle
of words. It sets the FormatFlags property to LineLimit. If only part of a line of text would fi t
vertically on the page, this makes Visual Basic not draw the line rather than drawing just the top
halves of its letters.

After this preparation, the program sets variable ymin to the minimum Y coordinate where the
routine can draw text. Initially, this is the top margin. It then enters a Do loop to process as much
text as will fi t on the page.

Inside the loop, the program takes the fi rst ParagraphInfo structure from the m_ParagraphsToPrint
collection and makes a font that has the right size for that paragraph. It creates a RectangleF
representing the remaining area on the page. This includes the area between the left and right
margins horizontally, and between ymin and the bottom margin vertically.

Printing Text ❘ 791

CH034.indd 791CH034.indd 791 12/31/09 6:55:57 PM12/31/09 6:55:57 PM

792 ❘ CHAPTER 34 PRINTING

The program then uses the e.Graphics object ’ s MeasureString method to see how much space the
next piece of text will need. It passes MeasureString the layout rectangle ’ s size and the StringFormat
object so Visual Basic can decide how it will need to wrap the paragraph ’ s text when it prints it. The
code also passes in the variables characters_fi tted and lines_fi lled. These parameters are passed by
reference, so MeasureString can fi ll in the number of characters and lines it could draw within the
allowed size.

The routine then checks characters_fi tted to see if any characters will fi t in the available area. If any
characters can fi t, the program draws the paragraph. Commented code draws a rectangle around
the text to help with debugging. The program increases ymin by the paragraph ’ s printed height plus
half of the font ’ s height to provide a break between paragraphs.

Next, the program determines whether the entire paragraph fi ts in the allowed area. If some of
the paragraph did not fi t, the program stores the remaining text in the ParagraphInfo structure and
puts the structure back at the beginning of the m_ParagraphsToPrint collection so it can be printed
on the next page. It then exits the Do loop because the current page is full.

When the page is full or the m_ParagraphsToPrint collection is empty, the PrintPage event handler is
fi nished. It sets e.HasMorePages to True if m_ParagraphsToPrint is not empty.

Finally, when the PrintDocument has fi nished printing the whole document, the following EndPrint
event handler executes. This routine cleans up by setting the m_ParagraphsToPrint variable to
Nothing, freeing up the collection object ’ s memory. In this program, freeing the collection is a small
matter. In a program that allocated more elaborate data structures, cleaning up in this event handler
would be more important.

' Clean up.
Private Sub m_PrintDocument_EndPrint() Handles m_PrintDocument.EndPrint
 m_ParagraphsToPrint = Nothing
End Sub

CENTERING PRINTOUTS

The previous section explained how to handle a common scenario: printing large amounts of
text. Another common scenario is printing a picture centered on the printed page. To do that, you
must move the drawing vertically and horizontally to put it at the correct position. You can do
this by using the Graphics object ’ s TranslateTransform method. That method defi nes a translation
transformation for all the graphics drawn by the object. After you set the transformation, you
can draw any graphics as usual, and the Graphics object automatically moves them to the
correct position.

The CenterPictureInMargins subroutine shown in the following code defi nes a translation
transformation that centers an area within some specifi ed bounds. The routine begins by calling
the Graphics object ’ s ResetTransform method to remove any transformations that may already
be defi ned. Next, the routine calculates the horizontal and vertical offsets by which it must translate
the rectangle picture_bounds so it will be centered within the rectangle margin_bounds. It calls the
Graphics object ’ s TranslateTransform method to make the translation.

CH034.indd 792CH034.indd 792 12/31/09 6:55:58 PM12/31/09 6:55:58 PM

' Transform the Graphics object to center the rectangle
' picture_bounds within margin_bounds.
Private Sub CenterPictureInMargins(ByVal gr As Graphics,
 ByVal picture_bounds As RectangleF, ByVal margin_bounds As RectangleF)
 ' Remove any existing transformation.
 gr.ResetTransform()

 ' Apply the transformation.
 Dim dx As Single =
 margin_bounds.Left - picture_bounds.Left +
 (margin_bounds.Width - picture_bounds.Width) / 2
 Dim dy As Single =
 margin_bounds.Top - picture_bounds.Top +
 (margin_bounds.Height - picture_bounds.Height) / 2
 gr.TranslateTransform(dx, dy)
End Sub

code snippet CenterPicture

You can use subroutine CenterPictureInMargins to prepare the e.Graphics object provided by the
PrintPage event handler to center a drawing on a printout. For example, the CenterPicture example
program uses the following PrintPage event handler code to draw a bar chart in the coordinate
space 100 < = X < = 600, 100 < = Y < = 400. It begins with commented code that draws the page ’ s
margins for debugging purposes.

' Print the page.
Private Sub Print_PrintPage(ByVal sender As Object,
 ByVal e As System.Drawing.Printing.PrintPageEventArgs)
 ' Draw the margins (for debugging). Be sure
 ' to do this before transforming the Graphics object.
 e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds)

 ' This routine draws a bar chart for 5 values
 ' in printer coordinates between
 ' (100, 100) - (600, 400).
 ' Transform the Graphics object to center the results.
 Dim picture_rect As New RectangleF(100, 100, 600, 400)
 Dim margin_rect As New RectangleF(
 e.MarginBounds.X,
 e.MarginBounds.Y,
 e.MarginBounds.Width,
 e.MarginBounds.Height)
 CenterPictureInMargins(e.Graphics, picture_rect, margin_rect)

 ' Draw a rectangle around the chart.
 e.Graphics.FillRectangle(Brushes.LightGray, picture_rect)
 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(picture_rect))

 ' Draw the values.
 Dim x As Integer = 100
 DrawBar(e.Graphics, x, 200, HatchStyle.BackwardDiagonal)
 DrawBar(e.Graphics, x, 280, HatchStyle.Vertical)
 DrawBar(e.Graphics, x, 240, HatchStyle.ForwardDiagonal)

Centering Printouts ❘ 793

CH034.indd 793CH034.indd 793 12/31/09 6:55:58 PM12/31/09 6:55:58 PM

794 ❘ CHAPTER 34 PRINTING

 DrawBar(e.Graphics, x, 170, HatchStyle.Horizontal)
 DrawBar(e.Graphics, x, 290, HatchStyle.DiagonalCross)

 ' There are no more pages.
 e.HasMorePages = False
End Sub

' Draw a bar in (x, 400)-(x + 100, 400 - hgt).
Private Sub DrawBar(ByVal gr As Graphics, ByRef x As Integer,
 ByVal hgt As Integer, ByVal hatch_style As HatchStyle)
 Dim rect As New Rectangle(x, 400 - hgt, 100, hgt)
 Using hatch_brush As New HatchBrush(hatch_style, Color.Black, Color.White)
 gr.FillRectangle(hatch_brush, rect)
 End Using
 gr.DrawRectangle(Pens.Black, rect)
 x += 100
End Sub

code snippet CenterPicture

The code defi nes rectangles representing the area in which it will draw and the printed page ’ s
margin bounds. It passes those rectangles to the
CenterPictureInMargins subroutine to prepare
the Graphics object for centering.

Next, the program fi lls the picture area ’ s rectangle with
light gray and outlines it in black. It then calls subroutine
DrawBar several times to draw fi ve values for the bar chart.
The event handler sets e.HasMorePages to False, and then
it ends.

Subroutine DrawBar draws a rectangle for the bar chart.
It draws its rectangle at the X coordinate passed as a
parameter, making it 100 units wide and hgt units tall. It
fi lls the rectangle with a hatch pattern and then outlines it
in black. The subroutine fi nishes by adding 100 to x, so the
next call to DrawBar draws a rectangle to the right.

Figure 34 - 5 shows program CenterPicture in action. You
can see in the picture that the bar chart is centered within
the margins.

FITTING PICTURES TO THE PAGE

Another common scenario is drawing a picture as large as possible on the page without distorting
it. You can use the same approach to this problem that was described in the previous section:
Apply a transformation to the PrintPage event handler ’ s Graphics object to make the picture fi t
the printed page.

FIGURE 34-5: Subroutine

CenterPictureInMargins makes it easy to

center a picture within a printed page.

CH034.indd 794CH034.indd 794 12/31/09 6:55:59 PM12/31/09 6:55:59 PM

The subroutine FitPictureToMargins shown in the following code makes this transformation.
It begins by calling the Graphics object ’ s ResetTransform method to remove any existing
transformation. Next the subroutine translates to center the picture_bounds rectangle at the origin.
Scaling an object centered at the origin is relatively simple because the object ’ s center remains at the
origin, so the program starts by centering picture_bounds.

' Transform the Graphics object to fit the rectangle
' picture_bounds to margin_bounds and center it.
Private Sub FitPictureToMargins(ByVal gr As Graphics,
 ByVal picture_bounds As RectangleF, ByVal margin_bounds As RectangleF)
 ' Remove any existing transformation.
 gr.ResetTransform()

 ' Translate to center picture_bounds at the origin.
 gr.TranslateTransform(
 -(picture_bounds.Left + picture_bounds.Width / 2),
 -(picture_bounds.Top + picture_bounds.Height / 2))

 ' Scale to make picture_bounds fit margin_bounds.
 ' Compare the aspect ratios.
 Dim margin_aspect As Single = margin_bounds.Height / margin_bounds.Width
 Dim picture_aspect As Single =
 picture_bounds.Height / picture_bounds.Width
 Dim scale As Single
 If picture_aspect > margin_aspect Then
 ' picture_bounds is relatively tall and thin.
 ' Make it as tall as possible.
 scale = margin_bounds.Height / picture_bounds.Height
 Else
 ' picture_bounds is relatively short and wide.
 ' Make it as wide as possible.
 scale = margin_bounds.Width / picture_bounds.Width
 End If
 ' Scale.
 gr.ScaleTransform(scale, scale, MatrixOrder.Append)

 ' Translate to move the origin to the center of margin_bounds.
 gr.TranslateTransform(
 margin_bounds.Left + margin_bounds.Width / 2,
 margin_bounds.Top + margin_bounds.Height / 2,
 MatrixOrder.Append)
End Sub

code snippet FitToMargins

The program compares aspect ratios (ratios of height/width) of the picture_bounds and
margin_bounds rectangles. If picture_bounds has the greater aspect ratio, it is relatively taller
and thinner than margin_bounds. In that case, the program scales to make picture_bounds the
same height as margin_bounds and sets its width appropriately.

If picture_bounds has the smaller aspect ratio, it is relatively wider and shorter than
margin_bounds. In that case, the program scales to make picture_bounds the same width
as margin_bounds and sets its height accordingly.

Fitting Pictures to the Page ❘ 795

CH034.indd 795CH034.indd 795 12/31/09 6:56:00 PM12/31/09 6:56:00 PM

796 ❘ CHAPTER 34 PRINTING

After calculating the scale factor it needs, the program
calls the Graphics object ’ s ScaleTransform method to
add it to the Graphics object ’ s transformation. It uses the
MatrixOrder.Append parameter to make the object apply
the scaling transformation after its fi rst translation.

Finally, the subroutine applies another translation to move
the center of the scaled picture_bounds rectangle from the
origin to the center of margin_bounds. It again uses the
MatrixOrder.Append parameter, so the new transformation
is applied after the previous ones.

A program can use subroutine FitPictureToMargins exactly
as it can use subroutine CenterPictureInMargins. Example
program FitToMargins uses this subroutine to draw the bar
chart shown in Figure 34 - 6. This routine works whether the
drawing ’ s area is relatively short and wide (as in this case)
or tall and thin. It will also shrink a picture that is bigger
than the page.

SIMPLIFYING DRAWING AND PRINTING

Many applications draw some graphics, possibly with some user interaction, and then later print the
same graphics, perhaps centered and scaled to fi t the page.

You can make this process easier if you move all of the program ’ s drawing code into subroutines
that are independent of the drawing or printing surface. These drawing routines should
take as a parameter a Graphics object on which to draw. Then it doesn ’ t matter whether the
program passes these routines the Graphics object provided by a PrintPage event handler or a
control ’ s Paint event handler. They can even use a Graphics object generated by the control ’ s
CreateGraphics method.

The DrawGraphics subroutine shown in the following code encapsulates the drawing code used in
the previous sections. It takes a Graphics object as a parameter, draws a background on it, and calls
DrawBar to draw fi ve hatched rectangles to form a bar chart.

' Draw the bar chart with world coordinate bounds (100, 100)-(600, 400).
Private Sub DrawGraphics(ByVal gr As Graphics)
 ' Draw a rectangle around the chart.
 Dim picture_rect As New Rectangle(100, 100, 500, 300)
 gr.FillRectangle(Brushes.LightGray, picture_rect)
 gr.DrawRectangle(Pens.Black, picture_rect)

 ' Draw the values.
 Dim x As Integer = 100
 DrawBar(gr, x, 200, HatchStyle.BackwardDiagonal)

FIGURE 34-6: Subroutine

FitPictureToMargins makes it easy to

center a picture within a printed page,

making it as large as possible without

distortion.

CH034.indd 796CH034.indd 796 12/31/09 6:56:00 PM12/31/09 6:56:00 PM

 DrawBar(gr, x, 280, HatchStyle.Vertical)
 DrawBar(gr, x, 240, HatchStyle.ForwardDiagonal)
 DrawBar(gr, x, 170, HatchStyle.Horizontal)
 DrawBar(gr, x, 290, HatchStyle.DiagonalCross)
End Sub

code snippet PictureBoxPrint

Now the PrintPage event handler and other code can call this subroutine to draw the program ’ s
graphics. The following code shows how a program can use this routine to draw the bar chart
on a PictureBox named picCanvas. The control ’ s Resize event handler invalidates the control,
so the Paint event handler can redraw the entire surface. The control ’ s Paint event handler clears
the PictureBox, calls FitPictureToMargins to fi t the bar chart to the PictureBox ’ s surface
(minus a 3 - pixel margin), and calls DrawGraphics to draw the bar chart.

Private Sub picCanvas_Resize() Handles picCanvas.Resize
 picCanvas.Invalidate()
End Sub

Private Sub picCanvas_Paint(ByVal sender As Object,
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles picCanvas.Paint
 ' Clear the picture.
 e.Graphics.Clear(picCanvas.BackColor)

 ' This routine draws a bar chart for 5 values
 ' in printer coordinates between
 ' (100, 100) - (600, 400).
 ' Transform the Graphics object to center the results.
 Dim picture_rect As New RectangleF(100, 100, 500, 300)
 Dim margin_rect As New RectangleF(
 picCanvas.ClientRectangle.X + 3,
 picCanvas.ClientRectangle.Y + 3,
 picCanvas.ClientRectangle.Width - 6,
 picCanvas.ClientRectangle.Height - 6)
 FitPictureToMargins(e.Graphics, picture_rect, margin_rect)
 ' Draw the bar chart.
 DrawGraphics(e.Graphics)
End Sub

code snippet PictureBoxPrint

Example program PictureBoxPrint, shown in Figure 34 - 7 uses this code to draw a bar chart in a
PictureBox and in a print preview dialog.

Simplifying Drawing and Printing ❘ 797

CH034.indd 797CH034.indd 797 12/31/09 6:56:01 PM12/31/09 6:56:01 PM

798 ❘ CHAPTER 34 PRINTING

This technique minimizes the amount of drawing code. It lets the program share the same code for
drawing, printing, and print previewing. That means less code to debug and maintain. It also means
that you need only to modify the code in one place if you need to change it later.

By calling FitPictureToMargins, the program makes the bar chart fi ll the PictureBox as much as
possible without distorting it. If the control is anchored or docked so that it resizes when the form
does, the bar chart also resizes so that it is as big as possible, a fairly impressive feat at the cost of a
single subroutine call.

Although very useful, the technique of using a common routine to draw and print graphics is not
appropriate for every application. Sometimes a program must take advantage of the particular
characteristics of a printer or screen object, and the results may not make sense for other types
of devices.

For example, suppose that a program draws fractals by performing time - consuming calculations
for each pixel. It may make sense to show the results as the pixels are calculated on the screen. That
would take advantage of the fact that the user can immediately see the results of pixels drawn on
the screen. On the printer, however, the results aren ’ t visible until the complete page is printed, so
sending pixels to the printer one at a time doesn ’ t particularly help the user and may slow printing.
It would make more sense to draw the complete image on a Bitmap in memory and then send the
result to the printer all at once by using the Graphics object ’ s DrawImage method.

Similarly, the text - printing example described earlier in this chapter prints a long series of
paragraphs broken across several pages. It takes advantage of the printed page ’ s exact size and
margins. You might be able to display the same page data in a scrolling window on the screen,
but that probably wouldn ’ t make much sense. In that application, trying to force screen drawing and
page printing routines to produce exactly the same result would probably be a waste of time.
It would be much easier and just as effective to display the text on the screen in a print preview
control or dialog.

FIGURE 34-7: A program can use subroutine

FitPictureToMargins to make a picture fi t a PictureBox as well

as a printed page.

CH034.indd 798CH034.indd 798 12/31/09 6:56:02 PM12/31/09 6:56:02 PM

SUMMARY

The PrintDocument object sits at the heart of the standard Visual Basic printing process. A program
makes a PrintDocument object and then responds to its BeginPrint, QueryPageSettings, PrintPage,
and EndPrint events to generate a printout.

The PrintDocument object ’ s Print method immediately generates a printout. You can also attach the
PrintDocument to a PrintDialog, PrintPreviewDialog, or PrintPreviewControl and use those objects
to display previews and generate printouts.

This chapter describes printing in general. Using the Graphics object provided by the
PrintDocument object ’ s PrintPage event, you can print lines, curves, text, images, and anything else
you can draw to the screen.

Appendix I, “ Visual Basic Power Packs, ” describes some additional tools that you can download
for free. The Printer Compatibility Library and the PrintForm component give you new options for
printing. See Appendix I for more information.

My book Expert One - on - One Visual Basic Design and Development (Stephens, Wrox, 2005)
includes a chapter on printing that explains how to print images of forms much as the PrintForm
Power Pack component does. It also shows how to wrap text so it fl ows around images on a printed
page and how to use metafi les to let a program print procedurally rather than by responding to
events. For more information, see the book ’ s web site at www.wrox.com or www.vb-helper.com/
one_on_one.htm .

Most of the programs described in this book so far are relatively self-contained. They take input
from the user, perform some calculations, and display the results. Only a few chapters have
interacted much with the outside system. The two exceptions are Chapter 23, which explains how
to use drag and drop and the clipboard to interact with other programs, and this chapter, which
explains how to interact with printers.

The chapters in the next part of the book explain more ways a program can interact with the
system. Chapter 36, “Confi guration and Resources,” describes some of the ways that a Visual Basic
program can store confi guration and resource values for use at runtime. Some of the most useful of
these methods include environment variables, the Registry, confi guration fi les, and resource fi les.

Summary ❘ 799

CH034.indd 799CH034.indd 799 12/31/09 6:56:02 PM12/31/09 6:56:02 PM

CH034.indd 800CH034.indd 800 12/31/09 6:56:03 PM12/31/09 6:56:03 PM

PART V

Interacting with the Environment

CHAPTER 35: Confi guration and Resources

CHAPTER 36: Streams

CHAPTER 37: File-System Objects

CHAPTER 38: Windows Communication Foundation

CHAPTER 39: Useful Namespaces

�

�

�

�

�

CH035.indd 801CH035.indd 801 12/31/09 6:56:46 PM12/31/09 6:56:46 PM

CH035.indd 802CH035.indd 802 12/31/09 6:56:49 PM12/31/09 6:56:49 PM

Confi guration and Resources

A very simple application performs a well - defi ned task that changes minimally over time. You
may not need to confi gure such an application for different circumstances.

Many more complex applications, however, must be confi gured to meet different conditions.
For example, the application might display different data for different kinds of users (such as
data - entry clerks, supervisors, managers, and developers). Similarly, you might confi gure an
application for various levels of support. You might have different confi gurations for trial,
basic, professional, and enterprise versions.

The application may also need to save state information between sessions. It might
remember the types of forms that were last running, their positions, and their contents. The
next time the program runs, it can restore those forms so the user can get back to work as
quickly as possible.

Visual Studio provides many ways to store and use application confi guration and resource
information. This chapter describes some of these tools. It starts by describing the My
namespace that was invented to make these tools easier to fi nd. It then tells how an application
can use environment variables, the Registry, confi guration fi les, resource fi les, and the
Application object.

This chapter does not explain how to work with disk fi les more directly. Databases, XML
fi les, text fi les, and other disk fi les are generally intended for storage of larger amounts of data,
rather than simple confi guration and resource information. Those topics are described more
thoroughly in Chapters 20, “ Database Controls and Objects, ” and 38, “ File - System Objects. ”

MY

In older versions of Visual Basic .NET, programmers discovered that many common tasks
were diffi cult to perform. For example, many programs get the name of the user logged on to
the computer, read a text fi le into a string, get the program ’ s version number, or examine all

35

CH035.indd 803CH035.indd 803 12/31/09 6:56:49 PM12/31/09 6:56:49 PM

804 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

of the application ’ s currently loaded forms. Although you can accomplish all of these tasks in early
versions of Visual Basic .NET, doing so is awkward.

To make these common tasks easier, the My namespace was introduced to provide shortcuts for
basic chores. For example, to read the text in a fi le in Visual Basic .NET 2003, you must create
some sort of object that can work with a fi le such as a StreamReader, use the object to read the fi le
(the ReadToEnd method for a StreamReader), and then dispose of the object. The following code
shows how you might do this in Visual Basic .NET 2003:

Dim stream_reader As New IO.StreamReader(file_name)
Dim file_contents As String = stream_reader.ReadToEnd()
stream_reader.Close()

This isn ’ t too diffi cult, but it does seem more complicated than such a simple everyday task
should be.

The My namespace provides a simpler method for reading a fi le ’ s contents. The Computer
.FileSystem.ReadAllText method reads a text fi le in a single statement. The following statement
reads the text in the fi le C:\Temp\Test.txt and displays it in a message box:

Dim file_contents As String =
 My.Computer.FileSystem.ReadAllText("C:\Temp\Test.txt")

There is nothing new in the My namespace. All the tasks it performs you can already handle using
existing methods. The My namespace just makes some things easier.

This section describes the My namespace and the shortcuts it provides.

Me and My

Some programmers confuse the Me object and the My namespace. Me is a reference to the object
that is currently executing code. If a piece of code is inside a particular class, Me is a reference to
the class object that is running.

For example, if the class is a form, then within the form ’ s code, Me returns a reference to the
running form. If the form ’ s code must change the form ’ s BackColor property, it can use the Me
object to explicitly refer to its own form. It can also omit the keyword to refer to its form implicitly.
That means the following two statements are equivalent:

Me.BackColor = SystemColors.Control
BackColor = SystemColors.Control

If you build several instances of a class, the code in each instance gets a different value for Me. Each
instance ’ s Me object returns a reference to that instance.

On the other hand, My isn ’ t an object at all. It is a namespace that contains objects, values,
routines, and other namespaces that implement common functions. The My namespace is a single
unique entity shared by all of the code throughout the application.

CH035.indd 804CH035.indd 804 12/31/09 6:56:51 PM12/31/09 6:56:51 PM

It may help if you try not to think of the My namespace as a thing in and of itself. The My namespace
doesn ’ t do anything all alone. It needs to be paired with something within the namespace. Think of
My.Application, My.User, My.Computer, and so forth. It makes sense to think of My.Computer as
representing the computer.

My Sections

The following table briefl y outlines the major sections within the My namespace. Other sections of
this chapter and Appendix S, “ The My Namespace, ” describe these sections in greater detail.

SECTION PURPOSE

My.Application Provides information about the current application: current directory,

culture, and assembly information (such as program version number, log,

splash screen, and forms)

My.Computer Controls the computer hardware and system software: audio, clock,

keyboard, clipboard, mouse, network, printers, Registry, and fi le system

My.Forms Provides access to an instance of each type of Windows Form defi ned in

the application

My.Resources Provides access to the application ’ s resources: strings, images, audio,

and so forth

My.Settings Provides access to the application ’ s settings

My.User Provides access to information about the current user

My.WebServices Provides access to an instance of each XML web service referenced

by the application

ENVIRONMENT

Environment variables are values that a program can use to learn information about the system.
There are three types of environment variables that apply at the system, user, and process levels. As
you may guess from their names, system - level variables apply to all processes started on the system,
user - level variables apply to processes started by a particular user, and process - level variables apply
to a particular process and any other processes that it starts.

Environment variables may indicate such things as the name of the operating system, the location of
temporary directories, the user ’ s name, and the number of processors the system has. You can also
store confi guration in environment variables for your programs to use.

Environment ❘ 805

CH035.indd 805CH035.indd 805 12/31/09 6:56:52 PM12/31/09 6:56:52 PM

806 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

Environment variables are loaded when a process starts, and they are inherited by any process
launched by the initial process. For Visual Basic development, that means the variables are loaded
when you start Visual Studio and they are inherited by the program you are working on when you
start it. If you make changes to the system ’ s environment variables, you need to close and reopen
Visual Studio before your program will see the changes.

A program can also create temporary process - level variables that are inherited by launched
processes and that disappear when the original process ends.

Visual Basic provides a couple of tools for working with the application ’ s environment. The
following sections describe two: the Environ function and the System.Environment object. Before
you can read environment variables, however, you should know how to set their values.

Setting Environment Variables

Environment variables are normally set on a system - wide basis before the program begins. In older
operating systems, batch fi les such as autoexec.bat set these values. More recent systems provide
Control Panel tools to set environment variables.

Newer systems also use an autoexec.nt fi le to set environment variables that apply only to
command - line (console) applications so they don ’ t affect GUI applications. Sometimes you can use
this fact to your advantage by giving different kinds of applications different environment settings.

To set environment variables in Windows XP, open the Control Panel, run the System applet, and
select the Advanced tab. Alternatively, you can right - click My Computer or Computer in newer
versions of Windows and select Properties from the context menu. Click the Environment Variables
button to display the Environment Variables dialog box. Use the dialog ’ s Add, Edit, and Delete
buttons to add, modify, or remove environment variables.

To set environment variables in Windows Vista, open the Control Panel, open the System and
Maintenance applet, and then open its System applet. On the left, click the “ Advanced system
settings ” link. That link requires administrator privileges so Vista displays a UAC privilege elevation
dialog. Enter an administrator ’ s password and click OK to get to the System Properties dialog.
Select the Advanced tab and click the Environment Variables button to display the Environment
Variables dialog box. Use the dialog ’ s Add, Edit, and Delete buttons to add, modify, or remove
environment variables.

Be careful to use the variables properly. Use system variables when a value should apply to all
processes started by all users, user variables when a value should apply to all processes started by a
particular user, and process variables when a value should apply to a process and any processes that
it starts.

REFRESH REMINDER

Remember that Visual Studio won ’ t see environment variable changes that you
make after it is running. You need to close and reopen Visual Studio before your
program will see the changes.

CH035.indd 806CH035.indd 806 12/31/09 6:56:52 PM12/31/09 6:56:52 PM

Using Environ

At runtime, a Visual Basic application can use the Environ function to retrieve environment variable
values. If you pass this function a number, it returns a string giving the statement that assigns the
corresponding environment variable. For example, Environ(1) might return the following string:

ALLUSERSPROFILE=C:\ProgramData

You should pass the function a number between 1 and 255. Environ returns a zero - length string if
the number does not correspond to an environment variable. The following code uses this fact to list
all the application ’ s environment variables. When it fi nds a variable that has zero length, it knows it
has read all of the variables with values.

For i As Integer = 1 To 255
 If Environ(i).Length = 0 Then Exit For
 Debug.WriteLine(Environ(i))
Next i

code snippet ListEnviron

Example program ListEnviron uses similar code to display all of the environment variables ’
assignment statements. Example program ListEnvironValues, which is also available for download,
uses the String class ’ s Split method to separate the environment variables ’ names and values and
displays them in separate columns in a ListView control.

If you pass the Environ function the name of an environment variable, the function returns the
variable ’ s value or Nothing if the variable does not exist. The following code displays the value
assigned to the USERNAME variable:

MessageBox.Show(Environ("USERNAME"))

Using System.Environment

The Environ function is easy to use, but it ’ s not very fl exible; it cannot create or modify variable
values.

Of course sometimes that lack of fl exibility can be an asset. A malicious program cannot use
Environ to mess up the system ’ s environment variables so it gives you one less potential problem.

The System.Environment object provides methods for getting and setting process - level environment
variables. It also provides properties and methods for working with many other items in the application ’ s
environment. The following table describes the Environment object ’ s most useful properties.

Environment ❘ 807

CH035.indd 807CH035.indd 807 12/31/09 6:56:53 PM12/31/09 6:56:53 PM

808 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

PROPERTY PURPOSE

CommandLine Returns the process ’ s command line.

CurrentDirectory Gets or sets the fully qualifi ed path to the current directory.

ExitCode Gets or sets the process ’ s exit code. If the program starts from a Main

function, that function ’ s return value also sets the exit code.

HasShutdownStarted Returns True if the common language runtime is shutting down.

MachineName Returns the computer ’ s NetBIOS name.

NewLine Returns the environment ’ s defi ned new line string. For example, this might

be a carriage return followed by a line feed.

OSVersion Returns an OperatingSystem object containing information about the

operating system. This object provides the properties ServicePack (name

of the most recent service pack installed), Version (includes Major, Minor,

Build, and Revision; ToString combines them all), VersionString (combines

the operating system name, version, and most recent service pack), and

Platform, which can be Unix, Win32NT (Windows NT or later), Win32S (runs

on 16 - bit Windows to provide access to 32 - bit applications), Win32Windows

(Windows 95 or later), or WinCE.

ProcessorCount Returns the number of processors on the computer.

StackTrace Returns a string describing the current stack trace.

SystemDirectory Returns the system directory ’ s fully qualifi ed path.

TickCount Returns the number of milliseconds that have elapsed since the system

started.

UserDomainName Returns the current user ’ s network domain name.

UserInteractive Returns True if the process is interactive. This only returns False if the

application is a service process or web service.

UserName Returns the name of the user who started the process.

Version Returns a Version object describing the Common Language Runtime.

This object provides the properties Major, Minor, Build, and Revision. Its

ToString method combines them all.

WorkingSet Returns the amount of physical memory mapped to this process in bytes.

Example program SystemEnvironment, which is available for download on the book ’ s web site,
displays the values of many of the Environment object ’ s properties.

The following table describes the Environment object ’ s most useful methods.

CH035.indd 808CH035.indd 808 12/31/09 6:56:54 PM12/31/09 6:56:54 PM

METHOD PURPOSE

Exit Ends the process immediately. Form Closing and Closed event

handlers do not execute.

ExpandEnvironment-

Variables

Replaces environment variable names in a string with their values.

For example, the following code displays the current user ’ s name:

MessageBox.Show(Environment.ExpandEnvironment

Variables(“ I am %username%. ”))

GetCommandLineArgs Returns an array of strings containing the application ’ s command -

line arguments. The fi rst entry (with index 0) is the name of the

program ’ s executable fi le.

GetEnvironmentVariable Returns an environment variable ’ s value.

GetEnvironmentVariables Returns an IDictionary object containing the names and values of

all environment variables.

GetFolderPath Returns the path to a system folder. This method ’ s parameter is

a SpecialFolder enumeration value such as Cookies, Desktop,

SendTo, or Recent. See the online help for a complete list of

available folders.

GetLogicalDrives Returns an array of strings containing the names of the logical

drives on the current computer.

SetEnvironmentVariable Creates, modifi es, or deletes an environment variable.

The SetEnvironmentVariable method lets you set environment variables at the system, user,
and process level. If you set a variable ’ s value to Nothing, this method deletes the variable.
For system and user values, it updates the Registry appropriately to set the values. Example
program EnvironmentVariableLevels, which is available for download on the book ’ s web
site, uses SetEnvironmentVariable to get and set variable values. For more information on the
SetEnvironmentVariable method, see msdn2.microsoft.com/library/96xafkes.aspx .

PERMISSION REQUIRED

Note that a program needs privilege to write to the Registry to set a system - level
environment variable.

REGISTRY

The System Registry is a hierarchical database that stores values for applications on the system. The
hierarchy ’ s root is named MyComputer and is divided into the several subtrees that are also called
hives . Which hives are available depends on your operating system. The following table summarizes
the most commonly available hives. (The “ HKEY ” part of each name stands for “ hive key. ”)

Registry ❘ 809

CH035.indd 809CH035.indd 809 12/31/09 6:56:54 PM12/31/09 6:56:54 PM

810 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

REGISTRY BRANCH CONTAINS

HKEY_CLASSES_ROOT Defi nitions of types or classes, and properties associated with those types.

HKEY_CURRENT_CONFIG Information about the system ’ s current hardware confi guration.

HKEY_CURRENT_USER The current user ’ s preferences (such as environment variable settings,

program group information, desktop settings, colors, printers, network

connections, and preferences specifi c to applications). Each user has

separate HKEY_CURRENT_USER values. This is usually the subtree

where a Visual Basic application stores and retrieves its settings.

HKEY_DYN_DATA Performance data for Windows 95, 98, and Me. (Yes, this is a bit

outdated but this hive is still there.)

HKEY_LOCAL_MACHINE Information about the computer ’ s physical state, including bus type,

system memory, installed hardware and software, and network logon

and security information.

HKEY_USERS Default confi guration information for new users and the current user ’ s

confi guration.

Depending on your operating system, the Registry may also contain the unsupported keys
HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_NLSTEXT, and HKEY_
PERFORMANCE_TEXT.

Many applications store information in the Registry. The HKEY_CURRENT_USER subtree is
particularly useful for storing individual users ’ preferences and other confi guration information.

Lately, the Registry has gone out of style for saving confi guration information. Microsoft now
recommends that you store this kind of data locally within a user ’ s data storage area. This makes
sense because it makes it easier to copy the settings (they ’ re just fi les) and helps reduce clutter in the
Registry. You can use the confi guration fi les settings (see the section “ Confi guration Files ” later in
this chapter) or you can store data in XML fi les.

Visual Basic provides two main ways to access the Registry. First, you can use the Visual Basic
native Registry methods. Second, you can use the tools in the My.Computer.Registry namespace.
These two methods are described in the following sections.

You can also use API functions to manipulate the Registry. These are more complicated and not
generally necessary (the My.Computer.Registry namespace contains some very powerful tools), so
they are not described here.

Native Visual Basic Registry Methods

Visual Basic provides four methods for saving and reading Registry values for a particular
application: SaveSetting, GetSetting, GetAllSettings, and DeleteSetting.

The SaveSetting method saves a value into a Registry key. This routine takes as parameters the
name of the application, a section name, the setting ’ s name, and the setting ’ s value. For example,
the following code saves the value stored in the m_CurrentDirectory variable in the RegistrySettings
application ’ s Confi g section with the name CurrentDirectory:

CH035.indd 810CH035.indd 810 12/31/09 6:56:55 PM12/31/09 6:56:55 PM

SaveSetting("RegistrySettings", "Config", "CurrentDirectory",
 m_CurrentDirectory)

SaveSetting automatically creates the application and section areas in the Registry if they don ’ t
already exist.

This value is saved at the following Registry location. This is all one name; it just doesn ’ t fi t on one
line here:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
 RegistrySettings\Config\CurrentDirectory

If you use the Visual Basic SaveSetting, GetSetting, GetAllSettings, and DeleteSetting methods,
you don ’ t need to worry about the fi rst part of this Registry path. You need only to remember the
application name, section name, and setting name.

POWERFUL PRIVILEGES

Windows protects the Registry so that you cannot inadvertently damage critical
values. If you mess up some values, you can wreak havoc on the operating system,
and even make the system unbootable.

To prevent possible chaos, newer versions of Windows don ’ t let you edit some parts
of the Registry without elevated privileges. Fortunately, the part of the Registry
used by these routines is accessible to normal users, so you don ’ t need elevated
privileges to use SaveSetting, GetSetting, GetAllSettings, or DeleteSetting.

The GetSetting function retrieves a Registry value. It takes as parameters the application name,
section name, and setting name you used to save the value. It can optionally take a default value to
return if the setting doesn ’ t exist in the Registry. The following code displays the value saved by the
previous call to SaveSetting. If no value is saved in the Registry, it displays the string < none > .

MessageBox.Show(GetSetting("RegistrySettings", "Config", "CurrentDirectory",
 " < none > "))

The GetAllSettings function returns a two - dimensional array of name and value pairs for a Registry
section. The following code uses GetAllSettings to fetch the values stored in the RegistrySettings
application ’ s Confi g section. It loops through the results, displaying the setting names and values.

Dim settings As String(,) = GetAllSettings("RegistrySettings", "Config")
For i As Integer = 0 To settings.GetUpperBound(0)
 Debug.WriteLine(settings(i, 0) & " = " & settings(i, 1))
Next i

If an application needs to use all of the settings in a section, GetAllSettings may be faster than using
GetSetting repeatedly.

Registry ❘ 811

CH035.indd 811CH035.indd 811 12/31/09 6:56:56 PM12/31/09 6:56:56 PM

812 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

The DeleteSetting method removes a setting, section, or an entire application ’ s setting area from the
Registry. The following code shows how to remove each of those kinds of items:

' Remove the RegistrySettingsRegistrySettings/Config/CurrentDirectory setting.
DeleteSetting("RegistrySettings", "Config", "CurrentDirectory")

' Remove the RegistrySettings/Config section.
DeleteSetting("RegistrySettings", "Config")

' Remove all of the RegistrySettings application's settings.
DeleteSetting("RegistrySettings")

NEATNESS COUNTS

As part of its uninstallation procedure, a program should remove any Registry
entries it has made. All too often, programs leave the Registry cluttered with
garbage. This not only makes it harder to fi gure out what real values the Registry
contains, but it can also slow the system down.

In an attempt to combat this problem, Microsoft is promoting XCopy compatibility,
where applications store values in confi guration fi les instead of the Registry. Then
you can easily copy and remove these fi les rather than modifying the Registry.

Example program RegistrySettings, which is available for download on the book ’ s web site,
demonstrates each of Visual Basic ’ s Registry commands.

My.Computer.Registry

The My.Computer.Registry namespace provides objects that manipulate the Registry
. My.Computer.Registry has seven properties that refer to objects of type RegistryKey. The
following table lists these objects and the corresponding Registry subtrees.

MY.COMPUTER.REGISTRY PROPERTY REGISTRY SUBTREE

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYNAMIC_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

CH035.indd 812CH035.indd 812 12/31/09 6:56:57 PM12/31/09 6:56:57 PM

REGISTRY RESTRICTIONS

Note that some parts of the Registry are off limits to programs running as normal
users in recent versions of Windows. Normal users can modify values in HKEY_
CURRENT_USER, but to do more than look in other areas, a program would
probably need to run with elevated privileges. For more information on privilege
elevation, see Chapter 24, “ UAC Security. ”

The program can use these RegistryKey objects to work with the corresponding Registry
subtree. The following table describes the most useful properties and methods provided
by the RegistryKey class.

PROPERTY OR METHOD PURPOSE

Name Returns the key ’ s Registry path.

Close Closes the key and writes it to disk if it has been modifi ed.

CreateSubKey Creates a new subkey or opens an existing subkey within this key.

DeleteSubKey Deletes the specifi ed subkey. This method will delete the subkey if

it contains values, but not if it contains other subkeys. The subkey

to be deleted need not be a direct child of this key. For example,

the following code uses the CurrentUser RegistryKey object

to delete the descendant key Software\VB and VBA Program

Settings\MyComputerRegistry\Confi g:

My.Computer.Registry.CurrentUser.DeleteSubKey (” Software\

VB and VBA Program Settings\RegistrySettings\Config ”)

DeleteSubKeyTree Recursively deletes a subkey and any child subkeys it contains. The

subkey to be deleted need not be a direct child of this key. For example,

the following code uses the CurrentUser RegistryKey object to delete all

of the settings for the RegistrySettings application:

My.Computer.Registry.CurrentUser.DeleteSubKeyTree

(” Software\VB and VBA Program Settings\RegistrySettings ”)

DeleteValue Deletes a value from the key.

Flush Writes any changes to the key into the Registry.

GetSubKeyNames Returns an array of strings giving subkey names.

GetValue Returns the value of a specifi ed value within this key.

GetValueKind Returns the type of a specifi ed value within this key. This can be Binary,

DWord, ExpandString, MultiString, QWord, String, or Unknown.

Registry ❘ 813

CH035.indd 813CH035.indd 813 12/31/09 6:56:58 PM12/31/09 6:56:58 PM

814 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

PROPERTY OR METHOD PURPOSE

GetValueNames Returns an array of strings giving the names of all of the values contained

within the key.

OpenSubKey Returns a RegistryKey object representing a descendant key. Parameters

give the subkey name, and indicate whether the returned RegistryKey

should allow you to modify the subkey.

SetValue Sets a value within the key.

SubKeyCount Returns the number of subkeys that are this key ’ s direct children.

ToString Returns the key ’ s name.

ValueCount Returns the number of values stored in this key.

The following example opens the HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\RegistrySettings\Confi g key. It reads the CurrentDirectory value from that key using the
default value “ C:\ ” and saves the result in the variable current_directory. It closes the key and then
uses the DeleteSubKey method to delete the RegistrySettings application ’ s Confi g section.

' Open the application's Config subkey.
Dim config_section As Microsoft.Win32.RegistryKey =
 My.Computer.Registry.CurrentUser.OpenSubKey(
 "Software\VB and VBA Program Settings\RegistrySettings\Config\")

' Get the CurrentDirectory value.
Dim current_directory As String =
 CType(config_section.GetValue("CurrentDirectory", "C:\"), String)

' Close the subkey.
config_section.Close()

' Delete the application's whole Config section.
My.Computer.Registry.CurrentUser. DeleteSubKey DeleteSubKey (
 "Software\VB and VBA Program Settings\RegistrySettings\Config")

The following code shows the equivalent operations using the native Registry methods of Visual
Basic:

 ' Get the CurrentDirectory value.
Dim current_directory As String =
GetSetting("RegistrySettings", "Config", "CurrentDirectory", "C:\")

' Delete the application's whole Config section.
DeleteSetting("RegistrySettings", "Config")

CH035.indd 814CH035.indd 814 12/31/09 6:56:59 PM12/31/09 6:56:59 PM

It is generally easier to use the native Registry methods of Visual Basic. Those methods work only
with values in the HKEY_CURRENT_USER\Software\VB and VBA Program Settings Registry
subtree, however. If you need to access keys and values outside of this subtree, you must use the
My.Computer.Registry objects.

Example program MyComputerRegistry, which is available for download on the book ’ s web site,
demonstrates many useful My.Computer.Registry operations. It does the same things as program
RegistrySettings mentioned in the previous section except it uses My.Computer.Registry instead of
Visual Basic ’ s native Registry methods.

CONFIGURATION FILES

Confi guration fi les let you store information for a program to use at runtime in a standardized
external fi le. You can change the values in the confi guration fi le, and the program will use the new
value the next time it starts. That enables you to change some of the application ’ s behavior without
needing to recompile the executable program.

One way to use confi guration fi les is through dynamic properties. Dynamic properties are
automatically loaded from the confi guration fi le at runtime by Visual Basic.

Start by defi ning the settings you will bind to the dynamic properties. In Solution Explorer, double -
click My Project and select the Settings tab to see the property page shown in Figure 35 - 1. Use this
page to defi ne the settings that you will load at runtime.

Confi guration Files ❘ 815

FIGURE 35-1: Use this page to defi ne application settings.

CH035.indd 815CH035.indd 815 12/31/09 6:56:59 PM12/31/09 6:56:59 PM

816 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

A setting ’ s scope can be Application or User. A setting with
Application scope is shared by all of the program ’ s users.
Settings with User scope are stored separately for each user
so different users can use and modify their own values.

Next, add a control to a form and select it. In the Properties
window, open the ApplicationSettings entry, click the
PropertyBinding subitem, and click the ellipsis to the right
to display a list of the control ’ s properties.

Select the property that you want to load dynamically and
click the drop - down arrow on the right to see a list of defi ned
settings that you might assign to the property. Figure 35 - 2
shows the Application Setting dialog box with this drop - down
list displayed for a control ’ s Text property. From the list, select
the setting that you want to assign to the property.

Visual Studio adds the setting to the program ’ s confi guration
fi le. If you open Solution Explorer and double - click the app
.confi g entry, you ’ ll see the new dynamic property.

The following text shows the confi guration setting sections of an App.confi g fi le. The
applicationSettings section defi nes the settings shown in Figure 35 - 1.

< ?xml version="1.0" encoding="utf-8" ? >
< configuration >
 ...
 < userSettings >
 < ConfigFile.My.MySettings >
 < setting name="txtBackColor" serializeAs="String" >
 < value > Yellow < /value >
 < /setting >
 < setting name="txtForeColor" serializeAs="String" >
 < value > Blue < /value >
 < /setting >
 < setting name="txtFontName" serializeAs="String" >
 < value > Comic Sans MS < /value >
 < /setting >
 < setting name="txtFontSize" serializeAs="String" >
 < value > 50 < /value >
 < /setting >
 < setting name="clrForeColor" serializeAs="String" >
 < value > Blue < /value >
 < /setting >
 < setting name="clrBackColor" serializeAs="String" >
 < value > Yellow < /value >
 < /setting >
 < setting name="fntFont" serializeAs="String" >
 < value > Comic Sans MS, 48pt < /value >
 < /setting >
 < /ConfigFile.My.MySettings >
 < /userSettings >
< /configuration >

code snippet Confi gFile

FIGURE 35-2: Use the drop-down

list to assign a setting to the

dynamic property.

CH035.indd 816CH035.indd 816 12/31/09 6:57:00 PM12/31/09 6:57:00 PM

When the application starts, Visual Basic loads the app.confi g fi le, reads the settings, and assigns
their values to any properties bound to them.

So far, this is just a very roundabout way to set the control ’ s property value. The real benefi t of this
method comes later when you want to change this setting. If you look in the compiled application ’ s
directory (normally the bin\Debug directory when you ’ re developing the program), you ’ ll fi nd a
fi le with the same name as the application but with a .confi g extension. If the application is called
Confi gFile.exe, then this fi le is called Confi gFile.exe.confi g.

If you open this fi le with any text editor and change the value of a setting, the program uses the new
value the next time it runs. For example, if you change the value of clrBackColor from Yellow to
Orange, then the next time the program runs, any controls that use that color for their backgrounds
will now be orange. Instead of recompiling the whole application, you only need to change this
simple text fi le. If you have distributed the application to a large number of users, you need only to
give them the revised confi guration fi le and not a whole new executable.

When you make a new setting, Visual Basic automatically generates code that adds the setting to the
My.Settings namespace, so the program can easily get their values. The following code displays the
values of the txtFontSize and txtFontName settings:

MessageBox.Show(My.Settings.txtFontSize & "pt " & My.Settings.txtFontName)

The My.Settings namespace provides several other properties and methods that make working with
settings easy. The following table summarizes the most useful My.Settings properties and methods.

PROPERTY OR METHOD PURPOSE

Item A name - indexed collection of the values for the settings.

Properties A name - indexed collection of SettingsProperty objects that contain

information about the settings, including their names and default values.

Reload Reloads the settings from the confi guration fi le.

Save Saves any modifi ed settings into the confi guration fi le. The program can

modify settings with user scope. Settings with application scope are read - only.

Example program ShowSettings uses the following code to display the settings listed in the
My.Settings.Properties collection:

Imports System.Configuration

Public Class Form1
 Private Sub Form1_Load() Handles MyBase.Load
 For Each settings_property As SettingsProperty In
 My.Settings.Properties
 Dim new_item As New ListViewItem(settings_property.Name)
 new_item.SubItems.Add(settings_property.DefaultValue.ToString)
 lvSettings.Items.Add(new_item)
 Next settings_property

Confi guration Files ❘ 817

CH035.indd 817CH035.indd 817 12/31/09 6:57:01 PM12/31/09 6:57:01 PM

818 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

 lvSettings.Columns(0).Width = -2
 lvSettings.Columns(1).Width = -2
 End Sub
End Class

code snippet ShowSettings

SAVE RESTRICTIONS

The security features in newer versions of Windows make saving confi guration
information more diffi cult to manage. If an application is installed in a protected
part of the fi le system, a normal user won ’ t be able to save confi guration settings
there. If the program saves settings on a per - user basis in the user ’ s own directories,
the changes won ’ t affect other users. Similarly, the SaveSettings command saves
values into the Registry separately for each user, so changes made with SaveSettings
don ’ t affect other users. One solution is to save user - specifi c settings in the
user ’ s directories, and save application - wide settings in a fi le stored in a common
directory that all users can access.

When a program closes, it automatically saves any changes to User scope settings. However, if the
program crashes, it does not have a chance to save any changes. If you want to be sure changes are
saved, call My.Settings.Save after the user changes settings.

Example program SaveSettings, which is also available for download, uses two settings: a User
scope color named clrForm that determines the form ’ s background color and an Application scope
color named clrButton that determines the background colors of the program ’ s two buttons. The
program provides Form Color and Button Color buttons to let you change the two color settings.
If you change the colors, close the program, and restart it, you ’ ll see that the User scope form color
is saved, but the Application scope button color is not.

RESOURCE FILES

Resource fi les contain text, images, and other data for the application to load at runtime. The intent
of resource fi les is to let you easily replace one set of resources with another.

One of the most common reasons for using resource fi les is to provide different resources for
different languages. To create installation packages for different languages, you simply ship the
executable and a resource fi le that uses the right language. Alternatively, you can ship resource fi les
for all of the languages you support and then let the application pick the appropriate fi le at runtime
based on the user ’ s computer settings.

Resource fi les are not intended to store application confi guration information and settings. They are
intended to hold values that you might want to change, but only infrequently. Confi gurations and
settings, on the other hand, may change relatively often. You should store frequently changing data
in confi guration fi les or the System Registry rather than in resource fi les.

CH035.indd 818CH035.indd 818 12/31/09 6:57:02 PM12/31/09 6:57:02 PM

The distinction is small and frankly somewhat artifi cial. Both confi guration fi les and resource fi les
store data that you can swap without recompiling the application. Rebuilding resource fi les can be a
little more complex, however, so perhaps the distinction that confi guration and setting data changes
more frequently makes some sense.

Resource fi les can also be embedded within a compiled application. In that case, you cannot swap
the resource fi le without recompiling the application. Although this makes embedded resource
fi les less useful for storing frequently changing information, they still give you a convenient place
to group resource data within the application. This is particularly useful if several parts of the
application must use the same pieces of data. For example, if every form should display the same
background image, it makes sense to store the image in a common resource fi le that they can all use.

The following sections describe the four most common types of resources: application, embedded,
satellite, and localization.

Application Resources

To create application resources in Visual Basic, open Solution Explorer, double - click the My Project
entry, and select the Resources tab. Use the dropdown on the left to select one of the resource
categories: Strings, Images, Icons, Audio, Files, or Other. Figure 35 - 3 shows the application ’ s
Resources tab displaying the application ’ s images.

Resource Files ❘ 819

FIGURE 35-3: The Resources tab contains image and other resources used by the

application.

If you double - click an item, Visual Studio opens an appropriate editor. For example, if you double -
click a bitmap resource, Visual Studio opens the image in an integrated bitmap editor.

CH035.indd 819CH035.indd 819 12/31/09 6:57:03 PM12/31/09 6:57:03 PM

820 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

Click the Add Resource dropdown list and select Add Existing File to add a fi le from the disk to
the program ’ s resources. Use the dropdown ’ s Add New String, Add New Icon, or Add New Text
File commands to add new items to the resource fi le. The dropdown ’ s New Image item opens a
cascading submenu that lets you create new PNG, bitmap, GIF, JPEG, and TIFF images.

Using Application Resources

When you create application resources, Visual Studio automatically generates code that adds
strongly typed resource properties to the My.Resources namespace. If you open Solution Explorer
and click the Show All Files button, you can see the Resources.Designer.vb fi le that contains this
code. The Solution Explorer path to this fi le is My Project/Resources.resx/Resources.Designer.vb.

For example, the following code shows the property that Resources.Designer.vb contains to retrieve
the Octahedron image resource:

Friend ReadOnly Property Octahedron() As System.Drawing.Bitmap
 Get
 Dim obj As Object =
 ResourceManager.GetObject("Octahedron", resourceCulture)
 Return CType(obj,System.Drawing.Bitmap)
 End Get
End Property

code snippet UseResources

The following code shows how a program can use these My.Resources properties. It sets the
lblGreeting control ’ s Text property to the string returned by the My.Resources.Greeting property.
Then it sets the form ’ s BackgroundImage property to the image resource named Dog.

Private Sub Form1_Load() Handles MyBase.Load
 lblGreeting.Text = My.Resources.Greeting
 Me.BackgroundImage = My.Resources.Dog
End Sub

code snippet UseResources

Because these property procedures are strongly typed, IntelliSense can offer support for them. If you
type My.Resources, IntelliSense lists the values defi ned in the application ’ s resource fi le.

The strongly typed resource properties use a ResourceManager object to fetch the application ’ s
resources. The My.Resources namespace exposes that object through its ResourceManager property,
so you can use that object directly to retrieve the application ’ s resources. The following code does
the same things as the previous version, except it uses the ResourceManager directly. Note that the
ResourceManager property ’ s GetObject method returns a generic Object, so the code uses CType to
convert the result into an Image before assigning it to the form ’ s BackgroundImage property.

Private Sub Form1_Load() Handles MyBase.Load
 lblGreeting.Text = My.Resources.ResourceManager.GetString("Greeting")
 Me.BackgroundImage = CType(
 My.Resources.ResourceManager.GetObject("Dog"), Image)
End Sub

code snippet UseResources

CH035.indd 820CH035.indd 820 12/31/09 6:57:03 PM12/31/09 6:57:03 PM

Example program UseResources uses similar code to set a label ’ s text and to display an image.
Commented - out code does the same thing by using the strongly typed resource properties.

Generally, you should use the automatically generated resource properties in the My.Resources
namespace because they are easier to use and they are strongly typed. The ResourceManager class is
much more useful when you use other embedded resource fi les as described in the following section.

Embedded Resources

In addition to storing resources in the application ’ s resource fi le Resources.resx, you can add other
resources fi les to the application. Open the Project menu and select the Add New Item command.
Pick the Resources File template, give the fi le a meaningful name, and click OK.

After you add a resource fi le to the project, you can double - click it in Solution Explorer to open it
in the resource editor. Then you can add resources to the fi le exactly as you do for the application ’ s
resource fi le.

At runtime, you can use a ResourceManager object to fetch the resources from the embedded fi le.
The following code loads the Dog image from the fi le Images.resx and the string Greeting from the
fi le Strings.resx.

It starts by declaring a ResourceManager variable. It then initializes the variable, passing its
constructor the resource fi le ’ s path and the assembly containing the fi le. The fi le ’ s path consists of
the application ’ s root namespace EmbeddedResources followed by the fi le ’ s name Images.

The program then uses the ResourceManager object ’ s GetObject method to fetch the Dog
image, converts the generic Object returned into an Image, and assigns the result to the form ’ s
BackgroundImage property.

Next, the code reinitializes the ResourceManager object so it represents the Strings resource fi le. It
calls the manager ’ s GetString method to get the value of the Greeting resource and saves the result
in the lblGreeting control ’ s Text property.

Private Sub Form1_Load() Handles MyBase.Load
 Dim resource_manager As ResourceManager

 ' Get the Dog image from Images.resx.
 resource_manager = New ResourceManager(
 "EmbeddedResources.Images",
 Me.GetType.Assembly)
 Me.BackgroundImage = CType(
 resource_manager.GetObject("Dog"), Image)

 ' Get the Greeting from StringResources.resx.
 resource_manager = New ResourceManager(
 "EmbeddedResources.Strings", Me.GetType.Assembly)
 lblGreeting.Text = resource_manager.GetString("Greeting")
End Sub

code snippet EmbeddedResources

Just as it generates strongly typed properties for application resources, Visual Studio generates similar
code for other embedded resource fi les. You can access these properties by adding the resource fi le ’ s

Resource Files ❘ 821

CH035.indd 821CH035.indd 821 12/31/09 6:57:05 PM12/31/09 6:57:05 PM

822 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

name after My.Settings and before the resource name. For example, to get the image resource named
Dog from the Images resource fi le, the program would use My.Settings.Images.Dog.

Example program EmbeddedResources, which is available for download on the book ’ s web site,
contains code to load embedded resources both with a resource manager and by using the strongly
typed resource properties.

Satellite Resources

Embedded resource fi les enable you to organize data in central locations. For example, you can keep
all the images used by the application in a single resource fi le, and all of the program ’ s forms can
fetch the images from that fi le.

Rather than embedding a resource fi le in the application, you can load it at runtime. Then if you
must make changes to the resources, you can replace the resource fi le and the program will load the
new resources the next time it runs.

To make switching resources easy, you can place them in a resource - only assembly. This satellite
assembly contains data for the application but doesn ’ t contain any program logic.

To make a resource - only satellite assembly, start a new Visual Basic project, selecting the Class
Library template. Delete the project ’ s initial class. Then, add resources to the project as you would add
them to any other project. You can add resources to the project ’ s application resources or to embedded
resource fi les. When you are fi nished adding resources, compile the project to build a .dll fi le.

You can then build an executable Windows application that loads resources from the assembly as
shown in the following code:

Private Sub Form1_Load() Handles MyBase.Load
 ' Get the resource Assembly.
 Dim satellite_assembly As Assembly
 satellite_assembly = Assembly.LoadFrom("SatelliteResourcesDll.dll")

 ' Create a ResourceManager for the satellite's
 ' main resource file.
 Dim resource_manager As ResourceManager
 resource_manager = New ResourceManager(
 "SatelliteResourcesDll.Resources", satellite_assembly)
 ' Get the string resource from the satellite's
 ' main resource file.
 lblGreeting.Text = resource_manager.GetString("Greeting")

 ' Create a ResourceManager for the satellite's
 ' Images resource file.
 resource_manager = New ResourceManager(
 "SatelliteResourcesDll.Images", satellite_assembly)

 ' Get the form's background image from the satellite's
 ' Images resource file.
 Me.BackgroundImage = CType(resource_manager.GetObject("Dog"), Image)
End Sub

code snippet SatelliteMain

CH035.indd 822CH035.indd 822 12/31/09 6:57:05 PM12/31/09 6:57:05 PM

The program declares an Assembly object and uses the shared Assembly.LoadForm method to load
information about the resource - only assembly SatelliteResourcesDll.dll. In this example, the fi le
was copied into the executable program ’ s startup directory so the program does not need to pass a
complete path to the LoadFrom method.

Next, the program uses the Assembly object to create a ResourceManager. For the resource fi le ’ s
name, it passes the ResourceManager object ’ s constructor to the assembly ’ s root namespace
SatelliteResourcesDll, followed by the name of the resource fi le within the satellite project. In this
case, the fi rst resource is stored in the project ’ s resources, so the fi le is MyResources.resx. Now the
program uses the ResourceManager object ’ s GetString method to fetch the Greeting resource.

The program then creates a new ResourceManager using the same Assembly object, this time using
the resource fi le named ImageResources.resx. It uses the GetObject method to fetch the image
named Dog, converts the result into an Image, and saves the result in the form ’ s BackgroundImage
property.

Later, if you must change the value of the Greeting string or the Dog image, you can update the
satellite project, build a new DLL fi le, and copy the DLL fi le into the executable program ’ s startup
directory. The next time you run the program, it will load the new resources.

Example projects SatelliteResourcesDll and SatelliteMain, which are both available for download
on the book ’ s web site, contain the satellite resource DLL and an executable program that uses it,
respectively.

Localization Resources

One of the most important reasons for inventing resource fi les was to allow localization: supporting
different text, images, and other items for different languages and cultures. In Visual Studio .NET,
localization is easy.

First, create a form using whatever language you typically use from day to day. For me, that ’ s
English as spoken in the United States. Open the form in the form designer and give it whatever
controls you need. Set the form ’ s and controls ’ properties as usual.

Next, set the form ’ s Localizable property to True. Then set the form ’ s Language property to the fi rst
language you want to support other than the default language that you have been working with so
far. Modify the controls ’ properties for the new language.

As you modify a form, Visual Studio saves the changes you make to a new resource fi le attached
to the form. If you open Solution Explorer and click the Show All Files button, you can see these
resource fi les below the form ’ s fi le.

Example program Localized, which is available for download on the book ’ s web site, uses default
settings for United States English. It also includes localizations for generic German (as opposed to
German as spoken in Switzerland, Germany, Liechtenstein, or some other country). If you expand
the form ’ s entry in Solution Explorer, you ’ ll fi nd the fi les Form1.resx holding the default settings and
Form1.de.resx holding the German settings.

Resource Files ❘ 823

CH035.indd 823CH035.indd 823 12/31/09 6:57:06 PM12/31/09 6:57:06 PM

824 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

At runtime, the application automatically checks the user ’ s computer and selects the best resource
fi le based on the system ’ s regional settings.

Normally, you should let the application pick the appropriate resource fi le automatically, but you
can explicitly select a resource fi le for testing purposes. To do that, open the Solution Explorer and
click the Show All Files button. Find the form ’ s design fi le (for example, Form1.Designer.vb) and
open it.

Give the form an empty constructor that sets the current thread ’ s CurrentCulture and
CurrentUICulture properties to the culture that you want to use. See the online help for
the CultureInfo class to get a list of possible cultures such as en - US (United States English) or
de - DE (German in Germany, as opposed to in Austria, Switzerland, or some other locale). The
result should look something like the following code:

Imports System.Threading
Imports System.Globalization

Public Class Form1
 Public Sub New()
 MyBase.New()

 ' Set the culture and UI culture to German.
 Thread.CurrentThread.CurrentCulture = New CultureInfo("de-DE")
 Thread.CurrentThread.CurrentUICulture = New CultureInfo("de-DE")

 'This call is required by the Windows Forms Designer.
 InitializeComponent()
 End Sub
End Class

code snippet LocalizedUseGerman

CULTURE COMES FIRST

Note that the program must set the culture and user interface culture before it calls
InitializeComponent because InitializeComponent is where the program sets the
form and control properties.

The rest is automatic. When the form ’ s InitializeComponent method executes, it loads the resources
it needs for the culture you selected.

Example program LocalizedUseGerman, which is available for download on the book ’ s web site,
uses this code to open the form localized for German even if your system would not normally select
that version.

ComponentResourceManager

Like the ResourceManager class, the ComponentResourceManager class provides GetString and
GetObject methods for loading resources from a resource fi le one at a time.

CH035.indd 824CH035.indd 824 12/31/09 6:57:07 PM12/31/09 6:57:07 PM

ComponentResourceManager also provides the ApplyResources method, which makes applying
resources to an object easier. ApplyResources searches a resource fi le for items with a particular
object name. It then applies any resources it fi nds to an object ’ s properties.

For example, you could use ApplyResources to search for resources with the object name ExitButton
and apply them to the btnExit control. If the resource fi le contained an item named ExitButton.Text,
ApplyResources would apply it to the btnExit control ’ s Text property. If the method found other
resources (such as ExitButton.Location and ExitButton.Size), it would apply those properties to the
control, too.

When you localize a form, Visual Studio automatically creates entries in the appropriate resource
fi les for the form ’ s controls. If you set the form ’ s Language to German and set the btnYes button ’ s
Text property to Ja, Visual Studio adds a string entry named btnYes.Text with value Ja to the form ’ s
German resource fi le.

Visual Studio uses the special name $this to represent the form ’ s properties. For example, if you
set the form ’ s Text property, the IDE adds a string resource named $this.Text to the appropriate
resource fi le.

Example program LocalizedPickLanguage uses ComponentResourceManager objects in the
following code to load different localized resources while it is running:

' Select English.
Private Sub radEnglish_CheckedChanged() Handles radEnglish.CheckedChanged
 If Not radEnglish.Checked Then Exit Sub
 LoadAllResources(New CultureInfo("en-US"))
End Sub

' Select German.
Private Sub radGerman_CheckedChanged() Handles radGerman.CheckedChanged
 If Not radGerman.Checked Then Exit Sub
 LoadAllResources(New CultureInfo("de-DE"))
End Sub

' Load resources for the form and all controls.
Private Sub LoadAllResources(ByVal culture_info As CultureInfo)
 ' Make a ComponentResourceManager.
 Dim component_resource_manager As New ComponentResourceManager(Me.GetType)

 ' Load the form's resources.
 LoadResources(Me, "$this", component_resource_manager, culture_info)
End Sub

 ' Load appropriate resources for an object and its contained controls.
Private Sub LoadResources(ByVal parent As Control,
 ByVal parent_name As String,
 ByVal component_resource_manager As ComponentResourceManager,
 ByVal culture_info As CultureInfo)
 ' Load the parent's resources.
 component_resource_manager.ApplyResources(
 parent, parent_name, culture_info)

Resource Files ❘ 825

CH035.indd 825CH035.indd 825 12/31/09 6:57:08 PM12/31/09 6:57:08 PM

826 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

 ToolTip1.SetToolTip(parent, component_resource_manager.GetString(
 parent_name & ".ToolTip", culture_info))

 ' Load each contained control's resources.
 For Each ctl As Control In parent.Controls
 LoadResources(ctl, ctl.Name, component_resource_manager, culture_info)
 Next ctl
End Sub

code snippet LocalizedPickLanguage

When the user clicks the radEnglish radio button, the code calls subroutine LoadAllResources,
passing it a new CultureInfo object representing United States English. Similarly, when the user
clicks the radGerman radio button, the code calls LoadAllResources passing it a CultureInfo object
representing German.

Subroutine LoadAllResources creates a ComponentResourceManager for the form ’ s type and
calls subroutine LoadResources, passing it the form, the special form resource named $this, the
component resource manager, and the CultureInfo object.

Subroutine LoadResources loads the resources for an object and all of the controls it contains. First,
it uses the component resource manager ’ s ApplyResources to load the object ’ s resources.

Next, it sets the object ’ s tooltip if it has one. Recall that a control ’ s tooltip is actually not a property
of the control. Instead it is an extender provider property provided by a ToolTip control. To load the
form ’ s tooltip, the code explicitly calls the Tooltip1 control ’ s SetToolTip method, passing to it the
object being loaded and the object ’ s name with “ .ToolTip ” appended.

Finally, the code loops through the object ’ s contained controls and performs calls LoadResources
for each. This makes the code recursively call subroutine LoadResources for every control in the
application.

Example program LocalizedPickLanguage2 uses the following slightly modifi ed code to accomplish
the same tasks. Instead of passing a CultureInfo object into the ApplyResources method, the
program sets the current thread ’ s CurrentCulture and CurrentUICulture properties. It then lets the
calls to ApplyResources fi gure out which resource fi le to use.

' Load resources for the form and all controls.
Private Sub LoadAllResources(ByVal culture_info As CultureInfo)
 ' Set the current culture and UI culture.
 Thread.CurrentThread.CurrentCulture = culture_info
 Thread.CurrentThread.CurrentUICulture = culture_info

 ' Make a ComponentResourceManager.
 Dim component_resource_manager As New ComponentResourceManager(Me.GetType)

 ' Load the form's resources.
 LoadResources(Me, "$this", component_resource_manager)
End Sub

' Load appropriate resources for an object and its contained controls.

CH035.indd 826CH035.indd 826 12/31/09 6:57:09 PM12/31/09 6:57:09 PM

Private Sub LoadResources(ByVal parent As Control,
 ByVal parent_name As String,
 ByVal component_resource_manager As ComponentResourceManager)
 ' Load the parent's resources.
 component_resource_manager.ApplyResources(parent, parent_name)
 ToolTip1.SetToolTip(parent,
 component_resource_manager.GetString(parent_name & ".ToolTip"))

 ' Load each contained control's resources.
 For Each ctl As Control In parent.Controls
 LoadResources(ctl, ctl.Name, component_resource_manager)
 Next ctl
End Sub

code snippet LocalizedPickLanguage2

The program can later check the CurrentCulture and CurrentUICulture properties if it needs to
remember which culture it is currently using.

APPLICATION

The Application object represents the running application at a very high level. It provides properties
and methods for starting an event loop to process Windows messages, possibly for a form. It also
provides methods for controlling and stopping the event loop.

Don ’ t confuse the Application object with the My.Application namespace. The two have somewhat
similar purposes but very different features.

The following sections describe the Application object ’ s most useful properties, methods, and
events.

Application Properties

The following table describes the Application object ’ s most useful properties.

PROPERTY PURPOSE

CommonAppDataPath Returns the path where the program should store application data

shared by all users. By default, this path has the form base_path\

company_name\product_name\product_version. The base_path is

typically C:\Documents and Settings\All Users\Application

Data .

CommonAppDataRegistry Returns the Registry key where the program should store application

data shared by all users. By default, this path has the form HKEY_

LOCAL_MACHINE\Software\company_name\product_name\product_

version.

CompanyName Returns the application ’ s company name.

Application ❘ 827

CH035.indd 827CH035.indd 827 12/31/09 6:57:09 PM12/31/09 6:57:09 PM

828 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

PROPERTY PURPOSE

CurrentCulture Gets or sets the CultureInfo object for this thread.

CurrentInputLanguage Gets or sets the InputLanguage for this thread.

ExecutablePath Returns the fully qualifi ed path to the fi le that started the execution,

including the fi le name.

LocalUserAppDataPath Returns the path where the program should store data for this local,

nonroaming user. By default, this path has the form base_path\

company_name\product_name\product_version. The base_path

is typically C:\Documents and Settings\user_name\Local

Settings\Application Data .

MessageLoop Returns True if the thread has a message loop. If the program begins

with a startup form, this loop is created automatically. If it starts with a

custom Sub Main, the loop doesn ’ t initially exist and the program must

start it by calling Application.Run.

OpenForms Returns a collection holding references to all of the application ’ s open

forms.

ProductName Returns the application ’ s product name.

ProductVersion Gets the product version associated with this application.

StartupPath Returns the fully qualifi ed path to the directory where the program

starts.

UserAppDataPath Returns the path where the program should store data for this user. By

default, this path has the form base_path\company_name\product_

name\product_version. The base_path is typically C:\Documents and

Settings\user_name\Application Data .

UserAppDataRegistry Returns the Registry key where the program should store application

data for this user. By default, this path has the form HKEY_CURRENT_

USER\Software\company_name\product_name\product_version.

UseWaitCursor Determines whether this thread ’ s forms display a wait cursor. Set this to

True before performing a long operation, and set it to False when the

operation is fi nished.

Example program ListForms, which is available for download on the book ’ s web site, uses the
Application.OpenForms collection to list its running forms.

To set the CompanyName, ProductName, and ProductVersion, open Solution Explorer, double - click
the My Project entry, and select the Application tab. Then click the Assembly Information button
and enter the values on the Assembly Information dialog box. Example program ShowProductInfo
displays these three values.

CH035.indd 828CH035.indd 828 12/31/09 6:57:10 PM12/31/09 6:57:10 PM

Application Methods

The following table describes the Application object ’ s most useful methods.

METHOD PURPOSE

AddMessageFilter Adds a message fi lter to monitor the event loop ’ s Windows

messages. See the following text for an example.

DoEvents Processes Windows messages that are currently in the message

queue. If the thread is performing a long calculation, it would

normally prevent the rest of the thread from taking action such

as processing these messages. Calling DoEvents lets the user

interface catch up with the user ’ s actions. Note that you can often

avoid the need for DoEvents if you perform the long task on a

separate thread.

Exit Ends the whole application. This is a rather abrupt halt and any forms

that are loaded do not execute their FormClosing or FormClosed

event handlers, so be certain that the application has executed any

necessary clean - up code before calling Application.Exit.

ExitThread Ends the current thread. This is a rather abrupt halt, and any

forms running on the thread do not execute their FormClosing or

FormClosed event handlers.

OnThreadException Raises the Application object ’ s ThreadException event, passing

it an exception. If your application throws an uncaught exception

in the IDE, the IDE halts. That makes it hard to test Application.

ThreadException event handlers. You can call OnThreadException

to invoke the event handler.

RemoveMessageFilter Removes a message fi lter.

Run Runs a message loop for the current thread. If you pass this method

a form object, it displays the form and processes its messages until

the form closes.

SetSuspendState Makes the system suspend operation or hibernate. When the

system hibernates, it writes its memory contents to disk. When

you restart the system, it resumes with its previous desktop and

applications running. When the system suspends operation,

it enters low - power mode. It can resume more quickly than a

hibernated system, but memory contents are not saved, so they will

be lost if the computer loses power.

Application ❘ 829

CH035.indd 829CH035.indd 829 12/31/09 6:57:11 PM12/31/09 6:57:11 PM

830 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

Example program FilterMessages uses the following code to fi lter messages and ignore left mouse
button down messages:

Public Class Form1
 ' Filter out left mouse button down messages.
 Private Class NoLeftDownMessageFilter
 Implements IMessageFilter

 Public Function PreFilterMessage(
 ByRef m As System.Windows.Forms.Message) _
 As Boolean Implements IMessageFilter.PreFilterMessage
 ' If the message is left mouse down, return True
 ' to indicate that the message should be ignored.
 Const WM_LBUTTONDOWN As Long = & H201
 Return (m.Msg = WM_LBUTTONDOWN)
 End Function
 End Class

 ' Install the message filter.
 Private Sub Form1_Load() Handles MyBase.Load
 Dim no_left_down_message_filter As New NoLeftDownMessageFilter
 Application.AddMessageFilter(no_left_down_message_filter)
 End Sub

 ' Toggle the wait cursor.
 Private Sub Form1_Click() Handles Me.Click
 Application.UseWaitCursor = Not Application.UseWaitCursor
 End Sub
End Class

code snippet FilterMessages

The NoLeftDownMessageFilter class implements the IMessageFilter interface, which specifi es the
PreFilterMessage function. That function examines a message and returns True if it wants to fi lter
the message out of the form ’ s message queue. In this example, the function returns True if the
message is WM_LBUTTONDOWN, indicating that the left button has been pressed.

The form ’ s Load event handler creates a new instance of the fi lter class and uses the Application
object ’ s AddMessageFilter method to install the fi lter.

The form ’ s Click event handler toggles the state of the Application object ’ s UseWaitCursor property.
This displays or hides the wait cursor.

When you left - click the form, the message fi lter intercepts the left button down message, so the
Click event doesn ’ t occur. If you right - click the form, the fi lter allows all messages through so
the Click event occurs and the form displays or hides the wait cursor.

Application Events

The Application object provides a few events that give you information about the application ’ s
state. The following table describes these events.

CH035.indd 830CH035.indd 830 12/31/09 6:57:11 PM12/31/09 6:57:11 PM

EVENT PURPOSE

ApplicationExit Occurs when the application is about to shut down.

Idle Occurs when the application fi nishes executing some code and is

about to enter an idle state to wait for events.

ThreadException Occurs when the application throws an unhandled exception.

See the following code for an example.

ThreadExit Occurs when a thread is about to exit.

When you end an application by unloading its form, the program receives the events FormClosing,
FormClosed, ThreadExit, and ApplicationExit, in that order.

If you end the application by calling the Application object ’ s Exit method, the program only receives
the ThreadExit and ApplicationExit events. If more than one thread is running, they each receive
ThreadExit events, and then they each receive ApplicationExit events.

Example program CatchThreadException uses the following code to catch all exceptions thrown by
the application:

Imports System.IO

Public Class Form1
 ' Install the ThreadException event handler.
 Private Sub Form1_Load() Handles Me.Load
 AddHandler Application.ThreadException,AddressOf Me.app_ThreadException
 End Sub

 ' Catch a ThreadException event.
 Private Sub app_ThreadException(ByVal sender As Object,
 ByVal e As System.Threading.ThreadExceptionEventArgs)
 MessageBox.Show("Caught unhandled exception:" &
 vbCrLf & vbCrLf & e.Exception.Message)
 End Sub

 ' Throw an InvalidDataException.
 Private Sub btnThrow_Click() Handles btnThrow.Click
 Throw New InvalidDataException("Bad data! Bad!")
 End Sub

 ' Call the OnThreadException method.
 Private Sub btnOnThreadException_Click() Handles btnOnThreadException.Click
 Application.OnThreadException(New InvalidDataException("Bad data! Bad!"))
 End Sub
End Class

code snippet CatchThreadException

When it starts, the form ’ s Load event handler uses the Application object ’ s AddHandler method to
add the app_ThreadException subroutine as a handler for the Application ’ s ThreadException event.

Application ❘ 831

CH035.indd 831CH035.indd 831 12/31/09 6:57:12 PM12/31/09 6:57:12 PM

832 ❘ CHAPTER 35 CONFIGURATION AND RESOURCES

The app_ThreadException subroutine simply displays an error message describing the exception
that it caught. A real application would take different actions such as logging the error and a stack
trace, restarting the application, and so forth.

When the user clicks the Throw button, the program throws an exception. If you are running
the program in the development environment, Visual Studio halts at the Throw statement
and tells you that it encountered an unhandled exception. If you run the compiled executable
outside of the development environment, the application ’ s ThreadException event occurs.
The app_ThreadException routine catches the event and displays its message.

When the user clicks the OnThreadException button, the program calls the Application object ’ s
OnThreadException method, passing it an exception object. Whether you are running in the
development environment or running the compiled executable, the application ’ s ThreadException
event occurs and the app_ThreadException routine catches it. You can use OnThreadException to
throw the exception without the IDE ’ s interference, so you can catch it and debug the exception
handling code.

SUMMARY

Visual Studio provides many ways to store and use application confi guration and resource
information. Some of the most useful of these include environment variables, the Registry,
confi guration fi les, and resource fi les. The My namespace and the Application object make working
with some of these easier.

Store confi guration information that changes relatively often in confi guration fi les. Store resources
that determine the application ’ s appearance in resource fi les. If you will distribute the application in
multiple languages, use localized resource fi les to manage the different languages. If necessary, you
can change the data stored in confi guration and resource fi les and redistribute them to your users
without rebuilding the entire application.

You can store small pieces of information between program runs in the System Registry. Use
databases, XML fi les, and other fi les to store larger amounts of data.

Using all of these techniques, you can make your application easily confi gurable. You can satisfy the
needs of different kinds of users and customize the application without recompiling it.

This chapter explained ways that a program can save confi guration and resource information using
tools such as the Registry, environment variables, and resource fi les. Generally, these kinds of data
are of relatively limited size. If an application needs to store larger amounts of data, it generally uses
a database or fi le.

Chapter 37, “ Streams, ” explains classes that a Visual Basic application can use to work with stream
data in general, and fi les in particular. Using streams attached to fi les, a program can read and write
large amounts of data without cluttering up the Registry, environment variables, or resource fi les.

CH035.indd 832CH035.indd 832 12/31/09 6:57:12 PM12/31/09 6:57:12 PM

Streams

At some very primitive level, all pieces of data are just piles of bytes. The computer doesn ’ t
really store invoices, employee records, and recipes. At its most basic level, the computer stores
bytes of data (or even bits, but the computer naturally groups them in bytes). It is only when
a program interprets those bytes that they acquire a higher - level meaning that is valuable to
the user.

Although you generally don ’ t want to treat high - level data as undifferentiated bytes, there are
times when thinking of the data as bytes lets you handle it in more uniform ways.

One type of byte - like data is the stream, an ordered series of bytes. Files, data fl owing across
a network, messages moving through a queue, and even the memory in an array all fi t this
description.

Defi ning the abstract idea of a stream lets applications handle these different types of objects
uniformly. If an encryption or serialization routine manipulates a generic stream of bytes,
it doesn ’ t need to know whether the stream represents a fi le, a chunk of memory, plain text,
encrypted text, or data fl owing across a network.

Visual Studio provides several classes for manipulating different kinds of streams. It also
provides higher - level classes for working with this kind of data at a more abstract level.
For example, it provides classes for working with streams that happen to represent fi les
and directories.

This chapter describes some of the classes you can use to manipulate streams. It explains
lower - level classes that you may use only rarely and higher - level classes that let you read and
write strings and fi les relatively easily.

The following table summarizes the most useful stream classes.

36

CH036.indd 833CH036.indd 833 12/31/09 6:57:46 PM12/31/09 6:57:46 PM

834 ❘ CHAPTER 36 STREAMS

CLASS USE

FileStream Read and write bytes in a fi le.

MemoryStream Read and write bytes in memory.

BinaryReader, BinaryWriter Read and write specifi c data types in a stream.

StringReader, StringWriter Read and write text with or without new lines in a string.

StreamReader, StreamWriter Read and write text with or without new lines in a stream

(usually a fi le stream).

STREAM

The Stream class defi nes properties and methods that derived stream classes must provide. These let
the program perform relatively generic tasks with streams such as determining whether the stream
allows writing.

The following table describes the Stream class ’ s most useful properties.

PROPERTY PURPOSE

CanRead Returns True if the stream supports reading.

CanSeek Returns True if the stream supports seeking to a particular position in the

stream.

CanTimeout Returns True if the stream supports timing out of read and write operations.

CanWrite Returns True if the stream supports writing.

Length Returns the number of bytes in the stream.

Position Returns the stream ’ s current position in its bytes. For a stream that supports

seeking, the program can set this value to move to a particular position.

ReadTimeout Determines the number of milliseconds that a read operation will wait before

timing out.

WriteTimeout Determines the number of milliseconds that a write operation will wait before

timing out.

CH036.indd 834CH036.indd 834 12/31/09 6:57:49 PM12/31/09 6:57:49 PM

The following table describes the Stream class ’ s most useful methods.

METHOD PURPOSE

BeginRead Begins an asynchronous read.

BeginWrite Begins an asynchronous write.

Close Closes the stream and releases any resources it uses (such as fi le handles).

EndRead Waits for an asynchronous read to fi nish.

EndWrite Ends an asynchronous write.

Flush Flushes data from the stream ’ s buff ers into the underlying storage medium

(device, fi le, memory, and so forth).

Read Reads bytes from the stream and advances its position by that number of bytes.

ReadByte Reads a byte from the stream and advances its position by one byte.

Seek If the stream supports seeking, sets the stream ’ s position.

SetLength Sets the stream ’ s length. If the stream is currently longer than the new length, it is

truncated. If the stream is shorter than the new length, it is enlarged. The stream

must support both writing and seeking for this method to work.

Write Writes bytes into the stream and advances the current position by this number

of bytes.

WriteByte Writes one byte into the stream and advances the current position by one byte.

You can learn about the other members of the Stream class at msdn.microsoft.com/system
.io.stream.aspx .

FILESTREAM

The FileStream class provides a stream representation of a fi le.

The FileStream class ’ s parent class Stream defi nes most of its properties and methods. See the
preceding section “ Stream ” for descriptions of those properties and methods.

FileStream adds two useful new properties to those it inherits from Stream. First, IsAsync returns
True if the FileStream was opened asynchronously. Second, the Name property returns the fi le name
passed into the object ’ s constructor.

The class also adds two new useful methods to those it inherits from Stream. The Lock method
locks the fi le, so other processes can read it but not modify it. Unlock removes a previous lock.

FileStream ❘ 835

CH036.indd 835CH036.indd 835 12/31/09 6:57:49 PM12/31/09 6:57:49 PM

836 ❘ CHAPTER 36 STREAMS

Overloaded versions of the FileStream class ’ s constructor let you specify the following:

A fi le name or handle, the fi le mode (Append, Create, CreateNew, Open, OpenOrCreate, or
Truncate)

Access mode (Read, Write, or ReadWrite)

File sharing (Inheritable, which allows child processes to inherit the fi le handle, None,
Read, Write, or ReadWrite)

A buffer size

File options (Asynchronous, DeleteOnClose, Encrypted, None, RandomAccess,
SequentialScane, or WriteThrough)

Example program FileStreamWrite uses the following code to create a fi le. It creates a fi le and uses
a Universal Transformation Format (UTF) UTF8Encoding object to convert a string into an array of
bytes. It writes the bytes into the fi le and then closes the FileStream.

Dim file_name As String = Application.StartupPath & "\test.txt"
Using file_stream As New FileStream(file_name, FileMode.Create)
 Dim bytes As Byte() = New UTF8Encoding().GetBytes("Hello world!")

 file_stream.Write(bytes, 0, bytes.Length)
 file_stream.Close()
End Using

code snippet FileStreamWrite

CHARACTER SETS

The 8 - bit UTF encoding is the most popular type on the Web, although there
are other encoding formats such as UTF - 7 and UTF - 16. For additional
information, see zsigri.tripod.com/fontboard/cjk/unicode.html or www
.i18nguy.com/unicode/codepages.html .

As this example demonstrates, the FileStream class provides only low - level methods for reading
and writing fi les. These methods let you read and write bytes, but not integers, strings, or the other
types of data that you are more likely to want to use.

The BinaryReader and BinaryWriter classes let you read and write binary data more easily than the
FileStream class does. The StringReader and StringWriter classes let you read and write string data
more easily than the other classes. See the section “ StringReader and StringWriter ” describing these
classes later in this chapter for more information.

➤

➤

➤

➤

➤

CH036.indd 836CH036.indd 836 12/31/09 6:57:50 PM12/31/09 6:57:50 PM

MEMORYSTREAM

Like FileStream, the MemoryStream class inherits from the Stream class. This class represents
a stream with data stored in memory. Like the FileStream, it provides only relatively simple
methods for reading and writing data. Usually, you will want to attach a higher - level object to the
MemoryStream to make using it easier.

Example program MemoryStreamWrite uses the following code to write and read from a
MemoryStream object. It fi rst creates the MemoryStream. It then creates a BinaryWriter attached
to the MemoryStream and uses it to write some text into the stream. Next, the program creates
a BinaryReader object attached to the same MemoryStream. It uses the stream ’ s Seek method to
rewind the stream to its beginning, and then uses the BinaryReader object ’ s ReadString method to
read the string out of the MemoryStream.

Dim memory_stream As New MemoryStream()
Dim binary_writer As New BinaryWriter(memory_stream)
binary_writer.Write("Peter Piper picked a peck of pickled peppers.")

Dim binary_reader As New BinaryReader(memory_stream)
memory_stream.Seek(0, SeekOrigin.Begin)
MessageBox.Show(binary_reader.ReadString())
binary_reader.Close()

code snippet MemoryStreamWrite

The following example does the same things as the previous example, except that it uses the
StreamWriter and StreamReader classes instead of BinaryWriter and BinaryReader. Note that this
version must call the StreamWriter class ’ s Flush method to ensure that all of the text is written into
the MemoryStream before it can read the memory using the StreamReader.

Using memory_stream As New MemoryStream()
 Dim stream_writer As New StreamWriter(memory_stream)
 stream_writer.Write("Peter Piper picked a peck of pickled peppers.")
 stream_writer.Flush()

 Dim stream_reader As New StreamReader(memory_stream)
 memory_stream.Seek(0, SeekOrigin.Begin)
 MessageBox.Show(stream_reader.ReadToEnd())
 stream_reader.Close()
End Using

BUFFEREDSTREAM

The BufferedStream class adds buffering to another stream class. For example, you can create a
BufferedStream class attached to a network stream that communicates with another application
through sockets. The BufferedStream class buffers data passing through the network connection.

Buff eredStream ❘ 837

CH036.indd 837CH036.indd 837 12/31/09 6:57:51 PM12/31/09 6:57:51 PM

838 ❘ CHAPTER 36 STREAMS

Most programs don ’ t need to explicitly create their own buffered streams, so this class isn ’ t
described further here. See the online help for more information.

BINARYREADER AND BINARYWRITER

The BinaryReader and BinaryWriter classes are not stream classes. Instead, they are helper classes
that work with stream classes. They let you read and write data in fi les using a specifi c encoding.
For example, the BinaryReader object ’ s ReadInt32 method reads a 4 - byte (32 - bit) signed integer
from the stream. Similarly, the ReadUInt16 method reads a 2 - byte (16 - bit) unsigned integer.

These classes still work at a relatively low level, and you should generally use higher - level classes
to read and write data. For example, you shouldn ’ t tie yourself to a particular representation of an
integer unless you really must.

BinaryReader and BinaryWriter objects are attached to stream objects that provide access to
the underlying bytes. Both of these classes have a BaseStream property that returns a reference
to the underlying stream. Note also that the Close method provided by each of these classes
automatically closes the underlying stream.

The following table describes the BinaryReader class ’ s most useful methods.

METHOD PURPOSE

Close Closes the BinaryReader and its underlying stream.

PeekChar Reads the stream ’ s next character but does not advance the reader ’ s position,

so other methods can still read the character later.

Read Reads characters from the stream and advances the reader ’ s position.

ReadBoolean Reads a Boolean from the stream and advances the reader ’ s position by

1 byte.

ReadByte Reads a byte from the stream and advances the reader ’ s position by 1 byte.

ReadBytes Reads a number of bytes from the stream into a byte array and advances the

reader ’ s position by that number of bytes.

ReadChar Reads a character from the stream, and advances the reader ’ s position

according to the stream ’ s encoding and the character.

ReadChars Reads a number of characters from the stream, returns the results in a

character array, and advances the reader ’ s position according to the stream ’ s

encoding and the characters.

ReadDecimal Reads a decimal value from the stream and advances the reader ’ s position by

16 bytes.

CH036.indd 838CH036.indd 838 12/31/09 6:57:52 PM12/31/09 6:57:52 PM

METHOD PURPOSE

ReadDouble Reads an 8 - byte fl oating - point value from the stream and advances the

reader ’ s position by 8 bytes.

ReadInt16 Reads a 2 - byte signed integer from the stream and advances the reader ’ s

position by 2 bytes.

ReadInt32 Reads a 4 - byte signed integer from the stream and advances the reader ’ s

position by 4 bytes.

ReadInt64 Reads an 8 - byte signed integer from the stream and advances the reader ’ s

position by 8 bytes.

ReadSByte Reads a signed byte from the stream and advances the reader ’ s position by

1 byte.

ReadSingle Reads a 4 - byte fl oating - point value from the stream and advances the

reader ’ s position by 4 bytes.

ReadString Reads a string from the current stream and advances the reader ’ s position

past it. The string begins with its length.

ReadUInt16 Reads a 2 - byte unsigned integer from the stream and advances the reader ’ s

position by 2 bytes.

ReadUInt32 Reads a 4 - byte unsigned integer from the stream and advances the reader ’ s

position by 4 bytes.

ReadUInt64 Reads an 8 - byte unsigned integer from the stream and advances the reader ’ s

position by 8 bytes.

The following table describes the BinaryWriter class ’ s most useful methods.

METHOD PURPOSE

Close Closes the BinaryWriter and its underlying stream.

Flush Writes any buff ered data into the underlying stream.

Seek Sets the position within the stream.

Write Writes a value into the stream. This method has many overloaded versions that

write characters, arrays of characters, integers, strings, unsigned 64 - bit integers,

and so forth.

BinaryReader and BinaryWriter ❘ 839

CH036.indd 839CH036.indd 839 12/31/09 6:57:52 PM12/31/09 6:57:52 PM

840 ❘ CHAPTER 36 STREAMS

You can learn about the other members of the BinaryWriter and BinaryReader classes at
msdn.microsoft.com/system.io.binarywriter.aspx and msdn.microsoft.com/system
.io.binaryreader.aspx , respectively.

TEXTREADER AND TEXTWRITER

The TextReader and TextWriter classes are also not stream classes, but they provide properties
and methods for working with text, which is stream - related. In particular, the StreamWriter and
StreamReader classes derived from TextReader and TextWriter are associated with streams.

TextReader and TextWriter are abstract (MustInherit) classes that defi ne behaviors for derived
classes that read or write text characters. For example, the StringWriter and StreamWriter classes
derived from TextWriter let a program write characters into a string or stream, respectively.
Normally, you would use these derived classes to read and write text, but you might want to use
the TextReader or TextWriter classes to manipulate the underlying classes more generically. You
may also encounter a method that requires a TextReader or TextWriter object as a parameter.
In that case, you could pass the method either a StringReader/StringWriter or a StreamReader/
StreamWriter. For more information on these, see the sections “ StringReader and StringWriter ” and
“ StreamReader and StreamWriter ” later in this chapter.

The following table describes the TextReader object ’ s most useful methods.

METHOD PURPOSE

Close Closes the reader and releases any resources that it is using.

Peek Reads the next character from the text without changing the reader ’ s state, so

other methods can read the character later.

Read Reads data from the input. Overloaded versions of this method read a single

character or an array of characters up to a specifi ed length.

ReadBlock Reads data from the input into an array of characters.

ReadLine Reads a line of characters from the input and returns the data in a string.

ReadToEnd Reads any remaining characters in the input and returns them in a string.

The TextWriter class has three useful properties. Encoding specifi es the text ’ s encoding (ASCII,
UTF - 8, Unicode, and so forth).

FormatProvider returns an object that controls formatting. For example, you can build
a FormatProvider object that knows how to display numbers in different bases (such as hexadecimal
or octal).

The NewLine property gets or sets the string used by the writer to end lines. Usually, this value is
something similar to a carriage return or a carriage return plus a line feed.

CH036.indd 840CH036.indd 840 12/31/09 6:57:53 PM12/31/09 6:57:53 PM

The following table describes the TextWriter object ’ s most useful methods.

METHOD PURPOSE

Close Closes the writer and releases any resources it uses.

Flush Writes any buff ered data into the underlying output.

Write Writes a value into the output. This method has many overloaded versions

that write characters, arrays of characters, integers, strings, unsigned 64 - bit

integers, and so forth.

WriteLine Writes data into the output followed by the new line sequence.

You can learn about the other members of the TextWriter and TextReader classes at
msdn.microsoft.com/system.io.textwriter.aspx and msdn.microsoft.com/system
.io.textreader.aspx , respectively.

STRINGREADER AND STRINGWRITER

The StringReader and StringWriter classes let a program read and write text in a string.

These classes are derived from TextReader and TextWriter and inherit the defi nitions of most
of their properties and methods from those classes. See the preceding section “ TextReader and
TextWriter ” for details.

The StringReader provides methods for reading lines, characters, or blocks of characters from
the string. Its ReadToEnd method returns any of the string that has not already been read. The
StringReader class ’ s constructor takes as a parameter the string that it should process.

The StringWriter class lets an application build a string. It provides methods to write text into
the string with or without a new - line character. Its ToString method returns the StringWriter
class ’ s string.

The StringWriter stores its string in an underlying StringBuilder class. StringBuilder is designed to
make incrementally building a string more effi cient. For example, if an application needs to build
a very large string by concatenating a series of long substrings, it may be more effi cient to use a
StringBuilder rather than adding the strings to a normal String variable. StringWriter provides a
simple interface to the StringBuilder class.

The most useful method provided by StringWriter that is not defi ned by the TextWriter parent class
is GetStringBuilder. This method returns a reference to the underlying StringBuilder object that
holds the class ’ s data.

Example program StringWriterReader uses the following code to demonstrate the StringWriter and
StringReader classes. It creates a StringWriter object and uses its WriteLine method to add two
lines to the string. It then displays the result of the writer ’ s ToString method. This method returns
the writer ’ s current contents. Next, the program creates a StringReader, passing its constructor the

StringReader and StringWriter ❘ 841

CH036.indd 841CH036.indd 841 12/31/09 6:57:53 PM12/31/09 6:57:53 PM

842 ❘ CHAPTER 36 STREAMS

string from which it will read. It closes the StringWriter because it is no longer needed. The code
displays the result of the StringReader class ’ s ReadLine method. Because the StringWriter created
the string as two separate lines, this displays only the fi rst line, “ The quick brown fox. ” Next,
the code uses the StringReader class ’ s ReadToEnd method to read and display the rest of the text,
“ jumps over the lazy dog. ” The code fi nishes by closing the StringReader.

' Use a StringWriter to write into a string.
Using string_writer As New StringWriter()
 string_writer.WriteLine("The quick brown fox")
 string_writer.WriteLine("jumps over the lazy dog.")
 MessageBox.Show(string_writer.ToString)

 Use a StringReader to read from the string.
 Using string_reader As New StringReader(string_writer.ToString)
 string_writer.Close()
 MessageBox.Show(string_reader.ReadLine())
 MessageBox.Show(string_reader.ReadToEnd())
 string_reader.Close()
 End Using
End Using

code snippet StringWriterReader

STREAMREADER AND STREAMWRITER

The StreamReader and StreamWriter classes let a program read and write data in a stream. The
underlying stream is usually a FileStream. You can pass a FileStream into these classes ’ constructors,
or you can pass a fi le name and the object will create a FileStream automatically.

The StreamReader provides methods for reading lines, characters, or blocks of characters
from the stream. Its ReadToEnd method returns any of the stream that has not already been read.
The EndOfStream method returns True when the StreamReader has reached the end of the stream.

Example program ReadLines uses the following code fragment to read the lines from a fi le and add
them to the a ListBox control:

Do Until stream_reader.EndOfStream()
 lstValues.Items.Add(stream_reader.ReadLine())
Loop

code snippet ReadLines

The StreamWriter class provides methods to write text into the stream with or without a new - line
character.

StreamReader and StreamWriter are derived from the TextReader and TextWriter classes and
inherit the defi nitions of most of their properties and methods from those classes. See the section
“ TextReader and TextWriter ” earlier in this chapter for a description of these properties and
methods.

CH036.indd 842CH036.indd 842 12/31/09 6:57:54 PM12/31/09 6:57:54 PM

The StreamWriter class adds a new AutoFlush property that determines whether the writer fl ushes
its buffer after every write.

Example program StreamWriterReader uses the following code to demonstrate the StreamReader
and StreamWriter classes. It generates a fi le name and passes it into a StreamWriter class ’ s
constructor. It uses the StreamWriter class ’ s Write and WriteLine methods to place two lines of text
in the fi le. It then closes the fi le. If you were to open the fi le now with a text editor, you would see
the text. The program then creates a new StreamReader, passing its constructor the same fi le name.
It uses the reader ’ s ReadToEnd method to grab the fi le ’ s contents and displays the results.

Dim file_name As String = Application.StartupPath & "\test.txt"
Using stream_writer As New StreamWriter(file_name)
 stream_writer.Write("The quick brown fox")
 stream_writer.WriteLine(" jumps over the lazy dog.")
 stream_writer.Close()
End Using

Using stream_reader As New StreamReader(file_name)
 MessageBox.Show(stream_reader.ReadToEnd())
 stream_reader.Close()
End Using

code snippet StreamWriterReader

This example would have been much more awkward using a FileStream object ’ s lower - level Write
and Read methods to manipulate byte arrays. Compare this code to the example in the “ FileStream ”
section earlier in this chapter.

OPENTEXT, CREATETEXT, AND APPENDTEXT

The File class in the System.IO namespace provides four shared methods that are particularly useful
for working with StreamReader and StreamWriter objects associated with text fi les. The following
table summarizes these four methods.

METHOD PURPOSE

Exists Returns True if a fi le with a given path exists.

OpenText Returns a StreamReader that lets you read from an existing text fi le.

CreateText Creates a new text fi le, overwriting any existing fi le at the given path, and returns

a StreamWriter that lets you write into the new fi le.

AppendText If the indicated fi le does not exist, creates the fi le. Whether the fi le is new or

previously existing, returns a StreamWriter that lets you append text at the end of

the fi le.

OpenText, CreateText, and AppendText ❘ 843

CH036.indd 843CH036.indd 843 12/31/09 6:57:54 PM12/31/09 6:57:54 PM

844 ❘ CHAPTER 36 STREAMS

The following code demonstrates the Exists and OpenText methods. First, it uses Exists to see
if the fi le exists. If the fi le does exist, the code uses OpenText to open the fi le and get a
StreamReader associated with it. It uses the StreamReader class ’ s ReadToEnd method to display
the fi le ’ s text in the text box txtData.

Dim file_name As String = Application.StartupPath & "\test.txt"
If Not Exists(file_name) Then
 txtData.Text = " < File not found > "
Else
 Using sr As StreamReader = OpenText(file_name)
 txtData.Text = sr.ReadToEnd()
 sr.Close()
 End Using
End If

code snippet OpenCreateAppendText

The following code demonstrates the CreateText method. The code uses CreateText to create a new
text fi le named test.txt. If test.txt already exists, CreateText overwrites it without warning. The
program uses the StreamWriter returned by CreateText to write the contents of the txtData text box
into the fi le and closes the fi le.

Dim file_name As String = Application.StartupPath & "\test.txt"
Using sw As StreamWriter = CreateText(file_name)
 sw.Write(txtData.Text)
 sw.Close()
End Using

code snippet OpenCreateAppendText

The following code demonstrates the AppendText method. The AppendText method creates the
fi le if it doesn ’ t already exist, or opens it for appending if it does exist. The program uses the
StreamWriter returned by AppendText to write into the fi le and then closes the fi le.

Dim file_name As String = Application.StartupPath & "\test.txt"
Using sw As StreamWriter = AppendText(file_name)
 sw.Write(txtData.Text)
 sw.Close()
End Using

code snippet OpenCreateAppendText

Example program OpenCreateAppendText uses these code snippets to see if a fi le exists, create a
new fi le, open an existing fi le, append to an existing fi le, and read from a fi le.

CH036.indd 844CH036.indd 844 12/31/09 6:57:55 PM12/31/09 6:57:55 PM

CUSTOM STREAM CLASSES

Visual Studio provides a few other stream classes with more specialized uses.

The CryptoStream class applies a cryptographic transformation to data that passes through it. For
example, if you attach a CryptoStream to a fi le using a particular cryptographic transformation
and then use it to write data, the CryptoStream automatically transforms the data and produces
an encrypted fi le. Similarly, you can use a CryptoStream to read an encrypted fi le and recover the
original text.

The NetworkStream class represents a socket - based stream over a network connection. You can use
this class to make different applications communicate over a network.

Three other special uses of streams are standard input, standard output, and standard error.
Console applications defi ne these streams for reading and writing information to and from the
console. An application can interact directly with these streams by accessing the Console.In,
Console.Out, and Console.Error properties. It can change these streams to new stream objects such
as StreamReaders and StreamWriters by calling the Console.SetIn, Console.SetOut, and Console
.SetError methods.

SUMMARY

Streams let a program consider a wide variety of data sources in a uniform way. If a subroutine
takes a stream as a parameter, it doesn ’ t need to worry about whether the stream is attached to a
string, fi le, block of memory, or network connection.

Many applications use the StringReader and StringWriter classes to read and write text in strings,
and the StreamReader and StreamWriter classes to read and write text in streams (usually fi les). The
Exists, OpenText, CreateText, and AppendText methods are particularly useful for working with
StreamReader and StreamWriter objects associated with text fi les.

The other stream classes are often used at lower levels or as more abstract classes to allow a
routine to process different kinds of streams in a uniform way. If you focus on these four classes
(StringReader, StringWriter, StreamReader, and StreamWriter), you will quickly learn how to
perform the most common stream operations.

Programs often use the StreamReader and StreamWriter classes to read and write fi les. Chapter 38,
“ File - System Objects, ” describes classes that let a Visual Basic application interact with the fi le
system in other ways. These classes let a program examine, rename, move, and delete fi les and
directories.

Summary ❘ 845

CH036.indd 845CH036.indd 845 12/31/09 6:57:56 PM12/31/09 6:57:56 PM

CH036.indd 846CH036.indd 846 12/31/09 6:57:56 PM12/31/09 6:57:56 PM

File - System Objects

Visual Basic includes a bewildering assortment of objects that you can use to manipulate
drives, directories, and fi les. The stream classes described in Chapter 36 enable you to
read and write fi les, but they don ’ t really capture any of the special structure of the
fi le system.

A Visual Basic application has two main choices for working with the fi le system: Visual Basic
methods and .NET Framework classes. This chapter describes these two approaches and
the classes that they use. It fi nishes by describing some of the My namespace properties
and methods that you can use to access fi le - system tools more easily. For more information on
the My namespace, see the section “ My ” in Chapter 35, “ Confi guration and Resources, ” and
Appendix S, “ The My Namespace. ”

PERMISSIONS

An application cannot perform a task if the user running it doesn ’ t have the appropriate
permissions. Although this is true of any operation a program must perform, permission
issues are particularly common when working with fi les, and recent versions of the Windows
operating system are particularly strict about enforcing permission requirements.

A common mistake is for developers to build and test an application while logged in as a user
who has a lot of privileges. Sometimes, developers even have system administrator privileges,
so their programs can do pretty much anything on the computer. To ensure that users will
have the permissions needed by an application, develop or at least test the code using an
account with the privileges that typical users will have.

Chapter 24, “ UAC Security, ” describes permissions in greater detail.

37

c37.indd 847c37.indd 847 12/31/09 7:04:34 PM12/31/09 7:04:34 PM

848 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

VISUAL BASIC METHODS

Visual Basic provides a number of commands for manipulating the fi le system. These commands
are relatively fl exible and easy to understand. Most of them have been around since the early days
of Visual Basic, so many long - time Visual Basic developers prefer to use them rather than the newer
.NET Framework methods.

One disadvantage to these methods is that they do not natively allow you to read and write
nonstandard data types. They can handle string, date, integer, long, single, double, and decimal data.
They can also handle structures and arrays of those types. They cannot, however, handle classes
themselves. You can use XML serialization to convert a class object into a string and then use these
methods to read and write the result, but that requires an extra step with some added complexity.

The section “ File - System Methods ” later in this chapter describes the native fi le - system methods
of Visual Basic. The sections “ Sequential - File Access, ” “ Random - File Access, ” and “ Binary - File
Access ” later in this chapter describe specifi c issues for working with sequential, random, and
binary fi les.

File Methods

The following table describes the methods Visual Basic provides for working with fi les.

METHOD PURPOSE

EOF Returns True if a fi le open for reading is at the end of fi le. (EOF stands

for End Of File.)

FileClose Closes an open fi le.

FileGet Reads data from a fi le opened in Random and Binary mode into a variable.

FileGetObject Reads data as an object from a fi le opened in Random and Binary mode

into a variable.

FileOpen Opens a fi le for reading or writing. Parameters indicate the mode (Append,

Binary, Input, Output, or Random), access type (Read, Write, or ReadWrite),

and sharing (Shared, LockRead, LockWrite, or LockReadWrite).

FilePut Writes data from a variable into a fi le opened for Random or Binary access.

FilePutObject Writes an object from a variable into a fi le opened for Random or

Binary access.

FreeFile Returns a fi le number that is not currently associated with any fi le in this

application. You should use FreeFile to get fi le numbers rather than using

arbitrary numbers such as 1.

Input Reads data written into a fi le by the Write method back into a variable.

InputString Reads a specifi c number of characters from the fi le.

c37.indd 848c37.indd 848 12/31/09 7:04:38 PM12/31/09 7:04:38 PM

METHOD PURPOSE

LineInput Returns the next line of text from the fi le.

Loc Returns the current position within the fi le.

LOF Returns the fi le ’ s length in bytes. (“ LOF ” stands for Length Of File.)

Print Prints values into the fi le. Multiple values separated by commas are aligned

at tab boundaries.

PrintLine Prints values followed by a new line into the fi le. Multiple values separated

by commas are aligned at tab boundaries.

Seek Moves to the indicated position within the fi le.

Write Writes values into the fi le, delimited appropriately so that they can later be

read by the Input method.

WriteLine Writes values followed by a new line into the fi le, delimited appropriately so

that they can later be read by the Input method.

Many of the Visual Basic fi le methods use a fi le number to represent an open fi le. The fi le number is
just a number used to identify the fi le. There ’ s nothing magic about it. You just need to be sure not
to use the same fi le number for more than one fi le at a time. The FreeFile method returns a number
that is not in use so that you know it is safe to use as a fi le number.

The following example uses FreeFile to get an available fi le number. It uses FileOpen to open a
fi le for reading. Then, while the EOF method indicates that the code hasn ’ t reached the end of
the fi le, the program uses LineInput to read a line from the fi le and it displays the line. When it
fi nishes reading the fi le, the program uses FileClose to close it.

 ' Get an available file number.
Dim file_num As Integer = FreeFile()

' Open the file.
FileOpen(file_num, "C:\Temp\test.txt",
 OpenMode.Input, OpenAccess.Read, OpenShare.Shared)

' Read the file's lines.
Do While Not EOF(file_num)
 ' Read a line.
 Dim txt As String = LineInput(file_num)
 Debug.WriteLine(txt)
Loop

' Close the file.
FileClose(file_num)

Visual Basic Methods ❘ 849

c37.indd 849c37.indd 849 12/31/09 7:04:39 PM12/31/09 7:04:39 PM

850 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

DIRECTORY RESTRICTIONS

Note that Windows restricts access to certain directories by normal non -
administrator users. In general, you need the correct permissions to work with fi les.
For example, you would need increased permissions to write into the system ’ s root
directory (for example, C:\) and the Windows directory. This example reads a fi le
in the Temp directory, which should be accessible to all users, so it should work for
everyone.

File - System Methods

Visual Basic also provides several methods for working with the fi le system. The following table
describes methods that manipulate directories and fi les.

METHOD PURPOSE

ChDir Changes the application ’ s current working directory.

ChDrive Changes the application ’ s current working drive.

CurDir Returns the application ’ s current working directory.

Dir Returns a fi le matching a directory path specifi cation that may include

wildcards, and matching certain fi le properties such as ReadOnly, Hidden, or

Directory. The fi rst call to Dir should include a path. Subsequent calls can omit

the path to fetch the next matching fi le for the initial path. Dir returns fi le names

without the path and returns Nothing when no more fi les match.

FileCopy Copies a fi le to a new location.

FileDateTime Returns the date and time when the fi le was created or last modifi ed.

FileLen Returns the length of a fi le in bytes.

GetAttr Returns a value indicating the fi le ’ s attributes. The value is a combination of the

values vbNormal, vbReadOnly, vbHidden, vbSystem, vbDirectory, vbArchive,

and vbAlias.

Kill Permanently deletes a fi le.

MkDir Creates a new directory.

Rename Renames a directory or fi le.

RmDir Deletes an empty directory.

SetAttr Sets the fi le ’ s attributes. The attribute value is a combination of the values

vbNormal, vbReadOnly, vbHidden, vbSystem, vbDirectory, vbArchive, and

vbAlias.

c37.indd 850c37.indd 850 12/31/09 7:04:40 PM12/31/09 7:04:40 PM

Sequential - File Access

With sequential fi le access, a program reads or writes the contents of a fi le byte - by - byte from
start to fi nish with no jumping around. In contrast, in a random - access fi le, the program can jump
freely to any position in the fi le and write data wherever it likes.

A text fi le is a typical sequential fi le. The program can read the text in order, and read it one line at
a time, but it cannot easily jump around within the fi le.

The Input, InputString, LineInput, Print, PrintLine, Write, and WriteLine methods provide
sequential access to fi les.

The Print and PrintLine methods provide mostly unformatted results. If you pass these methods
multiple parameters separated by commas, they align the results on tab boundaries. Write and
WriteLine, on the other hand, delimit their output so that it can be easily read by the Input method.

A program cannot directly modify only part of a sequential fi le. For example, it cannot modify, add,
or remove a sentence in the middle of a paragraph. If you must modify the fi le, you should read it
into a string, make the changes you want, and then rewrite the fi le.

If you must frequently modify text in the middle of a fi le, you should consider using random or
binary access, or storing the data in a database.

Random - File Access

A random - access fi le contains a series of fi xed - length records. For example, you could create an
employee fi le that contains a series of values defi ning an employee. Each record would have fi xed -
length fi elds to hold an employee ’ s ID, fi rst name, last name, street address, and so forth, as shown
in the following structure defi nition:

Structure Employee
 Public Id As Long
 < VBFixedString(20) > Public FirstName As String
 < VBFixedString(20) > Public LastName As String
 < VBFixedString(40) > Public Street As String
 ...
End Structure

When you open a fi le for random access, you can jump to any record in the fi le. That makes certain
kinds of fi le manipulation easier. For example, if the fi le is sorted, you can use a binary search to
locate records in it.

You can overwrite the values in a record within the fi le, but you cannot add or remove records in the
middle of the fi le. If you must make those sorts of changes, you must load the fi le into memory and
then rewrite it from scratch.

Visual Basic Methods ❘ 851

c37.indd 851c37.indd 851 12/31/09 7:04:41 PM12/31/09 7:04:41 PM

852 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

The FileGet, FileGetObject, FilePut, and FilePutObject methods read and write records in random -
access fi les. Example program RandomAccessEmployees uses the following code to demonstrate the
FilePut and FileGet methods:

Public Class Form1
 Public Structure Employee
 Public ID As Integer
 < VBFixedString(15) > Public FirstName As String
 < VBFixedString(15) > Public LastName As String

 Public Sub New(ByVal new_id As Integer, ByVal first_name As String,
 ByVal last_name As String)
 ID = new_id
 FirstName = first_name
 LastName = last_name
 End Sub

 Public Overrides Function ToString() As String
 Return ID & ": " & FirstName & " " & LastName
 End Function
 End Structure

 Private Sub btnMakeRecords_Click() Handles btnMakeRecords.Click
 ' Declare a record variable.
 Dim emp As New Employee

 ' Get an available file number.
 Dim file_num As Integer = FreeFile()

 ' Open the file.
 FileOpen(file_num, "MYFILE.DAT", OpenMode.Random,
 OpenAccess.ReadWrite, OpenShare.Shared, Len(emp))

 ' Make some records.
 FilePut(file_num, New Employee(1, "Alice", "Altanta"))
 FilePut(file_num, New Employee(2, "Bob", "Bakersfield"))
 FilePut(file_num, New Employee(3, "Cindy", "Chicago"))
 FilePut(file_num, New Employee(4, "Dan", "Denver"))
 FilePut(file_num, New Employee(5, "Erma", "Eagle"))
 FilePut(file_num, New Employee(6, "Fred", "Frisco"))

 ' Fetch and display the records.
 Dim obj As ValueType = DirectCast(emp, ValueType)
 For Each i As Integer In New Integer() {3, 1, 5, 2, 6}
 FileGet(file_num, obj, i)
 emp = DirectCast(obj, Employee)
 Debug.WriteLine("[" & emp.ToString() & "]")
 Next i

 ' Close the file.
 FileClose(file_num)
 End Sub
End Class

code snippet RandomAccessEmployees

c37.indd 852c37.indd 852 12/31/09 7:04:42 PM12/31/09 7:04:42 PM

First, the code defi nes a structure named Employee to hold the data in a record. Notice how the
code uses the VBFixedString attribute to fl ag the strings as fi xed length. The structure must have
a fi xed length if you want to jump randomly through the fi le because Visual Basic calculates a
record ’ s position by multiplying a record ’ s size by its index in the fi le. If records contained strings of
unknown length, the calculation wouldn ’ t work.

When the user clicks the Make Records button, the btnMakeRecords_Click event handler executes.
This code declares a variable of the record type, Employee. It uses the FreeFile method to get an
available fi le number and uses FileOpen to open the fi le for random access. The fi nal parameter
to FileOpen is the length of the fi le ’ s records. To calculate this length, the program uses the Len
function, passing it the Employee instance emp.

Next, the program uses the FilePut method to write six records into the fi le. It passes FilePut the
fi le number and a new Employee structure. The structure ’ s constructor makes initializing the new
records easy.

The program then uses FileGet to retrieve the six records using their indexes as keys, fetching
them out of numeric order to demonstrate random access. It then displays each record ’ s data in the
Output window surrounded by brackets so you can see where the data starts and ends.

There are two key points to notice here. First, the fi le numbers records starting with 1 not 0, so the
fi rst record in the fi le has index 1.

Second, the FileGet method does not have an overloaded version that takes an Employee structure
as a parameter. Because this example has Option Strict set to On, the code must perform some
shenanigans to pass FileGet a ValueType variable and then later convert it into an Employee.

If you set Option Strict to Off, you can pass an Employee object directly into FileGet. Turning off
Option Strict is generally a bad idea, however, because it can hide implicit data type conversions
that may indicate a mistake. You can minimize the danger by placing as little code as possible in
the fi le with Option Strict Off. For example, if the code that uses FileGet is in a class, you can
use the Partial keyword to move that code into a separate module. Then that module can turn off
Option Strict whereas the rest of the class ’ s code keeps Option Strict On.

After it has read and displayed the records, the program uses FileClose to close the fi le.

The following text shows the result. Notice that the fi rst and last names are padded with spaces to
15 characters, the length of the Employee structure ’ s fi xed - length strings. The last names are also
padded to 15 characters.

[3: Cindy Chicago]
[1: Alice Altanta]
[5: Erma Eagle]
[2: Bob Bakersfield]
[6: Fred Frisco]

Visual Basic Methods ❘ 853

c37.indd 853 c37.indd 853 12/31/09 7:04:42 PM12/31/09 7:04:42 PM

854 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

Binary - File Access

Binary access is similar to random access, except that it does not require its data to fi t into neat
records. You get control over pretty much every byte in the fi le, and you can jump to an arbitrary
byte number in the fi le. If the items in the fi le are not fi xed - length records, however, you cannot
jump to a particular record because you cannot calculate where that record would begin.

.NET FRAMEWORK CLASSES

The System.IO namespace provides several classes for working with the fi le system. The Directory
and File classes provide shared methods that you can use to manipulate the fi le system without
creating instances of helper objects.

The DirectoryInfo and FileInfo classes let you work with specifi c relevant fi le system objects. For
example, a FileInfo object represents a particular fi le and provides methods to create, rename,
delete, and get information about that fi le.

The following sections describe these and the other classes that the Framework provides to help you
work with the fi le system.

Directory

The Directory class provides shared methods for working with directories. These methods let you
create, rename, move, and delete directories. They let you enumerate the fi les and subdirectories
within a directory, and get and set directory information such as the directory ’ s creation and last
access time.

The following table describes the Directory class ’ s shared methods.

METHOD PURPOSE

CreateDirectory Creates a directory and any missing ancestors (parent, grandparent,

and so on).

Delete Deletes a directory and its contents. It can delete all subdirectories,

their subdirectories, and so forth to remove the entire directory tree.

Exists Returns True if the path points to an existing directory.

GetCreationTime Returns a directory ’ s creation date and time.

GetCreationTimeUtc Returns a directory ’ s creation date and time in Coordinated Universal

Time (UTC).

GetCurrentDirectory Returns the application ’ s current working directory.

GetDirectories Returns an array of strings holding the fully qualifi ed names of a

directory ’ s subdirectories.

c37.indd 854c37.indd 854 12/31/09 7:04:43 PM12/31/09 7:04:43 PM

.NET Framework Classes ❘ 855

METHOD PURPOSE

GetDirectoryRoot Returns the directory root for a path (the path need not exist).

For example, C:\.

GetFiles Returns an array of strings holding the fully qualifi ed names of a

directory ’ s fi les.

GetFileSystemEntries Returns an array of strings holding the fully qualifi ed names of a

directory ’ s fi les and subdirectories.

GetLastAccessTime Returns a directory ’ s last access date and time.

GetLastAccessTimeUtc Returns a directory ’ s last access date and time in UTC.

GetLastWriteTime Returns the date and time when a directory was last modifi ed.

GetLastWriteTimeUtc Returns the date and time in UTC when a directory was last

modifi ed.

GetLogicalDrives Returns an array of strings listing the system ’ s logical drives as in

A:\. The list only includes drives that are attached. For example, it

lists an empty fl oppy drive and a connected fl ash disk but doesn ’ t

list a fl ash disk after you disconnect it.

GetParent Returns a DirectoryInfo object representing a directory ’ s parent.

Move Moves a directory and its contents to a new location on the same

disk volume.

SetCreationTime Sets a directory ’ s creation date and time.

SetCreationTimeUtc Sets a directory ’ s creation date and time in UTC.

SetCurrentDirectory Sets the application ’ s current working directory.

SetLastAccessTime Sets a directory ’ s last access date and time.

SetLastAccessTimeUtc Sets a directory ’ s last access date and time in UTC.

SetLastWriteTime Sets a directory ’ s last write date and time.

SetLastWriteTimeUtc Sets a directory ’ s last write date and time in UTC.

QUALIFIED AND RELATIVE PATHS

A “fully qualifi ed name” or “fully qualifi ed path” is one that starts at a disk’s root
directory as in “C:\Whatever\Someplace\Expenses.txt.”

A “relative path” starts at the program’s current directory and doesn’t include the
root as in “standards.txt” or “Data\Pictures\Smiley.bmp.”

c37.indd 855c37.indd 855 12/31/09 7:04:43 PM12/31/09 7:04:43 PM

856 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

File

The File class provides shared methods for working with fi les. These methods let you create,
rename, move, and delete fi les. They also make working with fi le streams a bit easier.

The following table describes the File class ’ s most useful shared methods.

METHOD PURPOSE

AppendAll Adds text to the end of a fi le, creating it if it doesn ’ t exist, and then

closes the fi le.

AppendText Opens a fi le for appending UTF - 8 encoded text and returns a

StreamWriter class attached to it.

Copy Copies a fi le.

Create Creates a new fi le and returns a FileStream attached to it.

CreateText Creates or opens a fi le for writing UTF - 8 encoded text and returns a

StreamWriter class attached to it.

Delete Permanently deletes a fi le.

Exists Returns True if the specifi ed fi le exists.

GetAttributes Gets a fi le ’ s attributes. This is a combination of fl ags defi ned by the

FileAttributes enumeration: Archive, Compressed, Device, Directory,

Encrypted, Hidden, Normal, NotContextIndexed, Offl ine, ReadOnly,

ReparsePoint, SparseFile, System, and Temporary.

GetCreationTime Returns a fi le ’ s creation date and time.

GetCreationTimeUtc Returns a fi le ’ s creation date and time in UTC.

GetLastAccessTime Returns a fi le ’ s last access date and time.

GetLastAccessTimeUtc Returns a fi le ’ s last access date and time in UTC.

GetLastWriteTime Returns a fi le ’ s last write date and time.

GetLastWriteTimeUtc Returns a fi le ’ s last write date and time in UTC.

Move Moves a fi le to a new location.

Open Opens a fi le and returns a FileStream attached to it. Parameters let you

specify the mode (Append, Create, CreateNew, Open, OpenOrCreate,

or Truncate), access (Read, Write, or ReadWrite), and sharing (Read,

Write, ReadWrite, or None) settings.

OpenRead Opens a fi le for reading and returns a FileStream attached to it.

c37.indd 856c37.indd 856 12/31/09 7:04:45 PM12/31/09 7:04:45 PM

METHOD PURPOSE

OpenText Opens a UTF - 8 - encoded text fi le for reading and returns a

StreamReader attached to it.

OpenWrite Opens a fi le for writing and returns a FileStream attached to it.

ReadAllBytes Returns a fi le ’ s contents in an array of bytes.

ReadAllLines Returns a fi le ’ s lines in an array of strings.

ReadAllText Returns a fi le ’ s contents in a string.

Replace Takes three fi le paths as parameters, representing a source fi le, a

destination fi le, and a backup fi le. If the backup fi le exists, this method

permanently deletes it. It then moves the destination fi le to the

backup fi le, and moves the source fi le to the destination fi le. For

example, imagine a program that writes a log fi le every time it runs.

It could use this method to keep three versions of the log: the current

log (the method ’ s source fi le), the most recent backup (the method ’ s

destination fi le), and a second backup (the method ’ s backup fi le).

This method throws an error if either the source or destination fi le

doesn ’ t exist.

SetAttributes Sets a fi le ’ s attributes. This is a combination of fl ags defi ned by the

FileAttributes enumeration: Archive, Compressed, Device, Directory,

Encrypted, Hidden, Normal, NotContextIndexed, Offl ine, ReadOnly,

ReparsePoint, SparseFile, System, and Temporary.

SetCreationTime Sets a fi le ’ s creation date and time.

SetCreationTimeUtc Sets a fi le ’ s creation date and time in UTC.

SetLastAccessTime Sets a fi le ’ s last access date and time.

SetLastAccessTimeUtc Sets a fi le ’ s last access date and time in UTC.

SetLastWriteTime Sets a fi le ’ s last write date and time.

SetLastWriteTimeUtc Sets a fi le ’ s last write date and time in UTC.

WriteAllBytes Creates or replaces a fi le, writes an array of bytes into it, and closes

the fi le.

WriteAllLines Creates or replaces a fi le, writes an array of strings into it, and closes

the fi le.

WriteAllText Creates or replaces a fi le, writes a string into it, and closes the fi le.

.NET Framework Classes ❘ 857

c37.indd 857c37.indd 857 12/31/09 7:04:46 PM12/31/09 7:04:46 PM

858 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

DriveInfo

A DriveInfo object represents one of the computer ’ s drives. The following table describes
the properties provided by this class. Note that some of these properties are available only
when the drive is ready, as indicated in the Must Be Ready column. If you try to access them when
the drive is not ready, Visual Basic throws an exception. The program should check the IsReady
property to determine whether the drive is ready before trying to use the AvailableFreeSpace,
DriveFormat, TotalFreeSpace, or VolumeLabel properties.

DRIVEINFO PROPERTY PURPOSE MUST BE READY

AvailableFreeSpace Returns the amount of free space available on the drive

in bytes.

True

DriveFormat Returns the name of the fi le - system type such as NTFS

(NT File System) or FAT32 (32 - bit File Allocation Table).

(For a comparison of these, see www.ntfs.com/ntfs_

vs_fat.htm .)

True

DriveType Returns a DriveType enumeration value indicating the

drive type. This value can be CDRom, Fixed, Network,

NoRootDirectory, Ram, Removable, or Unknown.

False

IsReady Returns True if the drive is ready. Many DriveInfo

properties are unavailable and raise exceptions if you try

to access them while the drive is not ready.

False

Name Return ’ s the drive ’ s name. This is the drive ’ s root name

(as in A:\ or C:\).

RootDirectory Returns a DirectoryInfo object representing the drive ’ s

root directory. See the following section “ DirectoryInfo ”

for more information on this class.

False

TotalFreeSpace Returns the total amount of free space on the drive in bytes. True

VolumeLabel Gets or sets the drive ’ s volume label. True

The DriveInfo class also has a public shared method GetDrives that returns an array of DriveInfo
objects describing the system ’ s drives.

DirectoryInfo

A DirectoryInfo object represents a directory. You can use its properties and methods to create and
delete directories and to move through a directory hierarchy.

c37.indd 858c37.indd 858 12/31/09 7:04:46 PM12/31/09 7:04:46 PM

The following table describes the most useful public properties and methods provided by the
DirectoryInfo class.

PROPERTY OR METHOD PURPOSE

Attributes Gets or sets fl ags for the directory from the FileAttributes enumeration:

Archive, Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContentIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile,

System, and Temporary.

Create Creates the directory. You can create a DirectoryInfo object, passing its

constructor the fully qualifi ed name of a directory that doesn ’ t exist. You

can then call the object ’ s Create method to create the directory.

CreateSubdirectory Creates a subdirectory within the directory and returns a DirectoryInfo

object representing it. The subdirectory ’ s path must be relative to

the DirectoryInfo object ’ s directory, but can contain intermediate

subdirectories. For example, the following code creates the Tools

subdirectory and the Bin directory inside that:

dir_info.CreateSubdirectory(“ Tools\Bin ”)

CreationTime Gets or sets the directory ’ s creation time.

CreationTimeUtc Gets or sets the directory ’ s creation time in UTC.

Delete Deletes the directory if it is empty. A parameter lets you tell the object

to delete its contents, too, if it isn ’ t empty.

Exists Returns True if the directory exists.

Extension Returns the extension part of the directory ’ s name. Normally, this is an

empty string for directories.

FullName Returns the directory ’ s fully qualifi ed path.

GetDirectories Returns an array of DirectoryInfo objects representing the directory ’ s

subdirectories. An optional parameter gives a pattern to match. This

method does not recursively search the subdirectories.

GetFiles Returns an array of FileInfo objects representing fi les inside the

directory. An optional parameter gives a pattern to match. This method

does not recursively search subdirectories.

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects, representing

subdirectories and fi les inside the directory. The items in the array

are DirectoryInfo and FileInfo objects, both of which inherit from

FileSystemInfo. An optional parameter gives a pattern to match. This

method does not recursively search subdirectories.

.NET Framework Classes ❘ 859

continues

c37.indd 859c37.indd 859 12/31/09 7:04:47 PM12/31/09 7:04:47 PM

860 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

PROPERTY OR METHOD PURPOSE

LastAccessTime Gets or sets the directory ’ s last access time.

LastAccessTimeUtc Gets or sets the directory ’ s last access time in UTC.

LastWriteTime Gets or sets the directory ’ s last write time.

LastWriteTimeUtc Gets or sets directory ’ s last write time in UTC.

MoveTo Moves the directory and its contents to a new path.

Name The directory ’ s name without the path information.

Parent Returns a DirectoryInfo object, representing the directory ’ s parent.

If the directory is its fi le system ’ s root (for example, C:\), this returns

Nothing.

Refresh Refreshes the DirectoryInfo object ’ s data. For example, if the directory

has been accessed since the object was created, you must call Refresh

to load the new LastAccessTime value.

Root Returns a DirectoryInfo object representing the root of the directory ’ s

fi le system.

ToString Returns the directory ’ s fully qualifi ed path and name.

FileInfo

A FileInfo object represents a fi le. You can use its properties and methods to create and delete
directories and to move through a directory hierarchy.

The following table describes the most useful public properties and methods provided by the
FileInfo class.

PROPERTY OR METHOD PURPOSE

AppendText Returns a StreamWriter that appends text to the fi le.

Attributes Gets or sets fl ags for the fi le from the FileAttributes enumeration:

Archive, Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContentIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile, System,

and Temporary.

CopyTo Copies the fi le and returns a FileInfo object, representing the new fi le. A

parameter lets you indicate whether the copy should overwrite an existing

fi le. If the destination path is relative, it is relative to the application ’ s

current directory, not to the FileInfo object ’ s directory.

(continued)

c37.indd 860c37.indd 860 12/31/09 7:04:48 PM12/31/09 7:04:48 PM

PROPERTY OR METHOD PURPOSE

Create Creates the fi le and returns a FileStream object attached to it. For

example, you can create a FileInfo object, passing its constructor the

name of a fi le that doesn ’ t exist. Then you can call the Create method to

create the fi le.

CreateText Creates the fi le and returns a StreamWriter attached to it. For example,

you can create a FileInfo object passing its constructor the name of a

fi le that doesn ’ t exist. Then you can call the CreateText method to create

the fi le.

CreationTime Gets or sets the fi le ’ s creation time.

CreationTimeUtc Gets or sets the fi le ’ s creation time in UTC.

Delete Deletes the fi le.

Directory Returns a DirectoryInfo object representing the fi le ’ s directory.

DirectoryName Returns the name of the fi le ’ s directory.

Exists Returns True if the fi le exists.

Extension Returns the extension part of the fi le ’ s name, including the period. For

example, the extension for game.txt is .txt.

FullName Returns the fi le ’ s fully qualifi ed path and name.

IsReadOnly Returns True if the fi le is marked read - only.

LastAccessTime Gets or sets the fi le ’ s last access time.

LastAccessTimeUtc Gets or sets the fi le ’ s last access time in UTC.

LastWriteTime Gets or sets the fi le ’ s last write time.

LastWriteTimeUtc Gets or sets the fi le ’ s last write time in UTC.

Length Returns the number of bytes in the fi le.

MoveTo Moves the fi le to a new location. If the destination uses a relative path, it

is relative to the application ’ s current directory, not to the FileInfo object ’ s

directory. When this method fi nishes, the FileInfo object is updated to refer

to the fi le ’ s new location.

Name The fi le ’ s name without the path information.

.NET Framework Classes ❘ 861

continues

c37.indd 861c37.indd 861 12/31/09 7:04:48 PM12/31/09 7:04:48 PM

862 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

PROPERTY OR METHOD PURPOSE

Open Opens the fi le with various mode (Append, Create, CreateNew, Open,

OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite), and

sharing (Read, Write, ReadWrite, or None) settings. This method returns a

FileStream object attached to the fi le.

OpenRead Returns a read - only FileStream attached to the fi le.

OpenText Returns a StreamReader with UTF - 8 encoding attached to the fi le

for reading.

OpenWrite Returns a write - only FileStream attached to the fi le.

Refresh Refreshes the FileInfo object ’ s data. For example, if the fi le has been

accessed since the object was created, you must call Refresh to load the

new LastAccessTime value.

Replace Replaces a target fi le with this one, renaming the old target as a backup

copy. If the backup fi le already exists, it is deleted and replaced with

the target. You can use this method to save backups of logs and other

periodically updated fi les.

ToString Returns the fi le ’ s fully qualifi ed name.

FileSystemInfo

The FileSystemInfo class is the parent class for the FileInfo and DirectoryInfo classes. It is
a MustInherit class, so you cannot create instances of it directly, but some routines return
this class rather than the more specifi c child classes. For example, the DirectoryInfo class ’ s
GetFileSystemInfos method returns an array of FileSystemInfo objects describing the fi les in
the directory.

FileSystemWatcher

The FileSystemWatcher class keeps an eye on part of the fi le system and raises events to let your
program know if something changes. For example, you could make a FileSystemWatcher monitor a
work directory. When a new fi le with a .job extension arrives, the watcher could raise an event and
your application could process the fi le.

(continued)

c37.indd 862c37.indd 862 12/31/09 7:04:49 PM12/31/09 7:04:49 PM

WATCHER WARNING

The FileSystemWatcher seems to have a few problems. Sometimes it is overwhelmed
and misses changes that it should see and it seems to get confused under some
circumstances and either stop raising events or raise duplicate events. The control
will hopefully improve over time but for now, use it cautiously.

The FileSystemWatcher class ’ s constructor takes parameters that tell it which directory to watch
and that give it a fi lter for selecting fi les to watch. For example, the fi lter might be “ *.txt ” to
watch for changes to text fi les. The default fi lter is “ *.* ” , which catches changes to all fi les that
have an extension. Set the fi lter to the empty string “ ” to catch changes to all fi les including those
without extensions.

The following table describes the FileSystemWatcher class ’ s most useful properties.

PROPERTY PURPOSE

EnableRaisingEvents Determines whether the component is enabled. Note that this

property is False by default, so the watcher will not raise any events

until you set it to True.

Filter Determines the fi les for which the watcher reports events. You

cannot watch for multiple fi le types as in *.txt and *.dat. Instead

use multiple FileSystemWatcher classes. If you like, you can use

AddHandler to make all of the FileSystemWatcher classes use the

same event handlers.

IncludeSubdirectories Determines whether the object watches subdirectories within the

main path.

InternalBufferSize Determines the size of the internal buff er. If the watcher is

monitoring a very active directory, a small buff er may overfl ow.

NotifyFilter Determines the types of changes that the watcher reports. This is a

combination of values defi ned by the NotifyFilters enumeration and

can include the values Attributes, CreationTime, DirectoryName,

FileName, LastAccess, LastWrite, Security, and Size.

Path Determines the path to watch.

The FileSystemWatcher class provides only two really useful methods. First, Dispose releases
resources used by the component. When you are fi nished using a watcher, call its Dispose method to
allow garbage collection to reclaim its resources more effi ciently.

.NET Framework Classes ❘ 863

c37.indd 863c37.indd 863 12/31/09 7:04:50 PM12/31/09 7:04:50 PM

864 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

Second, the WaitForChanged method waits for a change synchronously (with an optional timeout).
When a change occurs, the method returns a WaitForChangedResult object, giving information
about the change that occurred.

When the FileSystemWatcher detects a change asynchronously, it raises an event to let the program
know what has happened. The following table describes the class ’ s events.

NAME DESCRIPTION

Changed A fi le or subdirectory has changed.

Created A fi le or subdirectory was created.

Deleted A fi le or subdirectory was deleted.

Error The watcher ’ s internal buff er overfl owed.

Renamed A fi le or subdirectory was renamed.

The following simple example shows how to use a FileSystemWatcher to look for new fi les
in a directory:

Private WithEvents fswJobFiles As FileSystemWatcher

Private Sub Form1_Load() Handles MyBase.Load
 Dim watch_path As String =
 FileSystem.GetParentPath(Application.StartupPath)
 fswJobFiles = New FileSystemWatcher(watch_path, "*.job")
 fswJobFiles.NotifyFilter = NotifyFilters.FileName
 fswJobFiles.EnableRaisingEvents = True
End Sub

Private Sub fswJobFiles_Created(ByVal sender As Object,
 ByVal e As System.IO.FileSystemEventArgs) Handles fswJobFiles.Created
 ' Process the new file.
 MessageBox.Show("Process new job: " & e.FullPath)

 File.Delete(e.FullPath)
End Sub

The program uses the WithEvents keyword to declare a FileSystemWatcher object. When the
program ’ s main form loads, the Form1_Load event handler allocates this object. Its constructor sets
the object ’ s path to the program ’ s startup directory ’ s parent. It sets the object ’ s fi lter to “ *.job ” so
that the object will watch for changes to fi les that end with a .job extension.

The event handler sets the watcher ’ s NotifyFilter to FileName, so it will raise its Created event if
a new fi le name appears in the target directory. Unfortunately, the NotifyFilter values (Attributes,

c37.indd 864c37.indd 864 12/31/09 7:04:51 PM12/31/09 7:04:51 PM

CreationTime, DirectoryName, FileName, LastAccess, LastWrite, Security, and Size) do not
match up well with the events provided by the FileSystemWatcher, so you need to fi gure out which
NotifyFilter values to set to raise different kinds of events.

The Form1_Load event handler fi nishes by setting the watcher ’ s EnableRaisingEvents property to
True so the object starts watching.

When a .job fi le is created in the watcher ’ s target directory, the program ’ s fswJobFiles_Created
executes. The program processes and then deletes the fi le. In this example, the program processes
the fi le by displaying a message giving its fully qualifi ed name. A more realistic example might
read the fi le; parse fi elds, indicating the type of job this is; assign it to an employee for handling;
and then e - mail it to that employee.

The UseFileSystemWatcher example program, which is available for download on the book ’ s web
site, uses similar code without the fi lter to look for any new fi le in the program ’ s startup directory.

Path

The Path class provides shared properties and methods that you can use to manipulate paths.
Its methods return the path ’ s fi le name, extension, directory name, and so forth. Other methods
provide values that do not relate to a specifi c path. For example, they can give you the system ’ s
temporary directory path, or the name of a temporary fi le.

The following table describes the Path class ’ s most useful public properties.

PROPERTY PURPOSE

AltDirectorySeparatorChar Returns the alternate character used to separate directory levels

in a hierarchical path. Typically this is /.

DirectorySeparatorChar Returns the character used to separate directory levels in a

hierarchical path. Typically this is \ (as in C:\Tests\Billing\

2008q2.dat).

InvalidPathChars Returns a character array that holds characters that are not

allowed in a path string. Typically, this array includes characters

such as “ , < , > , and |, as well as nonprintable characters such as

those with ASCII values between 0 and 31.

PathSeparator Returns the character used to separate path strings in

environment variables. Typically this is a semi - colon (;).

VolumeSeparatorChar Returns the character placed between a volume letter and the

rest of the path. Typically this is a colon (:).

The following table describes the Path class ’ s most useful methods.

.NET Framework Classes ❘ 865

c37.indd 865c37.indd 865 12/31/09 7:04:51 PM12/31/09 7:04:51 PM

866 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

METHOD PURPOSE

ChangeExtension Changes a path ’ s extension.

Combine Returns two path strings concatenated.

GetDirectoryName Returns a path ’ s directory.

GetExtension Returns a path ’ s extension.

GetFileName Returns a path ’ s fi le name and extension.

GetFileNameWithoutExtension Returns a path ’ s fi le name without the extension.

GetFullPath Returns a path ’ s fully qualifi ed value. This can be particularly

useful for converting a partially relative path into an

absolute path. For example, the following statement returns

the string “ C:\Tests\New\Code ” :

Path.GetFullPath(“ C:\Tests\OldTests\

Software\..\..\New\Code ”)

GetInvalidFileNameChars Returns an array listing characters that are invalid in

fi le names.

GetInvalidPathChars Returns an array listing characters that are invalid in

fi le paths.

GetPathRoot Returns a path ’ s root directory string. For example, the

following statement returns the string “ C:\ ” :

Path.GetPathRoot(“ C:\Invoices\Unpaid\Deadbeats ”)

GetRandomFileName Returns a random fi le name.

GetTempFileName Creates a uniquely named, empty temporary fi le and returns

its fully qualifi ed path. Your program can open that fi le for

scratch space, do whatever it needs to do, close the fi le, and

then delete it. A typical fi le name might be C:\Documents

and Settings\Rod\Local Settings\Temp\tmp19D.tmp.

GetTempPath Returns the path to the system ’ s temporary folder. This is the

path part of the fi le names returned by GetTempFileName.

HasExtension Returns True if a path includes an extension.

IsPathRooted Returns True if a path is an absolute path. This includes

\Temp\Wherever and C:\Clients\Litigation , but not

Temp\Wherever or .\Uncle.

c37.indd 866c37.indd 866 12/31/09 7:04:52 PM12/31/09 7:04:52 PM

MY.COMPUTER.FILESYSTEM

The My.Computer.FileSystem object provides tools for working with drives, directories, and
fi les. The following table summarizes this object ’ s properties.

PROPERTY DESCRIPTION

CurrentDirectory Gets or sets the fully qualifi ed path to the application ’ s current directory.

Drives Returns a read - only collection of DriveInfo objects describing the

system ’ s drives. See the section “ DriveInfo ” earlier in this chapter for

information about the DriveInfo class.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties giving

the locations of various special directories (such as the system ’ s

temporary directory and the user ’ s MyDocuments directory). See the

following section “ My.Computer.FileSystem.SpecialDirectories ” for more

information.

The following list describes the My.Computer.FileSystem object ’ s methods:

METHOD PURPOSE

CombinePath Combines a base path with a relative path reference and returns a

properly formatted fully qualifi ed path. For example, the following code

displays the name of the directory that is the parent of the application ’ s

current directory:

MessageBox.Show(My.Computer.FileSystem.CombinePath

(My.Computer.FileSystem.CurrentDirectory(), “ . ”)

CopyDirectory Copies a directory. Parameters indicate whether to overwrite existing

fi les, whether to display a progress indicator, and what to do if the user

presses Cancel during the operation.

CopyFile Copies a fi le. Parameters indicate whether to overwrite existing fi les,

whether to display a progress indicator, and what to do if the user presses

Cancel during the operation.

CreateDirectory Creates a directory. This method will create ancestor directories

if necessary. For example, if the C:\Temp directory contains no

subdirectories, creating C:\Temp\Project\Data will automatically create

C:\Temp\Project and C:\Temp\Project\Data.

My.Computer.FileSystem ❘ 867

continues

c37.indd 867c37.indd 867 12/31/09 7:04:53 PM12/31/09 7:04:53 PM

868 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

METHOD PURPOSE

DeleteDirectory Deletes a directory. Parameters indicate whether to recursively delete

subdirectories, prompt the user for confi rmation, or move the directory

into the Recycle Bin.

DeleteFile Deletes a fi le. Parameters indicate whether to prompt the user for

confi rmation or move the fi le into the Recycle Bin, and what to do if the

user presses Cancel while the deletion is in progress.

DirectoryExists Returns True if a specifi ed directory exists.

FileExists Returns True if a specifi ed fi le exists.

FindInFiles Returns a read - only collection of strings listing fi les that contain a

target string.

GetDirectories Returns a string collection listing subdirectories of a given directory.

Parameters tell whether to recursively search the subdirectories, and the

wildcards to match.

GetDirectoryInfo Returns a DirectoryInfo object for a directory. See the section

“ DirectoryInfo ” earlier in this chapter for more information.

GetDriveInfo Returns a DriveInfo object for a drive. See the section “ DriveInfo ” earlier

in this chapter for more information.

GetFileInfo Returns a FileInfo object for a fi le. See the section “ FileInfo ” earlier in this

chapter for more information.

GetFiles Returns a string collection holding the names of fi les within a directory.

Parameters indicate whether the search should recursively search

subdirectories, and give wildcards to match.

GetParentPath Returns the fully qualifi ed path of a path ’ s parent. For example, this

returns a fi le ’ s or directory ’ s parent directory.

MoveDirectory Moves a directory. Parameters indicate whether to overwrite fi les that

have the same name in the destination directory and whether to prompt

the user when such a collision occurs.

MoveFile Moves a fi le. Parameters indicate whether to overwrite a fi le that has the

same name as the fi le ’ s destination and whether to prompt the user when

such a collision occurs.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or fi xed - fi eld fi le

such as a log fi le. You can use the object to parse the fi le.

(continued)

c37.indd 868c37.indd 868 12/31/09 7:04:53 PM12/31/09 7:04:53 PM

METHOD PURPOSE

OpenTextFileReader Opens a StreamReader object attached to a fi le. You can use the object

to read the fi le.

OpenTextFileWriter Opens a StreamReader object attached to a fi le. You can use the object

to write into the fi le.

ReadAllBytes Reads all of the bytes from a binary fi le into an array.

ReadAllText Reads all of the text from a text fi le into a string.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a fi le with its directory.

WriteAllBytes Writes an array of bytes into a binary fi le. A parameter tells whether to

append the data or rewrite the fi le.

WriteAllText Writes a string into a text fi le. A parameter tells whether to append the

string or rewrite the fi le.

MY.COMPUTER.FILESYSTEM.SPECIALDIRECTORIES

The My.Computer.FileSystem.SpecialDirectories property returns a SpecialDirectoriesProxy object
that has properties giving the locations of various special directories such as the system ’ s temporary
directory and the user ’ s MyDocuments directory.

The following table describes these special directory properties.

PROPERTY PURPOSE

AllUsersApplicationData Application settings for all users.

CurrentUserApplicationData Application settings for the current user.

Desktop The current user ’ s desktop directory.

MyDocuments The current user ’ s MyDocuments directory.

MyMusic The current user ’ s MyMusic directory.

MyPictures The current user ’ s MyPictures directory.

Programs The current user ’ s Start Menu\Programs directory.

ProgramFiles The current user ’ s Start Menu\Programs directory.

Temp The current user ’ s temporary directory.

My.Computer.FileSystem.SpecialDirectories ❘ 869

c37.indd 869c37.indd 869 12/31/09 7:04:54 PM12/31/09 7:04:54 PM

870 ❘ CHAPTER 37 FILE - SYSTEM OBJECTS

DIRECTORY DEFICIENCIES

Note that these directories may not all exist on a particular system. For example, it
may not defi ne the MyMusic or MyPictures directories. Trying to access the values
of a missing directory causes a DirectoryNotFoundException. You can use a Try
Catch block to protect the program from the exception.

SUMMARY

Visual Basic provides a native set of methods for reading and writing fi les, including FreeFile,
FileOpen, Input, LineInput, Print, Write, and FileClose. It also provides method for working with
the fi le system (such as ChDir, MkDir, Kill, and RmDir). If you have a lot of previous experience
with Visual Basic, you may prefer these familiar methods.

The System.IO namespace offers many objects that provide even more powerful capabilities than
the native methods of Visual Basic. Classes such as Directory, DirectoryInfo, File, and FileInfo make
it easy to create, examine, move, rename, and delete directories and fi les. The File class ’ s methods
make it particularly easy to read or write an entire fi le and to create streams attached to fi les for
reading or writing.

The FileSystemWatcher class lets an application keep an eye on a fi le or directory and take action
when it is changed. For example, a program can watch a spooling directory and take action when a
new fi le appears in it.

The Path class provides miscellaneous support for working with paths. For example, it provides
methods for examining a path ’ s fi le name or extension.

The My.Computer.FileSystem namespace provides shortcuts to some of the more useful of the
methods offered by the other fi le system classes. Its methods let you create, examine, and delete
fi les and directories. The SpecialDirectories object also provides information about the locations of
system directories.

There is considerable overlap among all of these tools, so you don ’ t need to feel that you have to use
them all. Take a good look so you know what ’ s there, and then pick the tools that you fi nd the most
comfortable.

The tools that this chapter describes allow you fairly unstructured access to fi les. These classes
and methods let you do just about anything you want to a fi le. That fl exibility, however, means that
you must know exactly what you want to do to the fi le. By letting you do anything, these tools
make you do everything.

One of the most important ways an application can interact with the computer that is running it is
through the fi le system. The classes and methods that this chapter describes allow an application to
interact with the local computer ’ s fi le system relatively easily.

Interacting with other computers is much more complicated. Chapter 38, “ Windows
Communication Foundation, ” describes tools that the .NET Framework provides to make
interacting with remote computers easier.

c37.indd 870c37.indd 870 12/31/09 7:04:55 PM12/31/09 7:04:55 PM

Windows Communication
Foundation

Programmers have long been able to have one program to call routines provided by another
program that is running either on the local computer or some other computer on the same
network. The omnipresent Internet extended this capability to new and greater levels,
allowing a client program to call service routines provided by a server that could be physically
on the other side of the world.

New web technologies such as Simple Object Access Protocol (SOAP) made it easy enough
to build web services for use by other programs over the Internet. This gave rise to a whole
new type of application that implements a signifi cant amount of its functionality by calling
services. Because these programs focus on the use of services, this design is called service -
oriented architecture (SOA).

Windows Communication Foundation (WCF) is a set of classes and tools in .NET Framework
3.0 that make it easier to build SOA applications. It includes attribute classes that let you
easily mark pieces of a server application to publish services for use by clients. It also includes
tools to automatically generate the Visual Basic code you need to use or consume the services.

WCF is quite large and very fl exible. It gives you the ability to write secure, reliable services
that support transactions and can use a variety of transport methods. For example, clients and
services can communicate using HTTP or TCP network protocols, or named pipes or message
queues on the local computer.

Because WCF is so fl exible, there isn ’ t space to cover it all here. Instead, this chapter provides
an overview of the main concepts behind WCF, and describes a simple example client and
server implementation.

38

c38 .indd 871c38 .indd 871 12/31/09 7:06:10 PM12/31/09 7:06:10 PM

872 ❘ CHAPTER 38 WINDOWS COMMUNICATION FOUNDATION

WCF CONCEPTS

WCF is based on the concept of messages. A message contains some sort of communication
between a client and a service. Note that the program doesn ’ t need to deal directly with messages.
It can issue subroutine and function calls just as if it were calling a local object ’ s methods.
The WCF library routines convert the call into a message and send it to the recipient transparently.

An endpoint is a place where messages are sent or received. Typically, a service creates endpoints to
receive request messages from clients and clients create endpoints to initiate those requests.

Endpoints defi ne the characteristics of the communication. They determine the number and types
of parameters passed to a request and the type of any returned data. They determine whether the
communication uses a request - reply, one - way, or duplex style of communication. The defi nition of
the message format is called its service contract .

The message defi nitions at the endpoints at the two ends of a communication must agree. They must
satisfy the same service contract. If a client sends a message in one format, but the service expects
the message in a different format, the communication won ’ t work. WCF provides tools that help you
defi ne service endpoints and automatically generate Visual Basic code to properly use corresponding
client endpoints.

After you have built the client and server, the two pass messages between their endpoints following
the rules of the service contract. For example, if the contract indicates that the communication is
one - way, the client invokes service subroutines that do not return any data. If the communication
has a request - reply style, the client invokes service functions that return some sort of reply. If the
contract indicates duplex communication, then the client can call service subroutines and the
server can invoke client callbacks. For example, the client can tell the service that it is interested
in certain events such as stock price updates, and then the service can call the client as the updates
are available.

The following sections describe a concrete example that implements a simple client and server.

WCF EXAMPLE

To build a service from scratch, you follow the steps outlined in the following list:

1. Defi ne the service contract in a Visual Basic interface.

2. Implement the service contract in a service class.

3. Build the host application to run the service.

4. Confi gure the service to specify bindings and endpoints.

5. Run the service.

c38 .indd 872c38 .indd 872 12/31/09 7:06:14 PM12/31/09 7:06:14 PM

After you build the service, you follow these steps to build a client:

1. Use the SvcUtil tool to discover information about the service contract and build Visual
Basic code to implement a client class.

2. Write the client application that uses the client class.

These steps are somewhat involved and require that you know a lot about service confi guration fi les
and tools such as SvcUtil.exe. Fortunately, Visual Basic provides some application templates that
make building a simple service much easier.

BUILDING THE INITIAL SERVICE

To build a service, open the File menu and select New Project. Under the Visual Basic project
type, select the WCF category. Click the WCF Service Library template, enter a meaningful project
name, and click OK.

Initially, Visual Basic creates an interface named IService1 shown in the following code to defi ne the
service ’ s contract:

‘ NOTE: You can use the “Rename” command on the “Refactor” menu to
‘ change the interface name “IService1” in both code and config file together.
< ServiceContract() >
Public Interface IService1

 < OperationContract() >
 Function GetData(ByVal value As Integer) As String

 < OperationContract() >
 Function GetDataUsingDataContract(ByVal composite As CompositeType)
 As CompositeType

 ' TODO: Add your service operations here
End Interface

This interface defi nes two methods decorated by OperationContract attributes to identify them as
methods that the service will expose to clients.

The GetData function takes an integer parameter and returns a string result. This function
demonstrates a simple service method that uses standard Visual Basic data types.

The GetDataUsingDataContract function takes an object of class CompositeType as a parameter
and returns another object of the same class. This function demonstrates a slightly more
complicated function that works with a program - defi ned data type.

Building the Initial Service ❘ 873

c38 .indd 873c38 .indd 873 12/31/09 7:06:15 PM12/31/09 7:06:15 PM

874 ❘ CHAPTER 38 WINDOWS COMMUNICATION FOUNDATION

The following code shows the initial implementation of the service class:

‘ NOTE: You can use the “Rename” command on the “Refactor” menu to
‘ change the class name “Service1” in both code and config file together.
Public Class Service1
 Implements IService1

 Public Function GetData(ByVal value As Integer) As String _
 Implements IService1.GetData
 Return String.Format("You entered: {0}", value)
 End Function

 Public Function GetDataUsingDataContract(
 ByVal composite As CompositeType) As CompositeType _
 Implements IService1.GetDataUsingDataContract
 If composite Is Nothing Then
 Throw New ArgumentNullException(“composite”)
 End If
 If composite.BoolValue Then
 composite.StringValue &= “Suffix”
 End If
 Return composite
 End Function
End Class

The class Service1 implements the IService1 interface. The GetData method simply returns a string
echoing its numeric parameter. The GetDataUsingDataContract method modifi es its CompositeType
parameter ’ s StringValue property and returns its parameter object.

The fi nal piece to the service is its confi guration fi le. The following code shows the App.confi g fi le
initially built by Visual Basic for the service class, slightly reformatted to make it easier to read:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

 <system.web>
 <compilation debug=”true” />
 </system.web>
 <!-- When deploying the service library project, the content of the
 config file must be added to the host’s app.config file.
 System.Configuration does not support config files for libraries. -->
 <system.serviceModel>
 <services>
 <service name=”QuoteServiceLib.Service1”>
 <host>
 <baseAddresses>
 <add baseAddress =
“http://localhost:8732/Design_Time_Addresses/QuoteServiceLib/Service1/” />
 </baseAddresses>
 </host>
 <!-- Service Endpoints -->
 <!-- Unless fully qualified, address is relative to base address
 supplied above -->

c38 .indd 874c38 .indd 874 12/31/09 7:06:15 PM12/31/09 7:06:15 PM

 <endpoint address =”” binding=”wsHttpBinding”
 contract=”QuoteServiceLib.IService1”>
 <!--
 Upon deployment, the following identity element
 should be removed or replaced to reflect the
 identity under which the deployed service runs.
 If removed, WCF will infer an appropriate identity
 automatically.
 -->
 <identity>
 <dns value=”localhost”/>
 </identity>
 </endpoint>
 <!-- Metadata Endpoints -->
 <!-- The Metadata Exchange endpoint is used by the service
 to describe itself to clients. -->
 <!-- This endpoint does not use a secure binding and should
 be secured or removed before deployment -->
 <endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange”/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the
 metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled=”True”/>
 <!-- To receive exception details in faults for debugging purposes,
 set the value below to true. Set to false before deployment
 to avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults=”False” />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

</configuration>

The < services > element contains service defi nitions. Each service gives its name and the names of
the behaviors it provides. This example defi nes the service library WcfServiceLibrary1.Service1. The
< host > element tells where the service will listen for requests.

The < service > element contains endpoint defi nitions. These defi nitions set the addresses,
bindings, and contracts for the endpoints. The binding attribute gives the name of the binding
that the endpoint uses. This example implements the contract defi ned by WcfServiceLibrary1
.IService1.

Building the Initial Service ❘ 875

c38 .indd 875c38 .indd 875 12/31/09 7:06:16 PM12/31/09 7:06:16 PM

876 ❘ CHAPTER 38 WINDOWS COMMUNICATION FOUNDATION

The last endpoint in this example is a Metadata Exchange (MEX) endpoint. It exposes metadata
that describes the service to potential clients. A client can use a tool such as SvcUtil to query this
endpoint to learn about the service.

The confi guration fi le ’ s < serviceBehaviors > section describes the service ’ s behaviors. In this
example, the behavior elements indicate that the service allows clients to look up information about
the service and that the service provides details when it has an error.

BUILDING QUOTESERVICE

Modifying the initial service defi nition to implement the QuoteService isn ’ t too hard. The following
code shows the revised interface that defi nes the service contract. The differences between this
version and the initial version are highlighted in bold, so they are easy to see.

< ServiceContract() >
Public Interface IQuoteService

 < OperationContract() >
 Function GetData(ByVal value As Integer) As String

 < OperationContract() >
 Function GetDataUsingDataContract(ByVal composite As CompositeType) _
 As CompositeType

 ' TODO: Add your service operations here
 < OperationContract() >
 Function GetQuote() As String

End Interface

code snippet QuoteServiceLib

This example changes the name of the interface to IQuoteService. To change the interface’s name to
IQuoteService, right-click on the original name, select Rename, enter the new name, and click OK.

The code leaves the initial GetData and GetDataUsingDataContract methods alone and adds a new
GetQuote function that takes no parameters and that returns a string.

The following code shows the revised service class that implements this contract. The differences
between this version and the initial version are again shown in bold.

Public Class QuoteService
 Implements IQuoteService

 ' Methods GetData and GetDataUsingDataContract omitted.
 ' ...

 ' Return a random quote.
 Public Function GetQuote() As String Implements IQuoteService.GetQuote
 Dim quotes() As String = {

c38 .indd 876c38 .indd 876 12/31/09 7:06:16 PM12/31/09 7:06:16 PM

 "I stand by all the misstatements that I've made.--Dan Quayle",
 "You can observe a lot just by watching.--Yogi Berra",
 ...
 "Two nations divided by a common language.--Winston Churchill"
 }

 ' Return a random quote.
 Dim rand As New Random
 Return quotes(rand.Next(0, quotes.Length))
 End Function
End Class

code snippet QuoteServiceLib

Again right-click and use Rename to change the service class’s name to QuoteService. The GetData
and GetDataUsingDataContract are the same as before, so they are not shown here.

This code adds the new GetQuote method. That method simply contains an array of quote strings,
picks one randomly, and returns it.

The last change needed to build QuoteService is in the confi guration fi le. The Rename tool updated
the App.confi g fi le so you only need to change the baseAddress line to the following.

<add baseAddress=”http://localhost:8732/Design_Time_Addresses/QuoteServiceLib/
QuoteService/” />

TESTING QUOTESERVICE

After you have built a server, you should test it. Visual Studio provides integrated support for a test
service host named WCF Service Host and a test client named WCF Test Client. If you press F5 to
run the service library, those programs automatically start so you can test the service.

When you run the program, the WCF Service Host starts and runs the service. Next, the WCF
Test Client shown in Figure 38 - 1 starts. Find the service on the left and expand it to see a list of its
behaviors. Double - click a behavior to open it in a tab on the right. In Figure 38 - 1 the Get Quote
behavior is shown on the right.

If the GetQuote method required parameters, they would be listed in the upper grid. You could click
a parameter ’ s Value entry and type in a new value.

When you click the Invoke button, the client uses your parameter values to build a request and
send it to the service. It displays the results in the lower grid. In Figure 38 - 1, the GetQuote method
returned the quote “ You can observe a lot just by watching. — Yogi Berra. ”

Testing QuoteService ❘ 877

c38 .indd 877c38 .indd 877 12/31/09 7:06:17 PM12/31/09 7:06:17 PM

878 ❘ CHAPTER 38 WINDOWS COMMUNICATION FOUNDATION

BUILDING QUOTECLIENT

The client for the QuoteService can be any Windows application. Keeping the service project loaded,
open the File menu, expand its Add submenu, and select New Project. In the New Project dialog,
select the Windows Forms Application template, name the project QuoteClient, and click OK.

Now, in Solution Explorer, right - click the QuoteClient entry and select Add Service Reference.
In the resulting dialog, click the Discover button to fi nd the service, and then click OK to add the
reference to the program.

Next, add code to the client application. The example client available for download displays a Get
Quote button that executes the following code:

Private Sub btnGetQuote_Click() Handles btnGetQuote.Click
 Me.Cursor = Cursors.WaitCursor

 Dim quote_service As New ServiceReference1.QuoteServiceClient
 lblQuote.Text = quote_service.GetQuote()

 Me.Cursor = Cursors.Default
End Sub

code snippet QuoteClient

This code creates a new ServiceReference1.QuoteServiceClient object, calls its GetQuote method,
and displays the result in a label.

FIGURE 38-1: The WCF Test Client lets you test a WCF service.

c38 .indd 878c38 .indd 878 12/31/09 7:06:17 PM12/31/09 7:06:17 PM

When you add the service reference, Visual Studio automatically generates a lot of code including
the QuoteServiceClient class. This class includes methods that automatically confi gure service
endpoints and that call the methods exposed by the service.

VIEW SERVICE DEFINITIONS

To see the defi nition of the QuoteServiceClient class, open Solution Explorer, click
the Show All Files button, drill down to Service References/ServiceReference/
Reference.svcmap, and open the fi le Reference.vb. Alternatively, after you have
entered the previous code in the client program, right - click the QuoteServiceClient
data type and select Go To Defi nition.

Right - click the QuoteClient program and make it the startup program. Then press F5 to run
the client. When you click the Get Quote button, the program uses the service to display a
random quote.

SUMMARY

The idea behind WCF is relatively simple: Allow a client application to call methods provided by
a service. Although the idea is simple, WCF is a complicated topic because it provides so much
fl exibility. It lets clients and services communicate through a variety of transport mechanisms using
an assortment of security protocols. WCF provides attributes that make defi ning service contracts
easy, but the great fl exibility it provides makes confi guring services more diffi cult.

For more information on WCF, search the Microsoft online help and the Web. A good starting point
is the Microsoft WCF home page at msdn.microsoft.com/aa388579.aspx . Several books are also
available that cover WCF in depth such as Professional WCF Programming: .NET Development
with the Windows Communication Foundation (Klein, Wrox, 2007).

WCF is huge but the .NET Framework is even larger, containing thousands of classes, types,
enumerations, interfaces, and other items. To make fi nding and using all of this material easier, the
.NET Framework divides groups of useful fi les into namespaces. For example, WCF classes are in
the System.ServiceModel namespace.

Chapter 40, “ Useful Namespaces, ” describes some other useful namespaces defi ned by the .NET
Framework. It provides a brief overview of some of the most important System namespaces and
gives more detailed examples that demonstrate regular expressions, XML, cryptography, refl ection,
threading, and Direct3D.

Summary ❘ 879

c38 .indd 879c38 .indd 879 12/31/09 7:06:18 PM12/31/09 7:06:18 PM

c38 .indd 880c38 .indd 880 12/31/09 7:06:19 PM12/31/09 7:06:19 PM

Useful Namespaces

The .NET Framework is a library of classes, interfaces, and types that add extra power to
Visual Studio .NET. These features go beyond what is normally provided by a programming
language such as Visual Basic.

The .NET Framework is truly enormous. To make it more manageable, Microsoft has broken
it into namespaces. The namespaces form a hierarchical catalog that groups related classes and
functions in a meaningful way.

For example, the System namespace contains basic classes and methods that an application
can use to perform common tasks. The System.Drawing namespace is the part of the System
namespace that holds graphical tools. The System.Drawing.Design, System.Drawing
.Drawing2D, System.Drawing.Imaging, System.Drawing.Printing, and System.Drawing
.Text namespaces further subdivide System.Drawing into fi ner groupings.

Many of the .NET Framework namespaces are essential for day - to - day programming. For
example, many Visual Basic applications need to produce printouts, so they use the System
.Drawing.Printing namespace. Different applications draw graphics or images on the screen,
so they need to use other System.Drawing namespaces.

Because so much of the .NET Framework is used in everyday programming tasks, this book
doesn ’ t strongly differentiate between Visual Basic and .NET Framework functionality.
Presumably, the book could have focused solely on the Visual Basic language and ignored the
.NET Framework, but it would have been a much less useful book.

Although the book covers many useful .NET Framework features, there ’ s a huge amount that
it doesn ’ t cover. The .NET Framework includes hundreds of namespaces that defi ne a huge
number of classes, types, enumerated values, and other paraphernalia.

The following sections describe some of the highest - level and most useful namespaces
provided by the .NET Framework.

39

c39.indd 881c39.indd 881 12/31/09 7:07:04 PM12/31/09 7:07:04 PM

882 ❘ CHAPTER 39 USEFUL NAMESPACES

ROOT NAMESPACES

Initially a Windows application includes two root namespaces: Microsoft and System.

NAMESPACES GALORE

Your program may include references to many other namespaces. If you add
references to development libraries, your program will have access to their
namespaces. For example, you might have Amazon.com, Google, eBay, and other
development toolkits installed, and they come with their own namespaces. Later
versions of Windows will also provide namespaces that you may want to reference.

Also note that the My namespace provides shortcuts that make common
programming tasks easier. For more information on the My namespace, see the
section “ My ” in Chapter 36, “ Confi guration and Resources, ” and Appendix S,
“ The My Namespace.”

The Microsoft Namespace

The Microsoft root namespace contains Microsoft - specifi c items. In theory, any vendor can
implement .NET languages that translate into Intermediate Language (IL) code. If you were to build
such a language, the items in the Microsoft namespace would generally not apply to your language.
Items in the System namespace described next would be as useful to users of your language as they
are to programmers who use the Microsoft languages, but the items in the Microsoft namespace
would probably not be as helpful.

The following table describes the most important second - level namespaces contained in the
Microsoft root namespace.

NAMESPACE CONTAINS

Microsoft.Csharp Items supporting compilation and code generation for C#.

Microsoft.JScript Items supporting compilation and code generation for JScript.

Microsoft.VisualBasic Items supporting compilation and code generation for Visual Basic. Some

of the items in this namespace are useful to Visual Basic programmers,

mostly for compatibility with previous versions of Visual Basic.

Microsoft.Vsa Items supporting Visual Studio for Applications (VSA), which lets you

include scripting in your application.

Microsoft.WindowsCE Items supporting Pocket PC and Smartphone applications using the

.NET Compact Framework.

Microsoft.Win32 Classes that handle operating system events and that manipulate the

System Registry.

c39.indd 882c39.indd 882 12/31/09 7:07:08 PM12/31/09 7:07:08 PM

Root Namespaces ❘ 883

The System Namespace

The System namespace contains basic classes used to defi ne fundamental data types. It also defi nes
important event handlers, interfaces, and exceptions.

The following table describes the second - level namespaces contained in the System root namespace.

NAMESPACE CONTAINS

System.CodeDom Classes for representing and manipulating source - code

documents.

System.Collections Interfaces and classes for defi ning various collection classes,

lists, queues, hash tables, and dictionaries.

System.ComponentModel Classes that control design time and runtime behavior of

components and controls. Defi nes several useful code

attributes such as Description, DefaultEvent, DefaultProperty,

and DefaultValue. Also defi nes some useful classes such as

ComponentResourceManager.

System.Confi guration Classes and interfaces for working with confi guration fi les.

System.Data Mostly classes for ADO.NET (the .NET version of ADO —

ActiveX Data Objects). Sub - namespaces include features for

specifi c kinds of databases and database technologies such as

SQL Server, Oracle, OLE DB (Object Linking and Embedding),

and so forth.

System.Deployment Classes that let you programmatically update ClickOnce

deployments.

System.Diagnostics Classes for working with system processes, performance

counters, and event logs.

System.DirectoryServices Classes for working with Active Directory.

System.Drawing Classes for using GDI+ graphics routines to draw two -

dimensional graphics, text, and images.

System.EnterpriseServices Tools for working with COM+ and building enterprise

applications.

System.Globalization Classes that help with internationalization. Includes tools for

customizing an application ’ s language and resources, and for

using localized formats such as date, currency, and number

formats.

System.IO Classes for reading and writing streams and fi les.

System.Linq Classes for LINQ. See Chapter 21, “ LINQ, ” for more information.

continues

c39.indd 883c39.indd 883 12/31/09 7:07:09 PM12/31/09 7:07:09 PM

884 ❘ CHAPTER 39 USEFUL NAMESPACES

NAMESPACE CONTAINS

System.Management Classes for system management and monitoring.

System.Media Classes for playing sounds. For example, you can use the

following code to play the system ’ s “ hand ” sound:

System.Media.SystemSounds.Hand.Play()

Example program SystemSounds, which is available for

download on the book ’ s web site, uses this namespace to play

the system sounds.

System.Messaging Classes for working with message queues to send and receive

messages across the network.

System.Net Classes for working with network protocols.

System.Refl ection Classes for working with loaded types. A program can use

these to learn about classes and their capabilities, and to invoke

an object ’ s methods.

System.Resources Classes to create and manage culture - specifi c resources

programmatically.

System.Runtime Classes for working with metadata for compilers, interop

services (interoperating with unmanaged code), marshalling,

remoting, and serialization.

System.Security Classes for security and cryptography.

System.ServiceProcess Classes that let you implement, install, and control Windows

service processes.

System.Text Classes representing various character encodings. Also

contains the StringBuilder class, which lets you build

large strings quickly, and classes for working with regular

expressions.

System.Threading Classes for multithreading.

System.Timers Timer class.

System.Transactions Classes for working with transactions involving multiple

distributed components and multiphase notifi cations.

System.Web Classes for web programming and browser/server interactions.

System.Windows.Forms Classes that defi ne Windows forms controls (including the Form

class itself).

System.Xml Classes that let you manipulate XML fi les.

(continued)

c39.indd 884c39.indd 884 12/31/09 7:07:10 PM12/31/09 7:07:10 PM

You can fi nd more detailed information on these namespaces on Microsoft ’ s web pages. The URL for
a namespace ’ s web page is “ msdn.microsoft.com/ ” followed by the namespace followed by “ .aspx ”
as in:

msdn.microsoft.com/system.codedom.aspx
msdn.microsoft.com/system.reflection.aspx
msdn.microsoft.com/system.windows.forms.aspx

ADVANCED EXAMPLES

Several chapters in this book cover pieces of the .NET Framework namespaces. For example,
Chapter 36 describes many of the most useful tools provided by the System.Globalization and
System.Resources namespaces. Similarly, Chapters 30 through 34 explain many of the most useful
drawing tools provided by the System.Drawing namespace.

Other parts of the .NET Framework namespaces are quite specialized, and you may never need to use
them. For example, many developers can use fairly standard installation techniques, so they will never
need to use the System.Deployment classes to programmatically update ClickOnce deployments.

A few namespaces bear some special mention here, however. They are quite useful in many
situations but they tend to stand separately rather than fi tting nicely into one of the book ’ s major
parts such as IDE, Object - Oriented Programming, or Graphics.

The following sections give a few examples that demonstrate some of the more useful of these
namespaces.

Regular Expressions

A regular expression is a series of symbols that represents a class of strings. A program can use
regular expression tools to determine whether a string matches a regular expression or to extract
pieces of a string that match an expression. For example, a program can use regular expressions to
see if a string has the format of a valid phone number, Social Security number, ZIP code or other
postal code, e - mail address, and so forth.

The following regular expression represents a 7 - or 10 - digit phone number in the United States:

 ^([2-9]\d{2}-)?[2-9]\d{2}-\d{4}$

The following table describes the pieces of this expression.

SUBEXPRESSION MEANING

^ (The caret symbol.) Matches the beginning of the string.

[2 – 9] Matches the characters 2 through 9 (United States phone numbers cannot

begin with 0 or 1).

\d Matches any digit 0 through 9.

{2} Repeats the previous group ([0 – 9]) exactly two times.

Advanced Examples ❘ 885

continues

c39.indd 885c39.indd 885 12/31/09 7:07:11 PM12/31/09 7:07:11 PM

886 ❘ CHAPTER 39 USEFUL NAMESPACES

 SUBEXPRESSION MEANING

 - Matches a dash.

 ([2 – 9]\d{2} -)? The parentheses group the items inside. The ? matches the previous item

exactly zero or one times. Thus the subexpression matches three digits

and a dash, all repeated zero or one times.

 [2 – 9]\d{2} - Matches one digit 2 through 9 followed by two digits 0 through 9 followed

by a dash.

 \d{4} Matches any digit exactly four times.

 $ Matches the end of the string.

 Taken together, this regular expression matches strings of the form NXX - XXXX and NXX - NXX -
 XXXX where N is a digit 2 through 9 and X is any digit.

 A complete discussion of regular expressions is outside the scope of this book. Search the online
help or the Microsoft web site to learn about the rules for building regular expressions. The web
page msdn.microsoft.com/az24scfc.aspx provides useful links to information about regular
expression language elements. Another useful page is www.regexlib.com/RETester.aspx , which
provides a regular expression tester and a library of useful regular expressions.

 As you read the rest of this section and when visiting regular expression web sites, be aware that
there are a couple different types of regular expression languages, which won ’ t all work with every
regular expression class.

 The following code shows how a program can validate a text fi eld against a regular expression.
When the user changes the text in the txtTestExp control, its Changed event handler creates a new
Regex object, passing its constructor the regular expression held in the txtRegExp text box. It then
calls the Regex object ’ s IsMatch method to see if the text matches the regular expression. If the text
matches, the program sets the txtTestExp control ’ s background color to white. If the text doesn ’ t
match the expression, the program makes the control ’ s background yellow to indicate an error.

Private Sub txtTestExp_TextChanged() Handles txtTestExp.TextChanged
 Dim reg_exp As New Regex(txtRegExp.Text)
 If reg_exp.IsMatch(txtTestExp.Text) Then
 txtTestExp.BackColor = Color.White
 Else
 txtTestExp.BackColor = Color.Yellow
 End If
End Sub

code snippet RegExValidate

 The following example uses a Regex object ’ s Matches method to retrieve a collection of Match
objects that describe the places where a string matches a regular expression. It then loops through
the collection, highlighting the matches in a Rich Text Box.

 (continued)

c39.indd 886c39.indd 886 12/31/09 7:07:12 PM12/31/09 7:07:12 PM

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

Advanced Examples ❘ 887

Private Sub btnGo_Click() Handles btnGo.Click
 Dim reg_exp As New Regex(txtPattern.Text)
 Dim matches As MatchCollection
 matches = reg_exp.Matches(txtTestString.Text)

 rchResults.Text = txtTestString.Text
 For Each a_match As Match In matches
 rchResults.Select(a_match.Index, a_match.Length)
 rchResults.SelectionBackColor = Color.Black
 rchResults.SelectionColor = Color.White
 Next a_match
End Sub

code snippet RegExHighlight

In this example, the regular expression is (in|or) , so the program fi nds matches where the string
contains in or or .

The following code uses a Regex object to make replacements in a string. It creates a Regex object,
passing its constructor the IgnoreCase option to tell the object to ignore capitalization in the string.
It then calls the object ’ s Replace method, passing it the string to modify and the pattern that it
should use to make the replacement.

Dim reg_exp As New Regex(txtPattern.Text, RegexOptions.IgnoreCase)
lblResult.Text = reg_exp.Replace(Me.txtTestString.Text,
txtReplacementPattern.Text)

code snippet RegExReplace

The Regex class can perform much more complicated matches. For example, you can use it to fi nd
fi elds within each line in a multiline string and then build a string containing the fi elds reformatted
or reordered. See the online help for more details.

XML

Extensible Markup Language (XML) is a simple language for storing data in a text format.
It encloses data within tags that delimit the data. You can give those tags any names that you want.
For example, the following text shows an XML fi le containing three Employee records:

< ?xml version="1.0" encoding="utf-8" standalone="yes"? >
< Employees >
 < Employee >
 < FirstName > Albert < /FirstName >
 < LastName > Anders < /LastName >
 < EmployeeId > 11111 < /EmployeeId >
 < /Employee >
 < Employee >
 < FirstName > Betty < /FirstName >
 < LastName > Beach < /LastName >
 < EmployeeId > 22222 < /EmployeeId >
 < /Employee >

c39.indd 887c39.indd 887 12/31/09 7:07:13 PM12/31/09 7:07:13 PM

888 ❘ CHAPTER 39 USEFUL NAMESPACES

 < Employee >
 < FirstName > Chuck < /FirstName >
 < LastName > Cinder < /LastName >
 < EmployeeId > 33333 < /EmployeeId >
 < /Employee >
< /Employees >

The System.Xml namespace contains classes for reading, writing, and manipulating XML data.
Different classes let you process XML fi les in different ways. For example, the XmlDocument class
lets you represent an XML document completely within memory. Using this class, you can perform
complex manipulations of an XML fi le, adding and removing elements, searching for elements with
particular attributes, and merging XML documents.

The XmlTextReader and XmlTextWriter classes let you read and write XML data in a fast,
forward - only fashion. These classes can be more effi cient than XmlDocument when you must
quickly build or scan very large XML fi les that might not easily fi t in memory all at once.

The following code shows one way a program can use the System.Xml namespace to generate the
previous employee XML fi le:

Private Sub btnGo_Click() Handles btnGo.Click
 Dim xml_text_writer As _
 New XmlTextWriter("employees.xml", System.Text.Encoding.UTF8)

 ' Use indentation to make the result look nice.
 xml_text_writer.Formatting = Formatting.Indented
 xml_text_writer.Indentation = 4

 ' Write the XML declaration.
 xml_text_writer.WriteStartDocument(True)

 ' Start the Employees node.
 xml_text_writer.WriteStartElement("Employees")

 ' Write some Employee elements.
 MakeEmployee(xml_text_writer, "Albert", "Anders", 11111)
 MakeEmployee(xml_text_writer, "Betty", "Beach", 22222)
 MakeEmployee(xml_text_writer, "Chuck", "Cinder", 33333)

 ' End the Employees node.
 xml_text_writer.WriteEndElement()

 ' End the document.
 xml_text_writer.WriteEndDocument()

 ' Close the XmlTextWriter.
 xml_text_writer.Close()
End Sub

' Add an Employee node to the document.

c39.indd 888c39.indd 888 12/31/09 7:07:14 PM12/31/09 7:07:14 PM

Advanced Examples ❘ 889

Private Sub MakeEmployee(ByVal xml_text_writer As XmlTextWriter,
 ByVal first_name As String, ByVal last_name As String,
 ByVal emp_id As Integer)
 ' Start the Employee element.
 xml_text_writer.WriteStartElement("Employee")

 ' Write the FirstName.
 xml_text_writer.WriteStartElement("FirstName")
 xml_text_writer.WriteString(first_name)
 xml_text_writer.WriteEndElement()

 ' Write the LastName.
 xml_text_writer.WriteStartElement("LastName")
 xml_text_writer.WriteString(last_name)
 xml_text_writer.WriteEndElement()

 ' Write the EmployeeId.
 xml_text_writer.WriteStartElement("EmployeeId")
 xml_text_writer.WriteString(emp_id.ToString)
 xml_text_writer.WriteEndElement()

 ' Close the Employee element.
 xml_text_writer.WriteEndElement()
End Sub

code snippet BuildMemoryXml

The code starts by creating an XmlTextWriter object. This class provides methods for effi ciently
writing items into an XML fi le. The code sets the writer ’ s Formatting and Indentation properties to
make the object indent the resulting XML fi le nicely. If you don ’ t set these properties, the fi le comes
out all run together on a single line. That ’ s fi ne for programs that process XML fi les but makes the
fi le hard for humans to read.

The program calls the WriteStartDocument method to write the fi le ’ s XML declaration, including
the XML version, encoding, and standalone attribute. It calls WriteStartElement to write the starting
< Employees > XML tag and then calls subroutine MakeEmployee to generate three Employee items.
It calls the WriteEndElement method to write the < /Employees > end tag, and calls WriteEndDocument
to end the document. The program then closes the XmlTextWriter to close the fi le.

Subroutine MakeEmployee writes a starting < Employee > element into the fi le. It then uses
the WriteStartElement, WriteString, and WriteEndElement methods to add the employee ’ s
FirstName, LastName, and EmployeeId elements to the document. The routine fi nishes by calling
WriteEndElement to create the < /Employee > end tag.

Other classes within the System.Xml namespace let you load and manipulate XML data in memory,
read XML data in a fast forward – only manner, and search XML documents for elements matching
certain criteria. XML is quickly becoming a common language that allows unrelated applications to
communicate with each other. Using the XML tools provided by the System.Xml namespace, your
application can read, write, and manipulate XML data, too.

c39.indd 889c39.indd 889 12/31/09 7:07:15 PM12/31/09 7:07:15 PM

890 ❘ CHAPTER 39 USEFUL NAMESPACES

Cryptography

The System.Security namespace includes objects for performing various cryptographic
operations. The four main scenarios supported by these objects include the following:

Secret - key encryption — This technique encrypts data so you cannot read it unless you
know the secret key. This is also called symmetric cryptography.

Public - key encryption — This technique encrypts data using a public key that everyone
knows. Only the person with a secret private key can read the data. This is useful if you
want to be the only one able to read messages anyone sends to you. This is also called
asymmetric cryptography.

Signing — This technique signs data to guarantee that it really came from a specifi c party.
For example, you can sign an executable program to prove that it ’ s really your program and
not a virus substituted by some hacker.

Hashing — This technique maps a piece of data such as a document into a hash value so it ’ s
very unlikely that two different documents will map to the same hash value. If you know
a document ’ s hash value, you can later hash the document again and compare the values.
If the calculated value matches the previously known value, it is very unlikely that anyone
has modifi ed the fi le since the fi rst hashing.

The example described later in this section encrypts and decrypts fi les. The basic idea is to create
a CryptoStream object attached to a fi le stream opened for writing. As you write data into the
CryptoStream, it encrypts or decrypts the data and sends the result to the output fi le stream.

Although the classes provided by Visual Studio are easier to use than the routines contained in
the underlying cryptography API, the details are still somewhat involved. To encrypt and decrypt
fi les, you must fi rst select an encryption algorithm. You need to pick key and block sizes that are
supported by the corresponding encryption provider.

To use an encryption provider, you must pass it a key and initialization vector (IV). Each of these is
a series of bytes that the encryption provider uses to initialize its internal state before it encrypts or
decrypts fi les.

If you want to control the encryption with a textual password, you must convert it into a
series of bytes that you can use for the key and initialization vector. You can do that with a
PasswordDeriveBytes object, but that object also requires the name of the hashing algorithm that it
should use to convert the password into the key and initialization vector bytes.

Working through the following example should make this less confusing. Example program AesFile,
which is available for download on the book ’ s web site, uses the AES (Advanced Encryption
Standard) algorithm to encrypt and decrypt fi les. The program uses the SHA384 hashing algorithm
to convert a text password into key and initialization vector bytes. (For information on AES, see
en.wikipedia.org/wiki/Advanced_Encryption_Standard . For information on SHA384,
see en.wikipedia.org/wiki/Sha_hash .)

➤

➤

➤

➤

c39.indd 890c39.indd 890 12/31/09 7:07:16 PM12/31/09 7:07:16 PM

Advanced Examples ❘ 891

' Encrypt or decrypt a file, saving the results
' in another file.
Private Sub CryptFile(ByVal password As String, ByVal in_file As String,
 ByVal out_file As String, ByVal encrypt As Boolean)
 ' Create input and output file streams.
 Dim in_stream As New FileStream(in_file, FileMode.Open, FileAccess.Read)
 Dim out_stream As New FileStream(out_file, FileMode.Create, FileAccess.Write)

 ' Make an AES service provider.
 Dim aes_provider As New AesCryptoServiceProvider()

 ' Find a valid key size for this provider.
 Dim key_size_bits As Integer = 0
 For i As Integer = 1024 To 1 Step -1
 If aes_provider.ValidKeySize(i) Then
 key_size_bits = i
 Exit For
 End If
 Next i
 Debug.Assert(key_size_bits > 0)

 ' Get the block size for this provider.
 Dim block_size_bits As Integer = aes_provider.BlockSize

 ' Generate the key and initialization vector.
 Dim key As Byte() = Nothing
 Dim iv As Byte() = Nothing
 Dim salt As Byte() = { & H0, & H0, & H1, & H2, & H3, & H4, & H5,
 & H6, & HF1, & HF0, & HEE, & H21, & H22, & H45}
 MakeKeyAndIV(password, salt, key_size_bits, block_size_bits, key, iv)
 ' Make the encryptor or decryptor.
 Dim crypto_transform As ICryptoTransform
 If encrypt Then
 crypto_transform = aes_provider.CreateEncryptor(key, iv)
 Else
 crypto_transform = aes_provider.CreateDecryptor(key, iv)
 End If

 ' Attach a crypto stream to the output stream.
 Dim crypto_stream As New CryptoStream(out_stream, crypto_transform,
 CryptoStreamMode.Write)

 ' Encrypt or decrypt the file.
 Const BLOCK_SIZE As Integer = 1024
 Dim buffer(BLOCK_SIZE) As Byte
 Dim bytes_read As Integer
 Do
 ' Read some bytes.
 bytes_read = in_stream.Read(buffer, 0, BLOCK_SIZE)
 If bytes_read = 0 Then Exit Do

 ' Write the bytes into the CryptoStream.
 crypto_stream.Write(buffer, 0, bytes_read)

c39.indd 891c39.indd 891 12/31/09 7:07:16 PM12/31/09 7:07:16 PM

892 ❘ CHAPTER 39 USEFUL NAMESPACES

 Loop

 ' Close the streams.
 crypto_stream.Close()
 in_stream.Close()
 out_stream.Close()
End Sub

' Use the password to generate key bytes.
Private Sub MakeKeyAndIV(ByVal password As String, ByVal salt() As Byte,
 ByVal key_size_bits As Integer, ByVal block_size_bits As Integer,
 ByRef key As Byte(), ByRef iv As Byte())
 Dim derive_bytes As New Rfc2898DeriveBytes(txtPassword.Text, salt, 1000)

 key = derive_bytes.GetBytes(key_size_bits \ 8)
 iv = derive_bytes.GetBytes(block_size_bits \ 8
End Sub

code snippet AesFile

Subroutine CryptFile encrypts or decrypts a fi le, saving the result in a new fi le. It takes as
parameters a password string, the names of the input and output fi les, and a Boolean indicating
whether it should perform encryption or decryption.

The routine starts by opening the input and output fi les. It then makes an AesCryptoServiceProvider
object to provide the encryption and decryption algorithms using AES. The program must fi nd a key
length that is supported by the encryption service provider. This code counts backward from 1,024
until it fi nds a value that the provider ’ s ValidKeySize method approves. On my computer, the largest
key size the provider supports is 192 bits.

The AES algorithm encrypts data in blocks. The program uses the provider ’ s BlockSize property to see
how big those blocks are. The program must generate an initialization vector that has this same size.

The program calls the MakeKeyAndIV subroutine. This routine, which is described shortly,
converts a text password into arrays of bytes for use as the key and initialization vector. The salt
array contains a series of random bytes to make guessing the password harder for an attacker.
The Rfc2898DeriveBytes class used by subroutine MakeKeyAndIV can generate a random salt for
the program, but this example uses a salt array written into the code to make reading the code easier.

After obtaining the key and initialization vector, the program makes an object to perform the
encryption or decryption transformation, depending on whether the subroutine ’ s encrypt parameter
is True or False. The program uses the encryption provider ’ s CreateEncryptor or CreateDecryptor
method, passing it the key and initialization vector.

Now, the program makes a CryptoStream object attached to its output fi le stream. It passes the
object ’ s constructor and output fi le stream, the cryptographic transformation object, and a fl ag
indicating that the program will write to the stream.

At this point, the program has set the stage and can fi nally begin processing data. It allocates a
buffer to hold data and then enters a Do loop. In the loop, it reads data from the input fi le into the
buffer. If it reads no bytes, the program has reached the end of the input fi le, so it exits the loop.
If it reads some bytes, the program writes them into the CryptoStream. The CryptoStream uses

c39.indd 892c39.indd 892 12/31/09 7:07:17 PM12/31/09 7:07:17 PM

Advanced Examples ❘ 893

its cryptographic transformation object to encrypt or decrypt the data and sends the result to its
attached output fi le stream.

When it has fi nished processing the input fi le, the subroutine closes its streams.

Subroutine MakeKeyAndIV uses a text password to generate arrays of bytes to use as a key and
initialization vector. It begins by creating an Rfc2898DeriveBytes object, passing to its constructor
the password text, the salt, and the number of iterations the object should use to generate the
random bytes. The salt can be any array of bytes as long as it ’ s the same when encrypting and
decrypting the fi le. The salt makes it harder for an attacker to build a dictionary of key and
initialization vector values for every possible password string.

Having built the PasswordDeriveBytes object, the subroutine calls its GetBytes method to get the
proper number of bytes for the key and initialization vector.

HOW EASY WAS THAT?

Previous editions of this book used the triple DES (Data Encryption Standard)
algorithm to encrypt and decrypt fi les. However, DES is an old standard and
cryptographers now recommend using AES instead.

The only thing I had to do to update this example was change the single statement
that created the cryptographic service provider to

Dim aes_provider As New AesCryptoServiceProvider()

For clarity I also renamed the provider variable from des_provider to
aes_provider but the update really only required changing a single statement.
Setting up and using the cryptographic library takes a bit of work but the pieces are
fairly interchangeable so switching algorithms is easy.

(Both the original program DesFile and new program AesFile are available for
download on the book ’ s web site.)

The following code uses the CryptFile subroutine to encrypt and then decrypt a fi le. First it calls
CryptFile, passing it a password, input and output fi le names, and the value True to indicate that
the routine should encrypt the fi le. Next, the code calls CryptFile again, this time to decrypt the
encrypted fi le.

' Encrypt the file.
CryptFile(txtPassword.Text, txtPlaintextFile.Text, txtCyphertextFile.Text, True)

' Decrypt the file.
CryptFile(txtPassword.Text, txtCyphertextFile.Text, txtDecypheredFile.Text, False)

The DesFile example program, which is available for download on the book ’ s web site,
demonstrates the CryptFile subroutine. Enter some text and a password, and then click the left >
button to encrypt the fi le. Click the right > button to decrypt the encrypted fi le and see if it matches
the original text.

c39.indd 893c39.indd 893 12/31/09 7:07:18 PM12/31/09 7:07:18 PM

894 ❘ CHAPTER 39 USEFUL NAMESPACES

If you change the password by even a single character, the decryption returns gibberish. Figure 39 - 1
shows the program trying to decrypt a message incorrectly. Before the program tried to decrypt the
fi le, I added an “ s ” to the end of the password. The result is completely unreadable.

See the online help for information about the other main cryptographic operations (secret - key
encryption, public - key encryption, signing, and hashing). Other books may also provide additional
insights into cryptography. For example, the book Applied Cryptography: Protocols, Algorithms,
and Source Code in C, Second Edition (Schneier, Wiley Publishing, Inc., 1996) provides an
excellent overview of modern cryptography and describes many important algorithms in detail.
Practical Cryptography (Ferguson and Schneier, Wiley, 2003) provides a higher level executive
summary of the algorithms and how to use them without covering implementation details.
Cryptography for Dummies (Cobb, For Dummies, 2004) provides another high - level introduction
to basic cryptographic concepts such as hashing and public key encryption.

Refl ection

Refl ection lets a program learn about itself and other programming entities. It includes objects that
tell the program about assemblies, modules, and types.

Example program Refl ectionFormProperties uses the following code to examine the program ’ s form
and display a list of its properties, their types, and their values:

Private Sub Form1_Load() Handles MyBase.Load
 ' Make column headers.
 lvwProperties.View = View.Details
 lvwProperties.Columns.Clear()
 lvwProperties.Columns.Add("Property", 10,
 HorizontalAlignment.Left)
 lvwProperties.Columns.Add("Type", 10,
 HorizontalAlignment.Left)
 lvwProperties.Columns.Add("Value", 10,
 HorizontalAlignment.Left)

 ' List the properties.
 Dim property_value As Object
 Dim properties_info As PropertyInfo() =
 GetType(Form1).GetProperties()

FIGURE 39-1: Changing even a single character in the password makes

decryption produce an unintelligible result.

c39.indd 894c39.indd 894 12/31/09 7:07:20 PM12/31/09 7:07:20 PM

Advanced Examples ❘ 895

 lvwProperties.Items.Clear()
 For i As Integer = 0 To properties_info.Length - 1
 With properties_info(i)
 If .GetIndexParameters().Length = 0 Then
 property_value = .GetValue(Me, Nothing)
 If property_value Is Nothing Then
 ListViewMakeRow(lvwProperties,
 .Name,
 .PropertyType.ToString,
 " < Nothing > ")
 Else
 ListViewMakeRow(lvwProperties,
 .Name,
 .PropertyType.ToString,
 property_value.ToString)
 End If
 Else
 ListViewMakeRow(lvwProperties,
 .Name,
 .PropertyType.ToString,
 " < array > ")
 End If
 End With
 Next i

 ' Size the columns to fit the data.
 lvwProperties.Columns(0).Width = -2
 lvwProperties.Columns(1).Width = -2
 lvwProperties.Columns(2).Width = -2
End Sub

' Make a ListView row.
Private Sub ListViewMakeRow(ByVal lvw As ListView,
 ByVal item_title As String, ByVal ParamArray subitem_titles() As String)
 ' Make the item.
 Dim new_item As ListViewItem = lvw.Items.Add(item_title)

 ' Make the subitems.
 For i As Integer = subitem_titles.GetLowerBound(0) To _
 subitem_titles.GetUpperBound(0)
 new_item.SubItems.Add(subitem_titles(i))
 Next i
End Sub

code snippet Refl ectionFormProperties

The program starts by formatting the ListView control named lvwProperties. Next, it defi nes
an array of PropertyInfo objects named properties_info. It uses GetType to get type information
about the Form1 class and then uses the type ’ s GetProperties method to get information about the
properties. The program then loops through the PropertyInfo objects.

c39.indd 895c39.indd 895 12/31/09 7:07:21 PM12/31/09 7:07:21 PM

896 ❘ CHAPTER 39 USEFUL NAMESPACES

If the object ’ s GetIndexParameters array contains no entries, the property is not an array. In that
case, the program uses the PropertyInfo object ’ s GetValue method to get the property ’ s value.
The code then displays the property ’ s name, type, and value.

If the PropertyInfo object ’ s GetIndexParameters array contains entries, the property is an array.
In that case, the program displays the property ’ s name and type, and the string < array > .

The subroutine fi nishes by sizing the ListView control ’ s columns and then making the form fi t the
columns.

The helper subroutine ListViewMakeRow adds a row of values to the ListView control. It adds a
new item to the control and then adds subitems to the item. The item appears in the control ’ s fi rst
column and the subitems appear in the other columns.

Using refl ection to learn about your application is interesting, but not always necessary. After all, if
you build an object, you probably know what its properties are.

Refl ection can also tell you a lot about other applications. The Refl ectionGetResources example
program uses the following code to learn about another application. This program reads the
assembly information in a fi le (example Refl ectionHasResources is a resource - only DLL that this
program can examine) and lists the embedded resources that it contains. The user can then select a
resource to view it.

Private m_TargetAssembly As Assembly

' List the target assembly's resources.
Private Sub btnList_Click() Handles btnList.Click
 ' Get the target assembly.
 m_TargetAssembly = Assembly.LoadFile(txtFile.Text)

 ' List the target's manifest resource names.
 lstResourceFiles.Items.Clear()
 For Each str As String In m_TargetAssembly.GetManifestResourceNames()
 lstResourceFiles.Items.Add(str)
 Next str
End Sub

' List this file's resources.
Private Sub lstResourceFiles_SelectedIndexChanged()
 Handles lstResourceFiles.SelectedIndexChanged
 lstResources.Items.Clear()

 Dim resource_reader As ResourceReader
 resource_reader = New ResourceReader(
 m_TargetAssembly.GetManifestResourceStream(lstResourceFiles.Text))
 Dim dict_enumerator As IDictionaryEnumerator =
 resource_reader.GetEnumerator()
 While dict_enumerator.MoveNext()
 lstResources.Items.Add(New ResourceInfo(
 dict_enumerator.Key,
 dict_enumerator.Value))
 End While
 resource_reader.Close()
End Sub

c39.indd 896c39.indd 896 12/31/09 7:07:21 PM12/31/09 7:07:21 PM

Advanced Examples ❘ 897

' Display the selected resource.
Private Sub lstResources_SelectedIndexChanged() _
 Handles lstResources.SelectedIndexChanged
 lblString.Text = ""
 picImage.Image = Nothing
 Me.Cursor = Cursors.WaitCursor
 Refresh()

 Dim resource_info As ResourceInfo =
 DirectCast(lstResources.SelectedItem, ResourceInfo)
 Select Case resource_info.Value.GetType.Name
 Case "Bitmap"
 picImage.Image = CType(resource_info.Value, Bitmap)
 lblString.Text = ""
 Case "String"
 picImage.Image = Nothing
 lblString.Text = CType(resource_info.Value, String)
 Case Else
 ' Try to play it as audio.
 Try
 My.Computer.Audio.Play(resource_info.Value,
 AudioPlayMode.WaitToComplete)
 Catch ex As Exception
 MessageBox.Show(resource_info.Key &
 " has an unkown resource type",
 "Unknown Resource Type", MessageBoxButtons.OK)
 End Try
 End Select

 Me.Cursor = Cursors.Default
End Sub

Private Class ResourceInfo
 Public Key As Object
 Public Value As Object
 Public Sub New(ByVal new_key As Object, ByVal new_value As Object)
 Key = new_key
 Value = new_value
 End Sub
 Public Overrides Function ToString() As String
 Return Key.ToString & " (" & Value.ToString & ")"
 End Function
End Class

code snippet Refl ectionGetResources

The user enters the name of the assembly to load the txtFile text box. For example, this can be the
name of a .NET executable program.

When the user clicks the List button, the btnList_Click event handler uses the Assembly class ’ s
shared LoadFile method to load an Assembly object representing the indicated assembly. It then
loops through the array of strings returned by the Assembly object ’ s GetManifestResourceNames
method, adding the resource fi le names to the ListBox named lstResourceFiles.

c39.indd 897c39.indd 897 12/31/09 7:07:22 PM12/31/09 7:07:22 PM

898 ❘ CHAPTER 39 USEFUL NAMESPACES

When the user selects a resource fi le from the list, the lstResourceFiles_SelectedIndexChanged
event handler displays a list of resources in the fi le. It uses the Assembly object ’ s
GetManifestResourceStream method to get a stream for the resources. It uses the stream to
make a ResourceReader object and then enumerates the items found by the ResourceReader. It
saves each object in a new ResourceInfo object (this class is described shortly) and adds it to the
lstResources list.

When the user selects a resource from lstResources, its SelectedIndexChanged event handler
retrieves the selected ResourceInfo object, converts its Value property into an appropriate data type,
and displays the result. The ResourceInfo class stores Key and Value information for a resource
enumerated by a ResourceReader object ’ s enumerator. It provides an overloaded ToString that the
lstResources list uses to represent the items.

This is admittedly a fairly complex example, but it performs the fairly remarkable feat of pulling
resources out of another compile application.

Refl ection can provide a lot of information about applications, modules, types, methods, properties,
events, parameters, and so forth. It lets a program discover and invoke methods at runtime and
build types at runtime.

An application also uses refl ection indirectly when it performs such actions as serialization, which
uses refl ection to learn how to serialize and deserialize objects.

Refl ection is a very advanced and somewhat arcane topic, but it is extremely powerful.

TPL

The Task Parallel Library , or TPL , is a set of tools that make building parallel programs easier.
It provides a set of relatively simple method calls that launch multiple routines simultaneously on
whatever processors are available.

Not long ago, only supercomputers contained multiple processing units, so only they could truly
perform more than one task at the same time. Desktop operating systems switched rapidly back
and forth between applications so it appeared as if the computer was performing a lot of tasks
simultaneously, but in fact it was only doing one thing at a time.

More recently multi - processor computers are becoming quite common and relatively inexpensive.
Practically any computer vendor sells computers with two or four processors. Soon it ’ s likely that
you ’ ll be able to buy affordable computers with 8, 16, or possibly even dozens of processors.

The operating system can use some of this extra computing power transparently to make your
system run more quickly, but if you have a computationally intensive application that hogs the
processor, you must take special action if you want to get the full benefi ts of all of your processors.

To improve performance, you can launch multiple threads of execution to perform different tasks. If
you run the threads on separate processors, they can do their work at the same time.

Unfortunately, writing safe and effective multi - threaded applications can be tricky. If you do it
wrong, the threads will interfere with each other, possibly making the application crash or even take
longer than it would on a single thread.

c39.indd 898c39.indd 898 12/31/09 7:07:23 PM12/31/09 7:07:23 PM

Advanced Examples ❘ 899

TPL is intended to make writing safe and effective multi - threaded applications easier. The TPL
methods are lightweight and don ’ t add too much overhead to an application so, if you need to
perform several tasks at once and you have multiple processors available, your program will
probably run faster. TPL overhead is fairly low, so even if you run the program on a single - processor
system, you don ’ t pay a huge penalty for trying to use multiple threads.

Getting Started

TPL is part of the System.Threading namespace. To make working with the namespace easier, you
can add the following Imports statement at the top of your program fi les.

Imports System.Threading.Tasks

Now you ’ re ready to use TPL. The following sections describe some of the most useful TPL
methods: Parallel.Invoke, Parallel.For, and Parallel.ForEach.

Parallel.Invoke

The Parallel class contains methods for launching parallel threads. The Parallel.Invoke takes as
parameters a series of System.Action objects that give it information about the tasks it should
launch.

The System.Action class is actually just a named delegate representing a subroutine that takes no
parameters so you can use the address of any subroutine.

Example program ParallelInvoke shown in Figure 39 - 2
demonstrates the Parallel.Invoke method. As you can see,
the parallel version was signifi cantly faster on my dual - core
system.

The following code shows how program ParallelInvoke uses
Parallel.Invoke:

Parallel.Invoke(
 AddressOf Fibonacci0,
 AddressOf Fibonacci1,
 AddressOf Fibonacci2,
 AddressOf Fibonacci3)

The four Fibonacci routines simply evaluate the Fibonacci number for various values. For example,
the Fibonacci0 function shown in the following code gets the fi rst text box ’ s value stored in the
Numbers array, calls the Fibonacci function, and saves the result in the Results array.

Private Sub Fibonacci0()
 Results(0) = Fibonacci(Numbers(0))
End Sub

FIGURE 39-2: Parallel.Invoke runs

several subroutines on multiple threads.

c39.indd 899c39.indd 899 12/31/09 7:07:24 PM12/31/09 7:07:24 PM

900 ❘ CHAPTER 39 USEFUL NAMESPACES

FIBONACCI FUN

The Fibonacci sequence is defi ned recursively by Fibonacci(0) = 1, Fibonacci(1) = 1,
and for larger values of N Fibonacci(N) = Fibonacci(N − 1) + Fibonacci(N − 2). The
fi rst 10 values are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, and 89.

The function grows fairly quickly so, as you can see in Figure 39 - 2, Fibonacci(36) =
24,157,817.

More importantly for this example is the fact that the recursive defi nition is
an ineffi cient way to calculate Fibonacci numbers. To see why, consider that
calculating Fibonacci(N) requires calculating Fibonacci(N − 1) and Fibonacci
(N − 2). But calculating Fibonacci(N − 1) also requires calculating Fibonacci
(N − 2), so that value is calculated twice. During the course of a calculation,
intermediate values are calculated a huge number of times so the code takes a while
and the example has some nice long routines to parallelize.

The following code shows the Fibonacci function.

Private Function Fibonacci(ByVal N As Long) As Long
 If N < = 1 Then Return 1

 Return Fibonacci(N - 1) + Fibonacci(N - 2)
End Function

Before calling ParallelInvoke, this example stores the values N in an array. Each of the routines
looks only at its array entry and places its result in its own separate variable, which is also stored in
an array. That means the routines never read or write each other ’ s values. This is important because
parallel routines that work with the same variables may interfere with each other.

For example, suppose one routine sets a variable ’ s value to 10 and another routine sets the same
variable ’ s value to 20. If the routines are running at the same time, you can ’ t tell which routine gets
there fi rst, so you don ’ t know what value the variable holds at the end.

The following list summarizes some of the details you need to consider when working with multiple
threads:

Two threads trying to access the same variables can interfere with each other.

Two threads trying to lock several shared resources can form a deadlock where neither can
continue until the other fi nishes.

Parallel threads cannot directly access the user interface thread, so they cannot safely use
control properties.

Some classes are not “ thread - safe ” so you cannot safely use them in multiple threads at the
same time.

As long as separate threads use only their own variables and don ’ t try to interact with the user
interface thread, Parallel.Invoke is remarkably easy to use.

➤

➤

➤

➤

c39.indd 900c39.indd 900 12/31/09 7:07:25 PM12/31/09 7:07:25 PM

Advanced Examples ❘ 901

Parallel.For

The Parallel.For method lets you invoke a single subroutine while passing it a series of numeric
values.

Example program ParallelFor performs calculations similar to those performed by program Parallel.
Invoke except it uses the Parallel.For method.

This version calls the FindFibonacci subroutine shown in the following code:

Private Sub FindFibonacci(ByVal index As Integer)
 Results(index) = Fibonacci(Numbers(index))
End Sub

The index parameter tells which entry in the Numbers array is the Fibonacci number that the
routine should calculate. The Numbers array holds the numbers entered in the text boxes shown in
Figure 39 - 2. The code calls the Fibonacci function and saves the results in the Results array.

The following code shows how the program calls subroutine FindFibonacci sequentially, passing it
the values 0 through 3:

For i As Integer = 0 To 3
 FindFibonacci(i)
Next i

The program uses the following code to make the same subroutine calls in parallel:

Parallel.For(0, 3, AddressOf FindFibonacci)

The results of the two calculations are the same but the parallel version takes only about 41% as
long on my dual - core system.

Parallel.For is most useful when you need to call a routine many times with different numeric
inputs.

Parallel.ForEach

As you may be able to guess, the Parallel.ForEach method is similar to Parallel.For except it passes
a series of objects from a collection into the subroutine instead of a series of sequential values.

Example program ParallelForEach performs the same Fibonacci calculations as the previous
examples except it uses the Parallel.ForEach method. The following code shows the FiboInfo class
that it passes in the parallel subroutine calls:

Private Class FiboInfo
 Public N As Long
 Public Result As Long
End Class

The following code shows the new FindFibonacci subroutine. The FiboInfo parameter both tells the
routine which Fibonacci number to calculate and holds the result.

c39.indd 901c39.indd 901 12/31/09 7:07:26 PM12/31/09 7:07:26 PM

902 ❘ CHAPTER 39 USEFUL NAMESPACES

Private Sub FindFibonacci(ByVal fibo_info As FiboInfo)
 fibo_info.Result = Fibonacci(fibo_info.N)
End Sub

The following code shows the key parallel pieces of example program ParallelForEach. This code
fi rst initializes the fi bo_info array and then uses Parallel.ForEach to pass its values to different calls
to subroutine FindFibonacci.

Dim fibo_info() As FiboInfo = {
 New FiboInfo() With {.N = CLng(txtNum0.Text)},
 New FiboInfo() With {.N = CLng(txtNum1.Text)},
 New FiboInfo() With {.N = CLng(txtNum2.Text)},
 New FiboInfo() With {.N = CLng(txtNum3.Text)}
}

Parallel.ForEach(fibo_info, AddressOf FindFibonacci)

Once again, the results are the same as in the previous examples, but the parallel version takes less
time than the sequential version.

There are still plenty of TPL details that I don ’ t have room to cover here. The library provides other
classes and methods for executing tasks in parallel and there are many ways you can coordinate
among different threads. For more information on TPL, search the Web for articles such as these
two of mine posted by DevX.com:

Getting Started with the .NET Task Parallel Library (www.devx
.com/dotnet/Article/39204)

Getting Started with the .NET Task Parallel Library: Multi - Core Case Studies (www.devx
.com/dotnet/Article/39219)

These articles contain more detailed information and other examples.

SUMMARY

The .NET Framework defi nes hundreds of namespaces, and this chapter described only a few.
It provided a brief overview of some of the most important System namespaces and gave more
detailed examples that demonstrated regular expressions, XML, cryptography, refl ection, and TPL.

Even in these somewhat specialized areas, the examples can cover only a tiny fraction of the
capabilities of the namespaces; however, the examples should give you an idea of the types of
features that these namespaces can add to your application. If you need to do something similar,
they will hopefully inspire you to do more in - depth research so that you can take full advantage of
these powerful tools.

The chapters in this book cover a wide variety of Visual Basic programming topics. In the fi rst part
of the book, Chapters 1 through 7 describe the Visual Studio integrated development environment
and many of the tools that you use to build Visual Basic programs. In the second part of the book,
Chapters 8 through 24 explained basic topics of Visual Basic programming (such as the language

➤

➤

c39.indd 902c39.indd 902 12/31/09 7:07:27 PM12/31/09 7:07:27 PM

itself, using standard controls, and drag and drop). In the third part of the book, Chapters 25
through 29 describe object - oriented concepts (such as class and structure declaration, namespaces,
and generics). In the fourth part of the book, Chapters 30 through 35 cover graphical topics (such as
how to draw shapes and text, image manipulation, printing, and report generation). In the fi fth part
of the book, Chapters 36 through 40 explain ways a program can interact with its environment by
using techniques such as confi guration fi les, the Registry, streams, and fi le - system objects.

The rest of this book contains appendices that provide a categorized reference for Visual Basic
.NET. You can use them to review quickly the syntax of a particular command, select from among
several overloaded versions of a routine, or refresh your memory of what a particular class can do.

Summary ❘ 903

c39.indd 903c39.indd 903 12/31/09 7:07:27 PM12/31/09 7:07:27 PM

c39.indd 904c39.indd 904 12/31/09 7:07:28 PM12/31/09 7:07:28 PM

PART VI

Appendices

APPENDIX A: Useful Control Properties, Methods, and Events

APPENDIX B: Variable Declarations and Data Types

APPENDIX C: Operators

APPENDIX D: Subroutine and Function Declarations

APPENDIX E: Control Statements

APPENDIX F: Error Handling

APPENDIX G: Windows Forms Controls and Components

APPENDIX H: WPF Controls

APPENDIX I: Visual Basic Power Packs

APPENDIX J: Form Objects

APPENDIX K: Classes and Structures

APPENDIX L: LINQ

APPENDIX M: Generics

APPENDIX N: Graphics

�

�

�

�

�

�

�

�

�

�

�

�

�

�

bapp01.indd 905bapp01.indd 905 12/31/09 5:58:17 PM12/31/09 5:58:17 PM

APPENDIX O: Useful Exception Classes

APPENDIX P: Date and Time Format Specifiers

APPENDIX Q: Other Format Specifiers

APPENDIX R: The Application Class

APPENDIX S: The My Namespace

APPENDIX T: Streams

APPENDIX U: File-System Classes

APPENDIX V: Index of Examples

�

�

�

�

�

�

�

�

bapp01.indd 906bapp01.indd 906 12/31/09 5:58:21 PM12/31/09 5:58:21 PM

Useful Control Properties,
Methods, and Events

A control interacts with a program or the user through properties, methods, and events.
Although each type of control provides different features, they are all derived from the
Control class. This class provides many useful properties, methods, and events that other
controls inherit, if they don ’ t take special action to override them. The following sections
describe some of the most useful of these inherited features.

CLASSY CONTROLS

You can learn more about the Control class at msdn.microsoft.com/system
.windows.forms.control.aspx .

PROPERTIES

The following table lists properties implemented by the Control class. All controls that inherit
from this class inherit these properties unless they override the Control class ’ s behavior.

A

PROPERTY PURPOSE

AllowDrop Determines whether the control allows drag-and-drop operations.

Anchor Determines which of the control’s edges are anchored to the

edges of the control’s container.

AutoSize Determines whether the control automatically resizes to fi t its

contents.

continues

bapp01.indd 907bapp01.indd 907 12/31/09 5:58:22 PM12/31/09 5:58:22 PM

908 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

PROPERTY PURPOSE

BackColor Determines the control ’ s background color.

BackgroundImage Determines the control ’ s background image.

BackgroundImageLayout Determines how the control ’ s background image is used to fi ll the

control. This can be Center, None, Tile, Stretch, and Zoom.

Bottom Returns the distance between the top edge of the control ’ s container

and the bottom edge of the control. This is read - only. Modify the

Top and Height properties to change this value.

Bounds Determines the control ’ s size and location, including nonclient areas.

CanFocus Determines whether the control can receive the input focus. See also

the Focus method.

CanSelect Determines whether the control can select. For example, a TextBox

can select some or all of its text. See also the Select method.

Capture Determines whether the control has captured the mouse.

CausesValidation Determines whether the control makes other controls validate when it

receives the focus.

ClientRectangle This Rectangle structure represents the control ’ s client area.

ClientSize This Size structure represents the control ’ s height and width.

ContainsFocus Indicates whether the control or one of its child controls has the input

focus. This is read - only.

ContextMenu Determines the context menu associated with the control.

ContextMenuStrip Determines the context menu strip associated with the control.

Controls This collection contains references to the controls contained within

this control.

Cursor Determines the cursor that the control displays when the mouse is

over it.

DataBindings Gets the control ’ s DataBindings, used to bind the control to a data

source.

DefaultBackColor Returns the control ’ s default background color.

DefaultFont Returns the control ’ s default font.

DefaultForeColor Returns the control ’ s default foreground color.

(continued)

bapp01.indd 908bapp01.indd 908 12/31/09 5:58:24 PM12/31/09 5:58:24 PM

PROPERTY PURPOSE

DisplayRectangle Returns a Rectangle structure giving the control ’ s display area.

Figure A - 1 shows two GroupBoxes with the same size. The GroupBox

on the right contains two labels that cover its ClientRectangle and

DisplayRectangle.

Dock Determines the edge of the control ’ s parent to which the control

is docked.

Enabled Determines whether the control will interact with the user.

Focused Indicates whether the control has the input focus. This is read - only.

Font Determines the control ’ s font.

ForeColor Determines the control ’ s foreground color.

Handle Returns the control ’ s window handle. This is read - only.

HasChildren Indicates whether the control holds any child controls. This is read -

only. Also see the Controls property.

Height Determines the control ’ s height.

InvokeRequired Returns True if the calling code is running on a thread diff erent from

the control ’ s thread and therefore must use an invoke method to

interact with the control.

Left Determines the X coordinate of the control ’ s left edge.

Location This Point structure determines the position of the control ’ s upper - left

corner.

Margin Determines the spacing between this control and another control ’ s

margin within an arranging container.

MaximumSize Determines the control ’ s largest allowed size.

MinimumSize Determines the control ’ s smallest allowed size.

ModifierKeys Indicates what modifi er keys (Shift, Ctrl, and Alt) are pressed. This

is read - only.

MouseButtons Indicates what mouse buttons (Left, Right, Middle, None) are pressed.

This is read - only.

MousePosition Returns a Point structure giving the mouse ’ s current position in

screen coordinates (the point (0, 0) is in the screen ’ s upper - left

corner). This is read - only.

Name Determines the control ’ s name.

continues

Properties ❘ 909

bapp01.indd 909bapp01.indd 909 12/31/09 5:58:25 PM12/31/09 5:58:25 PM

910 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

PROPERTY PURPOSE

Padding Determines the spacing of the control ’ s contents.

Parent Determines the parent containing the control.

PreferredSize Returns a size that is big enough to hold the control ’ s contents.

Region Determines the control ’ s window region. This is the area in which the

control may draw.

Right Returns the distance between the left edge of the control ’ s container

and the right edge of the control. This is read - only. Modify the Left

and Width properties to change this value.

Size This Size structure determines the control ’ s size including client and

nonclient areas.

TabIndex Determines the control ’ s position in its container ’ s tab order. If more

than one control has the same TabIndex, they are traversed front to

back using the stacking order.

TabStop Determines whether the user can tab to the control.

Tag This property can hold an object that you want to associate with

the control.

Text Determines the control ’ s text.

Top Determines the Y coordinate of the control ’ s top edge.

TopLevelControl Returns the control ’ s top - level ancestor. Usually that is the outermost

Form containing the control. This is read - only.

Visible Determines whether the control is visible.

Width Determines the control ’ s width.

(continued)

FIGURE A-1 The DisplayRectangle property

gives the area in which you should normally

place items within a control.

bapp01.indd 910bapp01.indd 910 12/31/09 5:58:26 PM12/31/09 5:58:26 PM

METHODS

The following table lists useful methods implemented by the Control class. All controls that inherit
from this class inherit these properties unless they override the Control class ’ s behavior.

WATCH WRAPPING

Many of the entries in the Method column wrap across multiple lines. In Visual
Basic code, each would be all on a single line.

METHOD PURPOSE

Sub BringToFront() Brings the control to the front of the stacking order.

Function Contains(ByVal child As

Control) As Boolean

Returns True if the control child is contained by

this control.

Function CreateGraphics() As

Graphic

Creates a Graphic object that you can use to draw on

the control ’ s surface.

Function DoDragDrop(ByVal dragging_

object As Object, ByVal allowed_

effects As DragDropEffects)

Starts a drag - and - drop operation.

Sub DrawToBitmap(ByVal bm As

Bitmap, ByVal rect As Rectangle)

Draws an image of the control including contained

controls onto the Bitmap in the indicated Rectangle.

Function FindForm() As Form Returns the Form that contains this control.

Function Focus() As Boolean Gives the control the input focus.

Function GetChildAtPoint (ByVal pt

As Point) As Control

Returns the control ’ s child that contains the indicated

point. If more than one control contains the point,

the method returns the control that is higher in the

stacking order.

Function GetNextControl (ByVal ctl

As Control, ByVal next As Boolean)

As Control

If next is True, returns the next control in the tab

order of this control ’ s children after control ctl. If next

is False, returns the previous control in the tab order.

Set ctl = Nothing to start from the start/end of the tab

order. Returns Nothing when you reach the start/end.

Function GetPreferredSize (ByVal

proposed_size) As Size

Returns a size that is big enough to hold the control ’ s

contents.

Function GetType() As Type Returns a Type object representing the control ’ s

class. You can use this object to get information

about the class.

continues

Methods ❘ 911

bapp01.indd 911bapp01.indd 911 12/31/09 5:58:27 PM12/31/09 5:58:27 PM

912 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

METHOD PURPOSE

Sub Hide() Hides the control by setting its Visible property to False.

Sub Invalidate() Invalidates some or all of the control and sends it a

Paint event so that it redraws itself.

Sub Invoke(ByVal delegate As

Delegate)

Invokes a delegate on the thread that owns

the control.

Function PointToClient (ByVal

screen_point Point) As Point

Converts a Point in screen coordinates into the

control ’ s coordinate system.

Function PointToScreen (ByVal

control_point As Point) As Point

Converts a Point in control coordinates into the

screen coordinate system.

Function RectangleToClient (ByVal

screen_rect As Rectangle) As

Rectangle

Converts a Rectangle in screen coordinates into the

control ’ s coordinate system.

Function RectangleToScreen (ByVal

control_rect As Rectangle) As

Rectangle

Converts a Rectangle in control coordinates into the

screen coordinate system.

Sub Refresh() Invalidates the control ’ s client area, so the control

redraws itself and its child controls.

Sub ResetBackColor() Resets the control ’ s background color to its default

value.

Sub ResetCursor() Resets the control ’ s cursor to its default value.

Sub ResetFont() Resets the control ’ s font to its default value.

Sub ResetForeColor() Resets the control ’ s foreground color to its default

value.

Sub ResetText() Resets the control ’ s text to its default value.

Sub Scale(ByVal scale_factor As

Single)

Scales the control and any contained controls

by multiplying the Left, Top, Width, and Height

properties by scale_factor.

Sub Select() Moves the input focus to the control. Some controls

have overloaded versions.

Function SelectNextControl (ByVal ctl

As Control, ByVal forward As Boolean,

ByVal tab_stop_only As Boolean, ByVal

include_nested As Boolean, ByVal wrap

As Boolean) As Boolean

Moves the input focus to the next control contained

within this one.

(continued)

bapp01.indd 912bapp01.indd 912 12/31/09 5:58:28 PM12/31/09 5:58:28 PM

METHOD PURPOSE

Sub SendToBack() Sends the control to the back of the stacking order.

Sub SetBounds(ByVal x As Integer,

ByVal y As Integer, ByVal width As

Integer, ByVal height As Integer)

Sets the control ’ s position and size.

Sub Show() Displays the control by setting its Visible property

to True.

Function ToString() As String Returns a textual representation of the control. This

is generally the type of the control followed by its

most commonly used property.

Sub Update() Makes the control redraw any invalidated areas.

EVENTS

The following table lists useful events implemented by the Control class. All controls that inherit
from this class inherit these properties unless they override the Control class ’ s behavior.

EVENT PURPOSE

AutoSizeChanged Occurs when the control ’ s AutoSize property changes.

BackColorChanged Occurs when the control ’ s BackColor property changes.

BackgroundImageChanged Occurs when the control ’ s BackgroundImage property

changes.

BackgroundImageLayoutChanged Occurs when the control ’ s BackgroundImageLayout

property changes.

Click Occurs when the user clicks the control. This event is at a

higher logical level than the MouseClick event, and it can

be triggered by other actions than a mouse click (such as

pressing the Enter key or a shortcut key).

ContextMenuChanged Occurs when the control ’ s ContextMenu property

changes.

ContextMenuStripChanged Occurs when the control ’ s ContextMenuStrip property

changes.

ControlAdded Occurs when a new control is added to the control ’ s

contained child controls.

continues

Events ❘ 913

bapp01.indd 913bapp01.indd 913 12/31/09 5:58:29 PM12/31/09 5:58:29 PM

914 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

EVENT PURPOSE

ControlRemoved Occurs when a control is removed from the control ’ s

contained child controls.

CursorChanged Occurs when the control ’ s Cursor property changes.

DockChanged Occurs when the control ’ s Dock property changes.

DoubleClick Occurs when the user double - clicks the control.

DragDrop Occurs when the user drops something on the control

in a drag - and - drop operation. This event handler should

process the dropped information appropriately.

DragEnter Occurs when the user drags something over the control in

a drag - and - drop operation.

DragLeave Occurs when the user drags something off of the control in

a drag - and - drop operation.

DragOver Occurs when the user has dragged something over the

control in a drag - and - drop operation. This event fi res

repeatedly until the user drags off of the control, drops on

the control, or cancels the drop.

EnabledChanged Occurs when the control ’ s Enabled property changes.

Enter Occurs when the control is entered. This event fi res before

the GotFocus event.

FontChanged Occurs when the control ’ s Font property changes.

ForeColorChanged Occurs when the control ’ s ForeColor property changes.

GiveFeedback Occurs during a drag - and - drop operation to let the drag

source control take action.

GotFocus Occurs when the control receives the input focus. This

event fi res after the Enter event. Generally, the Enter event

is preferred.

HelpRequested Occurs when the user requests help for the control. For

example, if the user moves the focus to a TextBox and

presses F1, the TextBox raises this event.

Invalidated Occurs when part of the control is invalidated.

KeyDown Occurs when the user presses a key while the control has

the input focus.

(continued)

bapp01.indd 914bapp01.indd 914 12/31/09 5:58:29 PM12/31/09 5:58:29 PM

EVENT PURPOSE

KeyPress Occurs when the user presses and releases a key while

the control has the input focus.

KeyUp Occurs when the user releases a key while the control has

the input focus.

Layout Occurs when the control should arrange its child controls.

This event occurs before the Resize and SizeChanged

events and is preferred for arranging child controls.

Leave Occurs when the input focus leaves the control. This event

fi res before the LostFocus event.

LocationChanged Occurs when the control ’ s Location property changes.

This event fi res after the Move event fi res.

LostFocus Occurs when the input focus leaves the control. This event

fi res after the Leave event. Generally, the Leave event

is preferred.

MarginChanged Occurs when the control ’ s Margin property changes.

MouseCaptureChanged Occurs when the control loses a mouse capture.

MouseClick Occurs when the user clicks the mouse on the control.

MouseDoubleClick Occurs when the user double - clicks the mouse on

the control.

MouseDown Occurs when the user presses a mouse button down over

the control.

MouseEnter Occurs when the mouse enters the control.

MouseHover Occurs when the mouse hovers over the control.

MouseLeave Occurs when the mouse leaves the control.

MouseMove Occurs when the mouse moves over the control.

MouseUp Occurs when the user releases a mouse button over

the control.

MouseWheel Occurs when the user moves the mouse wheel while the

control has the input focus.

Move Occurs when the control is moved. This event fi res before

the LocationChanged event fi res.

continues

Events ❘ 915

bapp01.indd 915bapp01.indd 915 12/31/09 5:58:30 PM12/31/09 5:58:30 PM

916 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

EVENT PURPOSE

PaddingChanged Occurs when the control ’ s Padding property changes.

Paint Occurs when the control must redraw itself. Normally the

program draws on the control during this event (if it draws

on the control at all).

ParentChanged Occurs when the control ’ s Parent property changes.

QueryContinueDrag Occurs when something changes during a drag - and - drop

operation so that the drag source can decide whether to

modify or cancel the drag.

RegionChanged Occurs when the control ’ s Region property changes.

Resize Occurs while the control is resizing. This event occurs after

the Layout event, but before the SizeChanged event.

SizeChanged Occurs while the control is resizing. This event occurs after

the Layout and Move events.

SystemColorsChanged Occurs when the system colors change. For instance, you

might want to draw something using the same color that

the operating system uses for active forms. If the user

changes the system ’ s color for borders, you can use this

event to update your application.

TabIndexChanged Occurs when the control ’ s TabIndex property changes.

TabStopChanged Occurs when the control ’ s TabStop property changes.

TextChanged Occurs when the control ’ s Text property changes.

Validated Occurs when the control has successfully fi nished

validating its data.

Validating Occurs when the control should validate its data.

VisibleChanged Occurs when the control ’ s Visible property changes.

EVENT SEQUENCES

Several situations generate a series of events in a precise order.

(continued)

bapp01.indd 916bapp01.indd 916 12/31/09 5:58:31 PM12/31/09 5:58:31 PM

UNDERSTANDING EVENTS

There are a couple ways you can discover event sequences such as these. One is to
place Debug.WriteLine statements in the event handlers so that you can see the events
as they occur. Another method is to use the Spy++ tool to track events. For more
information on that technique, see the article “ Working with Windows Messages
in .NET ” by John Mueller at www.devsource.com/article2/0,1895,
1961574,00.asp .

Mouse Events

When you click a control, the following events are raised in the order shown. The fi rst instance
of the MouseMove event can occur any number of times if you move the mouse while holding the
mouse button down. The fi nal MouseMove event occurs whether or not you move the mouse.

MouseDown

[MouseMove]

Click

MouseClick

MouseUp

MouseCaptureChanged

MouseMove

When you double - click a control, the following events are raised in the order shown:

MouseDown

[MouseMove]
Click

MouseClick

MouseUp

MouseCaptureChanged

MouseMove

MouseDown

DoubleClick

MouseDoubleClick

MouseUp

MouseCaptureChanged

MouseMove

Event Sequences ❘ 917

bapp01.indd 917bapp01.indd 917 12/31/09 5:58:31 PM12/31/09 5:58:31 PM

918 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

Resize Events

When you resize a control, the following events are raised in this order. These events are repeated as

long as you are resizing the control.

Layout

Resize

SizeChanged

Form controls also provide ResizeBegin and ResizeEnd events that occur before and after the other
events, respectively.

Move Events

When you move a control, the following events are raised in this order. These events are repeated as

long as you are moving the control.

Move

LocationChanged

Form controls also provide ResizeBegin and ResizeEnd events that occur before and after the other
events, respectively.

bapp01.indd 918bapp01.indd 918 12/31/09 5:58:33 PM12/31/09 5:58:33 PM

B
Variable Declarations
and Data Types

This appendix provides information about variable declarations and data types.

VARIABLE DECLARATIONS

The following code shows a standard variable declaration:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly] _
Dim [WithEvents] name [?] [(bounds_list)] [As [New] type [?]] _
[= initialization_expression]

The following list describes the pieces of this declaration:

attribute_list — A comma - separated list of attributes specifi c to a particular task.
For example, < XmlAttributeAttribute(AttributeName:="Cost")> .

accessibility — Public, Protected, Friend, Protected Friend, Private, or Static.

Shared — Means that all instances of the class or structure containing the variable
share the same variable.

Shadows — Indicates that the variable hides a variable with the same name in a
base class.

ReadOnly — Indicates that the program can read, but not modify, the variable ’ s value.
You can set the value in an initialization statement or in an object constructor.

Dim — Offi cially tells Visual Basic that you want to create a variable. You can omit
the Dim keyword if you specify Public, Protected, Friend, Protected Friend, Private,
Static, or ReadOnly.

➤

➤

➤

➤

➤

➤

bapp02.indd 919bapp02.indd 919 12/30/09 8:07:14 PM12/30/09 8:07:14 PM

920 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

WithEvents — Tells Visual Basic that the variable is of a specifi c object type that may raise
events that you will want to catch.

name — Gives the name of the variable.

? — Indicates this should be a nullable variable. For more information, see the section
“ Nullable Types ” in Chapter 15, “ Data Types, Variables, and Constants. ”

bounds_list — Bounds for an array.

New — Use New to make a new instance of an object variable. Include parameters for the
class ’ s constructor if appropriate.

type — The variable ’ s data type.

initialization_expression — An expression that sets the initial value for the variable.

Visual Basic enables you to declare and initialize more than one variable in a single declaration
statement, but that can make the code more diffi cult to read. To avoid possible later confusion,
declare only variables of one type in a single statement.

INITIALIZATION EXPRESSIONS

Initialization expressions assign a value to a new variable. Simple expressions assign a literal value
to a simple data type. The following example sets the value of a new string variable:

Dim txt As String = “ Test ”

The assignment expression can also initialize a variable to the result of a function or constructor, as
in the following example:

Dim a_person As Person = New Person("Rod", "Stephens") " Constructor.
Dim num_tools As Integer = CountTools() " Function.

An initialization expression for an object can use the With keyword to specify values for the object ’ s
public properties as in the following example, which sets the object ’ s FirstName and LastName
properties:

Dim emp As New Employee With {.FirstName = “ Rod ” , .LastName = “ Stephens ” }

To initialize a one - dimensional array, put the array ’ s values inside curly braces separated by commas
as in the following code:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

To initialize higher - dimensional arrays, place lower - dimensional array values inside curly brackets and
separate them with commas as in the following example, which initializes a two - dimensional array:

Dim int_values(,) As Integer = _
{ _
 {1, 2, 3}, _
 {4, 5, 6} _
}

➤

➤

➤

➤

➤

➤

➤

bapp02.indd 920bapp02.indd 920 12/30/09 8:07:17 PM12/30/09 8:07:17 PM

Note that Visual Basic ’ s automatic line continuation knows when an array initializer is open so you
can omit the underscores in this statement as in the following code:

Dim int_values(,) As Integer =
{
 {1, 2, 3},
 {4, 5, 6}
}

Visual Basic ’ s type inference system can guess the data type of an array from its initialization if
Option Strict is Off. For example, in the following code, Visual Basic concludes that the array values
hold Integers:

Dim values() = {1, 2, 3} ‘ Integer

If an array initializer holds values of more than one compatible data type, Visual Basic assumes the
array holds the more general type. For example, the following array holds Doubles:

Dim values() = {1, 2, 3.4} ‘ Double

If an array holds values of multiple incompatible data types, Visual Basic makes the array hold
Objects, as in the following example:

Dim values() = {1, 2.3, "three"} ‘ Object

WITH

When you create a new object variable, you can include a With clause to initialize the object ’ s
properties. The following code uses the Person class ’ s parameterless constructor to make a new
Person object. The With statement then sets values for the object ’ s FirstName and
LastName values.

Dim author As New Person() With {.FirstName = "Rod", .LastName = "Stephens"}

FROM

When you declare a collection, you can use the From keyword to initialize the collection. For
example, the following code creates a collection of strings:

Dim fruits As New Collection() From {"Apple", "Banana", "Cherry"}

This works for any collection class that has an Add method.

If the collection ’ s Add method takes more than one parameter, group parameters in brackets, as in
the following example:

Dim fruits As New Dictionary(Of Integer, String)() From {
 {1, "Apple"}, {2, "Banana"}, {2, "Cherry"}}

From ❘ 921

bapp02.indd 921bapp02.indd 921 12/30/09 8:07:17 PM12/30/09 8:07:17 PM

922 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

If a class does not provide an Add method, you can create one with extension methods.
The following code creates Add methods for the Stack and Queue classes:

Module CollectionExtensions
 ‘ Add method for the Stack class.
 < Extension() >
 Public Sub Add(ByVal the_stack As Stack, ByVal value As Object)
 the_stack.Push(value)
 End Sub

 ‘ Add method for the Queue class.
 < Extension() >
 Public Sub Add(ByVal the_queue As Queue, ByVal value As Object)
 the_queue.Enqueue(value)
 End Sub
End Module

USING

To make it easy to call an object ’ s Dispose method, you can declare a variable in a Using statement.
When the code reaches the corresponding End Using statement, Visual Basic automatically calls
the object ’ s Dispose method.

You can only place Using statements inside code blocks, not at the module level, so the syntax is
somewhat simpler than the syntax for declaring a variable in general. The following code shows the
syntax for declaring a variable in a Using statement:

Using name [(bounds_list)] [As [New] type] [= initialization_expression]
...
End Using

The parts of this statement are described in the previous section.

If it declares the variable, the Using statement must also initialize either with the As New syntax or
with an initialization expression.

Note that you can also use a Using statement to make it easier to call a previously created object ’ s
Dispose method. The following code defi nes the thick_pen object, and then is used in a Using
statement:

Dim thick_pen As New Pen(Color.Red, 10)
Using thick_pen
...
End Using

With this technique, the variable is available outside of the Using block, which may
occasionally lead to confusion, so I recommend declaring variables in their Using blocks
whenever possible.

bapp02.indd 922bapp02.indd 922 12/30/09 8:07:18 PM12/30/09 8:07:18 PM

ENUMERATED TYPE DECLARATIONS

The syntax for declaring an enumerated type is as follows:

[attribute_list] [accessibility] [Shadows] Enum name [As type]
 [attribute_list] value_name [= initialization_expression
 [attribute_list] value_name [= initialization_expression]
 ...
End Enum

Most of these terms (including attribute_list and accessibility) are similar to those used by variable
declarations. See the section “ Variable Declarations ” earlier in this appendix for more information.

XML VARIABLES

To initialize XML data, declare an XElement variable and set it equal to properly formatted XML
code. For example, the following code declares a variable named book_node that contains XML
data representing a book:

Dim book_node As XElement = _
 < Book >
 < Title > The Bug That Was < /Title >
 < Year > 2010 < /Year >
 < Pages > 376 < /Year >
 < /Book >

OPTION EXPLICIT AND OPTION STRICT

When Option Explicit is on, you must explicitly declare all variables before using them. When
Option Explicit is off, Visual Basic creates a variable the fi rst time it is encountered if is has not yet
been declared. To make your code easier to understand, and to avoid problems such as Visual Basic
creating a new variable because of a typographical error, you should always turn Option Explicit on.

When Option Strict is on, Visual Basic will not implicitly perform narrowing type conversions.
For example, if you set an Integer variable equal to a String value, Visual Basic will raise an error
because the String might not contain an Integer value. When Option Strict is off, Visual Basic will
silently attempt narrowing conversions. It tries to convert the String value into an Integer and raises
an error if the String doesn ’ t contain an integral value. To avoid confusion and potentially slow
conversions, always turn Option Strict on.

OPTION INFER

When Option Infer is on, Visual Basic can infer the data type of a variable from its initialization
expression. For example, Visual Basic would infer that the variable txt in the following code has
data type String:

Dim message = "Hello!"

Option Infer ❘ 923

bapp02.indd 923bapp02.indd 923 12/30/09 8:07:18 PM12/30/09 8:07:18 PM

924 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

INFERENCE INHIBITED

Type inference only works on local variables declared within a subroutine, func-
tion, property, or other local context. It doesn ’ t work for variables declared at the
class level or in code modules.

Because inferred data types do not explicitly give the variable ’ s data type, they can make the code
harder to understand. To avoid confusion, leave Option Infer off unless you really need it.

For example, LINQ (Language Integrated Query) lets a program generate results that have an
anonymous type. LINQ creates an object data type to hold results but the type is not given a name
for the program to use. Instead type inference allows the program to manipulate the results without
ever referring to the type by name. In this case, Option Infer must be on. For more information on
LINQ, see Chapter 21, “ LINQ. ”

DATA TYPES

The following table summarizes the Visual Basic data types.

TYPE SIZE VALUES

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned byte)

SByte 1 byte – 128 to 127 (signed byte)

Char 2 bytes 0 to 65,535 (unsigned character)

Short 2 bytes – 32,768 to 32,767

UShort 2 bytes 0 through 65,535 (unsigned short)

Integer 4 bytes – 2,147,483,648 to 2,147,483,647

UInteger 4 bytes 0 through 4,294,967,295 (unsigned integer)

Long 8 bytes – 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long)

Decimal 16 bytes 0 to + / – 79,228,162,514,264,337,593,543,950,335 with no

decimal point

0 to + /– 7.9228162514264337593543950335 with 28 places

Single 4 bytes – 3.4028235E + 38 to – 1.401298E - 45 (negative values)

1.401298E - 45 to 3.4028235E+38 (positive values)

continues

bapp02.indd 924bapp02.indd 924 12/30/09 8:07:18 PM12/30/09 8:07:18 PM

TYPE SIZE VALUES

Double 8 bytes – 1.79769313486231570E + 308 to

– 4.94065645841246544E - 324 (negative values)

4.94065645841246544E - 324 through

1.79769313486231570E + 308 (positive values)

String variable Depending on the platform, approximately 0 to 2 billion

Unicode characters

Date 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm

Object 4 bytes Points to any type of data

Structure variable Structure members have their own ranges

DATA TYPE CHARACTERS

The following table lists the Visual Basic data type characters.

CHARACTER DATA TYPE

% Integer

& Long

@ Decimal

! Single

Double

$ String

Using data type characters alone to determine a variable ’ s data type can be confusing, so I
recommend that you use an As clause instead. For example, the following code defi nes two integer
variables and then uses them in nested loops. The declaration of j is more explicit and easier to
understand.

Dim i%
Dim j As Integer

For i = 1 To 10
 For j = 1 To 10
 Debug.WriteLine(i * 100 1 j)
 Next j
Next i

(continued)

Data Type Characters ❘ 925

bapp02.indd 925bapp02.indd 925 12/30/09 8:07:20 PM12/30/09 8:07:20 PM

926 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

LITERAL TYPE CHARACTERS

The following table lists the Visual Basic literal type characters.

CHARACTER DATA TYPE

S Short

US UShort

I Integer

UI UInteger

L Long

UL ULong

D Decimal

F Single (F for “ fl oating point ”)

R Double (R for “ real ”)

c Char (note that this is a lowercase “ c ”)

DATA TYPE CONVERSION FUNCTIONS

The following table lists the Visual Basic data type conversion functions.

FUNCTION CONVERTS TO

CBool Boolean

CByte Byte

CChar Char

CDate Date

CDbl Double

CDec Decimal

CInt Integer

CLng Long

CObj Object

continues

bapp02.indd 926bapp02.indd 926 12/30/09 8:07:20 PM12/30/09 8:07:20 PM

FUNCTION CONVERTS TO

CSByte SByte

CShort Short

CSng Single

CStr String

CUInt UInteger

CULng ULong

CUShort UShort

Remember that data types have their own parsing methods in addition to these data type conversion
functions. For example, the following code converts the String variable a_string into an Integer value:

an_integer = Integer.Parse(a_string)

These methods are faster than the corresponding data type conversion function (in this case, CInt).

The Convert class also provides methods for converting from one data type to another. The
following table lists the most useful Convert class functions.

FUNCTION

ToBoolean

ToByte

ToChar

ToDateTime

ToDecimal

ToDouble

ToInt16

ToInt32

(continued)

Data Type Conversion Functions ❘ 927

FUNCTION

ToInt64

ToSByte

ToSingle

ToString

ToUInt16

ToUInt32

ToUInt64

All of the Convert class functions provide many overloaded versions to convert different kinds of
values. For example, ToInt32 has different versions that take parameters that are Boolean, Byte,
String, and other data types.

bapp02.indd 927bapp02.indd 927 12/30/09 8:07:20 PM12/30/09 8:07:20 PM

928 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

The integer functions ToInt16, ToInt32, ToInt64, ToUInt16, ToUInt32, and ToUInt64 also provide
an overloaded version that takes as parameters a string value and a base, which can be 2, 8, 10, or
16 to if the string is in binary, octal, decimal, or hexadecimal. For example, the following statement
converts the binary value 00100100 into the integer value 36.

Dim value As Integer = Convert.ToInt32(“ 00100100 ” ,2)

CTYPE AND DIRECTCAST

The CType and DirectCast statements also perform type conversion. CType converts data from one
type to another type if the types are compatible. For example, the following code converts the string
“ 1234 ” into an integer:

Dim value As Integer = CType("1234", Integer)

DirectCast converts an object reference into a reference of another type provided the reference is
actually of the second type. For example, suppose the Employee class inherits from the Person class,
and consider the following code:

Dim emp1 As New Employee

‘ Works because emp1 is an Employee and a Person.
Dim per1 As Person = DirectCast(emp1, Person)

‘ Works because per1 happens to point to an Employee object.
Dim emp2 As Employee = DirectCast(per1, Employee)

Dim per2 As New Person

‘ Fails because per2 is a Person but not an Employee.
Dim emp3 As Employee = DirectCast(per2, Employee)

The code creates an Employee object. It then uses DirectCast to convert the Employee into a Person
and then to convert the new Person back into an Employee. This works because this object is both
an Employee and a Person.

Next, the code creates a Person object and tries to use DirectCast to convert it into an Employee.
This fails because this Person is not an Employee.

bapp02.indd 928bapp02.indd 928 12/30/09 8:07:21 PM12/30/09 8:07:21 PM

Operators

The Visual Basic operators fall into fi ve main categories: arithmetic, concatenation,
comparison, logical, and bitwise. The following sections explain these categories and
the operators they contain. The end of this appendix describes special Date and TimeSpan
operators, as well as operator overloading.

ARITHMETIC OPERATORS

The following table lists the arithmetic operators provided by Visual Basic.

OPERATOR PURPOSE EXAMPLE RESULT

^ Exponentiation 2 ^ 3 (2 to the power 3) =

2 * 2 * 2 = 8 .

- Negation - 2 - 2

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

\ Integer division 17\5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

- Subtraction 3 - 2 1

< < Bit left shift & H57 < < 1 & HAE

> > Bit right shift & H57 < < 1 & H2B

C

bapp03.indd 929bapp03.indd 929 12/31/09 6:00:17 PM12/31/09 6:00:17 PM

930 ❘ APPENDIX C OPERATORS

The bit shift operators deserve a little extra discussion. These operators shift the binary representation
of a number by a given number of bits either left or right. Unfortunately, Visual Basic doesn ’ t
understand binary so you must manually translate between binary and decimal, octal, or hexadecimal.

For example, the hexadecimal value & H57 is 01010111 in binary. If you shift this one bit to the
left, you get 10101110, which is & HAE in hexadecimal. If you shift the original value one bit to the
right, you get 00101011, which is & H2B in hexadecimal.

When working with binary values, many developers prefer to work in hexadecimal because
each hexadecimal digit corresponds to four binary bits so you can work with each group of four bits
separately.

CONCATENATION OPERATORS

Visual Basic provides two concatenation operators: + and & . Both join two strings together. Because
the + symbol also represents an arithmetic operator, your code will be easier to read if you use the &
symbol for concatenation.

COMPARISON OPERATORS

The following table lists the comparison operators provided by Visual Basic.

OPERATOR PURPOSE EXAMPLE RESULT

= Equals A = B True if A equals B

<> Not equals A <> B True if A does not equal B

< Less than A < B True if A is less than B

< = Less than or equal to A < = B True if A is less than or

equal to B

> Greater than A > B True if A is greater than B

> = Greater than or equal to A > = B True if A is greater than or

equal to B

Is Equality of two objects emp Is mgr True if emp and mgr refer to

the same object

IsNot Inequality of two

objects

emp IsNot mgr True if emp and mgr refer to

diff erent objects

TypeOf ... Is ... Object is of a certain

type

TypeOf obj Is

Manager

True if obj points to a

Manager object

Like Matches a text pattern value Like

“ ### - #### “

True if value contains three

digits, a dash, and four digits

bapp03.indd 930bapp03.indd 930 12/31/09 6:00:20 PM12/31/09 6:00:20 PM

The following table lists characters that have special meanings to the Like operator.

CHARACTER(S) MEANING

? Matches any single character

* Matches any zero or more characters

Matches any single digit

[characters] Matches any of the characters between the brackets

[!characters] Matches any character not between the brackets

A - Z When inside brackets, matches any character in the range A to Z

The following table lists some useful Like patterns.

PATTERN MEANING

[2 – 9]## - #### Seven - digit U.S. phone number

[2 – 9]## - [2 – 9]## - #### Ten - digit U.S. phone number including area code

1 - [2 – 9]## - [2 – 9]## - #### Eleven - digit U.S. phone number beginning with 1 and area code

Five - digit U.S. ZIP code

- #### Nine - digit U.S. ZIP+4 code

?*@?*.?* e - mail address

[A – Z][0 – 9][A – Z] [0 – 9][A– Z][0 – 9] Canadian postal code

LOGICAL OPERATORS

The following table summarizes the Visual Basic logical operators.

OPERATOR PURPOSE EXAMPLE RESULT

Not Logical or bitwise negation Not A True if A is false

And Logical or bitwise And A And B True if A and B are both true

Or Logical or bitwise Or A Or B True if A or B or both are true

continues

Logical Operators ❘ 931

bapp03.indd 931bapp03.indd 931 12/31/09 6:00:20 PM12/31/09 6:00:20 PM

932 ❘ APPENDIX C OPERATORS

OPERATOR PURPOSE EXAMPLE RESULT

Xor Logical or bitwise exclusive Or A Xor B True if A or B but not both is

true

AndAlso Logical or bitwise And with short -

circuit evaluation

A AndAlso B True if A and B are both true

OrElse Logical or bitwise Or with short -

circuit evaluation

A OrElse B True if A or B or both are true

BITWISE OPERATORS

Bitwise operators work much as logical operators do, except that they compare values one bit at a
time. Visual Basic provides bitwise versions of Not, And, Or, and Xor but not bitwise versions of
AndAlso or OrElse.

OPERATOR PRECEDENCE

The following table lists the operators in order of precedence. When evaluating an expression, the
program evaluates an operator before it evaluates those lower than it in the list. When operators are
on the same line, the program evaluates them from left to right.

OPERATOR DESCRIPTION

^ Exponentiation

� Negation

* , / Multiplication and division

\ Integer division

Mod Modulus

+ , - , + Addition, subtraction, and

concatenation

& Concatenation

< < , > > Bit shift

(continued)

bapp03.indd 932bapp03.indd 932 12/31/09 6:00:21 PM12/31/09 6:00:21 PM

OPERATOR DESCRIPTION

= , < > , < , < = , > , > = , Like , Is , IsNot , TypeOf ... Is ... All comparisons

Not Logical and bitwise negation

And , AndAlso Logical and bitwise And with and

without short - circuit evaluation

Xor , Or , OrElse Logical and bitwise Xor, and Or with and

without short - circuit evaluation

Use parentheses to change the order of evaluation and to make expressions easier to read.

ASSIGNMENT OPERATORS

The following table summarizes the Visual Basic assignment operators.

OPERATOR EXAMPLE ORIGINAL SYNTAX EQUIVALENT

= A = B A = B

^= A ^= B A = A ^ B

*= A *= B A = A * B

/= A /= B A = A / B

\= A \= B A = A \ B

+ = A + = B A = A + B

- = A - = B A = A - B

& = A & = B A = A & B

< < = A < < = B A = A < < B

> > = A > > = B A = A > > B

There are no assignment operators corresponding to Mod or the Boolean operators.

CHOOSE, IF, AND IIF

The Choose, If, and IIf statements return values that you can assign to a variable. These statements
are not really assignment operators (you need to use = to assign their results to a variable) and they
perform decisions so they are described in Appendix E, “ Control Statements. ”

Choose, If, and IIf ❘ 933

bapp03.indd 933bapp03.indd 933 12/31/09 6:00:21 PM12/31/09 6:00:21 PM

934 ❘ APPENDIX C OPERATORS

DATE AND TIMESPAN OPERATORS

The Date and TimeSpan data types are related through their operators. The following list shows the
relationships between these two data types:

Date - Date = TimeSpan

Date + TimeSpan = Date

TimeSpan + TimeSpan = TimeSpan

TimeSpan - TimeSpan = TimeSpan

The following table lists convenient methods provided by the Date data type.

SYNTAX MEANING

result_date = date1.Add(timespan1) Returns date1 plus timespan1

result_date = date1

.AddYears(num_years)

Returns the date plus the indicated number

of years

result_date = date1

.AddMonths(num_months)

Returns the date plus the indicated number

of months

result_date = date1.AddDays(num_days) Returns the date plus the indicated number of days

result_date = date1

.AddHours(num_hours)

Returns the date plus the indicated number

of hours

result_date = date1

.AddMinutes(num_minutes)

Returns the date plus the indicated number

of minutes

result_date = date1

.AddSeconds(num_seconds)

Returns the date plus the indicated number

of seconds

result_date = date1.AddMilliseconds

(num_milliseconds)

Returns the date plus the indicated number

of milliseconds

result_date = date1

.AddTicks(num_ticks)

Returns the date plus the indicated number of ticks

(100 nanosecond units)

result_timespan = date1

.Subtract(date2)

Returns the time span between date2 and date1

result_integer = date1

.CompareTo(date2)

Returns a value indicating whether date1 is greater

than, less than, or equal to date2

result_boolean = date1.Equals(date2) Returns True if date1 equals date2

➤

➤

➤

➤

bapp03.indd 934bapp03.indd 934 12/31/09 6:00:22 PM12/31/09 6:00:22 PM

OPERATOR OVERLOADING

The syntax for defi ning an operator for a class is as follows:

[< attributes >] Public [Overloads] Shared [Shadows] _
[Widening | Narrowing] Operator symbol (operands) As type
 ...
End Operator

The operator ’ s symbol can be + , - , * , / , \ , ̂ , & , < < , > > , = , < > , < , > , <= , > = , Mod , Not , And , Or , Xor ,
Like , IsTrue , IsFalse , or CType .

For example, the following code defi nes the + operator for the ComplexNumber class. This class has
two public properties, Re and Im, that give the number ’ s real and imaginary parts.

Public Shared Operator +(
 ByVal c1 As ComplexNumber,
 ByVal c2 As ComplexNumber) As ComplexNumber
 Return New ComplexNumber With {
 .Re = c1.Re + c2.Re,
 .Im = c1.Im + c2.Im}
End Operator

Some operands come in pairs, and if you defi ne one, you must defi ne the other. The pairs are = and
< > , < and > , < = and > = , and IsTrue and IsFalse .

If you defi ne And and IsFalse , Visual Basic uses them to defi ne the AndAlso operator. Similarly, if
you defi ne Or and IsTrue , Visual Basic automatically provides the OrElse operator.

Operator Overloading ❘ 935

bapp03.indd 935bapp03.indd 935 12/31/09 6:00:22 PM12/31/09 6:00:22 PM

bapp03.indd 936bapp03.indd 936 12/31/09 6:00:23 PM12/31/09 6:00:23 PM

Subroutine and Function
Declarations

This appendix provides information about subroutine, function, and generic declarations. A
property procedure includes a subroutine and function pair, so they are also described here.

SUBROUTINES

The syntax for writing a subroutine is as follows:

[attribute_list] [interitance_mode] [accessibility]
Sub subroutine_name [(parameters)] [Implements interface.procedure]
 [statements]
End Sub

The inheritance_mode can be one of the following values: Overloads, Overrides, Overridable,
NotOverridable, MustOverride, Shadows, or Shared. These values determine how a
subroutine declared within a class inherits from the parent class or how it allows inheritance
in derived classes.

The accessibility clause can take one of the following values: Public, Protected,
Friend, Protected Friend, or Private. These values determine which pieces of code can invoke
the subroutine.

FUNCTIONS

The syntax for writing a function is as follows:

[attribute_list] [interitance_mode] [accessibility] _
Function function_name ([parameters]) [As return_type] [Implements interface.
function]
 [statements]
End Function

D

bapp04.indd 937bapp04.indd 937 12/31/09 6:01:33 PM12/31/09 6:01:33 PM

938 ❘ APPENDIX D SUBROUTINE AND FUNCTION DECLARATIONS

This is the same as the syntax used for declaring a subroutine, except that a function includes a
return type and ends with End Function.

The inheritance_mode can be one of the values Overloads, Overrides, Overridable, NotOverridable,
MustOverride, Shadows, or Shared. These values determine how a subroutine declared within a
class inherits from the parent class or how it allows inheritance in derived classes.

The accessibility clause can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can invoke the subroutine.

A function assigns its return value either by setting its name equal to the value or by using the
Return statement. Using the Return statement may allow the compiler to optimize the code more, so
it is generally preferred.

PROPERTY PROCEDURES

The syntax for read/write property procedures is as follows:

Property property_name () As data_type
 Get
 ...
 End Get
 Set(ByVal Value As data_type)
 ...
 End Set
End Property

The syntax for a read - only property procedure is as follows:

Public ReadOnly Property property_name () As data_type
 Get
 ...
 End Get
End Property

The syntax for a write - only property procedure is as follows:

Public WriteOnly Property property_name () As data_type
 Set(ByVal Value As data_type)
 ...
 End Set
End Property

In all three of these cases, you don ’ t need to remember all the declaration details. If you type the
fi rst line (including the ReadOnly or WriteOnly keywords if you want them) and press Enter, Visual
Basic creates blank property procedures for you.

The Property Get procedures should all assign return values, as in property_name = return_
value or by using the Return statement, as in Return return_value .

bapp04.indd 938bapp04.indd 938 12/31/09 6:01:35 PM12/31/09 6:01:35 PM

Auto - implemented properties let you create simple read/write properties without providing Get and
Set. The following code shows the syntax:

Property property_name () As data_type [= initial_value]

Visual Basic automatically makes a backing variable to hold the property ’ s value, and Get and Set
routines to access the value.

Note that Visual Basic cannot provide auto - implemented ReadOnly or WriteOnly properties.

LAMBDA FUNCTIONS AND EXPRESSIONS

A lambda function (also called an inline function) is a function declared within another routine.
You can use lambda functions to initialize a delegate or to pass the function to a method that takes
a delegate as a parameter.

For example, the following code creates an inline delegate named F . It then displays the value
of F(12) .

Dim F = Function(x As Integer) Sin(x / 2) + 2 * Cos(x / 3)
Debug.WriteLine(F(12))

The following code calls subroutine ApplyFunction. This function takes as parameters an array of
values and a function that it should apply to each of the values. The code passes an inline delegate
that doubles a number into ApplyFunction to double each of the values.

ApplyFunction(values, Function(x As Single) 2 * x)

A lambda subroutine is similar to a lambda function except it doesn ’ t return a value. The syntax is
similar to the syntax for lambda functions except you use the type Action instead of Function. You
would also use a lambda subroutine where no return value is required. The following code creates
and invokes a lambda subroutine:

Dim echo As Action(Of Integer) =
 Sub(x As Integer) Debug.WriteLine(x)
echo(123)

The following code creates a lambda subroutine inline as a parameter to a call to the Array.ForEach
method:

Dim states() As String 5 { “ CO ” , “ UT ” , “ KS ” , “ WY “ }
Array.ForEach(Of String)(states,
 Sub(str As String) MessageBox.Show(str))

You can make multiline lambda functions or subroutines. Start a new line after the Sub or Function
statement, include the lines of code that you need, and fi nish with End Sub of End Function.

Lambda Functions and Expressions ❘ 939

bapp04.indd 939bapp04.indd 939 12/31/09 6:01:36 PM12/31/09 6:01:36 PM

940 ❘ APPENDIX D SUBROUTINE AND FUNCTION DECLARATIONS

The following code shows a call to Array.ForEach that uses a multiline lambda subroutine:

Array.ForEach(Of String)(states,
 Sub(str As String)
 Debug.WriteLine(str)
 MessageBox.Show(str)
 End Sub
)

EXTENSION METHODS

To make an extension method, place a method in a code module and decorate it with the Extension
attribute. The fi rst parameter to the method determines the class that the method extends. For
example, the following code gives the String class a MatchesRegexp method that returns True if the
String matches a regular expression:

Module StringExtensions
 < Extension() >
 Public Function MatchesRegexp(ByVal the_string As String,
 ByVal regular_expression As String) As Boolean
 Dim reg_exp As New Regex(regular_expression)
 Return reg_exp.IsMatch(the_string)
 End Function
End Module

PARTIAL METHODS

A partial method is a private subroutine that is declared in one place and implemented in another.
The following code defi nes the signature of the RecordException subroutine and then later
defi nes its body:

Public Class PathAlgorithm
 Partial Private Sub RecordException(ByVal ex As Exception)
 End Sub
 ...
 Private Sub RecordException(ByVal ex As Exception)
 Debug.WriteLine(“ Error: “ & ex.Message)
 End Sub
 ...
End Class

Partial methods are mainly intended for use by code generators. In your code, you can usually use
events instead. It ’ s useful to understand what they do in case you need to read generated code.

bapp04.indd 940bapp04.indd 940 12/31/09 6:01:36 PM12/31/09 6:01:36 PM

E
Control Statements

Control statements tell an application which other statements to execute under a particular set
of circumstances.

The two main categories of control statements are decision statements and looping
statements. The following sections describe the decision and looping statements provided
by Visual Basic .NET.

DECISION STATEMENTS

A decision statement represents a branch in the program. It marks a place where the program
can execute one set of statements or another or possibly no statements at all. These include If,
Choose, and Select Case statements.

Single - Line If Then

A single - line If Then statement tests a condition and, if the condition is true, executes a piece
of code. The code may include more than one simple statement separated by a colon.

Optional Else If clauses let the program evaluate other conditions and execute corresponding
pieces of code. A fi nal optional Else clause lets the program execute a piece of code if none of
the previous conditions is true.

The syntax is as follows:

If condition Then statement
If condition Then statement1 Else statement2
If condition1 Then statement1 Else If condition2 Then statement2 _
 Else statement3
If condition Then statement1 : statement2
If condition Then statement1 : statement2 Else statement3 : statement4

bapp05.indd 941bapp05.indd 941 12/31/09 6:02:30 PM12/31/09 6:02:30 PM

942 ❘ APPENDIX E CONTROL STATEMENTS

Complicated single - line If Then statements can be confusing and diffi cult to read, so I recommend
using the multiline versions if the statement includes an Else clause or executes more than one
statement.

Multiline If Then

A multiline If Then statement is similar to the single - line version, except the pieces of code executed
by each part of the statement can include multiple lines. Each piece of code ends before the
following ElseIf, Else, or End If keywords. In complex code, this format is often easier to read than
a complicated single - line If Then statement.

The syntax is as follows:

If condition1 Then
 statements1 ...
ElseIf condition2
 statements2 ...
Else
 statements3 ...
End If

The statement can contain any number of ElseIf sections.

Select Case

A Select Case statement lets a program execute one of several pieces of code based on a test value.
Select Case is equivalent to a long If Then Else statement.

The syntax is as follows:

Select Case test_value
 Case comparison_expression1
 statements1
 Case comparison_expression2
 statements2
 Case comparison_expression3
 statements3
 ...
 Case Else
 else_statements
End Select

A comparison expression can contain multiple expressions separated by commas, can use the To
keyword to specify a range of values, and can use the Is keyword to evaluate a logical expression
using the test value. The following example ’ s fi rst case looks for a string in the range “ A ” to “ Z ”
or “ a ” to “ z. ” Its second and third cases look for values less than “ A ” and greater than “ Z, ”
respectively.

bapp05.indd 942bapp05.indd 942 12/31/09 6:02:33 PM12/31/09 6:02:33 PM

Decision Statements ❘ 943

Select Case key_pressed
 Case "A" To "Z", "a" To "z"
 ...
 Case Is < "A"
 ...
 Case Is > "Z"
 ...
End Select

Many developers always include a Case Else section to catch unexpected situations. If every possible
situation should be covered by other cases, some developers throw an exception inside the Case Else
section to make it easier to fi nd errors.

If and IIf

IIf takes a Boolean value as its fi rst parameter. It returns its second parameter if the value is true,
and it returns its third parameter if the value is false.

The syntax is as follows:

variable � IIf(condition, value_if_false, value_if_true)

Note that IIf always evaluates all of its arguments. For example, if the condition is true, IIf only
returns the second argument, but it evaluates both the second and third arguments.

The If function does the same thing as IIf except it uses short - circuit evaluation, so it only evaluates
the second and third arguments if necessary. If the condition is true in the following code, If
evaluates the second argument but not the third:

variable � If(condition, value_if_false, value_if_true)

A second form if the If function takes two parameters: an object reference or a nullable type and
a return value. The If function returns the fi rst parameter if it is not Nothing and the second
argument if it is Nothing. The following code shows the syntax:

variable � If(nullable_value, default_if_nothing)

IIf is sometimes used when the code must evaluate both results so short - circuiting would cause
problems. For example, suppose the value_if_true and value_if_false parts have side effects. In other
words, they perform actions that may not be obvious in addition to returning their results. They
may open databases, initialize network connections, and perform other actions that the program
will need fi nished for later tasks.

Side effects are often confusing, however, because it ’ s not always obvious what side effects a
particular function call has. That can make the code harder to understand, debug, and maintain. To
avoid potential trouble, I recommend always using functions without side effects and moving any
other necessary code into a subroutine that the program can call before the call to IIf or If. In that
case, IIf has no advantage over If.

bapp05.indd 943bapp05.indd 943 12/31/09 6:02:33 PM12/31/09 6:02:33 PM

944 ❘ APPENDIX E CONTROL STATEMENTS

THE CASE FOR IIF

I have yet to see a convincing case for using IIf and functions with side effects. If
you think you can make that case, let me know at RodStephens@vb - heleper.com
and I ’ ll post your comments on the book ’ s web site.

IIf and If are often confusing and IIf at least is slower than an If Then Else statement, so you may
want to use If Then Else instead.

Choose

Choose takes an index value as its fi rst parameter and returns the corresponding one of its other
parameters.

The syntax is as follows:

variable � Choose(index, value1, value2, value3, value4, ...)

Choose is rarely used by many programmers, so it can be confusing. To avoid unnecessary
confusion, you may want to use a Select Case statement instead.

LOOPING STATEMENTS

A looping statement makes the program execute a series of statements repeatedly. The loop can run
for a fi xed number of repetitions, run while some condition holds true, run until some condition
holds true, or run indefi nitely.

For Next

A For Next loop executes a piece of code while a loop control variable ranges from one value
to another.

The syntax is as follows:

For variable [As data_type] � start_value To stop_value [Step increment]
 statements
 [Exit For]
 statements
Next [variable]

For Each

A For Each loop executes a piece of code while a loop control variable ranges over all of the items
contained in a group class such as a collection or array.

The syntax is as follows:

bapp05.indd 944bapp05.indd 944 12/31/09 6:02:34 PM12/31/09 6:02:34 PM

For Each variable [As object_type] In group
 statements
 [Exit For]
 statements
Next [variable]

The group in this code can also be a LINQ (Language Integrated Query) query. The following code
creates a LINQ query to select information from the book_data array, and then uses a For Each
loop to display the results:

Dim book_query � From book_info In book_data
 Select book_info
 Where book_info.Year > � 2000
 Order By book_info.Year
For Each bi In book_query
 Debug.WriteLine(bi.Title)
Next bi

For more information about LINQ, see Chapter 21, “ LINQ. ”

Do Loop

Do Loop statements come in three forms. First, if the statement has no While or Until clause, the
loop repeats infi nitely or until the code uses an Exit Do, Exit Sub, GoTo, or some other statement to
break out of the loop.

The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
Loop

The other two forms of Do Loop statements execute as long as a condition is true (Do While
condition) or until a condition is true (Do Until condition).

The second form of Do Loop statement tests its condition before it executes, so the code it contains
is not executed even once if the condition is initially false.

The syntax is as follows:

Do {While | Until} condition
 statements
 [Exit Do]
 statements
Loop

The third form of Do Loop statement tests its condition after it executes, so the code it contains is
executed at least once even if the condition is initially false.

Looping Statements ❘ 945

bapp05.indd 945bapp05.indd 945 12/31/09 6:02:35 PM12/31/09 6:02:35 PM

946 ❘ APPENDIX E CONTROL STATEMENTS

The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
Loop {While | Until} condition

While End

The While End loop executes a series of statements as long as a condition is true. It tests its
condition before it executes, so the code it contains is not executed even once if the condition is
initially false.

The syntax is as follows:

While condition
 statements
 [Exit While]
 statements
End While

This statement is equivalent to the Do Loop:

Do While condition
 statements
 [Exit Do]
 statements
Loop

GOTO

GoTo performs an unconditional jump to a specifi ed line.

The syntax is as follows:

 GoTo line_label
 ...
line_label :
 ...

Because undisciplined use of GoTo can lead to “ spaghetti code, ” which is diffi cult to understand,
debug, and maintain, you should generally avoid using GoTo.

bapp05.indd 946bapp05.indd 946 12/31/09 6:02:35 PM12/31/09 6:02:35 PM

F
Error Handling

This appendix provides information on error handling.

STRUCTURED ERROR HANDLING

A Try block tries to execute some code and reacts to errors. The syntax is as follows:

Try
 try_statements ...
[Catch ex As exception_type_1
 exception_statements_1 ...]
[Catch ex As exception_type_2
 exception_statements_2 ...]
...
[Catch
 final_exception_statements ...]
[Finally
 finally_statements ...]
End Try

When an error occurs, the program examines the Catch statements until it fi nds one that
matches the current exception. The program executes the fi nally_statements after the
try_statements succeed or after any Catch block is done executing.

THROWING EXCEPTIONS

Use the Throw statement to throw an exception, as in the following code:

Throw New ArgumentException(“ Width must be greater than zero ”)

bapp06.indd 947bapp06.indd 947 12/31/09 6:03:22 PM12/31/09 6:03:22 PM

948 ❘ APPENDIX F ERROR HANDLING

Exception classes provide several overloaded constructors so you can indicate such things as the
basic error message, the name of the variable that caused the exception, and an inner exception.

For information on useful exception classes and custom exception classes, see Appendix O, “ Useful
Exception Classes. ”

CLASSIC ERROR HANDLING

The On Error statement controls error handlers in Visual Basic classic error handling. You can use
structured and classic error handling in the same program but not in the same routine.

The following list briefl y describes the On Error statement ’ s four variations:

On Error GoTo line — If an error occurs, the program enters error - handling mode and
control jumps to the indicated line.

On Error Resume Next — If an error occurs, the program ignores it. The code can use the
Err object to see whether an error occurred and what error it was.

On Error GoTo 0 — This command disables any currently active error handler. If the
program encounters an error after this statement, the routine fails and control passes up the
call stack until the program fi nds an active error handler or the program crashes.

On Error GoTo – 1 — This command is similar to On Error GoTo 0, except that it also
ends error - handling mode if the program is in error - handling mode.

Visual Basic provides four ways to exit error - handling mode:

Exit Sub (or Exit Function or Exit Property) — Ends error - handling mode and exits
the current routine.

Resume — Makes the program resume execution with the statement that caused the error.
If the program has not taken some action to correct the problem, the error will occur again,
triggering the error handler and possibly entering an infi nite loop.

Resume Next — Makes the program resume execution with the statement after the one that
caused the error.

On Error GoTo – 1 — Ends error - handling mode and lets execution continue with the
statement that follows.

Using On Error GoTo � 1 to end error - handling mode can be very confusing because it ’ s hard
to tell when the program is in error - handling mode and when it isn ’ t. Usually, the code is easier to
understand if all of the error - handling code is grouped at the end of the routine and if each block
of error - handling code ends with one of the other methods (Exit Sub, Exit Function, Resume, or
Resume Next).

➤

➤

➤

➤

➤

➤

➤

➤

bapp06.indd 948bapp06.indd 948 12/31/09 6:03:25 PM12/31/09 6:03:25 PM

G
Windows Forms Controls
and Components

This appendix describes the standard controls and components provided by Visual Basic
.NET . Some of these are quite complicated, providing dozens or even hundreds of properties,
methods, and events, so it would be impractical to describe them all completely here.
However, it ’ s still worthwhile having a concise guide to the most important properties,
methods, and events provided by the Windows Forms controls.

The sections in this appendix describe the components ’ general purposes and give examples
of what I believe to be their simplest, most common, and most helpful usages. The idea is to
help you decide which components to use for which purposes, and to give you some idea about
the components ’ most commonly used properties, methods, and events. To learn more about a
particular component, see the online help.

MORE INFORMATION

You can fi nd information about most of these controls under the “ System.Windows
.Forms Namespace ” topic in the MSDN help at msdn.microsoft.com/system
.windows.forms.aspx . Use the navigation tree in the left pane to fi nd the controls
you want to study.

You can also learn more by studying this appendix ’ s example programs, which are available
for download on the book ’ s web site.

Note that all of these components inherit from the Component class, and the controls inherit
from the Control class. Except where overridden, the components and controls inherit the
properties, methods, and events defi ned by the Component and Control classes. Chapter 9,
“ Using Windows Forms Controls, ” discusses some of the more useful properties, methods,

bapp07.indd 949bapp07.indd 949 12/31/09 6:04:55 PM12/31/09 6:04:55 PM

950 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

and events provided by the Control class, and many of those apply to these controls as well.
Appendix A, “ Useful Control Properties, Methods, and Events, ” summarizes the Control class ’ s
most useful properties.

Figure G - 1 shows the Visual Basic Toolbox displaying the standard Windows Forms controls.

TUNING THE TOOLBOX

You can add and remove controls from the Toolbox. You can add controls built by
Microsoft, other companies, yourself, or other Visual Basic programmers. Some extra
controls even come installed with Visual Basic but not displayed by default in the
Toolbox. Right - click the Toolbox and select Choose Items to add or remove items.

The following table lists the components shown in Figure G - 1
in the same order in which they appear in the fi gure. Read the
table by rows. For example, the fi rst several entries (Pointer,
BackgroundWorker, BindingNavigator, BindingSource, Button,
and so on) correspond to the fi rst controls in the fi rst row in
Figure G - 1.

Pointer BackgroundWorker BindingNavigator BindingSource

Button CheckBox CheckedListBox ColorDialog

ComboBox ContextMenuStrip DataGridView DataSet

DateTimePicker DirectoryEntry DirectorySearcher DomainUpDown

ErrorProvider EventLog FileSystemWatcher FlowLayoutPanel

FolderBrowserDialog FontDialog GroupBox HelpProvider

HScrollBar ImageList Label LinkLabel

ListBox ListView MaskedTextBox MenuStrip

MessageQueue MonthCalendar NotifyIcon NumericUpDown

FIGURE G-1: Visual Basic provides

a large number of standard

components and controls for

Windows Forms.

bapp07.indd 950bapp07.indd 950 12/31/09 6:04:58 PM12/31/09 6:04:58 PM

OpenFileDialog PageSetupDialog Panel PerformanceCounter

PictureBox PrintDialog PrintDocument PrintPreviewControl

PrintPreviewDialog Process ProgressBar PropertyGrid

RadioButton RichTextBox SaveFileDialog

SerialPort ServiceController SplitContainer Splitter

StatusStrip TabControl TableLayoutPanel TextBox

Timer ToolStrip ToolStripContainer ToolTip

TrackBar TreeView VScrollBar WebBrowser

COMPONENTS ’ PURPOSES

By default, the Toolbox provides several tabs that group related components together. With such a
large number of components at your fi ngertips, having categorized tabs sometimes makes fi nding
a particular tool easier. Each tab also contains a Pointer tool.

The following table lists the tools in various Toolbox tabs. You can use this table to help decide
which tool to use for a particular purpose.

COMMON CONTROLS

Button CheckBox CheckedListBox ComboBox

DateTimePicker Label LinkLabel ListBox

ListView MaskedTextBox MonthCalendar NotifyIcon

NumericUpDown PictureBox ProgressBar RadioButton

RichTextBox TextBox ToolTip TreeView

WebBrowser

Containers

FlowLayoutPanel GroupBox Panel SplitContainer

TabControl TableLayoutPanel

Menus and Toolbars

ContextMenuStrip MenuStrip StatusStrip ToolStrip

ToolStripContainer

continues

Components ’ Purposes ❘ 951

bapp07.indd 951bapp07.indd 951 12/31/09 6:05:00 PM12/31/09 6:05:00 PM

952 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

Data

DataSet DataGridView BindingSource BindingNavigator

Components

BackgroundWorker DirectoryEntry Directory

Searcher

ErrorProvider

EventLog FileSystemWatcher HelpProvider ImageList

MessageQueue PerformanceCounter Process SerialPort

ServiceController Timer

Printing

PageSetupDialog PrintDialog PrintDocument PrintPreview

Control

PrintPreviewDialog

Dialogs

ColorDialog FolderBrowser

Dialog

FontDialog OpenFileDialog

SaveFileDialog

WPF Interoperability

ElementHost

Reporting

MicrosoftReport

Viewer

CrystalReport

Viewer

CrystalReport

Document

Visual Basic Power

Packs

PrintForm

One other section, General, is initially empty.

The following sections describe the tools shown in Figure G - 1. Except for the generic pointer tool,
all tools are presented in alphabetical order.

(continued)

bapp07.indd 952bapp07.indd 952 12/31/09 6:05:01 PM12/31/09 6:05:01 PM

POINTER

Each of the Toolbox ’ s sections begins with an arrow in its upper - left corner. This is the only tool
shown in Figure G - 1 that does not represent a type of control or component. Selecting the pointer
deselects any other currently selected tool. You can then click the controls on the form to select
them without creating a new control.

BACKGROUNDWORKER

The BackgroundWorker component simplifi es multi - threading. When a program invokes its
RunWorkerAsync method, the component starts running on a new thread. It raises its DoWork
method on the new thread, and the corresponding event handler should perform the necessary
work. While it runs, the worker can call the component ’ s ReportProgress method to raise a
ProgressChanged event on the main thread to let the program know how it is progressing.

When the worker thread fi nishes, the component receives a RunWorkerCompleted event on the main
thread.

The UseBackgroundWorker example program, which is available for download on the book ’ s
web site, demonstrates the BackgroundWorker component. It allows the user to start a
BackgroundWorker that simulates a long task. The program displays the worker ’ s progress and lets
the user cancel the task, stopping the worker before it fi nishes.

BINDINGNAVIGATOR

A BindingNavigator provides a user interface so the user can control a data source. It initially
appears as a toolbar docked to the top of the form, although you can move it if you like. It contains
navigation buttons that move to the beginning, previous record, next record, and end of the data
source. It also contains a text box where you can enter a record number to jump to, a label showing
the current record number, and buttons to add and delete records.

See Chapter 20, “ Database Controls and Objects, ” for more information on BindingNavigator and
other database controls.

BINDINGSOURCE

A BindingSource provides control of bound data on a form. It provides programmatic methods for
navigating through the data, adding items, deleting items, and otherwise managing the data at the
code level.

Typically you attach the BindingSource to a data source. You then bind controls to the
BindingSource. When the BindingSource changes its position in the data source, it automatically
updates the bound controls. If you attach a BindingNavigator to the BindingSource, the user can use
the BindingNavigator to control the BindingSource.

See Chapter 20 for more information on BindingNavigator and other database controls.

BindingSource ❘ 953

bapp07.indd 953bapp07.indd 953 12/31/09 6:05:02 PM12/31/09 6:05:02 PM

954 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

BUTTON

The Button control is a simple push button. You can use it to let the user tell the program to do
something.

A Button can display a textual caption, a picture, or both. Use the ImageAlign and TextAlign
properties to determine where the caption and picture appear on the Button.

When the user clicks the Button, it raises its Click event. The program can take the appropriate
action in the Button control ’ s Click event handler, as shown in the following code:

Private Sub btnValidatePhoneNumber_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnValidatePhoneNumber.Click
ValidatePhoneNumber(txtPhoneNumber.Text) End
Sub

Note that most button Click event handlers are assigned to a single button so they don ’ t need to use
their sender and e parameters. In that case, you can use relaxed delegates to omit the parameters
completely, signifi cantly simplifying the event handler as shown in the following code:

Private Sub btnValidatePhoneNumber_Click() Handles btnValidatePhoneNumber.Click
ValidatePhoneNumber(txtPhoneNumber.Text) End
Sub

For more information on relaxed delegates, see the section “ Relaxed Delegates ” in Chapter 17,
“ Subroutines and Functions. ”

s ImageList and ImageIndex properties to assign an image to the Button. ’ You can use the control

If you set a form ’ s AcceptButton property to a Button, the Button control ’ s Click event hand-
ler runs when the user presses the Enter key while the form has focus. Similarly, if you set a form
’ s CancelButton property to a Button, the Button control ’ s Click event handler runs when the
user presses the Escape key while the form has focus.

CHECKBOX

A CheckBox displays a box that enables the user to select or clear an option.

A CheckBox can display a textual caption, a picture, or both. Use the ImageAlign and TextAlign
properties to determine where the caption and picture appear in the CheckBox.

You can also use the control ’ s ImageList and ImageIndex properties to assign an image to the
CheckBox.

Use the control ’ s CheckAlign property to determine where the check box appears. Normally the box
appears on the left, but you can make it appear on the right, center, upper - left corner, and so forth.

Usually a program uses the CheckBox control ’ s Checked property to tell if it is checked. This
property returns True if the CheckBox is checked and False if it is not. Your program can also set
this property to True or False to check or uncheck the control.

bapp07.indd 954 bapp07.indd 954 12/31/09 6:05:04 PM12/31/09 6:05:04 PM

Although a CheckBox usually is either checked or not, this control also has a third indeterminate
state. This state is represented as a grayed - out check in the box. Some applications use this state to
represent a partial or unknown selection.

If you want to allow the user to cycle through the three values (checked, indeterminate, and
unchecked), set the control ’ s ThreeState property to True.

Most programs use CheckBoxes to gather information and only process the information when the
user clicks a button or selects a menu item, so they don ’ t need to process any CheckBox events.
The control does provide a CheckedChanged event, however, that fi res whenever the control ’ s value
changes, either because the user clicked it or because your program ’ s code changed the value. For
example, the program could hide and display extra information that only applies when the box is
checked, as shown in the following code:

Private Sub chkExtraInfo_CheckedChanged() Handles chkExtraInfo.CheckedChanged
 grpExtraInfo.Visible � chkExtraInfo.Checked
End Sub

CHECKEDLISTBOX

A CheckedListBox control displays a series of items with check boxes in a list format. This enables
the user to pick and choose similar items from a list of choices. You can also use a ListBox to
allow the user to select items in a list, but there are some important differences between the two
controls ’ behaviors.

First, in a CheckedListBox, previously checked items remain checked when the user clicks another
item. If the user clicks an item in a ListBox, the control deselects any previously selected items.
Though you can use the Shift and Ctrl keys to modify this behavior, making complex selections can
be tricky.

Second, the user must click each CheckedListBox item individually to select it. You can make a
ListBox allow simple or extended selections. That means, for example, the user could Shift � click to
select all of the items in a range. If the user is likely to want that type of selection, consider using a
ListBox instead of a CheckedListBox.

If a CheckedListBox isn ’ t big enough to display all of its items at once, it displays a vertical
scroll bar to let the user see all the items. If some of the items are too wide to fi t, set the control ’ s
HorizontalScrollBar property to True to display a horizontal scroll bar.

If you set the MultiColumn property to True, the control displays items in multiple columns.

By default, the user must click an item and then click its box to check the item. To allow the user
to select an item with a single click, set the control ’ s CheckOnClick property to True. This usually
makes selection easier.

If the control ’ s IntegralHeight property is True, the control will not display a partial item. For
example, if the control is tall enough to display 10.7 items, it will make itself slightly shorter so that
it can only display 10 items.

Set the control ’ s Sorted property to True to make the control display its items in sorted order.

CheckedListBox ❘ 955

bapp07.indd 955bapp07.indd 955 12/31/09 6:05:05 PM12/31/09 6:05:05 PM

956 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

Use the control ’ s Items.Add method to add an item to the list. This method has three overloaded
versions. All three take a generic Object as the fi rst parameter. The control uses this object ’ s
ToString method to generate the text that it displays to the user. The fi rst overloaded version
takes no extra parameters. The second version takes a Boolean parameter indicating whether the
new item should be checked. The last version takes a parameter that indicates whether the new item
should be checked, unchecked, or indeterminate.

For example, suppose that a program defi nes the following Employee class. The important part
here is the ToString method, which tells the CheckedListBox how to display an Employee object, as
shown in the following code:

Public Class Employee
 Public FirstName As String
 Public LastName As String

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName � first_name
 LastName � last_name
 End Sub

 Public Overrides Function ToString() As String
 Return FirstName & “ “ & LastName
 End Function
End Class

code snippet UseCheckedListBox

The CheckedListBox item ’ s CheckedItems property returns a collection containing the objects
that are checked, including those that are in the indeterminate state. The control ’ s CheckedIndices
property returns a collection of integers representing the items that are selected or indeterminate
(numbered starting with zero).

COLORDIALOG

The ColorDialog component displays a dialog that enables the user to select a color from a standard
palette or from a custom color palette. A program calls its ShowDialog method to display a color
selection dialog. ShowDialog returns DialogResult.OK if the user selects a color and clicks OK.
It returns DialogResult.Cancel if the user cancels.

The following code sets the dialog box ’ s Color property to the btnPickColor control ’ s current
background color. It displays the dialog box and, if the user clicks OK, it sets the btnPickColor
control ’ s background color to the user ’ s selection.

bapp07.indd 956bapp07.indd 956 12/31/09 6:05:05 PM12/31/09 6:05:05 PM

Private Sub btnPickColor_Click() Handles btnPickColor.Click
 dlgColor.Color � btnPickColor.BackColor
 If dlgColor.ShowDialog() � DialogResult.OK Then
 btnPickColor.BackColor � dlgColor.Color
 End If
End Sub

code snippet UseColorDialog

The dialog box provides an area on the right where the user can defi ne custom colors. Set the
component ’ s AllowFullOpen property to True to allow the user to access this area. Set the FullOpen
property to True to make the dialog appear with this area already open (otherwise the user must
click the Defi ne Custom Colors button to show this area).

If you set the SolidColorOnly property to True, the dialog box only allows the user to select solid
colors. This applies only to systems using 256 or fewer colors, where some colors are dithered
combinations of other colors. All colors are solid on systems using more than 256 colors.

DITHER FOR COLOR

Dithering is the process of using dots or other shapes of various sizes to create the
illusion of another color. For example, you can make orange by displaying a red
area sprinkled with tiny yellow dots or checks. On a system that uses a higher color
model such as 24 - bit color, the system can display every color directly. If you ’ re
using a lower color model system such as 8 - bit color (256 colors), the system might
dither to simulate colors that it cannot display directly.

The component ’ s CustomColors property is an array of integers that determine the colors that the
dialog displays in its custom colors area. These color values are a combination of red, green, and
blue values between 0 and 255. In hexadecimal, the form of a value is BBGGRR, where BB is
the blue component, GG is the green component, and RR is the red component.

For example, the color & HFF8000 has a blue component of & HFF � 255, a green component of
& H80 � 128, and a red component of 0. This color is light blue. Unfortunately, the Color object ’ s
ToArgb method returns the color in the reversed format RRGGBB, so you cannot use that method
to calculate these values. Instead, you need to calculate them yourself.

Example program UseColorDialog demonstrates a simple color dialog. Example program
CustomColorDialog displays a dialog initialized with a custom color palette. Both of these
programs are available for download on the book ’ s web site.

COMBOBOX

The ComboBox control contains a text box where the user can enter a value. It also provides a list
box or drop - down list where the user can select a value. How the text box, list box, and drop - down
list work depends on the control ’ s DropDownStyle property. Figure G - 2 shows the three styles.

ComboBox ❘ 957

bapp07.indd 957bapp07.indd 957 12/31/09 6:05:06 PM12/31/09 6:05:06 PM

958 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

When DropDownStyle is Simple, the ComboBox displays
a text box and a list, as shown on the left in Figure G - 2.
The user can type a value in the text box, or select one
from the list. The user can enter any text in the text box,
even if it does not appear in the list.

When DropDownStyle is DropDown, the ComboBox
displays a text box and a drop - down list, as shown in the
middle in Figure G - 2. The user can type a value in the text
box. If the user clicks the drop - down arrow to the right
of the text box, the control displays the list where the user
can select an item. The user can enter any text in the text
box, even if it does not appear in the list. In Figure G - 2, the middle ComboBox control ’ s text box
contains the value Persimmon, which does not appear in the list.

When DropDownStyle is DropDownList, the ComboBox displays a non - editable text box and a
drop - down list. If the user clicks the control, the ComboBox displays a drop - down list exactly as it
does when DropDownStyle is DropDown. The difference is that the user must select an item from
the list. If the user sets focus to the control and types a letter, the control selects the next item in the
list that begins with that letter. If the user presses the same letter again, the control moves to the
next choice beginning with that letter.

Setting DropDownStyle to DropDownList restricts the user ’ s choices the most and allows the
least room for error. So, if you know all of the user ’ s choices, you should use the DropDownList
style. If you must allow the user to enter new values, you should use one of the other styles. The
DropDown style takes less room on the form and is more familiar to most users, so that is often the
better choice.

The control ’ s DropDownWidth property determines how wide the drop - down list should be.

The ComboBox control ’ s MaxDropDownItems property determines how many items the control
displays in its drop - down list. For example, if you set this to 10 and the list contains more than 10
items, the drop - down list displays a scroll bar to let the user fi nd the additional items.

The MaxLength property lets you specify the maximum number of characters the user can type into
the control ’ s text box. Note, however, that the control will display a longer value if the user selects it
from the control ’ s list box or drop - down list. Set MaxLength to 0 to allow entries of any length.

If you set the control ’ s Sorted property to True, the ComboBox lists its choices in sorted order.

The ComboBox control ’ s Text property gets or sets the value displayed by the control ’ s text box. If
the control ’ s DropDownStyle is DropDownList, this property does nothing at design time and the
program can only set it to values that are in the control ’ s list of allowed values at runtime. Many
programs use this property to see what value is selected in the control.

Like the CheckedListBox described earlier in this appendix, the items in a ComboBox can be any
type of object and the control uses the objects ’ ToString methods to fi gure out what text to display
to the user. As is the case with the CheckedListBox, you can use the ComboBox control ’ s Items.Add
method to add new objects to the control. See the “ CheckedListBox ” section earlier in this appendix
for more information and an example Employee class that will also work with ComboBox controls.

FIGURE G-2: The ComboBox provides

three diff erent styles: Simple, DropDown,

and DropDownList.

bapp07.indd 958bapp07.indd 958 12/31/09 6:05:08 PM12/31/09 6:05:08 PM

If an item is selected, the ComboBox control ’ s SelectedItem property returns the item ’ s object. If no
item is selected, this property returns Nothing.

If an item is selected, the ComboBox control ’ s SelectedIndex property returns the item ’ s index,
numbered starting with zero. If no item is selected, this property returns –1.

Note that the SelectedItem and SelectedIndex properties return Nothing and –1, respectively, if the
user types a new value into the text area, even if the user types a value that appears in the control ’ s
item list. If you want the user to select an item rather than typing some text, you should set the
control ’ s DropDownStyle property to DropDownList.

CONTEXTMENUSTRIP

The ContextMenuStrip component represents a context menu. When you select it on the form
at design time, the development environment displays the menu at the top of the form. Enter the
menu ’ s items, use the Property window to set their names and other properties, and double - click the
items to edit their event handlers. See the section “ MenuStrip ” later in this appendix for information
on menu item properties and events.

To use a ContextMenuStrip, you need to attach it to a control. Use the Properties window to
set the control ’ s ContextMenuStrip property to your ContextMenuStrip component. The rest is
automatic. When the user right - clicks this control at runtime, Visual Basic automatically displays
the ContextMenuStrip. If the user selects one of the menu ’ s items, Visual Basic triggers the menu
item ’ s event handler.

DATAGRIDVIEW

The DataGridView control displays a table - like grid display. The control ’ s underlying data can come
from a data source such as a DataSet or BindingSource, or the program can add rows and columns
directly to the control. The DataGridView provides many properties for customizing the grid ’ s
appearance. For example, it lets you change column header styles and cell border styles, determine
whether rows and columns are resizable, and determine whether the control displays tooltips and
errors in data cells.

Visual Basic can automatically create a DataGridView bound to a BindingSource and associated
with a BindingNavigator. To do this, create a data source and drag a table from the Data Sources
window onto a form. For more information on this technique, or for information on using the
control in general, see Chapter 20.

DATASET

The DataSet component holds data in a relational format. It provides all the features you need to
build, load, store, manipulate, and save data similar to that stored in a relational database. It can
hold multiple tables related with complex parent/child relationships and uniqueness constraints.

DataSet ❘ 959

bapp07.indd 959bapp07.indd 959 12/31/09 6:05:10 PM12/31/09 6:05:10 PM

960 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

It provides methods for merging DataSets, searching for records that satisfy criteria, and saving data
in different ways (such as into a relational database or an XML fi le).

One of the most common ways to use a DataSet is to load it from a relational database when the
program starts, use various controls to display the data and let the user manipulate it interactively,
and then save the changes back into the database when the program ends.

For more information on the DataSet component, see the online help (msdn.microsoft.com/
system.data.dataset.aspx) and Chapter 20.

DATETIMEPICKER

The DateTimePicker control allows the user to select a date and time. The control can display one of
several styles, depending on its property values.

If the ShowUpDown property is True, the control displays small up and down arrows on its right, as
shown at the top of Figure G - 3. Click a date fi eld (month, date, year) to select it, and use the up and
down arrow buttons to adjust that fi eld.

If ShowUpDown is False (the default), the control displays
a drop - down arrow on its right, as shown in the second
DateTimePicker in Figure G - 3. If you click this arrow, the control
displays the calendar shown under the control in Figure G - 3.
The right and left arrows at the top of the calendar let you move
through months. If you click the calendar ’ s month, the control
displays a pop - up menu listing the months so that you can
quickly select one. If you click the year, the control displays small
up and down arrows that you can use to change the year. When
you have found the month and year you want, click a date to
select it and close the calendar.

If you get lost while scrolling through the calendar ’ s months, you
can click the Today entry at the bottom of the calendar to jump
back to the current date. You can also right - click the calendar
and select the “ Go to today ” command.

Whether ShowUpDown is True or False, you can click a date fi eld (month, date, year) and then use
the up and down arrow keys to adjust the fi eld ’ s value. You can also type a new value into numeric
fi elds (such as the date and year).

The control ’ s Format property determines the way in which the control displays dates and times.
This property can take the values Long, Short, Time, and Custom. The results depend on the
regional settings on the computer. The following table shows typical results for the Long, Short, and
Time settings in the United States.

FIGURE G-3: The DateTimePicker

control lets the user select a date

and time.

bapp07.indd 960bapp07.indd 960 12/31/09 6:05:11 PM12/31/09 6:05:11 PM

FORMAT PROPERTY EXAMPLE

Long Saturday, February 20, 2010

Short 2/20/2010

Time 3:12:45 pm

When the Format property is set to Custom, the control uses the date and time format string
stored in the control ’ s CustomFormat property. For example, the DateTimePicker on the
bottom in Figure G - 3 has CustomFormat set to h:mm tt, MMM d, yyyy to display the time,
abbreviated month, date, and year. See Appendix P, “ Date and Time Format Specifi ers, ” for more
information.

If the control displays time (either because Format is set to Time or because a CustomFormat value
includes time fi elds), the user can click a time fi eld and use the arrow keys to adjust its value. You
can also click a numeric fi eld or am/pm designator and type a new value.

The DateTimePicker control ’ s MinDate and MaxDate properties determine the fi rst and last dates
that the control will let the user select.

The control has several properties that determine the appearance of the calendar, if it
displays one. These include CalendarFont, CalendarForeColor, CalendarMonthBackground,
CalendarTitleBackColor, CalendarTitleForeColor, and CalendarTrailingForeColor.

The program can use the control ’ s Value property to get or set the control ’ s date and time.

DIRECTORYENTRY

The DirectoryEntry component represents a node or object in an Active Directory hierarchy. Active
Directory is a service that provides a common, hierarchical view of distributed resources and
services on a network.

Active Directory is really a Windows operating system topic, not a Visual Basic topic, so it is not
covered further here. For more information, see the DirectoryEntry class ’ s web page at msdn
.microsoft.com/system.directoryservices.directoryentry.aspx .

DIRECTORYSEARCHER

The DirectorySearcher component performs searches on an Active Directory hierarchy. See the
online help for more information on Active Directory (msdn.microsoft.com/aa286486.aspx) and
the DirectorySearcher component (msdn.microsoft.com/system.directoryservices
.directorysearcher.aspx).

DirectorySearcher ❘ 961

bapp07.indd 961bapp07.indd 961 12/31/09 6:05:12 PM12/31/09 6:05:12 PM

962 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

DOMAINUPDOWN

The DomainUpDown control displays a list of items that the user can select by clicking the up and
down arrow buttons beside the control. For example, the control might let the user select one of the
values High, Medium, and Low.

If the control ’ s InterceptArrowKeys property is True, the user can also scroll through the items by
using the up and down arrow keys. If InterceptArrowKeys is False, the user must click the arrow
buttons to change the value.

Normally, the control ’ s ReadOnly property is set to False so the user can type text into the control ’ s
text area much as you can enter text in a ComboBox. If ReadOnly is True, the user cannot type in
this area and must use the arrow keys or buttons to pick one of the control ’ s items. Unfortunately,
setting ReadOnly to True gives the control a gray background, so it appears disabled unless you
look closely and notice that the text is black rather than dark gray.

Like the CheckedListBox control, the DomainUpDown control can hold arbitrary objects as items.
It displays the string returned by an object ’ s ToString method. See the “ CheckedListBox ” section
earlier in this appendix for more information about displaying objects in the control.

The control ’ s SelectedItem property returns the object representing the item that is currently
selected. Note that there may be no item selected if the user typed a value in the text area, rather
than selecting a value from the list of items. The SelectedIndex property returns the index of the
currently selected item or -1 if no choice is selected.

The control ’ s Text property returns the text that the control is currently displaying. This property
returns something meaningful whether the user typed a value or selected an item from the list.

When the control is fi rst displayed, no item is selected. You can use the Properties window to give
the control a Text value at design time, but you cannot make it select an item, even if the Text value
matches an item ’ s text. If you want the control to begin with an item selected, you can use code
similar to the following in the form ’ s Load event handler:

’ Select the first Priority value.
dudPriority.SelectedIndex � 0

If you set the control ’ s Sorted property to True, the control displays its items in sorted order.

If you set the Wrap property to True, the control wraps its list of items around if the user moves past
the beginning or end of the list.

ERRORPROVIDER

The ErrorProvider component indicates to the user that another control has an error associated with
it. ErrorProvider is an extender provider, so it adds a new Error property to the other controls on its
form. For example, if the ErrorProvider is named ErrorProvider1, each control on the form gets a
new property named “ Error on ErrorProvider1. ” At design time, use the Properties window to set or
clear this value.

bapp07.indd 962bapp07.indd 962 12/31/09 6:05:13 PM12/31/09 6:05:13 PM

To associate an error with a control at runtime, use the ErrorProvider ’ s SetError method. The
ErrorProvider automatically displays a red circle containing an exclamation mark next to
the control. If the user hovers the mouse over the circle, the ErrorProvider displays a tooltip
giving the error text.

To remove an error on a control at runtime, use the ErrorProvider ’ s SetError method to set the
control ’ s error message to an empty string.

Many programs set or clear errors on a control in the control ’ s Validating event. Example program
UseErrorProvider, which is available for download on the book ’ s web site, uses a Validating event to
validate a ZIP code text box.

The component ’ s BlinkRate property determines how quickly the error icon blinks. The BlinkStyle
property determines how it blinks.

If BlinkStyle is BlinkIfDifferentError, the component makes the icon blink several times whenever
the program sets a control ’ s error message to a new nonblank value.

If BlinkStyle is AlwaysBlink, the component makes the icon blink as long as the control has an
associated error. The icon continues blinking, even if another application has the focus, until the
user fi xes the error and moves to a new fi eld to trigger the Validating event handler again.

If BlinkStyle is NeverBlink, the component displays the error icon without blinking.

The component ’ s Icon property gives the icon that the component displays for an error. You can
change this icon if you want to use a special error image.

ANNOYANCE ALERT

Blinking text can be extremely irritating to users, so don ’ t abuse it. The default
behavior of blinking a couple of times and then stopping is reasonable, but a
message that is constantly blinking very quickly is a bad idea.

Note that the United States Accessibility code prohibits objects that blink between
2 Hz and 55 Hz (see www.hhs.gov/od/topics/it/final_section_508_policy
.html#1211SubpartBTechnicalStandards) at least in part because blinking can
cause seizures and other life - threatening reactions in some people.

EVENTLOG

The EventLog component enables an application to manipulate event logs. It provides methods to
create logs, write and read log messages, and clear logs. Event logs are a more advanced topic. For
detailed information, see the MSDN topic “ Logging Application, Server, and Security Events ” at
msdn.microsoft.com/e6t4tk09.aspx .

EventLog ❘ 963

bapp07.indd 963bapp07.indd 963 12/31/09 6:05:13 PM12/31/09 6:05:13 PM

964 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

FILESYSTEMWATCHER

The FileSystemWatcher component keeps an eye on part of the fi le system and raises events to
let your program know if something changes. For example, it can notify your program if a fi le is
created in a particular directory.

For more information on the FileSystemWatcher component, see Chapter 37, “ File - System Objects, ”
and Appendix U, “ File - System Classes. ”

FLOWLAYOUTPANEL

The FlowLayoutPanel control displays the controls that it contains in rows or columns. For
example, when laying out rows, it places controls next to each other horizontally in a row until it
runs out of room, and then it starts a new row.

The FlowLayoutPanel is particularly useful for Toolboxes and in situations where the goal is to
display as many of the contained controls as possible at one time, and the exact arrangement of the
controls isn ’ t too important.

The control ’ s FlowDirection property determines the manner in which the control arranges its
contained controls. This property can take the values LeftToRight, RightToLeft, TopDown, and
BottomUp. Example program FlowDirections, which is available for download on the book ’ s web
site, demonstrates these different arrangements.

The control ’ s AutoScroll property determines whether the control automatically provides scroll bars
if its contents won ’ t fi t within the control all at once.

The Padding property determines how much space the control leaves between its edges and the
controls that it contains. Use the Margin properties of the contained controls to specify the spacing
between the controls.

The TableLayoutPanel control also arranges its contained controls, but in a grid. For information on
that control, see the section “ TableLayoutPanel ” later in this appendix.

FOLDERBROWSERDIALOG

The FolderBrowserDialog component displays a dialog box that lets the user select a folder
(directory) in the fi le system. The program displays the dialog box by calling the component ’ s
ShowDialog method.

The component ’ s SelectedPath property not only returns the path selected by the user, but it also
determines where the dialog begins browsing. If your code uses the dialog box, does not change this

bapp07.indd 964bapp07.indd 964 12/31/09 6:05:15 PM12/31/09 6:05:15 PM

value, and then uses the dialog box again later, the dialog box starts the second time where it left off
the fi rst time.

The program can also explicitly set the SelectedPath value to start browsing at a particular folder.
For example, the following code makes the dialog begin browsing in the C:\Temp directory:

dlgFolder.SelectedPath � “ C:\Temp ”

Alternatively, you can use the component ’ s RootFolder property to make the component
start in one of the system folders. Set this property to one of the Environment.SpecialFolder values.
For example, to start browsing in the MyPictures directory, set RootFolder to Environment.
SpecialFolder.MyPictures.

The dialog box will not allow the user to leave the root folder. For example, if you set the
RootFolder property to Environment.SpecialFolder.ProgramFiles, the user will be able to browse
through the Program Files hierarchy (normally, C:\Program Files), but will not be able to move to
other parts of the system.

If you want to start browsing at a particular directory but want to allow the user to move to other
parts of the directory hierarchy, leave the RootFolder with its default value of Environment
.SpecialFolder.Desktop and then set the SelectedPath property appropriately. For example, the
following code uses the Environment object ’ s SpecialFolder method to make the browser start
browsing at the Program Files folder:

dlgFolder.RootFolder � Environment.SpecialFolder.Desktop
dlgFolder.SelectedPath �
 Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles)

FONTDIALOG

The FontDialog component displays a font selection dialog. If the user selects a font and clicks OK,
the ShowDialog method returns DialogResult.OK.

The component has several properties that determine the options that the dialog displays and
the types of fonts it will allow the user to select. The following table describes some of the most
important of the component ’ s properties.

FontDialog ❘ 965

bapp07.indd 965bapp07.indd 965 12/31/09 6:05:15 PM12/31/09 6:05:15 PM

966 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

AllowScriptChange Determines whether the component allows the user to change the

character set shown in the Script combo box. If this is False, the dropdown

is still visible, but it only contains one choice.

AllowSimulations Determines whether the component allows graphics device font

simulations. For example, many fonts do not include bold or italics, but the

graphics device interface (GDI) can simulate them.

AllowVectorFonts Determines whether the component allows vector fonts. (Characters in

a raster font are drawn as bitmaps. Characters in a vector font are drawn

as a series of lines and curves. Vector fonts may provide a nicer look

because they scale more easily than raster fonts, but vector fonts may

take longer to draw.)

AllowVerticalFonts Determines whether the component allows vertical fonts (such as

Chinese).

Color Sets or gets the font ’ s color. Note that this is not part of the Font property,

so if you want to let the user set a control ’ s font and color, you must handle

them separately, as shown in the following code:

dlgFont.Font = Me.Font

dlgFont.Color = Me.ForeColor

dlgFont.ShowColor = True

If dlgFont.ShowDialog() = DialogResult.OK Then

 Me.Font = dlgFont.Font

 Me.ForeColor = dlgFont.Color

End If

FixedPitchOnly Determines whether the dialog box only allows fi xed - pitch (fi xed - width)

fonts. (In a fi xed - width font, all characters have the same width. For

example, this sentence is in the Courier font, which is

fixed - width. In a variable - width font, some characters such as l and i

are thinner than other characters such as W. This sentence is in the Times
New Roman font, which has variable width.

Font Sets or gets the font described by the dialog box.

FontMustExist Determines whether the component raises an error if the user tries to

select a font that doesn ’ t exist.

MaxSize Determines the maximum allowed point size.

MinSize Determines the minimum allowed point size.

bapp07.indd 966bapp07.indd 966 12/31/09 6:05:16 PM12/31/09 6:05:16 PM

PROPERTY PURPOSE

ShowApply Determines whether the dialog box displays the Apply button. If you set

this to True, you should catch the component ’ s Apply event and apply the

currently selected font.

ShowColor Determines whether the component allows the user to select a color.

ShowEffects Determines whether the component displays the Eff ects group box that

includes the Strikeout and Underline boxes and the Color dropdown.

ShowHelp Determines whether the dialog box displays the Help button. If you set this

to True, you should catch the component ’ s HelpRequest event. The event

handler might explain to the user how the font will be used. For example,

“ Select the font to be used for item descriptions. ”

Example program UseFontDialog demonstrates a simple font selection dialog. Example program
UseFontDialogWithShowEffects shows how to respond when the user clicks the font dialog ’ s Apply
button. Both of these examples are available for download on the book ’ s web site.

GROUPBOX

The GroupBox control displays a caption and a border. This control is mostly for decoration and
provides a visually appealing method for grouping related controls on the form.

The GroupBox is also a control container, so you can place other controls inside it. If a GroupBox
contains RadioButton controls, those buttons form a group separate from any other RadioButton
controls on the form. If you click one of those buttons, the other buttons in the GroupBox deselect,
but any selected RadioButton controls outside of the GroupBox remain unchanged. This is
important if you need to create more than one group of RadioButton controls.

If you want to create multiple RadioButton groups, but you don ’ t want to display a caption and
border, use a Panel control instead of a GroupBox.

The GroupBox control provides a typical assortment of properties that determine its appearance
(such as BackColor, BackgroundImage, and Font). These properties are straightforward.

If you set the control ’ s Enabled property to False, its caption is grayed out and any controls it
contains are also disabled. This is a convenient way for a program to enable or disable a group of
controls all at once.

The GroupBox control ’ s Controls property returns a collection containing references to the controls
inside the GroupBox.

One of the few confusing aspects to working with GroupBox controls in code is fi guring out where
to position controls within the GroupBox. The control ’ s borders and caption take up room inside
the control ’ s client area, so deciding how to position controls without covering those decorations is
not obvious. Fortunately, the control ’ s DisplayRectangle property returns a Rectangle object that

GroupBox ❘ 967

bapp07.indd 967bapp07.indd 967 12/31/09 6:05:16 PM12/31/09 6:05:16 PM

968 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

you can use to position items. This rectangle fi lls most of the control ’ s area that isn ’ t occupied by the
caption and borders.

HELPPROVIDER

The HelpProvider component displays help for other controls. You can associate a HelpProvider
with a control. Then, if the user sets focus to the control and presses the F1 key, the HelpProvider
displays help for the control. The HelpProvider either displays a small tooltip - like pop - up displaying
a help string, or it opens a help fi le.

To assign a help string to a control at design time, open the form in the form designer and select
the control. In the Properties window, look for a property named “ HelpString on HelpProvider1, ”
where HelpProvider1 is the name of your HelpProvider component. If the form contains more than
one HelpProvider, the control should have more than one “ HelpString on ” property.

Enter the text you want the HelpProvider to display in this property and you ’ re fi nished.
When the user sets focus to the control and presses F1, the HelpProvider displays the string
automatically.

To set the help string programmatically, call the HelpProvider component ’ s SetHelpString method
passing it the control and the help string that it should display for the control.

To provide help using a help fi le, set the HelpProvider component ’ s HelpNamespace property to
the full name and path to the help fi le. Set the other control ’ s “ HelpNavigator on HelpProvider1 ”
property to one of the values shown in the following table to tell the HelpProvider how to use the
help fi le when the user asks for help on this control.

HELPNAVIGATOR VALUE PURPOSE

AssociateIndex Opens the help fi le ’ s Index page and goes to the fi rst entry that

begins with the same letter as the control ’ s “ HelpKeyword on

HelpProvider1 ” property.

Find Opens the help fi le ’ s Index tab.

Index Opens the help fi le ’ s Index tab and searches for the value entered

in the control ’ s “ HelpKeyword on HelpProvider1 ” property.

KeywordIndex Opens the help fi le ’ s Index tab and searches for the value entered

in the control ’ s “ HelpKeyword on HelpProvider1 ” property.

TableOfContents Opens the help fi le ’ s Table of Contents tab.

Topic Displays the topic in the help fi le that has URL stored in the

control ’ s “ HelpKeyword on HelpProvider1 ” property. For example,

the URL street_name.htm might contain the help fi le ’ s page for the

Street fi eld.

bapp07.indd 968bapp07.indd 968 12/31/09 6:05:17 PM12/31/09 6:05:17 PM

To set a control ’ s HelpNavigator value in code, call the HelpProvider component ’ s SetHelpNavigator
method passing it the control and the navigator method that you want to use.

A control ’ s “ ShowHelp on HelpProvider1 ” property indicates whether the control should use the
HelpProvider to display its help.

HSCROLLBAR

The HScrollBar control represents a horizontal scroll bar. The user can drag the scroll bar ’ s
“ thumb ” to select a number.

The control ’ s Value property gets and sets its current numeric value. The Minimum and Maximum
properties determine the range of values that the control can display. These are integer values, so
the HScrollBar control is not ideal for letting the user select a nonintegral value such as 1.25. (You
can multiply the values by 100 to get fi ner grained resolution but the user still can ’ t select truly
nonintegral values.)

The control ’ s SmallChange property determines how much the control ’ s Value property changes
when the user clicks the arrows at the scroll bar ’ s ends. The LargeChange property determines how
much the Value changes when the user clicks the scroll bar between the thumb and the arrows.

Strangely, the control does not let the user actually select the value given by its Maximum property.
The program can select that value using code, but the largest value the user can select is Maximum
– LargeChange � 1. For example, if Maximum is 100 and LargeChange is 10 (the default values),
the user can select values up to 100 – 10 � 1 � 91.

If you set the control ’ s TabStop property to True, the control can hold the input focus. While the
control has the focus, you can use the arrow keys to change its value by the SmallChange amount.

The control ’ s Scroll event fi res when the user changes the control ’ s value interactively. The
ValueChanged event occurs when the control ’ s value changes either because the user changed
it interactively, or because the program changed it with code. The following code shows how a
program can display the hbarDays control ’ s Value property when the user or program changes it:

Private Sub hbarDays_ValueChanged() Handles hbarDays.ValueChanged
 lblDays.Text � hbarDays.Value.ToString
End Sub

Note that many controls that might otherwise require scroll bars can provide their own. For
example, the ListBox, TextBox, and Panel controls can display their own scroll bars when
necessary, so you don ’ t need to add your own.

IMAGELIST

The ImageList component stores a series of images for use by other controls or by the program ’ s
code. For example, one way to display an image on a Button control is to create an ImageList
component holding the image. Set the Button ’ s ImageList property to the ImageList component and
set its ImageIndex property to the index of the image in the ImageList.

ImageList ❘ 969

bapp07.indd 969bapp07.indd 969 12/31/09 6:05:18 PM12/31/09 6:05:18 PM

970 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

To add images to the component at design time, open the form designer, select the component, click
the Images property in the Properties window, and click the ellipsis (. . .) on the right. The Image
Collection Editor that appears has buttons that let you add, remove, and rearrange the images.

The ImageList component ’ s ImageSize property determines the size of the images. The component
stretches any images of different sizes to fi t the ImageSize. This means that a single ImageList
component cannot provide images of different sizes. If you must store images of different sizes in
the application, use another method such as multiple ImageList components, PictureBox controls
(possibly with the Visible property set to False), or resources.

LABEL

The Label control displays some read - only text. Note that you cannot even select the text at runtime
so, for example, you cannot copy it to the clipboard. If you want to allow the user to select and copy
text, but not modify it, use a TextBox with the ReadOnly property set to True.

The Label control can display an image in addition to text. To display an image, either set the
control ’ s Image property to the image or set the control ’ s ImageList and ImageIndex properties.
Use the ImageAlign and TextAlign properties to determine where the image and text are positioned
within the control.

If you set the Label control ’ s AutoSize property to True (the default), the control resizes itself to
fi t its text. This can be particularly useful for controls that contain text that changes at runtime
because it ensures that the control is always big enough to hold the text. Note that the control does
not automatically make itself big enough to display any image it contains.

The Label control automatically breaks lines that contain embedded carriage returns. The following
code makes a label display text on four lines:

lblInstructions.Text � "Print this message and either:" & vbCrLf &
 " - Mail it to the recipient" & vbCrLf &
 " - Fax it to the recipient" & vbCrLf &
 " - Throw it away"

Text that contains carriage returns confuses the control ’ s AutoSize capabilities, however, so you
should not use AutoSize with multiline text.

The Label control also automatically wraps to a new line if the text it contains is too long to fi t
within the control ’ s width.

LINKLABEL

The LinkLabel control displays a label that is associated with a hyperlink. By default, the label is
blue and underlined, so it is easy to recognize as a link. It also displays a pointing hand cursor when
the mouse moves over it, so it looks more or less like a link on a web page.

When the user clicks a LinkLabel, the control raises its LinkClicked event. The program can catch
the event and take whatever action is appropriate. For example, it could display another form, open
a document, or open a web page.

bapp07.indd 970bapp07.indd 970 12/31/09 6:05:19 PM12/31/09 6:05:19 PM

The LinkLabel control provides all the formatting properties that the Label control does. See the
section “Label” earlier in this appendix for more information on formatting the control ’ s label.

The control also provides several properties for determining the appearance of its link. The
following table describes some of the most useful.

PROPERTY PURPOSE

ActiveLinkColor The color of an active link.

DisabledLinkColor The color of a disabled link.

LinkArea The piece of the control ’ s text that is represented as a link.

This includes a start position and a length in characters.

LinkBehavior Determines when the link is underlined. This can take the values

AlwaysUnderline, HoverUnderline, NeverUnderline, and SystemDefault.

LinkColor The color of a normal link.

Links A collection of objects representing the link(s) within the control ’ s text.

LinkVisited A Boolean that indicates whether the link should be displayed as

visited.

VisitedLinkColor The color of a visited link.

A LinkLabel can display more than one link within its text. For example, in the text “The quick
brown fox jumps over the lazy dog,” the control might display the words fox and dog as links and
the rest as normal text. At design time, you can use the LinkArea property to specify only one
link. To make fox the link, the program would set LinkArea to 16, 3 to start with the seventeenth
character (remember indexing starts at 0) and include 3 letters.

At runtime, the program can add other links to the control. The following code clears the
llblPangram control ’ s Links collection and then adds two new link areas. The program sets each of
the new Link objects ’ LinkData property to a URL that the program should display when the user
clicks that link.

Dim new_link As System.Windows.Forms.LinkLabel.Link

llblPangram.Links.Clear()
new_link � llblPangram.Links.Add(16, 3)
new_link.LinkData � “ http://www.somewhere.com/fox.htm ”
new_link � llblPangram.Links.Add(40, 3)
new_link.LinkData � “ http://www.somewhere.com/dog.htm ”

The following code shows how the program displays the URL corresponding to the link the user
clicked. The code gets the appropriate Link object from the event handler ’ s event arguments,
converts the Link object ’ s LinkData property into a string, and uses System.Diagnostics.Process
.Start to open it with the system ’ s default browser.

LinkLabel ❘ 971

bapp07.indd 971bapp07.indd 971 12/31/09 6:05:19 PM12/31/09 6:05:19 PM

972 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

’ Display the URL associated with the clicked link.
Private Sub llblPangram_LinkClicked(ByVal sender As System.Object,
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles llblPangram.LinkClicked
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString)
End Sub

LISTBOX

The ListBox control displays a list of items that the user can select. The following table describes
some of the control ’ s most useful properties.

PROPERTY PURPOSE

SelectionMode Determines how the user can select text. See the following text

for details.

MultiColumn If this is True, the control does not display a vertical scroll bar. Instead,

if there are too many items to fi t, the control displays them in multiple

columns. If the columns will not all fi t, the control displays a horizontal

scroll bar to let you see them all. The control ’ s ColumnWidth property

determines the width of the columns.

IntegralHeight If this is True, the control will not display a partial item. For example, if

the control is tall enough to display 10.7 items, it will shrink slightly so it

can only display 10 items.

ScrollAlwaysVisible If this is True, the control displays its vertical scroll bar even if all of its

items fi t. This can be useful if the program will add and remove items

to and from the list at runtime and you don ’ t want the control to change

size depending on whether the items all fi t.

Sorted Determines whether the control displays its items in sorted order.

SelectedItem Returns a reference to the fi rst selected item or Nothing if no item is

selected. This is particularly useful if the control ’ s SelectionMode is One.

SelectedIndex Returns the zero - based index of the fi rst selected item or –1 if no item is

selected. This is particularly useful if the control ’ s SelectionMode is One.

Text Returns the text displayed for the fi rst currently selected item, or an

empty string if no item is selected. Your code can set this property

to a string to make the control select the item that displays exactly

that string.

bapp07.indd 972bapp07.indd 972 12/31/09 6:05:20 PM12/31/09 6:05:20 PM

PROPERTY PURPOSE

SelectedItems A collection containing references to all the items that are currently

selected.

SelectedIndices A collection containing the indices of all the items that are currently

selected.

UseTabStops Determines whether the control recognizes tabs embedded within its

items ’ text. If UseTabStops is True, the control replaces tab characters

with empty space. If UseTabStops is False, the control displays tab

characters as thin black boxes.

The control ’ s SelectionMode property determines how the user can select items. This property can
take the value None, One, MultiSimple, or MultiExtended.

When SelectionMode is None, the user cannot select any items. This mode can be useful for
displaying a read - only list. It can be particularly handy when the list is very long and the control ’ s
automatic scrolling is useful, allowing the user see all of the list ’ s items.

When SelectionMode is One, the user can select a single item. When the user clicks an item, any
previously selected item is deselected.

When SelectionMode is MultiSimple, the user can select multiple items by clicking them one at a
time. When the user clicks an item, the other items keep their current selection status. This mode
is useful when the user needs to select multiple items that are not necessarily near each other in the
list. It is less useful if the user must select a large number of items. For example, clicking 100 items
individually would be tedious.

When SelectionMode is MultiExtended, the user can select multiple items in several ways. The user
can click and drag to manipulate several items at once. If the fi rst item clicked is not selected, all of
the items are selected. If the fi rst item is already selected, all of the items are deselected. If the user
holds down the Ctrl key and clicks an item, the other items ’ selection status remains unchanged. If
the user doesn ’ t hold down the Ctrl key, any other items are deselected when the user selects new
items. If the user clicks an item and then clicks another item while holding down the Shift key, all of
the items between those two are selected. If the user holds down the Ctrl key at the same time, those
items are selected and the other items ’ selection status remains unchanged.

The MultiExtended mode is useful when the user needs to select many items, some of which may be
next to each other. This mode is quite complicated, however, so MultiSimple may be a better choice
if the user doesn ’ t need to select ranges of items or too many items. The CheckedListBox control is
often a good alternative when the user must make many complicated selections.

Use the control ’ s Items.Add method to add an object to the list. If the object isn ’ t a string, the
control uses the object ’ s ToString method to determine the value it displays to the user.

The ListBox control ’ s FindString method returns the index of the fi rst item that begins with a given
string. For example, the following code selects the fi rst item that begins with the string Code:

lstTask.SelectedIndex � lstTask.FindString(“ Code ”)

ListBox ❘ 973

bapp07.indd 973bapp07.indd 973 12/31/09 6:05:21 PM12/31/09 6:05:21 PM

974 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The FindStringExact method returns the index of the fi rst item that matches a given string exactly.

LISTVIEW

The ListView control displays a list of items in one of fi ve possible views, determined by the
control ’ s View property. The View property can take the following values:

Details — For each item, displays a small icon, the item ’ s text, and the sub - items ’ text on a
row.

LargeIcon — Displays large icons above the item ’ s text. Entries are arranged from left to
right until they wrap to the next row.

List — Displays small icons to the left of the item ’ s text. Each entry is placed on its own row.

SmallIcon — Displays small icons to the left of the item ’ s text. Entries are arranged from
left to right until they wrap to the next row.

Tile — Displays large icons to the left of the item ’ s text. Entries are arranged from left to
right until they wrap to the next row.

Figure G - 4 shows each of these views for the same list of items. The second tiled view shown in
the lower - right corner uses the control ’ s CheckBoxes and StateImageList properties, and is
described shortly.

➤

➤

➤

➤

➤

FIGURE G-4: The ListView control can display fi ve views.

Set the control ’ s LargeImageList and SmallImageList properties to ImageList controls containing the
images that you want to use for the LargeIcon and SmallIcon views.

Each of the ListView control ’ s items may contain one or more sub - items that are displayed in the
Details view. To create the items and sub - items, open the form designer, select the ListView control,
click the Items property in the Properties window, and click the ellipsis (. . .) button to the right to
display the ListViewItem Collection Editor.

bapp07.indd 974bapp07.indd 974 12/31/09 6:05:21 PM12/31/09 6:05:21 PM

Click the Add button to make a new item. Set the item ’ s Text property to the string you want
the control to display. If you have attached ImageList controls to the ListView, set the new item ’ s
ImageIndex property to the index of the image you want to display for this item in the LargeIcon
and SmallIcon views.

For example, the program in Figure G - 4 contains two ImageList controls. The imlBig control
contains 32 � 32 pixel images and the imlSmall control contains 16 � 16 pixel images. Each holds
one image of a book. All of the items in the ListView items have ImageIndex set to 0, so they all
display the fi rst images in the imlBig and imlSmall controls.

To give an item sub - items at design time, select it in the ListViewItem Collection Editor,
click its SubItems property, and then click the ellipsis (. . .) button to the right to display the
ListViewSubItem Collection Editor. Use the Add button to make sub - items. Set the sub - items ’ Text
properties to determine what the Details view displays.

If you set the ListView control ’ s CheckBoxes property to True, the control displays check boxes next
to its items. If you set the control ’ s StateImageList property to an ImageList control, the control
displays the images in that list. When the user double - clicks an item, the control toggles the image
index between 0 and 1 and displays the fi rst or second image in the ImageList control. In Figure
G - 4, the ListView on the lower - right uses check box images that look like circles with numbers
inside. If you set CheckBoxes to True but do not set the ListView control ’ s StateImageList property,
the control displays simple boxes containing check marks.

If CheckBoxes is True, the program can use the CheckedIndices or CheckedItems collections to see
which items the user has selected. If the StateImageList control holds more than two images, an item
is considered checked if it is displaying any picture other than the fi rst one. The following code lists
the currently checked items in the lvwMeals ListView control:

For Each checked_item As ListViewItem In lvwMeals.CheckedItems
 Debug.WriteLine(checked_item.ToString)
Next checked_item

The control ’ s SelectedIndices and SelectedItems collections let the program see which items the user
has currently selected. The user can select items by clicking them. If the user holds down the Ctrl
key while clicking, any items that are already selected remain selected. If the user clicks an item,
holds down the Shift key, and then clicks another item, the control selects all of the items in
between the two.

If you are using the ListView in Details mode, you must defi ne the control ’ s columns. Open the form
designer, select the control, click the Columns property in the Properties window, and click the
ellipsis (. . .) button to the right to display the ColumnHeader Collection Editor.

Use the Add button to create column headers and then set each header ’ s text. If you don ’ t defi ne
enough columns for all of the sub - items, some of the sub - items will not be visible to the user. This is
one way you can include data for an item but hide it from the user.

The LabelEdit control has several other properties that determine its appearance and how the
control interacts with the user. The following table describes some of the most important of these.

ListView ❘ 975

bapp07.indd 975bapp07.indd 975 12/31/09 6:05:22 PM12/31/09 6:05:22 PM

976 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

AllowColumnReorder If True, the user can rearrange the columns by dragging their column

headers while in Detail mode.

FullRowSelect If True, clicking an item or any of its sub - items selects the item. If

False, the user must click the item, not a sub - item, to select the item.

If AllowColumnReorder is True, you may want to set FullRowSelect

to True also so the user doesn ’ t need to fi gure out which rearranged

column contains the item itself.

GridLines If True, the control displays gray lines between the rows and columns

while in Detail mode.

HeaderStyle When in Detail mode, this can be None to not display column headers,

Clickable to allow the user to click column headers, or Nonclickable to

not let the user click column headers. If this is Clickable, the program

can catch the control ’ s ColumnClick event to learn the index of

the column clicked. For example, you may want to sort the ListView

control ’ s items using the clicked column.

LabelEdit If True, the user can modify the items ’ labels. The user can never

change the sub - items ’ labels.

MultiSelect If True, the user can use the Ctrl and Shift keys to select multiple items.

Sorting Indicates whether the control displays its items sorted ascending,

sorted descending, or not sorted.

Example program UseListView, shown in Figure G - 4 and available for download on the book ’ s web
site, uses these techniques to initialize its ListView controls at design time.

ListView Helper Code

In addition to using the ListView control ’ s collection property editors at design time, you can
manipulate the control ’ s items and sub - items at runtime using code.

The control ’ s Columns collection contains ColumnHeader objects representing the control ’ s column
headers. You can use the collection ’ s Add, Count, Remove, RemoveAt, and other methods to
manage the text displayed above the columns.

The ListViewMakeColumnHeaders subroutine shown in the following code uses the Columns
collection to defi ne a ListView control ’ s column headers. The routine takes as parameters a
ListView control and a ParamArray of values that contain title strings, alignment values, and
widths. The code clears the control ’ s Columns collection and then loops through the ParamArray.
For each triple of array entries, the control creates a column header using the title string, alignment
value, and width.

bapp07.indd 976bapp07.indd 976 12/31/09 6:05:23 PM12/31/09 6:05:23 PM

’ Make the ListView ’ s column headers.
‘ The ParamArray entries should be triples holding
‘ column title, HorizontalAlignment value, and width.
Private Sub ListViewMakeColumnHeaders(ByVal lvw As ListView,
 ByVal ParamArray header_info() As Object)
 ‘ Remove any existing headers.
 lvw.Columns.Clear()

 ‘ Make the column headers.
 For i As Integer = header_info.GetLowerBound(0) To _
 header_info.GetUpperBound(0) Step 3
 Dim col_header As ColumnHeader = lvw.Columns.Add(
 DirectCast(header_info(i), String),
 -1,
 DirectCast(header_info(i + 1), HorizontalAlignment))
 col_header.Width = DirectCast(header_info(i + 2), Integer)
 Next i
End Sub

The following code shows how a program might use subroutine ListViewMakeColumnHeaders
to defi ne the lvwBooks control ’ s column headers. Because the Pages and Year columns contain
numeric values, the control aligns them on the right of their columns.

’ Make the ListView column headers.
ListViewMakeColumnHeaders(lvwBooks,
 "Title", HorizontalAlignment.Left, 120,
 "URL", HorizontalAlignment.Left, 120,
 "ISBN", HorizontalAlignment.Left, 90,
 "Picture", HorizontalAlignment.Left, 120,
 "Pages", HorizontalAlignment.Right, 50,
 "Year", HorizontalAlignment.Right, 40)

The ListView control ’ s Items collection contains ListViewItem objects that represent the control ’ s
items. Each ListViewItem has a SubItems collection that represents the item ’ s sub - items. These
collections provide the usual assortment of methods for managing collections: Count, Add, Remove,
RemoveAt, and so forth.

The ListViewMakeRow subroutine shown in the following code uses these collections to add an
item and its sub - items to a ListView. The routine takes as parameters the ListView control, the name
of the item, and a ParamArray containing the names of any number of sub - items. The code uses
the ListView control ’ s Items.Add method to make the new item. It then loops through the sub - item
names, using the new item ’ s SubItems.Add method to make the sub - items.

’ Make a ListView row.
Private Sub ListViewMakeRow(ByVal lvw As ListView, ByVal image_index As Integer,
 ByVal item_title As String, ByVal ParamArray subitem_titles() As String)
 ‘ Make the item.
 Dim new_item As ListViewItem � lvw.Items.Add(item_title)
 new_item.ImageIndex � image_index

 ‘ Make the subitems.

ListView ❘ 977

bapp07.indd 977bapp07.indd 977 12/31/09 6:05:23 PM12/31/09 6:05:23 PM

978 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

 For i As Integer = subitem_titles.GetLowerBound(0) To _
 subitem_titles.GetUpperBound(0)
 new_item.SubItems.Add(subitem_titles(i))
 Next i
End Sub

If you set a ListView column ’ s width to –1, the control automatically resizes the column so it is wide
enough to display all of its data. If you set a column ’ s width to –2, the control makes the column
wide enough to display all of its data and its header text.

The ListViewSizeColumns subroutine shown in the following code sizes all of a ListView control ’ s
columns so that they fi t their data. If the allow_room_for_header parameter is True, it also allows
room for the column headers.

’ Set column widths to - 1 to fit data, - 2 to fit data and header.
Private Sub ListViewSizeColumns(ByVal lvw As ListView,
 ByVal allow_room_for_header As Boolean)
 Dim new_wid As Integer � - 1
 If allow_room_for_header Then new_wid � - 2

 ‘ Set the width for each column.
 For i As Integer � 0 To lvw.Columns.Count-1
 lvw.Columns(i).Width � new_wid
 Next i
End Sub

These helper routines make working with ListView controls a bit easier.

Custom ListView Sorting

The ListView control ’ s Sorting property enables you to sort items in ascending or descending order,
but it only considers the items, not the sub - items. It doesn ’ t even use the sub - items to break ties
when two items have the same value.

Fortunately, the ListView control ’ s ListViewItemSorter property provides the fl exibility to change
the sort order in any way you like. To use this property, you must create a class that implements the
IComparer interface. The ListView control will use an object of this type to decide which items to
place before other items.

The key to the IComparer interface is its Compare function. This function takes two ListViewItem
objects as parameters and returns –1, 0, or 1 to indicate whether the fi rst should be considered less
than, equal to, or greater than the second object in the sort order.

To implement a custom sort order, the program should set the ListView control ’ s ListViewItemSorter
property to an object that implements IComparer and then call the control ’ s Sort method. The
control then uses the IComparer object to put the items in the proper order.

bapp07.indd 978bapp07.indd 978 12/31/09 6:05:24 PM12/31/09 6:05:24 PM

CREATIVE COMPARERS

You can fi nd other uses of the IComparer interface in the section “Array.Sort”
in Chapter 28, “Collection Classes,” and in the section “Derived Controls” in
Chapter 22, “Custom Controls.”

Example program ListViewCustomSort, which is available for download on the book ’ s web site,
uses an IComparer class to allow the user to sort ascending or descending on any of the ListView
control ’ s item or sub - item columns in the control ’ s Details view. The code is fairly involved so it is
not shown here. Download the example from the book ’ s web site to see the details.

MASKEDTEXTBOX

The MaskedTextBox control is a text box that provides a mask that helps guide the user in entering
a value in a particular format. The mask determines which characters are allowed at different
positions in the text. It displays placeholder characters to help prompt the user and underscores
where the user can enter characters. For example, an empty United States phone number fi eld would
appear as () - in the MaskedTextBox.

The control ’ s Mask property uses the characters shown in the following table.

CHARACTER MEANING

0 A required digit between 0 and 9.

9 An optional digit or space.

An optional digit, space, � , or – . If the user leaves this blank, this character

appears as a space in the control ’ s Text, InputText, and OutputText properties.

L A required letter a – z or A – Z.

? An optional letter a – z or A – Z.

& A required nonspace character.

C An optional character.

A A required alphanumeric character a – z, A– Z, or 0–9.

a An optional alphanumeric character a – z, A – Z, or 0–9.

. A decimal separator placeholder. The control automatically displays the

appropriate decimal separator character for the current UI culture.

, A thousands separator placeholder. The control automatically displays the

appropriate thousands separator character for the current UI culture.

continues

MaskedTextBox ❘ 979

bapp07.indd 979bapp07.indd 979 12/31/09 6:05:24 PM12/31/09 6:05:24 PM

980 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

CHARACTER MEANING

: A time separator placeholder. The control automatically displays the appropriate

time separator character for the current UI culture.

/ A date separator placeholder. The control automatically displays the appropriate

date separator character for the current UI culture.

$ A currency symbol placeholder. The control automatically displays the

appropriate currency symbol character for the current UI culture.

< Automatically converts the characters that the user types after this point into

lowercase.

> Automatically converts the characters that the user types after this point

into uppercase.

| Disables the previous < or > character.

\ Escapes a character so it is displayed literally by the control even if the character

would otherwise have special meaning. For example, \9 places a 9 in the output

and \\ displays a \.

All other characters appear as literals within the mask. Dashes and parentheses are common literal
characters. For example, the Social Security number mask 000 - 00 - 0000 displays dashes as in
“ - - . ”

The following table shows the MaskTextBox control ’ s most useful properties. Note that this control
inherits from the TextBox control, so it inherits most of that control ’ s properties, methods, and
events. See the section “TextBox” later in this appendix for more information.

PROPERTY PURPOSE

AllowPromptAsInput Determines whether the user can enter the prompt character

determined by the PromptChar property (normally an underscore).

AsciiOnly Determines whether the control allows non - ASCII Unicode

characters.

BeepOnError Determines whether the control beeps whenever the user types an

invalid keystroke.

EnableCutCopyLiterals Determines whether literal characters such as the parentheses in

the mask (999)000-0000 are included when the user copies and

pastes the control ’ s text.

HidePromptOnLeave Determines whether the control hides its prompt characters when it

loses the focus.

(continued)

bapp07.indd 980bapp07.indd 980 12/31/09 6:05:26 PM12/31/09 6:05:26 PM

PROPERTY PURPOSE

IncludeLiterals Determines whether the control includes literal characters in the

Text and OutputText properties.

IncludePrompt Determines whether the control includes the PromptChar character

in the OutputText property.

InputText Gets or sets the characters input by the user. This doesn ’ t include

any literal mask characters.

Mask Gets or sets the mask.

MaskCompleted Returns True if the user ’ s input satisfi es the required mask

characters.

MaskFull Returns True if the user has entered characters for all of the mask ’ s

required and optional elements.

OutputText Returns the user ’ s text modifi ed by the IncludeLiterals and

IncludePrompt properties.

PromptChar Determines the character that the control uses as a placeholder for

user input.

Text Gets or sets the text as it is currently displayed to the user,

including prompt and literal characters.

The following table describes the control ’ s most useful events.

EVENT OCCURS WHEN

InputTextChanged The control ’ s text has been modifi ed.

MaskChanged The control ’ s mask changed.

MaskInputRejected The user ’ s input does not satisfy the mask at the current position.

OutputTextChanged The control ’ s text has been modifi ed.

TextChanged The control ’ s text has been modifi ed.

Unfortunately, the MaskedTextBox control is relatively infl exible. It requires the user to enter
exactly the right characters at the right positions, and there can be no variation in the format.
For example, a single mask cannot let the user enter a telephone number in either of the formats
456 - 7890 or (123)456 - 7890. The mask (999)000 - 0000 makes the fi rst three digits optional, but the
user must enter spaces in those positions or skip over them. The mask also considers each character
separately, so this mask accepts the value (3)456 - 7890.

MaskedTextBox ❘ 981

bapp07.indd 981bapp07.indd 981 12/31/09 6:05:27 PM12/31/09 6:05:27 PM

982 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

This infl exibility means the MaskedTextBox control is most useful when you know exactly what the
user will need to enter. If you want the user to type a four - digit telephone extension, a seven - digit
phone number, or a fi ve - digit ZIP code, then the control works well. If the user might enter either a
seven - or ten - digit phone number, a fi ve - digit ZIP code or a nine - digit ZIP � 4 code, or an arbitrary
e - mail address, the control is much less useful. In these cases, you might want to use regular
expressions to validate the user ’ s input more precisely. For more information on regular expressions,
see the “Regular Expressions” section in Chapter 39, “ Useful Namespaces. ”

MENUSTRIP

The MenuStrip control represents a form ’ s menus, submenus, and menu items. To make the form
display the menu, its Menu property must be set to the MenuStrip control. The fi rst time you add a
MenuStrip control to the form, Visual Basic automatically sets the form ’ s Menu property to the new
control, so you usually don ’ t need to worry about this. If you later delete the control and create a
new MenuStrip, you may need to set this property yourself.

At design time, the MenuStrip control is visible both at the top of the form and in the component
tray. Click a menu entry and type to change the caption it displays. Place an ampersand in
front of the character that you want to use as a keyboard accelerator. For example, to make the
caption of the File menu display as File, set the menu ’ s text to & File. If you type Alt � F at runtime,
the program opens this menu.

MISSING MENUS

If the form also contains a ContextMenuStrip control and you select that control,
then that control appears at the top of the form instead of the MenuStrip. Click the
MenuStrip in the component tray to make it reappear at the top of the form.

To make a cascading submenu, click a menu item and enter its caption. A ghostly text box appears
to the right containing the text “Type Here.” Click this text and enter the submenu ’ s name.

When you select a menu item, the Properties window displays the menu item ’ s properties. The
following table describes the most useful menu item properties.

PROPERTY PURPOSE

Checked Indicates whether the item is checked. You can use this property to let the

user check and uncheck menu items.

CheckOnClick Determines whether the item should automatically check and uncheck

when the user clicks it.

CheckState Determines whether the item is checked, unchecked, or displayed as in an

indeterminate state.

bapp07.indd 982bapp07.indd 982 12/31/09 6:05:27 PM12/31/09 6:05:27 PM

PROPERTY PURPOSE

DisplayStyle Determines whether the item displays text, an image, both, or neither. The

image appears on the left where a check box would otherwise go. If the item

displays an image, it draws a box around the image when the item is checked.

Enabled Determines whether the menu item is enabled. If an item is disabled, its

shortcut is also disabled and the user cannot open its submenu if it

contains one.

Font Determines the font used to draw the item.

MergeAction Determines how Visual Basic merges MDI child and parent form menus.

See the online help for more information.

MergeIndex Determines the order in which Visual Basic merges MDI child and parent

form menus. See the online help for more information.

Name Gives the menu item ’ s name.

ShortcutKeys Determines the item ’ s keyboard shortcut. For instance, if you set an item ’ s

shortcut to F5, the user can instantly invoke the item at runtime by pressing

the F5 key.

ShowShortcutKeys Determines whether the menu displays its shortcut to the right at runtime.

Usually this should be True, so users can learn about the items ’ shortcuts.

Text Gives the caption displayed by the item. Place an ampersand in front of the

character you want to use as a keyboard accelerator as already described.

Visible Determines whether the item is visible. An item ’ s shortcut will still work

even if the item is not visible. You can use that feature to provide keyboard

shortcuts for functions that are not available in any menu.

TRICKY TYPING

When you select a menu item and start typing, your text always goes into the menu
item ’ s Text property. To change some other property, such as the menu item ’ s name,
you must click the property in the Properties window before typing.

This behavior is different from that of other controls. Usually if you select a control
and start typing, your text goes to the previously selected property. For example,
if you select one control ’ s Name property and then click another control, any text
you type goes into the new control ’ s Name property. That lets you quickly set the
names of many controls. If you try this same technique for menu items, you ’ ll end
up changing their Text values instead.

MenuStrip ❘ 983

bapp07.indd 983bapp07.indd 983 12/31/09 6:05:29 PM12/31/09 6:05:29 PM

984 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

When the user selects a menu item, the item raises a Click event. You can write an event handler
to take whatever action is appropriate. For example, the following code shows how the File menu ’ s
Exit item closes the form:

Private Sub mnuFileExit_Click() Handles mnuFileExit.Click
 Me.Close()
End Sub

To create a menu item event handler, open the item in the form editor and double - click it.

For online help about the MenuStrip control, go to msdn.microsoft.com/system.windows.forms
.menustrip.aspx .

MESSAGEQUEUE

The MessageQueue component provides access to a queue on a message - queuing server. An
application can use a message queue to communicate with other applications. This is a fairly
advanced and specialized topic, so it is not covered in detail here. See the online help at msdn
.microsoft.com/system.messaging.messagequeue.aspx for more information.

MONTHCALENDAR

The MonthCalendar control displays a calendar that allows the user to select a range of dates.
This calendar is similar to the one that the DateTimePicker control displays when its ShowUpDown
property is False and you click the control ’ s drop - down arrow (on the bottom in Figure G - 3).
See the section “DateTimePicker” earlier in this appendix for more information on that control.

The DateTimePicker control is designed to let the user select a single date. The MonthCalendar
control is a bit more powerful. For example, this control can allow the user to select a range of dates
by clicking and dragging across the calendar. The program can use the control ’ s SelectionRange,
SelectionStart, and SelectionEnd properties to see what dates the user has selected.

The following table describes the control ’ s most useful properties for controlling its more advanced
features.

PROPERTY PURPOSE

AnnuallyBoldedDates An array that specifi es dates that should be bolded every year. For

example, you can bold April 1 for every year displayed.

BoldedDates An array that specifi es specifi c dates that should be displayed in bold.

CalendarDimensions Sets the number of columns and rows of months the control displays.

Figure G - 5 shows a MonthCalendar control with Calendar Dimensions �

3, 2 (three columns and two rows).

FirstDayOfWeek Sets the day of the week shown in the leftmost column of each month.

Figure G - 5 uses the default value Sunday.

bapp07.indd 984bapp07.indd 984 12/31/09 6:05:30 PM12/31/09 6:05:30 PM

PROPERTY PURPOSE

MaxDate The last date the user is allowed to select.

MaxSelectionCount The maximum number of days the user can select.

MinDate The fi rst date the user is allowed to select.

MonthlyBoldedDates An array that specifi es dates that should be bolded every month. For

example, you can bold the 13th of every month displayed.

SelectionEnd A DateTime object representing the control ’ s last selected date.

SelectionRange A SelectionRange object representing the control ’ s selected range of

dates.

SelectionStart A DateTime object representing the control ’ s fi rst selected date.

ShowToday Determines whether the control displays today ’ s date at the bottom.

ShowTodayCircle Determines whether the control circles today ’ s date (April 1, 2010 in

Figure G - 5). (Although on this system at least the date is “circled” with a

rectangle.)

ShowWeekNumbers Determines whether the control displays the number of each week in the

year to the left of each week.

SingleMonthSize Returns the minimum size needed to display a single month.

TodayDate Determines the date displayed as today ’ s date (April 1, 2010 in

Figure G - 5).

TodayDateSet Boolean that indicates whether the control ’ s TodayDate property has

been explicitly set.

FIGURE G-5: Program UseMonthCalendarInDialog displays several months at a time.

MonthCalendar ❘ 985

bapp07.indd 985bapp07.indd 985 12/31/09 6:05:30 PM12/31/09 6:05:30 PM

986 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

DIFFICULT DATES

The TodayDate property has an annoying side effect. If you set this value at design
time and then set it back to the current day ’ s date, the control ’ s TodayDateSet
property still returns True, indicating that you have set the TodayDate property. To
clear TodayDate so that TodayDateSet returns False, right - click the name (not the
value) of the TodayDate property in the Properties window and select Reset.

The MonthCalendar control provides several handy methods. The following table describes the
most useful.

METHOD PURPOSE

AddAnnuallyBoldedDate Adds a date to the control ’ s array of annually bolded dates.

You must call UpdateBoldedDates after using this method.

AddBoldedDate Adds a date to the control ’ s array of bolded dates. You must

call UpdateBoldedDates after using this method.

AddMonthlyBoldedDate Adds a date to the control ’ s array of monthly bolded dates.

You must call UpdateBoldedDates after using this method.

GetDisplayRange Returns a SelectionRange object that indicates the range

of dates currently displayed by the control. If this method ’ s

visible parameter is True, the SelectionRange includes only

dates that are included in the months that are completely

visible (1/1/2010 to 6/30/2010 in Figure G - 5). If this parameter

is False, the SelectionRange includes all of the displayed

dates even if they are in the partially displayed months.

RemoveAllAnnuallyBoldedDates Empties the control ’ s array of annually bolded dates. You

must call UpdateBoldedDates after using this method.

RemoveAllBoldedDates Empties the control ’ s array of bolded dates. You must call

UpdateBoldedDates after using this method.

RemoveAllMonthlyBoldedDates Empties the control ’ s array of monthly bolded dates. You

must call UpdateBoldedDates after using this method.

RemoveAnnuallyBoldedDate Removes a specifi c annually bolded date. You must call

UpdateBoldedDates after using this method.

RemoveBoldedDate Removes a specifi c bolded date. You must call

UpdateBoldedDates after using this method.

RemoveMonthlyBoldedDate Removes a specifi c monthly bolded date. You must call

UpdateBoldedDates after using this method.

SetCalendarDimensions Sets the control ’ s CalendarDimensions property.

bapp07.indd 986bapp07.indd 986 12/31/09 6:05:31 PM12/31/09 6:05:31 PM

METHOD PURPOSE

SetDate Selects the specifi ed date.

SetSelectionRange Selects the range defi ned by two dates.

UpdateBoldedDates Makes the control update itself to show changes to its

bolded dates.

The control ’ s bolded dates, monthly bolded dates, and annually bolded dates are all tracked
separately and the control displays any date that is listed in any of those groups as bold. That
means, for instance, that the RemoveAllBoldedDates subroutine does not change the monthly
bolded dates or annually bolded dates.

For example, the following code sets April 1 as an annually bolded date and January 13 as a monthly
bolded date. It then removes all of the nonspecifi c bolded dates and calls UpdateBoldedDates. The
result is that April 1 in every year is bold and that the 13th of every month is bold.

calStartDate.AddAnnuallyBoldedDate(#4/1/2010#)
calStartDate.AddMonthlyBoldedDate(#1/13/2010#)
calStartDate.RemoveAllBoldedDates()
calStartDate.UpdateBoldedDates()

Example program UseMonthCalendar uses a MonthCalendar control to display a single month at
a time and lets the user select a date range. Example program UseMonthCalendarInDialog also
lets the user select a range of dates, but it displays six months at a time. Both of these programs are
available for download on the book ’ s web site.

NOTIFYICON

The NotifyIcon component is invisible at runtime. A program can use the NotifyIcon to display
an icon in the system tray. The system tray (also called the status area) is the little area holding
small icons in the lower - right part of the taskbar. The program can use this icon to indicate the
application ’ s state.

Figure G - 6 shows part of the desktop while the UseNotifyIcon
example program is running. The program ’ s NotifyIcon is
displaying a happy face icon in the system tray on the lower right.
When you click the program ’ s Happy or Sad radio buttons, the
NotifyIcon component displays the corresponding icon.

Figure G - 6 also shows the program and the program ’ s icon in
the taskbar. These (and the Task Manager, too, although it isn ’ t
shown in Figure G - 6) also display happy and sad icons. The
pictures used for these come from the form ’ s Icon property, not

NotifyIcon ❘ 987

FIGURE G-6: The NotifyIcon

component displays an icon in

the system tray.

bapp07.indd 987bapp07.indd 987 12/31/09 6:05:32 PM12/31/09 6:05:32 PM

988 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

from the NotifyIcon component, so you can display different images for these and the one in the
system tray, if you like. Download the UseNotifyIcon example program from the book ’ s web site to
see how it sets the icons.

Notifi cation icons are particularly useful for programs that have no user interface or that run in the
background. For example, a program that monitors the system ’ s load could use its system tray icon
to give the user an idea of the current load.

These sorts of programs, particularly those without normal user interfaces, often add a context
menu to their tray icons so that the user can interact with them. This menu might include commands
to minimize or restore the application if it has a user interface, or to close the application.

The NotifyIcon component only has a few interesting properties. Its Icon property determines the
icon that the component displays. Its Text property sets the tooltip text that the component displays
when the user hovers the mouse over the icon. The Visible property determines whether the icon is
visible. Finally, the component ’ s ContextMenuStrip property sets the ContextMenuStrip control
that displays when the user right - clicks the icon.

NUMERICUPDOWN

The NumericUpDown control displays a number with up and down arrows that you can use
to change the number. If you click an arrow and hold it down, the number changes repeatedly.
After a small delay, the changes start happening faster, so you can make some fairly large changes
in a reasonable amount of time. You can also change the number by clicking it and typing in a
new value.

The following table lists the control ’ s most interesting properties.

PROPERTY PURPOSE

DecimalPlaces Determines the number of decimal places that the control displays.

This has no eff ect when Hexadecimal is True.

Hexadecimal Determines whether the control displays the number using a

hexadecimal format as in A1C when the control ’ s value is 2588

(decimal).

Increment Determines the amount by which the values are modifi ed when the

user clicks an arrow.

InterceptArrowKeys If this is True, the user can also adjust the number ’ s value using the up

and down arrow keys.

bapp07.indd 988bapp07.indd 988 12/31/09 6:05:33 PM12/31/09 6:05:33 PM

PROPERTY PURPOSE

Maximum Determines the largest value that the control allows.

Minimum Determines the smallest value that the control allows.

ReadOnly Determines whether the user can type in a new value. Note that

the arrow keys and arrow buttons still work when ReadOnly is True.

You can disable them by setting InterceptArrowKeys to False and

Increment to 0.

TextAlign Determines whether the number is aligned on the left, right, or center

of the control.

ThousandsSeparator If this is True, the control displays thousands separators when the

value is greater than 999. This has no eff ect when Hexadecimal

is True.

UpDownAlign Determines whether the up and down arrows are positioned on the

left or right.

Value The control ’ s numeric value.

The control ’ s more important event, ValueChanged, fi res whenever the control ’ s numeric value
changes, whether because the user changed it or because the program ’ s code changed it.

The Click event handler is not as useful for deciding when the control ’ s value has changed. It
executes when the user changes the value by clicking an arrow button, but it does not execute if
the user types a new value into the fi eld or uses the arrow keys. It also fi res if the user clicks the
control ’ s number but doesn ’ t make any changes.

OPENFILEDIALOG

The OpenFileDialog component displays a standard dialog box that lets the user select a fi le to
open. A program calls the component ’ s ShowDialog method to display a fi le selection dialog.
ShowDialog returns DialogResult.OK if the user selects a fi le and clicks OK, and it returns
DialogResult.Cancel if the user cancels.

This component provides many properties for determining the kinds of fi les the user can select.
The following table describes the most useful of these.

OpenFileDialog ❘ 989

bapp07.indd 989bapp07.indd 989 12/31/09 6:05:34 PM12/31/09 6:05:34 PM

990 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

AddExtension If True, the component adds the default extension specifi ed in the

DefaultExt property to the fi le name if the user does not include an

extension.

CheckFileExists If True, the component verifi es that the fi le exists. If the user types

in the name of a nonexistent fi le, the component warns the user and

refuses to close.

CheckPathExists If True, the component verifi es that the fi le ’ s directory path

exists. If the user types in a fi le and path and the path doesn ’ t exist,

the component warns the user and refuses to close.

DefaultExt The default extension that the component adds to the fi le ’ s name if

the user omits the extension. This property should have a value

such as txt.

DereferenceLinks If this is True and the user selects a shortcut fi le (.lnk), the component

returns the name of the fi le referenced by the shortcut rather than the

link fi le.

FileName Sets the fi rst fi le selected when the dialog is initially displayed. When

the user closes the dialog box, this property returns the name of the

fi le selected. The dialog box retains this value so the next time it is

displayed it begins with this fi le selected.

FileNames Gets an array of all of the fi les selected (if the dialog box allows

multiple selections).

Filter A string giving the fi lter that the dialog box should use. This

string holds pairs of display names (such as Bitmaps) and their

corresponding fi lter expressions (such as * .bmp) separated by vertical

bar characters (|). Separate multiple expressions within a fi lter entry

with semicolons. For example, the following value lets the user search

for GIF fi les, JPG fi les, both GIFs and JPGs, or all fi les:

GIFs| * .gif|JPGs| * .jpg; * .jpeg|Both| * .gif; * .jpg;

* .jpeg|All Files| * . *

FilterIndex Gives the index of the fi lter entry that the dialog box initially displays.

The indexes start with 1.

InitialDirectory Determines the path where the dialog box starts when it is displayed.

If you later redisplay the same dialog box, it will start at the path

determined by its FileName property, so it continues where it last

left off . If you want to change InitialDirectory to start in some other

directory, you also need to set FileName � “ ” .

MultiSelect Determines whether the user can select multiple fi les.

bapp07.indd 990bapp07.indd 990 12/31/09 6:05:35 PM12/31/09 6:05:35 PM

PROPERTY PURPOSE

ReadOnlyChecked Determines whether the dialog box ’ s Open as read - only check box is

initially selected. This has no eff ect unless ShowReadOnly is True. The

dialog box retains this value so that the next time it is displayed it has

the value that the user selected. If you want the box checked every

time the dialog box appears, you must set ReadOnlyChecked to True

before you display the dialog each time.

RestoreDirectory If this value is True, the dialog box restores its initial directory after

the user closes it, if the user has navigated to some other directory.

However, if you later redisplay the same dialog box, it will start at the

path determined by its FileName property, so it continues where it last

left off . That means if you want to restore the initial directory, you must

also set FileName = “ ” before redisplaying the dialog.

ShowHelp Determines whether the dialog box displays a Help button. If

you set this to True, the application should catch the dialog box ’ s

HelpRequest event and give the user some help.

ShowReadOnly Determines whether the dialog box displays an Open as read - only

check box.

Title Determines the dialog ’ s title text.

The OpenFileDialog component raises its FileOk event when the user tries to accept a fi le. You can
use an event handler to catch the event and perform extra validation. Set the event ’ s e.Cancel value
to True to stop the dialog box from accepting the selection.

The following code allows the dlgBitmapFile dialog box to accept only bitmap fi les. The code loops
through the dialog box ’ s selected fi les. If it fi nds one with a name that doesn ’ t end in .bmp, the
program displays an error message, sets e.Cancel to True, and exits the function.

’ Ensure that the user only selects bitmap files.
Private Sub dlgBitmapFile_FileOk() Handles dlgBitmapFile.FileOk
 For Each file_name As String In dlgBitmapFile.FileNames
 ‘ See if this file name ends with .bmp.
 If Not file_name.EndsWith(".bmp") Then
 MessageBox.Show("File "" & file_name & "" is not a bitmap file",
 "Invalid File Type",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation)
 e.Cancel � True
 Exit Sub
 End If
 Next file_name
End Sub

OpenFileDialog ❘ 991

bapp07.indd 991bapp07.indd 991 12/31/09 6:05:35 PM12/31/09 6:05:35 PM

992 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PAGESETUPDIALOG

The PageSetupDialog component displays a dialog box that lets the user specify properties for
printed pages. For example, the user can specify the printer ’ s paper tray, page size, margins, and
orientation (portrait or landscape).

Before you can display the dialog box, you must assign it a PageSetting object to modify. You can
do this in two ways. First, you can set the component ’ s Document property to a PrintDocument
object. If the user clicks OK, the dialog box modifi es the PrintDocument ’ s settings. This method is
preferred because a PrintDocument object defi nes both page settings and printer settings.

Second, you can set the dialog box ’ s PageSettings property to a PageSettings object. If the user clicks
OK, the dialog modifi es that object ’ s settings.

Your program calls the component ’ s ShowDialog method to display the dialog. ShowDialog returns
DialogResult.OK if the user clicks OK and it returns DialogResult.Cancel if the user cancels. Often,
the program doesn ’ t need to know whether the user accepted or canceled the dialog box, however,
because the dialog box modifi es a PageSettings object automatically if the user clicks OK. The
program can use that object when printing later, so it doesn ’ t need to keep track of whether the user
accepted or canceled the dialog box.

The following code displays a PageSetupDialog attached to a PrintDocument object:

PageSetupDialog1.Document � New PrintDocument
PageSetupDialog1.ShowDialog()

The following table describes the PageSetupDialog component ’ s most useful properties.

PROPERTY PURPOSE

AllowMargins Determines whether the dialog box lets the user modify its margin

settings.

AllowOrientation Determines whether the dialog box lets the user modify its

orientation settings.

AllowPaper Determines whether the dialog box lets the user modify its paper

settings.

AllowPrinter Determines whether the dialog box lets the user modify its printer

settings.

Document The PrinterDocument object that the dialog box will modify.

MinMargins Gives the smallest allowed margin values. MinMargins is a reference

to a Margins object that has Left, Right, Top, and Bottom properties

that you can use to specify each margin separately.

PageSettings The PageSettings object that the dialog box will modify.

bapp07.indd 992bapp07.indd 992 12/31/09 6:05:36 PM12/31/09 6:05:36 PM

PROPERTY PURPOSE

PrinterSettings The PrinterSettings object that the dialog box will modify when the

user clicks the Printer button. If you set the Document property, the

PrinterDocument object includes a PrinterSettings object.

ShowHelp Determines whether the dialog box displays a Help button. If

you set this to True, the application should catch the dialog box ’ s

HelpRequest event and give the user some help.

ShowNetwork Determines whether the dialog box displays a Network button on the

Printer setup dialog box when the user clicks the Printer button.

PANEL

The Panel control is a container of other controls. By setting the Anchor and Dock properties of the
contained controls, you can make those controls arrange themselves when the Panel is resized.

You can use a Panel to make it easy to manipulate the controls it contains as a group. If you move
the Panel, the controls it contains move also. If you set the Panel control ’ s Visible property to
False, the controls it contains are hidden. If you set the Panel control ’ s Enabled property to False,
the controls it contains are also disabled.

Similarly, you can set the Panel control ’ s other style properties such as BackColor, ForeColor, and
Font and any controls contained in the Panel inherit these values (although a few controls insist
on keeping their own values for some properties, such as the TextBox control ’ s ForeColor and
BackColor properties).

A Panel also defi nes a separate group for radio buttons. If you have two Panel controls, each
containing several radio buttons, then the two groups of buttons work independently, so clicking a
button in one Panel doesn ’ t deselect the buttons in the other Panel.

The most advanced feature of the Panel control is its auto - scroll capability. If you set the AutoScroll
property to True, the control automatically provides working scroll bars if the controls that it
contains don ’ t fi t. The AutoScrollMargin property lets you defi ne extra space that the control
should add around its contents when it is auto - scrolling.

Use the AutoScrollMinSize property to ensure that the control ’ s scrolling area is at least a certain
minimum size. For example, suppose that the Panel contains controls with coordinates between 0
and 100 in both the X and Y directions. Normally, the control would let you scroll over the area
0 < = X < = 100, 0 < = Y <= 100 so that you can see all of the controls. If you set AutoScrollMinSize
to 200, 50, the control would let you scroll over the area 0 < = X <= 200, 0 < = Y < = 100 so that you
can see the controls plus the area defi ned by AutoScrollMinSize.

The AutoScrollPosition property lets your program get or set the scroll bars ’ position at runtime.
For example, the following code makes the panMap control scroll to make the upper - left corner of
its contents visible:

panMap.AutoScrollPosition � New Point(0, 0)

Panel ❘ 993

bapp07.indd 993bapp07.indd 993 12/31/09 6:05:37 PM12/31/09 6:05:37 PM

994 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

If you set AutoScrollPosition to a point that is outside of the Panel ’ s display area, the control adjusts
the point so that it lies within the area.

Although a program often uses a Panel control as an invisible container for other controls, you can
use its BackColor and BorderStyle properties to make it visible if you like.

PERFORMANCECOUNTER

The PerformanceCounter component represents a Windows NT - style performance counter. You
can use the component ’ s methods to read, increment, and decrement the counters. This is a fairly
advanced and specialized topic, so it is not covered in detail here. See the online help at msdn
.microsoft.com/system.diagnostics.performancecounter.aspx for more information.

PERFORMANCE PROBLEMS

If you ’ re interested in performance counters, you may also fi nd the second part of
the article “ Detecting DDOS and Other Security Problems ” at www.informit.com/
articles/article.asp?p=169493 & seqNum=2 & rl=1 useful. This part explains
how to create a custom performance counter.

PICTUREBOX

The PictureBox control displays images. It also provides a Graphics object that you can use to draw
lines, rectangles, ellipses, and other shapes at runtime.

The control ’ s Image property determines the picture that the control displays. Its SizeMode property
determines how the image is sized to fi t into the control. The following table describes the allowed
SizeMode values.

VALUE MEANING

Normal The image is not resized. If it sticks off the edge of the PictureBox, the

image is clipped.

StretchImage The image is stretched to fi ll the control. This may change the image ’ s

shape, making it shorter and wider or taller and thinner than it should be.

AutoSize The PictureBox adjusts its size to fi t the image. If the control is

displaying borders, it allows extra room for them.

CenterImage The image is centered in the PictureBox at its normal size. If it sticks off

the edge of the PictureBox, the image is clipped.

bapp07.indd 994bapp07.indd 994 12/31/09 6:05:37 PM12/31/09 6:05:37 PM

If you set the control ’ s BackgroundImage property to a picture, the control tiles itself completely
with copies of the picture. If you also set the Image property, the background shows behind the
image. If you have SizeMode set to StretchImage or AutoSize, the image fi lls the entire control, so
you will not see the background image.

The PictureBox control has several properties that deal with its size internally and externally.
Its Size, Width, and Height properties give information about the size of the control, including
its border if it has one. The ClientRectangle, ClientSize, and DisplayRectangle properties give
information about the area inside the control, not including its border. You should use these
properties when you draw on the control.

The PictureBox control ’ s CreateGraphics method returns a Graphics object that represents the
control ’ s client area. Your code can use that object ’ s methods to draw on the control.

Although you can draw on the object returned by the control ’ s CreateGraphics method, that does
not ensure that the drawing will remain. If you hide the PictureBox with another form and then
bring it back to the top, the drawing is gone. There are two main approaches to keeping a drawing
visible on a PictureBox.

First, you can place the drawing commands in the PictureBox control ’ s Paint event handler. The
Paint event occurs any time part of the control needs to be refreshed. That happens if the control is
covered and then uncovered, when its form is minimized and then restored, and when the control is
enlarged so that a new part of its display area is exposed.

The second approach is to make a Bitmap that fi ts the PictureBox, draw on the Bitmap, and then
set the control ’ s Image property equal to the Bitmap. After that, the control automatically displays
its image.

This method takes more memory than the previous method of drawing in the control ’ s Paint event
handler. If the drawing is very complicated and takes a long time, however, it may be faster to
generate the Bitmap once rather than redrawing the picture every time the control raises its
Paint event.

The fi nal PictureBox feature that is relevant to drawing is its Invalidate method. This method
invalidates some or all of the control ’ s display area and generates a Paint event. You can use
this method to redraw the control if you have changed some data that will affect the drawing ’ s
appearance.

PRINTDIALOG

The PrintDialog component displays a dialog box that lets the user prepare to print. The dialog
lets the user select a printer, modify printer properties, select the pages to print, and determine the
number of copies to print. A program calls the component ’ s ShowDialog method to display
the dialog.

The following table describes the PrintDialog ’ s most useful properties.

PrintDialog ❘ 995

bapp07.indd 995bapp07.indd 995 12/31/09 6:05:38 PM12/31/09 6:05:38 PM

996 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

AllowPrintToFile Determines whether the Print to fi le button is enabled.

AllowSelection Determines whether the Selection radio button is enabled.

AllowSomePages Determines whether the Pages radio button, as well as the

From and To text boxes, are enabled.

Document The PrintDocument object that provides the dialog with

a PrinterSettings object.

PrinterSettings The PrinterSettings object that the dialog modifi es.

PrintToFile Determines whether the Print to fi le box is checked.

ShowHelp Determines whether the Help button is visible. If this is True, you

should catch the component ’ s HelpRequest event and give the

user some help.

ShowNetwork Determines whether the Network button is visible.

If the user clicks Print, the dialog returns DialogResult.OK. If the user clicks Cancel, the dialog
box returns DialogResult.Cancel. The program can use the dialog box ’ s PrintToFile property to see
if the user checked the Print to fi le box, and it can use the PrinterSettings object to learn about the
user ’ s other selections.

The following table lists the PrinterSettings object ’ s properties that are most useful for learning
about the user ’ s selections. You can set many of these properties before displaying the dialog box to
give it initial values. After the dialog box closes, the properties indicate the user ’ s selections.

PROPERTY PURPOSE

CanDuplex Indicates whether the printer can print in duplex.

Collate Indicates whether the user checked the Collate box.

Copies The number of copies the user selected.

Duplex Indicates whether the user asked for duplex printing.

FromPage The number the user entered in the From text box.

InstalledPrinters Returns a collection listing the system ’ s installed printers.

IsDefaultPrinter True if the printer given by the PrinterName property is the default

printer.

IsPlotter True if the printer is a plotter device.

IsValid True if the printer given by the PrinterName property is a valid printer.

bapp07.indd 996bapp07.indd 996 12/31/09 6:05:39 PM12/31/09 6:05:39 PM

PROPERTY PURPOSE

LandscapeAngle The angle at which the printout is rotated to produce landscape

printing. The valid angles are 90 and 270 degrees, or 0 if the printer

doesn ’ t support landscape printing.

MaximumCopies The maximum number of copies that the printer will let you print

at a time.

MaximumPage The largest value that the user is allowed to enter in the To and

From boxes.

MinimumPage The smallest value that the user is allowed to enter in the To and

From boxes.

PaperSizes Returns a collection of objects describing the paper sizes supported

by the printer. These PaperSize objects have the properties Height,

Width, PaperName, and Kind (for example, Letter).

PaperSources Returns a collection of objects describing the paper trays provided

by the printer. These PaperSource objects have the properties

SourceName (for example, Default tray) and Kind (for example, Upper).

PrinterName Gets or sets the name of the printer to use.

PrinterResolutions Returns a collection of PrinterResolution objects that describe the

resolutions supported by the printer. PrinterResolution objects have

the properties Kind (High, Medium, Low, Draft, or Custom), X, and Y.

The X and Y properties return negative values for standard resolutions

and the number of dots per inch (dpi) for custom resolutions.

PrintRange Indicates the pages that the user wants to print. This can have

the value AllPages (print everything), Selection (print the current

selection), or SomePages (print the pages between FromPage

and ToPage).

PrintToFile Indicates whether the Print to fi le check box is selected.

SupportsColor True if the printer supports color.

ToPage The number the user entered in the To text box.

The FromPage and ToPage properties must lie between the MinimumPage and MaximumPage
values before you display the dialog box or the dialog box throws an error. If the user enters a value
outside of the range MinimumPage to MaximumPage and clicks Print, the dialog box displays a
message similar to “This value is not within the page range. Enter a number between 10 and 30.”
It then refuses to close.

Usually a program associates a PrintDialog with a PrintDocument object and that object provides
the PrinterSettings object. You can either create the PrintDialog object at runtime, or you can use

PrintDialog ❘ 997

bapp07.indd 997bapp07.indd 997 12/31/09 6:05:40 PM12/31/09 6:05:40 PM

998 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

the PrintDocument component described in the following section at design time. If you create a
PrintDocument component at design time, you can also set the PrintDialog ’ s Document property to
that component at design time.

Example program UsePrintDialog uses the following code to print a document. In this example, the
pdlgRectangle and pdlgRectangle components were created and pdlgRectangle.Document was set
to pdlgRectangle at design time. When the user clicks the Print button, the program displays the
PrintDialog. If the user clicks the dialog box ’ s Print button, the code calls the PrintDocument object ’ s
Print method. When the PrintDocument object needs to generate a page for printing, it raises its
PrintPage event. In this example, the event handler draws a rectangle and indicates that the document
has no more pages to draw.

Imports System.Drawing.Printing

Public Class Form1
 ‘ Display the print dialog.
 Private Sub btnPrint_Click() Handles btnPrint.Click
 If pdlgRectangle.ShowDialog() = Windows.Forms.DialogResult.OK Then
 ‘ Print the document.
 pdocRectangle.Print()
 End If
 End Sub

 ‘ Print a page of the document.
 Private Sub PrintDocument1_PrintPage(ByVal sender As Object,
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles pdocRectangle.PrintPage
 e.Graphics.DrawRectangle(Pens.Black, 100, 100, 600, 300)
 e.HasMorePages = False
 End Sub
End Class

code snippet UsePrintDialog

For more information on the PrintDocument object, see the following section.

PRINTDOCUMENT

The PrintDocument component represents an object that will be printed. Your program can use this
object to send output to a printer.

The general procedure for printing using this object is to create the object, set its properties to
determine how the printout is generated (the printer ’ s name, paper tray, and so forth), and then call
the object ’ s Print method.

When the object needs to generate a page of output, it raises its PrintPage event. Your code catches
that event, draws the page, and then sets the event handler ’ s e.HasMorePages value to indicate
whether that was the last page of output. See the previous section, “PrintDialog,” for a small example.

The PrintDocument object provides only a few important properties itself. You set most of the
values that describe the printing operation using the PrinterSettings object referenced by the

bapp07.indd 998bapp07.indd 998 12/31/09 6:05:40 PM12/31/09 6:05:40 PM

component ’ s PrinterSettings property. See the previous section, “PrintDialog,” for information on
the PrinterSettings object.

In addition to its PrinterSettings property, the PrintDocument object provides a DocumentName
property that determines the name displayed for the document in printing - related dialog boxes such
as the printer queue display.

This component also provides an OriginAtMargins property that determines whether each page ’ s
graphical origin begins at the page ’ s margins. Setting OriginAtMargins to True makes it easier to
draw relative to the left and top margins, rather than the upper - left corner of the physical page.

PRINTPREVIEWCONTROL

The PrintPreviewControl control (and yes, the word Control is part of the control ’ s name, possibly
to differentiate it from the PrintPreviewDialog control) displays a print preview within one of your
forms. Usually, it is easier to use the PrintPreviewDialog control described in the next section to
display a print preview dialog box, but you can use this control to display a preview integrated into
some other part of your application.

Example program UsePrintPreviewControl uses the following code to display three printed pages
inside a PrintPreviewControl. The module - level variable m_PageNum indicates the next page
that the pdocShapes PrintDocument component should draw. When it needs to generate a page,
pdocShapes raises its PrintPage event. The event handler uses a Select Case statement to see which
page it should generate and it draws an appropriate shape. It sets e.HasMorePages appropriately and
increments the page number.

Public Class Form1
 ‘ The number of the current page.
 Private m_PageNum As Integer � 1

 ‘ Generate the print document.
 Private Sub pdocShapes_PrintPage(ByVal sender As System.Object,
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles pdocShapes.PrintPage
 Select Case m_PageNum
 Case 1 ‘ Page 1. Draw a triangle.
 Dim pts() As Point � {
 New Point(e.MarginBounds.X � e.MarginBounds.Width \ 2,
 e.MarginBounds.Y),
 New Point(e.MarginBounds.X � e.MarginBounds.Width,
 e.MarginBounds.Y � e.MarginBounds.Height),
 New Point(e.MarginBounds.X,
 e.MarginBounds.Y � e.MarginBounds.Height)
 }
 e.Graphics.DrawPolygon(Pens.Red, pts)
 e.HasMorePages � True
 m_PageNum � = 1
 Case 2 ‘ Page 2. Draw a rectangle.
 e.Graphics.DrawRectangle(Pens.Green, e.MarginBounds())
 e.HasMorePages � True
 m_PageNum � = 1

PrintPreviewControl ❘ 999

bapp07.indd 999bapp07.indd 999 12/31/09 6:05:41 PM12/31/09 6:05:41 PM

1000 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

 Case 3 ‘ Page 3. Draw an ellipse.
 e.Graphics.DrawEllipse(Pens.Blue, e.MarginBounds())
 e.HasMorePages � False
 m_PageNum � 1
 End Select
 End Sub
End Class

code snippet UsePrintPreviewControl

That ’ s all the code that the program needs. When the program starts, the PrintPreviewControl
control uses pdocShapes to generate the pages it needs and it displays them.

The following table describes some of the PrintPreviewControl control ’ s most useful properties.

PROPERTY PURPOSE

AutoZoom Determines whether the control automatically adjusts its Zoom property to make

the display fi ll the control.

Columns The number of columns of pages that the control displays. In Figure G - 7, Columns � 3.

Document The PrintDocument object that the control previews.

Rows The number of rows of pages that the control displays. In Figure G - 7, Rows � 1.

StartPage The page number (starting with 0) displayed in the control ’ s fi rst page. Your code

can use this property to change the pages displayed.

UseAntiAlias Determines whether the control uses the system ’ s anti - aliasing features to

smooth the preview image. Setting this to True may make the image smoother,

but it may also slow down the display.

Zoom Determines the size of the pages within the control. The value 1.0 is full size, 0.5 is

half - size, 2.0 is double size,

and so forth. It ’ s usually

easier to just set AutoZoom

to True and let the control

make the pages as large as

possible. If you set the

scale so large that

the page(s) won ’ t fi t, the

control adds scroll bars

so the user can see

the results.

FIGURE G-7: The PrintPreviewDialog component lets you

easily display a full-featured print preview dialog box.

bapp07.indd 1000bapp07.indd 1000 12/31/09 6:05:42 PM12/31/09 6:05:42 PM

The control ’ s InvalidatePreview method makes the control regenerate the print preview.

See the following section for information about the PrintPreviewDialog control. You can use that
control to display a print preview without needing to build your own dialog.

PRINTPREVIEWDIALOG

The PrintPreviewDialog component displays a dialog box that shows what a print document will
look like when it is printed. You can use this component to display a print preview dialog similar to
the one shown in Figure G - 7. This dialog box contains a PrintPreviewControl, plus some extra tools
to let the user control the preview.

The tools that run from left to right across the top of the dialog box automatically give the user the
following features:

A Print button that prints the document

A Zoom menu that lets the user zoom to scales between 10% and 500%, or to select
Auto zoom

Buttons that make the dialog box display one, two, three, four, or six pages at a time

A button that closes the dialog box

A text box and numeric up/down control that let the user select the number of the page
to display

The dialog box ’ s most important property is Document. This property determines the
PrintDocument object that the dialog box previews. See the section “PrintDocument” earlier in this
appendix for more information about this class.

The component ’ s most important methods are Show, which displays the dialog box, and
ShowDialog, which displays the dialog box modally.

Using this component is remarkably simple. Set its Document property and catch the
PrintDocument object ’ s PrintPage event as shown in the previous section. Then display the dialog
box as in the following code:

dlgPrintPreview.ShowDialog()

The rest is automatic. The dialog box lets the user move through the document ’ s pages, zoom in and
out, and even print the document.

PROCESS

The Process component provides access to the processes running on the computer. You can use
this object to start, stop, and monitor processes. You can use the object to get information about a
running process such as its threads, the modules it has loaded, and the amount of memory
it is using.

➤

➤

➤

➤

➤

PrintPreviewDialog ❘ 1001

bapp07.indd 1001bapp07.indd 1001 12/31/09 6:05:42 PM12/31/09 6:05:42 PM

1002 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The UseProcess example program, which is available for download on the book ’ s web site, uses the
following code to start an executable program. It creates a new Process object and sets values in its
StartInfo property to defi ne the application to run. This example sets the executable fi le name to the
string contained in the txtFileName text box and sets the component ’ s Verb to Open (“ opening” an
executable fi le makes it run). The program then calls the object ’ s Start method.

’ Start the process.
Private Sub btnRun_Click() Handles btnRun.Click
 Dim new_process As New Process
 new_process.StartInfo.FileName � txtFileName.Text
 new_process.StartInfo.Verb � “ Open ”
 new_process.Start()
End Sub

code snippet UseProcess

The Process object ’ s StartInfo property contains several values that tell the object how to start the
new process. These values indicate whether the new process should be created without a window;
what environment variables it should use; whether the new process ’ s standard input, output, and
error streams should be redirected; and the new process ’ s working directory.

The Process object itself provides only a few properties at design time. Other than the StartInfo
property, the most useful of these is EnableRaisingEvents. If this property is True, the component
monitors the new process and raises an Exited event when the process ends.

At runtime, the Process object provides read - only StandardInput, StandardOutput, and
StandardError properties that the program can use to interact with the new process. It also provides
methods for reading and writing with these streams, and properties for monitoring the process.
For example, it lets you learn about the process ’ s working set size, paged memory size, and total
processor time.

This is a fairly advanced and specialized topic, so it is not covered in greater detail here. For
more information, see the Process component ’ s web page at msdn.microsoft.com/system
.diagnostics.process.aspx .

PROGRESSBAR

The ProgressBar control lets a program display a visible indication of its progress during a long
task. As the task proceeds, the ProgressBar fi lls in from the left to the right. Ideally, the ProgressBar
is completely full just as the task fi nishes.

The control ’ s Minimum and Maximum properties determine the integers over which the
ProgressBar control ’ s values will range. When the control ’ s Value property equals its Minimum
property, the control is completely blank. When its Value property equals its Maximum property,
the control is completely fi lled.

bapp07.indd 1002bapp07.indd 1002 12/31/09 6:05:43 PM12/31/09 6:05:43 PM

By default, Minimum and Maximum are set to 0 and 100, respectively, so the Value property
indicates the percentage of the task that is complete. However, you can set Minimum and
Maximum to any values that make sense for the application. For example, if a program must back
up some data by copying 173 fi les from one directory to another, you could set these properties to 0
and 173. As it copies each fi le, the program would set the ProgressBar control ’ s Value property
to the number of fi les it has copied.

Instead of setting the control ’ s Value property to indicate the task ’ s status, you can set the Step
property to indicate how much the control should update at each step. Then you can call the
ProgressBar control ’ s PerformStep method to increment the Value by that amount.

Note that the Minimum, Maximum, Value, and Step properties are all integers. If the value you
want to display has some other data type (such as Double or TimeSpan), you must convert the
values into integers before you use them with the ProgressBar.

PROPERTYGRID

The PropertyGrid control displays information about an object in a format similar to the one
used by the Properties window at design time. The control lets the user organize the properties
alphabetically or by category, and lets the user edit the property values. Figure G - 8 shows a
PropertyGrid displaying information about an Employee object.

The control ’ s two most important properties are
SelectedObject and SelectedObjects, which get or
set the object(s) associated with the PropertyGrid.

The PropertyGrid control displays only object
properties, not public variables. It also displays
only properties that are browsable. If you give
a property the Browsable(False) attribute, the
PropertyGrid will not display it.

For more information, refer to the PropertyGrid
class ’ s web page at msdn.microsoft.com/
system.windows.forms.propertygrid.aspx .

RADIOBUTTON

A RadioButton control represents one of an exclusive set of options. For example, suppose that you
want to let the user select between the choices Small, Medium, and Large. You could add three
RadioButtons to a form with those captions. When the user clicks one button, Visual Basic selects it
and deselects the others.

All the RadioButton controls within a particular container are part of the same RadioButton
group. If the user clicks a RadioButton, Visual Basic automatically deselects the others in
the same group.

FIGURE G-8: The PropertyGrid control displays an

object’s properties.

RadioButton ❘ 1003

bapp07.indd 1003bapp07.indd 1003 12/31/09 6:05:44 PM12/31/09 6:05:44 PM

1004 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

If you want to make more than one group on the same form, you must place the controls in separate
containers (such as GroupBox or Panel controls). For example, you could put the Small, Medium,
and Large buttons in one GroupBox and then put the Red, Green, and Blue buttons in another
GroupBox. Then, when the user selects a size button, the other size buttons are deselected, but the
color buttons are unaffected. When the user selects a color, the other colors are deselected, but
the size buttons are unaffected.

RadioButton groups provide special navigation for the user. If one of the buttons in the group
has the focus, the user can press the arrow keys to move forward and backward through
the group. If the user presses the Tab key, focus moves out of the group to the next control in the
tab sequence.

The following table describes the RadioButton control ’ s most useful properties.

PROPERTY PURPOSE

Appearance Determines whether the control displays with its default appearance of a

selection circle containing a black dot (Appearance � Normal) or a raised

button (Appearance � Button).

AutoCheck Determines whether the control automatically selects itself when the user

clicks it. If this is False, the code must check and uncheck the control and

any other controls in the RadioButton group. Usually it ’ s better to use a

CheckBox control instead if you don ’ t want the button to behave like a normal

RadioButton.

CheckAlign Determines whether the control ’ s selection circle is positioned in the bottom

center, top center, middle right, and so forth.

Checked Determines whether the control is selected.

Image Determines the image that the control displays.

ImageAlign Determines whether the control ’ s image is positioned in the bottom center,

top center, middle right, and so forth.

Text Determines the text that the control displays.

TextAlign Determines whether the control ’ s text is positioned in the bottom center, top

center, middle right, and so forth.

The RadioButton control ’ s most useful events are Click, which occurs when the user clicks the
control, and CheckedChanged, which occurs when the control is checked or unchecked either
because the user clicked a RadioButton in the group or because the code changed the
button ’ s state.

bapp07.indd 1004bapp07.indd 1004 12/31/09 6:05:44 PM12/31/09 6:05:44 PM

RICHTEXTBOX

The RichTextBox control is a text box that supports rich text extensions. Those extensions let the
control display text that is bold, underlined, italicized, indented, in different fonts, and has other
special visual properties.

The control can load and save its contents in plain - text fi les (in which case the formatting is lost) or
in Rich Text Format (RTF) fi les (which preserve formatting).

A program can use the RichTextBox control ’ s Select method to select some of its text. It can then
use one of the control ’ s properties to change the appearance of the selected text. For example, the
following code selects the 10 characters starting with character 50 (the fi rst character is number 0).
It then sets the selection ’ s color to red and makes its font bold.

rchNotes.Select(50, 10)
rchNotes.SelectionColor � Color.Red
rchNotes.SelectionFont � New Font(RichTextBox1.SelectionFont, FontStyle.Bold)

The following table lists the RichTextBox control ’ s most useful properties.

PROPERTY PURPOSE

AcceptsTab For multiline controls, determines whether pressing the Tab key

adds a Tab to the text, rather than moving to the next control in the

tab sequence.

AutoSize For single - line controls, determines whether the control

automatically sets its height for the fonts it contains.

BulletIndent Determines the number of pixels added after a bullet as

indentation. If you make the selection a bulleted paragraph and

then change this value, the paragraph ’ s indentation is adjusted

accordingly.

CanRedo Indicates whether the control has any redo information that it can

apply. See the discussion later in this section for an example.

CanUndo Indicates whether the control has any undo information that it can

apply. See the discussion later in this section for an example.

DetectUrls Determines whether the control automatically recognizes web

URLs when they are typed. If some text looks like a URL, the control

displays it in blue, underlines it, and displays a hyperlink cursor

(pointing hand) when the mouse hovers over the text. If the user

clicks a recognized link, the control raises its LinkClicked event.

Lines An array of strings giving the lines of text (separated by carriage

returns) that are displayed by the control. You can use this property

to give the control more than one paragraph at design time.

continues

RichTextBox ❘ 1005

bapp07.indd 1005bapp07.indd 1005 12/31/09 6:05:45 PM12/31/09 6:05:45 PM

1006 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

MaxLength The maximum number of characters the user can enter into

the control.

MultiLine Determines whether the control displays multiple lines.

PreferredHeight Returns the height a single - line control would want for

the font size.

ReadOnly Determines whether the user can modify the control ’ s text.

RedoActionName The name of the action that will be redone if the program calls the

control ’ s Redo method (for example, Typing or Delete). You can use

this property to show the user what the next redo action is.

RightMargin Determines the control ’ s right margin in pixels. The value 0 means

there is no right margin.

Rtf Determines the RTF codes for the control ’ s text. This includes the

text itself, font information, and paragraph information (such as

indentation, bulleting, and so forth).

ScrollBars Determines which scroll bars the control displays. The values

Horizontal, Vertical, and Both make the control display the

corresponding scroll bars only when they are needed. The values

ForcedHorizontal, ForcedVertical, and ForcedBoth make the control

display the corresponding scroll bars always. The value None

makes the control display no scroll bars. Note that some of these

values may not always be honored. For example, if WordWrap is

True or RightMargin is nonzero, the control never displays horizontal

scroll bars.

SelectedRtf Determines the selected text ’ s value and RTF formatting code.

SelectedText Determines the selected text ’ s value without RTF formatting

codes.

SelectionAlignment Determines the selected text ’ s alignment (Left, Center, or Right).

SelectionBullet Determines whether the selected text ’ s paragraph is bulleted.

SelectionCharOffset Determines the selected text ’ s character off set above or below the

baseline in pixels.

SelectionColor Determines the selected text ’ s color.

(continued)

bapp07.indd 1006bapp07.indd 1006 12/31/09 6:05:46 PM12/31/09 6:05:46 PM

PROPERTY PURPOSE

SelectionFont Determines the selected text ’ s font.

SelectionHangingIndent Determines the selected text ’ s hanging indent.

SelectionIndent Determines the number of pixels by which subsequent lines are

indented in the selected text ’ s paragraph.

SelectionLength Determines the length of the selected text. You can use

SelectionStart and SelectionLength to select text, or you can use

the Select method.

SelectionProtected Determines whether the selected text is protected so that the user

cannot modify it.

SelectionRightIndent Determines the number of pixels by which the selected text ’ s

paragraph is indented on the right.

SelectionStart Determines the start of the selection. You can use SelectionStart

and SelectionLength to select text, or you can use the Select

method.

SelectionTabs Determines the tabs for the selected text ’ s paragraph. For example,

the array {20, 40, 60} sets tabs 20, 40, and 60 pixels from the

left margin.

ShowSelectionMargin If True, the control adds a selection margin on the left. If the user

clicks inside this margin, the control selects the text to the right.

Text Determines the control ’ s text, not including any formatting

information. If you want to preserve formatting information, use the

SelectedRtf property.

TextLength Returns the length of the control ’ s text.

UndoActionName The name of the action that will be undone if the program calls the

control ’ s Undo method (for example, Typing or Delete). You can use

this property to show the user what the next undo action is.

WordWrap For multiline controls, determines whether the control wraps text to

a new line if it is too long to fi t.

RichTextBox ❘ 1007

bapp07.indd 1007bapp07.indd 1007 12/31/09 6:05:46 PM12/31/09 6:05:46 PM

1008 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The control also provides several important methods, as shown in the following table.

METHOD PURPOSE

AppendText Adds text to the end of the control ’ s text.

CanPaste Determines whether you can paste data of a specifi ed format

from the clipboard into the control.

Clear Clears the control ’ s text.

ClearUndo Empties the control ’ s undo list.

Copy Copies the control ’ s selection to the clipboard.

Cut Copies the control ’ s selection to the clipboard and removes it

from the control ’ s text.

Find Finds and selects text. Overloaded versions let you search

for one of a group of characters or a string, possibly with

options (MatchCase, NoHighlight, Reverse, or WholeWord), and

possibly within a range of characters.

GetCharFromPosition Finds the character closest to a specifi ed (X, Y) position.

GetCharIndexFromPosition Finds the index of the character closest to a specifi ed

(X, Y) position.

GetLineFromCharIndex Returns the number of the line containing the specifi ed

character index.

GetPositionFromCharIndex Returns the (X, Y) position of the character at a specifi ed index.

LoadFile Loads an RTF or text fi le or a stream into the control.

Paste Pastes the clipboard ’ s contents into the control, replacing the

current selection.

Redo Reapplies the last action that was undone.

SaveFile Saves the control ’ s text into an RTF or text fi le or stream.

ScrollToCaret Scrolls the text so the insertion position is visible.

Select Selects the indicated text.

SelectAll Selects all of the control ’ s text.

Undo Undoes the most recent action.

bapp07.indd 1008bapp07.indd 1008 12/31/09 6:05:47 PM12/31/09 6:05:47 PM

A program can use the CanUndo and CanRedo properties to determine when it should enable
Undo and Redo buttons and menu items. The following code shows how a program can
manage Undo and Redo buttons for the rchNotes control. When the control ’ s contents change, the
TextChanged event handler enables or disables the buttons, depending on which information the
control has. The buttons simply call the control ’ s Undo and Redo methods.

Private Sub rchNotes_TextChanged() Handles rchNotes.TextChanged
 btnUndo.Enabled � rchNotes.CanUndo
 btnRedo.Enabled � rchNotes.CanRedo
End Sub

Private Sub btnUndo_Click() Handles btnUndo.Click
 rchNotes.Undo()
End Sub

Private Sub btnRedo_Click() Handles btnRedo.Click
 rchNotes.Redo()
End Sub

code snippet UseRichTextBox

The following version of the TextChanged event handler adds the values returned by the
UndoActionName and RedoActionName methods to the buttons ’ captions. For example, after the
user deletes some text, the undo button ’ s caption says “Undo Delete. ”

Private Sub rchNotes_TextChanged() Handles rchNotes.TextChanged
 btnUndo.Enabled � rchNotes.CanUndo
 btnRedo.Enabled � rchNotes.CanRedo

 If btnUndo.Enabled Then
 btnUndo.Text � "Undo " & rchNotes.UndoActionName
 Else
 btnUndo.Text � "Undo"
 End If

 If btnRedo.Enabled Then
 If btnRedo.Enabled Then btnRedo.Text � "Redo " & rchNotes.RedoActionName
 Else
 If btnRedo.Enabled Then btnRedo.Text � "Redo ”
 End If
End Sub

code snippet UseRichTextBox

The RichTextBox control ’ s most useful event is TextChanged. You can use this event to take action
when the user changes the control ’ s text. For example, you can display a visible indication that the
data has been modifi ed or, as the previous examples show, you can enable and disable Undo and
Redo buttons.

SaveFileDialog ❘ 1009

bapp07.indd 1009bapp07.indd 1009 12/31/09 6:05:48 PM12/31/09 6:05:48 PM

1010 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

SAVEFILEDIALOG

The SaveFileDialog component displays a dialog box that lets the user select a fi le for saving. The
ShowDialog method returns DialogResult.OK if the user selects a fi le and clicks OK. It returns
DialogResult.Cancel if the user cancels.

This component provides many properties for determining the kinds of fi les the user can specify.
Most of these properties are the same as those provided by the OpenFileDialog component
described earlier in this appendix. See the section “OpenFileDialog” earlier in this appendix for
more information about those properties.

Unlike OpenFileDialog, this component does not provide the properties MultiSelect,
ReadOnlyChecked, and ShowReadOnly because those properties don ’ t make sense when the user
is selecting a fi le for saving. The FileNames collection is also less useful for this component because
the user will always select only one fi le, so you can use the FileName property instead.

The SaveFileDialog component provides one additional property not provided by the
OpenFileDialog: CreatePrompt. If this property is True and the user enters the name of a fi le that
doesn ’ t exist, the dialog asks the user if it should create the fi le. If the user clicks No, the dialog box
continues letting the user select a different fi le.

Like the OpenFileDialog, this component raises its FileOk event when the user tries to accept a
fi le. You can use an event handler to catch the event and perform extra validation. Set the event ’ s
e.Cancel value to True to stop the dialog box from accepting the selection.

Note that the dialog box adds its default extension if applicable before it raises the FileOk event.
If the component has DefaultExt � “dat” and AddExtension � True, this example would accept a
fi le name with no extension.

SERIALPORT

The SerialPort component represents one of the computer ’ s physical serial ports. It provides
properties and methods for reading and confi guring the port ’ s baud rate, break signal, Data Set
Ready (DSR) state, port name, parity, and stop bits. The class has methods to write data to the port
and to read synchronously or asynchronously.

Serial communications is a fairly advanced and specialized topic that depends on your particular
application, so it is not covered in detail here. See the online help at msdn.microsoft.com/system
.io.ports.serialport.aspx for more information. You may also fi nd these articles useful:

Programming Serial Ports Using Visual Basic 2005 (www.devx
.com/dotnet/Article/31001)

RS232 Serial Communication in .NET (http://www.freevbcode.com/ShowCode
.asp?ID=4666)

If you plan to work extensively with serial communication, you might want to fi nd a good book
on the topic such as Visual Basic Programmer ’ s Guide to Serial Communications, 4th Edition by
Richard Grier (Mabry Software, 2004).

Unfortunately all of these resources are fairly old but the basic concepts shouldn ’ t have changed
much in the last couple of Visual Basic releases.

➤

➤

bapp07.indd 1010bapp07.indd 1010 12/31/09 6:05:48 PM12/31/09 6:05:48 PM

SERVICECONTROLLER

The ServiceController component represents a Windows service process. It provides methods that
let you connect to a running or stopped service to control it or get information about it.

The ServiceController component ’ s ServiceName property gets or sets the name of the service
associated with the component. To set this value at design time, select a ServiceController in the
form designer. Then, click the ServiceName property in the Properties window and click the drop -
down arrow on the right to see a list of available services on the system. The class ’ s methods let you
start, pause, continue, or stop the service.

Windows services and their control is a relatively advanced topic, so it is not covered in detail here.
For more information, see the ServiceController class ’ s web page at msdn.microsoft.com/system
.serviceprocess.servicecontroller.aspx . For an introduction to Windows service applications,
refer to msdn.microsoft.com/y817hyb6.aspx . For a walkthrough that creates a Windows service
application, see msdn.microsoft.com/zt39148a.aspx .

SPLITCONTAINER

The SplitContainer control represents an area divided into two regions either vertically or
horizontally. The control contains a bar (called the splitter) that the user can drag to adjust the
amount of space given to each region.

Each of the SplitContainer control ’ s regions holds a Panel control and you can place other controls
inside the Panels. You can also use the Panel control ’ s properties to affect their behavior. For
example, you can set their AutoScroll properties to True so the Panels display scroll bars when their
contents don ’ t fi t.

The following table describes the SplitContainer control ’ s most useful properties.

PROPERTY PURPOSE

BorderStyle Determines the control ’ s border style.

FixedPanel Determines which panel keeps the same size when the control is

resized.

IsSplitterFixed Determines whether the user can drag the splitter.

Orientation Determines whether the Panels are arranged vertically or

horizontally.

Panel1 Returns a reference to the fi rst panel (left or top depending on

Orientation).

Panel1Collapsed Determines whether the fi rst Panel is collapsed. When collapsed,

a Panel is completely hidden and the user cannot get it back by

dragging the splitter.

continues

SplitContainer ❘ 1011

bapp07.indd 1011bapp07.indd 1011 12/31/09 6:05:49 PM12/31/09 6:05:49 PM

1012 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

Panel1MinSize Determines the minimum size (width or height depending on

Orientation) of the fi rst Panel.

Panel2 Returns a reference to the second panel (right or bottom

depending on Orientation).

Panel2Collapsed Determines whether the second Panel is collapsed. When

collapsed, a Panel is completely hidden and the user cannot get it

back by dragging the splitter.

Panel2MinSize Determines the minimum size (width or height depending on

Orientation) of the second Panel.

SplitterDistance Determines the distance from the control ’ s left or top edge

(depending on Orientation) to the splitter.

SplitterIncrement Determines the number of pixels by which the splitter will move

when dragged. For example, if SplitterIncrement is 10, the splitter

jumps in 10 - pixel increments are you drag it. The default is 1.

SplitterRectangle Returns a Rectangle representing the splitter ’ s current size and

location within the SplitContainer.

SplitterWidth Determines the splitter ’ s width in pixels. The default is 4.

The SplitterContainer control ’ s most interesting events are SplitterMoving and SplitterMoved. You
can catch these events if you need to take action when the user drags the splitter. You can also use
the Panel controls ’ sizing events Resize, ResizeBegin, ResizeEnd, and SizeChanged to take action
when the Panel controls resize.

One rather confusing feature of the SplitterContainer is the way its contained Panel controls behave
in the form designer. The drop - down list at the top of the Properties window lets you select the
controls on the form, including the SplitterContainer. The Panel controls are contained inside the
SplitterContainer, so they are not always listed in this dropdown. If you click one of the Panel
controls, the dropdown lists the Panel and the Properties window lets you view and edit
the control ’ s properties. If some other control is selected, however, the SplitterContainer is
listed in the dropdown, but not its Panel controls.

SPLITTER

The Splitter control provides the thin strip that users can grab to resize the two panes of a
SplitContainer. In addition to using the Splitter within a SplitContainer control, you can also use it
directly to separate any two other controls.

Visual Basic uses the Dock properties and stacking order of the two controls and the Splitter to
determine how the Splitter behaves. To build a simple vertical splitter between two Panel controls,
add the fi rst Panel to the form and set its Dock property to Left so that it fi lls the left side of the form.

(continued)

bapp07.indd 1012bapp07.indd 1012 12/31/09 6:05:50 PM12/31/09 6:05:50 PM

Next, add a Splitter control. By default, its Dock property is also Left, so it attaches to the right
side of the Panel. Finally, add a second Panel control, and set its Dock property to Fill so that it fi lls
the rest of the form. Now, when you drag the Splitter back and forth, Visual Basic adjusts the Panel
controls accordingly.

You can use multiple Splitters to separate more than two controls. For example, you could add a Panel
with Dock set to Left, a Splitter, another Panel with Dock set to Left, another Splitter, and a fi nal
Panel with Dock set to Fill. This would let the user divide the form between the three Panel controls.

The Splitter control uses the controls ’ stacking order to determine the order of the controls.
When you initially create controls, their stacking order is the same as their order of creation.
Unfortunately, if the stacking order changes, the positions of the controls can become very
confusing very quickly. In some cases, it ’ s easier to delete all of the controls and start over than it
is to fi x the stacking order.

It ’ s far easier to use the SplitContainer control than it is to use Splitters directly, so you should use
the SplitContainer when you have fairly straightforward needs. Only use Splitters directly if you
need to provide unusual confi gurations such as dividing a form among three Panel controls.

STATUSSTRIP

The StatusStrip control provides an area where the application can display brief status information,
usually at the bottom of the form.

The StatusStrip can contain several kinds of objects such as drop - down buttons, progress bars,
and panels. These objects are represented by different kinds of controls contained in the form. For
example, a progress bar is represented by a ToolStripProgressBar control.

You can edit a StatusStrip much as you edit a MenuStrip. When you click the StatusStrip, a box
appears that contains the text “Type Here.” Enter the text that you want to display on this object
and press Enter. Click an object and then click the little action arrow on the object ’ s right edge to
change the object ’ s type (progress bar, panel, and so forth) and to confi gure the item.

You can also edit an object ’ s properties in the Properties window. Simply click the object and then
use the Properties window to change its appearance.

The StatusStrip control provides access to the objects it contains through its Items collection. If you
click the ellipsis to the right of this property in the Properties window, the Items Collection Editor
appears. To make new items, select the type of object you want to add from the editor ’ s dropdown
and click the Add button. Click an item and use the other buttons to move or delete it. Use the
properties grid on the editor ’ s right to modify the object ’ s appearance.

The following list shows the types of objects you can add to a StatusStrip control:

ToolStripStatusLabel — A simple label.

ToolStripProgressBar — A Progress bar.

ToolStripDropDownButton — A button that displays text in the StatusStrip. When you
click its drop - down arrow, a list of buttons appears.

➤

➤

➤

StatusStrip ❘ 1013

bapp07.indd 1013bapp07.indd 1013 12/31/09 6:05:50 PM12/31/09 6:05:50 PM

1014 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

ToolStripSplitButton — A button that displays an image in the StatusStrip. When you
click its drop - down arrow, a list of buttons appears.

See the online help at msdn.microsoft.com/system.windows.forms.statusstrip.aspx for more
information about these classes and the StatusStrip control.

TABCONTROL

The TabControl control (for some reason, the word Control is part of the class ’ s name) displays a
series of tabs attached to separate pages. Each page is a control container, holding whatever controls
you want for that tab. When you click a tab at design time or the user clicks one at runtime, the
control displays the corresponding page.

The control ’ s tabs are represented programmatically by TabPage objects contained in the control ’ s
TabPages collection. To edit these objects at design time, select the control ’ s TabPages property and
click the ellipsis on the right to display the collection editor.

The following table describes the TabPage object ’ s most useful properties.

PROPERTY PURPOSE

AutoScroll If True, the tab page automatically provides scroll bars if it is not big enough

to display all of its contents.

BackColor Determines the tab page ’ s background color. This aff ects the tab ’ s page, not

the tab itself.

BackgroundImage Determines the background image that tiles the tab ’ s page. This aff ects the

tab ’ s page, not the tab itself.

BorderStyle Determines the style of border around the tab ’ s page. This can be None,

FixedSingle, or Fixed3D.

Font Determines the font used by the controls contained in the tab ’ s page.

To change the font used to draw the tabs, set the TabControl control ’ s

Font property.

ImageIndex If the TabControl control ’ s ImageList property is set to an ImageList control,

this property determines the image within that list that the tab displays.

Text Determines the text displayed on the tab.

ToolTipText Determines the tooltip text displayed when the user hovers the mouse

over the tab. This is ignored unless the TabControl control ’ s ShowToolTips

property is True.

The TabPage object provides several events of its own. These include the usual assortment of events
for a control container such as Click, Layout, Resize, Paint, and various mouse events.

➤

bapp07.indd 1014bapp07.indd 1014 12/31/09 6:05:51 PM12/31/09 6:05:51 PM

The TabControl provides several properties that are useful for arranging the tabs. The following
table describes the most useful of these properties.

PROPERTY PURPOSE

Alignment Determines whether the control places its tabs on the Top, Bottom, Left, or

Right. If you set this to Left or Right, the control rotates its tabs ’ text sideways. If

a tab contains an image, the image is not rotated.

Appearance Determines how the control displays its tabs. This property can take the value

Normal, Buttons, or FlatButtons.

DrawMode Determines whether the control draws the tabs automatically (DrawMode �

Normal) or whether the code draws them (DrawMode � OwnerDrawFixed). See

the discussion later in this section for an example.

Enabled Determines whether the TabControl is enabled. If Enabled is False, none of the

tabs will respond to the user (although the tabs do not look disabled) and all of

the controls on the tab pages are disabled.

Font Determines the font that the control uses to draw its tabs. This does not aff ect

the font used within the tab pages.

HotTrack If this is True, the tabs visually change when the mouse moves over them. For

example, the tabs ’ text may change color.

ImageList Determines the ImageList control that provides images for the tabs.

ItemSize Determines the height of all of the tabs. Also determines the width of fi xed -

width tabs (see the SizeMode property) and owner - drawn tabs (see the

DrawMode property).

MultiLine Determines whether the control allows more than one line of tabs. If MultiLine

is False and the tabs won ’ t all fi t, the control displays left - arrow and right - arrow

buttons on the right to let the user scroll through the tabs.

Padding Determines the horizontal and vertical space added around the tabs ’ text

and images.

RowCount Returns the current number of tab rows.

SelectedIndex Sets or gets the index of the currently selected tab. At design time, you can

simply click the tab you want to select.

SelectedTab Sets or gets the currently selected TabPage object. At design time, you can

simply click the tab you want to select.

ShowToolTips Determines whether the control displays the TabPage controls ’ ToolTip values

when the user hovers the mouse over the tabs.

continues

TabControl ❘ 1015

bapp07.indd 1015bapp07.indd 1015 12/31/09 6:05:52 PM12/31/09 6:05:52 PM

1016 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

SizeMode Determines how the control sizes its tabs. This property can take the values

Normal (tabs fi t their contents), FillToRight (if the control needs more than one

row of tabs, the tabs resize so each row fi lls the width of the control), and Fixed

(all tabs have the same width).

TabCount Returns the number of tabs.

TabPages The collection of TabPage objects.

The TabControl control ’ s most useful event is SelectedIndexChanged, which fi res when the control ’ s
selected tab index changes either because the user clicked a new tab, or because the code set the
SelectedIndex or SelectedTab property.

If you set the TabControl control ’ s DrawMode property to OwnerDrawFixed, your code must draw the
tabs in the control ’ s DrawItem event. Example program UseTabControlOwnerDrawn uses the following
code to draw colored ellipses on its tabs:

’ Draw ellipses in the tabs.
Private Sub tabProject_DrawItem(ByVal sender As Object,
 ByVal e As System.Windows.Forms.DrawItemEventArgs) Handles tabProject.DrawItem
 ‘ Decide how thick to draw the outline.
 Dim line_wid As Integer = 1
 If (e.State And DrawItemState.Selected) = DrawItemState.Selected Then
 line_wid = 3
 End If

 ‘ Get the drawing bounds.
 Dim rect As New Rectangle(
 e.Bounds.Left + (line_wid + 1) \ 2,
 e.Bounds.Top + (line_wid + 1) \ 2 + 1,
 e.Bounds.Width—line_wid - 2,
 e.Bounds.Height—line_wid - 2)

 ‘ Get the fill colors.
 Dim fill_colors() As Color = {Color.Red, Color.Green, Color.Blue}

 ‘ Fill.
 Using the_brush As New SolidBrush(fill_colors(e.Index))
 e.Graphics.FillEllipse(the_brush, rect)
 End Using

 ‘ Outline.
 Using the_pen As New Pen(Color.Black, line_wid)
 e.Graphics.DrawEllipse(the_pen, rect)
 End Using
End Sub

code snippet UseTabControlOwnerDrawn

(continued)

bapp07.indd 1016bapp07.indd 1016 12/31/09 6:05:52 PM12/31/09 6:05:52 PM

The DrawItem event handler starts by setting the line_wid variable to the pen width it will use to
draw the ellipse. It makes the line width larger for the selected tab.

The code then builds a rectangle to defi ne the ellipse. It starts with the event handler ’ s e.Bounds
property and then shrinks the area slightly to make room for the ellipse ’ s border.

The code makes a brush of the appropriate color for each tab and fi lls the ellipse. It fi nishes by
making a black pen of the correct thickness and outlining the ellipse.

The TabControl is ideal for displaying multiple pages of related information in a limited amount
of space. It works particularly well when the information is naturally categorized and each tab
represents a category of data. It doesn ’ t work as well if different tabs contain data that the user
might want to compare to each other.

TABLELAYOUTPANEL

The TableLayoutPanel control displays the controls that it contains in rows and columns. This
makes it easy to build grids of regularly spaced controls.

The following table describes the TableLayoutPanel control ’ s most useful properties.

PROPERTY PURPOSE

AutoScroll Determines whether the control automatically provides scroll bars if the

controls it contains won ’ t fi t.

CellBorderStyle Determines the cell border style. This can be None, NotSet (an appropriate

style is selected based on the row and column styles), Inset (single

sunken line), InsetDouble (double sunken line), Outset (single raised line),

OutsetDouble (double raised line), OutsetPartial (single line containing a

raised area), and Single (single line).

ColumnCount Determines the number of columns.

ColumnStyles A collection giving column styles.

ColumnWidths An array of column widths.

Controls A collection of controls contained within the control.

Enabled Determines whether the control is enabled. If the TableLayoutPanel is

disabled, the controls it contains are also disabled.

GrowStyle Determines how the control grows when you add new child controls to it.

This can be AddRows, AddColumns, or FixedSize (the control throws an

exception if you add more controls).

RowCount Determines the number of rows.

RowHeights An array of row heights.

RowStyles A collection of row styles.

Visible Determines whether the control and its contents are visible.

TableLayoutPanel ❘ 1017

bapp07.indd 1017bapp07.indd 1017 12/31/09 6:05:53 PM12/31/09 6:05:53 PM

1018 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The following table describes the TableLayoutPanel control ’ s most useful methods.

METHOD PURPOSE

GetColumn Returns a child control ’ s column number.

GetColumnSpan Returns the number of columns that a child control spans.

GetRow Returns a child control ’ s row number.

GetRowSpan Returns the number of rows that a child control spans.

ScrollControlIntoView If the TableLayoutPanel control has AutoScroll set to True, this scrolls

an indicated child control into view.

SetColumn Sets a child control ’ s column number.

SetColumnSpan Sets a child control ’ s column span.

SetRow Sets a child control ’ s row number.

SetRowSpan Sets a child control ’ s row span.

In addition to providing its own properties, the TableLayoutPanel acts as a property provider for its
child controls. These properties include Column, ColumnSpan, Row, and RowSpan. For example,
if you add a button to the TableLayoutPanel control named TableLayoutPanel1, the button ’ s
Properties window will contain an entry labeled “Column on TableLayoutPanel1” that determines
the button ’ s column.

The TableLayoutPanel control also changes the meaning of its child controls’ Anchor property. By
default, a child control has Anchor property set to None, so it is centered in its table cell. If you set
Anchor to Left, the control is moved to the left edge of the cell. If you set Anchor to “Left, Right,”
both of the control ’ s edges are attached to the cell ’ s edges, so the control stretches to fi t the cell ’ s
width. The Top and Bottom Anchor settings work similarly.

The FlowLayoutPanel control also arranges contained controls, but not in a grid. Instead it places
controls one after another to fi ll either rows or columns. For information on that control, see the
section “FlowLayoutPanel” earlier in this appendix.

TEXTBOX

The TextBox control is a typical everyday text box. The user can enter and modify text, click and
drag to select text, press Ctrl � C to copy the selected text to the clipboard, and so forth.

The TextBox control is much simpler than the RichTextBox control described earlier in this appendix.
It can use only one font, background color, and foreground color for all of its text. It also cannot
provide special formatting such as bullets, hanging indentation, and margins the way the RichTextBox
control can. If you need those extra features, use a RichTextBox instead of a TextBox control.

bapp07.indd 1018bapp07.indd 1018 12/31/09 6:05:54 PM12/31/09 6:05:54 PM

The following table describes the TextBox control ’ s most useful properties.

PROPERTY PURPOSE

AcceptsReturn For multiline controls, determines whether pressing the Enter key adds a

new line to the text rather than triggering the form ’ s Accept button.

AcceptsTab For multiline controls, determines whether pressing the Tab key adds a

Tab to the text rather than moving to the next control in the tab sequence.

AutoSize For single - line controls, determines whether the control automatically sets

its height for the fonts it contains.

CharacterCasing Determines whether the control automatically changes the case of text

as it is entered. This property can take the values Normal (leave the case

alone), Upper (uppercase), and Lower (lowercase). The control changes

the text ’ s case whether the user types or pastes it into the control, or if the

program sets the control ’ s text.

Lines An array of strings giving the lines of text (separated by carriage returns)

displayed by the control. You can use this property to give the control

more than one paragraph at design time.

MaxLength The maximum number of characters the user can enter into the control.

MultiLine Determines whether the control displays multiple lines.

PasswordChar Determines the password character displayed by a single - line TextBox

control for each character it contains. For example, if you set PasswordChar

to * , each character the user types appears as a * in the text box. The

control ’ s Text property returns the actual text to the program.

PreferredHeight Returns the height a single - line control would want to use for the font size.

ReadOnly Determines whether the user can modify the control ’ s text. You can

display read - only text in a label, but then the user cannot select it and

copy it to the clipboard. If you want to display information that the user

might want to copy, place it in a TextBox control and set ReadOnly to True.

ScrollBars Determines which scroll bars the control displays. This property can take

the values None, Vertical, Horizontal, and Both. The appropriate scroll bars

are always displayed, although they are disabled when they are not needed.

Note that some of these values may not always be honored. For example, if

WordWrap is True, the control never displays horizontal scroll bars.

SelectedText Gets or sets the selected text ’ s value.

SelectionLength Gets the length of the selected text, or selects this number of letters. You

can use SelectionStart and SelectionLength to select text, or you can use

the Select method.

continues

TextBox ❘ 1019

bapp07.indd 1019bapp07.indd 1019 12/31/09 6:05:54 PM12/31/09 6:05:54 PM

1020 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

SelectionStart Gets or sets the start of the selection. You can use SelectionStart and

SelectionLength to select text, or you can use the Select method.

Text Gets or sets the control ’ s text.

TextAlign Determines the text ’ s alignment within the control. This can be Left, Right,

or Center.

TextLength Returns the length of the control ’ s text.

WordWrap For multiline controls, determines whether the control wraps text to a new

line if it is too long to fi t.

The TextBox control also provides several important methods, described in the following table.

METHOD PURPOSE

AppendText Adds text to the end of the control ’ s text.

Clear Clears the control ’ s text.

ClearUndo Empties the control ’ s undo list.

Copy Copies the control ’ s selection to the clipboard.

Cut Copies the control ’ s selection to the clipboard and removes it from

the control ’ s text.

Paste Pastes the clipboard ’ s contents into the control, replacing the current

selection. This method does nothing if the clipboard doesn ’ t contain

textual data.

ScrollToCaret Scrolls the text so the insertion position is visible.

Select Selects the indicated text.

SelectAll Selects all of the control ’ s text.

Undo Undoes the most recent action. The TextBox stores information for only one

undo action, so calling Undo again undoes the undo. That also means that

the TextBox doesn ’ t need a Redo method because it would do the same

thing as Undo.

The TextBox control ’ s most useful event is TextChanged. You can use this event to take action when
the user changes the control ’ s text. For example, you can display a visible indication that the data
has been modifi ed.

(continued)

bapp07.indd 1020bapp07.indd 1020 12/31/09 6:05:55 PM12/31/09 6:05:55 PM

TIMER

The Timer component periodically raises a Tick event so the program can take action at specifi c
intervals.

The component ’ s Interval property determines the number of milliseconds (1000ths of a second)
between events. This property is a 32 - bit integer that must be greater than zero, so it can hold values
between 1 and 2,147,483,647. If you set Interval to its maximum value, the component raises its
Tick event roughly every 24.86 days.

The Timer component ’ s Enabled property determines whether the Timer generates Tick events. The
component continues raising its event as long as Enabled is True.

The component ’ s Start and Stop methods simply set its Enabled property to True and False,
respectively.

TOOLSTRIP

The ToolStrip control displays a series of buttons, dropdowns, and other tools. The user can
access these tools quickly without navigating through a series of menus, so they are most useful
for performing frequently needed tasks. Menus are more appropriate for commands that are needed
less often.

The following list shows the types of items that a ToolStrip may contain:

ToolStripButton ToolStripProgressBar

ToolStripComboBox ToolStripSeparator

ToolStripDropDownButton ToolStripSplitButton

ToolStripLabel ToolStripTextBox

These tools are relatively straightforward. ToolStripButton is a button that sits on a ToolStrip,
ToolStripComboBox is a combo box that sits on a ToolStrip, and so forth.

The only tool that doesn ’ t correspond to another type of control is the SplitButton. This control is a
button with a drop - down area. If the user clicks the button, it raises a Click event. If the user clicks
the drop - down arrow, the control displays a drop - down menu containing menu items that the user
can select as usual. See the online help at msdn.microsoft.com/system.windows.forms
.toolstrip.aspx for more information on SplitButton and the other tool control classes.

The ToolStrip control stores its tools in its Items collection. At runtime, a program can access the
controls inside this collection, or it can refer to the tools directly by name. At design time, you can
select a ToolStrip, click its Items property in the Properties window, and click the ellipsis to the right
to display an Items Collection Editor.

You can also click the ToolStrip and add items to it much as you edit a MenuStrip control.

ToolStrip ❘ 1021

bapp07.indd 1021bapp07.indd 1021 12/31/09 6:05:56 PM12/31/09 6:05:56 PM

1022 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The following table describes the ToolStrip control ’ s most useful properties.

PROPERTY PURPOSE

AllowItemReorder Determines whether the user can drag and drop items to reorder them.

AllowMerge Determines whether the ToolStrip can merge with others.

CanOverflow Determines whether items can be sent to an overfl ow menu if the

ToolStrip doesn ’ t fi t completely on the form.

GripDisplayStyle Gets the orientation of the control ’ s move handle.

GripMargin Determines the space around the control ’ s move handle.

GripRectangle Gets the boundaries of the control ’ s move handle.

GripStyle Determines whether the control ’ s move handle is visible or hidden.

Items Returns a collection of ToolStripItem objects representing the control ’ s

tools.

OverflowButton Returns a ToolStripItem representing the control ’ s overfl ow button.

ShowItemToolTips Determines whether the control ’ s tools display their tooltips.

TOOLSTRIPCONTAINER

The ToolStripContainer control contains a ToolStripPanel along each of its edges where a ToolStrip
control can dock. The control ’ s center is fi lled with another ToolStripPanel that can contain other
controls that are not part of the tool strips.

The user can drag the ToolStrips around and position them inside of any of the ToolStripPanel
controls much as you can move the toolbars in the Visual Basic development environment. The user
can drag the ToolStrips into multiple rows or columns within the panels.

Figure G - 9 shows a form containing a ToolStripContainer with
its Dock property set to Fill, so it fi lls the form. The lighter
area in the middle is a PictureBox sitting inside the middle
ToolStripPanel, also with its Dock property set to Fill.

The ToolStripContainer in Figure G - 9 holds fi ve ToolStrip
controls positioned in the container ’ s various edge panels.
Each ToolStrip contains a label identifying the ToolStrip. The
ToolStrip3 control ’ s TextDirection property is set to Vertical90,
so it sits along the right edge of the form. The ToolStrip1 and
ToolStrip2 controls have been dragged into two rows at the top
of the form. The ToolStrip1 and ToolStrip2 controls share a row
at the bottom.

FIGURE G-9: The

ToolStripContainer control lets

the user rearrange ToolStrip

controls at runtime.

bapp07.indd 1022bapp07.indd 1022 12/31/09 6:05:56 PM12/31/09 6:05:56 PM

The ToolStripContainer control ’ s LeftToolStripPanel, RightToolStripPanel, TopToolStripPanel,
BottomToolStripPanel, and ContentPanel properties contain references to the ToolStripPanel
controls that the control contains. Its LeftToolStripPanelVisible, RightToolStripPanelVisible,
TopToolStripPanelVisible, and BottomToolStripPanelVisible properties let you show or hide specifi c
panels. For example, you can hide the bottom or side panels if you don ’ t want the user to drag
ToolStrips there.

The ToolStripContainer control ’ s other properties are relatively straightforward. See the online
help at msdn.microsoft.com/system.windows.forms.toolstripcontainer.aspx for more
information.

TOOLTIP

The ToolTip component allows you to provide tooltip help when the user hovers the mouse over
another control. After you add a ToolTip component to a form, the other controls on the form
get a special ToolTip property. For example, suppose that you create a ToolTip component named
ttHint. Then a button on the form would have a new property named “ToolTip on ttHint.” Set that
property to the text you want the ToolTip to display, and you are all set.

The following table describes the ToolTip component ’ s most useful properties.

PROPERTY PURPOSE

Active Determines whether the component displays tooltips.

AutomaticDelay Sets the AutoPopDelay, InitialDelay, and ReshowDelay properties to values

that are appropriate for this value.

AutoPopDelay The number of milliseconds before the tooltip disappears if the mouse

remains stationary in the tooltip ’ s area.

BackColor Determines the tooltip ’ s background color.

ForeColor Determines the tooltip ’ s foreground color.

InitialDelay The number of milliseconds that the mouse must remain stationary inside the

tooltip ’ s area before the component displays the tooltip.

IsBalloon Determines whether the tooltip is displayed as a balloon rather than a rectangle.

OwnerDraw Determines whether your code will draw the tooltip. If you set this to True,

catch the ToolTip component ’ s Draw method and draw the tooltip. Parameters

to the method give the Graphics object to use, the bounds of the area to draw,

and the tooltip text. This property is ignored if IsBalloon is True.

ReshowDelay The number of milliseconds before the next tooltip will display when the

mouse moves from one tooltip area to another. The idea is that subsequent

tooltips display more quickly if one is already visible.

continues

ToolTip ❘ 1023

bapp07.indd 1023bapp07.indd 1023 12/31/09 6:05:57 PM12/31/09 6:05:57 PM

1024 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

PROPERTY PURPOSE

ShowAlways Determines whether the component still displays tooltips, even if the form

does not have the focus. The mouse still must hover over the tooltip area as

usual if ShowAlways is True.

StripAmpersands Determines whether the component removes ampersand characters from

tooltip text. This can be useful if the tooltip text looks like menu and label

captions where ampersands are converted into underscores.

UseAnimation Determines whether animation eff ects are used to show and hide the tooltip.

UseFading Determines whether fading eff ects are used to show and hide the tooltip.

The ToolTip component ’ s SetToolTip method lets a program associate a tooltip with a control at
runtime. The following code adds tooltip text to several address controls:

ttHint.SetToolTip(txtFirstName, "Customer first name")
ttHint.SetToolTip(txtLastName, "Customer last name")
ttHint.SetToolTip(txtStreet, "Mailing address street number and name")
ttHint.SetToolTip(txtCity, "Mailing address city")
ttHint.SetToolTip(cboState, "Mailing address state")
ttHint.SetToolTip(txtZip, "Mailing address ZIP code")

The following table lists the ToolTip component ’ s most useful methods.

METHOD PURPOSE

GetToolTip Returns a control ’ s associated tooltip text.

RemoveAll Removes all tooltip text associated with this ToolTip component.

SetToolTip Sets a control ’ s associated tooltip text. Set the text to Nothing or an empty

string to remove that control ’ s tooltip text.

Show Displays a tooltip over a specifi c control. Diff erent overloaded versions let

you specify the tooltip ’ s location and duration.

TRACKBAR

The TrackBar control allows the user to drag a pointer along a bar to select a numeric value. This
control is very similar to a horizontal scroll bar, but with a different appearance.

The following table describes the control ’ s most useful properties.

(continued)

bapp07.indd 1024bapp07.indd 1024 12/31/09 6:05:58 PM12/31/09 6:05:58 PM

PROPERTY PURPOSE

AutoSize Determines whether the control automatically sets its height or width,

depending on its Orientation property. For example, if the control ’ s

orientation is horizontal, setting AutoSize to True makes the control pick a

height that is appropriate for the control ’ s width.

LargeChange The amount by which the control ’ s value changes when the user clicks the

TrackBar, but not on its pointer.

Maximum The largest value that the user can select.

Minimum The smallest value that the user can select.

Orientation Determines the control ’ s orientation. This can be Horizontal or Vertical.

SmallChange The amount by which the control ’ s value changes when the user presses an

arrow key.

TickFrequency The number of values between tick marks on the control.

TickStyle Determines the position of tick marks on the control. This can be TopLeft

(on the top if Orientation is Horizontal; on the left if Orientation is Vertical),

BottomRight (on the bottom if Orientation is Horizontal; on the right if

Orientation is Vertical), Both, or None.

Value The control ’ s current numeric value.

The control ’ s Value, Minimum, Maximum, and TickFrequency properties are integer values, so
the TrackBar control is not ideal for letting the user select a nonintegral value such as 1.25. (You
can multiply the values by 100 to get fi ner grained resolution but the user still can ’ t select truly
nonintegral values.)

The control ’ s Scroll event fi res when the user changes the control ’ s value interactively. The
ValueChanged event occurs when the control ’ s value changes either because the user changed it
interactively or because the program changed it with code.

TREEVIEW

The TreeView control displays a hierarchical data set graphically,
as shown in Figure G - 10.

The TreeView control uses TreeNode objects to represent the items
it contains. The control ’ s Nodes collection contains references to
the top - level objects called its root nodes. In Figure G - 10, the R &
D and Sales & Support items are the root nodes.

Each TreeNode object has a Nodes collection of its own that
contains references to its child nodes. For example, in Figure G - 10

FIGURE G-10: The TreeView

control displays hierarchical data

graphically.

TreeView ❘ 1025

bapp07.indd 1025bapp07.indd 1025 12/31/09 6:05:58 PM12/31/09 6:05:58 PM

1026 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

the R & D root node has children labeled Engineering and Test. Each of those nodes has child nodes
representing employees.

You can assign each of the TreeNode objects an icon to display. In Figure G - 10, the nodes display
images representing factories, workgroups, and people.

Your program can manipulate the TreeNode objects at runtime, but you can also edit the tree data
at design time. Select the TreeView control, select its Nodes property in the Properties window, and
click the ellipsis to the right to make Visual Basic display the TreeNode Editor.

Click Add Root to add a new root node to the tree. Select a node and click Add Child to give the
node a new child. Select a node and click Delete to remove the node and any descendants
it contains.

If the TreeView control ’ s ImageList property is set to an ImageList control, you can set a node ’ s
ImageIndex property to the index of the image in the ImageList that the node should display. Set the
node ’ s SelectedImageIndex to the index of the image that the control should display when the node
is selected.

The following table describes the TreeView control ’ s most useful properties.

PROPERTY PURPOSE

BorderStyle Determines the control ’ s border style.

CheckBoxes Determines whether the control displays check boxes next to the nodes.

DrawMode Determines whether your code draws nothing (the default), the nodes ’ text,

or the nodes ’ text and lines.

FullRowSelect Determines whether selection highlights span the whole width of

the control.

HideSelection Determines whether the selected node remains visibly highlighted even

when the TreeView control loses the focus.

HotTracking Determines whether node labels look like hyperlinks when the mouse

moves over them.

ImageIndex Determines the default image index for the nodes.

ImageList Determines the ImageList control that contains the images used by

the nodes.

Indent Determines the indentation distance for each level in the tree.

ItemHeight Determines the height of each node.

LabelEdit Determines whether the user can edit the nodes ’ labels.

LineColor Determines the color of the lines connecting the nodes.

bapp07.indd 1026bapp07.indd 1026 12/31/09 6:05:59 PM12/31/09 6:05:59 PM

PROPERTY PURPOSE

Nodes Returns the collection of tree nodes.

PathSeparator Determines the delimiter string used to represent paths in the tree. For

example, using the default separator \, the path to the fi rst person in Figure

G - 10 is “R & D\Engineering\Cameron, Charlie. ”

Scrollable Determines whether the control displays scroll bars when necessary.

SelectedImageIndex Determines the default image index for the selected nodes.

SelectedNode Determines the currently selected node.

ShowLines Determines whether the control draws lines connecting the nodes.

ShowNodeToolTips Determines whether the control displays tooltips when the mouse hovers

over a node. Use the TreeNode objects ’ ToolTipText properties to set the

tooltip text.

ShowPlusMinus Determines whether the control displays plus and minus signs next to tree

nodes. The user can click the plus and minus signs or double - click the

nodes to expand and collapse them.

ShowRootLines Determines whether the control draws lines between the root nodes. In

Figure G - 10, ShowRootLines is True.

Sorted Determines whether the control displays the nodes in sorted order.

TopNode Returns the fi rst node that is currently completely visible.

VisibleCount Returns the number of nodes that could be fully visible. Fewer nodes may

actually be visible if some are collapsed.

The TreeView control provides several methods that let your code manage the data at runtime. The
following table describes the most useful of these methods.

METHOD PURPOSE

CollapseAll Collapses all of the control ’ s nodes.

ExpandAll Expands all of the control ’ s nodes. In the process, the control scrolls down, so the last

node is visible and selects the topmost visible control. To select some other control,

such as the topmost root node, set the control ’ s SelectedNode property as in:

trvOrgChart.SelectedNode = trvOrg.Nodes(0)

GetNodeAt Returns the TreeNode object at a specifi c (X, Y) location.

GetNodeCount Returns the number of the tree ’ s nodes. If the method ’ s includeSubTrees

parameter is False, the routine returns only the number of root nodes. If

includeSubTrees is True, the routine returns the total number of nodes in the tree.

TreeView ❘ 1027

bapp07.indd 1027bapp07.indd 1027 12/31/09 6:06:00 PM12/31/09 6:06:00 PM

1028 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The control provides a series of events that fi re before and after the user takes certain actions. For
example, when the user clicks a node ’ s check box, the control raises its BeforeCheck event, changes
the node ’ s checked state, and then raises its AfterCheck event. The other actions that have similar
Before and After event handlers are Collapse, Expand, LabelEdit, and Select.

Each of the Before event handlers provides a parameter that the code can set to cancel the event. For
example, the UseTreeView example program, which is available for download on the book ’ s web
site, uses the following code to prevent the user from editing the labels of the tree ’ s root nodes:

Private Sub trvOrgChart_BeforeLabelEdit(ByVal sender As Object,
 ByVal e As System.Windows.Forms.NodeLabelEditEventArgs) _
 Handles trvOrgChart.BeforeLabelEdit
 e.CancelEdit � Not e.Node.FullPath.Contains(trvOrgChart.PathSeparator)
End Sub

code snippet UseTreeView

When the user tries to edit a node ’ s label, the BeforeLabelEdit event fi res. The value e.Node
represents the node that the user is about to edit. Its FullPath property returns a delimited path
showing the node ’ s position in the tree.

The code searches this path for the path separator character (normally \). If the node is a root node,
the separator is not in the path so the Contains method returns False and the code sets e.CancelEdit
to True so the edit never occurs. If Contains fi nds the path separator in the node ’ s FullPath, the code
sets e.CancelEdit to False so the edit takes place as usual.

The TreeNode object also provides properties and methods if its own. The following table describes
the TreeNode object ’ s most useful properties.

PROPERTY PURPOSE

Checked Determines whether the node is checked, assuming that the TreeView

control ’ s CheckBoxes property is True.

FirstNode Returns the node ’ s fi rst child node.

FullPath Returns a string representing the node and its ancestors in the

tree, delimited by the character specifi ed by the TreeView control ’ s

PathSeparator property.

ImageIndex Determines the index of the node ’ s image in the ImageList control

specifi ed by the TreeView control ’ s ImageList property.

Index Returns the node ’ s index within its parent node ’ s collection of children.

IsEditing Indicates whether the user is editing the node ’ s label.

IsExpanded Indicates whether the node is expanded.

bapp07.indd 1028bapp07.indd 1028 12/31/09 6:06:01 PM12/31/09 6:06:01 PM

PROPERTY PURPOSE

IsSelected Indicates whether the node is selected.

IsVisible Indicates whether the node is at least partly visible.

LastNode Returns the node ’ s last child node.

Level Returns the node ’ s level in the tree. Root nodes have level 0, their children

have level 1, the children of those nodes have level 2, and so forth.

NextNode Returns the node ’ s next sibling node.

NextVisibleNode Returns the next node that is not hidden because of a collapse. This

may be a sibling, child, or some other node, depending on which nodes

are expanded at the time. Note that this node may lie below the visible

scrolling area, so it may not really be visible.

NodeFont The font used to draw the node ’ s text. If the node ’ s font makes the text

bigger than the TreeView control ’ s Font property does, the text is clipped.

Nodes The collection of this node ’ s child nodes.

Parent Returns a reference to the node ’ s parent node in the tree.

PrevNode Returns the node ’ s previous sibling node.

PrevVisibleNode Returns the previous node that is not hidden because of a collapse.

This may be a sibling, parent, or some other node, depending on which

nodes are expanded at the time. Note that this node may be above the

visible scrolling area, so it may not really be visible.

SelectedImageIndex Determines the index of the node ’ s selected image in the ImageList

control specifi ed by the TreeView control ’ s ImageList property. The node

displays this image while it is selected.

Text Determines the text displayed in the node ’ s label.

ToolTipText Determines the node ’ s tooltip text.

TreeView Returns a reference to the TreeView control that contains the node.

The TreeNode object also provides several methods. The following table describes the most
useful of these.

TreeView ❘ 1029

bapp07.indd 1029bapp07.indd 1029 12/31/09 6:06:01 PM12/31/09 6:06:01 PM

1030 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

METHOD PURPOSE

BeginEdit Begins editing of the node ’ s label. This raises an error if the TreeView

control ’ s LabelEdit property is False.

Clone Copies the node and its entire subtree.

Collapse Collapses the node ’ s subtree.

EndEdit Ends editing of the node ’ s label.

EnsureVisible Expands nodes and scrolls the TreeView as necessary to ensure that

the node is visible.

Expand Expands the node to display its children.

ExpandAll Expands the node ’ s whole subtree.

GetNodeCount Returns the number of child nodes.

Remove Removes the node and its subtree.

Toggle Toggles the node between expanded and collapsed.

VSCROLLBAR

The VScrollBar control is similar to the HScrollBar control, except that it is oriented vertically
instead of horizontally. See the section “HScrollBar” earlier in this appendix for more information
on the control.

WEBBROWSER

The WebBrowser control displays the contents of web pages, XML documents, text fi les, and other
documents understood by the browser. The control can automatically follow links that the user
clicks in the document and provides a standard web browser context menu, containing commands
such as Back, Forward, Save Background As, and Print.

Using this control, you can easily add Web - based hypertext to your applications. For example, you
could display an HTML help system or tutorial pages within the control.

The control provides several properties and methods for navigating to different documents. The
following table describes the most useful of these.

bapp07.indd 1030bapp07.indd 1030 12/31/09 6:06:02 PM12/31/09 6:06:02 PM

PROPERTY/METHOD PURPOSE

Url Gets or sets the control ’ s current web address.

Navigate Makes the control open a specifi c URL.

GoBack Makes the control move to the URL it previously displayed.

GoForward After a call to GoBack, makes the control move forward to the next URL

it displayed.

GoHome Makes the control go to the current user ’ s home page.

GoSearch Makes the control go to the current user ’ s search page.

Whenever the control moves to a new document, it fi res three events. The Navigating event fi res
before the control moves to the new document. The Navigated event occurs after the control has
navigated to the new document and is loading it. The DocumentCompleted event occurs when the
control has fi nished loading the new document.

The control also supports a variety of other events that tell a program when something has
changed. Some of the more useful of these notifi cation events include CanGoBackChanged,
CanGoForwardChanged, DocumentTitleChanged, NewWindow (the browser is about to open a
new window), ProgressChanged (gives progress information on the download of a document), and
StatusTextChanged.

After the control loads a document, the program can manipulate the document through the
control ’ s Document property. This property contains a reference to an HtmlDocument object that
gives access to the document ’ s images, forms, links, and other HTML document elements.

In addition to opening existing documents, a program can make the WebBrowser display a fi le
generated within the application by setting its DocumentText or DocumentStream properties.

The WebBrowser control provides all of the power and fl exibility of Internet Explorer.
Unfortunately, that power and fl exibility makes the control quite complicated, so it is not described
further here. Refer to the online help at msdn.microsoft.com/system.windows
.forms.webbrowser.aspx for more information.

WebBrowser ❘ 1031

bapp07.indd 1031bapp07.indd 1031 12/31/09 6:06:02 PM12/31/09 6:06:02 PM

bapp07.indd 1032bapp07.indd 1032 12/31/09 6:06:03 PM12/31/09 6:06:03 PM

WPF Controls

This appendix lists the most useful Windows Presentation Foundation (WPF) controls that
are available in the .NET Framework 4, and briefl y describes their purposes. This list does
not include all of the hundreds of classes that WPF defi nes; it lists only the tools most likely to
appear in the window designer ’ s Toolbox.

These controls are part of the System.Windows.Controls namespace. In contrast, the controls
used in Windows Forms are contained in the System.Windows.Forms namespace. Many of
the controls in the two namespaces serve very similar purposes, although they have different
capabilities. For example, both namespaces have buttons, labels, combo boxes, and check
boxes but only the System.Windows.Controls classes provide foreground and background
brushes, render transformations, complex content, and XAML - defi ned triggers.

This appendix describes the WPF controls in far less detail than Appendix G describes the
Windows Forms controls. This is mostly due to space constraints, not because the WPF controls
are inferior. These controls can do some amazing things that the Windows Forms controls
cannot, such as containing other controls as content and applying transformations while
drawing. Unfortunately, these new features would take at least a few hundred pages to cover in
depth, and there just isn ’ t room in this edition of the book to do them justice.

For much more information about WPF controls and WPF in general, see my book WPF
Programmer ’ s Reference (Stephens, Wrox 2010). You can learn more about the book at www
.vb - helper.com/wpf.htm .

Note that not all of the controls described here are available by default when you create a new
WPF application. You need to add some of these controls to the Toolbox before you can use
them. To add a control that is missing, right - click a Toolbox section and select Choose Items.
On the Choose Toolbox Items dialog, select the WPF Components tab to display the dialog
shown in Figure H - 1. Check the boxes next to the controls that you want, and click OK.

H

bapp08.indd 1033bapp08.indd 1033 12/31/09 6:06:51 PM12/31/09 6:06:51 PM

1034 ❘ APPENDIX H WPF CONTROLS

Controls in the following table are marked with superscripts 0 , 1 , or 2 to indicate whether they can
hold 0, 1, or 2 children. Controls with no superscripts can hold any number of children.

CONTROL PURPOSE

Border 1 Provides a visible border around or background behind its

contents.

BulletDecorator 2 Contains two children. The fi rst is used as a bullet and the second

is aligned with the fi rst. For example, you can use this to align bullet

images next to labels.

Button 1 Displays a button that the user can click. Raises a Click event that

the program can catch to perform an action.

Canvas Creates an area in which you can explicitly position children by

specifying their Width, Height, Canvas.Left, and Canvas.Top

properties.

CheckBox 1 Allows the user to select or deselect an item. Each CheckBox

choice is independent of all others.

ComboBox Allows the user to select an item from a drop - down list. The list

can contain all sorts of objects, but typically holds a series of

ComboBoxItems.

ComboBoxItem 1 Represents an item in a ComboBox control ’ s list.

FIGURE H-1: Use this dialog to add new WPF controls to the Toolbox.

bapp08.indd 1034bapp08.indd 1034 12/31/09 6:06:54 PM12/31/09 6:06:54 PM

WPF Controls ❘ 1035

CONTROL PURPOSE

ContentControl 1 Represents a control that contains a single piece of content. Note,

however, that the content may, in turn, contain other objects.

ContextMenu Builds a popup menu for a control. This element should be inside

the control ’ s ContextMenu property (for example, inside a < Button.

ContextMenu > element). Normally the ContextMenu contains

MenuItem controls.

DockPanel Docks its children to its left, right, top, or bottom much as the Dock

property does in a Windows Forms application. If the control ’ s

LastChildFill property is True, the control makes its last child control

fi ll the remaining space.

DocumentViewer 1 Displays a FixedDocument. See the section “ Fixed Documents ” in

Chapter 12, “ Using WPF Controls. ”

Ellipse 0 Displays an ellipse.

Expander 1 Displays a header and lets the user expand and contract a single

detail item. The < Expander.Header > sub - element contains the

content displayed in the header.

FlowDocumentPageViewer 1 Displays a FlowDocument one page at a time. If the control is

wide enough, it may display multiple columns although it still only

displays one page at a time. See the section “ Flow Documents ”

in Chapter 12.

FlowDocumentReader 1 Displays a FlowDocument in one of three modes. When in single
page mode, it acts as a FlowDocumentPageViewer. When in

scrolling mode, it acts as a FlowDocumentScrollViewer. In book
reading mode , it displays two pages side - by - side much as a real

book does. See the section “ Flow Documents ” in Chapter 12.

FlowDocumentScrollViewer 1 Displays a FlowDocument as a single, long, vertically scrolling

page. See the section “ Flow Documents ” in Chapter 12.

Frame 0 Supports navigation and content display. The control can navigate

to a .NET Framework object or to HTML content.

Grid Displays children in rows and columns. This is similar to the

Windows Forms TableLayoutPanel control.

GridSplitter 0 Acts as a splitter that allows the user to resize rows or columns in

a Grid.

GridView Displays data in columns within a ListView control.

continues

bapp08.indd 1035bapp08.indd 1035 12/31/09 6:06:54 PM12/31/09 6:06:54 PM

1036 ❘ APPENDIX H WPF CONTROLS

CONTROL PURPOSE

GridViewColumnHeader 1 Represents a column header for a GridViewColumn.

GroupBox 1 Displays a visible border with a header. The Header property

determines the content displayed in the header. The control also

forms a grouping for any RadioButtons that it contains.

GroupItem 1 Used to group items in other controls such as a TreeView.

HeaderedContentControl 2 This is the base class for controls that have a single content

element and a header. Although you can create one directly,

usually it ’ s better use a subclass such as GroupBox.

HeaderedItemsControl Displays a header and multiple content elements.

Image 0 Displays an image. Can optionally stretch the image with or without

distortion.

InkCanvas Displays or captures ink strokes.

InkPresenter 0 Displays ink strokes.

ItemsControl Displays a collection of content items.

Label 1 Displays non - editable text.

Line 0 Draws a line segment.

ListBox Lets the user select items from a list. ListBoxItem objects hold the

items. The control automatically displays scroll bars when needed.

ListBoxItem 1 Holds content for display by a ListBox object.

ListView Displays a group of items in various display modes.

ListViewItem 1 Contains the content for an item displayed in a ListView.

MediaElement 0 Presents audio and video. To let you control the media, it provides

Play, Pause, and Stop methods, and Volume and SpeedRatio

properties.

Menu Builds a menu that is visible, in contrast to a ContextMenu, which

is hidden until displayed. Normally, the Menu contains MenuItem

controls representing the top - level menus. Those items contain

other MenuItem controls representing commands.

MenuItem Defi nes a top - level menu, submenu, or menu item for a

ContextMenu or Menu.

NavigationWindow 0 Navigates to content and displays it, keeping a navigation history.

Similar to Frame.

(continued)

bapp08.indd 1036bapp08.indd 1036 12/31/09 6:06:55 PM12/31/09 6:06:55 PM

WPF Controls ❘ 1037

CONTROL PURPOSE

Panel Panel is the parent class for Canvas, DockPanel, Grid, TabPanel,

ToolbarOverfl owPanel, UniformGrid, StackPanel, VirtualizingPanel,

and WrapPanel. Usually, you should use one of those classes

instead of Panel, but you can use Panel to implement your own

custom panel controls.

PasswordBox 0 A text box where the user can enter sensitive information such as

passwords. The control ’ s PasswordChar property determines the

character displays for each character the user types. By default,

this is a solid black circle.

Path 0 Contains a series of drawing instructions that make line segments,

arcs, curves, ellipses, and so forth. For more information, see the

section “ Path ” in Chapter 12.

Polygon 0 Draws a closed polygon.

Polyline 0 Draws a series of connected line segments.

Popup 1 Displays content in a window above another control. Usually, you

can use the Tooltip and ContextMenu controls instead of a Popup.

PrintDialog 0 Displays a standard Windows print dialog. You shouldn ’ t place a

PrintDialog on a window. Instead use code to build and display the

PrintDialog.

ProgressBar 0 Indicates the fraction of a long task that has been completed.

Usually, the task is performed synchronously, so the user is left

staring at the form while it completes. The ProgressBar lets the user

know that the operation is not stuck.

RadioButton 1 Lets the user pick from among a set of options. If the user checks

one RadioButton, all others with the same parent become

unchecked.

Rectangle 0 Draws a rectangle, optionally with rounded corners.

RepeatButton 1 Acts as a Button that raises its Click event repeatedly when it is

pressed and held down.

ResizeGrip 0 Displays a resize grip similar to the one used on the lower - right

corner of a window.

RichTextBox 1 Similar to a TextBox but contains text in the form of a document

object. See the section “ Managing Documents ” in Chapter 11,

“ Selecting WPF Controls, ” for more information on documents.

continues

bapp08.indd 1037bapp08.indd 1037 12/31/09 6:06:55 PM12/31/09 6:06:55 PM

1038 ❘ APPENDIX H WPF CONTROLS

CONTROL PURPOSE

ScrollBar 0 Allows the user to drag a “ thumb ” to select a numeric value.

Usually scroll bars are used internally by other controls such as the

ScrollViewer and your applications should use a Slider instead.

ScrollViewer 1 Provides vertical and horizontal scroll bars for a single content

element. Makes a scrollable area that can contain other controls.

Separator 0 Draws a vertical or horizontal separator in controls that contain

other controls, such as StatusBar, Menu, ListBox, or ToolBar.

Slider 0 Enables the user to select a value from a range by sliding a Thumb

along a Track. Similar to the Windows Forms TrackBar control.

StackPanel Arranges children in a single row or column. If there are too many

controls, those that don ’ t fi t are clipped.

StatusBar Displays a container at the bottom of the form where you can place

controls holding status information. Though you can place anything

inside a StatusBar, this control is intended to hold summary status

information not tools. Generally, menus, combo boxes, buttons,

toolbars, and other controls that let the user manipulate the

application do not belong in a SatusBar.

StatusBarItem 1 Contains an item in a StatusBar.

TabControl Arranges children in tabs. TabItem controls contain the items that

should be displayed in the tabs.

TabItem 1 Represents an item in a TabControl. The Header property

determines the content displayed on the tab, and the Content

property determines what ’ s displayed on the tab ’ s body.

TextBlock Displays more complex non - editable text. This control ’ s contents

can include inline tags to indicate special formatting. Tags can

include AnchoredBlock, Bold, Hyperlink, InlineUIContainer, Italic,

LineBreak, Run, Span, and Underline.

TextBox 0 Allows the user to enter simple text. Optionally can allow carriage

returns and tabs, and can wrap text.

Thumb 0 Represents an area that the user can grab and drag as in a

ScrollBar or Slider.

ToggleButton 1 This is the base class for controls that toggle between two states

such as a CheckBox or RadioButton. You can make one directly, but

it ’ s easier to use CheckBox or RadioButton.

(continued)

bapp08.indd 1038bapp08.indd 1038 12/31/09 6:06:56 PM12/31/09 6:06:56 PM

WPF Controls ❘ 1039

CONTROL PURPOSE

ToolBar Contains a series of tools, typically Button controls, ComboBox

controls, and other small controls. The Header property gives the

ToolBar a header.

ToolBarTray Contains ToolBars and allows the user to drag them into new

positions.

ToolTip 1 Displays a tooltip. To give a control a simple textual tooltip, set its

Tooltip property. Use the Tooltip control to build more complex

tooltips. For example, a Tooltip control might contain a StackPanel

that holds other controls.

TreeView Displays hierarchical data with a series of nested collapsible nodes.

TreeViewItems contain the items displayed in the hierarchy.

TreeViewItem Represents an item within a TreeView. The Header attribute or sub -

element determines the content displayed for the item.

UserControl 1 A container that you can use to create a simple compound control.

Note, however, that classes derived from UserControl do not

support templates.

Viewbox 1 Stretches its single child to fi ll the Viewbox. The Stretch property

determines whether the control stretches its child uniformly

(without changing the width - to - height ratio).

VirtualizingStackPanel Generates child items to hold items that can fi t in the available area.

For example, when working with a ListBox bound to a data source,

the VirtualizingStackPanel generates only the items that will fi t

within the ListBox. If the control is not bound to a data source, this

control behaves like a StackPanel.

Window 1 Represents a window, the WPF equivalent of a form. The Window

includes two areas: the client area where you normally put controls

and the non - client area where the window displays borders,

title bar, caption, system menus, and so on. Normally, you add a

Window to an application by using the Project menu ’ s Add New

Item command.

WrapPanel Arranges children in rows or columns depending on its Orientation

property. When a row or column is full, the next child moves

to a new row or column. This is similar to the Windows Forms

FlowLayoutPanel control.

bapp08.indd 1039bapp08.indd 1039 12/31/09 6:06:56 PM12/31/09 6:06:56 PM

1040 ❘ APPENDIX H WPF CONTROLS

For more detailed descriptions plus examples using these and other controls, see the Microsoft
online help. You can fi nd a reference for System.Windows.Controls classes at msdn.microsoft
.com/system.windows.controls.aspx . You can fi nd a reference for the System.Windows
.Controls.Primitives classes, which include base classes used by other controls, at msdn.microsoft
.com/system.windows.controls.primitives.aspx .

For much more information about WPF controls and WPF in general, see my book WPF
Programmer ’ s Reference . You can learn more about the book at www.vb - helper.com/wpf.htm

bapp08.indd 1040bapp08.indd 1040 12/31/09 6:06:57 PM12/31/09 6:06:57 PM

Visual Basic Power Packs

When Visual Basic .NET fi rst appeared, it was missing many features that developers had
found extremely useful in Visual Basic 6. Power Packs were invented to provide objects
and tools to fi ll the need for these missing tools and to make programming easier and more
productive in general.

This appendix describes Visual Basic Power Packs provided by Microsoft and others that you
make fi nd useful.

It also briefl y describes some older Power Packs that were available from the GotDotNet web
site. Although these were written in an older version of Visual Basic .NET, they may still be
useful, at least as inspiration for tools you may want to build.

Finally, this appendix explains where you can fi nd the Power Toys Pack Installer, a tool that
lets you view, download, and install the latest Power Toys for Visual Studio.

MICROSOFT POWER PACKS

Originally Microsoft provided its Power Packs as a download but in Visual Basic 2010 they
are included within Visual Basic. That doesn ’ t mean you can instantly use them, however. By
default, the Power Pack is installed but its tools are not included in new Visual Basic projects.

To use these tools, start a new project, open Solution Explorer, and double - click My Project
to open the project property pages. On the References tab, click the Add button and add a
reference to Microsoft.VisualBasic.PowerPacks.vs. This allows you to use the tools in your
code and places the tools on the Windows Forms Designer ’ s Toolbox with the other controls.

The Microsoft Visual Basic Power Packs 3.0 download includes DataRepeater, line and shape
controls, plus a PrintForm and Printer Compatibility Library. The printer tools are mostly
intended to help developers upgrade applications from Visual Basic 6 to Visual Basic .NET but
they can be useful for new Visual Basic 2010 programs, too. The following sections describe
the Power Pack tools in greater detail. For more information about these tools, go to the
Microsoft Power Packs home page msdn.microsoft.com/vbasic/aa701257.aspx .

I

bapp09.indd 1041bapp09.indd 1041 12/31/09 6:07:36 PM12/31/09 6:07:36 PM

1042 ❘ APPENDIX I VISUAL BASIC POWER PACKS

Instead of going directly to the Power Packs home page, you may want to start
at the Visual Basic Developer Center (msdn.microsoft.com/vbasic). It should
always contain a link to the latest Power Packs home page in addition to other
useful Visual Basic resources.

DataRepeater

The DataRepeater control allows you to defi ne a template of controls to display a piece of
data. The repeater then repeats your template for each row in a data source and displays the result
in a scrollable container.

Line and Shape Controls

The LineShape, OvalShape, and RectangleShape controls let you easily place lines, ovals, and
rectangles on a form without using pens, brushes, and Graphics objects.

Properties let you set the controls ’ pens and brushes at design time. The controls support events
such as Click and DoubleClick, and many of the graphical methods provided in the System.Drawing
namespace. The OvalShape and RectangleShape controls even support linear gradient brushes that
let you add interesting graphical effects at design time.

Printer Compatibility Library

In Visual Basic 6 and earlier versions, programs used the Printer object to generate printouts.
Programs used the object ’ s properties to defi ne printing characteristics, and called its methods to
draw on the printed page. Methods let you draw shapes, text, and images. Other methods let you
start a new page, cancel the print document, or fi nish printing and send the results to the printer.

Visual Basic .NET uses a very different printing model. Instead of calling a Printer object ’ s
methods, the program creates a PrintDocument object and then responds to that object ’ s events.
When the object needs to generate a page, it raises an event and the program responds. Instead of
actively telling the Printer object what to do, the program reactively responds to requests from the
PrintDocument object.

The Printer Compatibility Library provides a way for Visual Basic .NET applications to print in a
manner that is similar to the one used by Visual Basic 6. The library defi nes a Printer class. You can
create a new Printer object and then use it much as you would use Visual Basic 6 ’ s Printer object.

See Chapter 34 for more information on printing in Visual Basic 2010.

My book Expert One - on - One Visual Basic Design and Development (Stephens, Wrox, 2005)
includes a chapter on printing that explains how to print images of forms much as the PrintForm
Power Pack component does. It also shows how to wrap text so it fl ows around images on a printed
page and how to use metafi les to let a program print procedurally rather than by responding to
events. For more information, see the book ’ s web site at www.wrox.com or www.vb - helper.com/
one_on_one.htm.

bapp09.indd 1042bapp09.indd 1042 12/31/09 6:07:41 PM12/31/09 6:07:41 PM

PrintForm Component

In Visual Basic 6 and earlier versions, the Form control have a PrintForm method that sends an
image of the form to the printer. The result is a bitmap image that usually looks grainy on the
printout. It does not take full advantage of the printer ’ s high resolution, and it doesn ’ t add extra
data that can ’ t fi t on the monitor but that can fi t on a printout.

However, PrintForm is extremely easy to use. The program simply calls the form ’ s PrintForm
method. This is much simpler than generating a high - resolution printout, so developers often use
it to give early versions of an application a printing capability. For many applications, PrintForm is
good enough, and it gives users a WYSIWYG (what you see is what you get) printing tool, so that ’ s
all the program needs.

The PrintForm component enables a Visual Basic .NET application to print a form ’ s image quickly
and easily.

CAPTURE OR PRINT

Note also that you can use the Form object ’ s DrawToBitmap method to capture
an image of the form in a bitmap. You can then print the image, display a print
preview, save it into a fi le, or do anything else that you can do with a bitmap. For
an example, see www.vb - helper.com/howto_2005_drawtobitmap.html . That
example was written in Visual Basic 2005 but works in later versions, too.

GOTDOTNET POWER PACK

The GotDotNet Visual Basic Power Pack includes seven useful controls. While they were written
in Visual Basic 2003, they can still be useful. The Power Pack comes with source code so you
can upgrade them to Visual Basic 2010 or use their code as a starting point for building your
own controls.

The following list summarizes the seven controls:

BlendPanel — Provides a background with linear gradient shading. Note that the WPF
LinearGradientBrush class provides a similar, but more fl exible, effect. Other WPF classes
such as RadialGradientBrush provide even more shading features.

UtilityToolbar — A toolbar that has a look and feel similar to the Microsoft Internet
Explorer toolbar.

ImageButton — A button with a transparent background. You can use it, for example, to
display a round button over a gradient shaded, or complex background, without messing up
the background.

➤

➤

➤

GotDotNet Power Pack ❘ 1043

bapp09.indd 1043bapp09.indd 1043 12/31/09 6:07:42 PM12/31/09 6:07:42 PM

1044 ❘ APPENDIX I VISUAL BASIC POWER PACKS

NotificationWindow — Displays text and graphics in a popup notifi cation window.

TaskPane — A container that provides collapsible panes similar to the WPF
Expander control.

FolderViewer — Displays a hierarchical view of a directory tree.

FileViewer — Displays a list of the fi les in a directory.

Unfortunately, Microsoft closed the GotDotNet web site in 2007. Before the site disappeared,
however, I saved a copy of the Power Pack. You can get more information and download it at www
.vb - helper.com/tip_gotdotnet_powerpack.html .

POWER TOYS PACK INSTALLER

The Power Toys Pack Installer is a tool that lets you view, download, and install the latest Power
Toys for Visual Studio. The “ toys ” include code snippets, starter kits, examples, and other tools
divided into categories such as Visual Basic 2005, Visual Basic 6.0, C#, Printing, Interop,
and Debugging.

You can learn more about the installer and download it at www.codeplex.com/PackInstaller .

REFACTOR!

Refactor! is a free plug - in developed by Developer Express Inc. that provides refactoring tools that
can help you rearrange and restructure your code. For example, they can extract a section of code
into a new routine, reorder a routine ’ s parameters, or convert methods to properties and vice versa.

You can fi nd a link to information about Refactor! at the Basic Developer Center. You
can also learn about it on Developer Express ’ s Refactor! web page www.devexpress
.com/Products/Visual_Studio_Add - in/VBRefactor .

EXPRESS STRESS

Unfortunately Refactor! doesn ’ t work with the free Visual Basic Express Edition.
If you ’ re using the Express Edition, you ’ ll have to look for other refactoring tools.

➤

➤

➤

➤

bapp09.indd 1044bapp09.indd 1044 12/31/09 6:07:42 PM12/31/09 6:07:42 PM

Form Objects

This appendix describes the most useful properties, methods, and events provided by the
Windows Form class.

The Form class inherits indirectly from the Control class (Control is the Form class ’ s
“ great - grandparent ”), so in many ways, a form is just another type of control. Except where
overridden, Form inherits the properties, methods, and events defi ned by the Control class.
Chapter 9, “ Using Windows Forms Controls, ” discusses some of the more useful properties,
methods, and events provided by the Control class and most of those apply to the Form class
as well. Appendix A, “ Useful Control Properties, Methods, and Events, ” summarizes the
Control class ’ s most useful properties.

PROPERTIES

The following table describes some of the most useful Form properties.

PROPERTY DESCRIPTION

AcceptButton Determines the button that clicks when the user presses the Enter

key. This button basically gives the form a default action. Most

forms used as dialog boxes should have an Accept button and a

Cancel button (see the CancelButton property described shortly).

This makes the form more accessible to the visually impaired and

is more effi cient for users who prefer to use the keyboard.

ActiveControl Gets the form’s currently active control.

ActiveForm Gets the application’s currently active form. If an MDI (Multiple

Document Interface) child form is active, this returns the active

form’s MDI parent.

continues

J

bapp10.indd 1045bapp10.indd 1045 12/31/09 6:08:29 PM12/31/09 6:08:29 PM

1046 ❘ APPENDIX J FORM OBJECTS

PROPERTY DESCRIPTION

ActiveMdiChild Gets the MDI parent form’s currently active MDI child form.

AllowDrop Determines whether the form processes drag-and-drop events.

See Chapter 23, “Drag and Drop, and the Clipboard,” for more

information on drag-and-drop tasks.

Anchor Determines which edges of the form are anchored to the edges of

its container. This lets MDI child forms resize with their MDI parents.

AutoScroll Determines whether the form automatically provides scroll bars

when it is too small to display all of the controls it contains.

AutoScrollMargin If AutoScroll is True, the control will provide scroll bars if necessary

to display its controls plus this much margin.

AutoScrollPosition Adjusts the AutoScroll scroll bars so this point on the form is

placed at the upper - left corner of the visible area (if possible).

For example, if a button has location (100, 20), the statement

AutoScrollPosition = New Point(100, 20) scrolls the form

so the button is in the upper - left corner of the visible area.

BackColor Determines the form ’ s background color.

BackgroundImage Determines the image displayed in the form ’ s background.

BackgroundImageLayout Determines how the BackgroundImage is displayed. This can be

None (the image is displayed at up to normal scale, or compressed,

if necessary, to make it fi t vertically or horizontally), Tile (the image

is tiled to fi ll the form), Center (the image is centered on the form

at up to normal scale, or compressed, if necessary, to make it fi t

vertically or horizontally), Stretch (the image is resized to fi ll the form

exactly), or Zoom (the image is resized to fi ll the form as much as

possible without distorting it).

Bottom Returns the distance between the form ’ s bottom edge and the top

edge of its container.

Bounds Determines the form ’ s size and location within its container. These

bounds include the form ’ s client and non - client areas (such as the

borders and caption area).

CancelButton Determines the button that clicks when the user presses the Escape

key. This button basically gives the form a cancel action. If the form

is being displayed modally, clicking this button either manually or by

pressing Escape automatically closes the form.

(continued)

bapp10.indd 1046bapp10.indd 1046 12/31/09 6:08:32 PM12/31/09 6:08:32 PM

PROPERTY DESCRIPTION

Capture Determines whether the form has captured mouse events. While

this is True, all mouse events go to the form ’ s event handlers. For

example, pressing the mouse button sends the form a MouseDown

event even if the mouse is over a control on the form or even if it is

off of the form completely.

ClientRectangle Returns a Rectangle object representing the form ’ s client area.

ClientSize Gets or sets a Size object representing the client area ’ s size. If you set

this value, the form automatically adjusts to make the client area this

size while allowing room for its non - client areas (such as borders and

title bar). For example, the following statement makes the form just

big enough to display the txtNotes control within the client area:

Me.ClientSize = New Size(

 lblNotes.Left + lblNotes.Width,

 lblNotes.Top + lblNotes.Height)

ContainsFocus Returns True if the form or one of its controls has the input focus.

ContextMenuStrip Gets or sets the form ’ s context menu. If the user right - clicks the

form, Visual Basic automatically displays this menu. Note that

controls on the form share this menu unless they have context

menus of their own. Also note that some controls have their

own context menus by default. For example, a TextBox

displays a Copy, Cut, Paste menu, unless you explicitly set its

ContextMenu property.

ControlBox Determines whether the form displays a control box (the Minimize,

Maximize, Restore, and Close buttons) on the right side of its

caption area.

Controls Returns a collection containing references to all the controls on the

form. This includes only the controls contained directly within the

form, and not controls contained within other controls. For example,

if a form contains a GroupBox that holds several TextBox controls,

only the GroupBox is listed in the form ’ s Controls collection. You

would need to search the GroupBox control ’ s Controls collection to

fi nd the TextBox controls.

Cursor Determines the cursor displayed by the mouse when it is over

the form.

DesktopBounds Determines the form ’ s location and size as a Rectangle.

DesktopLocation Determines the form ’ s location as a Point.

continues

Properties ❘ 1047

bapp10.indd 1047bapp10.indd 1047 12/31/09 6:08:32 PM12/31/09 6:08:32 PM

1048 ❘ APPENDIX J FORM OBJECTS

PROPERTY DESCRIPTION

DialogResult Gets or sets the form ’ s dialog box result. If code displays the form

modally using its ShowDialog method, the method returns

the DialogResult value the form has when it closes. Setting the

form ’ s DialogResult value automatically closes the dialog box.

Triggering the form ’ s CancelButton automatically sets DialogResult

to Cancel and closes the dialog box.

DisplayRectangle Gets a Rectangle representing the form ’ s display area. This is the area

where you should display things on the form. In theory, this might

not include all of the client area and could exclude form decorations,

although in practice it seems to be the same as ClientRectangle.

Enabled Determines whether the form will respond to user events. If the

form is disabled, all of its controls are disabled and drawn grayed

out. The user can still resize the form and its controls ’ Anchor

and Dock properties still rearrange the controls accordingly. The

user can also click the form ’ s Minimize, Maximize, Restore, and

Close buttons. Note that you cannot display a form modally using

ShowDialog if it is disabled.

Font Determines the form ’ s font.

ForeColor Determines the foreground color defi ned for the form.

FormBorderStyle Determines the form ’ s border style. This can be None,

FixedSingle, Fixed3D, FixedDialog, Sizeable, FixedToolWindow, or

SizeableToolWindow.

Handle Returns the form ’ s integer window handle (hWnd). You can pass

this value to API functions that work with window handles. Many of

the API functions that are necessary in Visual Basic 6 are no longer

needed in Visual Basic .NET because their functions have been

incorporated into the .NET Framework, but there are still occasions

when the form ’ s handle is useful.

HasChildren Returns True if the form contains child controls.

Height Determines the form ’ s height.

HelpButton Determines whether the form displays a Help button with a question

mark in the caption area to the left of the close button. The button is

only visible if the MaximizeBox and MinimizeBox properties are both

False. If the user clicks the Help button, the mouse pointer turns into

a question mark arrow. When the user clicks the form, Visual Basic

raises the form ’ s HelpRequested event. The form can provide help

based on the location of the click and, if it provides help, it should

set the event handler ’ s hlpevent.Handled parameter to True.

(continued)

bapp10.indd 1048bapp10.indd 1048 12/31/09 6:08:32 PM12/31/09 6:08:32 PM

PROPERTY DESCRIPTION

Icon Determines the form ’ s icon displayed in the left of the form ’ s caption

area, in the taskbar, and by the Task Manager. Typically, this icon

should contain images at the sizes 16 � 16 pixels and 32 � 32

pixels, so diff erent displays can use an image with the correct size

without resizing.

IsMdiChild Returns True if the form is an MDI child form. To make an MDI

application, set IsMdiContainer = True for the MDI parent form. Then

display a child form, as shown in the following code. In the child

form, IsMdiChild will return True.

Dim child_form As New MyChildForm ()

child_form.MdiParent = MdiParentForm

child_form.Show

IsMdiContainer Returns True if the form is an MDI parent form. See the description

of IsMdiChild for more information.

KeyPreview Determines whether the form receives key events before they are

passed to the control with the input focus. If KeyPreview is True, the

form ’ s key event handlers can see the key, take action, and hide

the key from the control that would normally receive it, if necessary.

For example, the following statement in a KeyDown event handler

would close the form if the user presses Escape, no matter what

control has the focus:

If e.Keys = Keys.Escape Then Me.Close

Left Determines the distance between the form ’ s left edge and the left

edge of its container.

Location Determines the coordinates of the form ’ s upper - left corner.

MainMenuStrip Gets or sets the form ’ s main menu.

MaximizeBox Determines whether the form displays a Maximize button on the

right of its caption area.

MaximumSize This Size object determines the maximum size the form can take.

MdiChildren Returns an array of forms that are this form ’ s MDI children.

MdiParent Gets or sets the form ’ s MDI parent form.

MinimizeBox Determines whether the form displays a Minimize button on the

right of its caption area.

MinimumSize This Size object determines the minimum size the form can take.

continues

Properties ❘ 1049

bapp10.indd 1049bapp10.indd 1049 12/31/09 6:08:33 PM12/31/09 6:08:33 PM

1050 ❘ APPENDIX J FORM OBJECTS

PROPERTY DESCRIPTION

Modal Returns True if the form is displayed modally.

Name Gets or sets the form ’ s name. Initially, this is the form ’ s class name,

but your code can change it to anything, possibly even duplicating

another form ’ s name.

Opacity Determines the form ’ s opacity level between 0.0 (transparent) and

1.0 (opaque).

OwnedForms Returns an array listing this form ’ s owned forms. To make this form

own another form, call this form ’ s AddOwnedForm method, passing

it the other form. Owned forms are minimized and restored with

the owner and can never lie behind the owner. Typically, they are

used for things like Toolboxes and search forms that should remain

above the owner form.

Region Gets or sets the region that defi nes the area that the form can

occupy. Pieces of the form that lie outside of the region are clipped.

For more information on regions, see Chapter 31, “ Brushes, Pens,

and Paths. ”

Right Returns the distance between the form ’ s right edge and the left

edge of its container.

ShowIcon Determines whether the form displays an icon in its title bar. If this is

False, the system displays a default icon in the taskbar and

Task Manager if ShowInTaskbar is True.

ShowInTaskbar Determines whether the form is displayed in the taskbar and Task

Manager.

Size Gets or sets a Size object representing the form ’ s size, including

client and non - client areas.

SizeGripStyle Determines how the resize grip is shown in the form ’ s lower - right

corner. This can be Show, Hide, or Auto.

StartPosition Determines the form ’ s position when it is fi rst displayed at runtime.

This can be Manual (use the size and position specifi ed by the

form ’ s properties), CenterScreen (center the form on the screen

taking the taskbar into account), WindowsDefaultLocation (use a

default position defi ned by Windows and use the form ’ s specifi ed

size), and WindowsDefaultBounds (use Windows default position

and size).

Tag Gets or sets an object associated with the form. You can use this for

whatever purpose you see fi t.

(continued)

bapp10.indd 1050bapp10.indd 1050 12/31/09 6:08:34 PM12/31/09 6:08:34 PM

PROPERTY DESCRIPTION

Text Determines the text displayed in the form ’ s caption.

Top Determines the distance between the form ’ s top edge and the top

edge of its container.

TopMost Determines whether the form is a topmost form. A topmost form

always sits above all other non - topmost forms, even when the other

forms have the input focus.

TransparencyKey Gets or sets a color that determines the areas of the form that

are shown as transparent. This applies to the form itself and any

controls it contains. For example, if you set TransparencyKey to the

default form and control color Colors.Control, the whole form and

the bodies of many of its controls are invisible, so you will see text

and borders fl oating above whatever forms lie behind.

UseWaitCursor Determines whether the form is currently displaying the wait cursor.

Visible Determines whether the form is visible. If the form is not visible, the

user cannot interact with it. If you set Visible = False, the form ’ s icon

is also removed from the taskbar and Task Manager.

Width Determines the form ’ s width.

WindowState Gets or sets the form ’ s state. This can be Normal, Minimized,

or Maximized.

METHODS

The following table describes some of the most useful Form methods.

METHOD DESCRIPTION

Activate Activates the form and gives it the focus. Normally, this pops the form

to the top. Note that forcing a form to the top takes control of the

desktop away from the user, so you should use this method sparingly.

For example, if the user dismisses one form, you might activate the

next form in a logical sequence. You should not activate a form to get

the user ’ s attention every few minutes.

AddOwnedForm Adds an owned form to this form. Owned forms are minimized and

restored with the owner and can never lie behind the owner. Typically,

they are used for things like Toolboxes and search forms that should

remain above the owner form.

continues

Methods ❘ 1051

bapp10.indd 1051bapp10.indd 1051 12/31/09 6:08:34 PM12/31/09 6:08:34 PM

1052 ❘ APPENDIX J FORM OBJECTS

METHOD DESCRIPTION

BringToFront Brings the form to the top of the z - order. This applies only to other

forms in the application. This form will pop to the top of other forms in

this program, but not forms in other applications.

Close Closes the form. The program can still prevent the form from closing

by catching the FormClosing event and setting e.Cancel to True.

Contains Returns True if a specifi ed control is contained in the form. This

includes controls inside GroupBox controls, Panel controls, and other

containers, which are not listed in the form ’ s Controls collection.

CreateGraphics Creates a Graphics object that the program can use to draw on the

form ’ s surface. For example, the following code draws a circle when

the user presses a button:

Private Sub Button1_Click(

 ByVal sender As System.Object,

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim gr As Graphics =

 Me.CreateGraphics()

 gr.FillEllipse(Brushes.Orange,

 10, 10, 210, 220)

 gr.DrawEllipse(Pens.Red,

 10, 10, 210, 220)

End Sub

Note that the Paint event handler provides a Graphics object in

its e.Graphics parameter when the form needs to be redrawn.

You should use that object rather than a new one returned by

CreateGraphics while inside a Paint event handler. Otherwise, the

Paint event handler ’ s version will draw over anything that you draw

using the object returned by CreateGraphics.

DoDragDrop Begins a drag - and - drop operation. For more information on drag and

drop, see Chapter 23.

(continued)

bapp10.indd 1052bapp10.indd 1052 12/31/09 6:08:35 PM12/31/09 6:08:35 PM

METHOD DESCRIPTION

GetChildAtPoint Returns a reference to the child control at a specifi c point. Note

that the control is the outermost control at that point. For example,

if a GroupBox contains a Button and you call GetChildAtPoint for

a point above the Button, GetChildAtPoint returns the GroupBox.

To fi nd the Button, you would need to use the GroupBox control ’ s

GetChildAtPoint method. Note also that the position of the Button

within the GroupBox is relative to the GroupBox control ’ s origin, so

you would need to subtract the GroupBox control ’ s position from the

X and Y coordinates of the point relative to the form ’ s origin.

GetNextControl Returns the next control in the tab order. Parameters indicate the

control to start from and whether the search should move forward or

backward through the tab order.

Hide Hides the form. This sets the form ’ s Visible property to False.

Invalidate Invalidates some or all of the form ’ s area and generates a Paint event.

LayoutMdi If this form is an MDI parent form, arranges its MDI child forms.

This method can take the parameters ArrangeIcons, Cascade,

TileHorizontal, and TileVertical. Typically, this command is used in a

menu titled Window.

PointToClient Converts a point from screen coordinates into the form ’ s coordinate

system.

PointToScreen Converts a point from the form ’ s coordinate system into screen

coordinates.

RectangleToClient Converts a rectangle from screen coordinates into the form ’ s

coordinate system.

RectangleToScreen Converts a rectangle from the form ’ s coordinate system into screen

coordinates.

Refresh Invalidates the form ’ s client area and forces it to redraw itself and its

controls.

RemoveOwnedForm Removes an owned form from this form ’ s OwnedForms collection.

ResetBackColor Resets the form ’ s BackColor property to its default value (Control).

This change is adopted by any controls on the form that do not have

their BackColor properties explicitly set.

ResetCursor Resets the form ’ s Cursor property to its default value (Default). This

change is adopted by any controls on the form that do not have their

Cursor properties explicitly set.

continues

Methods ❘ 1053

bapp10.indd 1053bapp10.indd 1053 12/31/09 6:08:35 PM12/31/09 6:08:35 PM

1054 ❘ APPENDIX J FORM OBJECTS

METHOD DESCRIPTION

ResetFont Resets the form ’ s Font property to its default value (8 - point regular

Microsoft Sans Serif). This change is adopted by any controls on the

form that do not have their Font properties explicitly set.

ResetForeColor Resets the form ’ s ForeColor property to its default value

(ControlText). This change is adopted by any controls on the form that

do not have their ForeColor properties explicitly set.

ResetText Resets the form ’ s Text property to its default value (an empty string).

Scale Resizes the form and the controls it contains by a scale factor. A

second overloaded version scales by diff erent amounts in the X and

Y directions. Note that this doesn ’ t change the controls ’ font sizes,

just their dimensions.

ScrollControlIntoView If the form has AutoScroll set to True, this scrolls to make the

indicated control visible.

SelectNextControl Activates the next control in the tab order. Parameters indicate

the control to start at, whether the search should move forward or

backward through the tab order, whether the search should include

only controls with TabStop set to True or all controls, whether to

include controls nested inside other controls, and whether

to wrap around to the fi rst/last control if the search passes the

last/fi rst control.

SendToBack Sends the form to the back of the z - order. This puts the form behind

all other forms in all applications, although it does not remove the
focus from this form .

SetAutoScrollMargin If AutoScroll is True, this method sets the AutoScroll margin. The

control will provide scroll bars if necessary to display its controls plus

this much margin.

SetBounds Sets some or all of the form ’ s bounds: X, Y, Width, and Height.

SetDesktopBounds Sets the form ’ s position and size in desktop coordinates. See

SetDesktopLocation for more information.

SetDesktopLocation Sets the form ’ s position in desktop coordinates. Desktop coordinates

include only the screen ’ s working area and do not include the area

occupied by the taskbar. For example, if the taskbar is attached to

the left edge of the screen, the point (0, 0) in screen coordinates is

beneath the taskbar . However, the point (0, 0) in desktop coordinates
is just to the right of the taskbar . If you set the form ’ s location to (0, 0),

part of the form is hidden by the taskbar. If you set the form ’ s desktop

location to (0, 0), the form is visible just to the right of the taskbar.

(continued)

bapp10.indd 1054bapp10.indd 1054 12/31/09 6:08:36 PM12/31/09 6:08:36 PM

METHOD DESCRIPTION

Show Displays the form. This has the same eff ect as setting the form ’ s

Visible property to True.

ShowDialog Displays the form as a modal dialog box. The user cannot interact

with other parts of the application before this form closes. Note that

some other processes may still be running. For example, a Timer

control on another form still raises Tick events and the program can

still respond to them.

EVENTS

The following table describes some of the most useful Form events.

EVENT DESCRIPTION

Activated Occurs when the form activates.

Click Occurs when the user clicks the form. Normally, if the user clicks a control,

the control rather than the form receives the Click event. If the form ’ s

Capture property is set to True, however, the event goes to the form.

ControlAdded Occurs when a new control is added to the form.

ControlRemoved Occurs when a control is removed from the form.

Deactivate Occurs when the form deactivates.

DoubleClick Occurs when the user double - clicks the form. Normally, if the user double -

clicks a control, the control rather than the form receives the DoubleClick

event. If the form ’ s Capture property is set to True, however, the fi rst click

goes to the form and the second goes to the control.

DragDrop Occurs when the user drops data onto the form. The form should process the

data in an appropriate way. See Chapter 23 for more information on drag -

and - drop operations.

DragEnter Occurs when a drag - and - drop operation moves over the form. The form

should indicate what drag operations it will allow and optionally display

a visible indication that the drag is over it. Refer to Chapter 23 for more

information on drag - and - drop operations.

DragLeave Occurs when a drag - and - drop operation leaves the form. If the form is

displaying a visible indicator of the pending drop, it should remove that indicator

now. See Chapter 23 for more information on drag - and - drop operations.

continues

Events ❘ 1055

bapp10.indd 1055bapp10.indd 1055 12/31/09 6:08:37 PM12/31/09 6:08:37 PM

1056 ❘ APPENDIX J FORM OBJECTS

EVENT DESCRIPTION

DragOver Occurs repeatedly as long as a drag - and - drop operation is being performed

over the form. The form can use this event to display a more complex visible

indicator of the pending drop. For example, it might show where on the form

the data will be dropped or it might highlight the area on the form under the

mouse. See Chapter 23 for more information on drag - and - drop operations.

FormClosed Occurs when the form is closed. The program can still access the form ’ s

properties, methods, and controls, but it is going away. See also the

FormClosing event. Note that if the program calls Application.Exit, the form ’ s

FormClosed and FormClosing events do not occur. If you want the program

to free resources before the form disappears, it should do so before calling

Application.Exit.

FormClosing Occurs when the form is about to close. The program can cancel the close

(for example, if some data has not been saved) by setting the even handler ’ s

e.Cancel parameter to True.

GiveFeedback Occurs when a drag moves over a valid drop target. The source can take

action to indicate the type of drop allowed. For example, it might change the

drag cursor displayed. See Chapter 23 for more information on drag -

and - drop operations.

GotFocus Occurs when focus moves into the form.

HelpRequested Occurs when the user requests help from the form, usually by pressing

F1 or by pressing a context - sensitive Help button (see the HelpButton

property) and then clicking a control on the form. Help requests move up

through control containers until a HelpRequested event sets its hlpevent

.Handled parameter to True. For example, suppose that the user sets focus

to a TextBox contained in the form and presses F1. The TextBox control ’ s

HelpRequested event handler executes. If that routine doesn ’ t set hlpevent

.Handled to True, the event bubbles up to the TextBox control ’ s container,

the form, and its HelpRequested event handler executes.

KeyDown Occurs when the user presses a keyboard key down.

KeyPress Occurs when the user presses and releases a keyboard key.

KeyUp Occurs when the user releases a keyboard key.

Layout Occurs when the form should reposition its child controls. If your code needs

to perform custom repositioning, this is the event where it should do so.

Load Occurs after the form is loaded but before it is displayed. You can perform

one - time initialization tasks here.

(continued)

bapp10.indd 1056bapp10.indd 1056 12/31/09 6:08:37 PM12/31/09 6:08:37 PM

EVENT DESCRIPTION

LostFocus Occurs when the focus moves out of the form.

MdiChildActivate Occurs when an MDI child form contained in this MDI parent form is

activated or closed. This activation only applies to the MDI children within

this form. For example, setting focus to a diff erent form or application and

then back to the MDI child does not raise this event, but switching back and

forth between two MDI children does. This event basically occurs when

the MDI parent ’ s active MDI child changes. You can catch the event to

update the MDI parent ’ s menus or perform other actions when the active

child changes.

MouseClick Occurs when the user clicks the form. You should consider the Click event to

be on a logically higher level than MouseClick. For example, the Click event

may be triggered by actions other than an actual mouse click (such as the

user pressing the Enter key).

MouseDoubleClick Occurs when the user double - clicks the form. You should consider the

DoubleClick event to be on a logically higher level than MouseDoubleClick.

MouseDown Occurs when the user presses the mouse down over the form. Also see the

Capture property.

MouseEnter Occurs when the mouse fi rst moves so it is over the form. If the mouse moves

over one of the form ’ s controls, that counts as leaving the form, so when it

moves back over an unoccupied part of the form, it raises a MouseEnter event.

MouseHover Occurs when the mouse remains stationary over the form for a while. This

event is raised once when the mouse fi rst hovers and then is not raised

again until the mouse leaves the form and returns. Note that the mouse

moving over one of the form ’ s controls counts as leaving.

MouseLeave Occurs when the mouse leaves the form. Note that the mouse moving over

one of the form ’ s controls counts as leaving.

MouseMove Occurs when the mouse moves while over the form.

MouseUp Occurs when the user releases the mouse button. When the user presses

a mouse button down, the form will capture subsequent mouse events

until the user releases the button. While the capture is in place, the form

receives MouseMove events, even if the mouse is moving off of the form. It

will receive a MouseHover event, even if the mouse is off of the form, if no

such event has been raised since the last time the mouse moved over the

form. When the user fi nally releases the button, the form receives a MouseUp

event and then, if the mouse is no longer over the form, a MouseLeave event.

continues

Events ❘ 1057

bapp10.indd 1057bapp10.indd 1057 12/31/09 6:08:38 PM12/31/09 6:08:38 PM

1058 ❘ APPENDIX J FORM OBJECTS

EVENT DESCRIPTION

MouseWheel Occurs when the user moves the mouse wheel. The event ’ s e.X and e.Y

parameters give the mouse ’ s current position. The e.Delta parameter gives

the signed distance by which the wheel has been rotated. Currently, this

is defi ned as 120 detents per notch of the wheel. (A detent is a unit of the

wheel ’ s rotation. A notch is the amount by which the wheel rotates with a

discrete click. So every time you turn the wheel 1 notch, e.Delta changes

by 120 detents.) Standards dictate that you should scroll data when the

accumulated delta reaches plus or minus 120 detents, and that you should

then scroll the data by the number of lines given by SystemInformation

.MouseWheelScrollLines (currently this is 3). If higher - resolution mouse

wheels are added some day, a notch might send a value smaller than 120,

and you could update the data more often, but you should keep the same

ratio: SystemInformation.MouseWheelScrollLines lines per 120 detents.

Move Occurs when the form is moved.

Paint Occurs when part of the form must be redrawn. You can use the

e.ClipRectangle parameter to see what area needs to be drawn. For very

complicated drawings, you may be able to draw more quickly if you only

draw the area indicated by e.ClipRectangle. Note also that Visual Basic

clips drawings outside of this rectangle and may clip some areas inside

this rectangle that do not need to be redrawn. That makes drawing faster

in some cases. The idea here is that part of the form has been covered and

exposed so only that part must be redrawn. If you need to adjust the drawing

when the form is resized, you should invalidate the form in the Resize event

handler to force a redraw of the whole form.

QueryContinueDrag Occurs during a drag - and - drop operation (with this form as the drag source)

when the keyboard or mouse button state has changed. The form can

decide to continue the drag, cancel the drag, or drop the data immediately.

See Chapter 23 for more information on drag - and - drop operations.

Resize Occurs when the form is resized.

ResizeBegin Occurs when the user starts resizing the form.

ResizeEnd Occurs when the user has fi nished resizing the form.

SizeChanged Occurs when the form is resized.

When focus moves into and out of a form, the sequence of events is: Activated, GotFocus,
Deactivate, Validating, Validated, LostFocus.

Typically, when the user clicks the form, the sequence of events is: MouseDown, Click, MouseClick,
MouseUp.

(continued)

bapp10.indd 1058bapp10.indd 1058 12/31/09 6:08:38 PM12/31/09 6:08:38 PM

Typically, when the user double - clicks the form, the sequence of events is: MouseDown, Click,
MouseClick, MouseUp, MouseDown, DoubleClick, MouseDoubleClick, MouseUp.

When code resizes the form, the sequence of events is: Resize, SizeChanged.

When the user resizes the form, the sequence of events is: ResizeBegin, Resize, SizeChanged, Resize,
SizeChanged, . . . , ResizeEnd.

PROPERTY - CHANGED EVENTS

The Form class provides several events that fi re when certain form properties change. The name of
each of these events has the form PropertyName Changed where PropertyName is the name of the
corresponding property. For example, the BackColorChanged event fi res when the form ’ s BackColor
property changes.

The following is a list of these events.

BackColorChanged MaximumSizeChanged

BackgroundImageChanged MinimumSizeChanged

ContextMenuChanged ParentChanged

CursorChanged SizeChanged

DockChanged StyleChanged

EnabledChanged SystemColorsChanged

FontChanged TextChanged

ForeColorChanged VisibleChanged

LocationChanged

The names of most of these controls are self - explanatory, so they are not described here. The
exception is the SystemColorsChanged event. This occurs when the system ’ s colors are changed
either by the user or programmatically.

For example, suppose that you want the form to draw using its ForeColor property and you want
that property to match the active title bar text color. Then, you could use the following code to
update ForeColor when the user changed the system colors:

Private Sub Form2_SystemColorsChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles MyBase.SystemColorsChanged
 Me.ForeColor = SystemColors.ActiveCaptionText
End Sub

Note that Visual Basic invalidates the form after raising the SystemColorsChanged event, so the
form immediately repaints itself using the new settings.

Property - Changed Events ❘ 1059

bapp10.indd 1059bapp10.indd 1059 12/31/09 6:08:39 PM12/31/09 6:08:39 PM

bapp10.indd 1060bapp10.indd 1060 12/31/09 6:08:39 PM12/31/09 6:08:39 PM

Classes and Structures

This appendix provides information about class and structure declarations.

CLASSES

The syntax for declaring a class is:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name [(Of type_list)]
 [Inherits parent_class]
 [Implements interface]
 statements
End Class

The attribute_list can include any number of attribute specifi ers separated by commas.

The accessibility clause can take one of the following values: Public, Protected, Friend,
Protected Friend, and Private.

The Partial keyword indicates that this is only part of the class declaration and that the
program may include other partial declarations for this class.

The Shadows keyword indicates that the class hides the defi nition of some other entity in the
enclosing class ’ s base class.

The inheritance clause can take the value MustInherit or NotInheritable.

The type_list clause defi nes type parameters for a generic class. For information on generics,
see Chapter 29, “ Generics. ”

The Inherits statement tells which class this class inherits from. A class can include at most
one Inherits statement and, if present, this must be the fi rst non - comment statement after the
Class statement.

K

bapp11.indd 1061bapp11.indd 1061 12/31/09 6:12:57 PM12/31/09 6:12:57 PM

1062 ❘ APPENDIX K CLASSES AND STRUCTURES

The Implements statement specifi es an interface that the class implements. A class can implement
any number of interfaces. You can specify interfaces in separate Interface statements or in a single
statement separated by commas.

The following example declares a simple Person class and an Employee class that inherits from it:

Public Class Person

End Class

Public Class Employee
 Inherits Person

End Class

STRUCTURES

The syntax for writing a structure is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] _
Structure name [(Of type_list)]
 [Implements interface]
 statements
End Structure

The structure ’ s attribute_list , Partial, accessibility , Shadows, type_list , and Implements statements
are the same as those for classes. See the previous section for details.

The differences between a structure and a class are:

Structures cannot use the MustInherit or NotInheritable keyword (because you cannot
inherit from a structure).

Structures cannot use the Inherits clause.

Structures must contain at least one instance variable or event, which may be private.
Strangely, a property procedure is not enough.

Structures are value types , whereas classes are reference types . See Chapter 26, “ Classes
and Structures, ” for information on the consequences of this difference.

CONSTRUCTORS

A constructor is a special subroutine named New.

Class constructors can take any number of parameters. If you provide no constructors, Visual
Basic allows a default empty constructor that takes no parameters. If you provide any constructor,
Visual Basic does not provide a default empty constructor. If you want to allow the program to use
an empty constructor in that case, you must either provide one or provide a constructor with all
optional parameters.

➤

➤

➤

➤

bapp11.indd 1062bapp11.indd 1062 12/31/09 6:13:00 PM12/31/09 6:13:00 PM

Example program Constructors, which is available for download on the book ’ s web site, defi nes a
Person class that includes both empty and non - empty constructors, and demonstrates different ways
of creating and initializing objects.

Structure constructors are very similar to class constructors with two major exceptions. First, you
cannot make an empty structure constructor. Second, Visual Basic always provides a default empty
constructor, even if you give the structure other constructors.

EVENTS

The syntax for declaring an event is:

[accessibility] [Shadows] Event event_name (parameters)

The accessibility clause can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private.

Use the Shadows keyword to indicate that the event shadows an item with the same name in the
parent class. Any type of item can shadow any other type of item. For example, an event can
shadow a subroutine, function, or variable. This would be rather bizarre and confusing, but
it is possible.

The parameters clause specifi es the parameters that you will pass when raising the event. An
event handler catching the event will receive those parameters. Use ByRef parameters to allow
the event handler to provide feedback to the code that raises the event.

The syntax for raising an event is as follows:

RaiseEvent event_name (parameters)

The parameters that you pass to the event handler must match those declared in the
Event statement.

The following code shows pieces of a SeatAssignment class that raises a NameChanged event when
its Name property changes:

Public Class SeatAssignment
 Public Event NameChanged()
 ...
 Private m_Name As String
 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal value As String)
 m_Name = value
 RaiseEvent NameChanged()
 End Set
 End Property
 ...
End Class

Events ❘ 1063

bapp11.indd 1063bapp11.indd 1063 12/31/09 6:13:00 PM12/31/09 6:13:00 PM

bapp11.indd 1064bapp11.indd 1064 12/31/09 6:13:00 PM12/31/09 6:13:00 PM

L
LINQ

This appendix provides syntax summaries for the most useful LINQ methods. For more
detailed information, see Chapter 21, “ LINQ. ”

BASIC LINQ QUERY SYNTAX

The following text shows the typical syntax for a LINQ query:

From ... Where ... Order By ... Select ...

The following sections describe these four basic clauses. The sections after those describe
some of the other most useful LINQ clauses.

From

The From clause tells where the data comes from and defi nes the name by which it is known
within the LINQ query.

From var1 In data_source1 , var2 In data_source2 , ...

Examples:

Dim query1 = From cust As Customer In all_customers
Dim query2 = From stu In students, score In TestScores

Usually, if you select data from multiple sources, you will want to use a Where clause to join
the results from the sources.

Where

The Where clause applies fi lters to the records selected by the From clause. The syntax is:

Where conditions

bapp12.indd 1065bapp12.indd 1065 12/31/09 6:13:50 PM12/31/09 6:13:50 PM

1066 ❘ APPENDIX L LINQ

Use comparison operators (> , < , =), logical operators (Not, Or, AndAlso), object methods (ToString,
Length), and functions to build complex conditions.

For example, the following query selects student and test score data, matching students to their
test scores:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId

The following example selects only students with last names starting with S:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId AndAlso
 stu.LastName.ToUpper.StartsWith(“ S ”)

Order By

The Order By clause makes a query sort the selected objects. For example, the following query
selects students and their scores and orders the results by student last name followed by fi rst name:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId
 Order By stu.LastName, stu.FirstName

Add the Descending keyword to sort a fi eld in descending order. The following example orders the
results by descending TestAverage value:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId
 Order By stu.TestAverage Descending

Select

The Select clause lists the fi elds that the query should select into its result. If this is omitted, the
query selects all of the data in the data sources. You can add an alias to the result.

The following query selects customers ’ FirstName and LastName values concatenated and
gives the result the alias Name. It also selects the customers ’ AccountBalance value and gives it the
alias Balance.

Dim query = From cust In all_customers
 Select Name = cust.FirstName & “ “ & cust.LastName,
 Balance = Cust.AccountBalance

You can pass values form the data sources into functions or constructors. For example, suppose
the Person class has a constructor that takes fi rst and last names as parameters. Then the following
query returns a group of Person objects created from the selected customer data:

Dim query = From cust In all_customers
 Select New Person(cust.FirstName, cust.LastName)

bapp12.indd 1066bapp12.indd 1066 12/31/09 6:13:53 PM12/31/09 6:13:53 PM

Distinct

The Distinct keyword makes a query return only one copy of each result. The following example
selects the distinct CustId values from the all_orders list:

Dim query = From ord In all_orders
 Select ord.CustId
 Distinct

Join

The Join keyword selects data from multiple data sources matching up corresponding fi elds. The
following pseudo - code shows the Join command ’ s syntax:

From variable1 In datasource1
Join variable2 In datasource2
On variable1.field1 Equals variable2.field2

For example, the following query selects corresponding objects from the all_customers and all_
orders lists:

Dim query = From cust As Customer In all_customers
 Join ord In all_orders
 On cust.CustId Equals ord.CustId

Note that you can get a similar result by using a Where clause. The following query selects a similar
set of objects without using the Join keyword:

Dim query = From cust As Customer In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId

Group By

The Group By clause lets a program select data from a fl at, relational style format and build a
hierarchical arrangement of objects. The following code shows the basic Group By syntax:

Group items By value Into groupname = Group

Here, items is a list of items whose properties you want selected into the group, value tells LINQ on
what fi eld to group objects, and groupname gives a name for the group.

The following query selects objects from the all_orders list. The Group By statement makes the
query group orders with the same CustId value.

Dim query1 = From ord In all_orders
 Order By ord.CustId, ord.OrderId
 Group ord By ord.CustId Into CustOrders = Group

The result is an IEnumerable that contains objects with two fi elds. The fi rst fi eld is the CustId
value used to defi ne the groups (the value part in the syntax shown earlier). The second fi eld is an
IEnumerable named CustOrders that contains the group of order objects for each CustId value.

Basic LINQ Query Syntax ❘ 1067

bapp12.indd 1067bapp12.indd 1067 12/31/09 6:13:53 PM12/31/09 6:13:53 PM

1068 ❘ APPENDIX L LINQ

The following code shows how a program might display the results in a TreeView control:

Dim root1 As TreeNode = trvResults.Nodes.Add(“ Orders grouped by CustId ”)
For Each obj In query1
 ‘ Display the customer id.
 Dim cust_node As TreeNode = root1.Nodes.Add(“ Cust Id: “ & obj.CustId)

 ‘ List this customer ’ s orders.
 For Each ord In obj.CustOrders
 cust_node.Nodes.Add(“ OrderId: “ & ord.OrderId &
 “ , Date: “ & ord.OrderDate)
 Next ord
Next obj

Another common type of query uses the Group By clause to apply some aggregate function to the
items selected in a group. The following query selects order and order item objects, grouping each
order ’ s items and displaying each order ’ s total price:

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TotalPrice = Sum(ord_item.Quantity * ord_item.UnitPrice),
 OrderItems = Group

The following code shows how a program might display the results in a TreeView control named
trvResults:

Dim root1 As TreeNode = trvResults.Nodes.Add(“ Orders ”)
For Each obj In query1
 ‘ Display the customer id.
 Dim cust_node As TreeNode =
 root1.Nodes.Add(“ Order Id: “ & obj.ord.OrderId &
 “ , Total Price: “ & FormatCurrency(obj.TotalPrice))

 ‘ List this customer ’ s orders.
 For Each ord_item In obj.OrderItems
 cust_node.Nodes.Add(ord_item.Description & “ : “ &
 ord_item.Quantity & “ @ “ &
 FormatCurrency(ord_item.UnitPrice))
 Next ord_item
Next obj

Limiting Results

LINQ includes several keywords for limiting the results returned by a query.

Take makes the query keep a specifi ed number of results and discard the rest.

Take While makes the query keep selected results as long as some condition holds and then discard
the rest.

bapp12.indd 1068bapp12.indd 1068 12/31/09 6:13:53 PM12/31/09 6:13:53 PM

Skip makes the query discard a specifi ed number of results and keep the rest.

Skip While makes the query discard selected results as long as some condition holds and then
keep the rest.

The following code demonstrates each of these commands:

Dim q1 = From cust In all_customers Take 5
Dim q2 = From cust In all_customers Take While cust.FirstName.Contains(“ n ”)
Dim q3 = From cust In all_customers Skip 3
Dim q4 = From cust In all_customers Skip While cust.FirstName.Contains(“ n ”)

USING QUERY RESULTS

A LINQ query expression returns an IEnumerable containing the query ’ s results. A program can
iterate through this result and process the items that it contains.

If the selected data has a well - understood data type, such as strings or objects from a known class,
you can iterate through the result by using an explicitly typed looping variable. The following
example selects customer names and then displays them. The looping variable is explicitly
typed as a string.

Dim query = From cust In all_customers
 Select Name = cust.FirstName, cust.LastName
For Each cust_name As String In query
 Debug.WriteLine(cust_name)
Next cust_name

If the returned data type is less well understood, you can use a looping variable with inferred
data type. The following code selects customers and their orders. It then loops through the results
displaying order dates and numbers, together with the names of the customers who placed the
orders. The looping variable obj has an inferred type.

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId
 Order By ord.OrderDate

For Each obj In query
 Debug.WriteLine(obj.ord.OrderDate & vbTab & obj.ord.OrderId &
 vbTab & obj.cust.Name)
Next obj

LINQ FUNCTIONS

The following table summarizes LINQ extension methods that are not available from Visual Basic
LINQ query syntax.

LINQ Functions ❘ 1069

bapp12.indd 1069bapp12.indd 1069 12/31/09 6:13:54 PM12/31/09 6:13:54 PM

1070 ❘ APPENDIX L LINQ

FUNCTION PURPOSE

Aggregate Uses a function specifi ed by the code to calculate a custom aggregate.

DefaultIfEmpty Returns the query ’ s result or a default value if the query returns an

empty result.

Concat Concatenates two sequences into a new sequence.

Contains Returns True if the result contains a specifi c value.

ElementAt Returns an element at a specifi c position in the query ’ s result.

ElementAtOrDefault Returns an element at a specifi c position in the query ’ s result or a default

value if there is no such position.

Empty Creates an empty IEnumerable.

Except Returns the items in one IEnumerable that are not in a second

IEnumerable.

First Returns the fi rst item in the query ’ s result.

FirstOrDefault Returns the fi rst item in the query ’ s result or a default value if the query

contains no results.

Intersection Returns the intersection of two IEnumerable objects.

Last Returns the last item in the query ’ s result.

LastOrDefault Returns the last item in the query ’ s result or a default value if the query

contains no results.

Range Creates an IEnumerable containing a range of integer values.

Repeat Creates an IEnumerable containing a value repeated a specifi c number

of times.

SequenceEqual Returns True if two sequences are identical.

Single Returns the single item selected by the query.

SingleOrDefault Returns the single item selected by the query or a default value if the

query contains no results.

Union Returns the union of two IEnumerable objects.

bapp12.indd 1070bapp12.indd 1070 12/31/09 6:13:54 PM12/31/09 6:13:54 PM

The following table summarizes LINQ data type conversion functions.

FUNCTION PURPOSE

AsEnumerable Converts the result to IEnumerable(Of T).

AsQueryable Converts an IEnumerable to IQueryable.

OfType Removes items that cannot be cast into a specifi c type.

ToArray Places the results in an array.

ToDictionary Places the results in a Dictionary.

ToList Converts the result to List(Of T).

ToLookup Places the results in a Lookup (one - to - many dictionary).

LINQ TO XML

LINQ provides methods to move data in and out of XML.

LINQ Into XML

To select data into XML objects, use the special characters < %= and % > to indicate a “ hole ” within
the XML literal. Inside the hole, place a LINQ query.

For example, the following code builds an XElement object that contains Customer XML elements
for objects in the all_customers list:

Dim x_all As XElement =
 < AllCustomers >
 < %= From cust In all_customers
 Select New XElement(“ Customer ” ,
 New XAttribute(“ FirstName ” , cust.FirstName),
 New XAttribute(“ LastName ” , cust.LastName),
 New XText(cust.Balance.ToString(“ 0.00 ”)))
 % >
 < /AllCustomers >

LINQ Out Of XML

XML classes such as XElement provide LINQ functions that allow you to use LINQ queries on
them just as you can select data from IEnumerable objects.

The following code extracts the descendants of the x_all XElement object that have negative
balances. It selects each XML element ’ s FirstName and LastName attributes, and balance (saved in
the element ’ s value).

LINQ to XML ❘ 1071

bapp12.indd 1071bapp12.indd 1071 12/31/09 6:13:55 PM12/31/09 6:13:55 PM

1072 ❘ APPENDIX L LINQ

Dim select_all = From cust In x_all.Descendants(“ Customer ”)
 Where CDec(cust.Value) < 0
 Select FName = cust.Attribute(“ FirstName ”).Value,
 LName = cust.Attribute(“ LastName ”).Value,
 Balance = cust.Value

The following table summarizes LINQ methods supported by XElement.

FUNCTION RETURNS

Ancestors IEnumerable containing all ancestors of the element.

AncestorsAndSelf IEnumerable containing this element followed by all ancestors

of the element.

Attribute The element ’ s attribute with a specifi c name.

Attributes IEnumerable containing the element ’ s attributes.

Descendants IEnumerable containing all descendants of the element.

DescendantsAndSelf IEnumerable containing this element followed by all

descendants of the element.

DescendantNodes IEnumerable containing all descendant nodes of the element.

These include all nodes such as XElement and XText.

DescendantNodesAndSelf IEnumerable containing this element followed by all

descendant nodes of the element. These include all nodes

such as XElement and XText.

Element The fi rst child element with a specifi c name.

Elements IEnumerable containing the immediate children of the

element.

ElementsAfterSelf IEnumerable containing the siblings of the element that come

after this element.

ElementsBeforeSelf IEnumerable containing the siblings of the element that come

before this element.

Nodes IEnumerable containing the nodes that are immediate

children of the element. These include all nodes such as

XElement and XText.

NodesAfterSelf IEnumerable containing the sibling nodes of the element that

come after this element.

NodesBeforeSelf IEnumerable containing the sibling nodes of the element that

come before this element.

bapp12.indd 1072bapp12.indd 1072 12/31/09 6:13:56 PM12/31/09 6:13:56 PM

The following table gives examples of shorthand expressions for node axes and their functional
equivalents.

SHORTHAND MEANING EQUIVALENT

x... < Customer > Descendants named

Customer.

x.Descendants(“ Customer ”)

x. < Child > An element named Child

that is a child of this node.

x.Attributes(“ Child ”)

x.@ < FirstName >

Or:

x.@FirstName

The value of the

FirstName attribute.

x.Attributes(“ FirstName ”).Value

LINQ TO DATASET

LINQ to DataSet refers to methods provided by database objects that support LINQ queries.

The DataSet class itself doesn ’ t provide many LINQ features, but the DataTable objects that it holds
do. The DataTable has an AsEnumerable method that converts the DataTable into an IEnumerable,
which supports LINQ.

The following list summarizes the key differences between a DataTable query and a normal LINQ
to Objects query:

The code must use the DataTable object ’ s AsEnumerable method to make the object
queryable.

The code can access the fi elds in a DataRow as in stu!LastName or as in stu.Field(Of
String)(“ LastName ”) .

If you want to display the results in a DataGrid control, use the query ’ s ToList method.

The following example shows a query that selects student data from the dtStudents DataTable
where the LastName comes before D. It selects the students ’ FirstName and LastName fi elds, and
displays the result in a DataGrid control.

Dim before_d =
 From stu In dtStudents.AsEnumerable()
 Where stu!LastName < “ D ”
 Order By stu.Field(Of String)(“ LastName ”)
 Select First = stu!FirstName, Last = stu!LastName

dgStudentsBeforeD.DataSource = before_d.ToList

➤

➤

➤

LINQ to DataSet ❘ 1073

bapp12.indd 1073bapp12.indd 1073 12/31/09 6:13:57 PM12/31/09 6:13:57 PM

1074 ❘ APPENDIX L LINQ

Method - Based Queries

LINQ query keywords including Where, Order By, and Select actually correspond to methods
that take parameters giving the functions they should use to perform their tasks. For example, the
Where method takes as a parameter the address of a function that returns True if an item should be
selected in the query result.

In addition to using standard LINQ query syntax, you can use method - based queries to select
data. The following example selects data from all_customers where the OwesMoney function
returns True. The OrderByAmount function returns values that can be used to order the results and
SelectFields returns an object that contains selected fi elds for a selected item.

Dim q2 = all_customers.
 Where(AddressOf OwesMoney).
 OrderBy(AddressOf OrderByAmount).
 Select(AddressOf SelectFields)

Instead of passing the address of a function to these methods, you can pass lambda functions. The
following code returns a result similar to the preceding query but using lambda functions instead of
addresses of functions:

Dim q3 = all_customers.
 Where(Function(c As Customer) c.AccountBalance < 0).
 OrderBy(Of Decimal)(Function(c As Customer) c.AccountBalance).
 Select(Of CustInfo)(
 Function(c As Customer, index As Integer)
 Return New CustInfo() With
 {.CustName = c.Name, .Balance = c.AccountBalance}
)

PLINQ

Adding parallelism to LINQ is remarkably simple. First, add a reference to the System.Threading
library to your program. Then add a call to the AsParallel to the enumerable object that you ’ re
searching. For example, the following code uses AsParallel to select the even numbers from the
array numbers:

Dim evens =
 From num In numbers.AsParallel()
 Where num Mod 2 = 0

bapp12.indd 1074bapp12.indd 1074 12/31/09 6:13:57 PM12/31/09 6:13:57 PM

M
Generics

This appendix summarizes generic classes, extensions, and methods. Example program
GenericExamples, which is available for download on the book ’ s web site, demonstrates each
of these.

The fi nal section in this appendix describes items that you cannot make generic.

GENERIC CLASSES

The syntax for declaring a generic class is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name [(Of type_list)]
 [Inherits parent_class]
 [Implements interface]
 statements
End Class

All of these parts of the declaration are the same as those used by a normal (non - generic)
class. See Chapter 26, “ Classes and Structures, ” and Appendix K for information about
non - generic classes.

The key to a generic class is the (Of type_list) clause. Here, type_list is a list of data types
separated by commas that form the generic ’ s parameter types. Each type can be optionally
followed by the keyword As and a list of constraints that the corresponding type must satisfy.
The constraint list can contain any number of interfaces and, at most, one class. It can also
contain the New keyword to indicate that the corresponding type must provide an empty
constructor. If a constraint list contains more than one item, the list must be surrounded
by braces.

The following code defi nes the generic MyGeneric class. It takes three type parameters. The
fi rst is named Type1 within the generic ’ s code and has no constraints. The second type, named

bapp13.indd 1075bapp13.indd 1075 12/31/09 6:14:56 PM12/31/09 6:14:56 PM

1076 ❘ APPENDIX M GENERICS

Type2, must satisfy the IComparable interface. The third parameter, named Type3, must provide
an empty constructor, must satisfy the IDisposable interface, and must inherit directly or indirectly
from the Person class.

Public Class MyGeneric(Of _
 Type1,
 Type2 As IComparable,
 Type3 As {New, IDisposable, Person})

GENERIC EXTENSIONS

Due to their somewhat idiosyncratic nature, extension methods add an extra level of complexity
to generics.

Normally, a generic class declaration includes the types on which it depends and what code within
the class can use those types. For example, consider the Schedule class shown in the following code,
which represents a schedule of tasks:

’ Represents a schedule of Tasks.
Public Class Schedule(Of Task)
 Public Sub AddTask(ByVal new_task As Task)
 ...
 End Sub
 ...
End Class

The type list for the Schedule class includes a type named Task and the class ’ s code can use the type
Task. In this example, the AddTask subroutine takes a parameter of this type.

Now suppose you want to add an extension method named Prioritize to the generic Schedule
class. The fi rst parameter in the extension method ’ s declaration indicates the class that the method
extends. In this case, that should be Schedule(Of Task), but the extension method itself must also be
generic, so it must use a type list just as any other generic method does.

The result is the following declaration. The Prioritize method fi rst includes a type list indicating that
it generically depends on a type named T within this method. It then includes the extension method
parameter list. The fi rst parameter (the only parameter in this example) gives the class that the
method extends: Schedule(Of T).

Public Module ScheduleExtensions
 ‘ Prioritizes the schedule.
 < Extension() >
 Sub Prioritize(Of T)(ByVal sched As Schedule(Of T))
 Debug.WriteLine("Prioritizing Schedule of " & GetType(T).Name)
 ...
 End Sub
End Module

bapp13.indd 1076bapp13.indd 1076 12/31/09 6:14:59 PM12/31/09 6:14:59 PM

The following code fragment shows how a program could create a Schedule of Job objects and then
call the Prioritize extension:

Dim sched As New Schedule(Of Job)
...
sched.Prioritize()

Generic extension methods can become extremely complicated. For more detailed information
about extension methods in general, see Chapter 17, “ Subroutines and Functions, ” and the
Microsoft Visual Basic Team blog post at blogs.msdn.com/vbteam/pages/articles - about -
extension - methods.aspx , paying special attention to Part 5, “ Generics and Extension Methods. ”

GENERIC METHODS

In addition to generic classes and extension methods, you can create generic methods. This is simply
a method that takes generic parameters. The following code shows a Switcher class that has a
shared generic Switch method:

Public Class Switcher
 Public Shared Sub Switch(Of T)(ByRef thing1 As T, ByRef thing2 As T)
 Dim temp As T = thing1
 thing1 = thing2
 thing2 = temp
 End Sub
End Class

The Switcher class is not generic, but it contains a generic method. Both generic and non - generic
classes can defi ne both generic and non - generic methods.

PROHIBITED GENERICS

Unfortunately (or perhaps fortunately because this could be extremely complicated and confusing),
you cannot make generic lambda functions. The following code shows a lambda function that is
allowed and a generic lambda function that is not allowed:

’ Allowed.
Dim max_index1 = Function(lst As List(Of Integer)) lst.Count - 1

‘ Prohibited.
Dim max_index2 = Function(Of T)(lst As List(Of T)) lst.Count - 1

You also cannot make generic properties, operators, events, or constructors.

Prohibited Generics ❘ 1077

bapp13.indd 1077bapp13.indd 1077 12/31/09 6:14:59 PM12/31/09 6:14:59 PM

bapp13.indd 1078bapp13.indd 1078 12/31/09 6:14:59 PM12/31/09 6:14:59 PM

N
Graphics

This appendix provides information about graphics classes.

GRAPHICS NAMESPACES

This section describes the most important graphics namespaces and their most useful classes,
structures, and enumerated values.

System.Drawing

This namespace defi nes the most important graphics objects such as Graphics, Pen, Brush,
Font, FontFamily, Bitmap, Icon, and Image. The following table describes the namespace ’ s
most useful classes and structures.

CLASSES AND STRUCTURES PURPOSE

Bitmap Represents a bitmap image defi ned by pixel data.

Brush Represents area fi ll characteristics.

Color Defi nes a color ’ s red, green, blue, and alpha

components as values between 0 and 255. Alpha = 0

means the object is transparent; alpha = 255 means it

is opaque.

Font Represents a particular font (name, size, and style, such

as italic or bold).

FontFamily Represents a group of typefaces with similar

characteristics.

continues

bapp14.indd 1079bapp14.indd 1079 12/31/09 6:15:56 PM12/31/09 6:15:56 PM

1080 ❘ APPENDIX N GRAPHICS

CLASSES AND STRUCTURES PURPOSE

Graphics Represents a drawing surface. Provides methods to draw on the

surface.

Icon Represents a Windows icon.

Image Abstract base class from which Bitmap, Icon, and Metafi le inherit.

Metafile Represents a graphic metafi le.

Pen Represents line drawing characteristics (such as color, thickness,

and dash style).

Pens Provides a large number of predefi ned pens with diff erent colors

and width 1.

Point Defi nes a point ’ s X and Y coordinates.

PointF Defi nes a point ’ s X and Y coordinates with fl oating - point values.

Rectangle Defi nes a rectangle using a Point and a Size.

RectangleF Defi nes a rectangle using a PointF and a SizeF (with fl oating - point

values).

Region Defi nes a shape created from rectangles and paths for fi lling, hit

testing, or clipping.

Size Defi nes a width and height.

SizeF Defi nes a width and height with fl oating - point values.

SolidBrush Represents a solid brush.

System.Drawing.Drawing2D

This namespace contains classes for more advanced two - dimensional drawing. Some of these classes
refi ne more basic drawing classes. For example, the HatchBrush class represents a specialized type
of Brush that fi lls with a hatch pattern. Other classes defi ne values for use by other graphics classes.
For example, the Blend class defi nes color - blending parameters for a LinearGradientBrush.

The following table describes this namespace ’ s most useful classes and enumerations.

(continued)

bapp14.indd 1080bapp14.indd 1080 12/31/09 6:15:59 PM12/31/09 6:15:59 PM

CLASSES AND ENUMERATIONS PURPOSE

Blend Defi nes blend characteristics for a LinearGradientBrush.

ColorBlend Defi nes blend characteristics for a PathGradientBrush.

DashCap Enumeration that determines how the ends of a dash in a dashed

line are drawn.

DashStyle Enumeration that determines how a dashed line is drawn.

GraphicsPath Represents a series of connected lines and curves for drawing,

fi lling, or clipping.

HatchBrush Defi nes a Brush that fi lls an area with a hatch pattern.

HatchStyle Enumeration that determines the hatch style used by a HatchBrush

object.

LinearGradientBrush Defi nes a Brush that fi lls an area with a linear color gradient.

LineCap Enumeration that determines how the ends of a line are drawn.

LineJoin Enumeration that determines how lines are joined by a GDI method

that draws connected lines.

Matrix Represents a transformation matrix.

PathGradientBrush Defi nes a Brush that fi lls an area with a color gradient that follows

a path.

System.Drawing.Imaging

This namespace contains objects that deal with more advanced bitmap graphics. It includes
classes that defi ne image fi le formats such as GIF and JPG, classes that manage color palettes,
and classes that defi ne metafi les. The following table describes this namespace ’ s most useful classes.

CLASS PURPOSE

ColorMap Defi nes a mapping from old color values to new ones.

ColorPalette Represents a palette of color values.

ImageFormat Specifi es an image ’ s format (bmp, emf, gif, jpeg, and so on).

Metafile Represents a graphic metafi le that contains drawing instructions.

MetafileHeader Defi nes the attributes of a Metafi le object.

MetaHeader Contains information about a Windows metafi le (WMF).

WmfPlaceableFileHeader Specifi es how a metafi le should be mapped to an output device.

Graphics Namespaces ❘ 1081

bapp14.indd 1081bapp14.indd 1081 12/31/09 6:16:00 PM12/31/09 6:16:00 PM

1082 ❘ APPENDIX N GRAPHICS

System.Drawing.Printing

This namespace contains objects for printing and managing the printer ’ s characteristics. The
following table describes the most useful of these classes.

CLASS PURPOSE

PageSettings Defi nes the page settings for either an entire PrintDocument or for a

particular page. This object has properties that are Margins, PaperSize,

PaperSource, PrinterResolution, and PrinterSettings objects.

Margins Defi nes the margins for the printed page.

PaperSize Defi nes the paper ’ s size.

PaperSource Defi nes the printer ’ s paper source.

PrinterResolution Defi nes the printer ’ s resolution.

PrinterSettings Defi nes the printer ’ s settings.

System.Drawing.Text

This namespace contains only three classes for working with installed fonts. The following table
describes these classes.

CLASS PURPOSE

FontCollection Base class for the derived InstalledFontCollection and

PrivateFontCollection classes.

InstalledFontCollection Provides a list of the system ’ s installed fonts.

PrivateFontCollection Provides a list of the application ’ s privately installed fonts.

DRAWING CLASSES

The following sections describe the most useful properties and methods provided by key
drawing classes.

Graphics

The Graphics object represents a drawing surface. It provides many methods for drawing shapes,
fi lling areas, and determining the appearance of drawing results. All of these methods except
DrawString take a Pen object as a parameter to determine the lines ’ color, thickness, dash style, and
other properties. DrawString takes a Brush object instead of a Pen object as a parameter.

bapp14.indd 1082bapp14.indd 1082 12/31/09 6:16:00 PM12/31/09 6:16:00 PM

Drawing Classes ❘ 1083

The following table lists the Graphics object ’ s drawing methods.

DRAWING METHOD PURPOSE

DrawArc Draws an arc of an ellipse.

DrawBezier Draws a B é zier curve.

DrawBeziers Draws a series of connected B é zier curves.

DrawClosedCurve Draws a closed curve that connects a series of points, joining the

fi nal point to the fi rst point.

DrawCurve Draws a smooth curve that connects a series of points.

DrawEllipse Draws an ellipse.

DrawIcon Draws an Icon onto the Graphics object ’ s drawing surface.

DrawIconUnstretched Draws an Icon object onto the Graphics object ’ s drawing surface

without scaling.

DrawImage Draws an Image object onto the Graphics object ’ s

drawing surface.

DrawImageUnscaled Draws an Image object onto the drawing surface without scaling.

DrawLine Draws a line.

DrawLines Draws a series of connected lines.

DrawPath Draws a GraphicsPath object.

DrawPie Draws a pie slice taken from an ellipse.

DrawPolygon Draws a polygon.

DrawRectangle Draws a rectangle.

DrawRectangles Draws a series of rectangles.

DrawString Draws text on the drawing surface.

The following table lists the Graphics object ’ s area fi lling methods. These methods take Brush
objects as parameters to determine the fi lled shape ’ s color, hatch pattern, gradient colors, and other
fi ll characteristics.

bapp14.indd 1083bapp14.indd 1083 12/31/09 6:16:01 PM12/31/09 6:16:01 PM

1084 ❘ APPENDIX N GRAPHICS

FILLING METHOD PURPOSE

FillClosedCurve Fills a smooth curve that connects a series of points.

FillEllipse Fills an ellipse.

FillPath Fills a GraphicsPath object.

FillPie Fills a pie slice taken from an ellipse.

FillPolygon Fills a polygon.

FillRectangle Fills a rectangle.

FillRectangles Fills a series of rectangles.

FillRegion Fills a Region object.

The following table lists other useful Graphics object properties and methods.

PROPERTIES AND METHODS PURPOSE

AddMetafileComment Adds a comment to a metafi le.

Clear Clears the Graphics object and fi lls it with a specifi c color.

Clip Determines the Region object used to clip drawing on the

Graphics surface.

Dispose Releases the resources held by the Graphics object.

DpiX Returns the horizontal number of dots per inch (DPI) for this

object ’ s surface.

DpiY Returns the vertical number of dots per inch (DPI) for this object ’ s

surface.

ExcludeClip Updates the Graphics object ’ s clipping region to exclude the area

defi ned by a Region or Rectangle.

FromHdc Creates a new Graphics object from a device context handle

(hDC).

FromHwnd Creates a new Graphics object from a window handle (hWnd).

FromImage Creates a new Graphics object from an Image object.

InterpolationMode Controls anti - aliasing when drawing images.

bapp14.indd 1084bapp14.indd 1084 12/31/09 6:16:01 PM12/31/09 6:16:01 PM

Drawing Classes ❘ 1085

PROPERTIES AND METHODS PURPOSE

IntersectClip Updates the Graphics object ’ s clipping region to be the

intersection of the current clipping region and the area defi ned by

a Region or Rectangle.

IsVisible Returns True if a specifi ed point is within the Graphics object ’ s

visible clipping region.

MeasureCharacterRanges Returns an array of Region objects that show where each

character in a string will be drawn.

MeasureString Returns a SizeF structure that gives the size of a string drawn on

the Graphics object with a particular font.

MultiplyTransform Multiplies the Graphics object ’ s current transformation matrix by

another transformation matrix.

PageScale Determines the amount by which drawing commands are scaled.

PageUnit Determines the units of measurement: Display (depends on the

device, typically pixel for monitors and 1/100 inch for printers),

Document (1/300 inch), Inch, Millimeter, Pixel, or Point (1/72 inch).

RenderingOrigin Determines the point used as a reference when hatching.

ResetClip Resets the object ’ s clipping region so that the drawing is not

clipped.

ResetTransformation Resets the object ’ s transformation matrix to the identity matrix.

Restore Restores the Graphics object to a state saved by the Save method.

RotateTransform Adds a rotation to the object ’ s current transformation.

Save Saves the object ’ s current state.

ScaleTransform Adds a scaling transformation to the Graphics object ’ s current

transformation.

SetClip Sets or merges the Graphics object ’ s clipping area to another

Graphics object, a GraphicsPath object, or a Rectangle.

SmoothingMode Controls anti - aliasing when drawing lines, curves, or fi lled areas.

TextRenderingHint Controls anti - aliasing and hinting when drawing text.

Transform Gets or sets the Graphics object ’ s transformation matrix.

TransformPoints Applies the object ’ s current transformation to an array of points.

TranslateTransform Adds a translation transformation to the Graphics object ’ s current

transformation.

bapp14.indd 1085bapp14.indd 1085 12/31/09 6:16:02 PM12/31/09 6:16:02 PM

1086 ❘ APPENDIX N GRAPHICS

Pen

The Pen object determines the appearance of drawn lines. It determines such properties as a
line ’ s width, color, and dash style. The following table lists the Pen object ’ s most useful properties
and methods.

PROPERTIES AND METHODS PURPOSE

Alignment Determines whether the line is drawn inside or centered on the

theoretical perfectly thin line specifi ed by the drawing routine.

Brush Determines the Brush used to fi ll the line.

Color Determines the line ’ s color.

CompoundArray Lets you draw a line that is striped lengthwise.

CustomEndCap Determines the line ’ s end cap.

CustomStartCap Determines the line ’ s start cap.

DashCap Determines the cap drawn at the ends of dashes.

DashOffset Determines the distance from the start of the line to the start of the

fi rst dash.

DashPattern An array of Singles that specifi es a custom dash pattern.

DashStyle Determines the line ’ s dash style.

EndCap Determines the cap used at the end of the line.

LineJoin Determines how lines are joined by a GDI method that draws

connected lines such as DrawPolygon.

MultiplyTransform Multiplies the Pen object ’ s current transformation by another

transformation matrix.

ResetTransform Resets the Pen object ’ s transformation to the identity transformation.

RotateTransform Adds a rotation transformation to the Pen object ’ s current

transformation.

ScaleTransform Adds a scaling transformation to the Pen object ’ s current

transformation.

SetLineCap This method takes parameters that let you specify the Pen object ’ s

StartCap, EndCap, and LineJoin properties at the same time.

StartCap Determines the cap used at the start of the line.

Transform Determines the transformation applied to the initially circular “ pen tip ”

used to draw lines.

Width The width of the pen.

bapp14.indd 1086bapp14.indd 1086 12/31/09 6:16:03 PM12/31/09 6:16:03 PM

Drawing Classes ❘ 1087

Brushes

The Brush class is an abstract class, so you cannot make instances of it. Instead, you
must make instances of one of its derived classes: SolidBrush, TextureBrush, HatchBrush,
LinearGradientBrush, or PathGradientBrush. The following table briefl y describes these classes.

CLASS PURPOSE

SolidBrush Fills areas with a single solid color.

TextureBrush Fills areas with a repeating image.

HatchBrush Fills areas with a repeating hatch pattern.

LinearGradientBrush Fills areas with a linear gradient of two or more colors.

PathGradientBrush Fills areas with a color gradient that follows a path.

GraphicsPath

The GraphicsPath object represents a path defi ned by lines, curves, text, and other drawing
commands. You can use Graphics object methods to fi ll and draw a GraphicsPath, and you can use
a GraphicsPath to defi ne a clipping region. The following table lists the GraphicsPath object ’ s most
useful properties and methods.

PROPERTIES AND METHODS PURPOSE

CloseAllFigures Closes all open fi gures by connecting their last points with their fi rst

points and then starts a new fi gure.

CloseFigure Closes the current fi gure by connecting its last point with its fi rst point

and then starts a new fi gure.

FillMode Determines how the path handles overlaps when you fi ll it. This

property can take the values Alternate and Winding.

Flatten Converts any curves in the path into a sequence of lines.

GetBounds Returns a RectangleF structure representing the path ’ s bounding box.

GetLastPoint Returns the last PointF structure in the PathPoints array.

IsOutlineVisible Returns True if the indicated point lies beneath the path ’ s outline.

IsVisible Returns True if the indicated point lies in the path ’ s interior.

PathData Returns a PathData object that encapsulates the path ’ s graphical data.

PathPoints Returns an array of PointF structures giving the points in the path.

continues

bapp14.indd 1087bapp14.indd 1087 12/31/09 6:16:03 PM12/31/09 6:16:03 PM

1088 ❘ APPENDIX N GRAPHICS

PROPERTIES AND METHODS PURPOSE

PathTypes Returns an array of Bytes representing the types of the points

in the path.

PointCount Returns the number of points in the path.

Reset Clears the path data and resets FillMode to Alternate.

Reverse Reverses the order of the path ’ s data.

StartFigure Starts a new fi gure, so future data is added to the new fi gure.

Transform Applies a transformation matrix to the path.

Warp Applies a warping transformation defi ned by mapping a parallelogram

onto a rectangle to the path.

Widen Enlarges the curves in the path to enclose a line drawn by a specifi c pen.

StringFormat

The StringFormat object determines how text is formatted. It enables you to draw text that is
centered vertically or horizontally, aligned on the left or right, and wrapped or truncated. The
following table lists the StringFormat object ’ s most useful properties and methods.

PROPERTIES AND METHODS PURPOSE

Alignment Determines the text ’ s horizontal alignment. This can be Near (left),

Center (middle), or Far (right).

FormatFlags Gets or sets fl ags that modify the StringFormat object ’ s behavior.

GetTabStops Returns an array of Singles giving the positions of tab stops.

HotkeyPrefix Determines how the hotkey prefi x character is displayed. This can be

Show, Hide, or None.

LineAlignment Determines the text ’ s vertical alignment. This can be Near (top), Center

(middle), or Far (bottom).

SetMeasureable-

CharacterRanges

Sets an array of CharacterRange structures representing ranges

of characters that will later be measured by the Graphics object ’ s

MeasureCharacterRanges method.

SetTabStops Sets an array of Singles giving the positions of tab stops.

Trimming Determines how the text is trimmed if it cannot fi t within the layout

rectangle.

(continued)

bapp14.indd 1088bapp14.indd 1088 12/31/09 6:16:04 PM12/31/09 6:16:04 PM

Drawing Classes ❘ 1089

Image

The Image class represents the underlying physical drawing surface hidden below the logical layer
created by the Graphics class. Image is an abstract class, so you cannot directly create instances of
it. Instead, you must create instances of its child classes Bitmap and Metafi le.

The following table describes the Image class ’ s most useful properties and methods, which are
inherited by the Bitmap and Metafi le classes.

PROPERTIES AND METHODS PURPOSE

Dispose Frees the resources associated with this image.

Flags Returns attribute fl ags for the image.

FromFile Loads an image from a fi le.

FromHbitmap Loads a Bitmap image from a Windows bitmap handle.

FromStream Loads an image from a data stream.

GetBounds Returns a RectangleF structure representing the rectangle ’ s bounds.

GetPixelFormatSize Returns the color resolution (bits per pixel) for a specifi ed

PixelFormat.

GetThumbnailImage Returns a thumbnail representation of the image.

Height Returns the image ’ s height.

HorizontalResolution Returns the horizontal resolution of the image in pixels per inch.

IsAlphaPixelFormat Returns True if the specifi ed PixelFormat contains alpha

information.

Palette Determines the ColorPalette object used by the image.

PhysicalDimension Returns a SizeF structure giving the image ’ s dimensions in pixels

for Bitmaps and 0.01 millimeters for Metafi le classes.

PixelFormat Returns the image ’ s pixel format.

RawFormat Returns an ImageFormat object representing the image ’ s raw format.

RotateFlip Rotates, fl ips, or rotates and fl ips the image.

Save Saves the image in a fi le or stream with a given data format.

Size Returns a Size structure containing the image ’ s width and height

in pixels.

VerticalResolution Returns the vertical resolution of the image in pixels per inch.

Width Returns the image ’ s width.

bapp14.indd 1089bapp14.indd 1089 12/31/09 6:16:05 PM12/31/09 6:16:05 PM

1090 ❘ APPENDIX N GRAPHICS

Bitmap

The Bitmap class represents an image defi ned by pixel data. It inherits the Image class ’ s properties
and methods described in the previous section. The following table describes some of the most
useful new methods added by the Bitmap class.

METHOD PURPOSE

FromHicon Loads a Bitmap image from a Windows icon handle.

FromResource Loads a Bitmap image from a Windows resource.

GetPixel Returns a Color representing a specifi ed pixel.

LockBits Locks the Bitmap image ’ s data in memory, so it cannot move until the

program calls UnlockBits.

MakeTransparent Makes all pixels with a specifi ed color transparent by setting the alpha

component of those pixels to 0.

SetPixel Sets a specifi ed pixel ’ s Color value.

SetResolution Sets the Bitmap image ’ s horizontal and vertical resolution in DPI.

UnlockBits Unlocks the Bitmap image ’ s data in memory so that the system can

relocate it, if necessary.

Metafi le

The Metafi le class represents an image defi ned by metafi le records. It inherits the Image class ’ s
properties and methods described in the section “ Image ” earlier in this appendix. The following
table describes some of the most useful new methods added by the Metafi le class.

METHOD PURPOSE

GetMetafileHeader Returns the Metafi leHeader object associated with this Metafi le.

PlayRecord Plays a metafi le record.

bapp14.indd 1090bapp14.indd 1090 12/31/09 6:16:05 PM12/31/09 6:16:05 PM

O
Useful Exception Classes

When your program throws an exception, it ’ s easy enough to use a TryCatch block to catch
the exception and examine it to determine its class. When you want to throw your own
exception, however, you must know what exception classes are available so that you can pick
the right one.

For more information on error handling, see Chapter 19, “ Error Handling, ” and Appendix F.

STANDARD EXCEPTION CLASSES

The following table lists some of the most useful exception classes in Visual Basic .NET. You
can raise one of these when you need to throw an error.

CLASS PURPOSE

AmbiguousMatchException The program could not fi gure out which overloaded

object method to use.

ApplicationException This is the ancestor class for all nonfatal application

errors. When you build custom exception classes,

you should inherit from this class, or from one of its

descendants.

ArgumentException An argument is invalid.

ArgumentNullException An argument that cannot be Nothing has value Nothing.

ArgumentOutOfRangeException An argument is out of its allowed range.

ArithmeticException An arithmetic, casting, or conversion operation has

occurred.

continues

bapp15.indd 1091bapp15.indd 1091 12/31/09 6:17:47 PM12/31/09 6:17:47 PM

1092 ❘ APPENDIX O USEFUL EXCEPTION CLASSES

CLASS PURPOSE

ArrayTypeMismatchException The program tried to store the wrong type of item in an array.

ConfigurationException A confi guration setting is invalid.

ConstraintException A data operation violates a database constraint.

DataException The ancestor class for ADO.NET exception classes.

DirectoryNotFoundException A needed directory is missing.

DivideByZeroException The program tried to divide by zero.

DuplicateNameException An ADO.NET operation encountered a duplicate name (for

example, it tried to create a second table with the same name).

EvaluateException Occurs when a DataColumn ’ s Expression property cannot be

evaluated.

FieldAccessException The program tried to access a class property improperly.

FormatException An argument ’ s format doesn ’ t match its required format.

IndexOutofRangeException The program tried to access an item outside of the bounds

of an array or other container.

InvalidCastException The program tried to make an invalid conversion. For example,

Integer.Parse(“ oops ”).

InvalidOperationException The operation is not currently allowed.

IOException The ancestor class for input/output (I/O) exception classes. A

generic I/O error occurred.

EndOfStreamException A stream reached its end.

FileLoadException Error loading a fi le.

FileNotFoundException Error fi nding a fi le.

InternalBufferOverflow-

Exception

An internal buff er overfl owed.

MemberAccessException The program tried to access a class member improperly.

MethodAccessException The program tried to access a class method improperly.

MissingFieldException The program tried to access a class fi eld that doesn ’ t exist.

MissingMemberException The program tried to access a class member that doesn ’ t exist.

(continued)

bapp15.indd 1092bapp15.indd 1092 12/31/09 6:17:50 PM12/31/09 6:17:50 PM

Standard Exception Classes ❘ 1093

CLASS PURPOSE

MissingMethodException The program tried to access a class method that doesn ’ t exist.

NotFiniteNumberException A fl oating - point number is PositiveInfi nity, NegativeInfi nity,

or NaN (Not a Number). You can get these values from

the fl oating - point classes (as in Single.Nan or Double.

PositiveInfi nity).

NotImplementedException The requested operation is not implemented.

NotSupportedException The requested operation is not supported. For example, the

program might be asking a routine to modify data that was

opened as read - only.

NullReferenceException The program tried to use an object reference that is Nothing.

OutOfMemoryException There isn ’ t enough memory. Note that sometimes a program

cannot recover from an OutOfMemoryException because

it doesn ’ t have enough memory to do anything useful. This

exception is most useful if you can predict beforehand that

you will run out of memory before you actually use up all of the

memory and crash the program. For example, if the user wants

to generate a really huge data set, you may be able to predict

how much memory the program will need, see if it is available,

and throw this error without actually allocating the data set.

OverflowException An arithmetic, casting, or conversion operation created an

overfl ow. For example, the program tried to assign a large

Integer value to a Byte variable.

PolicyException Policy prevents the code from running.

RankException A routine is trying to use an array with the wrong number of

dimensions.

ReadOnlyException The program tried to modify read - only data.

SecurityException A security violation occurred.

SyntaxErrorException A DataColumn ’ s Expression property contains invalid syntax.

UnauthorizedAccessException The system is denying access because of an I/O or

security error.

Use the Throw statement to raise an exception. The following code throws a
DivideByZeroException. It passes the exception class ’ s constructor a message describing the
exception. In this case, the divide by zero exception occurred because the application did not have

bapp15.indd 1093bapp15.indd 1093 12/31/09 6:17:50 PM12/31/09 6:17:50 PM

1094 ❘ APPENDIX O USEFUL EXCEPTION CLASSES

any employees defi ned. Notice that the message explains the reason for the exception, not the mere
fact that a division by zero occurred.

Throw New DivideByZeroException("No employees are defined.")

CUSTOM EXCEPTION CLASSES

To defi ne a custom exception class, make a class that inherits from Exception. To give developers
who use the class the most fl exibility, provide four constructors that delegate their work to the
Exception class ’ s corresponding constructors.

The following code shows the InvalidWorkAssignmentException class. The empty constructor
passes the Exception class ’ s constructor a default error message. The other constructors simply pass
their arguments to the Exception class ’ s other constructors.

Public Class InvalidWorkAssignmentException
 Inherits Exception

 Public Sub New()
 MyBase.New(“ This work assignment is invalid ”)
 End Sub

 Public Sub New(ByVal msg As String)
 MyBase.New(msg)
 End Sub

 Public Sub New(ByVal msg As String, ByVal inner_exception As Exception)
 MyBase.New(msg, inner_exception)
 End Sub

 Public Sub New(ByVal info As SerializationInfo,
 ByVal context As StreamingContext)
 MyBase.New(info, context)
 End Sub
End Class

For more information on custom exception classes, see Chapter 19 and the online documentation
for topics such as “Designing Custom Exceptions” (msdn.microsoft.com/ms229064.aspx) and
“Design Guidelines for Exceptions” (msdn.microsoft.com/ms229014.aspx), or search the Web for
articles such as “Custom Exceptions in VB 2005” by Josh Fitzgerald (www.developer.com/net/vb/
article.php/3590931).

bapp15.indd 1094bapp15.indd 1094 12/31/09 6:17:50 PM12/31/09 6:17:50 PM

P
Date and Time Format
Specifi ers

A program uses date and time format specifi ers to determine how dates and times are
represented as strings. For example, the Date object ’ s ToString method returns a string
representing a date and time. An optional parameter to this method tells the object
whether to format itself as in 2/20/2010, 02.20.10 A.D or Saturday, February 20, 2010
2:37:18 pm.

Visual Basic provides two kinds of specifi ers that you can use to determine a date and time
value ’ s format: standard format specifi ers and custom format specifi ers.

STANDARD FORMAT SPECIFIERS

A standard format specifi er is a single character that you use alone to indicate a
standardized format. For example, the format string d indicates a short date format
(as in 2/20/2010).

The following table lists standard format specifi ers that you can use to format date and time
strings. The results depend on the regional settings on the computer. The examples shown in
this table are for a typical computer in the United States.

SPECIFIER MEANING EXAMPLE

d Short date. 2/20/2010

D Long date. Saturday, February 20, 2010

t Short time. 2:37 PM

continues

bapp16.indd 1095bapp16.indd 1095 12/31/09 6:19:35 PM12/31/09 6:19:35 PM

1096 ❘ APPENDIX P DATE AND TIME FORMAT SPECIFIERS

SPECIFIER MEANING EXAMPLE

T Long time. 2:37:18 PM

f Full date/time with short time. Saturday, February 20, 2010

2:37 PM

F Full date/time with long time. Saturday, February 20, 2010

2:37:18 PM

g General date/time with short time. 2/20/2010 2:37 PM

G General date/time with long time. 2/20/2010 2:37:18 PM

m or M Month and date. February 20

r or R RFC1123 pattern. Formatting does not convert

the time to Greenwich Mean Time (GMT), so

you should convert local times to GMT before

formatting.

Sat, 20 Feb 2010 14:37:18 GMT

s Sortable ISO 8601 date/time. 2010 - 02 - 20T14:37:18

u Universal sortable date/time. Formatting does

not convert the time to universal time, so you

should convert local times to universal time

before formatting.

2010 - 02 - 20 14:37:18Z

U Universal full date/time. This is the full universal

time, not the local time.

Saturday, February 20, 2010

9:37:18 PM

y or Y Year and month. February, 2010

You can learn more about RFC1123 at www.faqs.org/rfcs/rfc1123.html . You can learn more
about ISO 8601 at www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_
used_standards_other/date_and_time_format.htm .

CUSTOM FORMAT SPECIFIERS

Custom format specifi ers describe pieces of a date or time that you can use to build your own
customized formats. For example, the specifi er ddd indicates the abbreviated day of the week,
as in Wed.

The following table lists characters that you can use to build custom formats for date and
time strings.

(continued)

bapp16.indd 1096bapp16.indd 1096 12/31/09 6:19:37 PM12/31/09 6:19:37 PM

Custom Format Specifi ers ❘ 1097

SPECIFIER MEANING EXAMPLE

d Date of the month. 3

dd Date of the month with two digits. 03

ddd Abbreviated day of the week. Wed

dddd Full day of the week. Wednesday

f Fractions of seconds, one digit. Add additional f ’ s for up to

seven digits (ff ff ff f).

8

g Era. A.D.

h Hour, 12 - hour clock with one digit, if possible. 1

hh Hour, 12 - hour clock with two digits. 01

H Hour, 24 - hour clock with one digit, if possible. 13

HH Hour, 24 - hour clock with two digits. 07

m Minutes with one digit, if possible. 9

mm Minutes with two digits. 09

M Month number (1 – 12) with one digit, if possible. 2

MM Month number (1 – 12) with two digits. 02

MMM Month abbreviation. Feb

MMMM Full month name. February

s Seconds with one digit, if possible. 3

ss Seconds with two digits. 03

t am/pm designator with one character. A

tt am/pm designator with two characters. am

y Year with up to two digits, not zero - padded. 10

yy Year with two digits. 10

yyyy Year with four digits. 2010

z Time zone off set (hours from GMT in the range –12 to +13). – 7

zz Time zone off set with two digits. – 07

zzz Time zone off set with two digits of hours and minutes. – 07:00

: Time separator.

continues

bapp16.indd 1097bapp16.indd 1097 12/31/09 6:19:38 PM12/31/09 6:19:38 PM

1098 ❘ APPENDIX P DATE AND TIME FORMAT SPECIFIERS

SPECIFIER MEANING EXAMPLE

/ Date separator.

“ ... ” Quoted string. Displays the enclosed characters without

trying to interpret them.

‘...’ Quoted string. Displays the enclosed characters without

trying to interpret them.

% Displays the following character as a custom specifi er.

(See the following discussion.)

\ Displays the next character without trying to interpret it.

Some of the custom specifi er characters in this table are the same as characters used by
standard specifi ers. For example, if you use the character d alone, Visual Basic interprets it
as the standard specifi er for a short date. If you use the character d in a custom specifi er, Visual
Basic interprets it as the date of the month.

If you want to use a custom specifi er alone, precede it with the % character. The following shows
two queries and their results executed in the Immediate window:

?Now.ToString(“ d ”)
“ 2/20/2010 ”
?Now.ToString(“ %d ”)

“ 20 ”

Custom specifi ers are somewhat sensitive to the computer ’ s regional settings. For example, they at
least know the local names and abbreviations of the months and days of the week.

The standard specifi ers have even more information about the local culture, however. For example,
the date specifi ers know whether the local culture places months before or after days. The d specifi er
gives the result 2/20/2010 for the en - US culture (English, United States), and it returns 20/02/2010
for the culture en - NZ (English, New Zealand).

To simplify cultural differences, you should use the standard specifi ers whenever they will satisfy
your needs rather than building your own custom format specifi ers. For example, use d instead
of M/d/yyyy.

(continued)

bapp16.indd 1098bapp16.indd 1098 12/31/09 6:19:38 PM12/31/09 6:19:38 PM

Q
Other Format Specifi ers

A program uses format specifi ers to determine how objects are represented as strings. For
example, by using different format specifi ers, you can make an integer ’ s ToString method
return a value as � 12345, � 12,345, (12,345), or 012,345 � .

Visual Basic provides standard format specifi ers in addition to custom specifi ers. The standard
specifi ers make it easy to display values in often - used formats (such as currency or scientifi c
notation). Custom specifi ers provide more control over how results are composed.

STANDARD NUMERIC FORMAT SPECIFIERS

Standard numeric format specifi ers enable you to easily display commonly used numeric
formats. The following table lists the standard numeric specifi ers.

SPECIFIER MEANING

C or c Currency. The exact format depends on the computer ’ s

internationalization settings. If a precision specifi er follows the

C, it indicates the number of digits that should follow the decimal

point. On a standard system in the United States, the value

– 1234.5678 with the specifi er C produces ($ 1,234.57).

D or d Decimal. This specifi er works only with integer types. It simply

displays the number ’ s digits. If a precision specifi er follows the D,

it indicates the number of digits the result should have, padding

on the left with zeros, if necessary. If the value is negative, the

result has a minus sign on the left. The value – 1234 with the

specifi er D6 produces – 001234.

continues

bapp17.indd 1099bapp17.indd 1099 12/31/09 6:21:05 PM12/31/09 6:21:05 PM

1100 ❘ APPENDIX Q OTHER FORMAT SPECIFIERS

SPECIFIER MEANING

E or e Scientifi c notation. The result always has exactly one digit to the left of the

decimal point, followed by more digits, an E or e, a plus or minus sign, and at

least three digits of exponent (padded on the left with zeros, if necessary). If

a precision specifi er follows the E, it indicates the number of digits the result

should have after the decimal point. The value – 1234.5678 with the specifi er e2

produces – 1.23e+003.

F or f Fixed point. The result contains a minus sign if the value is negative, digits,

a decimal point, and then more digits. If a precision specifi er follows the F, it

indicates the number of digits the result should have after the decimal point.

The value – 1234.5678 with the specifi er f3 produces – 1234.568.

G or g General. Either scientifi c or fi xed point notation depending on which is

more compact.

N or n Number. The result has a minus sign if the value is negative, digits with

thousands separators, a decimal point, and more digits. If a precision specifi er

follows the N, it indicates the number of digits the result should have after the

decimal point. The value – 1234.5678 with the specifi er N3 produces – 1,234.568.

P or p Percentage. The value is multiplied by 100 and then formatted according to the

computer ’ s settings. If a precision specifi er follows the P, it indicates the number

of digits that should follow the decimal point. On a typical computer, the value

1.2345678 with the specifi er P produces 123.46%.

R or r Round trip. The value is formatted in such a way that the result can be converted

back into its original value. Depending on the data type and value, this may

require 17 digits of precision. The value 1/7 with the specifi er R produces

0.14285714285714285.

X or x Hexadecimal. This works for integer types only. The value is converted into

hexadecimal. The case of the X or x determines whether hexadecimal digits

above 9 are written in uppercase or lowercase. If a precision specifi er follows

the X, it indicates the number of digits the result should have, padding on the

left with zeros, if necessary. The value 183 with the specifi er x4 produces 00b7.

CUSTOM NUMERIC FORMAT SPECIFIERS

Custom numeric format specifi ers describe how a number should be formatted. The following table
lists characters that you can use to build custom numeric formats.

(continued)

bapp17.indd 1100bapp17.indd 1100 12/31/09 6:21:08 PM12/31/09 6:21:08 PM

SPECIFIER MEANING

0 A digit or zero. If the number doesn ’ t have a digit in this position, the

specifi er adds a 0. The value 12 with the specifi er 000.00 produces 012.00.

A digit. If the number doesn ’ t have a digit in this position, nothing is printed.

, If used between two digits (either 0 or #), adds thousands separators to the

result. Note that it will add many comma separators if necessary. The value

1234567 with the specifi er #,# produces 1,234,567.

, If used immediately to the left of the decimal point, the number is divided by

1000 for each comma. The value 1234567 with the specifi er #,#,. produces

1,235.

% Multiplies the number by 100 and inserts the % symbol where it appears in

the specifi er. The value 0.123 with the specifi er .00% produces 12.30%.

E0 or e0 Displays the number in scientifi c notation inserting an E or e between the

number and its exponent. Use # and 0 to format the number before the

exponent. The number of 0s after the E determines the number of digits

in the exponent. If you place a � sign between the E and 0, the result ’ s

exponent includes a � or – sign. If you omit the � sign, the exponent only

includes a sign if it is negative. The value 1234.5678 with the specifi er

00.000E+000 produces 12.346E+002.

\ Displays the following character literally without interpreting it. Use \\ to

display the \ character. The value 12 with the specifi er #\% produces 12%,

and the same value with the specifi er #% produces 1200%.

‘ABC ’ or “ ABC “ Displays the characters in the quotes literally. The value 12 with the specifi er

#‘% ’ (single quotes around the % symbol) produces 12%.

NUMERIC FORMATTING SECTIONS

A numeric format specifi er may contain one, two, or three sections separated by semicolons. If the
specifi er contains one section, the specifi er is used for all numeric values.

If the specifi er contains two sections, the fi rst is used to format values that are positive or zero, and
the second is used to format negative values.

If the specifi er contains three sections, the fi rst is used to format positive values, the second is used
to format negative values, and the third is used to format values that are zero.

Numeric Formatting Sections ❘ 1101

bapp17.indd 1101bapp17.indd 1101 12/31/09 6:21:09 PM12/31/09 6:21:09 PM

1102 ❘ APPENDIX Q OTHER FORMAT SPECIFIERS

The following text shows output from the Immediate window for three values using the format
specifi er #,#.00; < #,#.00 > ;ZERO:

?(1234.5678).ToString("#,#.00; < #,#.00 > ;ZERO")
1,234.57
?(- 1234.5678).ToString(“ #,#.00; < #,#.00 > ;ZERO ”)
< 1,234.57 >
?(0).ToString(“ #,#.00; < #,#.00 > ;ZERO ”)
ZERO

COMPOSITE FORMATTING

The String.Format, Console.WriteLine, and TextWriter.WriteLine methods provide a different
method for formatting strings. These routines can take a composite formatting string parameter
that contains literal characters plus placeholders for values. Other parameters to the methods give
the values.

The value placeholders have the following format:

{ index [, alignment][: format_specifier]}

The index value gives the index numbered from 0 of the parameter that should be inserted in this
placeholder ’ s position.

The optional alignment value tells the minimum number of spaces the item should use and the result
is padded with spaces, if necessary. If this value is negative, the result is left - justifi ed. If the value is
positive, the result is right - justifi ed.

The format_specifi er indicates how the item should be formatted.

For example, consider the following code:

Dim emp As String � "Crazy Bob”:
Dim sales As Single = -12345.67
MessageBox.Show(String.Format("{0} {1:earned;lost} {1:c} this year", emp, sales))

The fi rst placeholder refers to parameter number 0, which has the value “ Crazy Bob. ” The second
placeholder refers to parameter number 1 and includes a two - part format specifi er that displays
“ earned ” if the value is positive or zero, and “ lost ” of the value is negative. The third placeholder
refers to parameter number 1 again, this time formatted as currency.

The following code shows the result:

Crazy Bob lost ($ 12,345.67) this year

ENUMERATED TYPE FORMATTING

Visual Basic provides special formatting capabilities that can display the values of enumerated
variables. For example, consider the following code:

bapp17.indd 1102bapp17.indd 1102 12/31/09 6:21:09 PM12/31/09 6:21:09 PM

Private Enum Dessert
 Cake � 1
 Pie � 2
 Cookie � 3
 IceCream � 4
End Enum
...
Dim dessert_choice As Dessert � Dessert.Cake
MessageBox.Show(dessert_choice.ToString)

This code displays the string “ Cake. ”

For variables of an enumerated type such as dessert_choice, the ToString method can take a
specifi er that determines how the value is formatted.

The specifi er G or g formats the value as a string if possible. If the value is not a valid entry in the
Enum ’ s defi nition, the result is the variable ’ s numeric value. For example, the previous code does
not defi ne a Dessert enumeration for the value 7 so, if you set dessert_choice to 7, then dessert_
choice.ToString(“ G ”) returns the value 7.

If you defi ne an enumerated type with the Flags attribute, variables of that type can be a
combination of the Enum ’ s values, as shown in the following code:

< Flags() >
Private Enum Dessert
 Cake � 1
 Pie � 2
 Cookie � 4
 IceCream � 8
End Enum
...
Dim dessert_choice As Dessert � Dessert.IceCream Or Dessert.Cake
MessageBox.Show(dessert_choice.ToString(“ G ”))

In this case, the G format specifi er returns a string that contains all of the fl ag values separated by
commas. In this example, the result is “ Cake, IceCream. ” Note that the values are returned in the
order in which they are defi ned by the enumeration, not the order in which they are assigned to
the variable.

If you do not use the Flags attribute when defi ning an enumerated type, the G format specifi er
always returns the variable ’ s numeric value if it is a combination of values rather than a single value
from the list. On the other hand, the F specifi er returns a list of comma - separated values if it makes
sense. If you omit the Flags attribute from the previous code, dessert_choice.ToString(“ G ”)
would return 9, but dessert_choice.ToString(“ F ”) would return “ Cake, IceCream. ”

The D or d specifi er always formats the variable as a number.

The specifi er X or x formats the value as a hexadecimal number.

Enumerated Type Formatting ❘ 1103

bapp17.indd 1103bapp17.indd 1103 12/31/09 6:21:09 PM12/31/09 6:21:09 PM

bapp17.indd 1104bapp17.indd 1104 12/31/09 6:21:10 PM12/31/09 6:21:10 PM

R
The Application Class

The Application class provides static properties and methods for controlling the application.
This appendix contains a summary of the Application class ’ s most useful properties,
methods, and events. Chapter 36, “ Confi guration and Resources, ” has a bit more to say about
the Application class and provides some example code.

PROPERTIES

The following table describes the Application class ’ s most useful properties.

PROPERTY PURPOSE

CommonAppDataPath Returns the path where the program should store

application data that is shared by all users. By default,

this path has the form base_path\company_name\

product_name\product_version. The base_path

is typically C:\Documents and Settings\All Users\

Application Data (here “ C ” may be replaced with a

diff erent drive letter depending on how your system

is set up).

CommonAppDataRegistry Returns the Registry key where the program should

store application data that is shared by all users.

By default, this path has the form HKEY_LOCAL_

MACHINE\Software\company_name\product_name\

product_version.

CompanyName Returns the application ’ s company name.

continues

bapp18.indd 1105bapp18.indd 1105 12/31/09 6:21:53 PM12/31/09 6:21:53 PM

1106 ❘ APPENDIX R THE APPLICATION CLASS

PROPERTY PURPOSE

CurrentCulture Gets or sets the CultureInfo object for this thread. The CultureInfo

object specifi es information about a specifi c culture (such as its

name, writing system, and calendar, and its formats for dates, times,

and numbers).

CurrentInputLanguage Gets or sets the InputLanguage for this thread. The InputLanguage

object defi nes the layout of the keyboard for the culture. It

determines how the keyboard keys are mapped to the characters in

the culture ’ s language.

ExecutablePath Returns the fully qualifi ed path to the fi le that started the execution,

including the fi le name.

LocalUserAppDataPath Returns the path where the program should store data for this local,

non - roaming user. By default, this path has the form base_path\

company_name\product_name\product_version. The base_path

is typically C:\Documents and Settings\user_name\Local Settings\

Application Data.

MessageLoop Returns True if the thread has a message loop. If the program begins

with a startup form, this loop is created automatically. If it starts with

a custom Sub Main, then the loop doesn ’ t initially exist, and the

program must start it by calling Application.Run.

OpenForms Returns a collection holding references to all of the application ’ s

open forms.

ProductName Returns the application ’ s product name.

ProductVersion Gets the product version associated with this application.

StartupPath Returns the fully qualifi ed path to the fi le that started the execution,

including the fi le name.

UserAppDataPath Returns the path where the program should store data for this

user. By default, this path has the form base_path\company_name\

product_name\product_version. The base_path is typically

C:\Documents and Settings\user_name\Application Data.

UserAppDataRegistry Returns the Registry key where the program should store application

data for this user. By default, this path has the form HKEY_

CURRENT_USER\Software\company_name\product_name\

product_version.

UseWaitCursor Determines whether this thread ’ s forms display a wait cursor. Set this

to True before performing a long operation, and set it to False when

the operation is fi nished.

(continued)

bapp18.indd 1106bapp18.indd 1106 12/31/09 6:21:56 PM12/31/09 6:21:56 PM

METHODS

The following table describes the Application class ’ s most useful methods.

METHOD PURPOSE

AddMessageFilter Adds a message fi lter to monitor the event loop ’ s Windows messages.

DoEvents Processes Windows messages that are currently in the message queue.

If the thread is performing a long calculation, it would normally prevent

the rest of the thread from taking action (such as processing these

messages). Calling DoEvents lets the user interface catch up with the

user ’ s actions. Note that you can often avoid the need for DoEvents if

you perform the long task on a separate thread.

Exit Ends the whole application. This is a rather abrupt halt, and any forms

do not execute their FormClosing or FormClosed event handlers, so be

sure the application has executed any necessary clean - up code before

calling Application.Exit.

ExitThread Ends the current thread. This is a rather abrupt halt, and any forms

on the thread do not execute their FormClosing or FormClosed

event handlers.

OnThreadException Raises the Application object ’ s ThreadException event, passing it an

exception. If your application throws an uncaught exception in the IDE,

the IDE halts. That makes it hard to test Application.ThreadException

event handlers. You can call OnThreadException to invoke the event

handler.

RemoveMessageFilter Removes a message fi lter.

Run Runs a message loop for the current thread. If you pass this method

a form object, it displays the form and processes its messages until

the form closes.

SetSuspendState Makes the system suspend operation or hibernate. When the system

hibernates , it writes its memory contents to disk. When you restart the

system, it resumes with its previous desktop and applications running.

When the system suspends operation, it enters low - power mode. It can

resume more quickly than a hibernated system, but memory contents

are not saved, so they will be lost if the computer loses power.

Methods ❘ 1107

bapp18.indd 1107bapp18.indd 1107 12/31/09 6:21:56 PM12/31/09 6:21:56 PM

1108 ❘ APPENDIX R THE APPLICATION CLASS

EVENTS

The following table describes the Application object ’ s events.

EVENT PURPOSE

ApplicationExit Occurs when the application is about to shut down.

Idle Occurs when the application fi nishes executing some code and is about

to enter an idle state to wait for events.

ThreadException Occurs when the application throws an unhandled exception.

ThreadExit Occurs when a thread is about to exit.

bapp18.indd 1108bapp18.indd 1108 12/31/09 6:21:57 PM12/31/09 6:21:57 PM

S
The My Namespace

The My namespace provides shortcuts to make performing common tasks easier. The
following sections describe the major items within the My namespace and describe the tools
that they make available.

MY.APPLICATION

My.Application provides information about the current application. It includes properties that
tell you the program ’ s current directory, culture, Log object, and splash screen. It also includes
information about the application ’ s assembly, including the program ’ s version numbering.

The following table describes the most useful My.Application properties, methods, and events.

ITEM PURPOSE

ApplicationContext Returns an ApplicationContext object for the currently

executing thread. It provides a reference to the thread ’ s

form. Its ExitThread method terminates the thread and its

ThreadExit event fi res when the thread is exiting.

ChangeCurrentCulture Changes the thread ’ s culture used for string manipulation

and formatting.

ChangeCurrentUICulture Changes the thread ’ s culture used for retrieving resources.

CommandLineArgs Returns a collection containing the command - line argument

strings used when the application was started. The fi rst

entry (with index 0) is the fully qualifi ed name of the

executable application.

continues

bapp19.indd 1109bapp19.indd 1109 12/31/09 6:22:43 PM12/31/09 6:22:43 PM

1110 ❘ APPENDIX S THE MY NAMESPACE

ITEM PURPOSE

CurrentCulture Returns a CultureInfo object that represents the settings used for culture -

specifi c string manipulation and formatting. This includes calendar

information, date and time specifi cations, the culture ’ s name, keyboard

layout, number formats for general numbers (for example, the thousands

separator character and decimal character), currency, and percentages.

CurrentUICulture Returns a CultureInfo object that represents the culture - specifi c

settings used by the thread to retrieve resources. It determines the

culture used by the Resource Manager and My.Resources.

Deployment Returns the application ’ s current ApplicationDeployment object used

for ClickOnce deployment. Normally, you don ’ t need to manage

deployment yourself, but this object lets you check for updates, start an

update synchronously or asynchronously, download fi les, and restart

the updated application.

DoEvents Makes the application process all of the Windows messages currently

waiting in the message queue. Doing this allows controls to process

messages and update their appearances while the program is performing

a long calculation. Often, you can avoid using DoEvents by performing

long calculations on a separate thread, so the user interface can continue

running normally.

GetEnvironment-

Variable

Returns the value of the specifi ed environment variable. For example,

the following code displays the value of the PATH environment variable:

MessageBox.Show(
 My.Application.GetEnvironmentVariable(“PATH”))

This method raises an exception if the named environment variable

doesn ’ t exist. The method Environment.GetEnvironmentVariable

performs the same function, except that it returns Nothing if the

variable doesn ’ t exist.

Info Returns an AssemblyInfo object that provides information about

the assembly such as assembly name, company name, copyright,

trademark, and version.

IsNetworkDeployed Returns True if the application was deployed over the network. You

should check this property and only try to use the My.Application.

Deployment object if it returns True.

Log An object of the class MyLog. You can use this object ’ s WriteEntry and

WriteException methods to log messages and exceptions.

MainForm Gets or sets the application ’ s main form.

NetworkAvailability-

Changed

The application raises this event when the network ’ s availability

changes.

(continued)

bapp19.indd 1110bapp19.indd 1110 12/31/09 6:22:46 PM12/31/09 6:22:46 PM

ITEM PURPOSE

OpenForms Returns a collection containing references to all of the application ’ s

open forms.

Shutdown The application raises this event when it is shutting down. This event

occurs after all forms ’ FormClosing and FormClosed event handlers

have fi nished. Note that it only fi res if the program shuts down normally.

If it exits, these events don ’ t fi re.

SplashScreen Gets or sets the application ’ s splash screen.

Startup The application raises this event when it is starting up before it creates

any forms.

StartupNextInstance The application raises this event when the user tries to start a second

instance of a single - instance application.

UICulture Gets the thread ’ s culture used for retrieving resources.

UnhandledException The application raises this event if it encounters an unhandled exception.

The following table lists the Info object ’ s properties. Note that these properties have default blank
values unless you set them by opening the project ’ s property pages, selecting the Application tab,
and clicking the Assembly Information button.

PROPERTY PURPOSE

AssemblyName Gets the assembly ’ s name.

CompanyName Gets the assembly ’ s company name.

Copyright Gets the assembly ’ s copyright information.

Description Gets the assembly ’ s description.

DirectoryPath Gets the directory where the assembly is stored.

LoadedAssemblies Returns a collection of Assembly objects for the application ’ s

currently loaded assemblies.

ProductName Gets the assembly ’ s product name.

StackTrace Gets a stack trace.

Title Gets the assembly ’ s title.

Trademark Gets the assembly ’ s trademark information.

Version Gets the assembly ’ s version number.

WorkingSet Gets the number of bytes mapped to the process context.

My.Application ❘ 1111

bapp19.indd 1111bapp19.indd 1111 12/31/09 6:22:47 PM12/31/09 6:22:47 PM

1112 ❘ APPENDIX S THE MY NAMESPACE

The project ’ s Application property page gives you access
to most of the Info values at design time. To open the
Application property page, open Solution Explorer,
double - click the My Project entry, and select the
Application tab.

To set Info values at design time, open the Application
property page and click the Assembly Information
button, and then enter the assembly information in the
dialog shown in Figure S - 1, and click OK.

To place code in the My.Application object ’ s
NetworkAvailabilityChanged, Shutdown, Startup,
StartupNextInstance, or UnhandledException event
handlers, open the Application property page and click
the View Application Events button.

Alternatively, you can open Solution Explorer, click the
Show All Files button, expand the My Project entry, and
open the fi le ApplicationEvents.vb.

To make the application a single - instance application, open the Application property page and
check the “ Make single instance application ” box.

MY.COMPUTER

My.Computer provides methods to understand and control the computer ’ s hardware and the system
software. It lets you work with the audio system, clock, keyboard, clipboard, mouse, network,
printers, Registry, and fi le system.

The following sections describe the properties, methods, and events available through My.Computer
in detail.

Audio

This object provides access to the computer ’ s audio system. Its methods let you play a .wav fi le
synchronously or asynchronously, stop a fi le playing asynchronously, or play a system sound. For
example, the following code plays the system ’ s exclamation sound:

My.Computer.Audio.PlaySystemSound(SystemSounds.Exclamation)

FIGURE S-1: Use this dialog box to enter

information that the program can later

retrieve using My.Application.AssemblyInfo.

bapp19.indd 1112bapp19.indd 1112 12/31/09 6:22:47 PM12/31/09 6:22:47 PM

My.Computer ❘ 1113

The following table describes the Audio object ’ s methods.

METHOD PURPOSE

Play Plays .wav data from a fi le, byte array, or stream. The second parameter can be

Background (play asynchronously in the background), BackgroundLoop (play

asynchronously in the background and repeat when it ends), or WaitToComplete (play

synchronously).

PlaySystem-

Sound

Plays a system sound. The parameter should be a member of the SystemSounds

enumeration and can have the value Asterisk, Beep, Exclamation, Hand, or Question.

Stop Stops the sound currently playing asynchronously.

Clipboard

The Clipboard object described in Chapter 23, “ Drag and Drop, and the Clipboard, ” enables you
to move data in and out of the system ’ s clipboard. The My.Computer.Clipboard object provides
extra tools that simplify some clipboard operations. The following table briefl y summarizes the
My.Computer.Clipboard object ’ s methods.

METHOD PURPOSE

Clear Removes all data from the clipboard.

ContainsAudio Returns True if the clipboard contains audio data.

ContainsData Returns True if the clipboard contains data in a specifi c custom format.

ContainsFileDropList Returns True if the clipboard contains a fi le drop list.

ContainsImage Returns True if the clipboard contains image data.

ContainsText Returns True if the clipboard contains textual data.

GetAudioStream Gets audio data from the clipboard.

GetData Gets data in a specifi c custom format from the clipboard.

GetDataObject Gets a DataObject from the clipboard.

GetFileDropList Gets a StringCollection holding the names of the fi les selected for

drop from the clipboard.

GetImage Gets image data from the clipboard.

GetText Gets textual data from the clipboard.

SetAudio Saves audio data to the clipboard.

SetData Saves data in a specifi c custom format to the clipboard.

continues

bapp19.indd 1113bapp19.indd 1113 12/31/09 6:22:48 PM12/31/09 6:22:48 PM

1114 ❘ APPENDIX S THE MY NAMESPACE

METHOD PURPOSE

SetDataObject Saves a DataObject to the clipboard.

SetFileDropList Saves a StringCollection containing a series of fully qualifi ed fi le

names to the clipboard.

SetImage Saves an image to the clipboard.

SetText Saves textual data to the clipboard.

See Chapter 23 for more information about using the clipboard.

Clock

This property returns an object of type MyClock that you can use to learn about the current time.
The following table describes this object ’ s properties.

PROPERTY PURPOSE

GmtTime Returns a Date object that gives the current local date and time converted into

Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT).

LocalTime Returns a Date object that gives the current local date and time.

TickCount Returns the number of milliseconds since the computer started.

For example, suppose that you live in Colorado, which uses Mountain Standard Time (MST), seven
hours behind Greenwich Mean Time. If My.Computer.Clock.LocalTime returns 2:03 pm, then
My.Computer.Clock.GmtTime returns 9:03 pm.

If you must store a date and time for later use (for example, in a database), you should generally
store it in UTC. Then you can meaningfully compare that value with other times stored on other
computers in different time zones such as those across the Internet.

FileSystem

The FileSystem object provides tools for working with drives, directories, and fi les. The following
table summarizes this object ’ s properties and methods.

ITEM DESCRIPTION

CombinePath Returns a properly formatted combined path as a string.

CopyDirectory Copies a directory.

CopyFile Copies a fi le.

(continued)

bapp19.indd 1114bapp19.indd 1114 12/31/09 6:22:48 PM12/31/09 6:22:48 PM

My.Computer ❘ 1115

ITEM DESCRIPTION

CreateDirectory Creates a directory.

CurrentDirectory Determines the fully qualifi ed path to the application ’ s current

directory.

DeleteDirectory Deletes a directory.

DeleteFile Deletes a fi le.

DirectoryExists Returns a Boolean indicating whether a directory exists.

Drives Returns a read - only collection of DriveInfo objects describing

the system ’ s drives. See Chapter 38, “ File - System Objects, ” for

information about the DriveInfo class.

FileExists Returns a Boolean indicating whether a fi le exists.

FindInFiles Returns a collection holding names of fi les that contain a search string.

GetDirectories Returns a String collection representing the path names of

subdirectories within a directory.

GetDirectoryInfo Returns a DirectoryInfo object for the specifi ed path.

GetDriveInfo Returns a DriveInfo object for the specifi ed path.

GetFileInfo Returns a FileInfo object for the specifi ed path.

GetFiles Returns a read - only String collection representing the names of fi les

within a directory.

GetParentPath Returns a string representing the absolute path of the parent of the

provided path.

MoveDirectory Moves a directory.

MoveFile Moves a fi le.

OpenTextFieldParser Opens a TextFieldParser.

OpenTextFileReader Opens a TextReader.

OpenTextFileWriter Opens a TextWriter.

ReadAllBytes Reads from a binary fi le.

ReadAllText Reads from a text fi le.

RenameDirectory Renames a directory.

RenameFile Renames a fi le.

continues

bapp19.indd 1115bapp19.indd 1115 12/31/09 6:22:49 PM12/31/09 6:22:49 PM

1116 ❘ APPENDIX S THE MY NAMESPACE

ITEM DESCRIPTION

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties giving

the locations of various special directories such as the system ’ s

temporary directory and the user ’ s MyDocuments directory. See

Chapter 38 for more information.

WriteAllBytes Writes to a binary fi le.

WriteAllText Writes to a text fi le.

Info

The My.Computer.Info object provides information about the computer ’ s memory and operating
system. The following list describes this object ’ s properties:

PROPERTY PURPOSE

AvailablePhysicalMemory Returns the computer ’ s total amount of free physical memory

in bytes.

AvailableVirtualMemory Returns the computer ’ s total amount of free virtual address space

in bytes.

InstalledUICulture Returns the current user - interface culture.

LoadedAssemblies Returns a collection of the assemblies loaded by the application.

OSFullName Returns the computer ’ s full operating - system name as in Microsoft

Windows XP Home Edition.

OSPlatform Returns the platform identifi er for the operating system of the

computer. This can be Unix, Win32NT (Windows NT or later),

Win32S (runs on 16 - bit Windows to provide access to 32 - bit

applications), Win32Windows (Windows 95 or later), or WinCE.

OSVersion Returns the operating system ’ s version in a string with the format

major.minor.build.revision.

StackTrace Returns a string containing the application ’ s current stack trace.

TotalPhysicalMemory Returns the computer ’ s total amount of physical memory in bytes.

TotalVirtualMemory Returns the computer ’ s total amount of virtual address space in bytes.

WorkingSet Returns the amount of physical memory mapped to the process

context in bytes.

(continued)

bapp19.indd 1116bapp19.indd 1116 12/31/09 6:22:49 PM12/31/09 6:22:49 PM

My.Computer ❘ 1117

Keyboard

This object returns information about the current keyboard state. The following table describes this
object ’ s properties.

PROPERTY PURPOSE

AltKeyDown Returns True if the Alt key is down.

CapsLock Returns True if Caps Lock is on.

CtrlKeyDown Returns True if the Ctrl key is down.

NumLock Returns True if Num Lock is on.

ScrollLock Returns True if Scroll Lock is on.

ShiftKeyDown Returns True if the Shift key is down.

The My.Computer.Keyboard object also provides one method named SendKeys. This method
sends keystrokes to the currently active window just as if the user had typed them. You can use this
method to provide some automated control over applications.

Mouse

The My.Computer.Mouse object provides information about the computer ’ s mouse. The following
table describes this object ’ s properties.

PROPERTY DESCRIPTION

ButtonsSwapped Returns True if the functions of the mouse ’ s left and right buttons

have been switched. This can make using the mouse easier for

left - handed users.

WheelExists Returns True if the mouse has a scroll wheel.

WheelScrollLines Returns a number indicating how much to scroll when the mouse

wheel rotates one notch.

Name

The My.Computer.Name property simply returns the computer ’ s name.

Network

The My.Computer.Network object provides a few simple properties and methods for working with
the network. Its single property, IsAvailable, returns True if the network is available.

bapp19.indd 1117bapp19.indd 1117 12/31/09 6:22:50 PM12/31/09 6:22:50 PM

1118 ❘ APPENDIX S THE MY NAMESPACE

The following table describes the object ’ s methods.

METHOD DESCRIPTION

DownloadFile Downloads a fi le from a remote computer. Parameters give such values

as the fi le name, user name, password, and connection timeout.

IsAvailable Returns True if the network is available.

Ping Pings a remote computer to see if it is connected to the network.

UploadFile Uploads a fi le to a remote computer. Parameters give such values as the

fi le name, user name, password, and connection timeout.

This object also provides one event, NetworkAvailabilityChanged, that you can catch to learn when
the network becomes available or unavailable.

Ports

This object provides one property and a single method. Its SerialPortNames property returns an
array of strings listing the names of the computer ’ s serial ports.

The OpenSerialPort method opens the serial port with a particular name (optional parameters
give the baud rate, parity, and other port confi guration information) and returns a reference to a
SerialPort object.

The SerialPort class is much more complex than the My.Computer.Ports object. The following table
describes the SerialPort class ’ s most useful properties.

PROPERTY PURPOSE

BaseStream Returns the underlying Stream object.

BaudRate Gets or sets the port ’ s baud rate.

BreakState Gets or sets the break signal state.

BytesToRead Returns the number of bytes of data in the receive buff er.

BytesToWrite Returns the number of bytes of data in the send buff er.

CDHolding Returns the state of the port ’ s Carrier Detect (CD) line.

CtsHolding Returns the state of the port ’ s Clear - to - Send (CTS) line.

DataBits Gets or sets the standard length of data bits per byte.

DiscardNull Determines whether null characters are ignored.

DsrHolding Returns the state of the Data Set Ready (DSR) signal.

bapp19.indd 1118bapp19.indd 1118 12/31/09 6:22:51 PM12/31/09 6:22:51 PM

My.Computer ❘ 1119

PROPERTY PURPOSE

DtrEnable Determines enabling of the Data Terminal Ready (DTR) signal.

Encoding Determines the character encoding for text conversion.

Handshake Determines the handshaking protocol.

IsOpen Returns True if the port is open.

NewLine Determines the end - of - line sequence for the ReadLine and WriteLine

methods. This is a linefeed by default.

Parity Determines the parity - checking protocol.

ParityReplace Determines the character used to replace invalid characters when a

parity error occurs.

PortName Gets or selects the port.

ReadBufferSize Determines the port ’ s read buff er size.

ReadTimeout Determines the read timeout in milliseconds.

ReceivedBytesThreshold Determines the number of bytes in the input buff er before a

ReceivedEvent is raised.

RtsEnable Determines whether the Request to Transmit (RTS) signal is enabled.

StopBits Determines the standard number of stop bits per byte.

WriteBufferSize Determines the port ’ s write buff er size.

WriteTimeout Determines the write timeout in milliseconds.

The following table describes the SerialPort object ’ s most useful methods.

METHOD PURPOSE

Close Closes the port.

DiscardInBuffer Discards any data that is currently in the read buff er.

DiscardOutBuffer Discards any data that is currently in the write buff er.

GetPortNames Returns an array of strings holding the serial ports ’ names.

Open Opens the port ’ s connection.

Read Reads data from the read buff er.

ReadByte Synchronously reads one byte from the read buff er.

continues

bapp19.indd 1119bapp19.indd 1119 12/31/09 6:22:51 PM12/31/09 6:22:51 PM

1120 ❘ APPENDIX S THE MY NAMESPACE

METHOD PURPOSE

ReadChar Synchronously reads one character from the read buff er.

ReadExisting Reads all immediately available characters in both the stream and

the read buff er.

ReadLine Reads up to the next NewLine value in the read buff er.

ReadTo Reads a string up to the specifi ed value in the read buff er.

Write Writes data into the port ’ s write buff er.

WriteLine Writes a string and a NewLine into the write buff er.

The SerialPort object also has a few events that you can use to learn about changes in the port ’ s
status. The following table describes the object ’ s most useful events.

EVENT PURPOSE

DataReceived Occurs when the port receives data. The e.EventType parameter

indicates the type of data and can be SerialData.Eof (end of fi le

received) or SerialData.Chars (characters were received).

ErrorEvent Occurs when the port encounters an error. The e.EventType parameter

indicates the type of error and can be Frame (framing error), Overrun

(character buff er overrun), RxOver (input buff er overrun), RxParity

(hardware detected parity error), or TxFull (output buff er full).

PinChangedEvent Occurs when the port ’ s serial pin changes. The e.EventType parameter

indicates the type of change and can be Break (break in the input),

CDChanged (Receive Line Signal Detect, or RLSD, signal changed

state), CtsChanged (CTS signal changed state), DsrChanged (DSR

signal changed state), and Ring (detected a ring indicator).

Registry

My.Computer.Registry provides objects that manipulate the Registry. My.Computer.Registry has
seven properties that refer to objects of type RegistryKey that represent the Registry ’ s main subtrees
or “ hives. ”

The following table lists these objects and the corresponding Registry hives.

(continued)

bapp19.indd 1120bapp19.indd 1120 12/31/09 6:22:52 PM12/31/09 6:22:52 PM

My.Computer ❘ 1121

MY.COMPUTER.REGISTRY PROPERTY REGISTRY SUBTREE

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYNAMIC_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

My.Computer.Registry also provides two methods, GetValue and SetValue, that get and set Registry
values.

The program can use the RegistryKey objects to work with the corresponding Registry subtrees. The
following table describes the most useful properties and methods provided by the RegistryKey class.

PROPERTY OR METHOD PURPOSE

Close Closes the key and writes it to disk if it has been modifi ed.

CreateSubKey Creates a new subkey or opens an existing subkey within this key.

DeleteSubKey Deletes the specifi ed subkey.

DeleteSubKeyTree Recursively deletes a subkey and any child subkeys it contains.

DeleteValue Deletes a value from the key.

Flush Writes any changes to the key into the Registry.

GetSubKeyNames Returns an array of strings giving subkey names.

GetValue Returns the value of a specifi ed value within this key.

GetValueKind Returns the type of a specifi ed value within this key. This can be Binary,

DWord, ExpandString, MultiString, QWord, String, or Unknown. (Unknown

is particularly important because the Registry can contain just about any

custom data type.)

GetValueNames Returns an array of strings giving the names of all of the values contained

within the key.

Name Returns the key ’ s Registry path.

OpenSubKey Returns a RegistryKey object representing a descendant key. A parameter

indicates whether you need write access to the key.

continues

bapp19.indd 1121bapp19.indd 1121 12/31/09 6:22:53 PM12/31/09 6:22:53 PM

1122 ❘ APPENDIX S THE MY NAMESPACE

PROPERTY OR METHOD PURPOSE

SetValue Sets a value within the key.

SubKeyCount Returns the number of subkeys that are this key ’ s direct children.

ToString Returns the key ’ s name.

ValueCount Returns the number of values stored in this key.

Visual Basic ’ s native Registry methods SaveSetting and GetSetting are generally easier to use than
My.Computer.Registry, although they provide access to only part of the Registry.

Screen

The My.Computer.Screen property returns a Screen object representing the computer ’ s main
display. The following table describes the Screen object ’ s most useful properties.

PROPERTY PURPOSE

AllScreens Returns an array of Screen objects representing all of the system ’ s

screens.

BitsPerPixel Returns the screen ’ s color depth in bits per pixel.

Bounds Returns a Rectangle giving the screen ’ s bounds in pixels.

DeviceName Returns the screen ’ s device name as in \\.\DISPLAY1.

Primary Returns True if the screen is the computer ’ s primary screen.

PrimaryScreen Returns a reference to a Screen object representing the system ’ s

primary display. For a single display system, the primary display is

the only display.

WorkingArea Returns a Rectangle giving the screen ’ s working area bounds

in pixels. This is the desktop area excluding taskbars, docked

windows, and docked toolbars.

The following table describes the Screen class ’ s most useful methods.

METHOD PURPOSE

FromControl Returns a Screen object representing the display that contains the

largest piece of a specifi c control.

FromHandle Returns a Screen object representing the display that contains the

largest piece of the object with a given handle.

(continued)

bapp19.indd 1122bapp19.indd 1122 12/31/09 6:22:53 PM12/31/09 6:22:53 PM

METHOD PURPOSE

FromPoint Returns a Screen object representing the display that contains a

given point.

FromRectangle Returns a Screen object representing the display that contains the

largest piece of a given Rectangle.

GetBounds Returns a Rectangle giving the bounds of the screen that contains

the largest piece of a control, rectangle, or point.

GetWorkingArea Returns a Rectangle giving the working area of the screen that

contains the largest piece of a control, rectangle, or point.

The AllScreens and PrimaryScreen properties, and all of these methods, are shared members
of the Windows.Forms.Screen class. If you refer to them using an instance of the class such as
My.Computer.Screen, the IDE fl ags the code with a warning. You can avoid the warning by using
the class itself (System.Windows.Forms.Screen) rather than an instance to refer to these properties,
as in the following code:

Debug.WriteLine(System.Windows.Forms.Screen.AllScreens(0).DeviceName)
Debug.WriteLine(System.Windows.Forms.Screen.PrimaryScreen.DeviceName)

The WorkingArea property does not update after you access the Screen object. If the user moves the
system taskbar, the WorkingArea property does not show the new values.

The GetWorkingArea method retrieves the screen ’ s current working area, however. If you must
be certain that the user has not moved the taskbar or a docked object, use the GetWorkingArea
method.

MY.FORMS

My.Forms provides properties that give references to an instance of each of the types of forms
defi ned by the application. If the program begins with a startup form, the corresponding My.Forms
entry refers to that form. For example, suppose the program begins by displaying Form1. Then,
My.Forms.Form1 refers to the startup instance of the Form1 class.

You can also refer to these forms directly. For example, the following two statements set the text
and display the predefi ned instance of the Form2 class:

My.Forms.Form2.Text = "Hello!"
Form2.Show()

Other forms that you create using the New keyword are separate instances from those provided by
My.Forms.

My.Forms ❘ 1123

bapp19.indd 1123bapp19.indd 1123 12/31/09 6:22:54 PM12/31/09 6:22:54 PM

1124 ❘ APPENDIX S THE MY NAMESPACE

If you know you will only want one instance of a particular form, for example if the form is a dialog
box, you can use this instance instead of creating new instances of the class. If you will need to use
more than one instance of the form at the same time, you must use New to create them.

You can set these properties to Nothing to dispose of the forms, but you can never set them to
anything else. In particular, you cannot set them to new instances of their form classes later. When
you destroy one of these instances, it is gone forever. If you will need to reuse the form later, set its
Visible property to False rather than setting it equal to Nothing. Alternatively, you can just create
new instances of the class when you need them and ignore the forms in My.Forms.

MY.RESOURCES

My.Resources provides access to the application ’ s resources. Its ResourceManager property returns
a reference to a ResourceManager object attached to the project ’ s resources. You can use this object
to retrieve the application ’ s resources.

My.Resources also provides strongly typed properties that return the application ’ s resources. For
example, if you create a string resource named Greeting, the following code sets the form ’ s caption
to that string ’ s value:

Me.Text = My.Resources.Greeting

See Chapter 36, “ Confi guration and Resources, ” for more information on using My.Resources to
access the application ’ s resources.

MY.USER

My.User returns information about the current user. The following table describes the My.User
object ’ s most useful properties.

PROPERTY OR METHOD PURPOSE

CurrentPrincipal Gets or sets an IPrincipal object used for role - based security.

InitializeWithWindowsUser Sets the thread ’ s principal to the Windows user who started it.

IsAuthenticated Returns True if the user ’ s identity has been authenticated.

IsInRole Returns True if the user belongs to a certain role.

Name Returns the current user ’ s name in the format

domain\user_name.

bapp19.indd 1124bapp19.indd 1124 12/31/09 6:22:54 PM12/31/09 6:22:54 PM

T
Streams

Visual Studio provides several classes that treat data as a stream, a series of bytes. These
classes are not diffi cult to use, but they are similar enough to be confusing. This appendix
summarizes the stream classes and describes their properties and their methods. See Chapter
37, “ Streams, ” for more information on streams.

STREAM CLASS SUMMARY

The following table lists the Visual Studio stream classes. It can provide you with some
guidance for selecting a stream class.

CLASS PURPOSE

Stream A generic stream class. This is a virtual (MustInherit) class, so you

cannot create one directly. Instead, you must instantiate one of its

subclasses.

FileStream Represents a fi le as a stream. Usually, you can use a helper

class such as BinaryReader or TextWriter to make working with a

FileStream easier.

MemoryStream Lets you read and write stream data in memory. This is useful when

you need a stream but don ’ t want to read or write a fi le.

BufferedStream Adds buff ering to another stream type. This sometimes improves

performance on relatively slow underlying devices.

BinaryReader ,

BinaryWriter

Read and write data from an underlying stream using routines that

manage specifi c data types (such as ReadDouble and ReadUInt16).

continues

bapp20.indd 1125bapp20.indd 1125 12/31/09 6:23:34 PM12/31/09 6:23:34 PM

1126 ❘ APPENDIX T STREAMS

CLASS PURPOSE

TextReader ,

TextWriter

These virtual (MustInherit) classes defi ne methods that make working with

text on an underlying stream easier.

StringReader ,

StringWriter

These classes inherit from TextReader and TextWriter. They provide

methods for reading and writing text into an underlying string.

StreamReader ,

StreamWriter

These classes inherit from TextReader and TextWriter. They provide

methods for reading and writing text into an underlying stream, usually a

FileStream.

CryptoStream Applies a cryptographic transformation to its data.

NetworkStream Sends and receives data across a network connection.

STREAM

The following table describes the Stream class ’ s most useful properties.

PROPERTY PURPOSE

CanRead Returns True if the stream supports reading.

CanSeek Returns True if the stream supports seeking to a particular position in

the stream.

CanTimeout Returns True if the stream supports timeouts.

CanWrite Returns True if the stream supports writing.

Length Returns the number of bytes in the stream.

Position Returns the stream ’ s current position in its bytes. For a stream that supports

seeking, the program can set this value to move to a particular position.

ReadTimeout Determines the stream ’ s read timeout in milliseconds.

WriteTimeout Determines the stream ’ s write timeout in milliseconds.

The following table describes the Stream class ’ s most useful methods.

(continued)

bapp20.indd 1126bapp20.indd 1126 12/31/09 6:23:37 PM12/31/09 6:23:37 PM

METHOD PURPOSE

BeginRead Begins an asynchronous read.

BeginWrite Begins an asynchronous write.

Close Closes the stream and releases any resources it uses (such as

fi le handles).

EndRead Waits for an asynchronous read to fi nish.

EndWrite Ends an asynchronous write.

Flush Flushes data from the stream ’ s buff ers into the underlying storage

medium (device, fi le, and so on).

Read Reads bytes from the stream and advances its position by that number

of bytes.

ReadByte Reads a byte from the stream and advances its position by 1 byte.

Seek If the stream supports seeking, sets the stream ’ s position.

SetLength Sets the stream ’ s length. If the stream is currently longer than the new

length, it is truncated. If the stream is shorter than the new length, it is

enlarged. The stream must support both writing and seeking for this

method to work.

Write Writes bytes into the stream and advances the current position by this

number of bytes.

WriteByte Writes 1 byte into the stream and advances the current position

by 1 byte.

The FileStream and MemoryStream classes add only few methods to those defi ned by the Stream
class. The most important of those are new constructors specifi c to the type of stream. For
example, the FileStream class provides constructors for opening fi les in various modes (append,
new, and so forth).

BINARYREADER AND BINARYWRITER

These are stream helper classes that make it easier to read and write data in specifi c formats
onto an underlying stream. The following table describes the BinaryReader class ’ s most
useful methods.

BinaryReader and BinaryWriter ❘ 1127

bapp20.indd 1127bapp20.indd 1127 12/31/09 6:23:37 PM12/31/09 6:23:37 PM

1128 ❘ APPENDIX T STREAMS

METHOD PURPOSE

Close Closes the BinaryReader and its underlying stream.

PeekChar Reads the reader ’ s next character, but does not advance the reader ’ s position, so

other methods can still read the character later.

Read Reads characters from the stream and advances the reader ’ s position.

ReadBoolean Reads a Boolean from the stream and advances the reader ’ s position by 1 byte.

ReadByte Reads a byte from the stream and advances the reader ’ s position by 1 byte.

ReadBytes Reads a number of bytes from the stream into a byte array and advances the

reader ’ s position by that number of bytes.

ReadChar Reads a character from the stream and advances the reader ’ s position according

to the stream ’ s encoding and the character.

ReadChars Reads a number of characters from the stream, returns the results in a character

array, and advances the reader ’ s position according to the stream ’ s encoding and

the number of characters.

ReadDecimal Reads a decimal value from the stream and advances the reader ’ s position by

16 bytes.

ReadDouble Reads an 8 - byte fl oating - point value from the stream and advances the reader ’ s

position by 8 bytes.

ReadInt16 Reads a 2 - byte signed integer from the stream and advances the reader ’ s

position by 2 bytes.

ReadInt32 Reads a 4 - byte signed integer from the stream and advances the reader ’ s

position by 4 bytes.

ReadInt64 Reads an 8 - byte signed integer from the stream and advances the reader ’ s

position by 8 bytes.

ReadSByte Reads a signed byte from the stream and advances the reader ’ s position by 1 byte.

ReadSingle Reads a 4 - byte fl oating - point value from the stream and advances the reader ’ s

position by 4 bytes.

ReadString Reads a string from the current stream and advances the reader ’ s position past it.

The string begins with its length.

ReadUInt16 Reads a 2 - byte unsigned integer from the stream and advances the reader ’ s

position by 2 bytes.

ReadUInt32 Reads a 4 - byte unsigned integer from the stream and advances the reader ’ s

position by 4 bytes.

ReadUInt64 Reads an 8 - byte unsigned integer from the stream and advances the reader ’ s

position by 8 bytes.

bapp20.indd 1128bapp20.indd 1128 12/31/09 6:23:38 PM12/31/09 6:23:38 PM

The following table describes the BinaryWriter class ’ s most useful methods.

METHOD DESCRIPTION

Close Closes the BinaryWriter and its underlying stream.

Flush Writes any buff ered data into the underlying stream.

Seek Sets the position within the stream.

Write Writes a value into the stream. This method has many overloaded versions

that write characters, arrays of characters, integers, strings, unsigned 64 - bit

integers, and so on.

TEXTREADER AND TEXTWRITER

These are stream helper classes that make it easier to read and write text data onto an underlying
stream. The following table describes the TextReader class ’ s most useful methods.

METHOD PURPOSE

Close Closes the reader and releases any resources that it is using.

Peek Reads the next character from the text without changing the reader ’ s state so

other methods can read the character later.

Read Reads data from the input. Overloaded versions of this method read a single

character, or an array of characters up to a specifi ed length.

ReadBlock Reads data from the input into an array of characters.

ReadLine Reads a line of characters from the input and returns the data in a string.

ReadToEnd Reads any remaining characters in the input and returns them in a string.

The following table describes the TextWriter class ’ s most useful properties.

PROPERTY PURPOSE

Encoding Specifi es the data ’ s encoding (ASCII, UTF - 8, Unicode, and so forth).

FormatProvider Returns an object that controls formatting.

NewLine Gets or sets the stream ’ s new - line sequence.

TextReader and TextWriter ❘ 1129

bapp20.indd 1129bapp20.indd 1129 12/31/09 6:23:38 PM12/31/09 6:23:38 PM

1130 ❘ APPENDIX T STREAMS

The following table describes the TextWriter class ’ s most useful methods.

METHOD PURPOSE

Close Closes the writer and releases any resources it uses.

Flush Writes any buff ered data into the underlying output.

Write Writes a value into the output. This method has many overloaded versions

that write characters, arrays of characters, integers, strings, unsigned 64 - bit

integers, and so forth.

WriteLine Writes data into the output followed by the new - line sequence.

STRINGREADER AND STRINGWRITER

The StringReader and StringWriter classes let a program read and write text in a string. They
implement the features defi ned by their parent classes TextReader and TextWriter. See the section
“ TextReader and TextWriter ” earlier in this appendix for a list of those features.

STREAMREADER AND STREAMWRITER

The StreamReader and StreamWriter classes let a program read and write data in an underlying
stream, often a FileStream. They implement the features defi ned by their parent classes TextReader
and TextWriter. See the section “ TextReader and TextWriter ” earlier in this appendix for a list of
the features.

TEXT FILE STREAM METHODS

The System.IO.File class provides several handy methods for working with text fi les. The following
table summarizes these methods.

METHOD PURPOSE

AppendText Creates a text fi le or opens it for appending if it already exists. Returns a

StreamWriter for writing into the fi le.

CreateText Creates a text fi le, overwriting it if it already exists. Returns a StreamWriter for

writing into the fi le.

Exists Returns True if a fi le exists. It is better practice (and much faster) to only try to

open the fi le if Exists returns True, rather than just trying to open the fi le and

catching errors with a Try Catch block.

OpenText Opens an existing text fi le and returns a StreamReader to read from it. This

method throws a FileNotFoundException if the fi le doesn ’ t exist.

bapp20.indd 1130bapp20.indd 1130 12/31/09 6:23:39 PM12/31/09 6:23:39 PM

U
File - System Classes

A Visual Basic application can take three basic approaches to fi le system manipulation: Visual
Basic methods, System.IO Framework classes, and the My.Computer.FileSystem namespace.
This appendix summarizes the properties, methods, and events provided by these approaches.
For more information on fi le system objects, see Chapter 38, “ File - System Objects. ”

VISUAL BASIC METHODS

The following table summarizes the Visual Basic methods for working with fi les. They let a
program create, open, read, write, and learn about fi les.

METHOD PURPOSE

Method Purpose

EOF Returns True if the fi le is at the end of fi le.

FileClose Closes an open fi le.

FileGet Reads data from a fi le opened in Random and Binary mode into a

variable.

FileGetObject Reads data as an object from a fi le opened in Random and Binary

mode into a variable.

FileOpen Opens a fi le for reading or writing. Parameters indicate the mode

(Append, Binary, Input, Output, or Random), access type (Read,

Write, or ReadWrite), and sharing (Shared, LockRead, LockWrite,

or LockReadWrite).

FilePut Writes data from a variable into a fi le opened for Random or

Binary access.

continues

bapp21.indd 1131bapp21.indd 1131 12/31/09 6:24:21 PM12/31/09 6:24:21 PM

1132 ❘ APPENDIX U FILE - SYSTEM CLASSES

METHOD PURPOSE

FilePutObject Writes an object from a variable into a fi le opened for Random or

Binary access.

FreeFile Returns a fi le number that is not currently associated with any fi le

in this application. You should use FreeFile to get fi le numbers

rather than using arbitrary numbers such as 1.

Input Reads data written into a fi le by the Write method back into a variable.

InputString Reads a specifi c number of characters from the fi le.

LineInput Returns the next line of text from the fi le.

Loc Returns the current position within the fi le.

LOF Returns the fi le ’ s length in bytes.

Print Prints values into the fi le. Multiple values separated by commas

are aligned at tab boundaries.

PrintLine Prints values followed by a new line into the fi le. Multiple values

separated by commas are aligned at tab boundaries.

Seek Moves to the indicated position within the fi le.

Write Writes values into the fi le, delimited appropriately so that they

can later be read by the Input method.

WriteLine Writes values followed by a new line into the fi le, delimited

appropriately so that they can later be read by the Input method.

The following table describes Visual Basic methods that manipulate directories and fi les. They let an
application list, rename, move, copy, and delete fi les and directories.

METHOD PURPOSE

ChDir Changes the application ’ s current working directory.

ChDrive Changes the application ’ s current working drive.

CurDir Returns the application ’ s current working directory.

Dir Returns a fi le matching a directory path specifi cation that may

include wildcards, and matching certain fi le properties such

as ReadOnly, Hidden, or Directory. The fi rst call to Dir should

include a path. Subsequent calls can omit the path to fetch

the next matching fi le for the initial path. Dir returns fi le names

without the path and returns Nothing when no more fi les match.

(continued)

bapp21.indd 1132bapp21.indd 1132 12/31/09 6:24:24 PM12/31/09 6:24:24 PM

METHOD PURPOSE

FileCopy Copies a fi le to a new location.

FileDateTime Returns the date and time when the fi le was created or last modifi ed.

FileLen Returns the length of a fi le in bytes.

GetAttr Returns a value indicating the fi le ’ s attributes. The value is a

combination of the values vbNormal, vbReadOnly, vbHidden,

vbSystem, vbDirectory, vbArchive, and vbAlias.

Kill Permanently deletes a fi le.

MkDir Creates a new directory.

Rename Renames a directory or fi le.

RmDir Deletes an empty directory.

SetAttr Sets the fi le ’ s attributes The value is a combination of the values

vbNormal, vbReadOnly, vbHidden, vbSystem, vbDirectory,

vbArchive, and vbAlias.

FRAMEWORK CLASSES

The System.IO namespace provides several classes for working with the fi le system. The following
sections describe the properties, methods, and events provided by these classes.

FileSystem

The FileSystem class provides shared methods for working with the fi le system at a large scale. The
following table describes its most useful properties and methods.

PROPERTY OR METHOD PURPOSE

CombinePath Combines a base path with a relative child path and returns the resulting

path. For example, the statement FileSystem.CombinePath(“ C:\Someplace\

Lost ” , “ ..\Else ”) returns C:\Someplace\Else.

CopyDirectory Copies a directory and its contents to a new location. A parameter indicates

whether you want to overwrite existing fi les that have the same names.

CopyFile Copies a fi le to a new location, possibly overwriting an existing fi le.

CreateDirectory Creates a new directory.

DeleteDirectory Deletes an existing directory. Parameters indicate whether the method

should recursively delete the directory ’ s contents and whether the deleted

fi les should be placed in the Recycle Bin or deleted permanently.

continues

Framework Classes ❘ 1133

bapp21.indd 1133bapp21.indd 1133 12/31/09 6:24:24 PM12/31/09 6:24:24 PM

1134 ❘ APPENDIX U FILE - SYSTEM CLASSES

PROPERTY OR METHOD PURPOSE

DeleteFile Deletes a fi le. A parameter indicates whether the fi le should be placed in

the Recycle Bin or deleted permanently.

DirectoryExists Returns True if the specifi ed directory exists.

FileExists Returns True if the specifi ed fi le exists.

FindInFiles Returns a collection holding names of fi les that contain a search string.

GetDirectories Returns a read - only collection of strings giving the subdirectories within

a specifi c directory. Parameters indicate whether the method should

recursively search the subdirectories and whether the routine should allow

wildcards.

GetDirectoryInfo Returns a DirectoryInfo object representing a directory. Note that the

directory need not exist yet. For example, you can create a DirectoryInfo

object and then use its Create method to create the directory.

GetDriveInfo Returns a DriveInfo object representing a drive.

GetFileInfo Returns a FileInfo object representing a fi le. Note that the fi le need not

exist yet. For example, you can create a FileInfo object and then use its

Create method to create the fi le.

GetFiles Returns a read - only collection of strings giving the names of fi les within

a specifi c directory. Parameters indicate whether the method should

recursively search the subdirectories and whether the routine should allow

wildcards.

GetName Returns the name portion of a fi le path.

GetParentPath Returns a directory ’ s parent directory path.

GetTempFileName Creates a uniquely named empty fi le and returns its full path.

MoveDirectory Moves a directory to a new parent directory. A parameter indicates

whether you want to overwrite existing fi les with the same names.

MoveFile Moves a fi le to a new directory. Parameters indicate whether the fi le

should overwrite an existing fi le at the new location.

OpenTextFieldParser Returns a TextFieldParser for a fi le. A TextFieldParser makes it easy to read

fi elds from a delimited fi le or from a fi le with fi xed - width fi eld columns.

OpenTextFileReader Returns a StreamReader attached to a fi le.

OpenTextFileWriter Returns a StreamWriter attached to a fi le. A parameter indicates whether the

StreamWriter should append to the fi le or create a new fi le.

ReadAllBytes Returns a fi le ’ s contents as an array of bytes.

(continued)

bapp21.indd 1134bapp21.indd 1134 12/31/09 6:24:25 PM12/31/09 6:24:25 PM

PROPERTY OR METHOD PURPOSE

ReadAllText Returns a fi le ’ s contents as a string.

RenameDirectory Changes a directory ’ s name within its current parent directory.

RenameFile Changes a fi le ’ s name within its current directory.

WriteAllBytes Writes a byte array into a fi le. A parameter indicates whether the method

should append the bytes to the fi le or create a new fi le.

WriteAllText Writes a string into a fi le. A parameter indicates whether the method

should append the string to the fi le or create a new fi le.

Directory

The Directory class provides shared methods for working with directories. The following table
summarizes its shared methods.

METHOD PURPOSE

CreateDirectory Creates all of the directories along a path.

Delete Deletes a directory and its contents. It can recursively delete all

subdirectories.

Exists Returns True if the path points to an existing directory.

GetCreationTime Returns a directory ’ s creation date and time.

GetCreationTimeUtc Returns a directory ’ s creation date and time in Coordinated

Universal Time (UTC).

GetCurrentDirectory Returns the application ’ s current working directory.

GetDirectories Returns an array of strings holding the fully qualifi ed names of a

directory ’ s subdirectories.

GetDirectoryRoot Returns the directory root for a path, which need not exist (for

example, C:\).

GetFiles Returns an array of strings holding the fully qualifi ed names of a

directory ’ s fi les.

GetFileSystemEntries Returns an array of strings holding the fully qualifi ed names of a

directory ’ s fi les and subdirectories.

GetLastAccessTime Returns a directory ’ s last access date and time.

GetLastAccessTimeUtc Returns a directory ’ s last access date and time in UTC.

continues

Framework Classes ❘ 1135

bapp21.indd 1135bapp21.indd 1135 12/31/09 6:24:26 PM12/31/09 6:24:26 PM

1136 ❘ APPENDIX U FILE - SYSTEM CLASSES

METHOD PURPOSE

GetLastWriteTime Returns the date and time when a directory was last modifi ed.

GetLastWriteTimeUtc Returns the date and time when a directory was last modifi ed

in UTC.

GetLogicalDrives Returns an array of strings listing the system ’ s logical drives as in

A:\. The list includes drives that are attached. For example, it lists

an empty fl oppy drive and a connected fl ash disk but doesn ’ t list

a fl ash disk after you disconnect it.

GetParent Returns a DirectoryInfo object representing a directory ’ s parent

directory.

Move Moves a directory and its contents to a new location on the same

disk volume.

SetCreationTime Sets a directory ’ s creation date and time.

SetCreationTimeUtc Sets a directory ’ s creation date and time in UTC.

SetCurrentDirectory Sets the application ’ s current working directory.

SetLastAccessTime Sets a directory ’ s last access date and time.

SetLastAccessTimeUtc Sets a directory ’ s last access date and time in UTC.

SetLastWriteTime Sets a directory ’ s last write date and time.

SetLastWriteTimeUtc Sets a directory ’ s last write date and time in UTC.

File

The File class provides shared methods for working with fi les. The following table summarizes its
most useful shared methods.

METHOD PURPOSE

AppendAllText Adds text to the end of a fi le, creating it if it doesn ’ t exist, and then

closes the fi le.

AppendText Opens a fi le for appending UTF - 8 encoded text and returns a

StreamWriter attached to it. (For more information on UTF - 8, see

en.wikipedia.org/wiki/UTF-8).

Copy Copies a fi le.

(continued)

bapp21.indd 1136bapp21.indd 1136 12/31/09 6:24:26 PM12/31/09 6:24:26 PM

METHOD PURPOSE

Create Creates a new fi le and returns a FileStream attached to it.

CreateText Creates or opens a fi le for writing UTF - 8 encoded text and

returns a StreamWriter attached to it.

Delete Permanently deletes a fi le.

Exists Returns True if the specifi ed fi le exists.

GetAttributes Gets a fi le ’ s attributes. This is a combination of fl ags defi ned by

the FileAttributes enumeration, which defi nes the values Archive,

Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContextIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile,

System, and Temporary.

GetCreationTime Returns a fi le ’ s creation date and time.

GetCreationTimeUtc Returns a fi le ’ s creation date and time in UTC.

GetLastAccessTime Returns a fi le ’ s last access date and time.

GetLastAccessTimeUtc Returns a fi le ’ s last access date and time in UTC.

GetLastWriteTime Returns a fi le ’ s last write date and time.

GetLastWriteTimeUtc Returns a fi le ’ s last write date and time in UTC.

Move Moves a fi le to a new location.

Open Opens a fi le and returns a FileStream attached to it.

Parameters let you specify the mode (Append, Create,

CreateNew, Open, OpenOrCreate, or Truncate), access (Read,

Write, or ReadWrite), and sharing (Read, Write, ReadWrite, or

None) settings.

OpenRead Opens a fi le for reading and returns a FileStream attached to it.

OpenText Opens a UTF - 8 encoded text fi le for reading and returns a

StreamReader attached to it.

OpenWrite Opens a fi le for writing and returns a FileStream attached to it.

ReadAllBytes Returns a fi le ’ s contents in an array of bytes.

ReadAllLines Returns a fi le ’ s lines in an array of strings.

ReadAllText Returns a fi le ’ s contents in a string.

continues

Framework Classes ❘ 1137

bapp21.indd 1137bapp21.indd 1137 12/31/09 6:24:27 PM12/31/09 6:24:27 PM

1138 ❘ APPENDIX U FILE - SYSTEM CLASSES

METHOD PURPOSE

Replace This method takes three fi le paths as parameters representing

a source fi le, a destination fi le, and a backup fi le. If the backup

fi le exists, the method permanently deletes it. It then moves the

destination fi le to the backup fi le, and moves the source fi le to

the destination fi le. For example, imagine a program that writes a

log fi le every time it runs. It could use this method to keep three

versions of the log: the current log (the method ’ s source fi le), the

most recent backup (the method ’ s destination fi le), and a second

backup (the method ’ s backup fi le). This method throws an error if

either the source or destination fi le doesn ’ t exist.

SetAttributes Sets a fi le ’ s attributes. This is a combination of fl ags defi ned by

the FileAttributes enumeration, which defi nes the values Archive,

Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContextIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile,

System, and Temporary.

SetCreationTime Sets a fi le ’ s creation date and time.

SetCreationTimeUtc Sets a fi le ’ s creation date and time in UTC.

SetLastAccessTime Sets a fi le ’ s last access date and time.

SetLastAccessTimeUtc Sets a fi le ’ s last access date and time in UTC.

SetLastWriteTime Sets a fi le ’ s last write date and time.

SetLastWriteTimeUtc Sets a fi le ’ s last write date and time in UTC.

WriteAllBytes Creates or replaces a fi le, writes an array of bytes into it, and

closes the fi le.

WriteAllLines Creates or replaces a fi le, writes an array of strings into it, and

closes the fi le.

WriteAllText Creates or replaces a fi le, writes a string into it, and closes

the fi le.

DriveInfo

A DriveInfo object represents one of the computer ’ s drives. The following table describes the
properties provided by this class. The fi nal column in the table indicates whether a drive must be
ready for the property to work without throwing an exception. Use the IsReady property to
see whether the drive is ready before using those properties.

(continued)

bapp21.indd 1138bapp21.indd 1138 12/31/09 6:24:27 PM12/31/09 6:24:27 PM

PROPERTY PURPOSE MUST BE READY?

AvailableFreeSpace Returns the amount of free space available on

the drive in bytes. This value takes quotas into

account, so it may not match TotalFreeSpace.

True

DriveFormat Returns the name of the fi le system type such

as NTFS or FAT32. (For more information on

NTFS and FAT fi le systems, search the Web. For

example, the page www.ntfs.com/ntfs_vs_

fat.htm compares the FAT, FAT32, and NTFS fi le

systems.)

True

DriveType Returns a DriveType enumeration value indicating

the drive type. This value can be CDRom, Fixed,

Network, NoRootDirectory, Ram, Removable, or

Unknown.

False

IsReady Returns True if the drive is ready. Many DriveInfo

properties are unavailable and raise exceptions

if you try to access them while the drive is not

ready.

False

Name Return ’ s the drive ’ s name. This is the drive ’ s root

name as in A:\ or C:\.

False

RootDirectory Returns a DirectoryInfo object representing

the drive ’ s root directory. See the section

“ DirectoryInfo ” later in this appendix for more

information.

False

TotalFreeSpace Returns the total amount of free space on the

drive in bytes.

True

TotalSize Returns the total amount of space on the drive in

bytes.

True

VolumeLabel Gets or sets the drive ’ s volume label. True

FINDING NTFS FEATURES

Different NTFS versions support different features. You can learn which version
a volume is using by opening a command window and executing the command
fsutil fsinfo ntfsinfo d: .

Framework Classes ❘ 1139

bapp21.indd 1139bapp21.indd 1139 12/31/09 6:24:28 PM12/31/09 6:24:28 PM

1140 ❘ APPENDIX U FILE - SYSTEM CLASSES

DirectoryInfo

A DirectoryInfo object represents a directory. The following table summarizes its most useful
properties and methods.

PROPERTY OR METHOD PURPOSE

Attributes Gets or sets fl ags from the FileAttributes enumeration for the directory.

These fl ags can include Archive, Compressed, Device, Directory,

Encrypted, Hidden, Normal, NotContentIndexed, Offl ine, ReadOnly,

ReparsePoint, SparseFile, System, and Temporary.

Create Creates the directory. You can create a DirectoryInfo object, passing its

constructor the fully qualifi ed name of a directory that doesn ’ t exist. You

can then call the object ’ s Create method to create the directory.

CreateSubdirectory Creates a subdirectory within the directory and returns a DirectoryInfo

object representing it. The subdirectory ’ s path must be relative to

the DirectoryInfo object ’ s directory but can contain intermediate

subdirectories. For example, the statement dir_info.CreateSubdirect

ory(“ Tools\Bin ”) creates the Tools subdirectory and the Bin directory

inside that.

CreationTime Gets or sets the directory ’ s creation time.

CreationTimeUtc Gets or sets the directory ’ s creation time in UTC.

Delete Deletes the directory if it is empty. A parameter lets you tell the object to

delete its contents, too, if it isn ’ t empty.

Exists Returns True if the directory exists.

Extension Returns the extension part of the directory ’ s name. Normally, this is an

empty string for directories.

FullName Returns the directory ’ s fully qualifi ed path.

GetDirectories Returns an array of DirectoryInfo objects representing the directory ’ s

subdirectories. An optional parameter gives a pattern to match. This

method does not recursively search the subdirectories.

GetFiles Returns an array of FileInfo objects representing fi les inside the directory.

An optional parameter gives a pattern to match. This method does not

recursively search subdirectories.

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects representing

subdirectories and fi les inside the directory. The items in the array

are DirectoryInfo and FileInfo objects, both of which inherit from

FileSystemInfo. An optional parameter gives a pattern to match. This

method does not recursively search subdirectories.

bapp21.indd 1140bapp21.indd 1140 12/31/09 6:24:29 PM12/31/09 6:24:29 PM

PROPERTY OR METHOD PURPOSE

LastAccessTime Gets or sets the directory ’ s last access time.

LastAccessTimeUtc Gets or sets the directory ’ s last access time in UTC.

LastWriteTime Gets or sets the directory ’ s last write time.

LastWriteTimeUtc Gets or sets the directory ’ s last write time in UTC.

MoveTo Moves the directory and its contents to a new path.

Name Returns the directory ’ s name without the path information.

Parent Returns a DirectoryInfo object representing the directory ’ s parent. If the

directory is its fi le system ’ s root (for example, C:\), this returns Nothing.

Refresh Refreshes the DirectoryInfo object ’ s data. For example, if the directory has

been accessed since the object was created, you must call Refresh to load

the new LastAccessTime value.

Root Returns a DirectoryInfo object representing the root of the directory ’ s fi le

system.

ToString Returns the directory ’ s fully qualifi ed path and name.

FileInfo

A FileInfo object represents a fi le. The following table summarizes its most useful properties
and methods.

PROPERTY OR METHOD PURPOSE

AppendText Returns a StreamWriter that appends text to the fi le.

Attributes Gets or sets fl ags from the FileAttributes enumeration for the fi le. These

fl ags can include Archive, Compressed, Device, Directory, Encrypted,

Hidden, Normal, NotContentIndexed, Offl ine, ReadOnly, ReparsePoint,

SparseFile, System, and Temporary.

CopyTo Copies the fi le and returns a FileInfo object representing the new fi le. A

parameter lets you indicate whether the copy should overwrite an existing

fi le if it already exists. If the destination path is relative, it is relative to the

application ’ s current directory, not to the FileInfo object ’ s directory.

Create Creates the fi le and returns a FileStream object attached to it. For example,

you can create a FileInfo object passing its constructor the name of a fi le

that doesn ’ t exist. Then you can call the Create method to create the fi le.

continues

Framework Classes ❘ 1141

bapp21.indd 1141bapp21.indd 1141 12/31/09 6:24:29 PM12/31/09 6:24:29 PM

1142 ❘ APPENDIX U FILE - SYSTEM CLASSES

PROPERTY OR METHOD PURPOSE

CreateText Creates the fi le and returns a StreamWriter attached to it. For example, you

can create a FileInfo object passing its constructor the name of a fi le that

doesn ’ t exist. Then you can call the CreateText method to create the fi le.

CreationTime Gets or sets the fi le ’ s creation time.

CreationTimeUtc Gets or sets the fi le ’ s creation time in UTC.

Delete Deletes the fi le.

Directory Returns a DirectoryInfo object representing the fi le ’ s directory.

DirectoryName Returns the name of the fi le ’ s directory.

Exists Returns True if the fi le exists.

Extension Returns the extension part of the fi le ’ s name including the period. For

example, the extension for game.txt is .txt.

FullName Returns the fi le ’ s fully qualifi ed path and name.

IsReadOnly Returns True if the fi le is marked read - only.

LastAccessTime Gets or sets the fi le ’ s last access time.

LastAccessTimeUtc Gets or sets the fi le ’ s last access time in UTC.

LastWriteTime Gets or sets the fi le ’ s last write time.

LastWriteTimeUtc Gets or sets the fi le ’ s last write time in UTC.

Length Returns the number of bytes in the fi le.

MoveTo Moves the fi le to a new location. If the destination uses a relative path, it

is relative to the application ’ s current directory, not to the FileInfo object ’ s

directory. When this method fi nishes, the FileInfo object is updated to refer

to the fi le ’ s new location.

Name The fi le ’ s name without the path information.

Open Opens the fi le with diff erent mode (Append, Create, CreateNew, Open,

OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite), and

sharing (Read, Write, ReadWrite, or None) settings. This method returns a

FileStream object attached to the fi le.

OpenRead Returns a read - only FileStream attached to the fi le.

OpenText Returns a StreamReader with UTF - 8 encoding attached to the fi le for

reading.

(continued)

bapp21.indd 1142bapp21.indd 1142 12/31/09 6:24:30 PM12/31/09 6:24:30 PM

PROPERTY OR METHOD PURPOSE

OpenWrite Returns a write - only FileStream attached to the fi le.

Refresh Refreshes the FileInfo object ’ s data. For example, if the fi le has been

accessed since the object was created, you must call Refresh to load the

new LastAccessTime value.

Replace Replaces a target fi le with this one, renaming the old target as a backup

copy. If the backup fi le already exists, it is deleted and replaced with

the target. You can use this method to save backups of logs and other

periodically updated fi les.

ToString Returns the fi le ’ s fully qualifi ed name.

FileSystemWatcher

The FileSystemWatcher class lets an application watch for changes to a fi le or directory. The
following table summarizes its most useful properties.

PROPERTY PURPOSE

EnableRaisingEvents Determines whether the component is enabled. Note that this

property is False by default, so the watcher will not raise any

events until you set it to True.

Filter Determines the fi les for which the watcher reports events. You

cannot watch for multiple fi le types as in *.txt and *.dat. Instead,

use multiple FileSystemWatchers. If you like, you can use

AddHandler to make all of the FileSystemWatchers use the same

event handlers.

IncludeSubdirectories Determines whether the object watches subdirectories within the

main path.

InternalBufferSize Determines the size of the internal buff er. If the watcher is

monitoring a very active directory, a small buff er may overfl ow.

NotifyFilter Determines the types of changes that the watcher reports. This is

a combination of values defi ned by the NotifyFilters enumeration

and can include the values Attributes, CreationTime,

DirectoryName, FileName, LastAccess, LastWrite, Security, and

Size.

Path Determines the path to watch.

Framework Classes ❘ 1143

bapp21.indd 1143bapp21.indd 1143 12/31/09 6:24:31 PM12/31/09 6:24:31 PM

1144 ❘ APPENDIX U FILE - SYSTEM CLASSES

The following table summarizes the FileSystemWatcher class ’ s two most useful methods.

METHOD PURPOSE

Dispose Releases resources used by the object.

WaitForChanged Synchronously waits for a change to the target fi le or directory.

The following table summarizes the class ’ s events.

NAME DESCRIPTION

Changed A fi le or subdirectory has changed.

Created A fi le or subdirectory was created.

Deleted A fi le or subdirectory was deleted.

Error The watcher ’ s internal buff er overfl owed.

Renamed A fi le or subdirectory was renamed.

Path

The Path class provides shared properties and methods that you can use to manipulate paths. The
following table summarizes its most useful public properties.

PROPERTY PURPOSE

AltDirectorySeparatorChar Returns the alternate character used to separate directory levels

in a hierarchical path (typically, /).

DirectorySeparatorChar Returns the character used to separate directory levels in a

hierarchical path (typically, \ , as in C:\Tests\Billing\2010q2

.dat).

InvalidPathChars Returns a character array that holds characters that are not

allowed in a path string. Typically, this array will include characters

such as “ , < , > , and |, as well as nonprintable characters such as

those with ASCII values between 0 and 31.

PathSeparator Returns the character used to separate path strings in

environment variables (typically, ;).

VolumeSeparatorChar Returns the character placed between a volume letter and the

rest of the path (typically, :, as in C:\Tests\Billing\2010q2

.dat).

bapp21.indd 1144bapp21.indd 1144 12/31/09 6:24:31 PM12/31/09 6:24:31 PM

The following table summarizes the Path class ’ s most useful methods.

METHOD PURPOSE

ChangeExtension Changes a path ’ s extension.

Combine Returns two path strings concatenated. This does not simplify

the result as the FileSystem.CombinePath method does.

GetDirectoryName Returns a path ’ s directory.

GetExtension Returns a path ’ s extension.

GetFileName Returns a path ’ s fi le name and extension.

GetFileNameWithoutExtension Returns a path ’ s fi le name without the extension.

GetFullPath Returns a path ’ s fully qualifi ed value. This can be particularly

useful for converting a partially relative path into an absolute

path. For example, the statement Path.GetFullPath(“ C:\

Tests\OldTests\Software\..\..\New\Code ”) returns

“ C:\Tests\New\Code. ”

GetInvalidFileNameChars Returns a character array that holds characters that are not

allowed in a fi le names.

GetPathRoot Returns a path ’ s root directory string. For example, the

statement Path.GetPathRoot(“ C:\Invoices\Unpaid\

Deadbeats ”) returns “ C:\. ”

GetRandomFileName Returns a random fi le name.

GetTempFileName Creates a uniquely named, empty temporary fi le, and returns

its fully qualifi ed path. Your program can open that fi le for

scratch space, do whatever it needs to do, close the fi le, and

then delete it. A typical fi le name might be “ C:\Documents and

Settings\Rod\Local Settings\Temp\tmp19D.tmp. ”

GetTempPath Returns the path to the system ’ s temporary folder. This is the

path part of the fi le name returned by GetTempFileName.

HasExtension Returns True if a path includes an extension.

IsPathRooted Returns True if a path is an absolute path. This includes

\Temp\Wherever and C:\Clients\Litigation, but not Temp\

Wherever or ..\Uncle.

Framework Classes ❘ 1145

bapp21.indd 1145bapp21.indd 1145 12/31/09 6:24:32 PM12/31/09 6:24:32 PM

1146 ❘ APPENDIX U FILE - SYSTEM CLASSES

MY.COMPUTER.FILESYSTEM

The My.Computer.FileSystem object provides tools for working with drives, directories, and
fi les. The following table summarizes this object ’ s properties.

PROPERTY DESCRIPTION

CurrentDirectory Gets or sets the fully qualifi ed path to the application ’ s current

directory.

Drives Returns a read - only collection of DriveInfo objects describing

the system ’ s drives. See Chapter 38, “ File - System Objects, ” for

information about the DriveInfo class.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties

giving the locations of various special directories such as the

system ’ s temporary directory and the user ’ s My Documents

directory. See the section “ My.Computer.FileSystem

.SpecialDirectories ” later in this appendix for more information.

The following list summarizes the My.Computer.FileSystem object ’ s methods:

METHOD PURPOSE

CombinePath Combines a base path with a relative path reference and returns

a properly formatted fully qualifi ed path.

CopyDirectory Copies a directory. Parameters indicate whether to overwrite

existing fi les, whether to display a progress indicator, and what to

do if the user presses Cancel during the operation.

CopyFile Copies a fi le. Parameters indicate whether to overwrite existing

fi les, whether to display a progress indicator, and what to do if the

user presses Cancel during the operation.

CreateDirectory Creates all of the directories along a path.

DeleteDirectory Deletes a directory. Parameters indicate whether to recursively

delete subdirectories, prompt the user for confi rmation, or move

the directory into the Recycle Bin.

DeleteFile Deletes a fi le. Parameters indicate whether to prompt the user for

confi rmation, or move the fi le into the Recycle Bin, and what to do

if the user presses Cancel while the deletion is in progress.

DirectoryExists Returns True if a specifi ed directory exists.

FileExists Returns True if a specifi ed fi le exists.

bapp21.indd 1146bapp21.indd 1146 12/31/09 6:24:32 PM12/31/09 6:24:32 PM

METHOD PURPOSE

FindInFiles Returns a collection holding names of fi les that contain a search

string.

GetDirectories Returns a string collection listing subdirectories of a given

directory. Parameters tell whether to recursively search the

subdirectories, and wildcards to match.

GetDirectoryInfo Returns a DirectoryInfo object for a directory. See the section

“ DirectoryInfo ” earlier in this appendix for more information.

GetDriveInfo Returns a DriveInfo object for a drive. See the section “ DriveInfo ”

earlier in this appendix for more information.

GetFileInfo Returns a FileInfo object for a fi le. See the section “ FileInfo ”

earlier in this appendix for more information.

GetFiles Returns a string collection holding the names of fi les within

a directory. Parameters indicate whether the search should

recursively search subdirectories and give wildcards to match.

GetParentPath Returns the fully qualifi ed path of a path ’ s parent. For example,

this returns a fi le ’ s or directory ’ s parent directory.

MoveDirectory Moves a directory. Parameters indicate whether to overwrite

fi les that have the same name in the destination directory and

whether to prompt the user when such a collision occurs.

MoveFile Moves a fi le. Parameters indicate whether to overwrite a fi le

that has the same name as the fi le ’ s destination and whether to

prompt the user when such a collision occurs.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or

fi xed - fi eld fi le (such as a log fi le). You can use the object to parse

the fi le.

OpenTextFileReader Opens a StreamReader object attached to a fi le. You can use the

object to read the fi le.

OpenTextFileWriter Opens a StreamReader object attached to a fi le. You can use the

object to write into the fi le.

ReadAllBytes Reads all the bytes from a binary fi le into an array.

ReadAllText Reads all the text from a text fi le into a string.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a fi le with its directory.

continues

My.Computer.FileSystem ❘ 1147

bapp21.indd 1147bapp21.indd 1147 12/31/09 6:24:33 PM12/31/09 6:24:33 PM

1148 ❘ APPENDIX U FILE - SYSTEM CLASSES

METHOD PURPOSE

WriteAllBytes Writes an array of bytes into a binary fi le. A parameter tells

whether to append the data or rewrite the fi le.

WriteAllText Writes a string into a text fi le. A parameter tells whether to

append the string or rewrite the fi le.

MY.COMPUTER.FILESYSTEM.SPECIALDIRECTORIES

The My.Computer.FileSystem.SpecialDirectories property returns a SpecialDirectoriesProxy
object that has properties giving the locations of various special directories (such as the system ’ s
temporary directory and the user ’ s My Documents directory). The following table summarizes these
special directory properties.

PROPERTY PURPOSE

AllUsersApplicationData The directory where applications should store settings

for all users (typically, something like C:\ProgramData\

WindowsApplication1\WindowsApplication1\1.0.0.0).

CurrentUserApplicationData The directory where applications should store settings

for the current user (typically, something like C:\Users\

CrazyBob\AppData\Roaming\WindowsApplication1\

WindowsApplication1\1.0.0.0).

Desktop The current user ’ s desktop directory (typically,

C:\Users\CrazyBob\Desktop).

MyDocuments The current user ’ s My Documents directory (typically,

C:\Users\CrazyBob\Documents).

MyMusic The current user ’ s My Music directory (typically,

C:\Users\CrazyBob\Music).

MyPictures The current user ’ s My Pictures directory (typically,

C:\Users\CrazyBob\Pictures).

ProgramFiles The Program Files directory (typically, C:\Program Files).

Programs The current user ’ s Programs directory (typically, C:\Users\

CrazyBob\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs).

Temp The current user ’ s temporary directory (typically,

C:\Users\CrazyBob\AppData\Local\Temp).

(continued)

bapp21.indd 1148bapp21.indd 1148 12/31/09 6:24:34 PM12/31/09 6:24:34 PM

Index of Examples

This book includes more than 400 example programs that are available for download from
the book ’ s web site. This appendix briefl y describes the examples in each chapter so you know
which programs to look at for a particular topic.

Most of the chapters include example applications, so the following list includes entries for
every chapter. Only Appendixes A, G, and K have examples, so only they are listed here
(although many of the chapters have examples covering material in the other appendixes).

Chapter 1

There are no example programs for this chapter.

Chapter 2

There are no example programs for this chapter.

Chapter 3

There are no example programs for this chapter.

Chapter 4

There are no example programs for this chapter.

Chapter 5

There are no example programs for this chapter.

Chapter 6

Fibonacci — Calculates Fibonacci numbers. [page 82]

Chapter 7

There are no example programs for this chapter.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

V

bapp022.indd 1149bapp022.indd 1149 12/30/09 8:37:26 PM12/30/09 8:37:26 PM

1150 ❘ APPENDIX V INDEX OF EXAMPLES

Chapter 8

EmployeePropertyGrid — Displays information about an object in a PropertyGrid
control. [page 109]

LayoutPanels — Demonstrates the Panel and TableLayoutPanel controls.
[page 105]

UseDialogs — Demonstrates the ColorDialog, FolderBrowserDialog, FontDialog,
OpenFileDialog, PageSetupDialog, PrintDialog, PrintPreviewDialog, and
SaveFileDialog components. [page 113]

UseSplitContainer — Demonstrates the SplitContainer control. [page 107]

UseSplitter — Demonstrates the Splitter control, which requires the use of Dock
properties and stacking order so it ’ s harder than using a SplitContainer. [page 107]

UseToolStripContainer — Demonstrates the ToolStripContainer. Contains two
ToolStrip controls that you can dock to the ToolStripContainer ’ s edges. [page 104]

Chapter 9

AnchorButton — Anchors a button at runtime to the form ’ s lower - right corner.
[page 131]

ButtonContainers — Moving buttons in and out of containers at design time.

CenteredButtons — Contains three buttons with Anchor = Bottom. When you resize
the form, the buttons remain centered as a group.

Components — Screen shot of components. [page 118]

CustomerDialog — Uses Anchor properties to make text fi elds resize horizontally
when the form gets wider.

CustomerOrders — Uses Anchor properties to make a list grow to use available
vertical space.

DisplayRectangles — Shows a GroupBox ’ s DisplayRectangle and ClientRectangle.

DivideForm — Divides a form vertically between two text boxes. [page 132]

Docking — Demonstrates Dock properties. [page 132]

FiveDigits — Demonstrates a Validating event that requires the user to immediately
fi x problems. [page 140]

FiveDigitsDeferred — Demonstrates a Validating event that fl ags invalid data but
allows the user to leave the invalid fi eld and fi x it later. [page 142]

FiveDigitsSeparate — Demonstrates a Validating event that fl ags invalid fi elds and
a Validated event that clears errors on valid fi elds. [page 141]

GroupBoxPreferredSize — Demonstrates the GroupBox ’ s PreferredSize method.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1150bapp022.indd 1150 12/30/09 8:37:29 PM12/30/09 8:37:29 PM

Index of Examples ❘ 1151

ImageTabs — Demonstrates a TabControl that displays images on its tabs.
[page 127]

ItemsAndSubitems — Uses design - time collection editors to edit the ListView
control ’ s Items and their SubItems.

MakeButtons — Shows how to add and remove controls at runtime. Also used for
screen shots of the Properties window. [page 122]

Margins — Demonstrates Padding and Margin properties for buttons inside
FlowLayoutPanels.

ScrolledWindow — Demonstrates the Panel control ’ s AutoScroll property.

SwitchEventHandlers — Shows how to add and remove event handlers at runtime.
[page 138]

UseSplitter — Demonstrates a Splitter.

Chapter 10

AppIcon — Uses an application icon. [page 154]

ChangeFormFont — Sets the form ’ s font at runtime. [page 156]

CoverAll — Covers the screen with a form that has Opacity = 2%. [page 147]

CustomDialog — Demonstrates a custom dialog that returns a dialog result.
[page 167]

FixedAspectRatio — Overrides WndProc and ensures that the form ’ s
width - to - height ratio remains unchanged. [page 156]

GhostForm — Contains a form with TransparencyKey equal to its BackColor so the
form ’ s surface is invisible. [page 148]

Hole — Draws a shaped form that shows only text and an ellipse. [page 148]

HollowSmiley — Draws a shaped form with hollow eyes. [page 148]

MDIEdit — Opens fi les in MDI child windows. This program has some limited fi le
saving capabilities. [page 160]

MDIEdit2 — Demonstrates a way to let MDI children control their own loading
and saving on close. This is a seriously incomplete program. [page 163]

MruList — Demonstrates a simple MRU list class. [page 166]

NoContextMenu — Overrides WndProc for a text box control and ignores WM_
CONTEXTMENU messages. [page 158]

SDIEdit — Opens fi les in separate forms. This program does not save modifi ed fi les.
[page 158]

SemiTransparent — Shows a form with Opacity = 66%. [page 146]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1151bapp022.indd 1151 12/30/09 8:37:30 PM12/30/09 8:37:30 PM

1152 ❘ APPENDIX V INDEX OF EXAMPLES

ShowCursors — Displays the standard cursors. [page 151]

SmileCursor — Displays a custom mouse cursor. [page 152]

Smiley — Draws a shaped form. [page 148]

SplashScreen — Displays a form as a splash screen or as an About dialog. [page 150]

TestOpacities — Displays forms with Opacity values 25, 45, 65, and 85.

TransparentForm — Draws a transparent form so only its controls are visible.
[page 147]

UseMultipleWaitCursors — When you click its button, displays wait cursors on
all of its forms. [page 152]

UseNotifyIcon — Demonstrates the NotifyIcon control. [page 154]

UseWaitCursor — When you click its button, displays a wait cursor. [page 151]

ViewWindowsMessages — Overrides WndProc and displays information about the
messages the form receives. [page 157]

Wizard1 — Shows a particular style of wizard. This program is really intended to
show the style, not implement it. [page 169]

Wizard2 — Shows a second style of wizard. This program is really intended to show
the style, not implement it. [page 169]

Chapter 11

DrawingShapes — Demonstrates WPF shape drawing elements: Ellipse, Line, Path,
Polygon, Polyline, and Rectangle. [page 180]

EllipseClick — Changes the color of an ellipse when the mouse is over it and
displays a message box when it ’ s clicked. [page 180]

FormImage — Displays an image in a Grid control ’ s background. [page 179]

ResizingButtons — Makes buttons with fi xed height but that resize with their
container ’ s width. [page 173]

UseBulletDecorator — Demonstrates the BulletDecorator control. [page 173]

UseButtonRepeatButton — Demonstrates the Button and RepeatButton controls.
[page 178]

UseCanvas — Uses a Canvas to exactly position controls. [page 173]

UseComboBox — Demonstrates a ComboBox control that contains items having
different fonts and images. [page 175]

UseDockPanel — Demonstrates the DockPanel control. [page 173]

UseExpander — Demonstrates the Expander control. [page 174]

UseFrame — Demonstrates the Frame control, which provides navigation among
Page objects. [page 180]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1152bapp022.indd 1152 12/30/09 8:37:30 PM12/30/09 8:37:30 PM

Index of Examples ❘ 1153

UseListBox — Demonstrates a ListBox control that contains items having different
fonts and images. [page 176]

UseMediaElement — Demonstrates the MediaElement control to play a Windows
movie (.wmv) fi le. [page 179]

UseMenuContextMenu — Demonstrates the Menu and ContextMenu controls.
[page 178]

UsePasswordBox — Demonstrates the PasswordBox control. [page 176]

UsePopup — Demonstrates the Popup control. [page 177]

UsePrintDialog — Demonstrates the PrintDialog control. [page 178]

UseProgressBar — Demonstrates the ProgressBar control. [page 177]

UseRadioButtons — Demonstrates RadioButton controls in two groups defi ned by
StackPanel controls. [page 176]

UseScrollBar — Demonstrates the ScrollBar control and binds two ScrollBars ’ Value
properties to an ellipse ’ s width and height. [page 176]

UseScrollViewer — Demonstrates the ScrollViewer control. Shrink the form to
make the ScrollViewer display its scroll bars. [page 174]

UseSeparator — Demonstrates a Separator control between buttons in a StackPanel.
[page 174]

UseSlider — Demonstrates the Slider control and binds two Sliders ’ Value properties
to an ellipse ’ s width and height. [page 176]

UseStatusBar — Demonstrates a StatusBar control that contains labels, separators,
and an image. [page 177]

UseTabControl — Demonstrates the TabControl control. [page 174]

UseToolBar — Demonstrates three ToolBar controls inside a ToolBarTray.
[page 178]

UseToolTip — Demonstrates ToolTip controls including one that displays formatted
text. [page 177]

UseViewbox — Demonstrates a ViewBox control that stretches its contents
uniformly when it is resized. [page 174]

UseWrapPanel — Demonstrates WrapPanel controls in vertical and horizontal
orientations. [page 175]

Chapter 12

BezierCurves — Draws different kinds of B é zier curves. [page 210]

ButtonTemplate — Uses a template to defi ne a button shape and style. [page 199]

Calculator — A simple calculator application. [page 196]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1153bapp022.indd 1153 12/30/09 8:37:31 PM12/30/09 8:37:31 PM

1154 ❘ APPENDIX V INDEX OF EXAMPLES

GradientBackground — Contains a Grid control with a linear gradient background.
[page 194]

GridButton — Displays a button that contains a grid holding text. [page 186]

GridButtonCode — Contains a button at design time. At runtime, adds a Grid to
the button and Labels to the Grid. [page 190]

GrowingButtons — Catches button MouseEnter and MouseLeave events to animate
growing and shrinking buttons when the mouse moves over them. (IMHO this is
pretty cool!) [page 214]

NineButtons — Displays nine buttons in a Grid. Demonstrates how to divide space
among grid row and column defi nitions. [page 195]

ProceduralAnimatedButton — Creates buttons at design time and animates them
growing and shrinking when the mouse moves over them. [page 212]

ProceduralCalculator — Similar to program Calculator except it creates all of its
buttons at runtime. [page 215]

RotatedButton — Displays a rotated button. [page 188]

RotatedButtons — Displays buttons that are transformed to make them tall, wide,
sideways, and rotated. [page 201]

RotatingCube — Uses 3D controls to display a cube. Scroll bars let you control the
cube ’ s orientation.

Shapes — Demonstrates shape controls including Polygon, Polyline, Ellipse, Line,
and Path. [page 205]

SpinAndGrowButton — Displays a button that uses XAML code to grow and rotate
when clicked. [page 204]

SpinButton — Displays a button that uses XAML code to rotate when clicked.
[page 202]

UseFixedDocument — Displays a FixedDocument object inside a DocumentViewer
control. [page 218]

UseFlowDocument — Displays a FlowDocument object. [page 218]

UseFlowDocumentPageViewer — Displays a FlowDocument object inside a
FlowDocumentPageViewer. [page 218]

UseFlowDocumentReader — Displays a FlowDocument object inside a
FlowDocumentReader. Menu commands let you change the viewing mode.
[page 217]

UseFlowDocumentScrollViewer — Displays a FlowDocument object inside a
FlowDocumentScrollViewer. [page 218]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1154bapp022.indd 1154 12/30/09 8:37:31 PM12/30/09 8:37:31 PM

Index of Examples ❘ 1155

Chapter 13

BrowserApp — Displays two Page objects in a web browser. [page 226]

BrowserWizard — Displays a wizard made up of Page objects in a web browser.
[page 230]

FrameApp — Displays two Page objects in a Frame control. [page 227]

UseDialog — Displays a second WPF window as a dialog. [page 223]

UsePageFunction — Uses the PageFunction class to display pages in a web browser.
[page 228]

Chapter 14

AssignJobs — Defi nes classes that you can view in the Object Browser. Uses XML
comments to generate XML documentation.

CompilerConstantsInCode — Checks compiler constants that are defi ned in code or
that are automatically defi ned. [page 248]

CompilerConstantsSettings — Checks compiler constants that are defi ned as
settings. [page 247]

DebugLevel — Uses a DEBUG_LEVEL constant to determine the amount of
debugging output. [page 252]

EmployeeAssert — Demonstrates Debug.Assert. [page 249]

ShowAssemblyInfo — Displays assembly information. [page 241]

WpfCompilerConstantsInCode — WPF version of CompilerConstantsInCode.
[page 248]

Chapter 15

AccessLevelEnum — Defi nes an Enum and then shows the values returned by its
values ’ ToString methods. [page 309]

InitializeArrays — Shows how to initialize 2 - and 3 - dimensional arrays. [page 292]

NullableTypes — Demonstrates nullable type calculations. [page 313]

ScopeTest — Demonstrates scope of module - level and local variables. [page 302]

ShadowTest — Demonstrates class properties shadowing parent class properties.
[page 280]

TimeGenericObjects — Compares the speeds of using an integer for a looping
variable and using a variable with no declared data type. [page 298]

UseDelegates — Demonstrates delegates to shared class methods and instance
methods. [page 315]

WithEventsControls — Shows how to declare objects with the WithEvents keyword.
[page 284]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1155bapp022.indd 1155 12/30/09 8:37:32 PM12/30/09 8:37:32 PM

1156 ❘ APPENDIX V INDEX OF EXAMPLES

Chapter 16

ComplexNumbers — Builds a ComplexNumber class and provides operator
overloads to perform arithmetic operations. [page 336]

MultiplyTimeSpan — Shows how to multiply a TimeSpan by a number. [page 332]

StringBuilderTest1 — Compares the times needed to build a long string with and
without the StringBuilder class. [page 329]

StringBuilderTest2 — Compares the times needed to build a very long string with
and without the StringBuilder class. [page 330]

Chapter 17

AttributeConditional — Demonstrates the Conditional attribute. [page 340]

Flavors — Uses relaxed delegates to declare an event handler ’ s “ sender ” parameter
with a specifi c data type.

HandleMultipleEvents — Uses relaxed delegates to catch dissimilar events with a
single event handler.

InlineFunction — Demonstrates inline lambda functions. [page 361]

LambdaFunction — Demonstrates a lambda function. [page 361]

PartialMethods — Demonstrates partial methods. [page 367]

RelaxedDelegates — Uses a delegate type to call three routines that declare their
parameters differently. [page 365]

RelaxedEventHandlers — Uses relaxed delegates in event handler parameters.
[page 366]

ValidatePhone — Adds extension methods to the String class to see if a String
matches a regular expression or looks like a U.S. phone number. [page 360]

Chapter 18

EnumerateEmployees — Demonstrates a generic enumerator. [page 387]

ExitAndContinue — Demonstrates Exit and Continue statements in loops.
[page 390]

Loops — Demonstrates For Each loops, using an enumerator with Do While Loop,
and using an enumerator with While End While. [page 380]

Chapter 19

ClassicErrorHandling — Demonstrates classic On Error style error handling.
[page 413]

ClimbStackTrace — Shows how to climb a stack trace. [page 407]

CustomException — Shows how to make a custom exception. [page 411]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1156bapp022.indd 1156 12/30/09 8:37:32 PM12/30/09 8:37:32 PM

Index of Examples ❘ 1157

DrawableRect — Shows how to validate parameters and throw
ArgumentExceptions. [page 408]

GlobalException — Shows how to catch all errors even if an error handler is not
active when the error occurs. [page 401]

OnErrorGoToMinus1 — Demonstrates On Error GoTo – 1. [page 416]

ShowExceptionInfo — Shows an exception ’ s Message, StackTrace, and ToString
values. [page 406]

SortOrders — Shows how a program might protect itself against errors. This
program doesn ’ t actually do anything. [page 397]

SortValues — Displays and sorts random numbers.

ThrowError — Shows how to catch errors with Try Catch. [page 405]

ValidateInteger — Uses error handling to validate integer input. [page 400]

Chapter 20

BindComboBox — Binds a ComboBox. [page 469]

BindListBox — Binds a ListBox. [page 471]

BindSimple — Uses simple binding on text boxes. [page 467]

BindSimpleMemoryDataSet — Uses simple binding on text boxes with a DataSet
built in memory. [page 469]

CommandInsert — Uses a Command object to insert records. [page 434]

DataGrids — Demonstrates multiple DataGrid controls attached to different
DataViews. [page 461]

GenerateCommands — Uses an OleDbCommandBuilder to get INSERT, UPDATE,
and DELETE commands for a data adapter. [page 439]

MakeDataSourceFields — A basic program that connects to a data source and
displays data one record at a time.

MakeDataSourceTable — A basic program that connects to a data source and
displays data in a grid. [page 430]

MemoryDataSet — Builds a DataSet in code. [page 445]

MemoryDataSetNestedXml — Builds a DataSet in code and makes its XML
representation include nested records inside parent records instead of in a separate
table. [page 458]

MemoryDataSetWithErrors — Builds a DataSet in code and assigns errors to some
data. [page 453]

MemoryDataSetXmlMappedColumns — Builds a DataSet in code and customizes
its XML representation. [page 456]

Transactions — Demonstrates a transaction. [page 436]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1157bapp022.indd 1157 12/30/09 8:37:33 PM12/30/09 8:37:33 PM

1158 ❘ APPENDIX V INDEX OF EXAMPLES

Chapter 21

AggregateExamples — Demonstrates LINQ aggregates: Average, Count,
LongCount, Max, Min, and Sum. [page 488]

AnyExamples — Uses lambda functions and the Any function to see if any person
has fi rst and last names of the same length.

CustomersToXml — Demonstrates LINQ to XML to build XML from LINQ
queries. [page 501]

FunctionExamples — Demonstrates LINQ functions such as SingleOrDefault,
ElementAt, ElementAtOrDefault, Empty, and Range. [page 490]

GroupByWithTotals — Demonstrates a Group By clause that selects the Sum of
items in a group. [page 487]

JoinExamples — Demonstrates join clauses. [page 484]

LimitingExamples — Demonstrates limiting clauses such as Take While, Take 4,
and Skip While. [page 490]

LinqAxes — Demonstrates LINQ axes such as “ x_all . . . < PositiveBalances > . . .
< Customer > . ” [page 505]

LinqFunctions — Demonstrates LINQ queries that use code - defi ned functions.
[page 497]

LinqLambda — Demonstrates LINQ queries that use LINQ clauses, code - defi ned
functions, and lambda functions. [page 475]

LinqLambda2 — Demonstrates LINQ queries that use lambda functions in
delegates and lambda functions inline.

LinqOrderBy — Demonstrates LINQ queries with Order By clauses.

LinqToDataSetScores — Demonstrates DataGrid controls bound to the results of
LINQ queries. [page 508]

LinqToXml — Uses LINQ queries to make XML objects from list data and to make
lists from XML data. [page 502]

LinqToXmlFunctions — Uses XML functions such as Ancestors, AncestorsAndSelf,
and DescendantsAndSelf to select list data from XML data. [page 505]

NestedGroupBy — Demonstrates nested Select and Group By clauses.

OrderByExamples — Demonstrates Order By clauses ascending and descending,
sometimes modifying the results. [page 479]

SetExamples — Demonstrates set clauses and functions such as Distinct, Union,
Intersect, and Except. [page 489]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1158bapp022.indd 1158 12/30/09 8:37:34 PM12/30/09 8:37:34 PM

Index of Examples ❘ 1159

SimpleGroupBy — Copies results of relatively simple Group By queries into a
TreeView control. [page 486]

SimpleSamples — Demonstrates simple LINQ queries, joins, result fi eld selection,
and results that of a specifi c class. [page 478]

Chapter 22

BreakSignature — Modifi es a strongly signed assembly to break its signature.

ColorScrollerTest — Includes a composite control. [page 527]

EmployeeRegisterTest — Demonstrates control attributes. [page 520]

FaceControls — Control library containing the SmileyFace control. [page 516]

FaceControlsTest — Test program for FaceControls. [page 517]

InvisibleControlTest — Demonstrates a control that is invisible at runtime.
[page 531]

LabControls — Contains three controls that don ’ t do anything but that you can use
to derive a new inherited control.

RowSortingListViewTest — Includes the RowSortingListView control that inherits
from ListView. [page 523]

ShowModeTest — Includes the ShowMode control that indicates whether it is
running in design mode or run mode. [page 522]

SignedAssembly — A signed DLL library.

SignedAssemblyTest — Test program for SignedAssembly.

SimpleSmileyControls — Control library containing a SimpleSmiley control that
inherits from Control rather than UserControl. [page 529]

SimpleSmileyControlsTest — Test program for SimpleSmileyControls.

WorkItemControls — Defi nes a control that has a property that contains a
collection. [page 519]

WorkItemControlsTest — Test program for WorkItemControls.

Chapter 23

AcceptDroppedFiles — Displays a list of fi les dropped onto the program ’ s drop
target. [page 546]

CopyPasteEmployee — Copies and pastes an Employee object using the clipboard.
[page 554]

CopyPasteRichText — Copies and pastes data in RFT, HTML, and text formats
using the clipboard. [page 552]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1159bapp022.indd 1159 12/30/09 8:37:34 PM12/30/09 8:37:34 PM

1160 ❘ APPENDIX V INDEX OF EXAMPLES

DragBetweenListBoxes — Lets the user to drag values from one ListBox to another.
[page 543]

DragBetweenListBoxes2 — Lets the user drag - and - drop to move or copy values
from one ListBox to another. [page 543]

DragEmployee — Lets the user drag - and - drop an Employee object. [page 547]

DragEmployee2 — Lets the user drag - and - drop an Employee object with the data
name “ Employee. ” [page 549]

DragRichText — Lets the user to drag - and - drop data in RTF, HTML, and text
formats. [page 550]

DragWithinApp — Lets the user drag data but only within this application.
[page 545]

LabelDrag — Demonstrates very simple drag - and - drop. [page 542]

LabelDrag2 — Demonstrates very simple drag - and - drop while verifying that the
dragged data comes in text format. [page 542]

PasteFileList — Displays a list of fi les copied to the clipboard. [page 555]

Chapter 24

AddShields — Adds UAC shields to buttons, links, and menu items. [page 561]

ExecuteMe — Uses a manifest to require administrator privilege to run. [page 563]

NoPrivs — A simple program that doesn ’ t use its manifest to require privileges.
Program StartRunAs starts this program, requesting privilege elevation. [page 562]

ShellUAC — Displays a UAC shield and starts program ExecuteMe, which requires
privilege elevation. [page 559]

StartRunAs — Uses Process.Start to start program NoPrivs. It sets the process ’ s
Verb to runas to require privilege elevation. [page 563]

Chapter 25

There are no example programs for this chapter.

Chapter 26

CustomEvent — Demonstrates a custom event. [page 621]

FinalizeObjects — Demonstrates object fi nalization then the program ends.
[page 610]

GarbageCollection — Creates objects until garbage collection occurs. [page 609]

StructuresAndClasses — Demonstrates the fact that setting a class variable equal to
another makes them both point to the same object while setting a structure variable
equal to another makes a separate copy of the structure. [page 600]

UseDispose — Demonstrates using a Dispose method. [page 612]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1160bapp022.indd 1160 12/30/09 8:37:35 PM12/30/09 8:37:35 PM

Index of Examples ❘ 1161

Chapter 27

DrawDashes — Draws a dashed rectangle inside the form. [page 628]

DrawDashesImportsDashStyle — Draws a dashed rectangle inside the form. It
imports the DashStyle enum to make the code easier to read. [page 633]

DrawDashesWithImports — Draws a dashed rectangle inside the form. It imports
System.Drawing.Drawing2D to make the code easier to read. [page 629]

JobNamespaces — Demonstrates namespaces. [page 632]

NamespaceHierarchy — Defi nes a namespace hierarchy. [page 634]

Chapter 28

ArraySpeeds — Compares the speed of normal arrays with Array objects.
[page 646]

ArrayTests — Demonstrates the Array class methods IndexOf, LastIndexOf,
Reverse, and BinarySearch. Also sorts integers, objects that implement
IComparable, and objects that can be sorted with IComparer objects. [page 648]

GenericEmployeeList — Derives a strongly typed EmployeeList class from the
generic List(Of Employee) class. [page 666]

GenericStringList — Demonstrates a generic List(Of String). [page 647]

MakeEmployeeCollection — Builds a strongly typed collection of Employee objects.
[page 654]

MakeEmployeeDictionary — Builds a strongly typed dictionary of Employee
objects. [page 660]

MakeEmployeeListDictionary — Builds a strongly typed list dictionary of Employee
objects. [page 660]

ShowSquares — Builds a normal array and an Array object containing squares of
numbers. [page 642]

UseArrayList — Demonstrates ArrayList methods. [page 651]

UseCaseInsensitiveSortedList — Demonstrates a case - insensitive SortedList.
[page 661]

UseNameValueCollection — Demonstrates the NameValueCollection class.
[page 655]

UseQueue — Demonstrates a Queue. [page 665]

UseSortedList — Demonstrates the SortedList class. [page 661]

UseStack — Demonstrates a Stack. [page 663]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1161bapp022.indd 1161 12/30/09 8:37:35 PM12/30/09 8:37:35 PM

1162 ❘ APPENDIX V INDEX OF EXAMPLES

Chapter 29

GenericEmployeeList — Derives a strongly typed EmployeeList class from the
generic List(Of Employee) class.

GenericMruList — Builds a generic MostRecentList(Of ItemType) class. [page 673]

GenericMruList2 — Builds a generic MostRecentList(Of ItemType As IComparable)
class. [page 677]

GenericNumDistinct — Demonstrates a generic extension method. [page 682]

GenericPairDictionary — Builds a generic PairDictionary(Of KeyType, DataType1,
DataType2) class. [page 676]

GenericTree — Builds a generic Tree(Of DataType) class and uses derived classes to
make building objects easier. [page 679]

GenericTreeImportsAlias — Builds a generic Tree(Of DataType) class and uses
Imports aliases to make building objects easier. [page 679]

GenericTreeSubclass — Builds a generic Tree(Of DataType) class and makes a
PersonTree class that inherits from Tree(Of Person) to make building objects easier.
[page 680]

UseSwitcher — Demonstrate a generic Switch method. [page 681]

Chapter 30

AntiAliasing — Draws text with and without anti - aliasing. [page 698]

Bezier — Draws a B é zier curve. [page 701]

Beziers — Draws a series of B é zier curves. [page 689]

ClosedCurve — Draws a closed curve. [page 710]

ClosedCurveTensions — Draws closed curves with different tensions. [page 710]

DrawTextPath — Draws an outline of some text. [page 703]

HatchStyles — Draws samples of the available hatch styles. [page 694]

InterpolationModes — Demonstrates different InterpolationMode values.
[page 708]

LineCaps — Draws sample line end caps. [page 693]

LineJoins — Draws sample corner joins. [page 701]

ListInstalledFonts — Lists and displays samples of installed fonts. [page 696]

MapRectangle — Uses transformations to change where an image is drawn.
[page 723]

OrangeAndBlueEllipse — Draws a blue ellipse fi lled with orange.

PaintResizeX — Demonstrates redrawing when resizing. [page 718]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1162bapp022.indd 1162 12/30/09 8:37:36 PM12/30/09 8:37:36 PM

Index of Examples ❘ 1163

SaveRestore — Saves and restores graphics state to draw rotated rectangles.
[page 716]

ScaleDiamond — Draws a diamond scaled around its center. [page 713]

SmoothingModes — Displays samples using different SmoothingMode values.

TextRenderingHints — Displays sample text for different TextRenderingHint
values.

TransformArrow — Demonstrates a translation followed by a rotation. [page 712]

TransformationOrder — Shows that a translation followed by a rotation is not the
same as a rotation followed by a translation.

Chapter 31

CompoundArrays — Draws lines that are striped lengthwise. [page 725]

CustomLineCaps — Draws a custom line cap. [page 735]

GraphicsPathClip — Draws lines clipped by a GraphicsPath. [page 743]

GraphicsPathFillMode — Demonstrates the alternate and winding fi ll modes.
[page 752]

GraphicsPathTextRegion — Clips a form to a text path. [page 742]

GraphicsPathTextureBrush — Fills text with a tiled image. [page 741]

HatchStyles — Shows samples of the available hatch styles. [page 732]

LinearGradientBrushes — Demonstrates linear gradient brush features such as
blends, sigma bell shape, and wrap mode. [page 735]

LineCaps — Displays samples of the available line caps.

LineJoins — Demonstrates line join styles (miter, bevel, clipped).

PathGradientBrushes — Demonstrates path gradient brushes. [page 740]

PenAlignments — Demonstrates pen alignments (insert or center). [page 724]

TransformedPen — Demonstrates a pen transformation. [page 728]

TransformedTextureBrush — Fills a polygon with a transformed image. [page 739]

UseDispose — Use the Dispose method to free Pen, Brush, and Graphics resources.
[page 746]

UseSolidBrush — Demonstrates using stock solid brushes. [page 729]

UseUsing — Uses Using statements to free Pen, Brush, and Graphics resources.
[page 747]

WrapModes — Demonstrates image tiling wrap modes.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1163bapp022.indd 1163 12/30/09 8:37:36 PM12/30/09 8:37:36 PM

1164 ❘ APPENDIX V INDEX OF EXAMPLES

Chapter 32

DirectionVertical — Draws text rotated 90 degrees. [page 753]

DrawStringCrLfTab — Draws text containing vbCrLf and tabs.

DrawStringLayoutRect — Uses a layout rectangle to align text. [page 759]

DrawStringSimple — Draws a simple string. [page 758]

FontMetrics — Displays measurements for three fonts. [page 762]

MeasureCharacterRanges — Displays positions for the character in a string.
[page 758]

MeasureString — Measures a string and draws a box showing its size. [page 757]

NoClipLineLimit — Demonstrates string formatting fl ags that determine how text
is clipped. [page 761]

SetTabs — Sets tab stop positions and then draws text containing tabs. [page 755]

TransformedText — Draws text rotated 60 degrees. [page 755]

Trimming — Shows different ways to use the StringFormat object ’ s Trimming
property to control how text is trimmed. [page 755]

Chapter 33

AutoRedraw — Draws an image when the form loads or resizes. Save the result in a
PictureBox ’ s Image property so it doesn ’ t need to handle Paint events. [page 771]

InvertImageGetSetPixels — Inverts the pixels in an image by using the Bitmap
object ’ s GetPixel and SetPixel methods. [page 773]

InvertImageUnsafe — Uses “ unsafe ” methods to invert an image ’ s pixels. [page 775]

LoadPicture — Loads a picture from a fi le and copies it so the fi le isn ’ t locked.
[page 769]

MakeMetafi le — Makes a metafi le and draws it twice at different sizes. [page 781]

SaveJpeg — Saves an image in a JPEG fi le. [page 780]

Scribble — Lets the user draw with the mouse. [page 772]

Chapter 34

CenterPicture — Prints a picture centered on the page. [page 793]

FitToMargins — Prints a picture enlarged to fi t the page without distortion.
[page 795]

PictureBoxPrint — Draws a picture on a form and displays a print preview scaled to
fi t the page without distortion. [page 797]

PrintBooklet — Prints a multi - page document with gutters and page numbers on
alternating sides. [page 787]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1164bapp022.indd 1164 12/30/09 8:37:37 PM12/30/09 8:37:37 PM

Index of Examples ❘ 1165

PrintMargins — Draws rectangles around the page ’ s margins and bounds.

PrintSimple — Displays a print preview or print dialog, or prints a simple diamond
shape.

UsePrintPreviewControl — Demonstrates the PrintPreviewControl control.

UsePrintPreviewDialog — Displays a print preview or print dialog, or prints three
pages. [page 785]

Chapter 35

CatchThreadException — Uses AddHandler at runtime to add an event handler to
catch thread exceptions. [page 831]

Confi gFile — Demonstrates properties bound to confi guration fi le values.
[page 816]

EmbeddedResources — Loads data from resources at runtime. [page 821]

EnvironmentVariableLevels — Gets and sets environment variables on the system,
user, and process level. [page 809]

FilterMessages — Filters out the form ’ s WM_LBUTTONDOWN messages so left -
clicks are ignored. [page 830]

GetEnvironValue — Uses the Environ collection to list environment variables. When
the user selects one, displays its value.

ListEnviron — Uses the Environ collection to list environment variables and their
values. [page 807]

ListEnvironValues — Uses the Environ collection to list environment variables and
their values in a ListView. [page 807]

ListForms — Uses the Application.OpenForms collection to list the program ’ s open
forms. [page 828]

Localized — This program is localized for English and German. The system
automatically picks the best localization for the system. [page 823]

LocalizedPickLanguage — Uses a ComponentResourceManager to change locales
at runtime. [page 826]

LocalizedPickLanguage2 — Changes the current thread ’ s CurrentCulture and
CurrentUICulture, and then uses a ComponentResourceManager to change locales
at runtime. [page 827]

LocalizedUseGerman — Uses a customized form constructor to select the German
locale. [page 824]

MyComputerRegistry — Uses Registry objects to get, set, and delete Registry
values. [page 813]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1165bapp022.indd 1165 12/30/09 8:37:37 PM12/30/09 8:37:37 PM

1166 ❘ APPENDIX V INDEX OF EXAMPLES

RegistrySettings — Uses GetSetting, SaveSetting, GetAllSettings, and DeleteSetting
to get, set, and delete Registry values. [page 811]

SatelliteMain — Main program that loads resources from satellite assembly
SatelliteResourcesDll.dll. [page 822]

SatelliteResourcesDll — Satellite resource - only assembly. [page 822]

SaveSettings — Demonstrates saving user - scope settings in My.Settings. [page 818]

ShowProductInfo — Displays the application ’ s CompanyName, ProductName, and
ProductVersion. [page 828]

ShowSettings — Displays a list of the program ’ s settings. [page 818]

SystemEnvironment — Displays System.Environment values including a stack trace.
[page 808]

UseResources — Loads values from resources at runtime. [page 820]

Chapter 36

FileStreamWrite — Uses a FileStream to write “ Hello world! ” into a fi le. [page 836]

MemoryStreamWrite — Writes into a MemoryStream, seeks to its beginning, and
reads the text back. [page 837]

OpenCreateAppendText — Shows how to see if a fi le exists, open an existing fi le,
create a new fi le (overwriting the old one if it exists), and append to an existing fi le.
[page 844]

ReadLines — Demonstrates the StreamReader ’ s ReadLine and EndOfStream
methods. [page 842]

StreamWriterReader — Uses StreamWriter and StreamReader objects to write and
then read a text fi le. [page 843]

StringWriterReader — Uses StringWriter and StringReader objects to write and then
read a string. [page 842]

Chapter 37

GetDriveInfo — Uses the DriveInfo class to get information about the system ’ s
drives. [page 868]

InvalidCharacters — Uses Path.GetInvalidFileNameChars and
Path.GetInvalidPathChars to list characters that are not allowed in fi le names
and paths. [page 852]

RandomAccessEmployees — Makes fi xed - sized records in a fi le and then randomly
accesses them.

ShowSpecialDirectories — Uses My.Computer.FileSystem.SpecialDirectories to list
the system ’ s special directories.

UseFileSystemWatcher — Uses a FileSystemWatcher to take action when a fi le is
created in the program ’ s startup directory. [page 865]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1166bapp022.indd 1166 12/30/09 8:37:38 PM12/30/09 8:37:38 PM

Index of Examples ❘ 1167

UseFindInFiles — Uses My.Computer.FileSystem.FindInFiles to search for fi les
containing a string.

VbFileMethods — Uses Visual Basic fi le methods to open a fi le and read it one line
at a time.

WriteFile — Uses System.IO.File.WriteAllText to write a fi le.

Chapter 38

QuoteClient — Program that uses the QuoteServiceLib service routines. [page 878]

QuoteServiceLib — Service that generates random quotes. [page 874]

Chapter 39

AesFile — Encrypts and decrypts a fi le using the AES algorithm. [page 890]

BuildMemoryXml — Uses an XmlTextWriter to write information about Employee
objects “ by hand. ” [page 889]

DesFile — Encrypts and decrypts a fi le using the DES algorithm. [page 893]

ParallelFor — Uses Parallel.For to execute multiple threads simultaneously.
[page 901]

ParallelForEach — Uses Parallel.ForEach to execute multiple threads
simultaneously. [page 901]

ParallelInvoke — Uses Parallel.Invoke to execute multiple threads simultaneously.
[page 899]

Refl ectionFormProperties — Uses refl ection to list the form ’ s properties.

Refl ectionGetResources — Uses refl ection to list and display resources from
Refl ectionHasResources.

Refl ectionHasResources — Creates a resource - only DLL. [page 887]

RegExHighlight — Uses regular expressions to fi nd multiple matching expressions
and highlights them in the output. [page 887]

RegExReplace — Uses regular expressions to make multiple replacements in a
string. [page 887]

RegExValidate — Uses regular expressions to see if a test string matches a pattern.
[page886]

SystemSounds — Plays the system sounds. [page 884]

ThreadGraph — Uses a Thread to draw a graph while allowing the main program
to respond to events.

UseBackgroundWorker — Demonstrates a BackgroundWorker component
controlling a simulated long task.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1167bapp022.indd 1167 12/30/09 8:37:38 PM12/30/09 8:37:38 PM

1168 ❘ APPENDIX V INDEX OF EXAMPLES

Appendix A

DisplayRectangles — Shows a GroupBox ’ s DisplayRectangle and ClientRectangle.
[page 918]

See the chapter listings for more examples that demonstrate control properties, methods, and
events. In particular, see Chapter 8, “ Selecting Windows Forms Controls, ” and Chapter 9,
“ Using Windows Forms Controls. ”

Appendix G

CustomColorDialog — Displays a color dialog with custom colors. [page 957]

FlowDirections — Demonstrates the FlowLayoutPanel control ’ s FlowDirection
property values LeftToRight, RightToLeft, TopDown, and BottomUp. [page 964]

ListViewCustomSort — Uses an IComparer class to implement a custom sort for
the ListView control. Also shows how to let the user select different display modes.
[page 979]

MultiLineLabel — Uses a multiline label.

RunTimeListView — Inserts data into a ListView control at runtime.

UseBackgroundWorker — Demonstrates a BackgroundWorker component
controlling a simulated long task. [page 953]

UseButton — Demonstrates a button.

UseCheckedListBox — Displays a CheckedListBox that displays Employee objects
(shows how to display objects in a ListBox or ComboBox). Shows how to enumerate
the selected items. [page 956]

UseColorDialog — Shows how to let the user select a color. [page 957]

UseComboBox — Demonstrates the ComboBox control and its different
DropDownStyle values. [page 966]

UseDataGridView — Demonstrates a DataGridView control attached to a
database.

UseDateTimePicker — Demonstrates the DateTimePicker control. [page 968]

UseDomainUpDown — Uses the DomainUpDown control to let the user select a
month by name.

UseErrorProvider — Use an ErrorProvider component to display an error indicator
if the user doesn ’ t enter a fi ve - digit ZIP code. [page 963]

UseFolderBrowserDialog — Demonstrates the FolderBrowserDialog component.

UseFontDialog — Demonstrates the FontDialog. [page 967]

UseFontDialogWithShowEffects — Demonstrates the FontDialog. Allows the user
to click the Apply button to show the new font on the form, and then cancel or okay
the changes. [page 967]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1168bapp022.indd 1168 12/30/09 8:37:39 PM12/30/09 8:37:39 PM

Index of Examples ❘ 1169

UseGroupBox — Demonstrates GroupBoxes containing RadioButtons.

UseHelpProvider — Uses a HelpProvider to display a help popup if the user selects a
fi eld and presses F1.

UseHScrollBar — Demonstrates the HScrollBar control.

UseLinkLabel — Demonstrates the LinkLabel control and shows how to open a web
site when the user clicks a link.

UseListView — Demonstrates the ListView control and its display modes.
[page 976]

UseMonthCalendar — Demonstrates the MonthCalendar control. Sets the control ’ s
minimum, maximum, and current dates; selects date range; and bolds Mondays.
[page 987]

UseMonthCalendarInDialog — Shows how to make a dialog that displays a
MonthCalendar control that shows two rows of three months. The dialog lets the
user pick a date range and returns OK or Cancel. [page 987]

UseNotifyIcon — Demonstrates the NotifyIcon component and shows how to add a
ContextMenu to the notifi cation icon. [page 987]

UseNumericUpDown — Demonstrates the NumericUpDown control.

UseOpenFileDialog — Demonstrates the OpenFileDialog component. Shows how to
catch the FileOk event to validate the user ’ s selection.

UsePageSetupDialog — Demonstrates the PageSetupDialog.

UsePanel — Demonstrates a Panel with AutoScroll. Lets the user set the control ’ s
AutoScrollPosition.

UsePictureBox — Shows three ways to draw on PictureBoxes: by assigning an
image to a PictureBox ’ s Image property, by drawing in the PictureBox ’ s Paint event
handler, and when the code executes so the image is not refreshed later.

UsePrintDialog — Demonstrates the PrintDialog component.

UsePrintPreviewControl — Uses a PrintPreviewControl control to display three
pages of printout inside a form. [page 1000]

UsePrintPreviewDialog — Uses a PrintPreviewDialog to display three pages of
printout in a dialog.

UseProcess — Demonstrates the Process component by using it to start a new
process running this program. [page 1002]

UseProgressBar — Demonstrates the ProgressBar control.

UsePropertyGrid — Displays Employee object data in a ListBox and a
PropertyGrid. [page 1011]

UseRadioButton — Demonstrates RadioButton controls inside GroupBoxes.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1169bapp022.indd 1169 12/30/09 8:37:40 PM12/30/09 8:37:40 PM

1170 ❘ APPENDIX V INDEX OF EXAMPLES

UseRichTextBox — Demonstrates the RichTextBox control. Shows how to
apply colors to selections and how to use the control ’ s undo and redo features.
[page 1009]

UseSaveFileDialog — Demonstrates the SaveFileDialog component. Shows how to
catch the FileOk event to validate the user ’ s selection.

UseSplitContainer — Demonstrates a SplitContainer control containing two
PictureBoxes. The two Panels automatically provide scroll bars if they are sized so
their images don ’ t fi t.

UseStatusStrip — Demonstrates a StatusStrip control containing a menu, progress
bar, image, and label that displays the time.

UseTabControl — Demonstrates the TabControl.

UseTabControlOwnerDrawn — Demonstrates an owner - drawn TabControl.
[page 1016]

UseTableLayoutPanel — Demonstrates the TableLayoutPanel control. Its row
heights are set to auto size so each row sizes itself to hold its contents.

UseTextBox — Demonstrates TextBoxes. (This program is the same as
UseTableLayoutPanel, which contains TextBoxes.)

UseTimer — Demonstrates three Timer components running at different speeds.

UseToolStrip — Demonstrates a ToolStrip containing a button, label, combo box,
drop - down menu containing images, text box, and progress bar.

UseToolStripContainer — Demonstrates a ToolStripContainer holding six
ToolStrip controls including two oriented vertically (TextDirection = Vertical90 or
TextDirection = Vertical270). [page 1030]

UseToolStripContainer2 — Demonstrates a ToolStripContainer holding six
ToolStrip controls. When you drag a ToolStrip to a new side of the container, the
code sets the strip ’ s orientation appropriately.

UseToolTip — Demonstrates the ToolTip extender provider. Shows how to set
ToolTip text at design time or runtime.

UseTrackBar — Uses TrackBar controls to let the user set the red, green, and blue
components of a color.

UseTreeView — Demonstrates the TreeView control. Shows how to create TreeView
nodes at runtime and how to allow the user to edit node labels except those at the
top level. [page 1028]

Appendix K

Constructors — Demonstrates constructors and ways to initialize objects. [page 1062]

Appendix M

GenericExamples — Demonstrates various generic classes, extensions, and methods.
[page 1075]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp022.indd 1170bapp022.indd 1170 12/30/09 8:37:40 PM12/30/09 8:37:40 PM

1171

INDEX

A

About forms, 149–150
abstract class, 590
AcceptButton property, 167, 954
accessibility

accessibility clause, 937, 938, 1061, 1063
accessibility value, 615
binary-fi le access, 854
classes, 588–589
constants, 312
events, 615
random-access fi le, 851–853
sequential fi le access, 851
subroutines, 345–346
variable declarations, 919
variables, 265, 277–278

action initiation, 111–112, 178
Active Directory, 961
Add Command, 44
Add Existing Icon command, 25
Add method, 667–668, 921–922
Add New Data Source command, 31
Add New Item command, 24, 25
Add Query command, 31
Add Reference command, 18, 26
Add Service Reference command, 26
Add submenu, 20
Add Tab tool, 40
Add Windows Form command, 161
AddCol subroutine, 192

AddHandler statement, 138, 616–618
AddHandler subroutine, 619
Add-in Manager command, 32
AddLines method, 726
AddRow subroutine, 192
ADO.NET, 506–510
Advanced Compiler Settings dialog box,

246–247
Advanced submenu, 22, 256
AES algorithm, 892
AesCryptoServiceProvider object, 892
After event handlers, 1028
aggregate functions, 488–489
aliases

alias clause, 631–632
defi ning, 679–680

alignment
Align submenu, 31, 52
Alignment property, 724–725
alignment value, 1102
centering printouts, 792–794
StringFormat object, 757

All Windows Forms section, 39
AllowFullOpen property, 957
AllScreens property, 1123
ambiguous reference error, 630
Anchor property, 125, 130–131, 993, 1018
And operator, 325
AndAlso operator, 324
animations, 202–205
anonymous types, 310–311, 475

bindex.indd 1171bindex.indd 1171 12/31/09 10:47:05 PM12/31/09 10:47:05 PM

1172

Anti-aliasing, 696–698, 707–709, 771
API functions, 810
AppendText method, 843–844
Application class

events, 1108
methods, 1107
properties, 1105–1106

Application object
events, 830–831
methods, 829–830
properties, 827–828

Application property, 1112
Application.Designer.vb fi le, 239
ApplicationEvents.vb fi le, 239
Application.myapp fi le, 239
applications

Browser Application, 224–226
confi guration and resources, 803
dragging in, 544–545
Frame applications, 226–227
icons, 154
Page applications, 224–234
PageFunction applications, 227–229
permissions, 847
resources, 819–821
window applications, 221–222
Wizard applications, 230–234

ApplyFunction subroutine, 939
ApplyResources method, 825
arithmetic operators, 319–320, 929–930
arrays

AddHandler statement, 617
Array class, 642
Array objects, 646
Array.BinarySearch method, 649
Array.ForEach method, 939–940
ArrayList class, 641, 650–651
Array.Reverse method, 647
Array.Sort method, 647–649

collection classes, 642–643
dimensions, 644
features, 647–649
GetIndexParameters array, 896
initializing, 289–293, 643, 920–921
lower bounds, 644–645
memory, 598
resizing, 645–646
speed, 646
structures and classes, 598
subroutine parameters, 348–349, 353–354
summary, 668
Visual Basic Array, 643

As clause, 288, 678, 925
AsEnumerable method, 508
AsParallel, 511
assemblies

Assembly Information button, 241, 1112
Assembly Information dialog box, 241
Assembly object, 823
AssemblyInfo.vb fi le, 239
strongly named, 534–536

Assert method, 249–250
assignment operators, 326–328, 933
Attach to Process command, 32
attachments, 63
attacks, on web sites, 105
attributes

assigning, 520–521
attribute_list, 586–587, 615–616, 919, 1061
Attribute_List declaration, 276–277
AttributeUsage attribute, 341
conditional attribute, 340, 343
Data attribute, 208–209
subroutines, 340–344

Audio object, 1112–1113
Auto Hide command, 36
AutoFlush property, 843
auto-implemented property, 358, 939

Anti-aliasing – auto-implemented property

bindex.indd 1172bindex.indd 1172 12/31/09 10:47:06 PM12/31/09 10:47:06 PM

1173

Automatically Open Smart Tags, 48
AutoRedraw property, 771–772
Autos command, 90
AutoScroll property, 106, 964, 993, 1011
AutoScrollMargin property, 993
AutoScrollMinSize property, 993
AutoScrollPosition property, 993–994
AutoSize property, 970
AutoToolboxPopulate, 48

B

BackColor property, 155, 994
Background property, 194
BackgroundColor property, 732
BackgroundImage property, 771, 995
BackgroundWorker, 953
BasedOn attribute, 198
BaseStream property, 838
Before event handlers, 1028
BeginPrint event, 783, 788
BeginTransaction method, 436–437
Bézier curve, 208–210, 689, 700–702
bin folder, 239
binary search, 649
binary values, 930
binary-fi le access, 854
BinaryReader class, 836–837, 838–840,

1127–1129
BinaryWriter class, 836–837, 838–840,

1127–1129
BindingNavigator, 429, 953
BindingSource, 429, 466, 953, 959
bit shift operators, 930
Bitmaps

Bitmap class, 1089, 1090
BitmapBytesRGB24 class, 774–777
DrawtoBitmap method, 1043
Image object, 765–766

implementing AutoRedraw,
771–772

introduction, 767–768
loading, 768–769
PictureBox control, 995
pixel-by-pixel operations, 772–777
saving, 769–771

bitwise operators, 324–325, 932
blanking text, 53
Blend object, 736
BlendPanel control, 1043–1044
blinking text, 963
BlinkRate property, 963
BlinkStyle property, 963
block scope, 298–299
BlockSize property, 892
BlockUIElement element, 216
book reading mode, 216–217
bookmarks, 22, 70
Boolean operator, 933
Border control, 173
BorderStyle property, 994
bounds_list clause, 286–287, 920
boxing, 297, 602, 672
Break All command, 86
breakpoints

Breakpoints command, 89
Breakpoints window, 92–94
commands, 88
defi nition of term, 86
overview, 69–70

Browsable attribute, 341, 521
Browser Application, 224–226
Brush classes

HatchBrush class, 731–732
LinearGradientBrush class, 732–736
list of classes, 1087
overview, 721, 729
PathGrandientBrush class, 736–741

Automatically Open Smart Tags – Brush classes

bindex.indd 1173bindex.indd 1173 12/31/09 10:47:07 PM12/31/09 10:47:07 PM

1174

Brush classes (continued)
SolidBrush class, 729
TextureBrush class, 729–731

Brush object, 688
buckets, 657–658
buffer overfl ow attacks, 105
BufferedStream class, 837–838
bugs. See also debugging

catching, 396–398
unplanned conditions versus, 395–396

Build menu, 29–30, 249
Build Solution command, 30
Build WindowsApplication1 command, 29
BulletDecorator control, 173
Button control, 111, 178, 210–215, 954
ByRef parameter, 303–304, 347–349, 601,

615
bytes, 833
ByVal parameter, 303, 347, 348–349, 601

C

C#
code editor, 67
confi guration options and, 5
LINQ queries, 476
Microsoft namespace, 628

Calculator application, 320
Call Stack command, 90
called program method, 563–564
calling program method, 562–563
camel case, 346
CancelButton property, 167, 168
CanRedo property, 1009
CanUndo property, 1009
Canvas control, 173
cascading submenu, 982
Case else section, 943
Catch statements, 402–404
Category attribute, 341, 521

centering
Center in Form submenu, 31
CenterPictureInMargins subroutine,

792–794
StringFormat object, 757

certifi cate authority, 536
characters

custom format specifi ers, 1098
text, 749

Check for Updates, 37
CheckAlign property, 954
CheckBox, 107, 175, 954–955
CheckChanged event, 955
Checked property, 954
CheckedListBox, 107–108, 955–956
CheckOnClick property, 955
child class, 571–578
child controls, 155–156
child forms, 159–163
Choose Items tab, 39
Choose statement, 378–379, 933, 944
Choose Toolbox Items command, 32
classes. See also collection classes

abstract class, 590
accessibility, 588–589
adding and modifying features, 576–578
ArrayList class, 650–651
attribute_list, 586–587
BinaryReader class, 838–840
BinaryWriter class, 838–840
Bitmap class, 767–777
BitmapBytesRGB24 class, 774–777
Brush class, 729–741
Brush classes, 721, 1087
BufferedStream class, 837–838
child class, 571–578
Class statements, 242–243
Collection class, 641–642
CollectionsUtil class, 661–662

Brush classes – classes

bindex.indd 1174bindex.indd 1174 12/31/09 10:47:07 PM12/31/09 10:47:07 PM

1175

Color class, 691
command object classes, 443
ComponentResourceManager class,

824–827
CompositeType class, 873
constants, properties, and methods,

612–614
CryptoStream class, 845
Cursors class, 150–152
DataFormats class, 543
DataObject class, 549–550
DataPair class, 676
DataTable class, 449–452
declarations, 1061–1062
defi ning operator for, 935
derived classes, 680
deriving classes, 571–572
Directory class, 854–855
DirectoryInfo class, 859–860
events, 614–625
exception classes, 405–406, 1091–1094
File class, 843–844, 856–857
FileInfo class, 860–862
FileStream class, 835–836
FileSystemInfo class, 862
FileSystemWatcher class, 862–863
FontFamily class, 759, 763
garbage collection, 607–612
generic classes, 671–672
Graphics class, 765
HatchBrush class, 731–732
Image class, 766–767
Implements interface, 593–596
inheritance, 590–592
instantiation, 602–605
introduction, 585–586
LinearGradientBrush class, 732–736
MemoryStream class, 837
Metafi le class, 777–779

MustInherit class, 862
namespaces, 635–636
.NET Framework classes, 854–866
overview, 567–570
parent class, 571–578
Partial keyword, 587–588
Path class, 865–866, 1144–1145
Pen classes, 721
PrintDocument class, 783
PrintDocument object, 698–699
Queue class, 663–664
refi ning and abstracting, 573–575
RegistryKey class, 813–815
SerialPort class, 1118–1120
Shadows keyword, 589–590
SolidBrush class, 729
Stack class, 662–663
Stream class, 1125–1126
stream classes, 833–834
StreamReader class, 842–843
StreamWriter class, 842–843
StringBuilder class, 841
StringReader class, 836–837, 841
StringWriter class, 836–837, 841
strongly typed collection class, 652–654
structures versus, 596–602
summary, 625
System.Drawing namespace, 690–691,

1079–1080
System.Drawing.Drawing2D namespace,

692, 1080–1081
System.Drawing.Imaging namespace, 695,

1081
System.Drawing.Printing namespace, 1082
System.Drawing.Text namespace,

696, 1082
TextReader class, 840–841
TextureBrush class, 729–731
TextWriter class, 840–841

classes – classes

bindex.indd 1175bindex.indd 1175 12/31/09 10:47:08 PM12/31/09 10:47:08 PM

1176

Clean Solution command, 30
Clean WindowsApplication1 command, 29
Clear method, 419
Click event handlers, 830, 954, 989, 1004
clients, 871, 872–873

client area, 133
ClientRectangle property, 995
ClientSize property, 995

clipboard
introduction, 539–540
methods, 1113–1114
summary, 555
using, 552–555

clipping, Graphics object, 718
Clock property, 1114
Close All command, 160
Close commands, 20, 36, 162
code

Code command, 23
code fi le structure, 242–255
code regions, 243–244
code-behind, 222
collapsed, 71
conditional compilation statements, 245–246
Intermediate Language (IL) code, 882
namespaces, 253–254
partial methods, 940
reusing, 572–573, 672
separation of user interface and, 184–185
setting constants in, 245–246
typographic code elements, 255–263

code editor
architectural tools, 80–83
code snippets, 77–80
coloring and highlighting, 74–76
debugging, 85
IntelliSense, 73–74
introduction, 67–68
keyboard shortcuts, 83

margin icons, 68–70
outlining, 70–71
at runtime, 83–84
summary, 84
tooltips, 72

code snippets
Code Snippets Manager command, 32
creating, 78–80
introduction, 77
using, 77–78

collapsed code, 71
collection classes

arrays, 642–649, 650–651
Collection class, 641–642
CollectionBase class, 654, 665
CollectionsUtil class, 661–662
dictionaries, 656–661
generic classes, 665–667
initializing, 667–668
introduction, 641
NameValueCollection class, 654–655
overview, 641–642
read-only strongly typed collection, 654
stacks and queues, 662–665
StringCollection class, 652
strongly typed collection, 652–654
summary, 668–669

collections
collection properties, 126–127
CollectionsUtil class, 661–662
Columns collection, 976
initializing, 921
Items collection, 1021
looping statements, 385
Nodes collection, 1025–1028
summary, 668

collisions
collision resolution policy, 658
namespaces, 627, 630

Clean Solution command – collisions

bindex.indd 1176bindex.indd 1176 12/31/09 10:47:09 PM12/31/09 10:47:09 PM

1177

Color class, 691
ColorBlend object, 735
ColorDialog component, 956–957
coloring and highlighting, 74–76, 81, 957
ColorScroller control, 526–527
ColumnHeader objects, 976
Columns collection, 976
COM Components, 39, 114
COM tab, 26
ComboBox control, 107, 175, 957–959
ComboBoxItem control, 175
command objects

Command window, 94–95
CommandType property, 443
constraints, 459–461
DataColumn object, 454–456
DataRelation object, 457–459
DataRow object, 452–454
DataSet object, 444–449
DataTable class, 449–452
description of object, 431, 443–444

commands
breakpoints, 69
Build menu, 29–30
Clean Solution command, 30
Clean WindowsApplication1 command, 29
Close All command, 160
Close commands, 20, 36, 162
command builder object, 439
Condition command, 69
Connect to Database command, 32
Connect to Server command, 32
Continue command, 86, 390
Create New Test List command, 35
Data attribute, 208–209
Data menu, 30–31
Debug menu, 30, 86–87
Edit menu, 21–22
Exclude From Project command, 25

Export command, 70
Export Template command, 20, 21
File menu, 18–21
Format menu, 31
Help menu, 37
MDI application, 160–161
menus and, 17–18
Options command, 34–35
Project menu, 24–29
Run command, 35
Test menu, 35–36
toolbars, 37
Toolbox window, 39–40
Tools menu, 31–32
View menu, 23–24
Window menu, 36

CommandType property, 443
comma-separated expressions, 373–374
Comment Selection command, 256
comments, 80, 255–260
Commit method, 438
Common Controls Replacement Project, 114
Compare function, 978–979
comparison operators, 321–323, 930–931
compilation settings, 246–247
Compile property page, 27–29
Compile tab, 27
ComplexNumber class, 935
Component Object Model component, 26
components

BackgroundWorker component, 953
BindingNavigator component, 953
BindingSource component, 953
ColorDialog component, 956–957
COM Components, 39, 114
Component class, 532, 949
component tray, 514
ComponentResourceManager class,

824–827

Color class – components

bindex.indd 1177bindex.indd 1177 12/31/09 10:47:09 PM12/31/09 10:47:09 PM

1178

components (continued)
ContextMenuStrip component, 959
custom controls, 530–531
DataSet component, 959–960
DirectoryEntry component, 961
DirectorySearcher component, 961
ErrorProvider component, 962–963
EventLog component, 963
in executable projects, 534
FileSystemWatcher component, 964
FolderBrowserDialog component, 964–965
FontDialog component, 965–967
HelpProvider component, 968–969
ImageList component, 969–970
MessageQueue component, 984
NotifyIcon component, 987–988
OpenFileDialog component, 989–991
overview, 117–119
PageSetupDialog component, 992–993
PerformanceCounter component, 994
pointer component, 953
PrintDialog component, 996–998
PrintDocument component, 998–999
PrintPreviewDialog component, 1001
Process component, 1001–1002
purposes, 951–952
SaveFileDialog component, 1010
security, 534–536
SerialPort component, 1010
ServiceController component, 1011
Timer component, 1021
ToolTip component, 1023–1024

composite controls, 517–518, 526–528
CompositeType class, 873
compound properties, 124–125, 725–726
concatenation operators, 320, 930
concealed controls, 172
Condition command, 69
conditional attribute, 340, 343

conditional compilation statements, 244–253
CONFIG constant, 247, 251–252, 397
confi guration

Application object, 827–832
choosing and changing IDE, 5–6
confi guration fi les, 815–818
Confi guration Manager, 249
Environment variables, 805–809
introduction, 803
My namespace, 803–805
resource fi les, 818–827
summary, 832
System Registry, 809–815

Confi guration Manager, 248–249
Connect to Database command, 32
Connect to Server command, 32
connection objects, 430, 431–435
Connection Properties dialog box, 32
Connection property, 443
ConnectionString property, 433
Console.WriteLine method, 1102
constants

accessibility, 312
in classes, 612–614
CONFIG constant, 247, 251–252, 397
predefi ned, 247–248
setting, 245–247
variables, 312–313

constraints, 459–461
constructors, 580–581, 603–606, 674, 722,

1062–1063
containers

adding controls, 60, 120, 121
copying controls, 50
types, 585

Content property, 185–186, 192
ContextMenu control, 178
ContextMenu property, 155
ContextMenuStrip control, 112, 959, 982

components – ContextMenuStrip control

bindex.indd 1178bindex.indd 1178 12/31/09 10:47:10 PM12/31/09 10:47:10 PM

1179

Continue command, 86, 390
Control class

events, 913–916
Forms class, 1045
methods, 911–912
properties, 907–910
Windows Forms class, 145
Windows Forms controls, 949

controls. See also custom controls; WPF
controls

adding, to Toolbox, 1033–1040
building, 528–530
Canvas control, 173
choosing, 104–105
client area, 133–134
ColorScroller control, 526–527
ComboBox control, 107, 175, 957–959
ComboBoxItem control, 175
components and, 117–119
composite controls, 517–518, 526–528
concealed, 172
concealed controls, 172
containing and arranging, 105–107
ContextMenu control, 178
ContextMenuStrip control, 112, 959, 982
control array, 139
Control class, 532
ControlTemplate element, 199–200
creating, 119–123
DataConnector control, 114
DataGrid control, 461–462, 466–469
DataGridView control, 109, 959
DataNavigator control, 114
DataRepeater control, 1042
defi nition of term, 99, 117
derived controls, 522–526
at design time and runtime, 521–522
digital ink controls, 181
displaying data, 109

displaying dialog boxes, 113
displaying graphics, 112–113
document management, 180
drag source control, 539, 540, 541
entering data, 108–109
event sequences, 917–918
events, 134–144, 913–916
in executable projects, 533–534
Expander control, 173, 174
feedback, 109–111, 177
GotDotNet Power Pack, 1043–1044
graphics and media, 178–179
HScrollBar control, 108, 112, 969
initiating action, 111–112, 178
introduction, 99
invisible, 531–532
layout controls, 172–175
ListView control, 522
methods, 907–910
overview, 99–104
PrintPreviewControl control, 784
properties, 129–134, 155–156, 907–910
RowSortingListView control, 523, 524
selection, 107–108
selection controls, 175–176
summary, 115–116
supporting other, 113–114
templates, 199–201
third-party, 114–115
using, 117

ControlTemplate element, 199–200
conversion(s)

Convert class method, 275
LINQ data type conversion functions, 492,

1071
narrowing, 271–274
widening, 275

Convert class, 927
Copy method, 646

Continue command – Copy method

bindex.indd 1179bindex.indd 1179 12/31/09 10:47:10 PM12/31/09 10:47:10 PM

1180

corrupted comments, 80
Create New Test List command, 35
CreateDecryptor method, 892
CreateEncryptor method, 892
CreateGraphics method, 995
CreateInstance method, 645
CreateText method, 843–844
cryptography, 890–894
Cryptography for Dummies, 894
CryptoStream class, 845
CryptoStream object, 890, 892–893
CType statement, 928
cultural differences, 823–826, 1098
CurrencyManager object, 466–469
Current method, 386
Cursor property, 155
Cursors class, 150–152
custom controls

building, 513–519, 528–530
components, 530–531
composite controls, 526–528
control classes, 532
derived controls, 522–526
in executable projects, 532–534
invisible, 531–532
other tasks, 519–522
security, 534–536
summary, 536–537

CustomColors property, 957
CustomEndCap property, 726–727
Customer Experience Improvement Program,

37
Customer Feedback Options, 37
CustomFormat value, 961
customization

adding commands, 43–45
custom events, 618–622
custom format specifi ers, 1096–1098
Customize command, 32

CustomLineCap object, 726–727
of IDE appearance, 4–5
keyboard shortcuts, 45
of menus, 17–18
summary, 46
of toolbars, 37
Toolbox window, 39
Windows Forms Designer, 47–48

CustomLineCap object, 726–727
CustomStartCap property, 726–727

D

Data Adapter Confi guration Wizard, 438–
443

data adapter object, 430, 431, 438–443
Data attribute, 208–209
data container object, 430
Data data type, 934
Data Encryption Standard (DES) algorithm,

893
Data menu, 30–31
Data Source Confi guration Wizard, 31
Data Sources window, 428
data types

anonymous, 310–311
characters, 925–926
conversion, 271–275, 926–928
Data data type, 934
Date and TimeSpan, 330
description of variable, 265
drag and drop, 543–544
enumerated, 307–310
generic classes, 671–672
inferred data types, 28
list of data types, 924–925
overview, 266–268

database controls and objects
automatically created objects, 428–430
command objects, 443–461

corrupted comments – database controls and objects

bindex.indd 1180bindex.indd 1180 12/31/09 10:47:11 PM12/31/09 10:47:11 PM

1181

complex data binding, 469–471
connecting to data, 421–428
connection objects, 431–435
CurrencyManager object, 466–469
data adapter object, 438–443
data overview, 431–432
DataRowView object, 464–465
DataView object, 461–464
introduction, 421
other data objects, 430–431
simple data binding, 465–466
summary, 471–472
transaction objects, 435–438

Database Tools, 35
DataColumn object, 454–456
DataConnector control, 114
DataFormats class, 543
DataGrid control, 461, 466–469
DataGridView control, 109, 959
DataNavigator control, 114
DataObject class, 549–550
DataPair class, 676
DataRelation object, 457–459
DataRepeater control, 1042
DataRow object, 452–454
DataRowView object, 464–465
DataSet component, 959–960
DataSet object, 429, 431, 444–449, 507–510,

1073–1074
DataTable class, 449–452
DataTable query, 1073
DataView object, 461–464
date and time

date and time format specifi ers, 1095–1098
Date and TimeSpan operators, 934
Date data type, 330–333, 337
DateTimePicker control, 108, 960–961, 984
MonthCalendar control, 984–988
TodayDate property, 986

Toggle Breakpoint command, 88
DDL fi le, 823
debugging

Breakpoints window, 92–94
code fi le structure, 242
Command window, 94–95
commands, 18
Debug command, 36
DEBUG constant, 247, 248–251, 397
Debug menu, 13, 30, 86–92
DEBUG_LEVEL constant, 252–253
Debug.Assert method, 249–250
Debug.Fail method, 250
DebuggerHidden attribute, 343
DebuggerStepThrough attribute, 343
Debug.WriteLine statements, 917
error handling, 419–420
Immediate window, 94–95
introduction, 85
level constants, 252
overview, 35
printing routines, 791
Start Debugging command, 83
summary, 95–96

decision statements
Choose statement, 378–379, 944
enumerated values, 374–375
If and IIf statements, 943–944
If statement, 377
IIf statement, 375–377
multiline If Then statement, 371, 942
Select Case statement, 371–374, 942–943
single-line If Then statement, 369–370,

941–942
decorating, 340
Decrease command, 31
DefaultEvent attribute, 342, 521, 587
DefaultProperty attribute, 342, 520
DefaultValue, 342, 521

Database Tools – DefaultValue

bindex.indd 1181bindex.indd 1181 12/31/09 10:47:11 PM12/31/09 10:47:11 PM

1182

deferred validation, 142–143
defi nitions, 81
delegate_name, 619
delegates, 55, 64, 313–315, 939
Delete All Breakpoints command, 88
Delete Breakpoint command, 69
Delete Tab, 40
DeleteSetting method, 812
dependencies, 570
derived classes, 680
derived controls, 522–526
deriving classes, 571–572
DES (Data Encryption Standard)

algorithm, 893
Descending keyword, 479, 1066
Description attribute, 342, 521
design time, 521
Designer command, 23
DesignMode property, 521
DesignTimeVisible attribute, 521
Details value, 974
Development Settings, 5–7
dialog boxes, 113, 167–169
DialogResult property, 167, 168, 222
dictionaries

Dictionary, 642
Hashtable, 657–658
HybridDictionary, 659
ListDictionary, 656–657
overview, 656
PairDictionary class, 676
SortedList, 661
StringDictionary, 661
strongly typed derived classes, 660–661
strongly typed dictionaries, 659–660
summary, 668–669

digital ink controls, 181
Dim keyword, 282, 919
dimensions, array, 644

DirectCast statement, 928
directories

Directory class, 854–855, 1135–1136
DirectoryEntry component, 961
DirectoryInfo class, 854, 862
DirectoryInfo object, 858–860,

1140–1141
DirectorySearcher component, 961
My.Computer.FileSystem.SpecialDirectories

property, 869–870
restrictions, 850

Disable Breakpoint command, 69
display area, 133
DisplayRectangle property, 910, 967–968,

995
Dispose method, 610–612, 745–747, 863,

922
Distinct keyword, 489, 1067
dithering, 957
DivideByZeroException, 88
Do Loop statements, 388–390, 945–946
Do Until condition, 945
Do While condition, 945
docking

Dock as Tabbed Document command, 36
Dock command, 36
Dock property, 131–133, 993, 1012–1013,

1022
docking icons, 38
DockPanel control, 173
windows, 36

documents
Document property, 992, 1001
DocumentCompleted event, 1031
DocumentName property, 999
DocumentViewer control, 180, 218
fi xed documents, 218
fl ow documents, 216–218
WPF controls, 180, 216–219

deferred validation – documents

bindex.indd 1182bindex.indd 1182 12/31/09 10:47:12 PM12/31/09 10:47:12 PM

1183

XmlDocument class, 888
XPS documents, 218–219

DoDragDrop method, 540, 541
DomainUpDown control, 108, 962
DoubleAnimationUsingKeyFrames element,

203–204
downloading controls, 114–115
DoWork method, 953
drag and drop

accepting dropped fi les, 545–546
in applications, 544–545
available data types, 543–544
changing format names, 549–550
drag source, 539
DragDrop event, 540
DragEnter event, 540
dragging multiple data formats, 550–552
dragging serializable objects, 546–549
DragLeave event, 540
DragOver event, 540–541
events, 540–543
introduction, 539–540
moving and sizing controls, 51
summary, 555

drawing
Bitmap class, 1090
Brush class, 1087
DrawBar subroutine, 794
DrawBezier method, 700–701
DrawBeziers method, 701–702
DrawClosedCurve method, 702
DrawControl method, 531
DrawEllipse method, 689
DrawGraphics subroutine, 796–797
DrawImage method, 779
DrawItem event handler, 1017
DrawMode property, 1016
DrawPath method, 702–703, 741
DrawString method, 750

DrawtoBitmap method, 1043
events, 717–719
graphics, 699–717, 1082–1086
GraphicsPath object, 1087
Image class, 1089
introduction, 687
Metafi le class, 1090
namespaces, 690–699
overview, 688–689
Pen object, 1086
PictureBox control, 995
simplifying printing and, 796–798
StringFormat object, 1088
summary, 719
text, 750

DriveInfo object, 858, 1138–1139
drop, drag and. See drag and drop
drop target, 539, 547
DropDown style, 958
DropDownList style, 107, 958–959
DropDownStyle property, 107, 957–959
DropDownWidth property, 958
dynamic properties, 815–816

E

Edit Labels command, 70
Edit menu, 21–22, 256
elements

ControlTemplate element, 199–200
object, 194–195
transformations, 201–202
typographic code elements, 255–263

Ellipse, 179, 206
Else clause, 941–942
Else If clause, 941–942
em size, 760–761
embedded resources, 819, 821–822
Emf format, 770
en size, 761

DoDragDrop method – en size

bindex.indd 1183bindex.indd 1183 12/31/09 10:47:12 PM12/31/09 10:47:12 PM

1184

Enabled property, 155, 993
EnableRaisingEvents property, 1002
EnableRefactoringOnRename, 48
encapsulation, 570–571
encoding formats, 836
End Region statement, 244
EndOfStream method, 842
endpoints, 872, 876
EndPrint event, 783
Enhanced Metafi le format, 770
Entities, LINQ to, 506–507
enumerators

enabling, 384
enumerated data types, 307–310
enumerated type declarations, 923
enumerated type formatting, 1102–1103
enumerated values, 374–375
overview, 386–388
System.Drawing.Drawing2D namespace,

693–694, 1080–1081
Environment

Environ function, 807
Environment variables, 805–809
Environment.SpecialFolder values, 965
Options command, 34

Err object, 418–419
error handling

bugs versus unplanned conditions, 396–401
classic error handling, 948
coloring and highlighting, 75–76
debugging, 419–420
Err object, 418–419
Error List, 12
error suggestions, 75–76
error-handling mode, 416
ErrorProvider component, 109–110, 962–

963
feedback, 109–111
Generate From Usage, 82–83

introduction, 395
StringCollection class, 652
structured error handling, 402–411, 947
structured versus classic, 416–418
summary, 420
throwing exceptions, 947–948, 1091–1094
Visual Basic classic error handling, 410–416

event handlers
AddHandler statement, 617
After event handlers, 1028
Click event handlers, 830, 954, 989, 1004
control code and, 54–56, 64
creating, at design time, 135–136
drag-and-drop, 541
DrawGraphics subroutine, 797
DrawItem event handler, 1017
editing Visual Basic code, 190
Before event handlers, 1028
Form1_Load event handler, 864–865
Load event handler, 830, 831
menu item, 984
overview, 135
PrintPage event handler, 786, 789–791
setting, at runtime, 137–138
TextChanged event handler, 1009
Validated event handler, 141–142
Validating event handler, 110, 139–144
WithEvents event handler, 137

events
accessibility, 615
Application object, 830–831, 1108
BeginPrint event, 788
catching, 616–618
connection objects, 435
Control class, 913–916
DataTable class, 452
declaring, 614–615, 1063
declaring custom, 618–622
defi nition of term, 568

Enabled property – events

bindex.indd 1184bindex.indd 1184 12/31/09 10:47:13 PM12/31/09 10:47:13 PM

1185

drag-and-drop, 540
drawing, 717–719
EventLog component, 963
Events icon, 55
FileOk event, 1010
FileSystemWatcher class, 864, 1144
MaskedTextBox control, 981
MDI events, 162–164
move events, 918
My.Application namespace, 1109–1111
NetworkAvailabilityChanged event, 1118
notifi cation events, 1031
PrintDocument object, 783
PrintPage event, 786, 998
property-changed events, 1059
QueryPageSettings event, 788–789
raising, 616
routed, 203
RunWorkerCompleted event, 953
Scroll event, 1025
SelectIndexChanged event, 1016
SerialPort class, 1120
SplitContainer control, 1012
TextBox control, 1020
TextChanged event, 1009
Tick event, 1021
TreeView control, 1028
Validating, 963
ValueChanged event, 1025
WebBrowser control, 1031
Windows Forms class, 1055–1059
Windows Forms Controls, 134–144

example programs, 1149
exceptions

custom exceptions, 410–411
Except extension method, 489
exception classes, 1091–1094
exception handling, 400–401, 403–404
exception objects, 404–406

Exceptions command, 87–88
re-throwing, 409
throwing, 406–409, 947–948

Exclude From Project command, 25
Exists method, 844
Exit Do statement, 390
Exit For statement, 382
Exit Function statement, 357
Exit statement, 390
Exit Sub statement, 356
Expander control, 173, 174
Export command, 70
Export Template command, 20, 21
Express additions, 5
Expression Blend, 59, 184, 185, 186, 188
extender provider class, 537
Extensible Application Markup Language

(XAML). See XAML (Extensible
Application Markup Language)

extension
Extension attribute, 359, 940
Extension Manager command, 32

extension methods
generic extensions, 681–682, 1076
inheritance, 591
LINQ extension methods, 492–499,

1069–1070
LINQ functions, 490–492
OOP (object-oriented programming),

581–582
overview, 359–360

external leading, 760
External Tools command, 32

F

F5 shortcut, 13, 83, 877
F8 shortcut, 83
F9 shortcut, 83
factory method, 623–624

example programs – factory method

bindex.indd 1185bindex.indd 1185 12/31/09 10:47:14 PM12/31/09 10:47:14 PM

1186

Fail method, 250
feedback, 109–111, 177
FiboInfo class, 901
Fibonacci function, 900–901
Fibonacci routines, 899
FIFO order, 663
fi les

associating with projects or solutions, 7
binary-fi le access, 854
confi guration fi les, 815–818
DDL fi le, 823
dropped, 545–546
File class, 856–857, 1136–1138
File menu, 18–21
fi le methods, 848–850
FileGet method, 852, 853
FileGetObject method, 852
FileInfo class, 854, 862
FileInfo object, 860–862, 1141–1143
FileNames collection, 1010
FileOk event, 1010
FilePut method, 852
FilePutObject method, 852
FileStream class, 835–836
FileStream object, 843–844
FileViewer control, 1044
hidden, 237–241
loading Bitmaps from, 768–769
MRU lists, 165–167
random-access fi le, 851–853
resource fi les, 818–827
sequential fi le access, 851
Visual Basic methods, 1131–1133

fi le-system classes
FileStream class, 1127
FileSystem class, 1133–1135
FileSystemInfo class, 862
FileSystemWatcher class, 862–865,

1143–1144

framework classes, 1133–1145
My.Computer.FileSystem object, 1146–1148
My.Computer.FileSystem.SpecialDirectories

property, 1148
Visual Basic methods, 1131–1133

fi le-system methods, 850
fi le-system objects

FileSystem object, 1114–1116
FileSystemWatcher component, 964
My.Computer.FileSystem object, 867–869
My.Computer.FileSystem.SpecialDirectories

property, 869–870
.Net framework classes, 854–866
permissions, 847
summary, 870
Visual Basic methods, 848–854

FillElipse method, 689
FillPath method, 741
Filter column, 442
Filter command, 69
Finalize method, 608–610, 611–612
Find All References, 81–82
Find Symbol command, 21
fi rst-in, fi rst-out order, 663
FitBlackBox fl ag, 753
FitPictureToMargins subroutine, 795–798
fi xed documents, 218–219
FixedPage object, 218
Flags attribute, 1103
FlatStyle property, 125
Flip tools, 13
Float command, 36
Floater element, 217
fl ow documents

FlowDocument control, 216
FlowDocumentPageViewer control, 180
FlowDocumentPageViewer object, 218
FlowDocumentReader control, 180
FlowDocumentReader object, 216–217

Fail method – fl ow documents

bindex.indd 1186bindex.indd 1186 12/31/09 10:47:14 PM12/31/09 10:47:14 PM

1187

FlowDocumentScrollViewer, 180, 218
overview, 216–218

FlowDirection property, 105, 964
FlowLayoutPanel control, 105, 964
FolderBrowserDialog, 113, 964–965
FolderViewer control, 1044
fonts

font design units, 760
font hinting, 749
font metrics, 759–763
Font object, 128
Font property, 124, 155–156
FontDialog, 113, 965–967
FontFamily class, 759, 763
FontFamily object, 759–760
System.Drawing.Text namespace, 1082

For Each loop, 383–386, 475, 642, 944–945
For Next loop, 380–383, 944
Ford, Henry, 286
ForeColor property, 155
ForegroundColor property, 732
ForeignKeyConstraint, 459–460
Form1_Load event handler, 864–865
Form1.Designer.vb fi le, 240
Form1.vb command, 36
Form1.vb fi le, 239
formatting

Format menu, 31, 52
format names, 549–550
Format property, 960–961
format specifi ers, 1095–1103
format_specifi er value, 1102
FormatFlags property, 752–755
FormatProvider object, 840
text, 750–751

Forms
About, splash, and login forms, 149–150
BindingSource, 953
Cursors class, 150–152

dialog boxes, 167–169
events, 1055–1059
Form control, 112
Form Designer, 12
FormBorderStyle property, 148, 167
FormClosed event, 162–164
FormClosing event, 162–164
icons, 152–155
introduction, 145–146
methods, 1051–1055
modal form, 150
MRU lists, 165–167
overriding WndProc, 156–158
properties, 1045–1051
properties adopted by child controls,

155–156
property reset methods, 156
property-changed events, 1059
SDI and MDI applications, 158–165
summary, 170
translucent forms, 147
transparency value, 146–149
windows and, 222, 223–224
wizards, 169

Forms Controls. See Windows Forms
Controls

frame applications, 226–227
Frame control, 180, 227
framework classes

Directory class, 1135–1136
DirectoryInfo object, 1140–1141
DriveInfo object, 1138–1139
File class, 1136–1138
FileInfo object, 1141–1143
FileSystem class, 1133–1135
FileSystemWatcher class, 1143–1144
Path class, 1144–1145

FreeFile method, 849, 853
Friend keyword, 277–278, 301, 346, 588

FlowDirection property – Friend keyword

bindex.indd 1187bindex.indd 1187 12/31/09 10:47:15 PM12/31/09 10:47:15 PM

1188

From clause, 476–477, 1065
From keyword, 667, 921–922
FromImage method, 765–766
FromPage property, 998
Full Screen command, 23
FullOpen property, 957
fully qualifi ed name, 855
functions

aggregate functions, 488–489
Convert class, 927
extension methods, 359–360
IEnumerable objects, 504
integer functions, 928
introduction, 339
lambda functions, 360–363
LINQ data type conversion functions, 1071
LINQ functions, 490–492
overloaded, 581
overview, 356–357
partial methods, 366–368
property procedures, 358–359
relaxed delegates, 363–366
summary, 368
syntax for, 937–938

G

garbage collection, 599, 607–612, 745–747
GDI+

classes, 690–691
routines, 688, 689, 691, 749

General Development Settings, 5–7
generalization, 573–574
Generate From Usage, 82–83
Generate XML documentation fi le, 29
generic classes

advantages, 671–672
declaring, 1075–1076
defi ning, 672–678
extension methods, 681–682, 1076–1077

lambda functions, 1077
methods, 681, 1077
overview, 665–667, 671
predefi ned, 680
summary, 683
using, 678–680

Get routine, 939
Get Started tab, 7–9
GetAllSettings function, 811
GetBytes method, 893
GetData function, 873
GetDataObject method, 553
GetDataPresent method, 543–544
GetDataUsingDataContract fuction, 873
GetDrives method, 858
GetException method, 419
GetIndexParameters array, 896
GetPixel method, 768, 772–773
GetQuote method, 877
GetSetting function, 811
GetStringBuilder method, 841
GetTabStops method, 755
GetValue method, 896
GetWorkingArea method, 1123
GiveFeedback event, 541
global exception handling, 400–401
Go To command, 22
Go To Defi nition, 81
“Go to today” command, 960
Go To Type Defi nition, 81
GoBack method, 225
GoForward method, 225
GotDotNet Power Pack, 1043–1044
GoTo statement, 391–394, 946
graphics

Anti-aliasing, 707–709
drawing methods, 699–703
fi lling methods, 703–704
Graphics class, 765

From clause – graphics

bindex.indd 1188bindex.indd 1188 12/31/09 10:47:15 PM12/31/09 10:47:15 PM

1189

Graphics object, 688, 747, 765, 777–779,
796–797

GraphicsPath object, 702–703, 741–745,
1087–1088

namespaces, 1079–1082
properties and methods, 704–707
saving and restoring, 716–717
transformations, 709–716

Graphics Device Interface+. See GDI+
grids

Grid control, 174, 185, 188–189
Grid Size, 48
Grid.ColumnProperty property, 192
Grid.ColumnSpan property, 192
Grid.RowProperty property, 192
GridSplitter control, 174
GridView control, 174

Group By clause, 485–488, 1067–1068
Group Join statement, 484
GroupBox control, 105–106, 174, 967–968
GUID, 241
Guidance and Resources tab, 8, 9
gutters, 786, 787

H

hackers, 535–536
“has-a” relationship, 575–576
hash value, 657
Hashing technique, 890
Hashtable, 642, 657–658, 669
HatchBrush class, 731–732
HatchStyle property, 732
heap, 599, 607
Height property, 995
Help menu, 37
HelpProvider component, 109–110, 968–969
hidden fi les, 237–241
hidden windows, 13
Hide command, 36

Highlight References, 81
hinting, 749
Hit Count command, 69, 93
hives, 809
Horizontal Spacing submenu, 31
HorizontalAlignment property, 192
HorizontalScrollBar property, 955
HScrollBar control, 108, 112, 969
HTML Designer, 35
HTML editor, 67
HybridDictionary, 659

I

IComparer interface, 648, 649, 978–979
icons

application icons, 154–155
building, 25
in code editor, 68–70
docking icons, 38
editors, 153
Events icon, 55
Icon property, 963, 988
IconEdit, 153
IconEdit2, 153
IconForge, 153
margin icons, 68–69
notifi cation icons, 154–155, 988
Windows Forms, 152–155

IDE (integrated development environment)
adding commands, 43–45
appearances, 4–5
conditional compilation statements, 245
confi gurations, 5–6
creating projects, 10–13
docking icons, 38
key pieces, 12
keyboard shortcuts, 45
macros, 34
menus, 17–37

Graphics Device Interface+ – IDE (integrated development environment)

bindex.indd 1189bindex.indd 1189 12/31/09 10:47:16 PM12/31/09 10:47:16 PM

1190

IDE (integrated development environment)
(continued)

projects and solutions, 6–7
saving projects, 13–15
secondary windows, 38–41
starting, 7–9
toolbars, 37
WPF controls, 186–192

identifi ers, 284–285
IEnumerable interface, 387–388
IEnumerable objects, 504
If statement, 377, 933, 943–944
If Then Else statement, 245, 944
If Then statements, 369–371, 941–942
Ignore button, 250
IgnoreCase object, 887
IIf statement, 375–377, 933, 943–944
Im property, 935
image processing

Bitmap class, 767–777
Image object, 765–767
introduction, 765
Metafi le objects, 777–779
summary, 779–780

images
centering, 792–794
fi tting, to page, 794–795
Image class, 765–767, 777, 1089
Image Collection Editor, 970
Image control, 179
Image object, 765–767
Image property, 771, 994–995
ImageAlign property, 954, 970
ImageButton control, 1043–1044
ImageBytes array, 775
ImageIndex property, 954, 970
ImageList component, 969–970
ImageList control, 113

ImageList property, 125, 954, 969,
970, 1026

IMessageFilter interface, 830
Immediate command, 88
Immediate window, 94–95
Implements interface, 593–596, 615
Implements statement, 596, 1062
implicit line continuation, 261–263
Import and Export Settings Wizard, 6
Import/Export Settings command, 32
Imports statement

alias clause, 631–632
automatic imports, 630–631
description of statement, 242
elements, 632–633
generic classes, 679–680
namespaces, 254
overview, 629–630

Increase command, 31
indenting

Indent method, 250
IndentLevel property, 250
IndentSize property, 250

index value, 1102
IndexOf method, 647
inferred types, 28, 288, 924
Info object, 1111–1112
InfoMessage event, 435
information hiding. See encapsulation
inheritance

child controls, 155
class features, 576–578
classes, 590–592
“has-a” and “is-a” relationships,

575–576
hierarchies, 572–573
inheritance clause, 1061
Inheritance Picker dialog box, 533
inheritance_mode, 344–345, 937, 938

IDE (integrated development environment) – inheritance

bindex.indd 1190bindex.indd 1190 12/31/09 10:47:16 PM12/31/09 10:47:16 PM

1191

inherited controls, 534
Inherits parent_class statement, 592
Inherits statement, 1061
interface, 578
introduction, 571–572
multiple, 573, 594
refi nement and abstraction, 573–575
structures, 597

initialization expressions, 289–293, 313,
920–921

InitializeComponent method, 824
InkCanvas control, 181
InkPresenter control, 181
inline functions, 362–363. See also lambda

functions
Input method, 851
InputString method, 851
InqueConstraint, 460–461
Insert File As Text command, 22
instances, 569
instantiation

classes, 602–605
defi nition of term, 569, 585
structures, 605–607

Integer data type, 267
integer functions, 928
Integer value, 618
IntegraHeight property, 955
integrated development environment (IDE).

See IDE (integrated development
environment)

integrated icons editor, 153
integrated validation, 139–141
IntelliSense

defi nition of term, 22
generic classes, 671–672
LINQ, 476
My.Resources properties, 820
namespaces, 635–636

overview, 73–74
InterceptArrowKeys property, 962
interfaces, 354–356, 570, 578, 593–596, 615
Intermediate Language (IL) code, 882
internal leading, 760
Internet Explorer, 224–225
InterpolationMode property, 708
Intersection extension method, 489
Interval property, 1021
intuitive encapsulation, 571
Invalidate method, 995
InvalidatePreview method, 1001
InvalidWorkAssignmentException

class, 1094
InvertImage subroutine, 773
invisible controls, 531–532
Invoke button, 877
Is keyword, 373, 942
Is operator, 321
“is-a” relationship, 575–576
IsAsync property, 835
IsCancel property, 222
IsDefault property, 222–223
IsMatch method, 886
IsNot operator, 321
IsReady property, 1138
Items collection, 1021
Items.Add method, 956
iterators, 388

J

Join keyword, 483–485, 1067

K

key and initialization vector, 890
key collision, 658
key frame, 203–204
keyboard

initialization expressions – keyboard

bindex.indd 1191bindex.indd 1191 12/31/09 10:47:17 PM12/31/09 10:47:17 PM

1192

keyboard (continued)
Keyboard object, 1117
keyboard shortcuts, 3, 18, 45

L

labels
Label control, 109, 177, 192, 970
LabelEdit control, 975–976
line labels, 263

lambda functions
generic lambda functions, 1077
method-based queries, 494–496, 1074
overview, 360–363, 939–940

Language Integrated Query (LINQ). See
LINQ

languages, installation packages for, 818
LargeChange property, 969
LargeIcon value, 974
last-in, fi rst-out order, 662
LastIndexOf method, 647
Latest News, 8, 10
layout

layout controls, 172–175
LayoutMode, 48, 49
LayoutTransform property, 187–188

leading, 760
LIFO order, 662
Like operator, 321, 931
Like patterns, 931
LinearGradientBrush class, 732–736
LinearGradientBrush element, 197
lines

line continuation, 260–263
Line control, 179
line joining, 263
line labels, 263–264
line numbers, 67–68
Line object, 205
LineLimit fl ag, 753

LineShape control, 1042
NewLine property, 840

LinkLabel control, 112, 970–972
LINQ

ADO.NET, 506–510
advanced query syntax, 483–490
anonymous types, 310
basic query syntax, 476–483, 1065–1069
extending, 496–499
extension methods, 492–499, 1069–1070
functions, 490–492, 1069–1071
introduction, 473–476
LINQ to DataSet, 1073–1074
LINQ to Objects, 500
LINQ to XML, 500, 1071–1073
PLINQ, 510–511, 1074
query, 945
summary, 511–512
using LINQ results, 482–483, 1069

listener objects, 251
lists

List value, 974
ListBox control, 107, 126, 176, 955,

972–974
ListBoxItem control, 176
ListDictionary, 656–657
long lists, 108

ListView control
collection properties, 127
derived controls, 522, 526
description of control, 39, 109
helper code, 976–978
ListViewMakeRow subroutine, 896
overview, 974–976
Sorting property, 978–979

literal values, 500–501
Load event handler, 830, 831
load factor, 658
Load Metadata File command, 35

keyboard – Load Metadata File command

bindex.indd 1192bindex.indd 1192 12/31/09 10:47:17 PM12/31/09 10:47:17 PM

1193

LoadAllResources subroutine, 826
Loaded event handler, 192
LoadResources subroutine, 826
Localizable attribute, 342
localization resources, 823–824
Locals command, 88–89
Location command, 69
Location property, 124
Lock Controls command, 31
Lock method, 835
LockBits method, 774–776
logical operators, 323–324, 931–932
login forms, 149–150
long lists, 108
Long parameter, 618
looping statements

Do Loop statements, 388–390, 945–946
For Each loop, 383–386, 475, 642, 944–945
enumerators, 386–388
Exit and Continue statements, 390
GoTo statement, 391–394
introduction, 379–380
iterators, 388
For Next loop, 380–383, 944
While End loop, 390, 946

looping variables, 1069

M

Macro Explorer command, 33
Macros submenu, 32–34
Main subroutine, 242
Make Equal command, 31
Make Same Size submenu, 31
MakeKeyAndIV subroutine, 892, 893
managed heap, 607
ManagerComparer object, 649
margin icons, 68–69
margin_bounds rectangle, 795–796
margins, 786

Mask property, 979–980
MaskedTextBox, 108, 109, 979–982
“master” controls, 50, 52
Matches method, 886–887
MaxDate property, 961
MaxDropDownItems property, 958
Maximize All command, 160
Maximum property, 969, 1002–1003
MaximumPage value, 998
MaxLength property, 958
MDI application

MDI child forms, 161–164
MDI events, 162–164
MDI features, 159–161
SDI application versus, 145, 162–165

MdiWindowListItem property, 161
Me object, 804–805
MeasureCharacterRanges method, 757–759
MeasureString method, 756–759, 791
MediaElement control, 179
memory, 598–599, 610–611
MemoryStream class, 837, 1127
menus

Build menu, 29–30
controls, 133
Data menu, 30–31
Debug menu, 30, 86–92
Edit menu, 21–22
File menu, 18–21
Format menu, 31
Help menu, 37
in IDE, 12
introduction to, 17–18
MDI versus SDI applications, 164
Menu control, 178
MenuItem control, 178
MenuStrip control, 111, 982–984
Project menu, 24–29
Test menu, 35–36

LoadAllResources subroutine – menus

bindex.indd 1193bindex.indd 1193 12/31/09 10:47:18 PM12/31/09 10:47:18 PM

1194

menus (continued)
Tools menu, 31–35
View menu, 23–24

MenuStrip control, 111
MergableProperty attribute, 342
message, 872
MessageQueue component, 984
Metadata Exchange (MEX) endpoint, 876
Metafi le class, 765–766, 1089, 1090
Metafi le objects, 777–779
method-based queries, 492–496
methods

Add method, 667–668, 921–922
Application class, 1107
Application object, 829–830
Array class, 647–649
ArrayList class, 650–651
AsEnumerable method, 508
Audio object, 1113
BeginTransaction method, 436
BinaryReader class, 838–839, 1127–1128
BinaryWriter class, 839, 1129
Bitmap class, 767–768, 1090
called program method, 563–564
calling program method, 562–563
in classes, 612–614
Clear method, 419
Clipboard object, 554–555, 1113–1114
Commit method, 438
ComponentResourceManager class,

824–825
connection objects, 435
Console.WriteLine method, 1102
Copy method, 646
CreateDecryptor method, 892
CreateEncryptor method, 892
CreateGraphics method, 995
CreateInstance method, 645
CreateText method, 843–844

CurrencyManager object, 467
data adapter object, 438
Data data type, 934
DataRow object, 453–454
DataSet object, 448–449
DataTable class, 451
DataView object, 464
Debug object, 249–251
defi nition of term, 134, 568
dictionaries, 655
Directory class, 854–855, 1135–1136
DirectoryInfo class, 859–860
DirectoryInfo object, 1140
Dispose method, 745–747
DrawBezier method, 700–701
DrawBeziers method, 701–702
DrawClosedCurve method, 702
drawing methods, 699–703, 704–707
DrawPath method, 702–703
DrawString method, 750
Err object, 419
Exception class, 406
Exists method, 844
extension methods, 359–360, 591, 940
File class, 843–844, 856–857, 1136–1138
fi le methods, 848–850
FileInfo class, 860–862
FileInfo object, 1141–1143
FileSystem class, 1133–1135
fi le-system methods, 850
FileSystem object, 1114–1116
FileSystemWatcher class, 863–864, 1144
fi lling methods, 703–704
FontFamily object, 760
function of, 614
generic methods, 681–682, 1077
GetDataObject method, 553
GetDataPresent method, 543–544
GetPixel method, 772–774

menus – methods

bindex.indd 1194bindex.indd 1194 12/31/09 10:47:19 PM12/31/09 10:47:19 PM

1195

Graphics object, 704–707, 1082–1085
GraphicsPath object, 741, 743–745,

1087–1088
Image class, 766–767, 777, 1089
InitializeComponent method, 824
IntelliSense, 73–74
LinearGradientBrush class, 732–733
LINQ extension methods, 1069–1070
LockBits method, 774–776
MDI application, 160
MeasureCharacterRanges method, 757–759
MeasureString method, 756–757
Metafi le class, 1090
MonthCalendar control, 986–987
My.Application namespace, 1109–1111
My.Computer.FileSystem object, 867–869,

1146–1148
My.Computer.Network object, 1117–1118
My.Computer.Registry, 1121
My.Settings namespace, 817
NameValueCollection class, 655
overloading, 580–581
partial methods, 366–368, 940
Path class, 865–866, 1145
PathGrandientBrush object, 736–738
Pen class, 722–724
Pen object, 1086
Queue class, 664
Registry methods, 810–811
RegistryKey class, 813–814
RegistryKey objects, 1121–1122
RichTextBox control, 1008
Rollback method, 438
RunWorkerAsync method, 953
Save method, 769–770
Screen class, 1122–1123
SerialPort class, 1119–1120
SetDataObject method, 552
SetPixel method, 772–774

shared, 623–625
Stack class, 662–663
Stream class, 835, 1126–1127
StreamReader class, 842
StringFormat method, 1102
StringFormat object, 751–752, 755, 1088
StringReader class, 841
strongly typed collection class, 653
strongly typed dictionaries, 659
subroutines and, 339
System.Environment object, 809
System.IO.File class, 1130
TableLayoutPanel control, 1018
Task Parallel Library (TPL), 899–902
TextBox control, 1020
TextReader class, 1129
TextReader object, 840
TextWriter class, 1130
TextWriter object, 841
ToolTip component, 1024
TranslateTransform method, 792
TreeNode objects, 1029–1030
TreeView control, 1027
Visual Basic methods, 1131–1133
Visual Basic Registry methods, 810–811
WaitForExit method, 560
Windows Forms class, 1051–1055
XElement, 504

Microsoft Access, 424
Microsoft Document Explorer, 38
Microsoft namespace, 628–633, 882
Microsoft Offi ce, 782
Microsoft Paint, 164
Microsoft Power Packs, 1041–1043
Microsoft Word, 782
MinDate property, 961
Minimize All command, 160
Minimum property, 969, 1002–1003
MinimumPage value, 998

methods – MinimumPage value

bindex.indd 1195bindex.indd 1195 12/31/09 10:47:19 PM12/31/09 10:47:19 PM

1196

Mod operator, 933
modal form, 150
modules

module scope, 300–301
Module statements, 242–243
Modules command, 91, 92
namespaces, 254, 635–636

MonthCalendar control, 984–988
Most Recently Used (MRU) list. See

MRU lists
MostRecentList class, 677
mouse

mouse cursors, 150–152
mouse events, 917
Mouse object, 1117
tooltips, 72

move events, 918
Move Up/Move Down, 40
MRU lists, 40, 165–167
MSDN Forums, 37
MSDN Library, 38
MSDN Resources, 8
Mueller, John, 33
MultiColumn property, 955
multiline If Then statement, 371, 942
multiple inheritance, 573, 594
multiple-document interface (MDI)

application. See MDI application
MultiSelect property, 1010
MustInherit class, 862
MustInherit keyword, 590
MustOverride keyword, 574
MustOverride value, 344
MVPs.org, 114
My namespace

My.Forms namespace, 1123–1124
My.Resources namespace,

820–821, 1124
My.Settings namespace, 817–818

My.User namespace, 1124
overview, 803–805, 1109–1112

My Project fi le, 239
My Project References tab, 630
My.Application namespace, 1109–1112
My.Application.AssemblyInfo namespace,

241
My.Computer namespace

Audio object, 1112–1113
Clipboard object, 1113–1114
Clock property, 1114
FileSystem object, 1114–1116
Info object, 1116
Keyboard object, 1117
Mouse object, 1117
My.Computer.FileSystem object, 867–869,

1146–1148
My.Computer.FileSystem.SpecialDirectories

property, 869–870, 1148
My.Computer.Info object, 1116
My.Computer.Network object, 1117–1118
My.Computer.Registry namespace, 812–815
Name property, 1117
Network object, 1117–1118
Ports object, 1118–1120
Registry, 1120–1122
Screen property, 1122–1123

MyGeneric class, 1075–1076
My.Settings namespace, 817
_MyType constant, 248

N

Name clause, 284–285
name keyword, 920
Name property, 53, 835, 983
namespaces. See also .Net framework

namespaces
classes, structures, and modules, 635–636
creating, 633–635

Mod operator – namespaces

bindex.indd 1196bindex.indd 1196 12/31/09 10:47:20 PM12/31/09 10:47:20 PM

1197

drawing, 690–699
Imports statement, 628–633
introduction, 627
My namespace, 803–805, 1109–1124
My.Computer.Registry namespace, 812–815
My.Resources namespace, 820–821, 1124
My.Settings namespace, 817
My.User namespace, 1124
namespace scope, 301
program and module structure, 253–255
resolving, 636–639
root namespace, 633
summary, 639
System.Collections.Generic namespace, 665,

666–667, 680
System.Drawing namespace, 690–691
System.Drawing.Drawing2D namespace,

692–694
System.Drawing.Imaging namespace,

694–695
System.Drawing.Printing namespace,

698–699
System.Drawing.Text namespace, 695–696
System.IO namespace, 1133
System.Windows.Controls namespace, 1033
System.Windows.Forms namespace, 1033

NameValueCollection class, 654–655
naming conventions, 315–317
narrowing conversion, 271–274
Navigating event, 1031
navigation, 180, 225–227
NavigationService object, 225–226
NearestNeighbor interpolation, 708
nested functions. See lambda functions
.Net framework classes

Directory class, 854–855
DirectoryInfo object, 858–860
DriveInfo object, 858
File class, 856–857

FileInfo object, 860–862
FileSystemInfo class, 862
FileSystemWatcher class, 862–865
Path class, 865–866

.NET Framework Components, 39, 114

.Net framework namespaces
introduction, 881
regular expressions, 885–887
root namespaces, 882–885
summary, 902–903
Task Parallel Library, 899–902
XML, 887–898

.Net tab, 26
NetworkAvailabilityChanged event, 1118
NetworkStream class, 845
New Breakpoint command, 88
New Horizontal Tab Group command, 36
New items command, 24
New keyword, 287, 602, 604–605, 920
New Project command, 8, 10, 18, 19
New Test command, 35
New Type dialog, 82
New Vertical Tab Group command, 36
New Web Site command, 19
NewLine property, 840
Next command, 162
Next Method command, 22
NoClip fl ag, 753
node axes, 505–506, 1073
Nodes collection, 1025–1028
NoLeftDownMessageFilter class, 830
non-client area, 133
non-integer For Next loop, 382–383
NonSerializedAttribute attribute, 343
Notepad, 164
Nothing value, 321
notifi cation events, 1031
notifi cation icons, 154–155
Notifi cationWindow control, 1044

NameValueCollection class – Notifi cationWindow control

bindex.indd 1197bindex.indd 1197 12/31/09 10:47:20 PM12/31/09 10:47:20 PM

1198

NotifyFilter values, 864–865
NotifyIcon component, 109–110, 987–988
NotifyIcon control, 154
NotOverridable value, 344
NTFS features, 1139
nullable types, 311–312, 336
numeric format specifi ers, 1099–1102
NumericUpDown control, 988–989
NUnit, 85

O

obj folder, 239
object-oriented programming. See OOP

(object-oriented programming)
objects

Application object, 827–832
arrays, 291–292, 642
Assembly object, 823
assigning, 599–600
BinaryReader object, 838
BinaryWriter object, 838
Bitmap object, 769
boxing and unboxing, 602
Brush object, 688
class instantiation, 602–603
classes, 569
classes and structures, 599–600
ColorBlend object, 735
ColumnHeader objects, 976
connection objects, 430–435
constraints, 459–461
CryptoStream object, 890, 892–893
CurrencyManager object, 466–469
CustomLineCap object, 726–727
data adapter object, 430, 431, 438–443
data container object, 430
DataColumn object, 454–456
DataRelation object, 456–459
DataRow object, 452–454

DataRowView object, 464–465
DataSet object, 429, 431, 444–449,

507–510, 1073–1074
DataView object, 461–464
defi nition of term, 569
DirectoryInfo object, 858–859
drawing, 205–210
DriveInfo object, 858
Ellipse object, 206
Err object, 418–419
exception objects, 405–406
FileInfo object, 860–862
Font object, 128
FontFamily object, 759–760
garbage collection, 745–747
Graphics object, 699–717, 765
GraphicsPath object, 702–703, 741–743
Image object, 765–767
Line object, 205
Me object, 804–805
Metafi le object, 777–779
My.Computer.FileSystem object, 867
My.Computer.Registry, 1120–1121
Object Browser, 259, 408
Path object, 207–210
PathGrandientBrush object, 736–737
Pen object, 688, 721–724
Polygon object, 206–207
Polyline object, 207
polymorphism, 578–579
PrintDocument object, 698–699, 783–786
Rectangle object, 206
Regex object, 886–887
RegistryKey objects, 813–815, 1121
RowDefi nition object, 192
serializable, 546–549
StackTrace objects, 406
StatusStrip control, 1013–1014
StringFormat object, 750–755, 791

NotifyFilter values – objects

bindex.indd 1198bindex.indd 1198 12/31/09 10:47:21 PM12/31/09 10:47:21 PM

1199

System.Environment object, 807–809
TextReader object, 840
TextWriter object, 841
Trace object, 251
transaction objects, 435–438
WorkItemLister object, 518
XAML, 193–195

Obsolete attribute, 343
OdbcCommand class, 443
OdbcConnection object, 432–435
Of clause, 681
Of CustInfo clause, 495
Of Decimal clause, 495
Of type_list clause, 591–592
Offi ce Tools, 35
OfItemType clause, 674
OleDbCommand class, 443
OleDbConnection object, 432–435
On Error statements, 413–415
OOP (object-oriented programming)

classes, 567–570
encapsulation, 570–571
extension methods, 581–582
inheritance, 571–578
introduction, 567
method overloading, 580–581
polymorphism, 578–579
summary, 582–583

Opacity value, 146–149
Open File command, 19, 20
Open Project command, 8, 19
Open Web Site command, 19
OpenFile subroutine, 166
OpenFileDialog, 113, 989–991, 1010
OpenSerialPort method, 1118
OpenText method, 843–844
operating systems, 557–558
OperationContract attributes, 873
operators

arithmetic operators, 319–320, 929–930
assignment operators, 326–328, 933
bit shift operators, 930
bitwise operators, 324–325, 932
comparison operators, 321–323, 930–931
concatenation operators, 320, 930
Date and TimeSpan operators,

330–333, 934
introduction, 319
logical operators, 323–324, 931–932
with nullable types, 336
overloading, 333–336, 935
precedence, 325–326, 932–933
StringBuilder class, 328–330
summary, 337

Optimized Code Generation, 48
Option Compare, 28
Option Explicit, 27, 295–298, 923
Option Infer, 28, 288, 923–924
Option statements, 242
Option Strict, 28, 295–298, 312–313,

618, 923
Optional keyword, 350–353
Options command, 32, 34–35
Options dialog box, 34–35
Or operator, 325
OracleCommand class, 443
OracleConnection object, 432–435
Order By clause, 478–479, 1066
Order By keyword, 1074
Order submenu, 31
OrderBy function, 495
OrElse operator, 324
OriginAtMargins property, 999
Other Windows submenu, 13, 23
outlining

in code editor, 70–71
Outlining submenu, 22

Output command, 90

Obsolete attribute – Output command

bindex.indd 1199bindex.indd 1199 12/31/09 10:47:21 PM12/31/09 10:47:21 PM

1200

Output tab, 13
OvalShape control, 1042
overabstracted classes, 575
overloading, 333–336, 352–353, 567,

580–581, 666
Overloads value, 344
overrefi nement, 574
Overridable value, 344
Overrides value, 344

P

packages, 218
Padding property, 964
pages

applications, 224–234
Browser Application, 224–226
Frame applications, 226–229
Page Setup and Print command, 21
PageContent objects, 218
PageFunction applications, 227–229
Pages, 221
PageSetting object, 992
PageSetupDialog box, 113
PageSetupDialog component,

992–993
Wizard applications, 230–232

Paint event, 718–719, 995
Paint method, 783
PairDictionary class, 676
Panel control, 106, 129, 174, 993–994,

1011–1013
ParagraphInfo structure, 787–788,

791–792
parallelism

Parallel LINQ, 510–511, 1074
Parallel Stacks command, 91
Parallel Tasks command, 91
Parallel.For method, 901
Parallel.ForEach method, 901–902

Parallel.Invoke method, 899–900
Task Parallel Library (TPL), 898–902

parameters
DrawString method, 750–751
IntelliSense, 73–74
Long parameter, 618
PageFunction class, 228–229
ParamArray, 976–977
parameter arrays, 353–354
parameter declarations, 302–304,

346–354
parameters clause, 615, 1063
passing, 601–602

parent class, 571–578
parent features

hiding, 525–526
shadowing, 524–525

parent forms, 159–163
parenthesized parameters, 350
ParenthesizePropertyName attribute, 342
Parse method, 274
Partial keyword, 244, 587–588, 629, 1061
partial methods, 366–368, 940
parts, 218
passwords

database passwords, 425
PasswordBox control, 176
PasswordDeriveBytes object, 890, 893

paths
Path class, 865–866, 1144–1145
Path control, 179
Path object, 207–210
PathGrandientBrush class, 736–741
qualifi ed and relative paths, 855

Pen classes, 721
Pen object

Alignment property, 724–725
CompoundArray property, 725–726
custom line caps, 726–727

Output tab – Pen object

bindex.indd 1200bindex.indd 1200 12/31/09 10:47:22 PM12/31/09 10:47:22 PM

1201

overview, 688, 721–724
properties and methods, 1086
summary, 747
transformations, 727–728

PerformanceCounter component, 994
permissions, 5, 557–563, 809, 813, 847
pictures. See also images

picture_bounds rectangles, 795–796
PictureBox control, 54, 112,

994–995
PictureBox object, 771

pixel-by-pixel operations
introduction, 772–773
unsafe manipulation, 774–777

PLATFORM constant, 248
PLINQ, 510–511, 1074
pointer, 953
Polygon control, 179
Polygon object, 206–207
Polyline control, 179
Polyline object, 207
polymorphism, 578–579
Popup control, 177
Ports object, 1118–1120
Power Packs

GotDotNet Power Pack, 1043–1044
Microsoft Power Packs, 1041–1043
Power Toys Pack Installer, 1044
Refactor!, 1044

Power Toys Pack Installer, 1044
Practical Cryptography, 894
precedence, operator, 932–933
predefi ned constants, 247–248
PreFilterMessage function, 830
Prepare method, 444
Preserve keyword, 645
Preview Data command, 30
Previous Method command, 22
PrimaryScreen property, 1123

printing
basic printing, 783–786
best approach for, 782
centering printouts, 792–794
fi tting pictures to pages, 794–796
introduction, 781
Print Dialog button, 787
Print method, 851
Print Now button, 787
Print Preview button, 787
PrintDialog, 113, 178, 996–998
PrintDocument, 114, 698–699, 783–784,

992, 998–999, 1042
Printer Compatibility Library, 1042
Printer object, 1042
PrinterSetting object, 996–997, 998–999
PrintForm component, 1043
PrintLine method, 851
PrintPage event, 783, 786, 998
PrintPreviewControl control, 113, 784,

999–1001
PrintPreviewDialog, 113, 783, 1001
PrintToFile property, 996
simplifying drawing and, 796–798
summary, 799
System.Drawing.Printing namespace, 698–699
text, 786–792

Prioritize method, 1076
Private keyword, 278, 346, 589, 615
privileges. See permissions
procedures, 300, 339
Process component, 1001–1002
program control statements

decision statements, 369–379
GoTo statement, 391–394
introduction, 369
looping statements, 379–391
summary, 394

programs, refl ection, 894–898

PerformanceCounter component – programs, refl ection

bindex.indd 1201bindex.indd 1201 12/31/09 10:47:22 PM12/31/09 10:47:22 PM

1202

ProgressBar control, 111, 177, 1002–1003
projects

building fi les, 239
compilation settings, 246–247
controls and components in, 532–534
creating, 8, 10–13
defi nition of term, 237
Project menu, 24–29
saving, 13–15
and solutions, 6–7, 34
test projects, 516–519

properties
adopted by controls, 155–156
Alignment property, 724–725
Application class, 1105–1106
Application object, 827–828
arranging, 41
ArrayList class, 650–651
auto-implimented properties, 939
AutoRedraw property, 771
binding, 465–466
Bitmap class, 767
CancelButton property, 167, 168
CanRedo property, 1009
CanUndo property, 1009
in classes, 612–614
ClientRectangle property, 995
Clock object, 1114
Clock property, 1114
CommandType property, 443
compound properties, 124–125, 725–726
CompoundArray property, 725–726
connection objects, 433–434
Connection property, 443
ConnectionString property, 433
Content property, 185–186, 192
ContextMenu property, 155
Control class, 907–910
control size and position, 133–134

CurrencyManager object, 466
Cursor property, 155
CustomColors property, 957
CustomEndCap property, 726–727
CustomStartCap property, 726–727
data adapter object, 438
DataColumn object, 454–456
DataRelation object, 457–458
DataRow object, 452–453
DataRowView object, 465
DataSet object, 447–448
DataTable class, 449–451
DataView object, 463–464
Debug object, 249–251
defi nition of term, 568
at design time, 124–127
dictionaries, 655
DirectoryInfo class, 859–860
DirectoryInfo object, 1140
drawing, 704–707
DriveInfo object, 858, 1138–1139
dynamic properties, 815
Err object, 418
Exception class, 406
FileInfo class, 860–862
FileInfo object, 1141–1143
FileSystem class, 1133–1135
FileSystem object, 1114–1116
FileSystemWatcher class, 863, 1143
Font property, 124, 155–156
FontDialog component, 965–967
ForeignKeyConstraint object, 459–460
FormatFlags property, 752–753
function of, 614
Graphics object, 704–707, 1084–1085
GraphicsPath object, 743–745, 1087–1088
GroupBox control, 967
HatchBrush class, 732
HorizontalAlignment property, 192

ProgressBar control – properties

bindex.indd 1202bindex.indd 1202 12/31/09 10:47:22 PM12/31/09 10:47:22 PM

1203

HorizontalScrollBar property, 955
Image class, 766–767, 1089
Info object, 1111–1112
InterpolationModeproperty, 708
introduction, 123
Keyboard object, 1117
LabelEdit control, 976
LinearGradientBrush class, 732–733
LinkLabel control, 971
ListBox control, 972–973
MaskedTextBox control, 980–981
MenuStrip control, 982–983
MonthCalendar control, 984–985
Mouse object, 1117
MultiSelect property, 1010
My.Application namespace, 1109–1111
My.Computer.FileSystem object, 867, 1146
My.Computer.FileSystem.SpecialDirectories

property, 869–870, 1148
My.Computer.Info object, 1116
My.Computer.Registry, 1120–1121
My.Computer.Registry namespace, 812
My.Forms namespace, 1123
My.Resources properties, 820
My.Settings namespace, 817
My.User object, 1124
NameValueCollection class, 655
NumericUpDown control, 988–989
OpenFileDialog component, 989–990
PageSetupDialog component, 992–993
Panel control, 993
Path class, 865, 1144
PathGrandientBrush object, 736–738
Pen class, 722–728
Pen object, 1086
position and size, 133–134
PrintDialog component, 995–996
PrinterSetting object, 996–997
PrintPreviewControl control, 1000

procedures, 304–306, 358–359, 938–939
Properties window, 12, 40–41, 52–53, 124,

518, 959, 962
Property Pages command, 23, 24
PropertyGrid control, 109, 1003
Queue class, 664
RadioButton control, 1004
RegistryKey class, 813–814
RegistryKey objects, 1121–1122
reset methods, 156
RichTextBox control, 1005–1008
RowSizeBytes property, 775
at runtime, 128–129
Screen object, 1122
SerialPort class, 1118–1119
setting, 52–54
SmoothingMode property, 707–708
SplitContainer control, 1011–1012
Stack class, 662–663
Stream class, 834, 1126
StringFormat object, 751–752, 1088
styles, 197–198
System.Environment object, 808
TabControl control, 1015–1016
TableLayoutPanel control, 1017
TabPage object, 1014
TextBox control, 1019–1020
TextReader object, 840
TextRenderingHint property, 708
TextureBrush class, 730
TextWriter class, 1129
ToolStrip control, 1022
ToolStripContainer control, 1023
ToolTip component, 1023–1024
TrackBar control, 1024–1025
TreeNode objects, 1028–1029
TreeView control, 1026–1027
UniqueConstraint object, 460–461
useful control, 129–133

properties – properties

bindex.indd 1203bindex.indd 1203 12/31/09 10:47:23 PM12/31/09 10:47:23 PM

1204

properties (continued)
Visible property, 531–532, 993
WebBrowser control, 1030–1031
Windows Forms class, 1045–1051
WPF objects, 193–194
WPF Window Designer and controls,

186
Property Get procedure, 938
PropertyInfo object, 896
Protected Friend keyword, 278, 301, 346,

589, 615
Protected keyword, 277, 345, 588, 615
public interface, 570
Public keyword, 277, 301, 345, 588, 615
Public-key encryption technique, 890
Publish WindowsApplication1 command, 29
Publish Wizard, 30

Q

qualifi ed path, 855
queries

method-based queries, 492–496
Query Builder, 440–443
query expressions, 474
query_variable, 477
QueryContinueDrag event, 541
QueryPageSettings event, 783, 788–789

queues, 641, 663–665, 669, 922, 984
Quick Find command, 21–22
Quick Replace command, 21–22
QuickWatch command, 87
QuoteService

building, 876–877
QuoteServiceClient class, 879
testing, 877–879

R

RadioButton control, 106, 108, 176, 967,
1003–1004

RadioButton group, 106
Raise method, 419
RaiseEvent subroutine, 619
RaiseEvents keyword, 616
random-access fi le, 851–853
Re property, 935
read-only

ReadOnly attribute, 342, 919
ReadOnly keyword, 281–282
read-only property, 938, 939
ReadOnly property, 962
read-only strongly typed collection, 654
ReadOnlyChecked property, 1010
ShowReadOnly property, 1010

ReadToEnd method, 841, 842, 844
read/write property, 938
RealWorld Cursor Editor, 153
Rebuild Solution command, 30
Rebuild WindowsApplication1

command, 29
Recent Files submenu, 21
Recent Projects, 8, 21
RecommendedAsConfi gurable

attribute, 343
Record TemporaryMacro command, 33
Rectangle control, 179
Rectangle object, 206
RectangleF structure, 750
RectangleShape control, 1042
ReDim statement, 287, 645
Refactor!, 1044
refactoring, 48
reference highlighting, 81
reference types, 597–598
References

fi nd all, 81–82

properties – References

bindex.indd 1204bindex.indd 1204 12/31/09 10:47:23 PM12/31/09 10:47:23 PM

1205

highlighting, 81
References fi le, 239
References tab, 241

refi nement, of classes, 573–575
refl ection, 894–898
RefreshProperties attribute, 343
Regex object, 886
regions, 70, 243–244, 742–743
Registry, 809–815, 1120–1122
regular expressions, 323,

885–887, 982
relative path, 855
relaxed delegates, 55, 64, 136, 363–366,

617, 954
Remove command, 31
RemoveHandler, 138, 619
renaming, 40, 80, 243
RenderTransform element, 201
RepeatButton control, 178
replacing, 22, 243
Report a Bug, 37
ReportProgress method, 953
ResetBackColor method, 156
ResetCursor method, 156
ResetForeColor method, 156
ResetText method, 156
resetting

Reset method, 156, 386
Reset Toolbox, 40
Reset Window Layout command, 36
ResetTransform method, 792–794

resource fi les
application resources, 819–821
ComponentResourceManager class,

824–827
embedded resources, 821–822
introduction, 818–819
localization resources, 823–824
satellite resources, 822–823

resources
Application object, 827–832
application resources, 819–821
confi guration fi les, 815–818
defi nition of term, 238
embedded resources, 821–822
Environment variables, 805–809
introduction, 803
localization, 823–824
My namespace, 803–805
ResourceManager object, 821, 823
ResourceManager property, 820, 1124
ResourceReader object, 898
Resources tab, 241, 819
Resources.Designer.vb fi le, 239, 240
Resources.resx fi le, 239
satellite resources, 822–823
summary, 832
System Registry, 809–815
unmanaged resources, 608, 610
XAML, 196–197

Restore All command, 160
Restore method, 716–717
restricted properties, 125–126
restrictive controls, 104–105
Resume Next statement, 413
Resume statement, 413
Retry button, 250
Return statement, 356, 357, 938
RichTextBox control, 108, 109, 176, 1005–1009
Rollback method, 438
root namespaces, 633, 882–885
root nodes, 1025–1028
RootFolder property, 965
RotateTransform method, 711
routed event, 203
routines, 339
RowDefi nition object, 192
RowSizeBytes property, 775

refi nement, of classes – RowSizeBytes property

bindex.indd 1205bindex.indd 1205 12/31/09 10:47:23 PM12/31/09 10:47:23 PM

1206

RowSortingListView control, 523, 524
Run command, 35
run time, 521
RunWorkerAsync method, 953
RunWorkerCompleted event, 953

S

salt, 893
Samples, 37
satellite resources, 822–823
Save All command, 20
Save As command, 15
Save Form1.vb As command, 20
Save Form1.vb command, 20
Save method, 716–717, 769–770
SaveFile subroutine, 163
SaveFileDialog box, 113
SaveFileDialog component, 1010
SaveSetting method, 810–811
SaveSettings command, 818
saving Bitmaps, 769–771
saving projects, 14
ScaleTransform element, 202
ScaleTransform method, 711, 712, 796
Schedule class, 1076
scope

of settings, 816
of variables, 265, 298–302

Screen property, 1122–1123
scrolling

AutoScroll property, 106, 964, 993, 1011
AutoScrollMargin property, 993
AutoScrollMinSize property, 993
AutoScrollPosition property, 993–994
Scroll event, 969, 1025
ScrollBar control, 176
scrolling mode, 216
ScrollViewer control, 174

SDI application, 145, 158–159, 162–165

searching
Array.BinarySearch method, 649
search-and-replace, 243

secondary windows, 38–41
Secret-key encryption technique, 890
selection

Select Case statement, 371–374, 942–943,
944

Select clause, 476–477, 479–482, 1066
Select function, 495
Select keyword, 1074
Select method, 1005
Select Run TemporaryMacro command, 33
Select Run To Cursor, 83
SelectedIndex property, 959, 962
SelectedIndices collection, 975
SelectedItem property, 959, 962
SelectedItems collection, 975
SelectedObject property, 1003
SelectedObjects property, 1003
SelectedPath property, 964–965
SelectIndexChanged event, 1016
selection controls, 175–176
SelectionMode property, 973

separated validation, 141–142
Separator control, 174
sequential fi le access, 851
serial communication, 1010
Serializable attribute, 343
serializable objects, 546–549
SerialPort class, 1118–1120
SerialPort component, 1010
SerialPortNames property, 1118
Server Explorer window, 32
servers, 871, 872–873
service(s)

building, 872–876
building initial services, 873–876
QuoteService, 876–878

RowSortingListView control – service(s)

bindex.indd 1206bindex.indd 1206 12/31/09 10:47:23 PM12/31/09 10:47:23 PM

1207

service contracts, 872
<service> element, 875
<serviceBehaviors> section, 876
ServiceController component, 1011
ServiceName property, 1011
service-oriented architecture, 871
Windows services, 1011

setting(s)
overview, 238
scope, 816
Set Next Statement, 84
Set routine, 939
SetDataObject method, 552
SetEnvironmentVariable method, 809
SetError method, 963
SetMeasurableCharacterRanges method,

757–759
SetPixel method, 768, 772–773
SetTabStops method, 755
Settings tab, 241
Settings.Designer.vb fi le, 239, 240
Settings.settings fi le, 239
SetToolTip method, 1024
SetValue method, 192

Shadows keyword
classes, 589–590, 1061
events, 615, 1063
inheritance, 577
variable declarations, 279, 919

Shadows value, 344
shapes, drawing, 179–180
sharing

Shared keyword, 278–279, 622
shared methods, 623–625
Shared value, 344
shared variables, 622–623

shield, UAC, 560–561
shortcuts, 3, 18, 45, 83
shorthand expressions, 505–506, 1073

Show All Files command, 25, 39
Show Data Sources command, 30
Show method, 1001
Show Next Statement, 83
ShowDialog method, 222, 784, 956, 995,

1001
ShowReadOnly property, 1010
ShowUpDown property, 960
side effects, 943, 944
signature authority, 536
Signing tab, 535
Signing technique, 890
Simple Object Access Protocol (SOAP), 871
single-document interface (SDI) applications.

See SDI application
single-line If Then statement, 369–370,

941–942
Size property, 995
Size to Grid command, 31
SizeMode property, 771, 994
Skip keyword, 489, 1069
Skip While keyword, 489, 1069
Slider control, 176
SmallChange property, 969
SmallIcon value, 974
smart tags, 54
SmoothingMode property, 707–708
SnapLines, 48
SnapToGrid, 48
snippets

creating, 78–80
introduction, 77
using, 77–78

SOA (service-oriented architecture), 871
SOAP (Simple Object Access Protocol), 871
SolidBrush class, 729
SolidColorOnly property, 957
Solution Explorer, 12, 18, 237–238, 1112
solutions, 7, 237

setting(s) – solutions

bindex.indd 1207bindex.indd 1207 12/31/09 10:47:24 PM12/31/09 10:47:24 PM

1208

sorting
Array.Sort method, 647–648
Order By clause, 478–479
Sort Items Alphabetically, 39
Sort property, 464
Sort Type column, 442
Sorted property, 955, 962
SortedList, 661
Sorting property, 978

SourceControl, 35
spaghetti code, 392, 945
SpecialDirectoriesProxy object, 869–870
specifi ers, 1095–1103
speed, 511, 646
splash screens, 149–150
SplineDoubleKeyFrame, 204
splitting

Split command, 36
SplitButton control, 1021
SplitContainer, 106–107
SplitContainer control, 1011–1012
Splitter control, 107, 1012–1013
SplitterContainer control, 133
SplitterMoved event, 1012
SplitterMoving event, 1012

Spy++, 917
SQL

LINQ to, 506–507
SQL injection attacks, 105
SQL Server, 424
SQL statement, 476–477
SqlCommand class, 443
SqlConnection object, 432–435

“squares”, 642
StackPanel control, 173, 174
stacks, 599, 641, 662–665, 669, 922
StackTrace objects, 406
standard deviation, 497
Standard windows command, 23

Start Debugging command, 83
Start page, 7–9, 10
StartInfo property, 1002
startup options, 8–9
StateChange event, 435
statements, 356
Static keyword, 278
status area, 154, 987
StatusBar control, 177
StatusBarItem control, 177
StatusStrip control, 111, 1013–1014
StDev extension method, 497–499
Step Into command, 83, 86
Step Out command, 83, 87
Step Over command, 83, 86
Step property, 1003
Stop Debugging command, 86
Storyboard, 202–205
StrangeGeneric class, 678
streams

BinaryReader and BinaryWriter classes,
838–840, 1127–1129

BufferedStream class, 837–838
custom classes, 845
FileStream class, 835–836
introduction, 833–834
MemoryStream class, 837
methods, 843–844
properties, 1126–1127
Stream class, 834–835
StreamReader and StreamWriter classes,

842–843
StreamReader class, 842–843, 1130
StreamWriter class, 842–843, 1130
String data type, 328–330, 337
StringBuilder class, 328–330
StringCollection class, 652, 668
StringDictionary, 661
StringFormat object, 1088

sorting – streams

bindex.indd 1208bindex.indd 1208 12/31/09 10:47:24 PM12/31/09 10:47:24 PM

1209

StringReader and StringWriter classes,
841–842

StringReader class, 841–842, 1130
StringWriter class, 841–842, 1130
summary, 845, 1125–1126
text fi le methods, 1130
TextReader and TextWriter classes, 840–

841, 1129–1130
StringBuilder class, 841
StringFormat method, 1102
StringFormat object

FormatFlags property, 752–755
printing text, 791
Tab Stops methods, 755
text formatting, 750–751

StringReader class, 836–837
StringWriter class, 836–837
stroke

Stroke attribute, 205
StrokeEndLineCap attribute, 205
StrokeLineJoin attribute, 207
StrokeStartLineCap attribute, 205
StrokeThickness attribute, 205

strong typing, 671
strongly typed collection, 652–654
strongly typed derived classes, 660–661
strongly typed dictionaries, 659–660

strongly named assemblies, 534–536
structure of Visual Basic

code fi le structure, 242–255
hidden fi les, 237–241
introduction, 237
summary, 264
typographic code elements, 255–263

structured error handling
classic error handling versus, 416–418
custom exceptions, 410–411
exception objects, 404–406
introduction, 402–411

re-throwing exceptions, 409
StackTrace objects, 406
syntax, 947
throwing exceptions, 406–409

structures
declarations, 1062
events, 614–625
garbage collection, 607–612
instantiation, 605–607
introduction, 585, 596–602
namespaces, 635–636
summary, 625
System.Drawing namespace, 691,

1079–1080
styles, 197–198
Sub statement, 339
subclassing, 571–572
subexpressions, 885–886
submenu, cascading, 982
subroutines

accessibility, 345–346
attributes, 340–344
declaring, 938
inheritance_mode, 344–345
interfaces, 354–356
introduction, 339
lambda subroutine, 939
naming, 346
parameters, 346–354
partial methods, 940
statements, 356
summary, 368
syntax for, 937

Switcher class, 681, 1077
Switcher method, 681
System namespace, 628–633, 881, 883–885
System Registry, 809–815
system tray, 111, 154, 987
System.Action class, 899

StringBuilder class – System.Action class

bindex.indd 1209bindex.indd 1209 12/31/09 10:47:24 PM12/31/09 10:47:24 PM

1210

System.Collections.Generic namespace, 665,
666–667, 680

SystemColorsChanged event, 1059
System.Diagnostics.Process.Start function,

560
System.Drawing namespace, 629, 690–691,

881, 1079–1080
System.Drawing.Design namespace, 881
System.Drawing.Drawing2D namespace,

692–694, 881, 1080–1081
System.Drawing.Imagaing namespace, 881
System.Drawing.Imaging namespace,

694–695, 1081
System.Drawing.Printing namespace,

698–699, 881, 1082
System.Drawing.Text namespace, 695–698,

881, 1082
System.Environment object, 807–809
System.IO namespace, 843–844, 854, 1133
System.IO.File class, 1130
System.Security namespace, 890
System.Threading namespace, 899
System.Windows.Controls namespace, 183,

1033
System.Windows.Forms namespace, 183,

1033
System.Xml namespace, 888–889

T

TableAdadpter object, 429
TableAdapterManager, 429
TableLayoutPanel control, 105, 964,

1017–1018
TableMappings property, 439
tabs, 39

Tab Order command, 23
tab stops, 755
TabControl control, 106, 126–127,

164–165, 174, 1014–1017

TabItem control, 174
TabPage object, 1014
TabStop property, 969

Tag property, 122, 526
Take keyword, 489, 1068
Take While keyword, 489, 1068
TARGET constant, 248
TargetName attribute, 203
TargetProperty attribute, 203
tasbar notifi cation area, 111
Task Manager, 152, 154
Task Parallel Library (TPL). See TPL (Task

Parallel Library)
TaskPane control, 1044
Team Suite, 5
Technical Support, 37
templates, XAML, 199–201
TemporaryMacro command, 33
test lists, 35
Test menu, 35–36
test projects, 516–519
Test Tools, 35
text

AppendText method, 844
blinking, 963
CreateText method, 844
data entry controls, 176
drawing, 750
fi les, 1130
font metrics, 759–763
formatting, 750–756
introduction, 749–750
MaskedTextBox control, 979–982
MeasureString method, 756–759
printing, 786–792
summary, 763
Text Editor, 35
Text Editor command, 256
Text property, 53, 962, 983, 988

System.Collections.Generic namespace – text

bindex.indd 1210bindex.indd 1210 12/31/09 10:47:25 PM12/31/09 10:47:25 PM

1211

TextAlign property, 954, 970
TextBlock control, 177
TextBox control, 108–109, 110, 128, 176,

1018–1020
TextChanged event, 1020
TextChanged event handler, 1009
TextReader class, 840–841, 1129–1130
TextRenderingHint property, 696, 697,

708, 750
TextValue property, 521
TextWriter class, 840–841, 1129–1130
TextWriter.WriteLine method, 1102

TextureBrush class, 729–731
thin user interface, 184–185
third-party controls, 114–115
threads

Threads command, 90–91
threads of execution, 898–900
ThreadStaticAttribute attribute, 343

ThreeState property, 955
Tick event, 1021
Tile value, 974
time. See also date and time

Timer, 112, 149, 1021
TimeSpan data type, 330–333

tips folder, 4
To keyword, 372, 942
TodayDate property, 986
TodayDateSet property, 986
Toggle Bookmark tool, 70
Toggle Breakpoint command, 88
toolbars

arranging, 37
in IDE, 12
ToolBar control, 178
Toolbars submenu, 23
ToolBarTray control, 178

Toolbox
adding controls, 172, 519, 1033–1040

customizing, 950
in IDE, 12
Toolbox icon, 515
ToolboxBitmap attribute, 343
Windows Forms controls, 99

tools
bookmark tools, 70
Database Tools, 35
Power Pack tools, 1041
PrintPreviewDialog, 1001
refactoring tools, 1044
Toolbar icons, 152–153
Toolbox, 950, 951
Toolbox window, 39–40
Tools menu, 8–9, 31–35
ToolStrip control, 112, 1021–1022
ToolStripButton, 1021
ToolStripComboBox, 1021
ToolStripContainer control, 1022–1023
ToolStripDropDownButton object, 1013
ToolStripProgressBar control, 1013
ToolStripProgressBar object, 1013
ToolStripSplitbutton object, 1014
ToolStripStatusLabel object, 1013
ToolTip control, 110, 826
tooltips, 72, 177, 1023–1024

ToPage property, 998
ToString, 275, 518, 956
ToString method, 841
TPL (Task Parallel Library), 898–902
TRACE constant, 248, 251, 397
Trace object, 251
TrackBar control, 108, 112, 1024–1025
transaction objects, 435–438
Transaction property, 444
transformations, 201–202, 709–716,

727–728
TransformGroup element, 202
TranslateTransform element, 202

TextureBrush class – TranslateTransform element

bindex.indd 1211bindex.indd 1211 12/31/09 10:47:25 PM12/31/09 10:47:25 PM

1212

TranslateTransform method, 711, 792
translucent forms, 147
TransparecyKey property, 147–148
transparency, 146–149
TreeNode objects, 1025–1028
TreeView control, 109, 177, 1025–1030
triggers, 200, 202–203
Trimming property, 755–756
Try block, 404
TryCatch block, 870, 1091
type characters, 268–271
type converter class, 537
type inference, 924
type keyword, 920
type_list clause, 1061, 1075
TypeOf operator, 321
type-safe function pointers. See delegates
typographic code elements, 255–263

U

UAC (User Account Control), 560
designing for, 558–561
elevating programs, 562–564
operating systems, 5
overview, 557–558
security model, 5
shield, 560–561
summary, 564

UI type editor, 537
unboxing, 602
Uncomment Selection command, 256
Unindent method, 250
Union extension method, 489
Unlock method, 835
UnlockBitmap method, 776
unmanaged resources, 608, 610
unnecessary refi nement, 574
unplanned conditions, 395–396, 398–400
URL, for namespaces, 885

User Account Control (UAC). See UAC (User
Account Control)

user interface, 171, 184–185
User method, 562
user privileges, 5
User scope settings, 816, 818
UserControl, 516, 532–533
UseWaitCursor property, 830
Using statement, 922
UTF encoding, 836
UtilityToolbar control, 1043–1044

V

Validated event handler, 141–142
Validating event handler, 110, 139–144, 963
validation events, 139–144
ValidKeySize method, 892
values

accessibility value, 615
compilation constant, 247
enumerated values, 374–375
FormatFlags property, 752–753
HelpNavigator property, 967–968
Integer value, 618
MeasureString method, 760
MustOverride value, 344
SizeMode property, 994
Trimming property, 755–756
Value property, 961, 969, 1002–1003
value types, 597
ValueChanged event, 989, 1025
View property, 974

variable declarations
accessibility clause, 277–278
Attribute_List, 276–277
bounds_list clause, 286–287
As clause, 288
Dim keyword, 282
inferred types, 288

TranslateTransform method – variable declarations

bindex.indd 1212bindex.indd 1212 12/31/09 10:47:25 PM12/31/09 10:47:25 PM

1213

initialization_expression clause, 289–293
introduction, 276
multiple, 294–295
Name clause, 284–285
New keyword, 287
overview, 919–920
ReadOnly keyword, 281–282
Shadows keyword, 279–281
Shared keyword, 278–279
WithEvents keyword, 283–284

variables
accessibility, 265, 277–278
anonymous types, 310–311
boxing and unboxing, 602
constants, 312–313
data types, 266–268
delegates, 313–315
enumerated data types, 307–310
Environment variables, 805–809
initializing collections, 293–295
introduction, 265–266
looping variables, 1069
naming conventions, 315–317
nullable types, 311–312
Option Explicit and Option Strict, 295–298
parameter declarations, 302–304
property procedures, 304–306
reference variables, 602–603
scope, 298–302
shared, 622–623
summary, 317
tooltips, 72
type characters, 268–271
variable arrays, 644, 646
XML, 923

VBC_VER constant, 248
Vertical Spacing submenu, 31
View menu, 13, 23–24
Viewbox control, 174

VirtualizingStackPanel control, 175
visibility, 266
Visible property, 531–532, 993
Visual Basic Array class, 643
Visual Basic classic error handling

On Error GoTo 0 statement, 414
On Error GoTo -1 statement, 414–415
On Error GoTo line statement, 412–413
On Error Resume Next statement, 413–414
error-handling mode, 416
overview, 411–412
structured error handling versus, 416–418

Visual Basic code editor. See code editor
Visual Basic Developer Center, 1042
Visual Basic methods

binary-fi le access, 854
fi le methods, 848–850
fi le-system methods, 850
list of methods, 1131–1133
random-access fi le, 851–853
sequential fi le access, 851

Visual Basic Power Packs
GotDotNet Power Pack, 1043–1044
Microsoft Power Packs, 1041–1043
Power Toys Pack Installer, 1044
Refactor!, 1044

Visual Studio
confi guration options and, 5
connecting to data, 421–422
Expression Blend, 185
free Express editions, 5
Internet Explorer, 224–225
MDI applications, 165
root namespaces, 628
streams, 833
Visual Studio Documentation, 37
Visual Studio Tools for Offi ce (VSTO), 782

VScrollBar control, 108, 112, 1030
VSTO (Visual Studio Tools for Offi ce), 782

variables – VSTO (Visual Studio Tools for Offi ce)

bindex.indd 1213bindex.indd 1213 12/31/09 10:47:25 PM12/31/09 10:47:25 PM

1214

W

WaitForChanged method, 864
WaitForExit method, 560
Watch submenu, 91
WCF (Windows Communication

Foundation). See Windows
Communication Foundation (WCF)

web sites, attacks on, 105
WebBrowser control, 1030–1031
When Hit command, 69, 94
Where clause, 477, 478, 1065–1066
Where keyword, 1074
While End loop, 390, 946
“white box master” control, 52
widening conversions, 275
Width property, 995
WindowProc routine, 156–158
windows

applications, 221–224
Data Sources window, 428
dockable, 36
Forms and, 222, 223–224
hidden, 13
Properties window, 40–41
secondary, 38–41
Toolbox window, 39–40
Window classes, 185, 221–222
Window element, 197
Window menu, 36
Windows Application 1 Properties

command, 26–27
Windows command, 36
Windows submenu, 86, 88–92
Windows system tray, 111

Windows 7, 558
Windows Communication

Foundation (WCF)
building QuoteService, 876–877
building services, 872–876

concepts, 872
introduction, 871
summary, 879
testing QuoteService, 877–879

Windows Explorer, 152
Windows Forms

About, splash, and login forms,
149–150

Cursors class, 150–152
dialog boxes, 167–169
icons, 152–155
introduction, 145–146
MRU lists, 165–167
overriding WndProc, 156–158
properties adopted by child controls,

155–156
property reset methods, 156
SDI and MDI applications, 158–165
summary, 170
transparency value, 146–149
wizards, 169

Windows Forms controls. See also
controls

Button control, 954
CheckBox control, 954–955
CheckedListBox control, 955–956
choosing controls, 104–115
ColorDialog component, 956–957
ComboBox control, 957–959
controls and components, 117–119
controls overview, 99–104
creating controls, 119–123
DataGridView control, 959
DateTimePicker control, 960–961
DomainUpDown control, 962
events, 134–144
FlowLayoutPanel control, 964
GroupBox control, 967–968
HScrollBar control, 969

WaitForChanged method – Windows Forms controls

bindex.indd 1214bindex.indd 1214 12/31/09 10:47:26 PM12/31/09 10:47:26 PM

1215

Label control, 970
LinkLabel control, 970–972
ListBox control, 972–974
ListView control, 974–979
MaskedTextBox control, 979–982
MenuStrip control, 982–984
methods, 134
MonthCalendar control, 984–988
NumericUpDown control, 988–989
overview, 949–951
Panel control, 993–994
PictureBox control, 994–995
PrintPreviewControl control, 999–1001
ProgressBar control, 1002–1003
properties, 123–134
PropertyGrid control, 1003
RadioButton control, 1003–1004
RichTextBox control, 1005–1009
SplitContainer control, 1011–1012
Splitter control, 1012–1013
StatusStrip control, 1013–1014
summary on selecting, 115–116
summary on using, 144
TabControl control, 1014–1017
TableLayoutPanel control, 1017–1018
TextBox control, 1018–1020
third-party controls, 114–115
ToolStrip control, 1021–1022
ToolStripContainer control, 1022–1023
TrackBar control, 1024–1025
TreeView control, 1025–1030
using, 117
VScrollBar control, 1030
WebBrowser control, 1030–1031
WPF controls and, 183

Windows Forms Designer
adding code to controls, 54–56
adding controls, 49
arranging controls, 52

copying controls, 50–51
moving and sizing controls, 51–52
overview, 35
selecting controls, 50
setting options, 47–49
setting properties, 52–54
summary, 56

Windows Metafi le format, 770
Windows Presentation Foundation,

57, 193
Windows Presentation Foundation Designer.

See WPF Designer
Windows Presentation Foundation (WPF)

controls. See WPF controls
WindowsApplication 2 fi le, 239
With clause, 606, 921
With keyword, 289, 920
WithEvents event handlers, 137
WithEvents keyword, 283–284, 616–618,

787, 864, 920
wizards, 169, 230–234
Wmf format, 770
WndProc routine, 156–158
WorkingArea property, 1123
WorkItemLister object, 518
WPF controls

adding concealed, 172
concepts, 183–186
containing and arranging,

172–175
digital ink controls, 181
displaying data, 177
documents, 216–219
entering data, 176
feedback, 177
hierarchies, 185–186
IDE and, 186–192
initiating action, 178
introduction on selecting, 171–172

Windows Forms Designer – WPF controls

bindex.indd 1215bindex.indd 1215 12/31/09 10:47:26 PM12/31/09 10:47:26 PM

1216

WPF controls (continued)
introduction to using, 183
list of controls, 1033–1040
managing documents, 180
navigation and Frame control, 180
overview on selecting, 172
presenting graphics and media,

178–180
selection controls, 175–176
summary, 219–220
summary on selecting, 181
XAML and procedural, 210–215
XAML features, 192–210

WPF Designer
adding code to controls, 64
adding controls, 60
copying controls, 62
introduction to, 57
moving and sizing controls, 62–63
reorganizing windows, 59–60
selecting controls, 60–61
setting group properties, 63
setting properties, 63
summary, 64–65
weaknesses, 58–59

WPF Programmer’s Reference, 193
WPF Windows

introduction, 221
page applications, 224–234
summary, 234–235
window applications, 221–224

wrapping, 911, 962
Wrap property, 962
WrapPanel control, 175

Write method, 251
WriteEndElement method, 889
WriteIf method, 251
WriteLine method, 251, 851
WriteLineIf method, 251

write-only property, 938, 939
WriteStartDocument method, 889
WriteStartElement method, 889

X

XAML (Extensible Application Markup
Language)

animations, 202–205
Browser Application, 224–226
drawing objects, 205–210
editing, 186–190, 195
learning, 193
objects, 193–195
procedural WPF, 210–215
resources, 196–197
styles, 197–198
templates, 199–201
transformations, 201–202
user interface, 184
Visual Basic code and, 190–192
WPF control hierarchies, 185
WPF controls, 171
WPF Designer, 57
XAML editor, 67

XBAP, 224–226
XBap.org, 224
XCopy compatibility, 812
XElement object, 292, 1071–1072
XElement variable, 922
x:Key, 197
XML (Extensible Markup Language)

comments, 256–260
cryptography, 890–894
data, 922
drag and drop, 546
Generate XML documentation fi le, 29
LINQ into XML, 501–503, 1071
LINQ out of XML, 503–506, 1071–1073
LINQ to XML, 500, 1071

WPF controls – XML (Extensible Markup Language)

bindex.indd 1216bindex.indd 1216 12/31/09 10:47:27 PM12/31/09 10:47:27 PM

1217

literal values, 500–501
Load Metadata File command, 35
.Net framework namespaces, 887–889
refl ection, 894–898
variables, 292–293, 923
XML editor, 67
XML Paper Specifi cation (XPS), 180
XmlDocument class, 888
XmlTextReader class, 888

XmlTextWriter class, 888
Xor operator, 323, 325
XPS (XML Paper Specifi cation), 180,

218–219

Y

Y2K bug, 395

XML (Extensible Markup Language) – Y2K bug

bindex.indd 1217bindex.indd 1217 12/31/09 10:47:27 PM12/31/09 10:47:27 PM

badvert.indd 1218badvert.indd 1218 12/31/09 9:25:59 PM12/31/09 9:25:59 PM

Related Wrox Books

Beginning ASP.NET 4: in C# and VB
ISBN: 9780470502211
This introductory book offers helpful examples and step-by-step format and has code examples written in both C# and Visual
Basic. With this book you will gradually build a web site example that takes you through the processes of building basic ASP.
NET Web pages, adding features with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Microsoft Visual Basic 2010
ISBN: 9780470502228
This book not only shows you how to write Windows applications, web applications with ASP.NET, and Windows mobile and
embedded CE apps with Visual Basic 2010, but you’ll also get a thorough grounding in the basic nuts-and-bolts of writing good
code. You’ll be exposed to the very latest VB tools and techniques with coverage of both the Visual Studio 2010 and .NET 4
releases. Plus, the book walks you step by step through tasks, as you gradually master this exciting new release of Microsoft’s
popular and important programming language. Launch your Visual Basic programming career the right way with this practical,
thorough guide.

Beginning Microsoft Visual C# 2010
ISBN: 9780470502266
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out,” at every stage. By the end, you’ll be able to write useful programming
code following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming,
this book is the perfect one-stop resource.

Professional ASP.NET 4 in C# & VB
ISBN: 9780470502204
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4
and offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After
a fast-paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of
ASP.NET 4. You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional Visual Basic 2010 and .NET 4
ISBN: 9780470502242
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most,
this is your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need,
including .NET features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debug-
ging, Visual Studio features, and ASP.NET web programming.

Professional C# 4 and .NET 4
ISBN: 9780470502259
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework
features including LINQ, LINQ to SQL, LINQ to XML, WCF, WPF, Workflow, and Generics. Coverage also spans ASP.NET programming
with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest
capabilities of C# 4.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 9780470477229
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF
development and explains fundamental WPF concepts. It is packed with helpful examples and progresses through a range of
topics that gradually increase in their complexity.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Prepared for SEAN GERING/ email0 seanrzrbk@live.com Order number0 58745512 This PDF is for the purchaser’s personal use in accordance with the Wrox Terms of
Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

Rod Stephens

Visual Basic® 2010
Programmer’s Reference

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

 $39.99 USA
 $47.99 CAN

This comprehensive tutorial and reference guide provides program-
mers and developers of all skill and experience levels with a broad,
solid understanding of essential Visual Basic 2010 topics and clearly
explains how to use this powerful programming language to per-
form a variety of tasks. As a tutorial, the book describes the Visual
Basic language and covers essential Visual Basic topics. Also serving
as a reference guide, the material presents categorized information
regarding specific operations and reveals useful tips and tricks to
help you make the most of Visual Basic 2010.

Visual Basic 2010:

• Reviews the forms, controls, and other objects that Visual Basic provides
for building applications in a modern windowing environment

• Discusses the latest features of Visual Basic, including auto-
implemented properties, array literals and initializers, and nullable
optional parameters

• Explains how to customize the Visual Studio integrated development
environment

• Reviews WPF controls, error handling and debugging techniques, LINQ
features, user access security, and more

• Addresses object-oriented programming with Visual Basic 2010

• Details the various graphics classes in the GDI+

Rod Stephens frequently writes for such magazines as Visual Basic Developer,
Visual Basic Programmer’s Journal, and Dr. Dobb’s Journal. His web site
(vb-helper.com) receives several million hits per month. He is the author of more
than twenty books, including Visual Basic Programmer’s Reference, both the 2005
and 2008 editions.

Wrox Programmer’s References are designed to give the experienced developer
straight facts on a new technology, without hype or unnecessary explanations.
They deliver hard information with plenty of practical examples to help you
apply new tools to your development projects today.

Programming Languages/Visual Basic

Harness the capabilities
of Visual Basic 2010

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

StephensV
isual Basic

® 2010

Programmer’s
Reference

	Visual Basic 2010 Programmers Reference
	About the Author
	Contents
	Introduction
	SHOULD YOU USE VISUAL BASIC 2010?
	WHO SHOULD READ THIS BOOK
	HOW THIS BOOK IS ORGANIZED
	BONUS CHAPTERS
	HOW TO USE THIS BOOK
	NECESSARY EQUIPMENT
	CONVENTIONS
	SOURCE CODE
	ERRATA
	P2P.WROX.COM
	IMPORTANT URLS

	Part I: IDE
	Chapter 1: Introduction to the IDE
	DIFFERENT IDE APPEARANCES
	IDE CONFIGURATIONS
	PROJECTS AND SOLUTIONS
	STARTING THE IDE
	CREATING A PROJECT
	SAVING A PROJECT
	SUMMARY

	Chapter 2: Menus, Toolbars, and Windows
	MENUS
	TOOLBARS
	SECONDARY WINDOWS
	SUMMARY

	Chapter 3: Customization
	ADDING COMMANDS
	MAKING KEYBOARD SHORTCUTS
	SUMMARY

	Chapter 4: Windows Forms Designer
	SETTING DESIGNER OPTIONS
	ADDING CONTROLS
	SELECTING CONTROLS
	COPYING CONTROLS
	MOVING AND SIZING CONTROLS
	ARRANGING CONTROLS
	SETTING PROPERTIES
	ADDING CODE TO CONTROLS
	SUMMARY

	Chapter 5: WPF Designer
	EDITOR WEAKNESSES
	RECOGNIZING DESIGNER WINDOWS
	ADDING CONTROLS
	SELECTING CONTROLS
	COPYING CONTROLS
	MOVING AND SIZING CONTROLS
	SETTING PROPERTIES
	SETTING GROUP PROPERTIES
	ADDING CODE TO CONTROLS
	SUMMARY

	Chapter 6: Visual Basic Code Editor
	MARGIN ICONS
	OUTLINING
	TOOLTIPS
	INTELLISENSE
	CODE COLORING AND HIGHLIGHTING
	CODE SNIPPETS
	ARCHITECTURAL TOOLS
	THE CODE EDITOR AT RUNTIME
	SUMMARY

	Chapter 7: Debugging
	THE DEBUG MENU
	THE DEBUG - WINDOWS
	THE BREAKPOINTS WINDOW
	THE COMMAND AND IMMEDIATE WINDOWS
	SUMMARY

	Part II: Getting Started
	Chapter 8: Selecting Windows Forms Controls
	CONTROLS OVERVIEW
	CHOOSING CONTROLS
	THIRD-PARTY CONTROLS
	SUMMARY

	Chapter 9: Using Windows Forms Controls
	CONTROLS AND COMPONENTS
	CREATING CONTROLS
	PROPERTIES
	METHODS
	EVENTS
	SUMMARY

	Chapter 10: Windows Forms
	TRANSPARENCY
	ABOUT, SPLASH, AND LOGIN FORMS
	MOUSE CURSORS
	ICONS
	PROPERTIES ADOPTED BY CHILD CONTROLS
	PROPERTY RESET METHODS
	OVERRIDING WNDPROC
	SDI AND MDI
	MRU LISTS
	DIALOG BOXES
	WIZARDS
	SUMMARY

	Chapter 11: Selecting WPF Controls
	CONTROLS OVERVIEW
	CONTAINING AND ARRANGING CONTROLS
	MAKING SELECTIONS
	ENTERING DATA
	DISPLAYING DATA
	PROVIDING FEEDBACK
	INITIATING ACTION
	PRESENTING GRAPHICS AND MEDIA
	PROVIDING NAVIGATION
	MANAGING DOCUMENTS
	DIGITAL INK
	SUMMARY

	Chapter 12: Using WPF Controls
	WPF CONCEPTS
	XAML FEATURES
	PROCEDURAL WPF
	DOCUMENTS
	SUMMARY

	Chapter 13: WPF Windows
	WINDOW APPLICATIONS
	PAGE APPLICATIONS
	SUMMARY

	Chapter 14: Program and Module Structure
	HIDDEN FILES
	CODE FILE STRUCTURE
	TYPOGRAPHIC CODE ELEMENTS
	SUMMARY

	Chapter 15: Data Types, Variables, and Constants
	DATA TYPES
	TYPE CHARACTERS
	DATA TYPE CONVERSION
	VARIABLE DECLARATIONS
	INITIALIZING COLLECTIONS
	OPTION EXPLICIT AND OPTION STRICT
	SCOPE
	PARAMETER DECLARATIONS
	PROPERTY PROCEDURES
	ENUMERATED DATA TYPES
	ANONYMOUS TYPES
	NULLABLE TYPES
	CONSTANTS
	DELEGATES
	NAMING CONVENTIONS
	SUMMARY

	Chapter 16: Operators
	ARITHMETIC OPERATORS
	CONCATENATION OPERATORS
	COMPARISON OPERATORS
	LOGICAL OPERATORS
	BITWISE OPERATORS
	OPERATOR PRECEDENCE
	ASSIGNMENT OPERATORS
	THE STRINGBUILDER CLASS
	DATE AND TIMESPAN OPERATIONS
	OPERATOR OVERLOADING
	OPERATORS WITH NULLABLE TYPES
	SUMMARY

	Chapter 17: Subroutines and Functions
	SUBROUTINES
	FUNCTIONS
	PROPERTY PROCEDURES
	EXTENSION METHODS
	LAMBDA FUNCTIONS
	RELAXED DELEGATES
	PARTIAL METHODS
	SUMMARY

	Chapter 18: Program Control Statements
	DECISION STATEMENTS
	LOOPING STATEMENTS
	GOTO
	SUMMARY

	Chapter 19: Error Handling
	BUGS VERSUS UNPLANNED CONDITIONS
	STRUCTURED ERROR HANDLING
	VISUAL BASIC CLASSIC ERROR HANDLING
	STRUCTURED VERSUS CLASSIC ERROR HANDLING
	THE ERR OBJECT
	DEBUGGING
	SUMMARY

	Chapter 20: Database Controls and Objects
	AUTOMATICALLY CONNECTING TO DATA
	AUTOMATICALLY CREATED OBJECTS
	OTHER DATA OBJECTS
	DATA OVERVIEW
	CONNECTION OBJECTS
	TRANSACTION OBJECTS
	DATA ADAPTERS
	COMMAND OBJECTS
	DATAVIEW
	DATAROWVIEW
	SIMPLE DATA BINDING
	CURRENCYMANAGER
	COMPLEX DATA BINDING
	SUMMARY

	Chapter 21: LINQ
	INTRODUCTION TO LINQ
	BASIC LINQ QUERY SYNTAX
	ADVANCED LINQ QUERY SYNTAX
	LINQ FUNCTIONS
	LINQ EXTENSION METHODS
	LINQ TO OBJECTS
	LINQ TO XML
	LINQ TO ADO.NET
	PLINQ
	SUMMARY

	Chapter 22: Custom Controls
	CUSTOM CONTROLS IN GENERAL
	OTHER CUSTOM CONTROL TASKS
	DERIVED CONTROLS
	COMPOSITE CONTROLS
	CONTROLS BUILT FROM SCRATCH
	COMPONENTS
	INVISIBLE CONTROLS
	PICKING A CONTROL CLASS
	CONTROLS AND COMPONENTS IN EXECUTABLE PROJECTS
	CUSTOM COMPONENT SECURITY
	SUMMARY

	Chapter 23: Drag and Drop, and the Clipboard
	DRAG-AND-DROP EVENTS
	USING THE CLIPBOARD
	SUMMARY

	Chapter 24: UAC Security
	UAC OVERVIEW
	DESIGNING FOR UAC
	ELEVATING PROGRAMS
	SUMMARY

	Part III: Object-Oriented Programming
	Chapter 25: OOP Concepts
	CLASSES
	ENCAPSULATION
	INHERITANCE
	POLYMORPHISM
	METHOD OVERLOADING
	EXTENSION METHODS
	SUMMARY

	Chapter 26: Classes and Structures
	CLASSES
	STRUCTURES
	CLASS INSTANTIATION DETAILS
	STRUCTURE INSTANTIATION DETAILS
	GARBAGE COLLECTION
	CONSTANTS, PROPERTIES, AND METHODS
	EVENTS
	SUMMARY

	Chapter 27: Namespaces
	THE IMPORTS STATEMENT
	THE ROOT NAMESPACE
	MAKING NAMESPACES
	CLASSES, STRUCTURES, AND MODULES
	RESOLVING NAMESPACES
	SUMMARY

	Chapter 28: Collection Classes
	WHAT IS A COLLECTION?
	ARRAYS
	COLLECTIONS
	DICTIONARIES
	COLLECTIONSUTIL
	STACKS AND QUEUES
	GENERICS
	COLLECTION INITIALIZERS
	SUMMARY

	Chapter 29: Generics
	ADVANTAGES OF GENERICS
	DEFINING GENERICS
	USING GENERICS
	PREDEFINED GENERIC CLASSES
	GENERIC METHODS
	GENERICS AND EXTENSION METHODS
	SUMMARY

	Part IV: Graphics
	Chapter 30: Drawing Basics
	DRAWING OVERVIEW
	DRAWING NAMESPACES
	GRAPHICS
	DRAWING EVENTS
	SUMMARY

	Chapter 31: Brushes, Pens, and Paths
	PEN
	BRUSH
	GRAPHICSPATH OBJECTS
	GARBAGE-COLLECTION ISSUES
	SUMMARY

	Chapter 32: Text
	DRAWING TEXT
	TEXT FORMATTING
	MEASURESTRING
	FONT METRICS
	SUMMARY

	Chapter 33: Image Processing
	IMAGE
	BITMAP
	METAFILE OBJECTS
	SUMMARY

	Chapter 34: Printing
	HOW NOT TO PRINT
	BASIC PRINTING
	PRINTING TEXT
	CENTERING PRINTOUTS
	FITTING PICTURES TO THE PAGE
	SIMPLIFYING DRAWING AND PRINTING
	SUMMARY

	Part V: Interacting with the Environment
	Chapter 35: Configuration and Resources
	MY
	ENVIRONMENT
	REGISTRY
	CONFIGURATION FILES
	RESOURCE FILES
	APPLICATION
	SUMMARY

	Chapter 36: Streams
	STREAM
	FILESTREAM
	MEMORYSTREAM
	BUFFEREDSTREAM
	BINARYREADER AND BINARYWRITER
	TEXTREADER AND TEXTWRITER
	STRINGREADER AND STRINGWRITER
	STREAMREADER AND STREAMWRITER
	OPENTEXT, CREATETEXT, AND APPENDTEXT
	CUSTOM STREAM CLASSES
	SUMMARY

	Chapter 37: File-System Objects
	PERMISSIONS
	VISUAL BASIC METHODS
	.NET FRAMEWORK CLASSES
	MY.COMPUTER.FILESYSTEM
	MY.COMPUTER.FILESYSTEM.SPECIALDIRECTORIES
	SUMMARY

	Chapter 38: Windows Communication Foundation
	WCF CONCEPTS
	WCF EXAMPLE
	BUILDING THE INITIAL SERVICE
	BUILDING QUOTESERVICE
	TESTING QUOTESERVICE
	BUILDING QUOTECLIENT
	SUMMARY

	Chapter 39: Useful Namespaces
	ROOT NAMESPACES
	ADVANCED EXAMPLES
	XML
	TPL
	SUMMARY

	Part VI: Appendices
	Appendix A: Useful Control Properties, Methods, and Events
	PROPERTIES
	METHODS
	EVENTS
	EVENT SEQUENCES

	Appendix B: Variable Declarations and Data Types
	VARIABLE DECLARATIONS
	INITIALIZATION EXPRESSIONS
	WITH
	FROM
	USING
	ENUMERATED TYPE DECLARATIONS
	XML VARIABLES
	OPTION EXPLICIT AND OPTION STRICT
	OPTION INFER
	DATA TYPES
	DATA TYPE CHARACTERS
	LITERAL TYPE CHARACTERS
	DATA TYPE CONVERSION FUNCTIONS
	CTYPE AND DIRECTCAST

	Appendix C: Operators
	ARITHMETIC OPERATORS
	CONCATENATION OPERATORS
	COMPARISON OPERATORS
	LOGICAL OPERATORS
	BITWISE OPERATORS
	OPERATOR PRECEDENCE
	ASSIGNMENT OPERATORS
	CHOOSE, IF, AND IIF
	DATE AND TIMESPAN OPERATORS
	OPERATOR OVERLOADING

	Appendix D: Subroutine and Function Declarations
	SUBROUTINES
	FUNCTIONS
	PROPERTY PROCEDURES
	LAMBDA FUNCTIONS AND EXPRESSIONS
	EXTENSION METHODS
	PARTIAL METHODS

	Appendix E: Control Statements
	DECISION STATEMENTS
	LOOPING STATEMENTS
	GOTO

	Appendix F: Error Handling
	STRUCTURED ERROR HANDLING
	THROWING EXCEPTIONS
	CLASSIC ERROR HANDLING

	Appendix G: Windows Forms Controls and Components
	COMPONENTS’ PURPOSES
	POINTER
	BACKGROUNDWORKER
	BINDINGNAVIGATOR
	BINDINGSOURCE
	BUTTON
	CHECKBOX
	CHECKEDLISTBOX
	COLORDIALOG
	COMBOBOX
	CONTEXTMENUSTRIP
	DATAGRIDVIEW
	DATASET
	DATETIMEPICKER
	DIRECTORYENTRY
	DIRECTORYSEARCHER
	DOMAINUPDOWN
	ERRORPROVIDER
	EVENTLOG
	FILESYSTEMWATCHER
	FLOWLAYOUTPANEL
	FOLDERBROWSERDIALOG
	FONTDIALOG
	GROUPBOX
	HELPPROVIDER
	HSCROLLBAR
	IMAGELIST
	LABEL
	LINKLABEL
	LISTBOX
	LISTVIEW
	MASKEDTEXTBOX
	MENUSTRIP
	MESSAGEQUEUE
	MONTHCALENDAR
	NOTIFYICON
	NUMERICUPDOWN
	OPENFILEDIALOG
	PAGESETUPDIALOG
	PANEL
	PERFORMANCECOUNTER
	PICTUREBOX
	PRINTDIALOG
	PRINTDOCUMENT
	PRINTPREVIEWCONTROL
	PRINTPREVIEWDIALOG
	PROCESS
	PROGRESSBAR
	PROPERTYGRID
	RADIOBUTTON
	RICHTEXTBOX
	SAVEFILEDIALOG
	SERIALPORT
	SERVICECONTROLLER
	SPLITCONTAINER
	SPLITTER
	STATUSSTRIP
	TABCONTROL
	TABLELAYOUTPANEL
	TEXTBOX
	TIMER
	TOOLSTRIP
	TOOLSTRIPCONTAINER
	TOOLTIP
	TRACKBAR
	TREEVIEW
	VSCROLLBAR
	WEBBROWSER

	Appendix H: WPF Controls
	Appendix I: Visual Basic Power Packs
	MICROSOFT POWER PACKS
	GOTDOTNET POWER PACK
	POWER TOYS PACK INSTALLER
	REFACTOR!

	Appendix J: Form Objects
	PROPERTIES
	METHODS
	EVENTS
	PROPERTY-CHANGED EVENTS

	Appendix K: Classes and Structures
	CLASSES
	STRUCTURES
	CONSTRUCTORS
	EVENTS

	Appendix L: LINQ
	BASIC LINQ QUERY SYNTAX
	USING QUERY RESULTS
	LINQ FUNCTIONS
	LINQ TO XML
	LINQ TO DATASET
	PLINQ

	Appendix M: Generics
	GENERIC CLASSES
	GENERIC EXTENSIONS
	GENERIC METHODS
	PROHIBITED GENERICS

	Appendix N: Graphics
	GRAPHICS NAMESPACES
	DRAWING CLASSES

	Appendix O: Useful Exception Classes
	STANDARD EXCEPTION CLASSES
	CUSTOM EXCEPTION CLASSES

	Appendix P: Date and Time Format Specifiers
	STANDARD FORMAT SPECIFIERS
	CUSTOM FORMAT SPECIFIERS

	Appendix Q: Other Format Specifiers
	STANDARD NUMERIC FORMAT SPECIFIERS
	CUSTOM NUMERIC FORMAT SPECIFIERS
	NUMERIC FORMATTING SECTIONS
	COMPOSITE FORMATTING
	ENUMERATED TYPE FORMATTING

	Appendix R: The Application Class
	PROPERTIES
	METHODS
	EVENTS

	Appendix S: The My Namespace
	MY.APPLICATION
	MY.COMPUTER
	MY.FORMS
	MY.RESOURCES
	MY.USER

	Appendix T: Streams
	STREAM CLASS SUMMARY
	STREAM
	BINARYREADER AND BINARYWRITER
	TEXTREADER AND TEXTWRITER
	STRINGREADER AND STRINGWRITER
	STREAMREADER AND STREAMWRITER
	TEXT FILE STREAM METHODS

	Appendix U: File-System Classes
	VISUAL BASIC METHODS
	FRAMEWORK CLASSES
	MY.COMPUTER.FILESYSTEM
	MY.COMPUTER.FILESYSTEM. SPECIALDIRECTORIES

	Appendix V: Index of Examples

	Index

