
ptg

ptgVisual Basic®

2010
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Alessandro Del Sole

From the Library of Wow! eBook

ptg

Visual Basic® 2010 Unleashed
Copyright © 2010 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-10: 0-672-33154-3

ISBN-13: 978-0-672-33154-1

Library of Congress Cataloging-in-Publication Data

Del Sole, Alessandro.

Visual Basic 2010 unleashed / Alessandro Del Sole.

p. cm.

Includes index.

ISBN 978-0-672-33100-8

1. BASIC (Computer program language) 2. Microsoft Visual BASIC. I. Title.

QA76.73.B3D467 2010

005.2'768--dc22

2010012721

Printed in the United States of America

First Printing: May 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Pearson Education, Inc. cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

+1-317-581-3793

international@pearsontechgroup.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Apostrophe Editing
Services

Indexer
WordWise Publishing
Services LLC

Proofreader
The Wordsmithery
LLC

Technical Editor
Matt Kleinwaks

Publishing
Coordinator
Cindy Teeters

Designer
Gary Adair

Compositor
Mark Shirar

From the Library of Wow! eBook

ptg

Contents at a Glance

Part I Learning the Basics of VB

1 Introducing the .NET Framework 4.0...1

2 Getting Started with the Visual Studio 2010 IDE11

3 The Anatomy of a Visual Basic Project...59

4 Data Types and Expressions..85

5 Debugging Visual Basic 2010 Applications ..177

6 Handling Errors and Exceptions...207

Part II Object-Oriented Programming with Visual Basic 2010

7 Class Fundamentals ..225

8 Managing an Object’s Lifetime...267

9 Organizing Types Within Namespaces...281

10 Modules...295

11 Structures and Enumerations ...299

12 Inheritance ..317

13 Interfaces ...341

14 Generics and Nullable Types ..359

15 Delegates and Events ..371

16 Working with Collections...385

17 Visually Designing Objects ...407

18 “Generate From Usage” Coding Techniques..421

Part III Advanced VB Language features

19 Manipulating Files and Streams ...429

20 The My Namespace...451

21 Advanced Language Features..485

Part IV Data Access with ADO.NET and LINQ

22 Introducing ADO.NET and DataSets . ..513

23 Introducing LINQ ...523

24 LINQ to Objects ...531

25 LINQ to SQL..561

26 LINQ to DataSets...595

From the Library of Wow! eBook

ptg

27 Introducing ADO.NET Entity Framework ..603

28 Manipulating Xml Documents with LINQ and Xml Literals635

29 Overview of Parallel LINQ ..655

Part V Building Windows Applications

30 Creating Windows Forms 4.0 Applications..665

31 Creating WPF Applications ..681

32 WPF Common Controls ...715

33 Brushes, Styles, Templates, and Animations in WPF745

34 Manipulating Documents and Media ..781

35 Introducing Data-Binding...799

36 Localizing Applications...829

Part VI Building Web Applications

37 Building ASP.NET Web Applications ...839

38 Publishing ASP.NET Web Applications ..865

39 Building Rich Internet Applications with Silverlight.................................871

40 Building and Deploying Applications for Windows Azure........................899

Part VII Networking and Exposing Data Through Networks

41 Creating and Consuming WCF Services ..927

42 Implementing and Consuming WCF Data Services949

Part VIII Advanced .NET Framework with VB 2010

43 Serialization...971

44 Processes and Multithreading...993

45 Parallel Programming ...1005

46 Working with Assemblies ...1029

47 Reflection ..1043

48 Coding Attributes..1065

49 Platform Invokes and Interoperability with the COM Architecture1075

50 Documenting the Source Code ..1091

51 Advanced Compilations with MSBuild ..1105

52 Building Customizations for Microsoft Office ...1119

Part IX Applications Deployment

53 Understanding the Global Assembly Cache . ..1137

54 Setup & Deployment Projects for Windows Installer1145

55 Deploying Applications with ClickOnce. ..1159

Visual Basic 2010 Unleashediv

From the Library of Wow! eBook

ptg

Part X Mastering the Visual Studio 2010 IDE

56 Advanced IDE Features1175

57 Introducing the Visual Studio Extensibility . ..1199

58 Advanced Analysis Tools. ...1223

59 Testing Code with Unit Tests, Test-Driven Development, and

Code Contracts ...1251

Appendixes

A Installing Visual Studio 2010. ..1275

B Useful Resources and Tools for Visual Basic.1281 Index.

...1285

Contents at a Glance v

From the Library of Wow! eBook

ptg

Table of Contents

Part I Learning the Basics of VB

1 Introducing the .NET Framework 4.0 1

What Is the .NET Framework?. ..1
Where Is the .NET Framework . ..2
The .NET Framework Architecture . ..2

The Common Language Runtime . ..4
Writing Managed Code ...4
.NET Assemblies. ...5

The Base Class Library ..5
.NET Languages. ...6
.NET Framework Tools . ..7

Windows Software Development Kit ..7
What’s New in .NET Framework 4.0 . ..8

2 Getting Started with the Visual Studio 2010 IDE 11

What’s New in Visual Studio 2010 ...11
Start Page. ...12

Get Started Tab ..13
The Guidance and Resources Tab..13
The Latest News Tab ..14

Working with Projects and Solutions. ...15
Creating Visual Basic Projects ...16
Multitargeting. ..17
Accessing Recent and Online Templates...18
Searching for Installed Templates ...20
Creating Reusable Projects and Items Templates................................21
Creating Your First Visual Basic 2010 Project21
Finding Visual Basic Projects23
Working with the Code Editor ..24

Working with Tool Windows. ..26
The Solution Explorer Window...27
Error List Window28
The Properties Window30
Output Window. ...31

My Project31
Application Tab..33

From the Library of Wow! eBook

ptg

Compiling Projects ...37
Debug and Release Configurations38
Other Compile Options. ...41
Advanced Compile Options . ..44

Debugging Overview...47
Debugging an Application...47
Breakpoints and Data Tips . ..49
About Runtime Errors. ..52
Edit and Continue53

Browsing the Visual Basic and .NET Documentation.54
Online Help and the MSDN Library55
Object Browser Window. ..55

3 The Anatomy of a Visual Basic Project 59

Brief Overview of Types and Members. ...59
Classes ..60
Properties ...60
Methods ...60
Modules ...61
Structures ...61
Inheritance...61
Namespaces..62
Accessing Members..63
Imports Directives..64
#Region..#End Region Directives..64
Attributes ...65
A New Feature: Implicit Line Continuation65

Visual Basic 2010 Reserved Keywords . ..67
Understanding Project Files. ..70

Dissecting My Project ..70
Application.MyApp70
AssemblyInfo.vb . ..72
Resources and the Resources.resx File ...73
Application Settings. ...77

Understanding References . ..79
Adding References to COM Libraries . ..82
Deploy Without PIAs. ...83
Final Considerations. ..84

4 Data Types and Expressions 85

Common Type System. ..85
Everything Is an Object...86

Contents vii

From the Library of Wow! eBook

ptg

Introducing Value Types and Reference Types86
System.Object and System.ValueType ...87

Understanding Value Types . ..89
.NET Framework Primitive Value Types ..90
Using Value Types..92
Working with BigInteger ...100
Building Custom Value Types ...101

Understanding Reference Types101
.NET Framework Primitive Reference Types103

Differences Between Value Types and Reference Types104
Memory Allocation..104
Object-Oriented Differences..107
Performance Differences..109
What Custom Type Should I Choose?..109

Converting Between Value Types and Reference Types.110
Understanding Implicit Conversions..110
Boxing and Unboxing112
Deep Copy and Shallow Copy ..114
The GetType Keyword..118

Conversion Operators. ...119
Widening and Narrowing Conversions ..119

Working with .NET Fundamental Types . ..124
Working with Strings...125
Working with Dates...137
Working with Time. ..143
Working with TimeZone and TimeZoneInfo144
Working with GUIDs...147
Working with Arrays. ..148

Common Operators . ..155
Arithmetic Operators ...155
Assignment Operators ...157
Logical, Bitwise and Shift Operators ...158
Concatenation Operators ..163
Comparison Operators ..164

Iterations, Loops, and Conditional Code Blocks166
Iterations..166
Loops..169
Conditional Code Blocks...171
Constants ...174
With..End With statement..175

Visual Basic 2010 Unleashedviii

From the Library of Wow! eBook

ptg

5 Debugging Visual Basic 2010 Applications 177

Preparing an Example...177
Debugging Instrumentation ...178

Debugging in Steps..178
Mixed Mode Debugging ..180
“Just My Code” Debugging ...180
Working with Breakpoints and Trace Points.....................................182
Locals Window . ..185
Command Window185
Call Stack Window . ..186
Watch Windows. ...187
Threads Window. ..189
Autos Window190

Debugger Visualizers ...191
Debugging in Code ...192

The Debug Class ...192
The Trace Class ...194
Understanding Trace Listeners . ..195
Using Debug Attributes in Your Code...201

6 Handling Errors and Exceptions 207

Introducing Exceptions...207
Handling Exceptions...208

Are You Upgrading from Visual Basic 6? . ..209
System.Exception, Naming Conventions and Specialization209
Try..Catch..Finally ..209
The Throw Keyword218
The When Keyword222
Catching Exceptions Without a Variable..224

Part II Object-Oriented Programming with Visual Basic 2010

7 Class Fundamentals 225

Declaring Classes. ...225
Nested Classes..226

Fields227
Avoiding Ambiguities with Local Variables228

Properties. ...229
Read-Only Properties ...231
Write-Only Properties ..231

Contents ix

From the Library of Wow! eBook

ptg

Exposing Custom Types ..232
Accessing Properties. ...232
Default Properties . ..233

Scope ...234
Methods ..236

Invoking Methods ...236
Methods Arguments: ByVal and ByRef ...237
Overloading Methods..242
Exit from Methods...245

Partial Classes..246
Partial Methods ...249
Constructors..251

Overloading Constructors ...254
Object Initializers. ...256

Shared Members..257
Shared Classes..258
Shared Fields . ..258
Shared Properties ...259
Shared Methods ...259
Shared Constructors ..261

Common Language Specification. ...262
Where Do I Need to Apply? . ..262
Marking Assemblies and Types as CLS-Compliant263
Naming Conventions . ..263
Rules About Classes265
Rules About Properties. ...265
Rules About Methods . ..265
Rules About Arrays...266

8 Managing an Object’s Lifetime 267

Understanding Memory Allocation..267
Understanding Garbage Collection..268
Understanding the Finalize Method ..269
Understanding Dispose and the IDisposable Interface............................271

Using..End Using Statement...273
Putting Dispose and Finalize Together...273

Object Resurrection...276
Advanced Garbage Collection ..277

Interacting with the Garbage Collector . ..277
Understanding Generations and

Operation Modes...278

Visual Basic 2010 Unleashedx

From the Library of Wow! eBook

ptg

9 Organizing Types Within Namespaces 281

Understanding What Namespaces Are. ...281
Organizing Types Within Namespaces...282

Why Are Namespaces So Useful? ..285
Nested Namespaces. ..286
Scope . ..289
Root Namespace . ..289
Global Keyword. ...290
Imports Directives291
Namespaces and Common Language Specification294

10 Modules 295

Modules Overview ..295
Scope ..296

Differences Between Modules and Classes ...297
No Constructor ..297
No Inheritance Support...297
No Interface Implementation..297

11 Structures and Enumerations 299

Assignments ..302
Passing Structures to Methods..302
Members’ Visibility ...303
Inheritance Limitations and Interfaces Implementation303
Memory Allocation303
Organizing Structures ...304
Overloading Operators..305

Overloading CType ...307
Structures and Common Language Specification308
Enumerations . ..309

Using Enumerations ..310
Useful Methods from System.Enum ...311
Using Enums As Return Values From Methods314
Enum Values As Bit Flags...315
Enumerations and Common Language Specification315

12 Inheritance 317

Applying Inheritance ..318
Illustrating System.Object in Detail ..321
Introducing Polymorphism ..323
Overriding Members325

Contents xi

From the Library of Wow! eBook

ptg

NotOverridable Keyword..328
Overloading Derived Members328

Conditioning Inheritance...328
NotInheritable Keyword..329
MustInherit and MustOverride Keywords330

Accessing Base Classes Members . ..331
MyBase Keyword...332
MyClass Keyword ...334

Constructors’ Inheritance ...335
Shadowing. ...336
Overriding Shared Members ...337
Practical Inheritance: Building Custom Exceptions...................................338

13 Interfaces 341

Defining Interfaces..341
Implementing and Accessing Interfaces...343

Passing Interfaces As Method Arguments345
Interfaces and Polymorphism. ...345
Interfaces Inheritance346
Defining CLS-Compliant Interfaces347
Most Common .NET Interfaces . ..348

The IEnumerable Interface ..348
The IComparable Interface ..351
The IConvertible Interface ..353
The IFormattable Interface ..356

14 Generics and Nullable Types 359

Introducing Generics ..359
Creating and Consuming Generics ..360

Consuming Generic Types ..362
Implementing Generic Methods ...363
Understanding Constraints363
Overloading Type Parameters. ..366

Introducing Nullable Types ..367

15 Delegates and Events 371

Understanding Delegates . ..371
Declaring Delegates ...372
Combining Delegates: Multicast Delegates.......................................374

Handling Events. ..375
Registering for events: AddHandler and RemoveHandler375
Declaring Objects with the WithEvents Keyword.377

Visual Basic 2010 Unleashedxii

From the Library of Wow! eBook

ptg

Offering Events to the External World. ...378
Raising Events ..378
Creating Custom Events..381

16 Working with Collections 385

Understanding Collections Architecture. ..385
Working with Nongeneric Collections...386

The ArrayList Collection ...386
The Queue Collection. ...389
The Stack Collection. ...390
The HashTable Collection ...390
The ListDictionary Collection ..391
The OrderedDictionary Collection ..391
The SortedList Collection ...392
The HybridDictionary Collection ..392
The StringCollection Collection ..392
The StringDictionary Collection ..393
The NameValueCollection Collection...393
The BitArray Collection393
The Bitvector32 Collection..394

Working with Generic Collections395
The List(Of T) Collection...395
Working with Collection Initializers...397
The ReadOnlyCollection(Of T) Collection398
The Dictionary(Of TKey, TValue) Collection399
The SortedDictionary(Of TKey, TValue) Collection..........................400
The ObservableCollection(Of T) Collection400
The ReadonlyObservableCollection(Of T) Collection402
The LinkedList(Of T) Collection ...403
The Queue(Of T) and Stack(Of T) Collections..................................405

Building Custom Collections..405
Concurrent Collections ..406

17 Visually Designing Objects 407

Visual Studio Class Designer. ...407
Enabling the Class Designer. ..408
Adding and Designing Objects..409
Implementing Derived Classes. ..413
Creating Multiple Diagrams . ..416
Exporting the Diagram. ..416

Class View Window ..417
Class Details Window ...418

Contents xiii

From the Library of Wow! eBook

ptg

18 “Generate From Usage” Coding Techniques 421

Coding New Types ..421
Generating Shared Members425
On-the-Fly Code and Object Initializers ...425

Generating Complex Objects ...426
Interfaces Additions...428

Part III Advanced VB Language features

19 Manipulating Files and Streams 429

Manipulating Directories and Pathnames. ..429
The System.IO.Path Class...430
The System.IO.Directory Class ...431
The System.IO.DirectoryInfo Class..434
The System.IO.DriveInfo Class ...434

Handling Exceptions for Directories and Pathnames435
Manipulating Files . ..436

The System.IO.File Class...436
The System.IO.FileInfo Class ...438
Handling File Exceptions. ...439
Understanding Permissions. ...439

Introducing Streams..440
Reading and Writing Text Files ...441
Reading and Writing Binary Files..442
Using Memory Streams442
Using Streams with Strings..443
Compressing Data with Streams ...444
Networking with Streams . ..448

20 The My Namespace 451

Introducing My ..451
My.Application...452

Retrieving Assembly Information452
Working with Cultures . ..453
Deployment and Environment Information454

My.Computer ..456
Working with the File System ...457
Working with the Clipboard458
Playing Audio Files . ..459
Managing the Keyboard . ..460
Working with the Registry . ..460
Accessing the Network . ..461
Getting Computer Information . ..462

Visual Basic 2010 Unleashedxiv

From the Library of Wow! eBook

ptg

My.Settings . ..464
My.Settings Events ...469

My.Resources . ..470
Getting Resources by Name in Code . ..474

My.User. ..474
My.WebServices. ...476
Extending My. ..476

Extending My.Application and My.Computer...................................478
Extending My.Resources and My.Settings480

My in Different Applications480
Understanding Application Events ...483

21 Advanced Language Features 485

Local Type Inference...485
Option Infer Directive ...487
Local Type Inference Scope488

Array Literals ...489
Multidimensional and Jagged Arrays . ..489

Extension Methods490
Coding Custom Extension Methods. ...495
Exporting Extension Methods. ...497

Anonymous Types ..498
Relaxed Delegates. ..500
Lambda Expressions..500

Type Inference and Lambda Expressions . ..503
Multiline Lambdas. ...504
Sub Lambdas . ..505
Lexical Closures506

Ternary If Operator ..507
Generic Variance509

Covariance ...509
Contra Variance ...510

Part IV Data Access with ADO.NET and LINQ

22 Introducing ADO.NET and DataSets 513

Introducing ADO.NET . ..513
Data Providers..514
Connection Modes ..515
Understanding Connections and Data Readers................................515

Introducing DataSets . ..517
Creating DataSets...517

Contents xv

From the Library of Wow! eBook

ptg

23 Introducing LINQ 523

What Is LINQ? ..523
LINQ Examples ...525
Language Support526
Understanding Providers ..527
Overview of LINQ Architecture ..528

24 LINQ to Objects 531

Introducing LINQ to Objects..531
Querying in Memory Objects...532

Understanding Deferred Execution. ...539
Introducing Standard Query Operators. ..541

Projection Operators..542
Restriction Operators ...543
Aggregation Operators...544
Understanding the Let Keyword...546
Conversion Operators..546
Generation Operators ..548
Ordering Operators. ..549
Set Operators. ..550
Grouping Operators...551
Union Operators . ..553
Equality Operators556
Quantifiers556
Concatenation Operators ..557
Elements Operators..557
Partitioning Operators ...558

25 LINQ to SQL 561

Introducing LINQ to SQL561
Prerequisites ...562
Understanding LINQ to SQL Classes ..562
Behind the Scenes of LINQ to SQL Classes.......................................573

Querying Data with LINQ to SQL . ..574
Insert/Update/Delete Operations with LINQ ...579

Inserting Entities..579
Updating Entities...583
Deleting Entities ..584
Mapping Stored Procedures...584
Using the Log...587

Advanced LINQ to SQL. ...588
Custom Validations ...588

Visual Basic 2010 Unleashedxvi

From the Library of Wow! eBook

ptg

Handling Optimistic Concurrency..590
Using SQL Syntax Against Entities..591

LINQ to SQL with SQL Server Compact Edition.592
Writing the Connection String ...593

26 LINQ to DataSets 595

Querying Datasets with LINQ . ..595
Building Complex Queries with Anonymous Types598

LINQ to DataSets’ Extension Methods598
Understanding CopyToDataTable . ..598
Understanding Field(Of T) and SetField(Of T)...........................600

27 Introducing ADO.NET Entity Framework 603

Introducing Entity Framework ...603
Understanding Entity Data Models..604

Understanding the ObjectContext class:
The Visual Basic Mapping612

Entity Designer Tool Windows..617
Insert/Update/Delete Operations for Entities. ...620

Instantiating the ObjectContext. ...620
Adding Entities . ..623
Deleting Entities . ..624
Updating Entities. ...625
Handling Optimistic Concurrency. ..626
Validating Data . ..627

Querying EDMs with LINQ to Entities. ...628
Querying EDMs with Entity SQL. ..629
Mapping Stored Procedures . ..631

28 Manipulating Xml Documents with LINQ and Xml Literals 635

Introducing LINQ to Xml. ...635
The System.Xml.Linq Namespace. ...636

Xml Literals. ...641
LINQ Queries with Xml Literals..644
Understanding Embedded Expressions...646

Xml Schema Inference..649

29 Overview of Parallel LINQ 655

Introducing PLINQ655
Simulating an Intensive Work...656
Measuring Performances of a Classic LINQ Query656

Contents xvii

From the Library of Wow! eBook

ptg

Measuring Performances of a PLINQ Query657
Ordering Sequences659
AsParallel and Binary Operators. ...660
Using ParallelEnumerable ...660
Controlling PLINQ Queries661

Handling Exceptions...663

Part V Building Windows Applications

30 Creating Windows Forms 4.0 Applications 665

What Windows Forms Is Today..665
Creating Windows Forms Applications..666

What’s New in Windows Forms 4.0..667
Available Windows Forms Controls . ..667

Building Windows Forms Applications with ADO.NET
Entity Framework and Chart Control. ..668

Providing Custom Validation..674
Understanding Chart Control ...675
Populating the Chart Control ...677
Running the Sample Application..680

31 Creating WPF Applications 681

What Is WPF?..682
Improvements in WPF 4 ...682

WPF Architecture . ..683
Building WPF Applications with Visual Studio 2010.................................685
Understanding the eXtensible Application Markup Language (XAML)....687

Declaring and Using Controls with the Designer and XAML.689
Understanding Visual Tree and Logical Tree. ..692
Handling Events in WPF. ...694

A More Thorough Discussion: Introducing the Routed Events695
Arranging Controls with Panels697

The Grid Panel...697
The StackPanel Panel ...700
The WrapPanel Panel ...701
The Canvas Panel ...703
The DockPanel Panel ...703
The ViewBox Panel ...704

Managing Windows . ..704
Instantiating Windows at Runtime...706

Introducing the Application Object ...707
Brief Overview of WPF Browser Applications ..710

Visual Basic 2010 Unleashedxviii

From the Library of Wow! eBook

ptg

32 WPF Common Controls 715

Introducing WPF Controls Features ...715
Understanding the ContentControl...716
Understanding Common Controls ..717

Border ..717
Button ..718
Calendar ..718
CheckBox ..719
ComboBox ..720
DataGrid ..721
DatePicker...721
DocumentViewer ...723
Ellipse ..723
Expander ..723
Frame . ..724
GroupBox ..725
Image . ..726
Label . ..726
ListBox ..727
ListView ..728
MediaElement ...729
Menu . ..729
PasswordBox ...732
ProgressBar ...732
RadioButton ...734
Rectangle...734
RichTextBox ...734
ScrollBar...735
ScrollViewer ...735
Separator...736
Slider ..736
StatusBar...737
TabControl..737
TextBlock...738
TextBox ..739
ToolBar ..740
TreeView ..741
WebBrowser...742
WindowsFormsHost..742

Using Common Dialogs ...743

Contents xix

From the Library of Wow! eBook

ptg

Visual Basic 2010 Unleashedxx

33 Brushes, Styles, Templates, and Animations in WPF 745

Introducing Brushes. ..745
Applying a SolidColorBrush. ...747
Applying a LinearGradientBrush ...748
Applying a RadialGradientBrush ...749
Applying an ImageBrush. ..751
Applying SelectionBrush and CaretBrush753
Applying a VisualBrush . ..754
Applying a DrawingBrush . ..755
Applying a BitmapCacheBrush...757

Introducing Styles759
Styles Inheritance ..761
Understanding Triggers ...761

Introducing Control Templates ..763
Introducing Transformations. ..766

Applying RotateTransform767
Applying ScaleTransform767
Applying SkewTransform768
Applying TranslateTransform ..768
Applying Multiple Transforms . ..769

Introducing Animations ...770
Applying DoubleAnimation771
Applying ColorAnimation773
Working with Animation Events . ..775
Creating Animations with Visual Basic. ...776

34 Manipulating Documents and Media 781

Viewing Images ...781
Playing Media783
Manipulating Documents...786

Understanding the RichTextBox Control795
Viewing XPS Documents ..796

35 Introducing Data-Binding 799

Introducing the Data-Binding . ..799
Binding UI Elements with the Binding Markup Extension.800
Understanding the DataGrid and the ObservableCollection.........802

Discussing the New Drag’n’Drop Data-Binding.806
Creating Tabular Data Forms. ...807
Creating Master-Details Forms ..813
Understanding Views and Binding Lists ...818
Implementing String Formatters and Value Converters...................822

From the Library of Wow! eBook

ptg

36 Localizing Applications 829

Introducing .NET Localization ...829
Windows Forms Localization ...830
WPF Localization . ..832

Preparing the LocBaml tool. ...832
Localizing a WPF Application ...833

Part VI Building Web Applications

37 Building ASP.NET Web Applications 839

Introducing the ASP.NET Model. ...839
Understanding Page Requests ...840
Scalability and Performances. ...840
Available Project Templates. ...841

Web Forms and Master Pages ...842
Web Forms ...842

ASP.NET Controls. ..845
Server Controls ..845
HTML Controls ..847

Handling Events..848
Understanding State Management ...848

The Application State...849
The Cache State. ..849
The Context State . ..850
Using Cookies for Saving Information..850
The Session State . ..851
The ViewState State . ..851

Creating a Web Application with VB 2010 with
Navigation and Data-Binding ..851

Master Pages...852
Adding the Data Model ...855
Adding a New Web Form ..855
Adding Data Controls..857
Adding Filtering Capabilities...860
Adding Navigation Controls ...861
Running the Application...861

Configuring a Web Application for Security. ..863

38 Publishing ASP.NET Web Applications 865

Deployment Overview. ..865
The 1-Click Deployment ...866

Classic Publishing866

Contents xxi

From the Library of Wow! eBook

ptg

MSDeploy Publish. ...868
Understanding Packages..868
Deploy with MSDeploy ...868

39 Building Rich Internet Applications with Silverlight 871

Introducing Silverlight..871
Creating Silverlight Projects with Visual Basic 2010872
Adding Controls and Handling Events ..875

How Silverlight Applications Are Packaged876
Playing Media876
Animating UI Elements . ..880
Introducing Navigation Applications. ...882
Introducing WCF RIA Services886

Adding the Data Source...887
Adding the Domain Service Class ...887
Data-Binding to Controls ..891
Running the Application...893

“Out of Browser” Applications ...894

40 Building and Deploying Applications for Windows Azure 899

About Windows Azure Platform. ...899
Registering for the Windows Azure Developer Portal................................901
Downloading and Installing Tools for Visual Studio.................................901

Additional Tools...902
Creating a Demo Project. ...902

Understanding Web Roles and Web Configuration902
Adding a Silverlight 3 Project. ..905
Testing the Application Locally. ...911

Deploying Applications to Windows Azure913
Activating the Storage Account . ..921

Using the Windows Azure Management Console Snap-In922

Part VII Networking and Exposing Data Through Networks

41 Creating and Consuming WCF Services 927

Introducing Windows Communication Foundation.928
Understanding Endpoints928
Address, Binding, Contract: The ABC of WCF928

Implementing WCF Services ..929
Implementing Custom Logic for the WCF Service.933

Consuming WCF Services. ...937
Creating the Client and Adding a Service Reference.938

Visual Basic 2010 Unleashedxxii

From the Library of Wow! eBook

ptg

Understanding the Proxy Class...938
Invoking Members from the Service...939

Handling Exceptions in WCF ...943
Hosting WCF Services in Internet Information Services944
Configuring Services with the Configuration Editor945

42 Implementing and Consuming WCF Data Services 949

What Are Data Services? ...949
Querying Data via Http Requests. ..950

Implementing WCF Data Services. ..951
Deploying WCF Data Services to Internet Information Services957

Consuming WCF Data Services . ..957
Creating a Client Application957
Querying Data962

Implementing Service Operations ..963
Implementing Query Interceptors..965

Understanding Query Interceptors965
Understanding Change Interceptors ...967

Understanding Server-Driven Paging ...968

Part VIII Advanced .NET Framework with VB 2010

43 Serialization 971

Objects Serialization ...972
Binary Serialization..972
Soap Serialization...975
Providing Serialization for Custom Objects......................................976
NonSerialized events ...978

XML Serialization..979
Customizing Xml Serialization980

Custom Serialization. ...982
Serialization Events..983

Serialization with XAML. ...984
Serialization in Windows Communication Foundation............................987

JSON Serialization..989
Serialization in the ADO.NET Entity Framework.......................................990

44 Processes and Multithreading 993

Managing Processes . ..994
Querying Existing Processes . ..995

Introducing Multithreading996
Creating Threads..996
Passing Parameters...997

Contents xxiii

From the Library of Wow! eBook

ptg

Understanding the .NET Thread Pool . ..997
Getting and Setting Information in the Thread Pool.998

Threads Synchronization. ..999
The SyncLock..End SyncLock Statement1000
Synchronization with the Monitor Class.1001
Read/Write Locks1001

45 Parallel Programming 1005

Introducing Parallel Computing...1006
Introducing Parallel Classes. ...1006

Understanding and Using Tasks ...1007
What Is a Task? ..1007
Running Tasks with Parallel.Invoke ..1008
Creating, Running, and Managing Tasks: The Task Class..............1009
Creating Tasks That Return Values..1009
Exception Handling...1011
Cancelling Tasks . ..1012
The Barrier Class..1014

Parallel Loops . ..1015
Parallel.For Loop..1017
Parallel.ForEach Loop ..1018

Debugging Tools For Parallel Tasks...1021
Concurrent Collections . ..1022

ConcurrentBag(Of T)..1023
ConcurrentQueue(Of T) ..1024
ConcurrentStack(Of T) ..1024
ConcurrentDictionary(Of TKey, TValue)1025
BlockingCollection(Of T) ..1026

46 Working with Assemblies 1029

Assembly Overview. ...1029
Information Stored Within Assemblies...1030
Assembly Location. ...1030
Signing Assemblies . ..1031
Assembly Information and Attributes. ...1031

Understanding Application Domains. ...1031
Creating Application Domains and Executing Assemblies1031

Overview of Security Changes in .NET 4.0 . ..1034
Permissions ..1035
The Transparency Level 2..1036
Sandboxing ..1038
Conditional APTCA ...1041
Migrating from Old CAS-Based Code..1041

Visual Basic 2010 Unleashedxxiv

From the Library of Wow! eBook

ptg

47 Reflection 1043

Introducing Reflection..1043
Understanding Assemblies’ Metadata...1044

Preparing a Sample Assembly. ..1045
Getting Assembly Information. ...1046
Reflecting Types . ..1048

Reflecting a Single Type...1053
Invoking Code Dynamically. ...1055
Generating Code at Runtime with Reflection.Emit1057

Late Binding Concepts ..1062

48 Coding Attributes 1065

Applying Attributes...1065
Coding Custom Attributes..1068

Applying Custom Attributes..1070
Applying Attributes Multiple Times..1071
Defining Inheritance1071

Reflecting Attributes ...1073

49 Platform Invokes and Interoperability with the COM Architecture 1075

Importing and Using COM Objects1075
Importing COM Components into Visual Studio1076
Using COM Objects in Code. ...1077
Catching Exceptions. ..1078
Releasing COM Objects1078

Exposing .NET Objects to the COM World. ..1078
P/Invokes and Unmanaged Code1081

Understanding P/Invokes ..1081
Encapsulating P/Invokes..1082
Converting Types to Unmanaged ...1084
The StructLayout Attribute ..1085
The VBFixedString attribute...1087
Handling Exceptions1087

References to the Win32 API calls . ..1089

50 Documenting the Source Code 1091

Understanding XML Documents. ..1091
Enabling XML Comments...1092

Implementing XML Comments1093
Defining Complex Code Documentation.1095

Generating Compiled Help Files . ..1102

Contents xxv

From the Library of Wow! eBook

ptg

51 Advanced Compilations with MSBuild 1105

Introducing MSBuild...1105
Introducing Projects ..1107
Understanding Tasks and Creating Targets.....................................1111

Advanced MSBuild Features..1114
Batching...1114
Logging ..1116
Transformations...1116

52 Building Customizations for Microsoft Office 1119

Introducing the Visual Studio Tools for Office .
........1120 Understanding Application-Level Solutions and Document-Level

Solutions..1120
What Are Office Business Applications? ...1121

Creating an Application-Level Add-In for Microsoft Word1121
Creating a Document-Level Add-In for Microsoft Excel.1126

Designing the Add-In ..1129
Interacting with Documents via Visual Basic 2010 Code1130
Running the Customized Document ..1132

Deploying VSTO Add-Ins..1132

Part IX Applications Deployment

53 Understanding the Global Assembly Cache 1137

The Dll Hell Problem ..1137
XCopy Deployment...1138

The Global Assembly Cache1139
Installing and Uninstalling Assemblies...1140
Signing Assemblies with Strong Names ..1141
Top Reasons for Installing (or Not) Assemblies to the GAC...........1143
Adding References from Visual Studio to Your Own Assemblies ...1143

54 Setup & Deployment Projects for Windows Installer 1145

Windows Installer Overview...1145
Creating a Setup Project1146
Configuring the Setup Project ..1149

Editing the File System..1150
Editing Registry Values . ..1152
Customizing Dialogs..1152
Creating File Types . ..1153
Providing Custom Actions ..1154

Visual Basic 2010 Unleashedxxvi

From the Library of Wow! eBook

ptg

Specifying Launch Conditions ..1155
Package Configuration and Prerequisites.1156

Building and Deploying the Windows Installer Package.1158

55 Deploying Applications with ClickOnce 1159

Introducing ClickOnce ...1159
How ClickOnce Handles Applications ..1160
When Should I Use ClickOnce? . ..1160

Deploying Applications with ClickOnce. ..1161
Structure of a ClickOnce Deployment . ..1164

Configuring ClickOnce. ...1165
Application Files ..1166
Prerequisites1166
Updates . ..1167
Options . ..1168

Security Considerations ..1169
Providing Certificates ..1170

Programmatically Accessing ClickOnce ...1171
Registration-Free COM. ..1172

Part X Mastering the Visual Studio 2010 IDE

56 Advanced IDE Features 1175

Exporting Templates1175
Exporting Project Templates..1175
Exporting Item Templates ...1178

Customizing Visual Studio 2010 . ..1181
Customizing the Tools Menu ..1181
Customizing Commands and Toolbars...1182

Managing User Settings ..1185
Exporting Settings..1185
Importing Settings1186

Customizing the Toolbox ...1189
Using, Creating, and Managing Reusable Code Snippets1190

Consuming Code Snippets ..1190
The Code Snippet Manager1192
Creating and Consuming Custom Code Snippets..........................1193

57 Introducing the Visual Studio Extensibility 1199

Introducing Visual Studio Extensibility1199
What’s New in the Extensibility with Visual Studio 20101200
The Visual Studio 2010 SDK. ..1201

Contents xxvii

From the Library of Wow! eBook

ptg

Building a Visual Studio Package. ..1201
Deploying Visual Studio Extensions...1212
Managing Extensions with the Extension Manager1214
Managing Add-Ins with the Add-In Manager ..1216
Extending the Code Editor ...1217

58 Advanced Analysis Tools 1223

Introducing Analysis Tools ...1224
Performing Code Analysis ..1224
Calculating Code Metrics1230
Profiling Applications1231

Profiling External Executables. ...1241
IntelliTrace, the Historical Debugger. ..1242

IntelliTrace Options ...1242
Creating a Sample Application..1243
Tracking Application Events and Exceptions with IntelliTrace......1245
Analyzing IntelliTrace Logs ...1247
Using IntelliTrace for Unit Tests..1248

Generating Dependency Graphs . ..1248

59 Testing Code with Unit Tests, Test-Driven Development,
and Code Contracts 1251

Testing Code with Unit Tests. ..1251
Creating Unit Tests ..1252
Running Unit Tests ..1256
Enabling Code Coverage ...1257
Unit Tests and IntelliTrace...1259

Introducing Test-Driven Development. ...1261
Creating a Test Project...1261
Creating Unit Tests . ..1263
Refactoring Code1266

Understanding Code Contracts . ..1267
Setting Up the Environment1267
Setting Contracts Properties . ..1268
Tools for Code Contracts. ...1269
Preconditions1269
Post-Conditions1271
Invariants1272
Assertions and Assumptions. ..1273
Contract Events1273

Visual Basic 2010 Unleashedxxviii

From the Library of Wow! eBook

ptg

Appendixes

A Installing Visual Studio 2010 1275

Installing Visual Studio 2010..1275
Installing the Offline Documentation ...1278

Finding Additional Contents Online . ..1278
Running Visual Studio 2010 for the First Time1279

B Useful Resources and Tools for Visual Basic 1281

Visual Basic Resources in MSDN...1281
Useful Developer Tools for Visual Basic ...1282
Coding Tools1282
Networking. ..1283
Data Access. ..1283
Diagnostics and Performance1283
Miscellaneous. ..1284
Where Do I Find Additional Tools?. ..1284

Index 1285

Contents xxix

From the Library of Wow! eBook

ptg

Foreword

The first time I ever heard from Alessandro was through my blog contact form. A few
years ago he reached out to me about his interest in donating an article to the Visual
Basic Developer Center on MSDN. Reading his email, it was immediately apparent that
Alessandro was passionate about programming and particularly the Visual Basic language.
With a quick Internet search I was at his blog and learning about him and the Visual
Basic Tips and Tricks community. Not long after we published his first article, Alessandro
was awarded Microsoft Most Valuable Professional (MVP) for his exceptional community
leadership and technical expertise.

I remember at the time how fun it was working with Alessandro and to see his excitement
and passion for the developer community—something we both share. Today he continues
to help me with the VB Dev Center to provide training content for developers. I always
smile when I get an email from Alessandro, because I know he’s going to reach out to
help by sending me more articles or ideas on improving the site. When he told me he was
writing this book, I was excited for the VB community, because I know how much his
online content helps the community today. And the passion he has for Visual Basic
comes through in everything he writes.

Visual Basic is an amazing language. I started picking it up around 2000 with the release
of .NET and it really helped me navigate the vastness of the platform. Particularly things
like background compilation and Intellisense gave me immediate cues about whether the
code I was attempting to write was correct. Also, coming from a more dynamic language
background, it was much easier to write the types of data-oriented systems I was building
using a language that was both static and dynamic at the same time. With the release of
Language Integrated Query (LINQ), data became much easier to work with and Visual
Basic’s support for LINQ is extremely full featured with its set of expanded query opera-
tors and easy to use language syntax. Coupled with the latest features in 2010 like
implicit line continuation and multiline and statement lambdas makes Visual Basic one of
the premiere modern programming languages of today. Millions of developers agree.

This book takes you on a journey through the .NET platform through the eyes of a Visual
Basic developer. If you’re just learning the platform this is a great place to start as
Alessandro begins with the basics of the platform and the language, and then touches on
a variety of different application development technologies and techniques. If you’re
already programming on the .NET platform, then this book will show you what’s new,
not only in the Visual Basic language, but also the .NET Framework 4.0 and Visual Studio
2010. I am personally very excited about this release.

Alessandro explains these concepts in a way that is very easy to understand with a
language that’s easy to use and his passion comes through in every paragraph. I know you
will find this book filled with tips and tricks as well as development methodologies that
you can apply to the modern applications you are building today. I really enjoyed reading
this book and I’m sure you will too.

Beth Massi
Senior Program Manager, Microsoft Visual Studio

From the Library of Wow! eBook

ptg

About the Author

Alessandro Del Sole, a Microsoft Most Valuable Professional (MVP) for Visual Basic, is
well known throughout the global VB community. He is a community leader on the
Italian “Visual Basic Tips and Tricks” website (http://www.visual-basic.it) that serves more
than 41,000 VB developers, as well as a frequent contributor to the MSDN Visual Basic
Developer Center. He enjoys writing articles on .NET development, writing blog posts on
both his Italian and English blogs, and producing instructional videos. You can find him
online in forums or newsgroups.

From the Library of Wow! eBook

http://www.visual-basic.it

ptg

Dedication

To my parents, we live our lives many kilometers away from each other but I know you are
always there for me. You are the best parents a son could ever desire. Thank you!

To my best friend Nadia, whose support during the writing of this book has been as fundamental
as all my experience in the computer world, starting from my first article until becoming an MVP.

I’m very glad to let the world know how special you are to me. Thanks for being always there.

From the Library of Wow! eBook

ptg

Acknowledgments

First of all I would like to thank Brook Farling and all at Sams Publishing for giving me
the great opportunity of writing the most important book of my life on Visual Basic.
Behind the scenes a lot of people did hard work, so I would like to say “thanks!” to every-
one, including the technical editor Matthew Kleinwaks and all the people involved in the
review process.

Special thanks to all the Microsoft Visual Basic Team for doing a great job; particularly I
would like to give my special thanks to Lisa Feigenbaum for helping me to contact the
right people in the teams working on Visual Studio and the .NET Framework. She does
her work with great passion and professionalism; her help has been so precious to me.
Many thanks, Lisa.

Next I would like to thank Beth Massi from the VB Team for the opportunity of technical
discussions on the Visual Basic language. She always creates great work producing content
that helps others learn something new every day. If you are searching for information
using VB against the most recent Microsoft technologies, take a look at her blog.

Great thanks also to some guys from the Italian subsidiary of Microsoft: Alessandro Teglia
(my MVP Lead), who has a great passion for his work and for the MVP’s community; he
did a really great job when I had some important questions related to information
required for this book, rapidly pointing me in the right direction, and Lorenzo Barbieri.
His indications and suggestions on the Team System instrumentation were invaluable.

Thanks to my boss Giampiero Ianni for his cordiality.

I would like to thank my everyday friends; most of them aren’t interested in application
development but they’re always happy when listening to me talk about computers, appli-
cation development, and my books. Most of all, they are always ready to encourage me.
Writing a large book like this is not easy, but they always have the right words when
things are difficult. So my deep thanks to Roberto Bianchi, Alessandro Ardovini, Daniela
Maggi, Maurizio Cagliero, Eugenio Ricci, Alessandra Gueragni, Francesca Bongiorni, Paolo
Leoni, Meso, Luca Libretti, and Sara Gerevini. You guys really rock!

I’m a community leader and team member in the Italian “Visual Basic Tips & Tricks”
community (www.visual-basic.it); therefore, I would like to thank all those guys who are
the right stimulus for making things better every day; all those people who visited my
blogs at least once or who read even one article of mine, and all those people who every
day visit our website and follow us on forums, videos, articles, and blogs. Special thanks
to my MVP colleagues Diego Cattaruzza, Antonio Catucci, and Raffaele Rialdi for their
great support and precious suggestions. Thanks to Renato Marzaro and Marco Notari for
their continuous support and encouragement.

From the Library of Wow! eBook

www.visual-basic.it

ptg

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific technical
questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

From the Library of Wow! eBook

ptg

CHAPTER 1

Introducing the .NET
Framework 4.0

IN THIS CHAPTER

. What Is the .NET Framework?

. The Common Language
Runtime

. The Base Class Library

. .NET Languages

. .NET Framework Tools

. What’s New in .NET
Framework 4.0

As a Visual Basic 2010 developer, you need to understand
the concepts and technology that empower your applica-
tions: the Microsoft .NET Framework. The .NET Framework
(also simply known as .NET) is the technology that provides
the infrastructure for building the next generation’s applica-
tions that you will create. Although covering every aspect
of the .NET Framework is not possible, in this chapter you
learn the basis of the .NET Framework architecture, why it
is not just a platform, and notions about the Base Class
Library and tools. The chapter also introduces important
concepts and terminology that will be of common use
throughout the rest of the book.

What Is the .NET Framework?
Microsoft .NET Framework is a complex technology that
provides the infrastructure for building, running, and
managing next generation applications. In a layered repre-
sentation, the .NET Framework is a layer positioned
between the Microsoft Windows operating system and your
applications. .NET is a platform but also is defined as a
technology because it is composed of several parts such as
libraries, executable tools, and relationships and integrates
with the operating system. Microsoft Visual Studio 2010
relies on the new version of the .NET Framework 4.0. Visual
Basic 2010, C# 4.0, and F# 2010 are .NET languages that
rely on and can build applications for the .NET Framework
4.0. The new version of this technology introduces impor-
tant new features that will be described later. In this chapter
you get an overview of the most important features of the

From the Library of Wow! eBook

ptg

2 CHAPTER 1 Introducing the .NET Framework 4.0

.NET Framework so that you will know how applications built with Visual Basic 2010 can
run and how they can be built.

Where Is the .NET Framework

When you install Microsoft Visual Studio 2010, the setup process installs the .NET Framework
4.0. .NET is installed to a folder named %windir%\Microsoft.NET\Framework\4.0. If you
open this folder with Windows Explorer, you see a lot of subfolders, libraries, and
executable tools. Most of the DLL libraries constitute the Base Class Library, whereas most
of the executable tools are invoked by Visual Studio 2010 to perform different kinds of
tasks, even if they can also be invoked from the command line. Later in this chapter we
describe the Base Class Library and provide an overview of the tools; for now you need to
notice the presence of a file named Vbc.exe, which is the Visual Basic Compiler and a
command line tool. In most cases you do not need to manually invoke the Visual Basic
compiler, because you will build your Visual Basic applications writing code inside Visual
Studio 2010, and the IDE invokes the compiler for you. But it is worth mentioning that
you could create the most complex application using Windows’s Notepad and then run
Vbc. Finally, it is also worth mentioning that users can get the .NET Framework 4.0 from
Microsoft for free. This means that the Visual Basic compiler is also provided free with
.NET, and this is the philosophy that characterizes the .NET development since the first
version was released in 2002.

The .NET Framework Architecture

To better understand the structure of the .NET Framework, think about it as a layered
architecture. Figure 1.1 shows a high-level representation of the .NET Framework 4.0
architecture.

The first level of the representation is the operating system; the .NET layer is located
between the system and applications. The second level is the Common Language Runtime
(CLR), which provides the part of the .NET Framework doing the most work. We discuss
the CLR later in this chapter. The next level is the Base Class Library (BCL), which provides
all .NET objects that can be used both in your code and by Visual Basic when creating
applications. The BCL also provides the infrastructure of several .NET technologies that
you use in building applications, such as WPF, Windows Forms, ASP.NET, WCF, and so on.
The last level is represented by applications that rely on the previous layers.

DIFFERENCES WITH PREVIOUS VERSIONS

If you upgrade to Visual Basic 2010 from Visual Basic 2008, the main difference that
you notice is that .NET 4.0 is a standalone infrastructure. You may remember that .NET
Framework 3.5 was instead an incremental framework that needed the prior installation
of .NET 2.0 and .NET 3.0. For example, LINQ was part of .NET 3.5 whereas WPF was
part of .NET 3.0 and Windows Forms was part of .NET 2.0 (see Figure 1.2 for a graphi-
cal representation). With .NET 4.0 this incremental structure disappears, and all the
frameworks, BCL, and tools are part of the new version.

From the Library of Wow! eBook

ptg

3What Is the .NET Framework?
1

FIGURE 1.1 The .NET Framework 4.0 architecture.

FIGURE 1.2 The incremental architecture of the .NET Framework 3.5 SP 1.

From the Library of Wow! eBook

ptg

4 CHAPTER 1 Introducing the .NET Framework 4.0

Although the various frameworks exposed by the BCL are discussed later in the book, in this
chapter, now you get an overview of the library and can understand how it works and how
you can use it. But before examining the BCL, consider the Common Language Runtime.

The Common Language Runtime
As its name implies, the Common Language Runtime provides an infrastructure that is
common to all .NET languages. This infrastructure is responsible for taking control of the
application’s execution and manages tasks such as memory management, access to system
resources, security services, and so on. This kind of common infrastructure bridges the gap
that exists between different Win32 programming languages because all .NET languages
have the same possibilities. Moreover, the Common Language Runtime enables applica-
tions to run inside a managed environment. The word managed is fundamental in the
.NET development, as explained in next paragraph.

Writing Managed Code

When talking about Visual Basic 2010 development and, more generally, about .NET
development, you often hear about writing managed code. Before the first version of .NET
(or still with non-.NET development environments), the developer was the only responsi-
ble person for interacting with system resources and the operating system. For example,
taking care of accessing parts of the operating system or managing memory allocation for
objects were tasks that the developer had to consider. In other words, the applications
could interact directly with the system, but as you can easily understand this approach
has some big limitations both because of security issues and because damages could be
dangerous. The .NET Framework provides instead a managed environment. This means
that the application communicates with the .NET Framework instead of with the operat-
ing system, and the .NET runtime is responsible for managing the application execution,
including memory management, resources management, and access to system resources.
For example, the Common Language Runtime could prevent an application from access-
ing particular system resources if it is not considered full-trusted according to the Security
Zones of .NET.

DIALING WITH THE SYSTEM

You can still interact directly with the operating system, for example invoking Windows
APIs (also known as Platform Invoke or P/Invoke for short). This technique is known as
writing unmanaged code that should be used only when strictly required. This topic is
discussed in Chapter 49, “Platform Invokes and Interoperability with the COM
Architecture.”

Writing managed code and the existence of the Common Language Runtime also affect
how applications are produced by compilers.

From the Library of Wow! eBook

ptg

5The Base Class Library

.NET Assemblies

In classic Win32 development environments, such as Visual Basic 6 or Visual C++, your
source code is parsed by compilers that produce binary executable files that can be imme-
diately interpreted and run by the operating system. This affects both standalone applica-
tions and dynamic/type libraries. Actually Win32 applications, built with Visual Basic 6
and C++, used a runtime, but if you had applications developed with different program-
ming languages, you also had to install the appropriate runtimes. In.NET development
things are quite different. Whatever .NET language you create applications with, compilers
generate an assembly, which is a file containing .NET executable code and is composed
essentially by two kinds of elements: MSIL code and metadata. MSIL stands for Microsoft
Intermediate Language and is a high-level assembly programming language that is also
object-oriented, providing a set of instructions that are CPU-independent (rather than
building executables that implement CPU-dependent sets of instructions). MSIL is a
common language in the sense that the same programming tasks written with different
.NET languages produce the same IL code. Metadata is instead a set of information related
to the types implemented in the code. Such information can contain signatures, functions
and procedures, members in types, and members in externally referenced types. Basically
metadata’s purpose is describing the code to the .NET Framework. Obviously, although an
assembly can have .exe extension, due to the described structure, it cannot be directly
executed by the operating system. In fact, when you run a .NET application the operating
system can recognize it as a .NET assembly (because between .NET and Windows there is a
strict cooperation) and invoke the Just-In-Time compiler.

The Execution Process and the Just-In-Time (JIT) Compiler
.NET compilers produce assemblies that store IL code and metadata. When you launch an
assembly for execution, the .NET Framework packages all the information and translates
them into an executable that the operating system can understand and run. This task is
the responsibility of the Just-In-Time (JIT) compiler. JIT compiles code on-the-fly just
before its execution and keeps the compiled code ready for execution. It acts at the
method level. This means that it first searches for the application’s entry point (typically
the Sub Main) and then compiles other procedures or functions (methods in .NET termi-
nology) referenced and invoked by the entry point and so on, just before the code is
executed. If you have some code defined inside external assemblies, just before the
method is executed the JIT compiler loads the assembly in memory and then compiles the
code. Of course loading an external assembly in memory could require some time and
affect performance, but it can be a good idea to place seldom-used methods inside exter-
nal assemblies, the same way as it could be a good idea to place seldom-used code inside
separated methods.

The Base Class Library
The .NET Framework Base Class Library (BCL) provides thousands of reusable types that
you can use in your code and that cover all the .NET technologies, such as Windows
Presentation Foundation, ASP.NET, LINQ, and so on. Types defined in the Base Class
Library enable developers to do millions of things without the need of calling unmanaged

1

From the Library of Wow! eBook

ptg

6 CHAPTER 1 Introducing the .NET Framework 4.0

code and Windows APIs and, often, without recurring to external components. A type is
something that states what an object must represent. For example, String and Integer are
types, and you might have a variable of type String (that is, a text message) or a variable
of type Integer (a number). Saying Type is not the same as saying Class. In fact, types can
be of two kinds: reference types and value types. This topic is the specific subject of Chapter
4, “Data Types and Expressions”—a class is just a reference type. Types in the BCL are
organized within namespaces, which act like a kind of types’ containers, and their name is
strictly related to the technology they refer to. For example, the System.Windows.Forms
namespace implements types for working with Windows Forms applications, whereas
System.Web implements types for working with Web applications, and so on. You will get
a more detailed introduction to namespaces in Chapter 3, “The Anatomy of a Visual Basic
Project,” and Chapter 9, “Organizing Types Within Namespaces.” Basically each name-
space name beginning with System is part of the BCL. There are also some namespaces
whose name begins with Microsoft that are still part of the BCL. These namespaces are
typically used by the Visual Studio development environment and by the Visual Basic
compiler, although you can also use them in your code in some particular scenarios (such
as code generation).

The BCL is composed of several assemblies. One of the most important is MsCorlib.dll
(Microsoft Core Library) that is part of the .NET Framework and that will always be
required in your projects. Other assemblies can often be related to specific technologies;
for example, the System.ServiceModel.dll assembly integrates the BCL with the Windows
Communication Foundation main infrastructure. Also, some namespaces don’t provide
the infrastructure for other technologies and are used only in particular scenarios; there-
fore, they are defined in assemblies external from MsCorlib (Microsoft Core Library). All
these assemblies and namespaces will be described in the appropriate chapters.

.NET Languages
Microsoft offers several programming languages for the .NET Framework 4.0. With
Visual Studio 2010, you can develop applications with the following integrated
programming languages:

. Visual Basic 2010

. Visual C# 4.0

. Visual F# 2010

. Visual C++ 2010

Visual J# is no longer part of the .NET Framework family. You can also integrate native
languages with Microsoft implementations of Python and Ruby dynamic languages,
respectively known as IronPython and IronRuby.

From the Library of Wow! eBook

ptg

7.NET Framework Tools

WHERE DO I FIND IRONPYTHON AND IRONRUBY?

IronPython and IronRuby are currently under development by Microsoft and are available
as open source projects from the CodePlex community. You can download IronPython
from http://ironpython.codeplex.com. You can find IronRuby at http://ironruby.code-
plex.com.

There are also several third-party implementations of famous programming languages for
.NET, such as Fortran, Forth, or Pascal, but discussing them is neither a purpose of this
chapter nor of this book. It’s instead important to know that all these languages can take
advantage of the .NET Framework base class library and infrastructure the same as VB and
C#. This is possible because of the Common Language Runtime that offers a common
infrastructure for all .NET programming languages.

.NET Framework Tools
The .NET Framework also provides several command-line tools needed when creating
applications. Among the tools are the compilers for the .NET languages, such as Vbc.exe
(Visual Basic compiler), Csc.exe (Visual C# compiler), and MSBuild.exe (the build engine
for Visual Studio). All these tools are stored in the C:\Windows\Microsoft.NET\
Framework\v4.0 folder. In most scenarios you will not need to manually invoke the .NET
Framework tools, because you will work with the Microsoft Visual Studio 2010 Integrated
Development Environment, which is responsible for invoking the appropriate tools when
needed. Instead of listing all the tools now, because we have not talked about some topics
yet, information on the .NET tools invoked by Visual Studio is provided when discussing a
particular topic that involves the specific tools.

Windows Software Development Kit

Starting from Visual Studio 2008, with the .NET Framework and the development environ-
ment, the setup process will also install the Windows SDK on your machine. This software
development kit provides additional tools and libraries useful for developing applications
for the .NET Framework. In older versions of the .NET Framework and in the Microsoft
Windows operating system, you had to install two different packages, formerly known as
the .NET Framework SDK and the Microsoft Platform SDK. With the introduction of
Windows Vista, the .NET Framework has become part of the core of the operating system;
Microsoft released the Windows SDK that provides tools for building both managed and
unmanaged applications. The Windows SDK is installed into the C:\Program
Files\Microsoft SDKs\Windows\v7.0A folder, which includes several additional tools also
used by Microsoft Visual Studio for tasks different from building assemblies, such as

1

From the Library of Wow! eBook

http://ironpython.codeplex.com
http://ironruby.codeplex.com
http://ironruby.codeplex.com

ptg

8 CHAPTER 1 Introducing the .NET Framework 4.0

deployment and code analysis, or for generating proxy classes for Windows
Communication Foundation projects. Also in this case you will not typically need to
invoke these tools manually, because Visual Studio will do the work for you. You can find
information on the Windows SDK’s tools in the appropriate chapters.

What’s New in .NET Framework 4.0
If you had development experiences with .NET Framework 3.5, you know that it has an
incremental architecture. This means that .NET 3.5 (including technologies typical of this
version such as LINQ) relies on .NET Framework 2.0 for most of the core .NET features and
technologies such as Windows Forms, whereas it requires .NET Framework 3.0 for frame-
works such as Windows Presentation Foundation, Windows Communication Foundation,
Windows Workflow Foundation, and CardSpace. This means that .NET Framework 3.5
requires previous versions to be installed as a prerequisite. The .NET Framework 4.0 is
instead a complete standalone technology that does not require other previous versions to
be installed. Assuming you have some knowledge of .NET Framework 3.0 and 3.5, follow-
ing are new technologies introduced by .NET 4.0 for your convenience:

. Windows Presentation Foundation

. Windows Communication Foundation

. ASP.NET (now including Ajax and MVC)

. ADO.NET Entity Framework

. Visual Studio Tools for Office

. Windows Workflow Foundation

The new version of these technologies is not just an addition of features, but the architec-
ture has been revised and improved. The .NET Framework 4.0 also includes some frame-
works that in the previous version had to be installed manually or as part of the .NET 3.5
Service Pack 1:

. ADO.NET Data Services

. Parallel Extensions for the Task Parallel Library, or TPL for short (related to the
parallel computing)

. Code Contracts

The Windows Forms technology is still unchanged from .NET Framework 2.0. There are
just a few additions regarding user controls, which is discussed in Chapter 30. “Creating
Windows Forms 4.0 Applications.”

From the Library of Wow! eBook

ptg

9Summary
1

Summary
Understanding the .NET Framework is of primary importance in developing applications
with Visual Basic 2010 because you will build applications for the .NET Framework. This
chapter presented a high-level overview of the .NET Framework 4.0 and key concepts such
as the Common Language Runtime and the Base Class Library and how an application is
compiled and executed. You also got an overview of the most important command-line
tools and the .NET languages.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 2

Getting Started with the
Visual Studio 2010 IDE

IN THIS CHAPTER

. What’s New in Visual Studio
2010

. Start Page

. Working with Projects and
Solutions

. Working with Tool Windows

. My Project

. Compiling Projects

. Browsing the Visual Basic
and .NET Documentation

You develop Visual Basic applications using the Visual
Studio 2010 Integrated Development Environment (IDE),
which is the place where you will spend most of your devel-
oper life. Before diving deep into the Visual Basic language,
you need to know what instruments you need to develop
applications. Although the Visual Studio IDE is a complex
environment, this chapter provides you with an overview
of the most common tasks you will perform from within
Visual Studio 2010 and the most important tools you will
utilize so that you can feel at home within the IDE. You get
an introduction to some of the new features introduced by
the new version of the development environment, which
can provide the basis for the rest of the book. You also learn
about other advanced IDE features in Chapter 55,
“Deployment Applications with ClickOnce.”

What’s New in Visual Studio 2010
The Visual Studio 2010 IDE relies on a new infrastructure
that is quite different from its predecessors. Most of this
infrastructure is now written in managed code, and several
parts of the IDE are based on the Windows Presentation
Foundation framework, such as the code editor, menus, and
floating windows. Although behind the scenes this innova-
tion is important (particularly if you develop Visual Studio
extensions), being familiar with the WPF technology is not
important when starting with the Visual Studio 2010 IDE
because you will feel at home also with the new version.
This is because the instrumentation is located and behaves
the same as in the past. There are several benefits from
having a managed infrastructure, such as new IDE features

From the Library of Wow! eBook

ptg

12 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

(the code editor zoom or the IDE extensibility, for example) and we discuss these topics
later in the book. This chapter gives you an overview of the most common tools you need
for developing your Visual Basic applications. (Deeper details on advanced IDE features are
provided in Chapter 55.)

Start Page
When you first run Visual Studio 2010, you notice a new layout and a new Start Page, as
shown in Figure 2.1.

The Start Page is one of the most important new features in the IDE. First, it offers a better
organization of the most common tasks, based on tabs. Tabs are located on the right side
of the screen and enable access to specific contents. On the left side of the screen you can
instead find links for creating new projects and opening existing projects, as well as the
list of recently opened projects. An important improvement to this list is that you can
now easily remove recent projects by simply right-clicking the project name and then
selecting the deletion command. The second new feature is that the Start Page now relies
on the Windows Presentation Foundation technology and is completely written in XAML
code. This means that it can be customized according to your needs. Customizing the

FIGURE 2.1 The new Visual Studio 2010 Start Page.

From the Library of Wow! eBook

ptg

13Start Page
2

Start Page is beyond the scope of this chapter, whereas a deeper discussion on the default
settings is absolutely necessary. The three default tabs are Get Started, Guidance and
Resources and Latest News. The following paragraphs discuss them in detail.

Get Started Tab

The Get Started tab (see Figure 2.1) offers links to important resources, such as MSDN
Walkthroughs (which are step-by-step tutorials on specific topics related to Visual Studio
2010), community and learning resources, and extensions for the IDE, such as custom
add-ins or third-party components. (This is a topic that is discussed later in the book.)
This tab is divided into subcategories, each related to a specific development area such as
Windows, Web, Office, Cloud Computing, and SharePoint. When you click on each
subcategory, you access a number of links to resources for learning about the selected area.
Basically the Get Started tab’s purpose is to offer links to useful resources about the devel-
opment environment and to new and existing .NET technologies.

The Guidance and Resources Tab

The Guidance and Resources tab provides links useful for learning about designing and
developing applications as well as about the application lifecycle management. Figure 2.2
shows how the tab appears in Visual Studio 2010.

FIGURE 2.2 The Guidance and Resources tab.

From the Library of Wow! eBook

ptg

14

This tab is divided into subcategories, each providing links to resources related to project
planning, maintenance, and testing as well as application design and development. In
some cases this documentation requires that Microsoft Visual Studio 2010 Team
Foundation Server is installed on your machine.

The Latest News Tab

As in Visual Studio 2005 and Visual Studio 2008, Visual Studio 2010 can also show a list of
news based on RSS feeds so that you can stay up-to-date with your favorite news channels.
Now the list appears in the Latest News tab, as shown in Figure 2.3.

CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

By default, the news channel is an RSS feed pointing to the MSDN developer portal, but
you can replace it with one of your favorites. To accomplish this, you have the following
alternatives:

. Open the Latest News tab and replace the default link in the RSS feed field with a
valid XML feed link (this is the easiest way).

. Open the Options window (for example by clicking the Settings link in the Visual
Studio tab) and then select the Startup item. You find a text box named Start Page

FIGURE 2.3 The Latest News tab shows updated news from the specified RSS channel.

From the Library of Wow! eBook

ptg

15Working with Projects and Solutions
2

news channel (see Figure 2.4) where you can write your favorite link. Just ensure you
are writing a valid XML feed link.

If you want to stay up-to-date with Visual Basic news, then you can consider replacing the
default news channel with the Visual Basic Developer Center, which is at the following:
http://services.social.microsoft.com/feeds/feed/VB_featured_resources. After this brief
overview of the Start Page, we can begin discussing what’s new in creating Visual Basic
projects within Visual Studio 2010.

Working with Projects and Solutions
Each time you want to develop an application, you create a project. A project is a collec-
tion of files, such as code files, resources, data, and every kind of file you need to build
your final assembly. A Visual Basic project is represented by a .Vbproj file, which is an
Xml file containing all the information required by Visual Studio to manage files that
constitute your project. Projects are organized in solutions. A solution is basically a
container for projects. In fact, solutions can contain infinite projects of different kinds,
such as Visual Basic projects, projects produced with programming languages different
than Visual Basic, class libraries, projects for Windows client applications, Windows
Communication Foundation services, and so on. In other words, a solution can include each
kind of project you can create with Visual Studio 2010. Solutions also can contain external
files, such as documents or help files, and are represented by a .Sln file that has Xml struc-
ture and that stores information required to manage all the projects contained in the solu-
tion. Visual Studio 2010 can also open solutions created with previous versions of the IDE.

FIGURE 2.4 The Options window enables customizing the RSS Feeds news channel.

From the Library of Wow! eBook

http://services.social.microsoft.com/feeds/feed/VB_featured_resources

ptg

16 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

TIP

You can upgrade previous versions of your solutions by simply opening them in Visual
Studio 2010. The Upgrade Wizard can guide you through the upgrade process in a few
steps. This converts the solution and project files to the new version but does not
upgrade the target version of the .NET Framework to 4.0. Only older versions such as
1.0 and 1.1 are upgraded to 2.0, but all others retain their original version number.

Typically you manage your projects and solutions using the Solution Explorer window
discussed later in this chapter. We now focus on the creation of Visual Basic 2010 projects.

Creating Visual Basic Projects

Creating a new Visual Basic project is a simple task. You can either click the File, New
Project command or the New Project link from the Start Page. In both cases, Visual
Studio shows the New Project window, which you can see in Figure 2.5.

As you can see, the look of the New Project window is quite different from previous versions
of Visual Studio. To understand what kind of Visual Basic applications you can create, you
simply need to select the Visual Basic node on the left side of the window. After you click
the node, you see a lot of different kinds of applications you can create with Visual Basic
2010, such as Windows applications, Web applications, Office System customizations,
Silverlight applications, Windows Communication Foundation Services, and so on.

FIGURE 2.5 The New Project window for Visual Basic.

From the Library of Wow! eBook

ptg

17Working with Projects and Solutions
2

NOTE ABOUT AVAILABLE PROJECT TEMPLATES

The list of installed project templates can vary depending either on the Visual Studio
2010 edition or on additional items installed later (for example from the Visual
Studio Gallery).

Each kind of application is represented by a specific project template, which provides a
skeleton of a project for that particular kind of application, including all the references or
the basic code files required. For example, the Windows Forms project template provides a
skeleton of a project for creating a Windows application using the Windows Forms tech-
nology, therefore including references to the System.Windows.Forms.dll assembly, specific
Imports directives, and Windows Forms objects represented by the appropriate code files.
Moreover, Visual Studio will automatically enable the Windows Forms designer. Notice the
detailed description for each template on the right side of the window every time you
select a particular template.

NOTE

In the second part of this book you find in detail several kinds of applications you can
build with Visual Basic 2010. For this reason a full description of each project template
will be provided in the proper chapters. At the moment the description provided by
Visual Studio for project templates is sufficient. Also consider that in this first part of
the book the Console Application project template is used because it is the most
appropriate for learning purposes.

Typically when you create a new project, Visual Studio also creates a solution containing
that project. If you plan to add other projects to the solution, it can be a good idea to
create a directory for the solution. This allows for a better organization of your projects,
because one directory can contain the solution file and this directory can then contain
subdirectories, each of them related to a specific project. To accomplish this, ensure that
the Create Directory for Solution check box is selected (refer to Figure 2.5). The New
Project window also offers some interesting features: the .NET Framework multitargeting,
the ability of searching through templates, and the ability of managing templates. We
now discuss each of these features.

Multitargeting

Like in Visual Studio 2008, in Visual Studio 2010 you can choose what version of the .NET
Framework your application targets. This can be useful if you plan to develop applications
with a high compatibility level and without new language features, but you still want to
take the advantage of the new features of the IDE. You may choose one of the following:

. .NET Framework 4.0 (proposed by default)

. .NET Framework 3.5

From the Library of Wow! eBook

ptg

18 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

. .NET Framework 3.0

. .NET Framework 2.0

To accomplish this choice, just select the appropriate version from the combo box at the
top of the window, as shown in Figure 2.6.

NOTE

Please remember that, depending on what version of the .NET Framework you choose,
you may not be able to use some libraries or technologies. For example, if you choose
.NET Framework 3.0 as the target version, you cannot use LINQ, which is instead
exposed by .NET Framework 3.5 and higher. So keep in mind these limitations when
developing your applications.

Accessing Recent and Online Templates

Visual Studio 2010 provides the capability to access most recently used templates and to
install additional templates from the Internet. About the first feature, you can easily access
the most recently used project templates by clicking the Recent Templates item on the
left side of the New Project window. In this way, you get a list of the recently used projects
templates in case you still need them (see Figure 2.7).

You can also find additional online templates and install them to the local system. To
accomplish this, simply click the Online Templates item in the New Project window.
Visual Studio checks for the availability of online templates and shows a list of all the
available templates, as shown in Figure 2.8.

As you can see, Visual Studio is listing all the online templates for both Visual Basic and
Visual C#, showing a description of the template, information about the author, and a
small picture with ratings when available. To download and install a template, simply
double-click its name. After a few seconds you will be prompted to provide your agree-

FIGURE 2.6 Choosing the .NET Framework version for your application.

From the Library of Wow! eBook

ptg

19Working with Projects and Solutions
2

FIGURE 2.7 Accessing the most recently used projects templates.

FIGURE 2.8 Additional online templates that you can add to Visual Studio 2010.

From the Library of Wow! eBook

ptg

20 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

ment about the installation. You will be warned in the case that the new extension for
Visual Studio does not contain a digital signature (see Figure 2.9). If you trust the
publisher and want to go on, click Install. After a few seconds you see the newly installed
project templates available among the other ones.

As in the previous versions of Visual Studio, you can still export projects as reusable
project templates. We discuss this feature later in the book, when talking about the
advanced IDE features.

Searching for Installed Templates

Visual Studio 2010 provides lots of default project templates, and as you saw before, you
have the ability of adding your own custom ones, so sometimes it may be difficult to find
the needed template in a certain moment. Because of this, the New Project window
provides a search box that is located in the upper-right corner of the window (see Figure
2.10). Just begin typing the name of the project template you are looking for, and the New
Project window shows all the projects templates that match your choice. Each time you
type a character, the window updates showing the results matching your search string. As
you can see in Figure 2.10, Visual Studio is showing all the project templates whose names
match the wor search string.

NOTE

Remember that the search functionality can retrieve all projects templates related to
your search string. This means that the search result can contain not only Visual Basic
projects but every template name matching your criteria (for example, Visual C#, Visual
F#, and so on).

FIGURE 2.9 Visual Studio asks for confirmation before installing the additional template.

From the Library of Wow! eBook

ptg

21Working with Projects and Solutions
2

FIGURE 2.10 Searching for installed project templates using the new search feature.

Creating Reusable Projects and Items Templates

As in the previous versions, in Visual Studio 2010 you can create your custom projects and
items templates, exporting them to disk and making them available within the IDE. (This
topic is discussed in Chapter 55.) Now that you have seen the main new features for
project creation, you are ready to create your first Visual Basic project.

Creating Your First Visual Basic 2010 Project

This section shows how easy it is to create a Visual Basic 2010 application and, if you have
a long experience with Visual Studio, the differences between the new version and the
previous ones of the development environment. You can create a new project for the
Console by first opening the New Project window and then selecting the Console
Application project template.

NOTE

Until Part 4, “Data Access with ADO.NET and LINQ,” all code examples, listings, and
code snippets are based on Console applications, so remember to create a Visual
Basic project for the console when testing the code.

Name the new project as MyFirst2010Program and then click OK (see Figure 2.11 for
details).

From the Library of Wow! eBook

ptg

22 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

After a few seconds the new project is ready to be edited. Figure 2.12 shows the result of
the project creation.

FIGURE 2.11 Creating your first VB 2010 application.

FIGURE 2.12 The creation of the first VB 2010 project.

From the Library of Wow! eBook

ptg

23Working with Projects and Solutions
2

As mentioned at the beginning of this chapter, the code editor and floating windows are
now based on Windows Presentation Foundation. You see a new look for the tooling but this
change in the infrastructure does not modify your development experience. You should
feel at home with the new version of the environment because you can still find tools as
in the previous versions. For example, you can access Solution Explorer, the Properties
window, or the Error List exactly as you did before. The first difference you notice from
the previous versions of Visual Basic is that now identifiers for custom objects have a light
blue color. In this case, the identifier for the main module, which is Module1, is light blue
and not black. Another interesting feature is that by pressing Ctrl and moving up and
down the mouse wheel, you can zoom in and out with the code editor without the need
to change the font settings each time the Visual Studio options changes. For our testing
purposes, we could add a couple of lines of code to the Main method, which is the entry
point for a Console application. Listing 2.1 shows the complete code for creating a VB
2010 application.

LISTING 2.1 Creating the First VB 2010 Application

Module Module1

Sub Main()

Console.WriteLine(“Hello Visual Basic 2010!”)

Console.ReadLine()

End Sub

End Module

WHAT IS A CONSOLE?

In a Console application, the System.Console class is the main object for working with
the Windows console. Such a class provides methods for reading and writing from and
to the Console and for performing operations versus the Console itself.

The code simply shows a message in the Console window and waits for the user to press a
key. This is obviously a basic application, but you need it as the base for understanding
other topics in this chapter.

Finding Visual Basic Projects

As in the previous versions, Visual Studio 2010 stores by default its information in a user-
level folder called Visual Studio 2010 and that resides inside the My Documents folder.
Here you can find settings, add-ins, code snippets, and projects. For example, if you run
Windows Vista or Windows 7, your projects should be located in
C:\Users\UserName\Documents\Visual Studio 2010\Projects, in which UserName stands

From the Library of Wow! eBook

ptg

24 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

for the user that logged in Windows. Of course you can change the default projects direc-
tory by opening the Options window (Tools, Options command), selecting the Projects and
Solutions item on the left side, and replacing the value for the Projects location text box.

Working with the Code Editor

The code editor in Visual Studio 2010 is now based on Windows Presentation Foundation.
This innovation introduces new features to the Visual Basic code editor, too. Some of the
new features are basically esthetical, whereas others are bound to enhance the coding
experience. In this chapter we see just a few of the new IDE features, because the other
ones are related to specific topics discussed later in the book. Particularly we now focus on
the zoom functionality in the code editor, the gradient selection, and IntelliSense.

Zooming the Code
You can zoom the code editor in and out by simply pressing the Ctrl key and moving the
mouse wheel up and down. This is a useful feature particularly if you are a presenter of
technical speeches, because you can enlarge the code without modifying Visual Studio
settings in the Options window. Figure 2.13 shows an example of this feature; notice how
the font for the code is greater than the default settings and the right scrollbar is larger
than normal.

FIGURE 2.13 The code editor zoom feature enables real-time enlarging and reducing of the
font size of the code without changing settings in Visual Studio.

From the Library of Wow! eBook

ptg

25Working with Projects and Solutions
2

IntelliSense Technology
IntelliSense is one of the most important technologies in the coding experience with Visual
Studio. IntelliSense is represented by a pop-up window that appears in the code editor
each time you begin typing a keyword or an identifier and shows options for auto-
completing words. Figure 2.14 shows IntelliSense in action when adding a new instruc-
tion in code.

To auto-complete your code typing, you have the following alternatives:

. Press the Tab key. Auto-completes your words and enables you to write other code.

. Press the Space key. Auto-completes your words adding a blank space at the end of
the added identifier and enables you to write other code.

. Press the Enter key. Auto-complete your words adding a couple of parentheses at the
end of the completed identifier and positions the cursor on a new line. Use this
technique when you need to invoke a method that does not require arguments.

. Press the left parenthesis. Auto-complete your words, adding a left parenthesis at the
end of the completed identifier and waits for you to supply arguments.

. Press Ctrl + Space in order to bring up the full IntelliSense listing.

IntelliSense has been improved since Visual Studio 2008. In fact, it will be activated just
when typing one character and is also active versus Visual Basic reserved words. Moreover,
it remembers the last member you supplied to an object if you invoke that particular

FIGURE 2.14 IntelliSense in action.

From the Library of Wow! eBook

ptg

26 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

object more than once. For example, if you use IntelliSense to provide the WriteLine
method to the Console object as follows:

Console.WriteLine()

and then if you try to invoke IntelliSense on the Console object again, it proposes as the
first alternative of the WriteLine method you supplied the first time. IntelliSense is impor-
tant because it lets you write code faster and provides suggestions on what member you
add to your code.

Working with Tool Windows
As in the previous versions, lots of the Visual Studio tools are provided via tool windows.
Tool windows are floating windows that can be docked to the IDE interface and are
responsible for a particular task. As a general rule, in the View menu you can find the tool
windows provided by Visual Studio 2010. Exceptions to this rule are the Test tool windows
and the analysis tool windows that can be respectively invoked from the Test and Analyze
menus. In this book we utilize several tool windows, and in this chapter you get an
overview of the most used. In particular, we now focus on Solution Explorer, Error List,
Properties, and Output windows. This is because these are the tool windows you will use
in each of your projects. Other tool windows will be analyzed when applied to specific
topics. To dock a tool window to the desired position in the IDE, just move the window
onto the most appropriate arrow in the graphical cross that you see on the IDE and then
release. Figure 2.15 represents this situation.

FIGURE 2.15 Docking a floating tool window to the IDE’s interface.

From the Library of Wow! eBook

ptg

27Working with Tool Windows
2

Visual Studio 2010 automatically positions some tool windows in specific places of the
IDE, but you can rearrange tool windows as much as you like. We can now discuss the
previously mentioned tool windows.

The Solution Explorer Window

Solution Explorer is a special tool window that enables managing solutions, projects, and
files in the projects or solution. It provides a complete view of what files compose your
projects and enables adding or removing files and organizing files into subfolders. Figure
2.16 shows how a WPF project is represented inside Solution Explorer.

As you can see, at the root level there is the project. Nested are code files, subfolders
containing pictures, data, and documents. You can also get a list of all the references in
the project. You use Solution Explorer for adding and managing items in your projects
other than getting a representation of which files constitute the project itself. By default,
Solution Explorer shows only the items that compose the project. If you need a complete
view of references and auto-generated code files, you need to click the Show All Files
button located on the top-left portion of the window. To manage your project’s items, you

FIGURE 2.16 An example of the Solution Explorer tool window.

From the Library of Wow! eBook

ptg

28 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

As you can see from Figure 2.17, the pop-up menu shows several tasks you can perform on
your projects or solutions. You can easily add new items by selecting the Add command;
you also can perform tasks against specific files if you right-click items in the solution
instead of the project’s name.

NOTE ABOUT ADDING ITEMS TO PROJECTS

In this book you will be asked lots of times to add new items to a project or to a solu-
tion, so you should keep in mind that this can be accomplished by right-clicking the pro-
ject name in Solution Explorer and then clicking the Add, New Item command from the
pop-up menu.

You can easily find Solution Explorer by pressing Ctrl+Alt+L if it is not available yet in the
IDE.

Error List Window

The Error List tool window can show a list of all messages, including warnings and infor-
mation, which are generated by Visual Studio during the development of your applica-
tions. Figure 2.18 shows the Error List tool window.

FIGURE 2.17 Solution items can be managed in Solution Explorer using the pop-up menu.

just need to right-click the project name and select the most appropriate command from
the pop-up menu that appears. Figure 2.17 shows this pop-up menu.

From the Library of Wow! eBook

ptg

29Working with Tool Windows
2

Typically the Error List window can show three kinds of messages:

. Error messages

. Warning messages

. Information messages

Error messages are related to errors that prevent your application from running, for
example, if your code cannot compile successfully. This can include any kind of problems
that Visual Studio or the background compiler may encounter during the development
process, for example, attempting to use an object that has not been declared, corrupted
auto-generated Windows Forms files that must be edited in the Visual Studio designer, or
corrupted Visual Studio files in situations that throw error messages that you can see in
the Error List. Another kind of message is a warning. Basically warnings are related to situ-
ations that will not necessarily prevent your code from being successfully compiled or
your application from running; in such cases warnings can be simply ignored. It’s good
practice to try to solve the problems that caused these messages to be shown. For example,
running the Code Analysis tool will throw warnings on code that is not compliant with
Microsoft guidelines for writing code. This means that the application will probably work,
but something in your code should be improved. In both error and warning messages, you
can be easily redirected to the code that caused the message simply by double-clicking the
message itself. You can also get some help about the message by right-clicking it and then
choosing the Show Error Help command from the pop-up menu.

Information messages are just to inform you about something. Usually information
messages can be ignored with regard to the code; although they could be useful for under-
standing what the IDE wants to tell us. By default, the Error List shows the three kinds of
messages together, but you could also choose to view only some of them, for example
error messages excluded and so on. To filter the Error List results, simply click on the tab
related to the kind of message you do not want to be shown. For example, click on the
Messages tab if you want information messages to be excluded by the errors list. To

FIGURE 2.18 The Error List tool window.

From the Library of Wow! eBook

ptg

30 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

include back information messages, click the same tab again. The Errors List can also be
easily invoked by pressing Ctrl+\, Ctrl + E.

The Properties Window

In the .NET development, everything has properties, which are peculiarities of a particular
item. Classes can have properties; files can have properties; and so on. For example, the
filename is a property of a file. You often need to set properties for your code, for .NET
objects you use in your code, and for your files. To make things easier, Visual Studio
provides a tool window named Properties window, which is a graphical tool for setting
items’ properties. Figure 2.19 represents the Properties window showing properties for a
Windows Form object.

Each time you select a property, you can see a description of that property at the bottom
of the window. We could define the Properties window’s structure as a two-column table,
in which the left column specifies the property and the right column gets or sets the
value for the property. Although you often need to set properties in code, the Properties
window provides a graphical way to perform this assignment and can be particularly
useful when designing the user interface or when you need to specify how a file must be

FIGURE 2.19 The Properties window.

From the Library of Wow! eBook

ptg

31My Project
2

The Output window is also interactive. To continue with the example of compiling a
process, if the compiler throws any errors, these are shown in the Output window. You
can click the Go to Next Message or Go to Previous Message buttons to navigate error
messages. After you do this, the current error message is highlighted. Each time you move
to another error message, you will be redirected to the code that caused the error. The
Output window can capture the output not only of the compiler but also of other tools
that Visual Studio needs to use, such as the debugger. By the way, you can get a list of the
available outputs by clicking the Show Output From combo box. After this first look to
the main tool windows, we can begin examining another important feature of the Visual
Studio IDE for Visual Basic: the My Project window.

My Project
My Project is a special tool that enables developers to set project properties. My Project is
a window that can be invoked by double-clicking the same named item in Solution

FIGURE 2.20 The Output window showing results of a build process.

packaged into the executable assembly. The Properties window can be easily invoked by
pressing F4.

Output Window

Visual Studio often recurs to external tools for performing some actions. For example,
when compiling your projects Visual Studio invokes the Visual Basic command-line
compiler, so the IDE captures the output of the tools it utilizes and redirects the output to
the Output window. Basically the Output window’s purpose is to show results of actions
that Visual Studio has to perform or that you require to be performed by Visual Studio.
For example, when you compile your projects, the Output window shows the results of
the build process. Figure 2.20 shows the Output window containing the results of the
build process of a Visual Basic project.

From the Library of Wow! eBook

ptg

32 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

My Project is organized in tabs; each tab represents a specific area of the project, such as
application-level properties, external references, deployment options, compile options,
debugging options, and many more. At the moment you don’t need to learn each tab of
My Project, because during the rest of the book we use it a lot of times, learning the
meaning and purpose of each tab when appropriate. What you instead need now is to

. Understand what My Project is.

. Remember how you can open it.

. Learn the usage of the Application tab, which we will discuss first.

FIGURE 2.21 The My Project window.

Explorer or by clicking the Project, Properties command (the menu item text also
includes the current project name). Figure 2.21 shows how My Project looks regarding the
sample application we previously created.

From the Library of Wow! eBook

ptg

33My Project
2

UNDERSTANDING MY PROJECT

Understanding My Project is also important for another reason: It provides most of the
infrastructure for the My namespace that will be discussed in Chapter 20, “The ‘My’
Namespace.” Most of settings that you can specify in My Project are then accessible
invoking My. In Chapter 3, “The Anatomy of a Visual Basic Project,” we describe the
structure of My Project, so carefully read how it is composed.

Application Tab

Each application has some settings. Application settings can be the executable’s name,
icon, or metadata that will be grabbed by the operating system, such as the program
version, copyright information, and so on. The purpose of the Application tab in My
Project is to provide the ability to edit these kinds of settings. The Application tab is
shown by default when you first open My Project. Figure 2.21 shows the Application tab.
Some settings are common to every kind of Visual Basic projects, whereas other ones are
related to specific project types. In this chapter you get an overview of the common
settings, whereas specific ones will be treated when required in the next chapters.

Assembly Name
The Assembly name field sets the name of the compiled assembly, that is, your executable.
By default, Visual Studio assigns this setting based on the project name, but you can
replace it as needed.

Root Namespace
This particular field sets the root level namespace identifier. Namespaces will be discussed
later in this book. You can think of the root namespace as the object that stores all that is
implemented by your project. According to Microsoft specifications, the root namespace
should be formed as follows: CompanyName.ProductName.Version. Basically this conven-
tion is optimal when developing class libraries or components but may not be necessary
when developing standalone executables. By default, Visual Studio sets the root name-
space based on the project name.

Application Type
This represents the application type (for example, Console application, Class Library,
Windows Forms application) and is automatically set by Visual Studio on the appropriate
choice. To ensure you will avoid any problems, you should not change the default setting.

Icon
This field allows setting an icon for the executable file. You can browse the disk and select
an existing .ico file as the executable icon.

From the Library of Wow! eBook

ptg

34 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

NOTE ABOUT ICONS

Assigning an icon to the executable file will not automatically assign icons to Windows
Forms windows or WPF windows when developing client applications. In such scenarios
you need to explicitly assign icons for each window, because the Icon item in the
Application tab will just set the icon for the executable.

Startup Object
By setting the Startup Object field, you can specify what object will be executed first when
running your application. For example, imagine you have a Windows Forms application
with more than one window. You might want to decide what window must be the appli-
cation’s main window. With the Startup Object field, you can make this decision. Notice
that the startup object changes based on the project type. For example, in a Windows
Forms application the startup object is a Windows Form object whereas in a Console
Application the default startup object is the Sub Main method. The name of the field also
changes based on the project type. In a Windows Forms application it is called Startup
Form, whereas in a Console Application it is called Startup Object.

CHANGING THE STARTUP OBJECT

Please be careful when changing the Startup object. A wrong choice could cause errors
on your application and prevent it from running.

Assembly Information
By clicking the Assembly Information button, you get access to a new window called
Assembly Information, as shown in Figure 2.22.

FIGURE 2.22 The Assembly Information window.

From the Library of Wow! eBook

ptg

35My Project
2

From this window you can specify several properties for your executable that will be
visible both to the .NET Framework and to the Windows operating system. Table 2.1
explains each property.

TABLE 2.1 Assembly Information Explained

Property Description

Title The title for your application, for example, “My First 2010 Program.”

Description The description for your application, for example, “My first program with
VB 2010.”

Company Your company name.

Product The product name, for example, “My First 2010 Program.”

Copyright Copyright information on the author.

Trademark Trademarks information.

Assembly version Specifies the version number for the assembly in the style
Major.Minor.Build.Revision. This information identifies the assembly for
the .NET Framework.

File version Specifies the version number for the executable in the style
Major.Minor.Build.Revision. This information is visible to the Windows
operating system.

GUID A Globally Unique Identifier assigned to the assembly. You can replace
with a new one or leave unchanged the GUID provided by the IDE.

Neutral language Specifies what local culture is used as the neutral language.

Make assembly
COM-Visible

.NET assemblies can be exposed to COM. By marking this flag you can
accomplish this task later.

The Assembly Information tool is important because it enables you to specify settings that
you want to be visible to your customers and other settings needed by the .NET
Framework. Behind the scenes, all this information is translated into Visual Basic code,
which is discussed more in Chapter 3.

View UAC Settings
With the introduction of Windows Vista, Microsoft introduced to the Windows operating
system an important component, known as User Access Control. When enabled, this mech-
anism requires the user to explicitly grant elevated permissions to applications being run.
Because of this and starting from Visual Studio 2008, you have the ability of specifying the
permissions level your application will require for the UAC. For example, if your applica-
tion needs to write to the Program Files folder (this is just an example and rarely a good
idea), you need to ask for elevated permissions to the UAC. You can specify UAC settings

From the Library of Wow! eBook

ptg

36 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

for your application by clicking the View Windows Settings button. At this point Visual
Studio generates a new XML manifest that will be packaged into your executable and that
you can edit within the IDE. This file contains information for UAC settings and for speci-
fying the operating systems that the application is designed to work for. Listing 2.2 shows
an excerpt of the default content of the manifest, related to the UAC settings.

LISTING 2.2 The UAC Manifest Content

<?xml version=”1.0” encoding=”utf-8”?>

<asmv1:assembly manifestVersion=”1.0” xmlns=”urn:schemas-microsoft-com:asm.v1”

xmlns:asmv1=”urn:schemas-microsoft-com:asm.v1” xmlns:asmv2=”urn:schemas-microsoft-

com:asm.v2” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<assemblyIdentity version=”1.0.0.0” name=”MyApplication.app”/>

<trustInfo xmlns=”urn:schemas-microsoft-com:asm.v2”>

<security>

<requestedPrivileges xmlns=”urn:schemas-microsoft-com:asm.v3”>

<!— UAC Manifest Options

If you want to change the Windows User Account Control level replace the

requestedExecutionLevel node with one of the following.

<requestedExecutionLevel level=”asInvoker” uiAccess=”false” />

<requestedExecutionLevel level=”requireAdministrator” uiAccess=”false” />

<requestedExecutionLevel level=”highestAvailable” uiAccess=”false” />

If you want to utilize File and Registry Virtualization for backward

compatibility then delete the requestedExecutionLevel node.

—>

<requestedExecutionLevel level=”asInvoker” uiAccess=”false” />

</requestedPrivileges>

</security>

</trustInfo>

</asmv1:assembly>

The requestedExecutionLevel element enables you to specify what permission level must
be requested to the UAC. You have three possibilities, explained in Table 2.2.

TABLE 2.2 UAC Settings

Setting Description

asInvoker Runs the application with the privileges related to the current user. If
the current user is a standard user, the application will be launched
with standard privileges. If the current user is an administrator, the
application will be launched with administrative privileges.

requireAdministrator The application needs administrative privileges to be executed.

highestAvailable Requires the highest privilege level possible for the current user.

From the Library of Wow! eBook

ptg

37Compiling Projects
2

To specify a privilege level, just uncomment the line of XML code corresponding to the
desired level. You can also delete the requestedExecutionLevel node in case you want to
use file and registry virtualization for backward compatibility with older versions of the
Windows operating system.

PAY ATTENTION TO UAC REQUIREMENTS

Be careful of the combination of activities that you need to execute on the target
machine and the user privileges, because bad UAC settings could cause big problems.
A good practice is selecting the asInvoker level and architecting your application in a
way that it will work on user-level folders and resources. Of course there can be situa-
tions in which you need deeper control of the target machine and administrator privi-
leges, but these should be considered exceptions to the rule.

The Application Framework
In the lower part of the screen you can see the Enable Application Framework group, a
feature that allows executing special tasks at the beginning and at the end of the applica-
tion lifetime. For Console applications it is not available but it is relevant to other kinds of
applications; for instance, in Windows Forms application it allows setting a splash screen
or establishing what form is the main application form. The application framework is
discussed in Chapter 20, “The ‘My’ Namespace.”

Compiling Projects
Compiling a project (or building according to the Visual Studio terminology) is the process
that produces a .NET assembly starting from your project and source code (according to
the .NET architecture described in Chapter 1, “Introducing the .NET Framework 4.0”). An
assembly can be a standalone application (.exe assembly) or a .NET class library (.dll
assembly). To compile your project into an assembly you need to click the Build
command in the Build menu. Notice that the Build command is followed by the name of
your project. When invoking this command, Visual Studio launches, behind the scenes,
the Visual Basic command-line compiler (Vbc.exe) and provides this tool all the necessary
command-line options. For solutions containing different kinds of projects, Visual Studio
launches the MSBuild.exe command-line utility that can compile entire solutions contain-
ing several projects written in different languages and of different types. MSBuild is
discussed in Chapter 51, “Advanced Compilations with MSBuild.” At the end of the build
process, Visual Studio shows a log inside the Output window. Figure 2.23 shows the
output log of the build process for the MyFirst2010Program sample application.

From the Library of Wow! eBook

ptg

38 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

The compilation log shows useful messages that help you understand what happened. In
this case there were no errors, but in situations in which the compilation process fails
because of some errors in the code, you will be notified of what errors were found by the
compiler. The Error List window shows a complete list of error messages and warnings and
enables you to easily understand where the errors happened by simply double-clicking the
error message. This operation redirects you to the code that generated the error. The
executable (or the executables, in case of more than one project in the solution) will be
put in a subfolder within the project’s directory, called Bin\Debug or Bin\Release, depend-
ing on the output configuration you choose. Configurations are discussed next.

Debug and Release Configurations

Visual Studio provides two default possibilities for compiling your projects. The first one is
related to the debugging phase in the development process and includes debug symbols
that are necessary for debugging applications. The second one is related to the end of the
development process and is the one you will use when releasing the application to your
customers. Both ways are represented by configurations. By default, Visual Studio offers two
built-in configurations: Debug and Release. When the Debug configuration is active, the
Visual Basic compiler generates debug symbols that the Visual Studio debugger can
process. Without these symbols, you cannot debug your applications with the Visual
Studio debugger. The Release configuration basically excludes debug symbols from the
build process, and it is the configuration you will use when building the final version of
your application, that is, the executable that you will release to your customers. To set the
current configuration you have two possibilities:

. Use the combo box located on the Visual Studio toolbar.

. Access the Compile options inside the My Project window.

Figure 2.24 shows the Compile tab in My Project.

FIGURE 2.23 The Output window shows the compilation process results.

From the Library of Wow! eBook

ptg

39Compiling Projects
2

FIGURE 2.24 Compile options in the My Project window.

At the top of the window you can find a combo box called Configuration. There you can
select the most appropriate configuration for you. By default, Visual Studio 2010 is set up
on the Debug configuration. You could also consider building a custom configuration
(although both Debug and Release can be customized instead of making new ones), which
will be discussed next. Basically for our purposes it’s suitable to leave unchanged the selec-
tion of the Debug configuration as the default, because we will study the Visual Studio
debugging features in depth.

Creating Custom Configurations with Configuration Manager
There can be situations in which both the Debug and Release configurations are not
enough for your needs. As we mentioned in the previous paragraph, with Visual Studio
2010 you can also create your custom configuration. To accomplish this you need to
access the Configuration manager tool (see Figure 2.25), which is reachable using the
Configuration manager command in the Build menu. There you can edit an existing
configuration or create a new one.

From the Library of Wow! eBook

ptg

40 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

To create a new custom configuration, you can perform the following steps:

1. Click the Active Solution Configuration combo box and select the New option.

2. In the New Solution Configuration window, specify a name for the new configura-
tion, and select an existing configuration (such as Debug) from which settings will
be copied. Figure 2.26 shows an example.

3. When done, click Close.

4. Click the Advanced Compiler Options button in the Compile tab and specify what
compile options must affect the new configuration. For example, you could decide
to affect just compilations against 64-bit processors, so you just need to change the
value in the Target CPU combo box. This is the point at which you can modify your
real configuration settings and how your project should be built.

FIGURE 2.25 The Configuration Manager.

FIGURE 2.26 Creating a custom configuration that imports settings from an existing one.

From the Library of Wow! eBook

ptg

41Compiling Projects
2

Such modification influences just the new configuration. Moreover, if you decide to use the
new configuration, you will have a new subfolder under the Bin subfolder in your project’s
main folder, which takes the name of your custom configuration and that contains the
output of the build process made with that configuration. For our MyFirst2010Program
sample, the project folder is named MyFirst2010Program and contains the Bin subfolder,
which also contains the default Debug and Release subfolders. With your custom configura-
tion, a new TestConfiguration subfolder will be available under Bin.

Background Compiler
Visual Basic 2010 offers a great feature: the background compiler. Basically, while you write
your code the IDE invokes the Visual Basic compiler that will immediately compile the
code and notify you about errors that occur, writing messages in the Error List window.
This is possible because the Visual Basic compiler can compile your code on-the-fly while
you type. As you can imagine, this feature is important because you will not necessarily
need to build your project each time to understand if your code can be successfully
compiled. Typical examples of the background compiler in action are error messages
shown in the Error List window when typing code. Refer to Figure 2.19 to get an idea of
this feature. You can just double-click the error message to be redirected to the line of
code that caused the error. Also, the IDE underlines code containing errors with red squig-
gly lines so that it is easier to understand where the problem is.

Other Compile Options

Visual Studio 2010 enables developers to get deep control over the build process. With
particular regard to Visual Basic, you can control other compile options that are specific to
the language. Table 2.3 lists them in detail.

TABLE 2.3 Visual Basic Compile Options

Option Meaning

Option
Explicit

When set to On, the developer must declare an object before using it in code.

Option Strict When set to On, the developer must specify the type when declaring objects. In
other words, Object is not automatically assigned as the default type. Moreover,
Option Strict On disallows late binding and conversions from one type to another
where there is a loss of precision or data. You should always set Option Strict On
unless strictly required.

Option
Compare

Determines which method must be used when comparing strings (Binary or Text).
The Binary option enables the compiler to compare strings based on a binary
representation of the characters while the Text option enables string comparisons
based on textual sorting, according to the local system international settings.

Option Infer When set to On, enables local type inference (this feature will be discussed in
Chapter 21, “Advanced Language Features”).

From the Library of Wow! eBook

ptg

42 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

OPTION STRICT ON

By default, Option Strict is Off. You can set it to On each time you create a new project
but you can also change the default setting by clicking Tools, Options and then in the
Options dialog expanding the Projects and Solutions node, finally selecting the VB
Defaults element and changing the default setting.

Options shown in Table 2.3 are also considered by the background compiler, so you will
be immediately notified when your code does not match these requirements. You can
also specify how the Visual Basic compiler has to treat some kind of errors. This is what
you see next.

Warning Configurations
Warning configurations state how the Visual Basic compiler should notify the developer of
some particular errors, if just sending warning messages (which will not prevent from
compiling the project) or error messages (which will instead prevent from completing the
build process).

DO NOT IGNORE WARNING MESSAGES

Even if warning messages will not prevent the completion of the build process, they
should never be blindly ignored. They could be suggestions of potential exceptions at
runtime. You should always accurately check why a warning message is thrown and,
possibly, solve the issue that caused the warning. A typical example of when warnings
could be ignored is when running code analysis on code that does not need to be com-
pliant with Microsoft specifications (for example, the user interface side of a Windows
Forms application). In all other situations, you should be careful about warnings.

Depending on how you set the Visual Basic compile options discussed in the previous
paragraph, Visual Studio will propose some default scenarios for sending notifications
(and, consequently, influencing the build process). Table 2.4 lists the available warning
conditions.

TABLE 2.4 Warning Conditions Details

Condition Description

Implicit conversion Checked when trying to assign an object of a type to an object of
another type. For example the following code will cause the
condition to be checked (implicit conversion from Object to
String):
Dim anObject As Object = “Hi!”

Dim aString As String = anObject

From the Library of Wow! eBook

ptg

43Compiling Projects
2

TABLE 2.4 Continued

Condition Description

Late binding Checked when trying to assign at runtime a typed object to
another one of type Object.

Implicit type Checked when not specifying the type for an object declaration.
If Option Infers is on, this condition is checked only for declara-
tions at class level. For example, the following class level decla-
ration would cause the condition to be checked:
Private Something

This condition is determined by Option Strict On.

Use of variable prior of
assignment

Checked when attempting to use a variable that doesn’t have a
value yet. This is typical with instance variables. The following
code causes this condition to be checked:
Dim p As Process

Console.WriteLine

(p.ProcessName.ToString)

In this case p must get an instance of the Process object before
attempting to use it.

Function/operator without
return value

Checked when a Function method or an operator definition
performs actions without returning a value.

Unused local variable Checked when a variable is declared but never used. It’s a good
practice to remove unused variables both for cleaner code and
for memory allocation.

Instance variable accesses
shared members

Checked when trying to invoke a member from an instance
object that is instead a shared member.

Recursive operator or prop-
erty access

Checked when trying to use a member (properties or operators)
inside the code block that defines the member itself.

Duplicate or overlapping
catch blocks

Checked when a Catch clause inside a Try..Catch..End Try
code block is never reached because of inheritance. The follow-
ing code causes the condition to be checked, because the
FileNotFoundException inherits from Exception and therefore
should be caught before the base class; otherwise Exception
would be always caught before derived ones:
Try

Catch ex As Exception

Catch ex As FileNotFoundException

End Try

From the Library of Wow! eBook

ptg

44 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

You also have the ability to change single notifications; just select the most appropriate
notification mode for your needs. Based on the explanations provided in Table 2.4, be
careful about the consequences that this operation could cause. If you are not sure about
consequences, the best thing is leaving default options unchanged. There are also three
other compile options, which are listed at the bottom of the Compile tab and that are
described in Table 2.5.

Advanced Compile Options

You can specify advanced settings for the build process. To accomplish this, you need to
click the Advanced Compile Options button.

COMPILER SETTINGS AND CONFIGURATIONS

Advanced compiler settings are at the configuration level. This means that the Debug
configuration has its own advanced settings and the Release configuration has its own
settings, and your custom configurations will have their own settings. Please remember
this when providing advanced settings.

Figure 2.27 shows the Advanced Compiler Settings window.

Here you can set compiler options to drive the build process. We now discuss options in
details.

Optimizations
The Optimization tab offers options that would potentially lead to building a smaller and
faster executable. This tab is composed of four options that we discuss.

Remove Integer Overflow Checks When you make calculations in your code against
Integer or Integer-style data types, the Visual Basic compiler checks that the result of the
calculation falls within the range of that particular data type. By default, this option is
turned off so that the compiler can do this kind of check. If you flag this check box, the

TABLE 2.5 Additional Compile Options

Option Description

Disable all warnings. The Visual Basic compiler will not produce warning messages.

Treat all warnings as
errors.

The Visual Basic compiler will treat all warning messages as if they
were errors.

Generate XML documen-
tation file.

When flagged, enables Visual Studio to generate an XML file for docu-
menting the source code. If XML comments are included in the code,
this file also contains description and detailed documentation for the
code. This is useful when you need to automate the documentation
process for your class libraries.

From the Library of Wow! eBook

ptg

45Compiling Projects
2

FIGURE 2.27 The Advanced Compiler Settings window.

compiler will not check for such overflows, and the application execution may result
faster. Be careful about this choice, especially if your code implements calculations.

Enable Optimizations When this check box is flagged, the compiler basically removes
some opcodes that are required for interacting with the debugger. Moreover, the Just-in-time
compilation is optimized because the runtime knows that a debugger will not be attached.
On the other hand, this can result in major difficulties when debugging applications. For
example, you might not use breakpoints at specific lines of code and, consequently,
perform debugging tasks although the optimization process could produce a smaller and
faster executable.

DLL Base Address This option is available when developing class libraries and user
controls and provides the ability to specify the Base Address for the assembly. As you may
know, the base address is the location in memory where a Dll is loaded. By default, Visual
Studio assigns a base address and represents it in hexadecimal format. If you need to
provide a custom base address, this is the place where you can do it.

Generate Debug Information Generating debug information when building your project
allows you to use the debugger against your application. By default this option is set to
Full, which means that full debug information is generated so that the debugger can be
fully used to debug an application. (This is the case of the Debug configuration.) If you set
this option to None, no debug information will be generated, whereas if you set this
option to pdb-only, the compiler will produce just a .pdb file containing debug symbols
and project state information.

From the Library of Wow! eBook

ptg

46 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

Compilation Constants
You can use compilation constants to conditionally compile blocks of code. Conditional
compilation relies on the evaluation to True of constants that will be included in the final
assembly. The Visual Basic compiler defines some default constants that you can evaluate
within your code, and you also have the ability of declaring custom constants. In the
Advanced Compiler Settings window, you can specify whether the compiler needs to
include the DEBUG and TRACE constants. The first one enables you to understand if the
application is running in debug mode; in other words, if the application has been
compiled using the Debug configuration. The second one is also related to debugging
tasks; particularly, the .NET Framework exposes a class called Trace that is used in debug-
ging and that can send the tracing output to the Output window when the TRACE
constant is defined. If not, no output is generated, because invocations versus the Trace
class are ignored. A full list of built-in constants can be found at MSDN Library at
http://msdn.microsoft.com/en-us/library/dy7yth1w(VS.100).aspx. Evaluating constants in
code is quite simple. You can use the #If, #Else, #ElseIf, and #EndIf directives. For
example, if you want to evaluate whenever an application has been compiled with the
Debug configuration, you could write the following code:

#If DEBUG Then

Console.WriteLine(“You are in Debug configuration”)

#Else

Console.WriteLine(“You are not in Debug configuration”)

#End If

which essentially verifies if the constant is defined and takes some action at that point. In
our example, if the DEBUG constant is defined in the assembly, this means that it has
been built via the Debug configuration.

Custom Constants You can also define custom constants. This can be basically accom-
plished in two ways. The first is adding custom constants in the appropriate field of the
Advanced compiler settings window. Each constant must have the form of Name=”Value”
and constants are separated by commas. The second way for providing custom constants
is adding a #Const directive in your code. For example, the following line of code

#Const TestConstant = True

defines a constant named TestConstant whose value is set to True. The big difference in
using a #Const directive is that it defines just private constants that have visibility within
the code file that defines them.

Generate Serialization Assemblies
As we discuss in Chapter 43, “Serialization,” serialization in .NET development is a tech-
nique that allows persisting the state of an object. Among several alternatives, this can be
accomplished using a class called XmlSerializer. In such situations, the Visual Basic
compiler can optimize applications that use the XmlSerializer class, generating addi-
tional assemblies for better performances. By default, this option is set to Auto so that

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/dy7yth1w(VS.100).aspx

ptg

47Debugging Overview
2

Visual Studio generates serialization assemblies only if you are effectively using Xml serial-
ization in your code. Other options are On and Off.

Target CPU
You can specify what CPU architecture your applications will target. You can choose
among 32-bit architectures (x86), 64-bit architectures (x64), Itanium processors, or simply
target any architecture (AnyCPU).

Target Framework
From the Target Framework combo box, you can select the version of the .NET Framework
that your application will target. The main difference with the same selection that you can
do when creating a new project is that here you can target the .NET Framework Client
Profile for versions 4.0, 3.5 Service Pack 1, and 3.5 Server Core. The .NET Framework
Client Profile is a subset of the .NET Framework that provides the infrastructure for client
applications and that can be included in your deployments instead of the full version. The
Client Profile is discussed in Chapter 54, “Setup and Deployment Projects for Windows
Installer.”

Debugging Overview
In this section you get an overview of the debugging features in Visual Studio 2010 for
Visual Basic applications. Although the debugger and debugging techniques are detailed in
Chapter 5, “Debugging Visual Basic 2010 Applications,” here we provide information on
the most common debugging tasks, which is something that you need to know in this
first part of your journey through the Visual Basic programming language.

Debugging an Application

To debug a Visual Basic application, you basically need to perform two steps:

. Enable the Debug configuration in the compile options.

. Press F5 to start debugging.

By pressing F5, Visual Studio runs your application and attaches an instance of the debug-
ger to the application. Because the Visual Studio debugger needs the debug symbols to
proceed, if you do not choose the Debug configuration, you cannot debug your applica-
tions. The instance of the debugger detaches when you shut down your application.

TIP

As an alternative to pressing F5, you can click the Start Debugging button on the
Visual Studio standard toolbar.

The debugger monitors your application’s execution and notifies for runtime errors; it
allows you to take control over the execution flow as well. Figure 2.28 shows our sample

From the Library of Wow! eBook

ptg

48 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

application running with the Visual Studio debugger attached. In the bottom area of the
IDE; you can notice the availability of some new windows, such as Locals, Watch 1, Watch
2, Call Stack, Breakpoints, Command Window, Immediate Window, and Output.

The Visual Studio debugger is a powerful tool; next you learn the most important tasks in
debugging applications. Chapter 5 instead dives deeper into the debugger instrumentation
for complex debugging tasks. Before explaining the tooling, it is a good idea to modify the
source code of our test application so that we can cause some errors and see the debugger
in action. We could rewrite the Sub Main method’s code, as shown in Listing 2.3.

LISTING 2.3 Modifying the Sub Main for Debugging Purposes

Sub Main()

‘A text message

Dim message As String = “Hello Visual Basic 2010!”

FIGURE 2.28 Our sample application running with an attached instance of the Visual Studio
debugger.

From the Library of Wow! eBook

ptg

49Debugging Overview
2

Console.WriteLine(message)

‘Attempt to read a file that does not exist

Dim getSomeText As String =

My.Computer.FileSystem.ReadAllText(“FakeFile.txt”)

Console.WriteLine(getSomeText)

Console.ReadLine()

End Sub

NEW TO VISUAL BASIC .NET?

If you are not an existing Visual Basic .NET developer, you may not know some of the
objects and keywords shown in the code listings of this chapter. The code is the sim-
plest possible, should be quite easy to understand, and is provided with comments.
The next chapters guide you to the details of the programming language, so everything
used here will be explained. At the moment, it is important for you to focus on the
instrumentation more than on the code.

The code simply declares a message object of type String, containing a text message. This
message is then shown in the Console window. This is useful for understanding break-
points and other features in the code editor. The second part of the code will try to open a
text file, which effectively does not exist, and store its content into a variable called
getSomeText of type String. We need this to understand how the debugger catches errors
at runtime, together with the edit and continue feature.

Breakpoints and Data Tips

Breakpoints enable you to control the execution flow of your application. Basically a
breakpoint breaks the execution of the application at the point where the breakpoint itself
is placed so that you can take required actions (situation known as break mode). You can
then resume the application execution. To place a breakpoint on a specific line of code,
just place the cursor on the line of code you want to debug and then press F9.

TIP

To add a breakpoint, you can also right-click the line of code you want to debug and
select the Breakpoint, Insert breakpoint command from the pop-up menu or just click
the leftmost column in the code window.

A breakpoint is easily recognizable, because it highlights in red the selected line of code
(see Figure 2.29).

From the Library of Wow! eBook

ptg

50 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

To see how breakpoints work, we can run the sample application by pressing F5. When
the debugger encounters a breakpoint, it breaks the execution and highlights in yellow the
line of code that is being debugged, as shown in Figure 2.30, before the code is executed.

FIGURE 2.30 When encountering a breakpoint, Visual Studio highlights the line of code that
is currently debugged.

FIGURE 2.29 Placing a breakpoint in the code editor.

From the Library of Wow! eBook

ptg

51Debugging Overview
2

FIGURE 2.31 Using the Step Into command enables us to check if the variable has been
assigned correctly.

If you take a look at Figure 2.31, you notice a couple of amazing things. First, if you pass
with the mouse pointer over the message variable, IntelliSense shows the content of the
variable itself, which at the moment contains no value (in fact is set to Nothing). This
feature is known as Data Tips and is useful if you need to know the content of a variable or
of another object in a particular moment of the application execution. Another interesting
feature is that the Call Stack window shows that a breakpoint is currently available and
encountered on the specified line of code. The Call Stack window is discussed in Chapter 5.

THE VISUAL STUDIO HISTORICAL DEBUGGER

If you run the Microsoft Visual Studio 2010 Ultimate edition, you notice also another
window called Debug History that is a new feature of Visual Studio 2010. This window
is known as the Visual Studio Historical Debugger and is specific to the Visual Studio
Team System instrumentation and will be discussed in Chapter 57, “Introducing the
Visual Studio Extensibility.”

You can then execute just one line of code at a time, by pressing F11. For example,
supposing we want to check if the message variable is correctly initialized at runtime, we
could press F11 (which is a shortcut for the Step Into command in the Debug menu). The
line of code where the breakpoint is placed will now be executed, and Visual Studio will
highlight the next line of code. At that point you can still pass the mouse pointer over the
variable to see the assignment result, as shown in Figure 2.31.

From the Library of Wow! eBook

ptg

52 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

FIGURE 2.32 The Visual Studio debugger encounters a runtime error.

When you finish checking the assignments, you can resume the execution by simply
pressing F5. At this point the execution of the application continues until another break-
point or a runtime error is encountered. We discuss this second scenario next.

About Runtime Errors

Runtime errors are particular situations in which an error occurs during the application
execution but is not predictable by the developer or because of programming errors that
are not visible at compile time. Typical examples of runtime errors are when you create an
application and you give users the ability to specify a filename, but the file is not found
on disk, or when you need to access a database and pass an incorrect SQL query string.
Obviously in real-life applications you should predict such possibilities and implement the
appropriate error handling routines (discussed in Chapter 6, “Handling Errors and
Exceptions”), but for our learning purposes about the debugger, we need some code that
voluntarily causes an error. Continuing the debugging we began in the previous para-
graph, the application’s execution resumption causes a runtime error, because our code is
searching for a file that does not exist. When the error is raised, Visual Studio breaks the
execution as shown in Figure 2.32.

As you can see, the line of code that caused the error appears highlighted. You also can see
a pop-up window that shows some information about the error. In our example, the code
searches for a file that does not exist, so a FileNotFoundException is thrown and was not

From the Library of Wow! eBook

ptg

53Debugging Overview
2

FIGURE 2.33 The View Detail window enables developers to examine deeply what caused an
exception.

handled by error handling routines; therefore, the execution of the application is broken.
Visual Studio also shows a description of the error message. (In our example it communi-
cates that the code could not find the FakeFile.txt file.) Visual Studio also shows some
suggestions. For example, the Troubleshooting tips suggest some tasks that you could do
at this point, such as verifying that the file exists in the specified location, checking the
path name or, last, getting general help about the error. Particularly, by clicking such a tip
you are redirected to the MSDN documentation about the error. This can be useful when
you don’t exactly know what an error message means. There are other options within the
Actions group. The most important is the one named View Detail. This enables you to
open the View Detail window, which is represented in Figure 2.33.

Notice how the StackTrace item shows the hierarchy of calls to classes and methods that
effectively produced the error. Another interesting item is the InnerException. In our
example it is set to Nothing, but it’s not unusual for this item to show a kind of excep-
tions tree that enables you to better understand what actually caused an error. For
example, think of working with data. You might want to connect to SQL Server and fetch
data from a database. You could not have sufficient rights to access the database, and the
runtime might return a data access exception that does not allow you to immediately
understand what the problem is. Browsing the InnerException can let you understand
that the problem was caused by insufficient rights. Going back to the code, this is the
point where you can fix it and where the Edit and Continue features comes in.

Edit and Continue

The Edit and Continue features enables you to fix bad code and resume the application
execution from the point where it was broken, without the need of restarting the appli-
cation. Basically you just need to run the application by pressing F5; then you can break
its execution by pressing Ctrl+Alt+Break or selecting the Break All command in the
Debug menu.

From the Library of Wow! eBook

ptg

54 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

FIGURE 2.34 The sample application running correctly after fixing errors.

AVAILABILITY OF EDIT AND CONTINUE

Generally you can use the Edit and Continue features, but there are situations in which
you will not. For example, if fixing your code may influence the general application
behavior, you need to restart the application. Also, Edit and Continue is not available
when running configurations that target 64-bits CPUs.

In our example we need to fix the code that searches for a not existing file. We can replace
the line of code with this one:

Dim getSomeText As String = “Fixed code”

This simply replaces the search of a file with a text message. At this point we can press F5
(or F11 if we want to just execute the line of code and debug the next one) to resume the
execution. Figure 2.34 shows how the application now runs correctly. The Edit and
Continue feature completes the overview of the debugging features in Visual Studio. As we
mentioned before, this topic is covered in detail in Chapter 6.

After this brief overview of the debugging features in Visual Studio 2010, it’s time to talk
about another important topic for letting you feel at home within the Visual Studio 2010
IDE when developing applications: getting help and documentation.

Browsing the Visual Basic and .NET Documentation
The .NET Framework Base Class Library is very large, and remembering all the objects that
you can use in your applications (or the ones that .NET Framework relies on) is not possi-
ble. What is instead important is to know where to search for information. You have
different tools available to browse the .NET Framework and its documentation, for Visual
Basic, too. Because the goal of this chapter is to provide information on the primary tools
you need for developing Visual Basic applications, getting help with the language and
with the tooling is absolutely one of the primary necessities, as discussed next.

From the Library of Wow! eBook

ptg

55Browsing the Visual Basic and .NET Documentation
2

Online Help and the MSDN Library

Visual Studio 2010 ships with the MSDN Library, which is the place where you can find
documentation for Visual Basic 2010 and the .NET Framework 4.0. There are basically two
ways to access the MSDN Library: offline and online. To access the MSDN Library offline
you have the following alternatives:

. Click the View Help command from the Help menu in Visual Studio.

. Press F1 from wherever you are.

. Open the Microsoft Visual Studio 2010 Documentation shortcut that is available
in Windows’s Start, All Programs, Microsoft Visual Studio 2010 menu.

. Open the MSDN Library shortcut that is available in Windows’s Start, All Programs,
Microsoft Developer Network menu.

If you are writing code or performing a particular task on a tool within the IDE, pressing
F1 is the best choice because you will be redirected to the help page related to that
instruction, code statement, or tool. If you are instead searching for information about a
particular technology or framework, such as WPF or the Visual Studio Tools for Office, you
could consider one of the other choices. To access the MSDN Library online, you just need
an Internet connection. Then you can specify to always use the on-line help by selecting
Help, Manage Help Settings and then click Choose Online or Local Help, or manually
open one of the following websites, which are the main points of interest for a Visual
Basic developer:

. The MSDN Library portal at http://msdn.microsoft.com/en-us/library/default.aspx

. The .NET Framework reference at http://msdn.microsoft.com/en-
us/library/w0x726c2(VS.100).aspx

. The Visual Basic Developer Center at http://msdn.com/vbasic

You can also quickly find information on particular objects using built-in tools, such as
the Object Browser.

Object Browser Window

The Object Browser is a special tool window that enables you to browse the .NET
Framework class library. You can get a hierarchical view of the Base Class Library and of all
the types defined in your solution, including types defined in referenced external assem-
blies. The Object Browser is useful because you can understand how a type is defined,
what members it exposes, what interfaces it implements and what other classes it derives
from. If the types are documented, you can get a description for each object or member.

TIP

You can activate the Object Browser by pressing Ctrl+ALT+J.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2(VS.100).aspx
http://msdn.microsoft.com/en-us/library/w0x726c2(VS.100).aspx
http://msdn.com/vbasic

ptg

56 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

FIGURE 2.35 The Object Browser enables exploring .NET objects showing information.

Figure 2.35 represents, as an example, the Object Browser showing members of the
System.Windows.ContentElement class.

The right side of the window lists methods and properties exposed by the selected object.
When you click on a method or on a member of the object in the left side of the window,
a short description of the object should appear in the bottom-right side of the Object
Browser. If the description is not useful enough to understand the meaning of an object or
of one of its members, you can just press F1, and Visual Studio shows the online help (if
available) for the object or member. The Object Browser also provides links to objects used
by the one you are exploring. Considering the example shown in Figure 2.35, you not
only can see the description of a method, but you can also click on the parameters’ identi-
fiers to be redirected to the definition of the parameter. The Object Browser can also be
invoked when writing code, as discussed next.

Invoking the Object Browser from the Code Editor
Often you need to know how particular .NET objects or members are structured or how
they work. Visual Studio 2010 provides the ability of invoking the Object Browser directly
from the code editor, by just right-clicking the object you want to browse and selecting
the Go to Definition command from the pop-up menu. For example, imagine you want
to know how the Console class is defined. To accomplish this, you can revisit the
MyFirst2010Program example. When in the code editor, right-click the Console object.
Figure 2.36 shows the pop-up menu.

By doing this, Visual Studio opens the Object Browser that automatically selects the Console
class, showing also its methods on the right side of the screen (see Figure 2.37 for details).

From the Library of Wow! eBook

ptg

57Browsing the Visual Basic and .NET Documentation
2

FIGURE 2.36 The Object Browser can be invoked from the code editor by clicking the Go to
Type Definition command.

FIGURE 2.37 The Object Browser automatically shows the definition for the type you selected
in the code editor.

From the Library of Wow! eBook

ptg

58 CHAPTER 2 Getting Started with the Visual Studio 2010 IDE

This technique works with shared classes or, more generally, with declarations of nonin-
stance classes, but there are situations in which you may want to learn about data types or
instance members’ definitions. For example, consider the following code:

Dim text As String

text = “Hi!”

If you try to run the Go to Definition command for the text identifier, you will be redi-
rected to the first line of code, which effectively defines the text object. But what if you
want to browse the String object? Fortunately there is another command that you can
choose in such situations, which is named Go to Type Definition and that is still available
in the pop-up menu. Invoking Go to Type Definition redirects to the definition of the
type that characterizes the object you declared (in our example, String). The result will be
the same as in Figure 2.37.

NOTE

Instance and shared members is discussed in detail in Chapter 7, “Class
Fundamentals.”

Although the Object Browser’s purpose is not typically to provide help, definitely it is a
good place for learning about .NET objects, both if you need information on their struc-
ture and if you need descriptions on their usage.

Summary
In this chapter we discussed basic things you need to know as a Visual Basic developer to
feel at home within the Visual Studio 2010 Integrated Development Environment. Tasks
such as creating projects, compiling projects, debugging applications, and searching for
documentation are the most common in the developer life, and this chapter offers a fast
way to understand all the primary tools you need for building applications with Visual
Basic 2010. Now that you know how you can move inside the IDE, it’s time to begin
working with the Visual Basic programming language.

From the Library of Wow! eBook

ptg

CHAPTER 3

The Anatomy of a Visual
Basic Project

IN THIS CHAPTER

. Brief Overview of Types and
Members

. Visual Basic 2010 Reserved
Keywords

. Understanding Project Files

. Understanding References

Although you can create lots of kinds of projects both for
Windows and the Web with Visual Basic 2010, there is a
common set of files for each project. In this chapter you
learn which files give the structure to each project and how
the files influence the building of an application. You also
get an overview of references, namespaces, classes, modules,
and Visual Basic keywords.

Brief Overview of Types and
Members
In the second part of this book, we discuss important topics
related to the object-oriented programming with Visual
Basic 2010, and we explore features such as types, classes,
modules, namespaces, interfaces, and class members. Before
going into this, it would be a good idea to have at least an
overview of classes, modules, namespaces, and class
members because you will find these objects in code exam-
ples or in Visual Basic features that are shown prior to
Chapter 7, “Class Fundamentals.”

IF SOMETHING IS NOT CLEAR

The following is only a brief overview of some impor-
tant topics. Don’t be afraid if any of the following con-
cepts are not clear or worry if things seem small.
Starting in Chapter 4, “Data Types and Expressions,”
and continuing through Part 2, “Object-Oriented
Programming with Visual Basic 2010,” of this book, all
concepts are discussed in detail.

From the Library of Wow! eBook

ptg

60 CHAPTER 3 The Anatomy of a Visual Basic Project

Classes

Classes in .NET development represent objects whose declaration is enclosed within
Class..End Class blocks. The following is an example of class declaration:

Class Person

End Class

Classes are reference types (explained more in Chapter 4) and can expose members that
influence the object’s behavior, such as properties and methods. Classes can implement
interfaces and they can also be static (or Shared according to the VB terminology) and can
provide support for inheritance.

Properties

Properties are characteristics of a type. For example, the previously shown class Person
could have two properties, such as the first name and the last name:

Class Person

Property FirstName As String

Property LastName As String

End Class

PROPERTIES IN VISUAL BASIC 2010

Visual Basic 2010 introduces a new syntax for properties known as auto-implemented
properties. To declare properties you need just the Property keyword without explicitly
specifying getters and setters. This is discussed further in Chapter 7.

Methods

Methods are the .NET representation of what in other programming environments you
define as functions and procedures. A method can be a member of classes, structures, and
modules. Methods that return a value are represented by Function..End Function blocks,
such as the following:

Function DoSomething() As String

Return “A text message”

End Function

Methods that do not return a value are represented by Sub..End Sub blocks, such as the
following:

Sub DoSomething()

‘write your code here

End Sub

From the Library of Wow! eBook

ptg

61Brief Overview of Types and Members

Methods can receive parameters that can be processed within code blocks. Such parame-
ters are called, using .NET terminology, arguments. The following code block shows an
example of an argument named message:

Sub DoSomething(ByVal message As String)

Console.Writeline(message)

End Sub

Modules

Modules are defined within a Module..End Module code block. Modules are basically
Shared classes but, unlike classes, they cannot implement interfaces. The following is an
example of a module:

Module Module1

Sub DoSomething()

‘Code goes here

End Sub

End Module

Members defined inside modules don’t require the name of the module when invoked.

Structures

Structures are .NET objects represented by a Structure..End Structure code block.
Structures are value types, which are described more in Chapter 4, and for classes, can
expose properties, methods, and so on. The following is an example of a structure declara-
tion:

Structure SomeValues

Property FirstValue As Boolean

Property SecondValue As Integer

Sub DoSomething()

End Sub

End Structure

Inheritance

Inheritance is one of the most important features of the .NET Framework. A class can
inherit or derive from another class, meaning that the new class can have all properties,
methods, and members exposed by the first class, which is called base class, and can then

3

From the Library of Wow! eBook

ptg

62 CHAPTER 3 The Anatomy of a Visual Basic Project

define its own members. Inherited members can then be overridden to adapt their behav-
ior to the new class’ context. The .NET Framework provides one-level inheritance,
meaning that a class can inherit from one other class per time. Each class derives implicitly
from System.Object. The Inherits keyword is used to inherit classes. The following code
provides an example of a base class named Person and of a derived class named Customer:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

‘A new definition of System.Object.ToString

Public Overrides Function ToString() As String

Return String.Concat(FirstName, “ “, LastName)

End Function

End Class

Public Class Customer

Inherits Person

Public Property CompanyName As String

Public Overrides Function ToString() As String

Return CompanyName

End Function

End Class

In the preceding example the Person class overrides (that is, provides a new definition of)
the System.Object.ToString method. The Customer class exposes a new CompanyName
property whereas, via inheritance, it exposes the FirstName and LastName properties.
Finally, the class also overrides the Person.ToString method. Inheritance is discussed in
Chapter 12. “Inheritance.”

Namespaces

A namespace is basically a container of types. This means that one namespace can contain
multiple classes, multiple modules, multiple interfaces, multiple structures, and so on. The
following is an example of a namespace exposing two classes, one module, one structure,
and one interface:

Namespace Test

Class Person

Property FirstName As String

Property LastName As String

End Class

From the Library of Wow! eBook

ptg

63Brief Overview of Types and Members

Class Employee

Inherits Person

Property EmployeeID As Integer

End Class

Module Module1

Sub DoSomething()

End Sub

End Module

Interface ITest

Sub TakeATest()

End Interface

Structure SomeValues

Property FirstValue As Boolean

Property SecondValue As Integer

End Structure

End Namespace

Namespaces are important for a better organization of types, but there is another reason.
You could have two classes with the same name (for example, Employee) but with different
properties. Namespaces enable you to avoid conflicts in such scenarios. You can access
types exposed by a namespace by simply writing its identifier followed by a dot and then
by the type name. For example, if you want to invoke the method DoSomething in
Module1 you could write the following line of code:

Test.Module1.DoSomething()

Namespaces are described in detail in Chapter 9, “Organizing Types Within Namespaces.”

Accessing Members

Unless you declare shared objects, you need to instantiate classes and structures before
you can use members and store information within those objects. You instantiate a class
declaring a variable and using the New keyword as in the following line of code:

Dim testPerson As New Person

Then you can set properties for the new instance or eventually invoke other members
such as methods. For example, you could initialize testPerson’s properties as follows:

testPerson.FirstName = “Alessandro”

testPerson.LastName = “Del Sole”

3

From the Library of Wow! eBook

ptg

64 CHAPTER 3 The Anatomy of a Visual Basic Project

Basically when you need to invoke a member of a class, you type the name of the instance
(in this example testPerson) followed by a dot and by the name of the member. For
shared members, you just write the name of the class or structure followed by a dot and
by the name of the member.

INITIALIZING MEMBERS

Visual Basic 2010 offers an alternative way for initializing members’ valued when instan-
tiating classes. This feature is known as Object Initializers and is discussed in Chapter 7.

Imports Directives

As we saw before, namespaces can expose objects that expose members. Moreover, name-
spaces can expose nested namespaces, exposing objects and so on. You often need to
access members of objects exposed by nested namespaces. To avoid the need of typing the
entire name of long (or nested) namespaces and writing long lines of code, the Visual
Basic language offers the Imports directive. For example, consider the following lines of
code that open a file on disk:

Dim myFile As New System.IO.FileStream(“C:\test.bin”,

IO.FileMode.Open)

myFile.Close()

The FileStream class is exposed by the IO namespace that is exposed by the System name-
space. You could place the following directive at the beginning of the code:

Imports System.IO

At this point the first line of code could be rewritten as follows:

Dim myFile As New FileStream(“C:\test.bin”, FileMode.Open)

Imports directives are useful because they help to handle a much clearer code. Just
remember that such directives must be the first lines of each code file. The only exception
is constituted by the Option clause that must precede the Imports directives.

#Region..#End Region Directives

Visual Basic provides an efficient way for organizing your code within regions. A region
represents a collapsible area of the code editor that can contain any code and that takes
the advantage of the outlining feature of the Visual Studio 2010 code editor. Regions are
defined with #Region..#End Region directives. The following code snippet shows how to
define a region:

#Region “Private Members”

From the Library of Wow! eBook

ptg

65Brief Overview of Types and Members

Private firstItem As String

Private secondItem As Integer

#End Region

The #Region directive requires the specification of a descriptive caption. When you declare
regions, you can then collapse regions by clicking on the - (minus) symbol on the left of
the #Region directive. When collapsed, the region shows just the descriptive caption and
can then be expanded again by clicking on the + (plus) symbol. Also notice that the
Visual Studio 2010 IDE allows collapsing a region by double-clicking anywhere on the
#Region..#End Region connector line on the left side of the code window. Such directives
will not be compiled and will not affect performances at all.

Attributes

Attributes are classes deriving from the System.Attribute class and provide declarative
information to objects or members they are applied to, providing also the ability to
change their behavior. As a convention, applying an attribute is also known as decorating
or marking a member. Attributes are basically class instances; you can apply attributes
enclosing their names within < > symbols; moreover they can receive arguments. The
following are examples of decorating members with attributes:

<Serializable()> Class Test

End Class

<CLSCompliant(True)> Class Test

End Class

In the preceding snippets, the Serializable attribute creates a new instance of the
System.SerializableAttribute class that indicates to the compiler that the decorated
class can take advantage of the serialization process. The CLSCompliant attribute, whose
value is True, means that the decorated class is compliant to Microsoft’s Common
Language Specifications. Attributes are discussed in Chapter 48, “Coding Attributes,” and
you often find examples in this book that require code to be decorated with attributes.

A New Feature: Implicit Line Continuation

Visual Basic 2010 introduces an important new feature when writing code (which is a
historical change in the language) known as implicit line continuation. Back in older
versions, if you needed to split a long line of code into more brief and readable lines of
code in the editor, you needed to add an underscore (_) character. With Visual Basic 2010
this is no longer necessary, with a few exceptions. You can simply press Enter when you
need to split a line of code, and the compiler will automatically recognize a line continua-
tion, depending on what kind of code you are writing.

3

From the Library of Wow! eBook

ptg

66 CHAPTER 3 The Anatomy of a Visual Basic Project

TIP

Implicit line continuation is not mandatory. If you prefer adding underscores for line
continuation, of course you are still allowed to do it.

The following are situations in which the implicit line continuation is allowed:

. Within LINQ queries

. Within embedded expressions in LINQ to XML queries

. After dots

. After commas

. After brackets

. When decorating members with attributes

. Before an assignment

Let’s see how implicit line continuation works. The first code snippet shows a LINQ query:

Dim query = From proc In Process.GetProcesses.AsEnumerable

Where (proc.ProcessName.StartsWith(“A”))

Select proc

In Visual Basic 2008 you needed to add an underscore after the first and second line of
code. Now this is no longer necessary. The second code snippet shows a LINQ to Xml
query with embedded expressions without underscores:

Dim doc = <?xml version=”1.0”?>

<Processes>

<%= From proc In query

Select <Process>

<Name <%= proc.ProcessName %>/>

</Process>

%>

</Processes>

The third code snippet shows both commas and brackets without underscores:

Dim p As New List(Of Integer) From {

1,

2,

3,

4}

From the Library of Wow! eBook

ptg

67Visual Basic 2010 Reserved Keywords

The fourth code snippet is about dots. In this case implicit line continuation can be useful
when invoking methods or properties:

Dim appDataDir As String = My.Computer.FileSystem.

SpecialDirectories.AllUsersApplicationData()

The fifth code snippet shows implicit line continuation with attributes:

<CLSCompliant(True)>

Class Test

End Class

The sixth and last code snippet demonstrates how you can use implicit line continuation
before an assignment:

Dim aValue As Integer

aValue =

10

All the preceding code snippets are now perfectly legal. In all cases of the preceding exam-
ples, implicit line continuation is not allowed. For example, you still must add an under-
score after the Handles clause when handling events:

Private Sub AnEventHandler(ByVal sender As Object, ByVal e As EventArgs) _

Handles anObject.Disposed

End Sub

Although you might expect such discussion in Chapter 2, “Getting Started with the Visual
Studio 2010 IDE,” about the code editor, you first need to get an overview of concepts
that help you understand where implicit line continuation is allowed or disallowed.

Visual Basic 2010 Reserved Keywords
When writing code, you often define types or declare variables. Types and variables are
recognizable via identifiers. An identifier is essentially the name of a type or of a variable
and not necessarily a word that makes sense, although it is a good practice to assign
human readable identifiers. For example, an identifier such as DoSomething is much better
than DoSmt. For this, there are some words in the Visual Basic lexical grammar that you
cannot use as identifiers for your variables because they are reserved for the language.

3

From the Library of Wow! eBook

ptg

68 CHAPTER 3 The Anatomy of a Visual Basic Project

IDENTIFIERS NAMING CONVENTIONS

.NET programming principles establish that identifiers must match some rules when
writing code, including identifiers. Such naming conventions are stated by the Common
Language Specifications that are covered in Chapter 21, “Advanced Languages
Features.” For now keep in mind the best practice regarding human readable identi-
fiers. Later in the book you learn how identifiers should be correctly written.

Table 3.1 shows a list of the Visual Basic 2010 reserved words.

TABLE 3.1 Visual Basic 2010 Reserved Keywords

AddHandler AddressOf Alias And

AndAlso As Boolean ByRef

Byte ByVal Call Case

Catch CBool CByte CChar

CDate CDbl CDec Char

CInt Class CLng CObj

Const Continue CSByte CShort

CSng CStr CType CUInt

CULng CUShort Date Decimal

Declare Default Delegate Dim

DirectCast Do Double Each

Else ElseIf End EndIf

Enum Erase Error Event

Exit False Finally For

Friend Function Get GetType

GetXmlNamespace Global GoSub GoTo

Handles If Implements Imports

In Inherits Integer Interface

Is IsNot Let Lib

Like Long Loop Me

Mod Module MustInherit MustOverride

MyBase MyClass Namespace Narrowing

New Next Not Nothing

From the Library of Wow! eBook

ptg

69Visual Basic 2010 Reserved Keywords

TABLE 3.1 Continued

USING RESERVED WORDS AS IDENTIFIERS

As an exception, you can use reserved words as identifiers enclosing them in a cou-
ple of square brackets. For example, New is a reserved word and cannot be used
whereas [New] can be accepted. Although allowed, this practice should be used only
in particular cases because it could lead to confusion, especially if you are not an
experienced developer.

Although the code editor is powerful enough to advise when you are attempting to use a
reserved keyword as an identifier, having a reference is practical.

VISUAL BASIC IS CASE-INSENSITIVE

When writing code remember that Visual Basic is a case-insensitive programming lan-
guage. This means that, differently from C#, writing Hello is the same of writing HELLO
or hello or heLLo. Take care with this feature when assigning identifiers.

3

NotInheritable NotOverridable Object Of

On Operator Option Optional

Or OrElse Overloads Overridable

Overrides ParamArray Partial Private

Property Protected Public RaiseEvent

ReadOnly ReDim REM RemoveHandler

Resume Return SByte Select

Set Shadows Shared Short

Single Static Step Stop

String Structure Sub SyncLock

Then Throw To True

Try TryCast TypeOf UInteger

ULong UShort Using Variant

Wend When While Widening

With WithEvents WriteOnly Xor

From the Library of Wow! eBook

ptg

70 CHAPTER 3 The Anatomy of a Visual Basic Project

Understanding Project Files
Each Visual Basic project is composed of several code files. Some of them are by default
visible to the developer and are the ones that you need to edit to create your application.
There are also some other files (which are hidden by default but that can be made visible
manually) that we can consider as support files. To understand what kind of support these
files offer, we have to think that most of the settings that we can provide to our applica-
tions via the My Project window are represented with Visual Basic code. Particularly,
Visual Basic translates into code the content of the Application, Resources, Settings and
My Extensions tabs. In this chapter you get a detailed description of files that represent
the Application tab in My Project and then you get an overview of files that represent
other tabs. Although you seldom edit these code files manually, because all of them have
design time support from My Project (as detailed in Chapter 20, “The ‘My’ Namespace,”
when describing the My namespace), there could be some situations in which you need to
manually edit them, so it’s important to know something about them. Before going on,
you need to click the Show All Files button in Solution Explorer. This gives visibility to
several code files that are hidden by default and that provide the main infrastructure for
each Visual Basic project.

Dissecting My Project

In Chapter 2 we introduced the My Project window and saw how it offers graphical tools
for specifying some settings when developing applications, such as application informa-
tion and compile options. Understanding My Project is important because it also provides
the infrastructure of the My namespace, offering the ability for specifying important
settings that are discussed in Chapter 20. For now, we need to know that My Project
offers a graphical representation of information that is stored in some code files. In
Solution Explorer you can notice an element named My Project. When you double-click
this element, you are redirected to the My Project window. But when you enable the All
Files view, you notice how the My Project element becomes a folder that can be
expanded. Within this folder (which is physically stored inside the project’s folder and
contains all files described in this section), you can notice the presence of several files
packaged into the assembly’s metadata when you build the project. We now describe such
files and how they work.

MY PROJECT IS VERSATILE

Depending on what kind of application you develop, My Project can implement addition-
al tabs or remove some. For example, if you develop a Silverlight application you can
find tabs in My Project that are specific for Silverlight and that will be discussed in the
appropriate chapters.

Application.MyApp

The Application.myapp file is an XML representation of the project’s main properties.
Listing 3.1 shows the content of this file as it becomes available when you create a new
Console application.

From the Library of Wow! eBook

ptg

71Understanding Project Files

LISTING 3.1 The Content of Application.myapp

<?xml version=”1.0” encoding=”utf-8”?>

<MyApplicationData xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<MySubMain>false</MySubMain>

<SingleInstance>false</SingleInstance>

<ShutdownMode>0</ShutdownMode>

<EnableVisualStyles>true</EnableVisualStyles>

<AuthenticationMode>0</AuthenticationMode>

<ApplicationType>2</ApplicationType>

<SaveMySettingsOnExit>true</SaveMySettingsOnExit>

</MyApplicationData>

XML elements in this file are self-explanatory, and you may notice how each of them
represents a particular item on the Application tab. The Application.myapp file is the
brother of another file named Application.Designer.vb. Such a file basically stores informa-
tion related to Windows Forms applications such as the authentication mode and the
shutdown mode. It is the complement for those application options that you can see in
the Windows Application Framework Properties group in the Application tab. Listing 3.2
shows the content of the Application.Designer.vb as it is generated for a Windows Forms
application.

LISTING 3.2 The Content of Application.Designer.vb

Partial Friend Class MyApplication

Public Sub New()

MyBase.New(Global.Microsoft.VisualBasic.ApplicationServices.

AuthenticationMode.Windows)

Me.IsSingleInstance = false

Me.EnableVisualStyles = true

Me.SaveMySettingsOnExit = true

Me.ShutDownStyle = Global.Microsoft.VisualBasic.ApplicationServices.

ShutdownMode.AfterMainFormCloses

End Sub

Protected Overrides Sub OnCreateMainForm()

Me.MainForm = Global.WindowsApplication1.Form1

End Sub

End Class

For the sake of simplicity, in the preceding code some attributes are omitted that Visual
Studio adds to class members and that are related to the debugger interaction. As you can

3

From the Library of Wow! eBook

ptg

72 CHAPTER 3 The Anatomy of a Visual Basic Project

see examining Listing 3.2, items in the Application tab of My Project have been mapped
to Visual Basic properties. The Me identifier represents the instance of the current applica-
tion. The OnCreateMainForm method establishes which window must be the startup one.
In this case Form1 is the default name that Visual Studio assigns to the main window
when a new project is created. If you also examine the code inside the IDE, you can notice
how there are some comments in the code that advise that the code itself is auto-gener-
ated and that you should not edit it manually, because you can use the My Project
designer that will automatically map changes to the Visual Basic code. You might need to
set custom actions for application events (such as Startup or Shutdown, which are
usually handled in the ApplicationEvents.vb file) and Application.designer.vb is
the right place.

AssemblyInfo.vb

In Chapter 2 we discussed the Assembly Information dialog, describing how it is used for
specifying information about applications. All the information is stored in a file named
AssemblyInfo.vb. Listing 3.3 shows the content of this file as it is available when you
create a new project.

LISTING 3.3 AssemblyInfo.vb Content

Imports System

Imports System.Reflection

Imports System.Runtime.InteropServices

‘ General Information about an assembly is controlled through the following

‘ set of attributes. Change these attribute values to modify the information

‘ associated with an assembly.

‘ Review the values of the assembly attributes

<Assembly: AssemblyTitle(“WindowsApplication1”)>

<Assembly: AssemblyDescription(““)>

<Assembly: AssemblyCompany(““)>

<Assembly: AssemblyProduct(“WindowsApplication1”)>

<Assembly: AssemblyCopyright(“Copyright © 2009”)>

<Assembly: AssemblyTrademark(““)>

<Assembly: ComVisible(False)>

‘The following GUID is for the ID of the typelib if this project is exposed to COM

<Assembly: Guid(“5572d199-a7ca-48c3-98d3-56533cd6ba86”)>

From the Library of Wow! eBook

ptg

73Understanding Project Files

‘ Version information for an assembly consists of the following four values:

‘

‘ Major Version

‘ Minor Version

‘ Build Number

‘ Revision

‘

‘ You can specify all the values or you can default the Build and Revision Numbers

‘ by using the ‘*’ as shown below:

‘ <Assembly: AssemblyVersion(“1.0.*”)>

<Assembly: AssemblyVersion(“1.0.0.0”)>

<Assembly: AssemblyFileVersion(“1.0.0.0”)>

As you can notice examining the Visual Basic code shown in Listing 3.3, there are several
items whose identifier begins with the word Assembly, such as AssemblyTitle,
AssemblyCompany, and so on. Each item is in relationship with fields of the Assembly
Information dialog. Moreover such items are marked with an attribute named Assembly.
Attributes are discussed in Chapter 48. The reason why it is useful knowing about the
above file is that there are situations in which you need to edit this file manually.
Examples are localization of WPF applications or marking an assembly as compliant to
Microsoft Common Language Specifications.

Resources and the Resources.resx File

Visual Studio 2010 enables defining resources that you can embed in your assembly’s
metadata and use within your applications. Resources can include strings, icons, picture
files, audio files, and so on. My Project offers a tab named Resources that provides a visual
way for defining project level resources.

PRACTICAL USAGE OF RESOURCES

Although available in several kinds of projects, resources have to be used to fit particu-
lar scenarios. For example resources can be successfully used in Windows applications
such as Console and Windows Forms, but they are not the best choice for Windows
Presentation Foundation applications. So you need to pay attention when using
resources according to the particular situations.

Figure 3.1 shows the Resources designer with the definition of a String resource named
TextMessage that has a value and a description. We revisit the Resources tab in Chapter
20, where we discuss My namespace, but if you are curious, you can play with the
designer to see what kind of resources you can add.

3

From the Library of Wow! eBook

ptg

74 CHAPTER 3 The Anatomy of a Visual Basic Project

Resources are supported by two files stored inside the My Project folder: Resources.resx
and Resources.designer.vb. The first one is basically an XML schema used by Visual Studio
for working with resources. Listing 3.4 shows the content of the schema.

LISTING 3.4 The Content of Resources.resx

<root>

<xsd:schema id=”root” xmlns=”” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xsd:import namespace=”http://www.w3.org/XML/1998/namespace” />

<xsd:element name=”root” msdata:IsDataSet=”true”>

<xsd:complexType>

<xsd:choice maxOccurs=”unbounded”>

<xsd:element name=”metadata”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”value” type=”xsd:string” minOccurs=”0” />

</xsd:sequence>

<xsd:attribute name=”name” use=”required” type=”xsd:string” />

<xsd:attribute name=”type” type=”xsd:string” />

<xsd:attribute name=”mimetype” type=”xsd:string” />

FIGURE 3.1 The My Resources designer.

From the Library of Wow! eBook

ptg

75Understanding Project Files

<xsd:attribute ref=”xml:space” />

</xsd:complexType>

</xsd:element>

<xsd:element name=”assembly”>

<xsd:complexType>

<xsd:attribute name=”alias” type=”xsd:string” />

<xsd:attribute name=”name” type=”xsd:string” />

</xsd:complexType>

</xsd:element>

<xsd:element name=”data”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”value” type=”xsd:string” minOccurs=”0”

msdata:Ordinal=”1” />

<xsd:element name=”comment” type=”xsd:string” minOccurs=”0”

msdata:Ordinal=”2” />

</xsd:sequence>

<xsd:attribute name=”name” type=”xsd:string” use=”required”

msdata:Ordinal=”1” />

<xsd:attribute name=”type” type=”xsd:string” msdata:Ordinal=”3” />

<xsd:attribute name=”mimetype” type=”xsd:string” msdata:Ordinal=”4” />

<xsd:attribute ref=”xml:space” />

</xsd:complexType>

</xsd:element>

<xsd:element name=”resheader”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”value” type=”xsd:string” minOccurs=”0”

msdata:Ordinal=”1” />

</xsd:sequence>

<xsd:attribute name=”name” type=”xsd:string” use=”required” />

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<resheader name=”resmimetype”>

<value>text/microsoft-resx</value>

</resheader>

<resheader name=”version”>

<value>2.0</value>

</resheader>

<resheader name=”reader”>

<value>System.Resources.ResXResourceReader, System.Windows.Forms,

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

3

From the Library of Wow! eBook

ptg

76 CHAPTER 3 The Anatomy of a Visual Basic Project

</resheader>

<resheader name=”writer”>

<value>System.Resources.ResXResourceWriter, System.Windows.Forms, Ver-

sion=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

</resheader>

<data name=”TextMessage” xml:space=”preserve”>

<value>Hello Visual Basic 2010!</value>

<comment>This is a test string</comment>

</data>

</root>

This schema establishes how a resource is defined, with names, values, comments, and a
MIME type that identifies the file type. At the end of the XML markup code, you can see
how resources are stored. Continuing with our example, you can see the name of the
resource (inside the data element), its value, and the description we provided via the
designer. This schema is used by Visual Studio for design time purposes. To work with
resources in our applications, Visual Studio also needs to provide Visual Basic code support
for resources. Such support is provided by a code file named Resources.designer.vb. This
file handles a reference to a .NET object called ResourceManager that is responsible for
managing resources in code. Listing 3.5 shows the content of Resources.designer.vb. (For
the sake of simplicity, auto-generated attributes are not covered here.)

LISTING 3.5 Content of Resources.designer.vb

Friend Module Resources

Private resourceMan As Global.System.Resources.ResourceManager

Private resourceCulture As Global.System.Globalization.CultureInfo

Friend ReadOnly Property ResourceManager() As

Global.System.Resources.ResourceManager

Get

If Object.ReferenceEquals(resourceMan, Nothing) Then

Dim temp As Global.System.Resources.ResourceManager =

New Global.System.Resources.ResourceManager(“MyFirst2010Program.Resources”,

GetType(Resources).Assembly)

resourceMan = temp

End If

Return resourceMan

End Get

End Property

Friend Property Culture() As Global.System.Globalization.CultureInfo

Get

From the Library of Wow! eBook

ptg

77Understanding Project Files

Return resourceCulture

End Get

Set(ByVal value As Global.System.Globalization.CultureInfo)

resourceCulture = value

End Set

End Property

Friend ReadOnly Property TextMessage() As String

Get

Return ResourceManager.GetString(“TextMessage”, resourceCulture)

End Get

End Property

End Module

At this point in the book you don’t effectively need to know what each type used in code
refers to, whereas it is useful to know the existence of the ResourceManager property that
points to the project resources. (See the declaration of the temp variable.) This handles a
reference to the application-level ResourceManager that enables access to resources. There
is another property named Culture that is of type System.Globalization.CultureInfo.
This property sets or returns the current localization for resources. The last property in the
code is named TextMessage and is the Visual Basic representation of the string resource
defined in My Project. This is a read-only property, because you cannot change it in code
(you can change it only via designer) and returns a localized version of the resource invok-
ing the GetString method of the ResourceManager class. GetString requires an object of
type CultureInfo (in our code it’s resourceCulture) that represents the culture that the
resource must be localized to. The following line of code shows how you can access the
preceding defined resource, which is discussed further in Chapter 20:

Dim myString As String = My.Resources.TextMessage

When you access resources, as shown in Chapter 20, you do not need to manually invoke
this background code, but you need to know how it is structured to better understand
what’s happening behind the scenes. Resources are not the only feature in My Project that
is supported by Visual Basic code for design time features. Settings are another one of
these features.

Application Settings

Settings in Visual Basic development are particular objects that provide a managed way for
manipulating applications and user level settings. For example, you could provide users
with the ability of customizing options in the user interface of your application. To save
and read such customizations to and from disk, you can use .NET Settings. My Project
provides a tab named Settings that enables specifying information at the application or
user level. Figure 3.2 shows an example.

3

From the Library of Wow! eBook

ptg

78 CHAPTER 3 The Anatomy of a Visual Basic Project

As you can see in Figure 3.2, you can specify an identifier for each setting, a type (which
you can understand better by reading Chapter 4), the scope, and the value. For the scope,
User means that only the user that runs the application can use that setting. Application
means that the setting is available at the application level, independently from the user
that logged into Windows (and therefore is available to all users). As with Resources,
Settings will be also described in detail in Chapter 20. Settings are represented by a simple
XML file, named Settings.settings. Listing 3.6 shows the content of Settings.settings after
the addition of the sample setting.

VIEWING THE SETTINGS.SETTINGS FILE WITH THE XML EDITOR

In order to view the Xml content for the Settings.settings file, right-click the file name in
Solution Explorer, select the Open With command and select Xml (Text) Editor in the
Open With dialog.

LISTING 3.6 Settings.settings Content

<?xml version=’1.0’ encoding=’utf-8’?>

<SettingsFile xmlns=”http://schemas.microsoft.com/VisualStudio/2004/01/settings”

CurrentProfile=”(Default)” GeneratedClassNamespace=”My” GeneratedClass-

Name=”MySettings” UseMySettingsClassName=”true”>

<Profiles />

FIGURE 3.2 Settings Tab in My Project.

From the Library of Wow! eBook

ptg

79Understanding References

<Settings>

<Setting Name=”StartState” Type=”System.Boolean” Scope=”User”>

<Value Profile=”(Default)”>True</Value>

</Setting>

</Settings>

</SettingsFile>

In the XML markup you can see the presence of a Settings node that stores as many
Setting elements and as many settings that you specify in My Project. In our example
there is just one Setting element that contains the name of the setting, the data type, the
scope, and the default value (which means the value you specify in My Project). The
Settings.settings file also has Visual Basic support, which is represented by another file
named Settings.designer.vb. We do not need to examine all the content of this file when
just a couple of parts of the code can be interesting for us. First, this file implements a
property named Settings that is accessible via the My namespace, as detailed in Chapter
20. Listing 3.7 shows the definition of this property.

LISTING 3.7 Definition of the Settings Property

Friend ReadOnly Property Settings() As

Global.MyFirst2010Program.My.MySettings

Get

Return Global.MyFirst2010Program.My.MySettings.Default

End Get

End Property

The Settings property represents the active instance of the Settings object that you can
use in your applications. How the active instance is defined is beyond the scope of this
chapter, but now you know that the Settings tab in My Project also has a counterpart in
two support files. Just for your convenience, the following line of code shows how you
can access settings and how we set them before:

Dim currentValue As Boolean = My.Settings.StartState

The value stored in the StartState setting will be assigned to a variable named
currentValue. Examining My namespace in Chapter 20 can clarify the usage of Settings
and Resources and of many other interesting features.

Understanding References
The Base Class Library exposes types through several assemblies that are part of the .NET
Framework, and you will often need to invoke types from those assemblies. Moreover,
although very rich, the BCL cannot define types covering every aspect of application

3

From the Library of Wow! eBook

ptg

80 CHAPTER 3 The Anatomy of a Visual Basic Project

development. This means that you will often need to use types exposed by other assem-
blies, such as other projects in the same solution or external compiled assemblies.

NOTE

Each time you create a new project, Visual Studio automatically adds references to
some .NET assemblies that are necessary for each kind of application and that expose
the BCL’s core part, such as System.dll and System.Core.dll.

To use types defined in external assemblies, you need to add a reference in your project to
the desired assembly. To accomplish this, right-click the project name in Solution Explorer
and click the Add Reference command from the pop-up menu or select the References
tab in My Project and click Add. This activates the Add reference dialog, as shown in
Figure 3.3.

You need to select the assemblies you want to reference. More than one assembly can be
selected by pressing Ctrl and then click on the name of the required assembly. The Add

FIGURE 3.3 The Add Reference Dialog.

From the Library of Wow! eBook

ptg

81Understanding References
3

Reference dialog is divided into several tabs. The default tab is named .NET and shows a
list of all the available assemblies in the Global Assembly Cache.

WHAT IS THE GLOBAL ASSEMBLY CACHE?

The Global Assembly Cache (or GAC) can be described as a repository for information
and locations on installed assemblies. The .NET Framework knows where assemblies
can be found by browsing the GAC, which also can distinguish between different ver-
sions of an assembly. The GAC is discussed in detail in Chapter 53, “Understanding
the Global Assembly Cache.”

The Add Reference dialog shows the version number of assemblies; this is useful because
you can have different versions of an assembly with the same name. It also shows the full
path for the assembly. When you add a reference to an assembly, Solution Explorer
updates the References node. For example, if you want to add security features to your
applications, you need to add a reference to the System.Security.dll assembly (refer to
Figure 3.3), which is part of the Base Class Library. When added, Solution Explorer looks
like Figure 3.4.

You can use in your code types exposed by the specified assemblies that have public visibil-
ity. The Add Reference dialog provides other tabs. The Recent tab shows a list of all the
most recently used assemblies for faster reuse. The Browse tab enables searching for assem-
blies that are not registered into the GAC. The Projects tab enables adding references to
other projects in the solution. This is typically the case when you have a class library that
exposes types that you want to use inside a client application. There is also another tab,
named COM, which enables adding references to COM type libraries as we discuss next.

FIGURE 3.4 Solution Explorer is updated with the new reference.

From the Library of Wow! eBook

ptg

82 CHAPTER 3 The Anatomy of a Visual Basic Project

Adding References to COM Libraries

There could be situations in which you might be required to use COM type libraries in
your .NET applications, scenario known also as COM Interop. This should be a spare
scenario, because .NET and COM are such different architectures, and the second one was
not born for working within the first one. Visual Studio 2010 enables you to add refer-
ences to old type libraries. To accomplish this, you need to select the COM tab in the Add
Reference dialog. All the registered COM type libraries will be shown within the dialog,
and you can select needed components (see Figure 3.5).

For example, you might want to include the Windows Media Player functionalities in your
application; for this purpose you can select the Windows Media Player component and
then click OK (see Figure 3.5). Visual Studio will show a reference named WMPLib.dll in
Solution Explorer and generate an assembly named Interop.WMPLib.dll. This assembly is
a managed wrapper for the Windows Media Player component and will provide managed
access to types exposed by the type library. More generally, Visual Studio generates an
Interop.AssemblyName.dll assembly (where AssemblyName is the original name of the
assembly) for each referenced type library, which is known as Primary Interoperability
Assembly (also known as PIAs) and that allows interoperation between .NET and COM
architectures. Different from previous versions of .NET Framework and Visual Studio, by

FIGURE 3.5 Adding a reference to a COM component.

From the Library of Wow! eBook

ptg

83Understanding References
3

default you no longer see the wrapper assemblies included in your build output because of
a new feature called Deploy Without Primary Interoperability Assemblies.

Deploy Without PIAs

When deploying applications that reference a COM library, you also must include in your
distribution the primary interoperability assemblies. In our example, the PIA is
Interop.WMPLib.dll. In Visual Studio 2010 you can avoid including primary interoperabil-
ity assemblies in your distributions, although you reference those assemblies. This is possi-
ble because Visual Studio can embed in your executable only the types that you effectively
use from the referenced assembly. This avoids the need of including the assembly itself in
the build output and, consequently, in the deployment process. For our sample scenario
about including the Windows Media Player component, we could write a small applica-
tion that has the name of a media file provided by the user and then launches WMP.
Listing 3.8 accomplishes this.

LISTING 3.8 Using a COM Component in Code

Module Module1

Sub Main()

Console.WriteLine(“Type the name of a media file:”)

Dim fileName As String = Console.ReadLine

Dim wmp As New WMPLib.WindowsMediaPlayer

wmp.openPlayer(fileName)

End Sub

End Module

In the preceding code, you need to take a look at this simple line:

Dim wmp As New WMPLib.WindowsMediaPlayer

Declaring an instance of the WMPLib.WindowsMediaPlayer class is sufficient for Visual
Studio to embed the definition of the WindowsMediaPlayer object inside our executable so
that it will not need to include the entire Interop.WMPLib.dll assembly in the build
output. As you may imagine, this is a great feature because if you have a large type library
and you need to use only a few types, you can save space and preserve performances. The
Deploy Without PIAs feature is enabled by default. If you instead prefer to avoid embed-
ding types within your executable and including the primary interoperability assemblies
in your build output, you simply need to right-click the referenced assembly in Solution
Explorer and then click Properties. Continuing our example, we would need to select
WMPLib.dll in Solution Explorer. The Properties window will show a property called
Embed Interop Types that is set to True by default (see Figure 3.6).

From the Library of Wow! eBook

ptg

84 CHAPTER 3 The Anatomy of a Visual Basic Project

If you change the value to False, types will no longer be embedded in your executable,
and the primary interoperability assemblies will be included in the build output.

VERIFYING TYPES EMBEDDING

If you are an experienced developer, you can easily verify if types have been embedded
in your executable via the Deploy without PIAs feature by opening executables with
tools such as Reflector or IL Disassembler.

Final Considerations

The first three chapters of this book provide a necessary overview of tools and features
that you must understand before moving on. Now that you have completed the introduc-
tory steps, you are ready to get your hands dirty on the core of the Visual Basic 2010
programming language.

Summary
In this chapter you got an overview of some important language features. An overview
was necessary because, before discussing a particular feature further, you need to know
what that feature represents. You also got a complete list of the Visual Basic 2010 reserved
words that you cannot use as identifiers for your variables. Another important topic we
discussed is how a Visual Basic project is structured and what files compose a Visual Basic
project. Finally, you got an overview of references and why they are important in develop-
ing applications. In this discussion you learned about a new feature of Visual Studio 2010
and .NET Framework 4.0: the deployment without the primary interoperability assemblies.

FIGURE 3.6 Enabling the Deploy Without PIAs feature setting
the Embed Interop Types property.

From the Library of Wow! eBook

ptg

CHAPTER 4

Data Types and
Expressions

IN THIS CHAPTER

. Common Types System

. Understanding Value Types

. Understanding Reference Types

. Differences Between Value
Types and Reference Types

. Converting Between Value
Types and Reference Types

. Working with .NET Fundamental
Types

. Common Operators

. Iterations, Loops, and
Conditional Code Blocks

Every programming task manipulates data. Data can be of
different kinds; you will often work with strings, dates and
time, numbers, files, and custom data. Each of them is
represented by a data type. The .NET Framework 4.0
provides tons of built-in data types and enables developers
to easily create their own custom data types. In this chapter
you learn how the .NET Framework handles data types and
how you can work with value types and reference types. When
you gain knowledge of data types, you can learn how to use
them with special Visual Basic language constraints such as
loops, iterations, and special statements. This is a funda-
mental chapter, so you should pay particular attention to
concepts that you need to understand before we discuss the
object-oriented programming with Visual Basic 2010.

Common Type System
The .NET Framework provides a special way for manipulat-
ing data types, which is named Common Type System. The
Common Type System is important, so you need to know
something about it before reading discussions on data
types. In its name, the word Common has two particular
meanings. First, the Common Type System provides a
unified model for exposing data types so that all the .NET
languages, such as Visual Basic, Visual C#, and Visual F#,
can consume the same data types. For example, a 32-bit
integer is represented by the System.Int32 data type, and
all the .NET languages can invoke the System.Int32 object
for declaring integers because this type is provided by the

From the Library of Wow! eBook

ptg

86 CHAPTER 4 Data Types and Expressions

.NET Framework and is language-independent. Second, each data type is an object that
inherits from the System.Object class as we discuss next.

Everything Is an Object

In the .NET development you may hear that everything is an object. This is because all
the types in the .NET Framework, including built-in and custom types, inherit from the
System.Object class. Inheritance is a concept that is part of the object-oriented program-
ming topic and that will be discussed later in the book. We can define it as a way for
reusing and extending data types so that developers can create their hierarchy of types.
System.Object provides the primary infrastructure that all .NET types must have. The
.NET Framework ships with thousands of built-in data types that all derive from
System.Object. But why is this class so important in the Common Type System? The
answer is simple: the Common Type System ensures that all .NET types inherit from
System.Object; particularly both value types and reference types inherit from
System.Object. At this point an overview of value types and reference types is required,
before delving into both categories.

Introducing Value Types and Reference Types

Basically value types are those data types that store their data directly. Examples of value
types are integers (System.Int32), Boolean (System.Boolean), and bytes (System.Byte).
Value types are stored in a memory area called Stack. They are represented by (and defined
via) structures that are enclosed in Structure..End Structure code blocks. The following
is an example of a value type containing a value:

Dim anInteger As System.Int32 = 5

Reference types are instead data types that, as their name implies, are just a reference to
the actual data. In other words, reference types store the address of their data in the Stack
whereas the actual data is stored in the managed Heap. Reference types are represented by
classes. The following is an example of reference type:

Class Person

Property FirstName As String

Property LastName As String

End Class

DON’T BE AFRAID OF MEMORY LOCATIONS

This paragraph is just an overview of value types and reference types. If you never
heard about the Stack and the Managed Heap, don’t worry. Details will be provided
later in this chapter, when discussing value and reference types.

Reference types inherit directly from System.Object or from other classes that derive from
Object. This is because System.Object is a reference type. So the question that you will

From the Library of Wow! eBook

ptg

87Common Type System
4

FIGURE 4.1 System.Object shown in detail in the Object Browser tool window.

probably ask now is, “If both value types and reference types have to inherit from
System.Object, how can value types inherit from System.Object if it is a reference type?”
The answer is that in the case of value types there is an intermediate type that is named
System.ValueType that inherits from System.Object and ensures that all deriving objects
are treated as value types. This is possible because the Common Language Runtime can
distinguish how types are defined and consequently can distinguish between value types
and reference types.

NAMING SYSTEM.OBJECT

Object is also a reserved word of the Visual Basic programming language and is the
representation of System.Object. Because of this, we refer indistinctly to Object as
System.Object.

System.Object and System.ValueType

At this point it is necessary to provide an overview of both System.Object and
System.ValueType. Instead of showing a diagram of inheritance, it is a good idea to offer a
Visual Studio-oriented view so that you can better understand what happens within the
development environment. This can be accomplished via the Object Browser tool window
that we introduced in Chapter 2, “Getting Started with the Visual Studio 2010 IDE.” You
can browse for both classes by just writing their name in the search box. Figure 4.1 shows
how System.Object is defined, what members it exposes, and a full description.

From the Library of Wow! eBook

ptg

88 CHAPTER 4 Data Types and Expressions

TABLE 4.1 Methods Exposed by System.Object

Method Description

Equals Compares two objects for equality

Finalize Attempts to free up some resources during the object lifetime

New Creates a new instance of the Object class

GetHashCode Returns a hash code for the given object

GetType Retrieves the qualified data type for the specified object

MemberwiseClone Creates a shallow copy of the current Object instance

ReferenceEquals Returns true if both the specified Object instances refer to the same
instance

ToString Provides a string representation of the Object

Several things are worth mentioning. First, consider the class description. As you can see,
System.Object is defined as the root of the type hierarchy, and all other classes within the
.NET Framework derive from System.Object. This means that custom classes automati-
cally inherit from Object. This class provides the infrastructure for all derived classes and
exposes some methods. Because System.Object is important and because you will often
invoke methods inherited from Object, it’s convenient to get a simple reference for each
method. Table 4.1 describes methods exposed by System.Object.

Methods listed in Table 4.1 are covered several times during the rest of the book, so don’t
be afraid if something is not clear at the moment. If you now refer back to Figure 4.1, you
can see how the Object class has no base types. This is because, as we said before, Object
is the root in the type hierarchy. Considering this last sentence, if you instead try to
expand the Derived types node, you see a list of hundreds of .NET Framework built-in
classes that derive from Object. One of these classes is System.ValueType. Figure 4.2
shows how this class is represented in the Object Browser.

You should focus on the description first. As you can see, System.ValueType is the base
class for all value types. It is declared as MustInherit (a clause discussed in detail in
Chapter 12, “Inheritance”) that means it must necessarily be inherited and that it can’t
work as a standalone object, providing the base infrastructure for derived value types. If
you expand the Base types node, you see that ValueType is a derived class from Object. If
you then try to expand the Derived types node, you get a large list of types that inherit
from ValueType, such as Boolean, Byte, and other primitive data types. As we mentioned
before, the CLR can determine that a type deriving from System.ValueType must be
treated as a value type and not as a reference type.

From the Library of Wow! eBook

ptg

89Understanding Value Types
4

FIGURE 4.2 System.ValueType shown in detail in the Object Browser.

Understanding Value Types
Value types are data types that directly store data that they define. For example, a
System.Int32 object represents a value type that can store an integer number as in the
following line of code:

Dim anInteger As System.Int32 = 5

Among value types, the most common are numeric types that enable, for example, perform-
ing math operations or implementing counters or just storing a numeric value. Value types
enable developers to choose the best data type according to the particular scenario. As we
mentioned at the beginning of this chapter, value types are basically Structure objects. The
.NET Framework provides several built-in value types that cover most needs in your devel-
opment process, although you can create custom data types. In this section you learn about
most common built-in value types and about building your own structures, including how
value types are declared and used and how they are stored in memory.

From the Library of Wow! eBook

ptg

90 CHAPTER 4 Data Types and Expressions

.NET Framework Primitive Value Types

The .NET Framework Base Class Library provides lots of built-in value types that you can use
according to your needs. Each value type is a structure exposed by the Base Class Library.

Visual Basic 2010 provides reserved words that are counterparts of the most common
value type names. For example, the System.Int32 value type has an alias in the Integer
reserved word. The following two lines of code are perfectly equivalent:

Dim anInteger As System.Int32 = 0

Dim anInteger As Integer = 0

You may use indistinctly both .NET names and the Visual Basic reserved words when refer-
ring to built-in value types.

NAMING CONVENTIONS

Although you are allowed to invoke value types with both .NET names and the Visual
Basic counterparts’ keywords, it’s a best practice to choose the .NET names when
developing reusable class libraries according to the Microsoft Common Language
Specification. We discuss this topic later in this chapter. In such scenario it is a good
practice because you should avoid language-dependent features and practices when
developing assemblies bound to also work with other .NET languages. Basically this
will not change the results, but your code will be cleaner, and you will use a .NET-orient-
ed approach instead of a language-oriented one.

Table 4.2 lists the most common value types in the .NET Framework, showing a descrip-
tion and the Visual Basic-related keywords.

TABLE 4.2 Most Common Value Types in the .NET Framework 4.0

Value Type Description Visual Basic
Reserved Keyword

System.Int16 Represents a numeric value with a range
between –32768 and 32767.

Short

System.Int32 Represents a numeric value with a range
between –2147483648 and 2147483647.

Integer

System.Int64 Represents a numeric value with a range
between –9223372036854775808 and
9223372036854775807.

Long

System.Single Represents a floating point number with a
range from –3.4028235E+38 to
3.4028235E+38.

Single

From the Library of Wow! eBook

ptg

91Understanding Value Types
4

System.Double Represents a large floating number (double
precision) with a range from
–1.79769313486232e308 to
1.79769313486232e308.

Double

System.Boolean Accepts True or False values. Boolean

System.Char Represents a single Unicode character. Char

System.IntPtr Represents a pointer to an address in
memory.

–

System.DateTime Represents dates, times, or both in different
supported formats (see following para-
graphs).

Date

System.Numerics.
BigInteger

Represents an arbitrarily large integer with no
maximum and minimum value.

–

System.Byte Represents an unsigned byte, with a range
from 0 to 255.

Byte

System.SByte Represents a signed byte, with a range from
–128 to 127.

SByte

System.UInt16 Represents a numeric positive value with
range between 0 and 65535.

UShort

System.UInt32 Represents a numeric positive value with a
range between 0 and 4294967295.

UInteger

System.UInt64 Represents a numeric positive value with a
range between 0 and
18446744073709551615.

ULong

System.Decimal Represents a decimal number in financial
and scientific calculations with large
numbers. A range between
–79228162514264337593543950335 and
79228162514264337593543950335.

Decimal

TABLE 4.2 Continued

Value Type Description Visual Basic
Reserved Keyword

From the Library of Wow! eBook

ptg

92 CHAPTER 4 Data Types and Expressions

System.Guid Allows generating Globally Unique Identifiers.

UPGRADING FROM VISUAL BASIC 6

If you are upgrading from Visual Basic 6, you have to keep in mind that VB 6’s Long is
an Integer in .NET and that VB 6’s Integer is now Short in .NET.

As you may notice in Table 4.2, most built-in value types are exposed by the System
namespace except for the BigInteger type that is instead exposed by the
System.Numerics namespace. BigInteger is a new type in the .NET Framework 4.0 and
will be discussed later.

MEMORY REQUIREMENTS

You might wonder what should influence your choice when working with value types.
The answer is that it depends. Of course you should take care of memory allocation. If
you know that you need to work with a small number, you will probably do best if choos-
ing a Byte instead of a Short. Regarding this, consider that Byte requires 8 bits,
Short requires 16 bits, Integer and Single require 32 bits, Long and Double require
64 bits, and Decimal requires 128 bits. The Visual Basic compiler is optimized for 32-
bit integers, so choosing Integer is of course a better choice than Short, but, in the
case of very small numbers, choose Byte (1 byte) instead of Integer (4 bytes).

Using Value Types

In this paragraph you learn to use value types. The following demonstration assumes you
have created a new Visual Basic project for the Console (see Chapter 2 for details). Listing
4.1 shows how you can declare variables storing value types. You can write the code inside
the Main method for learning purposes.

System.TimeSpan Represents an interval of time. The range is
between -10675199.02:48:05.4775808 and
10675199.02:48:05.4775807 ticks.

System.TimeZone Represents time information according to the
specific world’s time zone.

TABLE 4.2 Continued

Value Type Description Visual Basic
Reserved Keyword

From the Library of Wow! eBook

ptg

93Understanding Value Types
4

LISTING 4.1 Using Value Types

Sub Main()

‘Declares an Integer

Dim anInteger As Integer = 2

‘Declares a double and stores the result of a calculation

Dim calculation As Double = 74.6 * 834.1

‘Declares one byte storing an hexadecimal value

Dim oneByte As Byte = &H0

‘Declares a single character

Dim oneCharacter As Char = “a”c

‘Declares a decimal number

Dim sampleDecimal As Decimal = 8743341.353531135D

‘Declares a Boolean variable

Dim isTrueOrFalse As Boolean = True

‘Declares a BigInteger

Dim arbitraryInteger As New System.Numerics.BigInteger(800000)

Console.WriteLine(anInteger)

Console.WriteLine(calculation)

Console.WriteLine(oneByte)

Console.WriteLine(oneCharacter)

Console.WriteLine(isTrueOrFalse)

Console.WriteLine(arbitraryInteger)

Console.ReadLine()

End Sub

From the Library of Wow! eBook

ptg

94 CHAPTER 4 Data Types and Expressions

You can declare variables of the desired value types using the Dim keyword followed by the
identifier of the variable and by the As clause that then requires the type specification.

NOTES ABOUT DIM AND AS

Dim is the most important keyword for declaring variables and is commonly used in
local code blocks. It is also worth mentioning that in .NET Framework you can declare
different kinds of objects both with Dim and with other keywords according to the
scope of the objects (such as fields, properties, classes). This is discussed in Chapter
7, “Class Fundamentals.” Then in Chapter 21, “Advanced Language Features,” you
learn about another important feature in .NET Framework known as the Local Type
Inference that avoids the need to add the As clause in particular scenarios such as
data access with LINQ.

You can also declare more than one variable within the same Dim statement. You can write
something like this:

Dim anInteger As Integer = 2, calculation As Double = 3.14,

TrueOrFalse As Boolean = True

You can also declare more than one variable of the same type just by specifying such a
type once, as in the following line of code:

’Three integers

Dim anInteger, secondInteger, thirdInteger As Integer

If you upgrade from Visual Basic 6, this is a great change because in a declaration like the
preceding one VB 6 automatically assigns Variant instead of the appropriate data type.
Generally you do not need to specify the constructor (the New keyword) when declaring
value types. This is because in such situations the constructor addition is implicit and
provided by the compiler behind the scenes. An exception to this general rule is the
BigInteger type that instead allows the constructor to be explicit but it also allows in-line
initialization. Listing 4.1 also shows how you can get the value stored in value types. In
our example values are written to the Console window, but you can use values the most
appropriate way for you. Figure 4.3 shows the result of the code in Listing 4.1.

From the Library of Wow! eBook

ptg

95Understanding Value Types
4

Pay attention about using Char data types. Char represents a single character and differs
from String because the latter one represents a set of characters. Because both types
require their content to be enclosed within quotes, the value of a Char must be followed
by the C letter that tells the compiler to treat that value as a single character. The Decimal
data type also has a similar behavior. When you declare a decimal value (see Listing 4.1)
you must ensure that the value is followed by the upper D character; otherwise the
compiler treats the number as a Double raising an error. Identifiers like C and D are also
known as literal type characters and are available for a number of primitive types, as
summarized in Table 4.3.

FIGURE 4.3 Using value types in our sample code produced this result.

TABLE 4.3 Literal type characters

Character Type Sample

C Char oneChar = “s”C

D Decimal oneDec = 87.2D

F Single oneSingle = 87.2F

I Integer anInt = 18I

L Long oneLong = 1324L

R Double oneDouble = 1234R

S Short oneShort = 18S

UI UInteger anInt = 18UI

UL ULong oneLong = 1324UL

US UShort oneShort = 18US

From the Library of Wow! eBook

ptg

96 CHAPTER 4 Data Types and Expressions

Literal type characters are not available for the following types:

. Boolean

. Byte

. Date

. Object

. SByte

. String

Assigning Value Types
At the beginning of the section we mentioned that value types directly store the data they
refer to. This can be easily verified with assignments. Consider the following code:

Sub DoAssignments()

Dim anInteger As Integer = 10

Dim anotherInteger As Integer = anInteger

Console.WriteLine(anInteger)

Console.WriteLine(anotherInteger)

Console.ReadLine()

End Sub

This code produces the following output:

10

10

This is because the value of anInteger has been assigned to another variable of type
Integer, named anotherInteger. anotherInteger is basically a copy of the first variable
and lives its own life, independent from anInteger. If you now write the following line of
code after anotherInteger assignment

anotherInteger = 5

the code produces the following output:

10

5

From the Library of Wow! eBook

ptg

97Understanding Value Types
4

So you have changed the value of anotherInteger while you left unchanged the value of
anInteger, because they are two different objects with separate lives. Although this can
appear obvious, it is important because it is the base for understanding later the different
behavior in reference types. You may also use assignments in situations in which you need
to get a result without knowing values that produce the result itself, such as in calcula-
tions that require an input from the user. With regard to this, consider the following code:

Dim firstNumber As Double = 567.43

Dim secondNumber As Double = 321.52

Dim result As Double = firstNumber * secondNumber

Console.WriteLine(result)

Console.ReadLine()

In the preceding code you get the result of a multiplication given two numbers. In real
scenarios, the two numbers would be provided by the user and the result variable would
store the result of the calculation. Such calculations are performed not on numbers but on
the value of variables that store numbers. This means that you do not need to know in
advance the numbers; you just work on variables and assignments.

NOTE

I could of course show a code example in which the input should be provided by the
user. I have not yet discussed reference types, conversion operators, and parsing meth-
ods that will be discussed later, so my intent was to avoid confusion because user
input is provided as String objects. There will be appropriate code examples when
needed, as in the next paragraph.

Analyzing the Content of Value Types
In most cases you will require users to enter an input that you will then need to elaborate,
or you could simply read the content of a text file and then convert such content into the
appropriate .NET value type. Typically user input is provided as strings, and you will also
get strings when reading text files. Although in business applications you need to imple-
ment validation rules on the user input, it is worth mentioning that value types offer
common methods for analyzing the contents of a string and check if such content
matches a particular value type. Even if we have not discussed yet the String object
(which is a reference type), the following code samples are easy to understand. For
example, consider the following code that declares some strings:

Dim firstValue As String = “1000”

Dim secondValue As String = “True”

Dim thirdValue As String = “123.456”

From the Library of Wow! eBook

ptg

98 CHAPTER 4 Data Types and Expressions

The content of each string is a representation of a particular value type: firstValue
content represents an Integer, secondValue represents a Boolean, and thirdValue repre-
sents a Double. We could parse the content of each string and transform it into the appro-
priate value type as follows:

Dim anInteger As Integer = Integer.Parse(firstValue)

Dim aBoolean As Boolean = Boolean.Parse(secondValue)

Dim aDouble As Double = Double.Parse(thirdValue)

As you can see, value types expose a method called Parse that converts the string repre-
sentation of a numeric or logical value into the correspondent value type. Integer.Parse
converts the ”1000” string into a 1000 integer and so on. If the compiler cannot perform
the conversion, a FormatException error will be thrown, and the application execution
will be broken. To avoid possible errors, you could use another method called TryParse
that returns True if the conversion succeeds or False if it fails. For example, consider the
following code:

Dim testInteger As Integer

Dim result = Integer.TryParse(secondValue, testInteger)

The code attempts to convert a string that contains the representation of a Boolean value
into an Integer. Because this is not possible, TryParse returns False. Notice that in this
particular case you don’t perform an assignment to another variable (such as in the case of
Parse) because TryParse requires the variable that will store the value as the second argu-
ment, passed by reference (a more detailed explanation on passing arguments by reference
will be provided in Chapter 7).

VALUE TYPES METHODS

Because the purpose of this book is to examine the Visual Basic 2010 language fea-
tures, whereas it cannot be possible to examine all the .NET Framework available
types and members, only methods common to all value types are described. Methods
and members specific to some value types are left to you for future studies. Always
remember that when you do not know an object member, IntelliSense and the Object
Browser together with the MSDN documentation can be your best friends, providing
useful information.

Value types (including System.Char and System.DateTime) also expose two properties
named MinValue and MaxValue that respectively contain the minimum accepted value and
the maximum accepted value for each type. For example, the following line of code

Console.WriteLine(Integer.MinValue)

From the Library of Wow! eBook

ptg

99Understanding Value Types
4

produces -2147483648 as the result. The following line of code

Console.WriteLine(Char.MaxValue)

produces the ? character as the result. Finally, the following line of code

Console.WriteLine(Date.MaxValue)

produces 31/12/9999 23:59:59 as the result.

MinValue and MaxValue can be useful for two purposes: The first purpose is for times you
don’t remember the minimum and maximum values accepted by a particular value type,
whereas the second purppose is about comparisons; you might need to check if a value or
a number is in the range of accepted values by a particular data type. Now we have
completed a general overview of value types. Next studies focus on optimizations and on
using special value types such as System.DateTime.

Optimization Considerations
When working with value types, you should always choose the best type fitting your
needs. For example, if you need to work with a number that is composed in the Integer
range, it would not be a good idea to use a Long type. Moreover, the Visual Basic compiler
(and, behind the scenes, the CLR) provides optimizations for the System.Int32 and
System.Double types, so you should always use these types when possible. For example,
use an Int32 instead of an Int16 although the number you work with is composed in the
range of the Int16. Other considerations about unsigned value types are related to
compliance with Microsoft Common Language Specification, which is a topic discussed later
in this chapter.

VALUE TYPES MEMORY ALLOCATION

You may wonder where value types are allocated in memory. The answer is that they
are allocated in the area of memory called Stack. A full description will be provided
after discussing reference types so that you can get a complete comparison.

NULLABLE TYPES

There are situations in which you need to assign null values to value types, for example
when mapping SQL Server data types to .NET data types for fetching data. To accom-
plish this, the .NET Framework provides support for the Nullable types. Because nullable
types have the syntax of Generics objects, and therefore you first need to know how
Generics work, they will be discussed in Chapter 14, “Generics and Nullable Types.”

From the Library of Wow! eBook

ptg

100 CHAPTER 4 Data Types and Expressions

Working with BigInteger

Because the System.Numerics.BigInteger is a new type in .NET 4.0, we spend a little time
on it. BigInteger is a value type exposed by the System.Numerics namespace and requires
a reference to the System.Numerics.dll assembly. Basically it represents a signed, arbitrarily
large integer number. This means that it doesn’t have minimum and maximum values,
opposite of other value types such as Integer and Long. Instantiating a BigInteger is easy,
as you can see from the following line of code:

Dim sampleBigInteger As New System.Numerics.BigInteger

You can assign any signed number to a BigInteger, because it has no minimum and
maximum values, as demonstrated by the following code snippet:

’Neither minimum nor maximum values

sampleBigInteger = Byte.MinValue

sampleBigInteger = Long.MaxValue

Byte and Long are the smallest and the biggest acceptable signed integers. This special type
directly supports integer types such as SByte, Byte, UInteger, Integer, UShort, Short,
ULong, and Long. You can also assign to a BigInteger values of type Double, Single, and
Decimal, but you do need to accomplish this passing the value as an argument to the
constructor or performing an explicit conversion using CType (assuming that Option
Strict is On). The following code demonstrates both situations:

’The constructor can receive arguments, Double is accepted

Dim sampleBigInteger2 As New _

System.Numerics.BigInteger(123456.789)

‘Single is accepted but with explicit conversion

Dim singleValue As Single = CSng(1234.56)

Dim sampleBigInteger3 As New System.Numerics.BigInteger

sampleBigInteger3 = CType(singleValue,

Numerics.BigInteger)

Notice that rounding will occur when converting floating types to BigInteger. Such struc-
ture also offers shared methods for performing arithmetic operations. You can add,
subtract, divide, and multiply BigIntegers as in the following code:

’Assumes an Imports System.Numerics directive

‘Sum

Dim sum As BigInteger =

BigInteger.Add(sampleBigInteger, sampleBigInteger2)

‘Subtract

Dim subtraction As BigInteger =

BigInteger.Subtract(sampleBigInteger, sampleBigInteger2)

From the Library of Wow! eBook

ptg

101Understanding Reference Types
4

‘Division

Dim division As BigInteger =

BigInteger.Divide(sampleBigInteger, sampleBigInteger3)

‘Multiplication

Dim multiplication As BigInteger =

BigInteger.Multiply(sampleBigInteger2, sampleBigInteger3)

You can also perform complex operations, such as exponentiation and logarithm calcula-
tions as demonstrated here:

’Power

Dim powerBI As BigInteger = BigInteger.Pow(sampleBigInteger2, 2)

‘10 base logarithm

Dim log10 As Double = BigInteger.Log10(sampleBigInteger3)

‘natural base logarithm

Dim natLog As Double = BigInteger.Log(sampleBigInteger, 2)

As usual, IntelliSense can be your best friend when exploring methods from BigInteger
and can help you understand what other math calculations you can perform.

Building Custom Value Types

Building custom value types is accomplished by creating structures. Because creating struc-
tures can also be a complex task and is part of the object-oriented programming topic, it is
thoroughly discussed in Chapter 11, “Structures and Enumerations.”

Understanding Reference Types
Reference types are represented by classes. Classes are probably the most important items
in modern programming languages and are the basis of the object-oriented programming
as we see later in the book. Reference types have one big difference versus value types:
Variables that declare a reference type do not store the data of the type itself, whereas they
just store an address to the data. In other words, they are just pointers to the data. To
better explain (and understand) this fundamental concept, an example is necessary.
Consider the following class Person, which exposes two simple properties:

Class Person

Property FirstName As String

Property LastName As String

End Class

From the Library of Wow! eBook

ptg

102 CHAPTER 4 Data Types and Expressions

You need to instantiate (that is, create an instance of) such a class so that you can then
store data (in this case, setting properties) and then manipulate the same data. This can be
accomplished by the following line of codes:

Dim onePerson As New Person

onePerson.FirstName = “Alessandro”

onePerson.LastName = “Del Sole”

STRONGLY TYPED OBJECTS

In .NET development, you often encounter the words strongly typed. This definition can
be explained with an example. The onePerson object in the preceding code is strongly
typed because it is of a certain type, Person. This means that onePerson can accept
an assignment only from compliant objects, such as other Person objects. Such
restriction is important because it avoids errors and problems. Moreover, the compiler
knows how to treat such a specialized object. A variable of type Object is instead not
strongly typed because it is just of the root type but is not specialized. Object can
accept anything, but without restrictions the usage of nonstrongly typed objects could
lead to significant problems. In Chapter 14 we discuss Generics; there you get a more
thorough idea of strongly typed objects.

Now you have an instance of the Person class, named onePerson. Now consider the follow-
ing line of code:

Dim secondPerson As Person = onePerson

A new object of type Person (secondPerson) is declared and is assigned with the
onePerson object. Because of the equality operator, you would probably expect
secondPerson to now be an exact copy of onePerson. We could consider at this point
some edits to the secondPerson object, for example we could modify the first name:

secondPerson.FirstName = “Alex”

We can now try to check the result of the previous operations by simply writing the
output to the Console window. Let’s begin by writing the result of secondPerson:

Console.WriteLine(secondPerson.FirstName)

Console.WriteLine(secondPerson.LastName)

Console.ReadLine()

From the Library of Wow! eBook

ptg

103Understanding Reference Types
4

As you may correctly expect, the preceding code produces the following result:

Alex

Del Sole

Now let’s simply write the result for onePerson to the Console window:

Console.WriteLine(onePerson.FirstName)

Console.WriteLine(onePerson.LastName)

Console.ReadLine()

This code produces the following result:

Alex

Del Sole

As you can see, editing the first name in secondPerson also affected onePerson. This
means that secondPerson is not a copy of onePerson. It is instead a copy of the reference to
the actual data. Now you should have a better understanding of reference types. We can
say that, as their name implies, reference types have an address in memory where data is
stored and variables declaring and instantiating reference types just hold a reference to
that data. To get a real copy of data, you should write something like this:

Dim secondPerson As New Person

secondPerson.FirstName = onePerson.FirstName

secondPerson.LastName = onePerson.LastName

Then you could edit secondPerson’s properties ensuring that this will not affect the
onePerson object. As a clarification, notice that, in the .NET Framework, String is a refer-
ence type but it’s actually treated as a value type as I will explain in a few paragraphs.

CLONING REFERENCE TYPES

Creating a clone for a reference type in the preceding way can be good with objects
exposing only a few properties, so you might wonder how you can clone more complex
reference types. There are more interesting techniques that are discussed in the “Deep
Copy and Shallow Copy” section.

.NET Framework Primitive Reference Types

The .NET Framework 4.0 ships with tons of reference types exposed by the Base Class
Library and that cover most needs. However, there is a bunch of reference types you will
often use in the development process that lots of other reference types derive from. Table
4.4 shows a list of the most common reference types.

From the Library of Wow! eBook

ptg

104 CHAPTER 4 Data Types and Expressions

TABLE 4.4 Most Common Built-In Reference Types in .NET Framework

Type Description

System.Object The root class in the object hierarchy

System.String Represents a string

System.Array Represents an array of objects

System.Exception Represents an error occurring during the application execution

System.IO.Stream The base class for accessing other resources such as files or in-memory
data.

Of course there are a lot of other reference types that you can use when developing real-
life applications, and most of them are discussed in subsequent chapters of the book;
however, the ones listed in Table 4.3 provide the basis for working with reference types.
Most of them are the base infrastructure for other important derived classes. We previ-
ously discussed System.Object, so we will not do it again. It is instead worth mentioning
how System.String is a reference type, although it seems natural to think about it as a
value type. Basically System.String, or simply String, is used as a value type, so it will
not be difficult to build strings. By the way, strings are immutable (that means “read-
only”), so each time you edit a string, the runtime creates a new instance of the String
class passing in the edited string. Because of this, editing strings using System.String can
cause unnecessary usage of memory. In order to solve this problem, the .NET Framework
provides more efficient ways, as you will see in the section “Working with Strings, Dates
and Arrays.”

Differences Between Value Types and Reference Types
Value types and reference types differ in several ways. In the previous sections we first saw
how they differ in assignment and how a value type can directly store data, whereas a
reference type stores only the address to the actual data. We now explain such implemen-
tation and we also provide information on the other differences between value and refer-
ence types.

Memory Allocation

Value types and reference types are differently allocated in memory. Value types are allo-
cated in the Stack. The Stack is a memory area where methods are executed according to
the last-in, first-out manner. The first method pushed to the Stack is the application entry
point; that is, the Main method. When Main invokes other methods, the CLR creates a sort
of restore point and pushes those methods to the Stack. When the method needs to be
executed, data required by that method is also pushed to the Stack. When a method
completes, the CLR removes (popping) it from the Stack together with its data, restoring

From the Library of Wow! eBook

ptg

105Differences Between Value Types and Reference Types
4

the previous state. Because of this ordered behavior, the Stack is efficient, and the
Common Language Runtime can easily handle it. Consider the following line of code,
declaring a variable of type Integer, therefore a value type:

Dim anInteger As Integer = 5

Figure 4.4 shows how the anInteger variable is allocated in the Stack.

FIGURE 4.4 Value types are allocated in the Stack.

On the contrary, reference types are allocated in a memory area named Managed Heap.
Different from the Stack, in the Managed Heap objects are allocated and deallocated
randomly. This provides fast allocation but requires more work for the CLR. To keep
things ordered, the CLR needs two instruments: Garbage Collector and Memory Manager. We
provide details about this architecture in Chapter 8, “Managing an Object’s Lifetime.” At
the moment we need to understand how reference types and their data are allocated.
Consider the following lines of code, declaring a new version of the Person class and an
instance of this class:

Class Person

Property Name As String

Property Age As Integer

End Class

Dim onePerson As New Person

onePerson.Name = “Alessandro Del Sole”

onePerson.Age = 32

From the Library of Wow! eBook

ptg

106 CHAPTER 4 Data Types and Expressions

FIGURE 4.5 Reference types are allocated in the Heap, whereas their address resides in the
Stack.

FIGURE 4.6 Complete overview of memory allocation for value and reference types.

As you can see, there is now a property in this class (Age) that is a value type. The instance
of the class will be allocated in the Heap, whereas its reference (onePerson) will be allo-
cated in the Stack. Figure 4.5 provides a visual representation of this scenario.

Because the Person class handles a value type in one of its properties, such value types
stay in the Stack. Figure 4.6 completes this overview. In the second part of this book, we
will have different opportunities to explore reference types and memory management
when discussing the object’s lifetime.

From the Library of Wow! eBook

ptg

107Differences Between Value Types and Reference Types
4

Object-Oriented Differences

There are a couple of differences with regard to principles related to the object-oriented
programming. Although these principles are discussed in detail in Part 2, “Object-Oriented
Programming with Visual Basic 2010,” it’s convenient to have a small reference.

Inheritance
The first one is about inheritance, which is covered in Chapter 12. Classes (that is, refer-
ence types) support inheritance, whereas structures (value types) do not. Consider the
following code:

Class Person

Property FirstName As String

Property LastName As String

End Class

Class Developer

Inherits Person

Property UsedProgrammingLanguage As String

Public Overrides Function ToString() As String

Return Me.LastName

End Function

End Class

In this example, the Person class is the base class and provides the basic properties for
representing a hypothetical person. The Developer class inherits from Person (see the
Inherits keyword), and this means that the Developer class will expose both the
FirstName and LastName properties plus the new one named UsedProgrammingLanguage. It
also redefines the behavior of the default ToString method so that it can return a more
significant name for the object. In Visual Basic 2010 you can inherit only from one object
at a time. This means that Developer can inherit only from Person but not also from
another object. If you need multiple-level inheritance, you should architect your objects
framework so that a second class can inherit from the first one, the third one from the
second one, and so on. Structures do not support inheritance at all, except for the fact
that they inherit by nature from System.ValueType.

Interfaces Implementation
Both classes and structures provide support for interfaces implementation. For example,
you could implement the IComparable interface in both cases:

Class Person

Implements IComparable

From the Library of Wow! eBook

ptg

108 CHAPTER 4 Data Types and Expressions

Property FirstName As String

Property LastName As String

Public Function CompareTo(ByVal obj As Object) As Integer Implements

System.IComparable.CompareTo

‘Write your code here

End Function

End Class

Structure Dimension

Implements IComparable

Public Function CompareTo(ByVal obj As Object) As Integer Implements

System.IComparable.CompareTo

‘Write your code here

End Function

Property X As Integer

Property Y As Integer

Property Z As Integer

End Structure

Inheritance and interfaces are discussed in Part 2, so don’t worry if something does not
appear clear.

Constructors
When you declare a reference type, you need an instance before you can use it (with the
exception of shared classes that are discussed in Chapter 7). Creating an instance is
accomplished by invoking the constructor via the New keyword. When you instead declare a
value type, the new variable is automatically initialized to a default value that is usually
zero for numbers (or False for Boolean). Because of this, value types do not require invok-
ing a default constructor. The Visual Basic compiler still accepts declaring a value type
invoking the constructor, which will also initialize the type with the default value, but in
this case you cannot initialize the value. The following code snippet demonstrates this:

’Declares an Integer and sets the value to zero

Dim anInt As New Integer

‘Initialization not allowed with New

Dim anotherInt As New Integer = 1

‘Allowed

Dim aThirdInt As Integer = 1

From the Library of Wow! eBook

ptg

109Differences Between Value Types and Reference Types
4

Finalizers
Finalizers are a topic related to the object’s lifetime that we discuss in detail in Chapter 8.
As for constructors, it’s convenient having a small reference. We previously said that when
methods using value types complete their execution, they are automatically removed from
the Stack together with the data. This is managed by the CLR, and because of this ordered
behavior, value types do not need to be finalized. On the contrary, reference types are
allocated on the heap and have a different behavior. Deallocation from memory is
handled by the Garbage Collector that needs instead finalizers on the reference types side
to complete its work.

Performance Differences

We said a lot of times that value types store data directly whereas reference ones store
only the address of the data. Although you can create and consume types according to
your needs, there are some concerns with performances, particularly regarding methods.
Methods can accept parameters, also known as arguments. Arguments can be value types
or reference types. If you pass to a method a value type, you pass to that method all the
data contained in the value type, which could be time-consuming and cause performance
overhead. Passing a reference type will pass only the address to the data, so it could be
faster and more efficient. There could be situations in which you do need to pass methods
one or more value types. This depends only on your needs. Generally the performance
difference in such a scenario could not be relevant, but it would depend on the size of the
value type. If your method receives a large value type as an argument but is invoked only
once, performance should not be affected. But if your method is invoked a lot of times,
perhaps passing a reference type would be better. Just be aware of this when implementing
your methods.

What Custom Type Should I Choose?

Answering this question is not simple. It depends. If you need to implement a custom
type that will act similarly to a value type (for example, a type that works with numbers),
you should choose a Structure. If you need to implement an object for storing a large
amount of data, it could be a good idea to choose a class. Such considerations are not
mandatory, and their purpose is letting you think a little bit more about what you are
going to implement according to your needs.

From the Library of Wow! eBook

ptg

110 CHAPTER 4 Data Types and Expressions

Converting Between Value Types and Reference Types
In your developer life, you often need to convert one data type into another in different
types of situations. For example, you might need to convert a value type into another one
or just convert an instance of type Object into a strongly typed object. In this section you
learn how to convert between data types and about conversion operators, beginning with
basic but important concepts, such as implicit conversions, boxing, and unboxing.

Understanding Implicit Conversions

Previously we discussed the System.Object class. As you may remember, such a class is the
root in the class hierarchy. That said, you can assign both reference types and value types
to an Object instance because they both inherit from System.Object. Consider the follow-
ing lines of code:

Dim anInt As Object = 10

Dim onePerson As Object = New Person

The first line assigns a value type (Integer) to an Object whereas the second one assigns
an instance of the Person class to an Object. Visual Basic 2010 always enables such
assignments because they are always safe. What is unsafe is trying to assign an Object to
a strongly typed instance, such as assigning Object to an instance of the Person class.
This is quite obvious, because Object can represent whatever type, and the compiler
cannot be sure if that type is a Person and this might cause errors. Consider the following
line of code:

Dim onePerson As Person = New Object

The code is trying to assign an instance of the Object class to an instance of Person. The
Visual Basic compiler enables handling such situations in two different ways, depending
on how Option Strict is set. We discussed Option Strict in Chapter 2, and now you can
see the first usage. If Option Strict is set to On, the preceding line of code causes an error.
The Visual Basic compiler does allow an implicit conversion from Object to a strongly
typed object throwing an error message that you can see in the code editor. Figure 4.7
shows this error message.

From the Library of Wow! eBook

ptg

111Converting Between Value Types and Reference Types
4

FIGURE 4.7 With Option Strict On, the Visual Basic compiler disallows implicit
conversions.

This is useful because it prevents type conversion errors. If you want to perform an assign-
ment of this kind, you need to explicitly convert Object into the appropriate data type.
For example, this can be accomplished using the CType conversion operator, as in the
following line of code:

Dim onePerson As Person = CType(New Object, Person)

A conversion operator offers another advantage: It communicates if the conversion is
possible and, if not, you can handle the situation, particularly at runtime. By the way, the
Visual Basic compiler provides a way to allow implicit conversions avoiding error
messages. To accomplish this, you need to set Option Strict to Off. You can simply write
the following line of code (preceding all the other code and Imports directives):

Option Strict Off

You could also adjust Option Strict settings in the Compiler tab of the My Project
window as we saw in Chapter 2. Now assigning an Object to a Person, as we did before, is
perfectly legal. But please be careful: If you do not need to perform such assignments,
please avoid Option Strict Off and always prefer Option Strict On. This can ensure less
runtime and compile time errors and enable you to write more efficient code.

OPTION STRICT OFF: WHEN?

You should never set Option Strict to Off. There is only one situation in which you
should set Option Strict to Off, which is late binding. This topic will be discussed in
Chapter 47, “Reflection.” Outside this particular scenario, never set Option Strict to
Off so that you can be sure that you work with strongly typed objects and that the
compiler, debugger, and CLR enable you to find in a few seconds errors if occurring but
also because of performance and other situations that you learn in the chapter on
Generics. I suggest you set Option Strict to On as a default in the Visual Studio
2010 options.

From the Library of Wow! eBook

ptg

112 CHAPTER 4 Data Types and Expressions

Boxing and Unboxing

The Common Type System enables implicit conversions and conversions between refer-
ence types and value types and vice versa because both inherit from System.Object.
Regarding this, there are two other particular techniques: boxing and unboxing. You often
need to work with boxing and unboxing when you have methods that receive arguments
of type Object. See the tip at the end of this section for details.

Boxing
Boxing occurs when converting a value type to a reference type. In other words, boxing is
when you assign a value type to an Object. The following lines of code demonstrate boxing:

Dim calculation As Double = 14.4 + 32.12

Dim result As Object = calculation

The calculation variable, which stores a value deriving from the sum of two numbers, is
a Double value type. The result variable, which is of type Object and therefore a refer-
ence type, is allocated in the heap and boxes the original value of calculation so that
you now have two copies of the value, one in the Stack and one in the Heap. Figure 4.8
shows how boxing causes memory allocation.

Boxing requires performance overhead. This will be clearer when reading the next section.

Unboxing
Unboxing occurs when you convert a reference type to a value type. Basically you perform
unboxing when converting an Object into a value type. Continuing with the previous
example, the following line of code demonstrates unboxing:

Dim convertedResult As Double = CType(result, Double)

Unboxing can cause another copy of the original value (the same stored in the
calculation variable) to be created and allocated in the Stack. Figure 4.9 shows a repre-
sentation of what happens when unboxing a value.

Boxing and unboxing also cause performance overhead, and they should always be
avoided if not truly needed. This is because value types store directly the data they refer to
and therefore creating three copies of the data can consume more resources than neces-
sary. If value types you box and unbox are small, performance might not be influenced
(or, better, you might not see the difference). But if value types store a large amount of
data, the loss of performance could be significant.

From the Library of Wow! eBook

ptg

113Converting Between Value Types and Reference Types
4

FIGURE 4.8 Boxing causes both Stack and Heap allocation.

AVOIDING BOXING AND UNBOXING

Boxing and unboxing can be necessary if you have methods that receive arguments of
type Object. There are a couple of best practices that you can take when implement-
ing methods, such as using Generics or implementing overloads of methods that can
accept multiple strongly typed arguments. Generics and overloads are discussed later
in the book.

FIGURE 4.9 Unboxing causes a third copy of the original value to be created.

From the Library of Wow! eBook

ptg

114 CHAPTER 4 Data Types and Expressions

EARLY BINDING AND LATE BINDING

When talking about reference types, another important topic is early binding and late
binding. Although this can be the right place to discuss them, I prefer to postpone such
discussion until Chapter 47 about Reflection. In this way you first get a complete
overview of reference types and then you get real examples of the late binding technique.

Deep Copy and Shallow Copy

In the “Understanding Reference Types” section, you saw how reference types assignments
differ from value types assignments and how assignments are not enough to create a copy
of a reference type. We also provided one basic solution to this problem, which was to
create a new instance of a specified reference type and then assign each property of the
target instance with values coming from the original one. But this is not enough, both
because it is not complete and because it can be good only with small classes. To create a
complete clone of a reference type, in the .NET development we can take advantage of
two techniques: deep copy and shallow copy. Both techniques require the implementation
of the ICloneable interface. Although we discuss interfaces later, concepts presented here
are quite easy to understand. The ICloneable interface provides a unique method named
Clone that enables developers to know that classes exposing such a method can easily be
cloned. For example, consider the following implementation of the Person class that also
implements the ICloneable interface:

Class Person

Implements ICloneable

Property FirstName As String

Property LastName As String

Property Work As Job

Public Function Clone() As Object Implements System.ICloneable.Clone

Return Me.MemberwiseClone

End Function

End Class

The most interesting thing in the code is the Clone method required by the ICloneable
interface. In the method body you should write code that performs the real copy of the
reference type. Fortunately the Object class provides a method named MemberwiseClone
that automatically returns a shallow copy of your reference type. The keyword Me indicates
the current instance of the class. Because Clone must work with all possible types, it
returns Object. (We see later how to convert this result.) The class exposes two String
properties, FirstName and LastName. You may remember that, although String is a refer-
ence type behind the scenes, you will actually treat it as a value type. The class also

From the Library of Wow! eBook

ptg

115Converting Between Value Types and Reference Types
4

exposes another property named Work of type Job. This is a new reference type represent-
ing a person’s occupation. Job is implemented in the following way:

Class Job

Property CompanyName As String

Property Position As String

End Class

Given this implementation, we can simply create a shallow copy.

Shallow Copy
A shallow copy creates a new instance of the current object and copies values of members
of the original to the new one but does not create copies of children (referenced) objects.
Continuing the example of the preceding implementation, Clone creates a copy of the
Person class into a new instance and copies members’ values that are value types or
Strings. Because Job is a pure reference type, the shallow copy provided by Clone will not
also create a clone of Job. This is the explanation about what we said before, that a
shallow copy creates a copy only of the specified instance but not of children objects. We
can easily verify our assertions writing the following code:

Sub Main()

‘The original person

Dim firstPerson As New Person

firstPerson.FirstName = “Alessandro”

firstPerson.LastName = “Del Sole”

‘Defines a work for the above person

Dim randomJob As New Job

randomJob.CompanyName = “Del Sole Ltd.”

randomJob.Position = “CEO”

‘Assignment of the new job

firstPerson.Work = randomJob

‘Gets a shallow copy of the firstPerson object

Dim secondPerson As Person = CType(firstPerson.Clone, Person)

‘Check if they are the same instances

‘returns False, 2 different instances:

Console.WriteLine(firstPerson.FirstName Is secondPerson.FirstName)

From the Library of Wow! eBook

ptg

116 CHAPTER 4 Data Types and Expressions

‘returns True (still same instance of Job!):

Console.WriteLine(firstPerson.Work Is secondPerson.Work)

Console.ReadLine()

End Sub

The preceding code first gets a new instance of the Person class, setting some properties
such as a new instance of the Job class, too. Notice how the result of the Clone method,
which is of type Object, is converted into a Person instance using CType. At this point we
can check what happened. The Is operator enables comparing two instances of reference
types and returns True if they are related to the same instance. For the FirstName prop-
erty, the comparison returns False because the shallow copy created a new, standalone
instance of the Person class. But if we do the same check on the Work property, which is a
child reference type of the Person class, the comparison returns True. This means that
firstPerson.Work refers to the same instance of the Job class as in secondPerson.Work.
And this also means that a shallow copy did not create a new copy of the Job class to be
assigned to the secondPerson object. This is where the deep copy comes in.

Deep Copy
Deep copy is something complex that can create perfect copies of an entire object’s graph.
Basically, to perform a deep copy you have some alternatives. The easiest (and the one we
can show at this point of the book) is to perform a shallow copy of the main object and
then manually copy the other properties of children reference types. The best one instead
recurs to Serialization, which is an advanced topic discussed in Chapter 43, “Serialization.”
At the moment we can focus on editing the previous implementation of the Clone
method for performing a simple deep copy. We could also implement the ICloneable
interface in the Job class, as follows:

Class Job

Implements ICloneable

Property CompanyName As String

Property Position As String

Public Function Clone() As Object Implements System.ICloneable.Clone

Return Me.MemberwiseClone

End Function

End Class

Now we can modify the Clone implementation inside the Person class, as follows:

Class Person

Implements ICloneable

Property FirstName As String

Property LastName As String

Property Work As Job

From the Library of Wow! eBook

ptg

117Converting Between Value Types and Reference Types
4

Public Function Clone() As Object Implements System.ICloneable.Clone

Dim tempPerson As Person = CType(Me.MemberwiseClone, Person)

tempPerson.Work = CType(Me.Work.Clone, Job)

Return tempPerson

End Function

End Class

IMPLEMENTING ICLONEABLE

Of course implementing ICloneable in referenced classes is not the only way for pro-
viding deep copies. We could also generate a new instance of the Job class and manu-
ally assign values read from the original instance. But because we are discussing
ICloneable and Clone, the example was completed this way.

Basically the code obtains first a shallow copy of the current instance of the Person class
and then gets a shallow copy of the child instance of the Job class.

PAY ATTENTION TO RECURSIVE CLONE

Cloning objects with recursive calls to the Clone method could lead to a stack overflow
if the hierarchy of your objects is particularly complex. Because of this, the previous
implementation goes well with small classes and small objects graphs. If this is not
the case, you should prefer serialization.

If we now try to run again the same check comparing the instances of firstPerson and
secondPerson, the output will be the following:

False

False

This is because now the instances are different. We have two completely standalone
instances of the Person class.

From the Library of Wow! eBook

ptg

118 CHAPTER 4 Data Types and Expressions

The GetType Keyword

Each time you create an instance of a class, the .NET runtime creates an instance behind
the scenes of the System.Type class that represents your object. Because in the .NET devel-
opment you have the ability to inspect at runtime instances of the System.Type class
(known as Reflection) and to get a reference to that System.Type, the Visual Basic
programming language offers the GetType keyword that enables accomplishing both tasks.
The GetType keyword has two different behaviors: The first one is an operator whereas the
second one is a method; typically GetType is used in comparing two instances of an object
or in accessing metadata of a type at runtime. To understand GetType, here are a few
examples. Consider this first code snippet:

’GetType here is related to the type

Dim testType As Type = GetType(Integer)

For Each method As System.Reflection.MethodInfo

In testType.GetMethods

Console.WriteLine(method.Name)

Next

Console.ReadLine()

In a few words the preceding code retrieves all the information and metadata related to
the System.Int32 type and then shows a list of all methods exposed by such type, using
Reflection. (MethodInfo is an object representing the methods’ information.) This is useful
if you need to retrieve information on a particular data type. If you instead need to
retrieve information about metadata of a specific instance of a data type, you can use the
GetType method, as shown in the following code:

’GetType is here related to an instance

Dim testInt As Integer = 123456

Dim testType As Type = testInt.GetType

For Each method As System.Reflection.MethodInfo

In testType.GetMethods

Console.WriteLine(method.Name)

Next

Console.ReadLine()

In this particular situation you retrieve information of an instance of the System.Int32
type and not of the type. You can also use GetType to compare two types for equality:

’Comparing two types

If testInt.GetType Is GetType(Integer) Then

Console.WriteLine(“TestInt is of type Integer”)

End If

From the Library of Wow! eBook

ptg

119Conversion Operators
4

Conversion Operators
In the previous section we discussed converting between value types and reference types.
Such kinds of conversions are not the only ones allowed by the .NET Framework because
you often need to perform conversions between two value types or two reference types.
For example, imagine that you want to represent a number as a text message. In such a
case, you need to convert an Integer into a String; you could also have an Integer value
that must be passed to a method that instead receives an argument of type Double.
Another common scenario is when you work with user controls in the user interface.
There are some controls such as ListBox and DataGridView on the Windows side or the
DataGrid on the web side that can store any kind of object. If you show a list of Person
objects inside a ListBox, the control stores a list of Object, so you need to perform an
explicit conversion from Object to Person each time you need to retrieve information on
a single Person. In this section we show how conversions between types can be performed.

Widening and Narrowing Conversions

With the exception of boxing and unboxing, basically conversions are of two kinds:
widening conversions and narrowing conversions depending if the conversion is explicit or
implicit. This is explained next.

Widening Conversions
Widening conversions occur when you try to convert a type into another one that can
include all values of the original type. A typical example of a widening conversion is
converting from an Integer into a Double, as in the following lines of code:

’Widening conversion

Dim i As Integer = 1

Dim d As Double = i

As you might remember from Table 4.2, Integer represents a numeric value whereas
Double represents a large floating number. Therefore, Double is greater than Integer and
therefore can accept conversions from Integer without loss of precision. Widening
conversions do not need an explicit conversion operator, which instead happens for
narrowing conversions.

Narrowing Conversions
As opposite of widening conversions, narrowing conversions occur when you attempt to
convert a type into another that is smaller or with a loss of precision. For example,
converting a Double into an Integer can cause a loss of precision because Double is a large
floating number whereas Integer is just a numeric value, which is also smaller than
Double. There are several ways to perform narrowing conversions, depending on how
types you need to convert are implemented. Visual Basic 2010, continuing what was
already available in previous versions of the language, provides an easy way to perform

From the Library of Wow! eBook

ptg

120 CHAPTER 4 Data Types and Expressions

conversions between base types wrapped by Visual Basic keywords. For example, if we
need to convert a Double into an Integer, we could write the following lines of code:

Dim d As Double = 12345.678

Dim i As Integer = CInt(d)

The CInt function converts the specified Object into an Integer. In this particular case the
value of i becomes 12346, because the conversion caused a loss of precision and the Visual
Basic compiler produced an integer number that is the most approximate possible to the
original value. Another example is when you need to convert a number into a string repre-
sentation of the number itself. This can be accomplished by the following line of code:

Dim s As String = CStr(i)

The CStr function converts the specified Object into a string. With particular regard to
string conversions, all .NET objects expose a method named ToString that performs a
conversion of the original data into a new String. The last line of code could be rewritten
as follows:

Dim s As String = i.ToString()

ToString is also useful because you can format the output. For example, consider the
following line of code:

Dim i As Integer = 123456

Dim s As String = i.ToString(“##,##.00”)

The ToString method enables specifying how the string should be formatted. On my
machine the code produces the following output:

123,456.00

The output depends on regional settings for your system, with particular regard to separa-
tors.

USE TOSTRING INSTEAD OF CSTR

Because it enables you to format the result, ToString should be preferred to CStr.
Moreover, you can override the standard implementation of ToString (provided by the
Object class) so that you can provide your own conversion logic. This is discussed
later, with regard to inheritance.

From the Library of Wow! eBook

ptg

121Conversion Operators
4

TABLE 4.5 Visual Basic Conversion Functions

Operator Description

CInt Converts an object into an Integer

CLng Converts an object into a Long

CShort Converts an object into a Short

CSng Converts an object into a Single

CDbl Converts an object into a Double

CBool Converts an object into a Boolean

CByte Converts an object into a Byte

CChar Converts an object into a Char

CStr Converts an object into a String

CObj Converts an object into an instance of Object

CDate Converts an object into a Date

CUInt Converts an object into a UInteger

CULong Converts an object into a ULong

CUShort Converts an object into a UShort

CSByte Converts an object into a SByte

Table 4.5 shows the complete list of conversion functions provided by the Visual Basic
grammar.

REMEMBER THE LOSS OF PRECISION

Always take care when performing narrowing conversions because of the loss of preci-
sion, particularly with numeric values. Another particular case is when converting from
String to Char. Such conversions retrieve only the first character of the specified string.

When narrowing conversions fail, an InvalidCastException will be thrown by the
compiler. An example of this situation is when you attempt to convert a String into an
Integer. Because String is a valid object expression, you do not get an error at compile
time, but the conversion fails at runtime. Because of this, you should always enclose
conversions within error handling code blocks (see Chapter 6, “Handling Errors and
Exceptions” for details). There are also alternatives that are independent from the Visual
Basic language and that are provided by the .NET Framework. The first way is using the

From the Library of Wow! eBook

ptg

122 CHAPTER 4 Data Types and Expressions

TABLE 4.6 System.Convert Most-Used Methods

Method Description

ToBool Converts the specified type into a Boolean.

ToByte Converts the specified type into a Byte.

ToChar Converts the specified type into a Char.

ToDateTime Converts the specified type into a Date.

ToDecimal Converts the specified type into a Decimal.

ToDouble Converts the specified type into a Double.

ToInt16 Converts the specified type into a Short.

ToInt32 Converts the specified type into an Integer.

ToInt64 Converts the specified type into a Long.

ToSByte Converts the specified type into a SByte.

ToSingle Converts the specified type into a Single.

ToString Converts the specified type into a String.

ToUInt16 Converts the specified type into an UShort.

ToUInt32 Converts the specified type into a UInteger.

ToUInt64 Converts the specified type into an ULong.

System.Convert class that is available on objects that implement the IConvertible inter-
face. Convert exposes a lot of methods, each for converting into a particular data type.
For example, the following line of code converts a string representation of a number into
an integer:

Dim c As Integer = System.Convert.ToInt32(“1234”)

If the string contains an invalid number, a FormatException is thrown. Methods exposed
by the Convert class are well implemented because they do not only accept Object expres-
sions but also specific types, such as Integer, Boolean, String, and so on. IntelliSense can
help you understand what types are supported. Table 4.6 provides an overview of the most
common conversions methods exposed by System.Convert.

From the Library of Wow! eBook

ptg

123Conversion Operators
4

Notice that System.Convert also provides other methods that are not discussed here
because they are related to particular situations that assume you have a deep knowledge of
specific .NET topics and are out of the scope in a general discussion such as this one.

CType, DirectCast, TryCast
The Visual Basic programming language offers some other conversion operators that are
probably the most commonly used because of their flexibility. The first one is CType. It
converts from one type to another and, if the conversion fails, the Visual Basic compiler
throws an exception. The good news is that the conversion is also performed by the back-
ground compiler, so if the target type’s range exceeds the source one you are immediately
notified of the problem. For example, the compiler knows that converting a Date into an
Integer is not possible, so in such a scenario you will be immediately notified. If the
conversion is legal (and therefore can compile) but types are populated at runtime with
data that cannot be converted, an InvalidCastException is thrown. For example, the
following code converts an Integer into a Short:

Dim i As Integer = 123456

Dim s As Short = CType(i, Short)

CType is also useful in unboxing. The following code converts from an Object that
contains an Integer into a pure Integer:

Dim p As Object = 1

Dim result As Integer = CType(p, Integer)

Of course, it can also be used for converting between reference types:

Dim p As Object = New Person

Dim result As Person = CType(p, Person)

Basically CType is specific to the Visual Basic runtime and enables widening and narrowing
conversions from one type into another type that accepts the first one. For example, a
Double can be converted to an Integer, although with loss of precision. There are another
couple of important operators, DirectCast and TryCast, which you can use the same way
but which have different behavior. Both operators enable conversions when there is an
inheritance or implementation relationship between the two types. For example, consider
the following lines of code:

Dim d As Double = 123.456

Dim s As Short = CType(d, Short)

Converting from Double to Short using CType will succeed. Now consider the usage of
DirectCast in the same scenario:

Dim d As Double = 123.456

Dim s As Short = DirectCast(d, Short)

From the Library of Wow! eBook

ptg

124 CHAPTER 4 Data Types and Expressions

This conversion will fail because neither Short inherits from Double nor is there an
implementation relationship between the two types. A conversion failure is notified via
an InvalidCastException. This means that you should use DirectCast only when you
are sure that inheritance or implementation conditions between types are satisfied,
although preferring DirectCast has some advantages in terms of performances because it
directly relies on the .NET runtime. DirectCast conversions are also checked by the back-
ground compiler, so you will be immediately notified if conversions fail via the Error List
window. DirectCast works with both value and reference types. If you work with refer-
ence types, it’s a best practice to check if the two types are compliant so that you can
reduce the risks of errors:

’In this example P is of type Object but stores a Person

If TypeOf (p) Is Person Then

Dim result As Person = DirectCast(p, Person)

End If

The TypeOf operator compares an object reference variable to a data type and returns True
if the object variable is compatible with the given type. As you may imagine, such checks
can require performance overhead. There is also another particular operator that works
only with reference types, known as TryCast. This one works exactly like DirectCast but
instead of throwing an InvalidCastException, in case of conversion failure, it returns a
null object (Nothing). This can be useful because you can avoid implementing an excep-
tions check, simplifying your code (that will only need to check for a null value) and
reducing performance overhead. The last code snippet could be rewritten as follows:

’In this example P is of type Object but stores a Person

Dim result As Person = TryCast(p, Person)

If the conversion fails TryCast returns Nothing, so you will just need to check such a result.

Working with .NET Fundamental Types
There are special types that you will often work with, such as strings, date and time, and
arrays. Although you will often work with collections, too (see Chapter 16, “Working with
Collections”), understanding how such objects work is an important objective. The .NET
Framework 4.0 simplifies your developer life because objects provide methods to perform
the most common operations on the data.

NOTE ON EXTENSION METHODS

This section describes built-in methods from value and reference types. Because of the
.NET infrastructure, all types provide the ability of invoking extension methods that
could be potentially used for accomplishing some of the tasks proposed in this sec-
tion. They will not be described because the scope of this chapter is to describe built-in
members; you will need to understand extension methods, which are covered in
Chapter 21.

From the Library of Wow! eBook

ptg

125Working with .NET Fundamental Types
4

Working with Strings

Working with strings is one of the most common developer activities. In the .NET
Common Type System, System.String is a reference type. This might be surprising,
because actually strings behave like value types. Regarding this, there are a couple of
things to say. First, the String class cannot be inherited, so you can’t create a custom class
derived from it. Second, String objects are immutable like value types. What does this
mean? It means that when you create a new String you cannot change it. Although you
are allowed to edit a string’s content, behind the scenes the CLR will not edit the existing
string; it will instead create a new instance of the String object containing your edits. The
CLR then stores such String objects in the Heap and returns a reference to them. We
discuss later how to approach strings in a more efficient way; at the moment you need to
understand how to work with them. The System.String class provides lots of methods for
working with strings without the need to write custom code. Assuming you understand
the previous section relating to reference types, you can learn how to manipulate strings
using the most common System.String methods.

SYSTEM.STRING METHODS

System.String provides several methods for performing operations on strings. We dis-
cuss the most important of them. Each method comes with several overloads.
Discussing every overload is not possible, so you learn how methods work and then you
can use IntelliSense, the Object Browser, and the documentation for further information.

Comparing Strings
Comparing the content of two strings is an easy task. The most common way for compar-
ing strings is taking advantage of the equality (=) operator, which checks if two strings
have the same value. The following is an example that compares strings for equality:

Dim stringOne As String = “Hi guys”

Dim stringTwo As String = “How are you?”

Dim stringThree As String = “Hi guys”

‘Returns False

Dim result1 As Boolean = (stringOne = stringTwo)

‘Returns True

Dim result2 As Boolean = (stringOne = stringThree)

You can also use the equality operator inside conditional blocks, like in the following
snippet:

If stringOne = stringTwo Then

‘Do something if the two strings are equal

End If

You instead check for strings inequality using the inequality operator (<>).

From the Library of Wow! eBook

ptg

126 CHAPTER 4 Data Types and Expressions

THE VISUAL BASIC COMPILER AND THE EQUALITY OPERATOR

When using the equality operator for strings comparisons, the Visual Basic compiler
works differently from other managed languages. In fact, behind the scenes it makes a
call to the Microsoft.VisualBasic.CompilerServices.Operators.CompareString
method whereas other languages, such as C#, make an invocation to
System.String.Equals.

The String class also exposes other interesting methods for comparing strings: Equals,
Compare, CompareTo and CompareOrdinal. Equals checks for strings equality and returns a
Boolean value of True if the strings are equal or False if they are not (which is exactly like
the equality operator). The following code compares two strings and returns False because
they are not equal:

Dim firstString As String = “Test string”

Dim secondString As String = “Comparison Test”

Dim areEqual As Boolean = String.Equals(firstString, secondString)

Equals has several signatures allowing deep control of the comparison. For example, you
could check if two strings are equal according to the local system culture and without
being case-sensitive:

Dim areCaseEqual As Boolean =

String.Equals(firstString, secondString,

StringComparison.CurrentCultureIgnoreCase)

The StringComparison object provides a way for specifying comparison settings and was
introduced by .NET 2.0. IntelliSense provides descriptions for each available option. Then
there is the Compare method. It checks if the first string is minor, equal, or greater than
the second and returns an Integer value representing the result of the comparison. If the
first string is minor, it returns -1; if it is equal to the second one, the method returns zero;
last, if the first string is greater than the second, Compare returns 1. The following code
snippet demonstrates this kind of comparison:

Dim firstString As String = “Test string”

Dim secondString As String = “Comparison Test”

Dim result As Integer = String.Compare(firstString, secondString)

In this case Compare returns 1, because the second string is greater than the first one.
Compare enables specifying several comparing options. For example, you could perform
the comparison based on case-sensitive strings. The following code demonstrates this:

Dim caseComparisonResult As Integer =

String.Compare(firstString, secondString, True)

From the Library of Wow! eBook

ptg

127Working with .NET Fundamental Types
4

For Equals, Compare also enables a comparison based on other options, such as the culture
information of your system. The next method is String.CompareTo whose return values
are basically the same as String.Compare, but it is an instance method. You use it like in
the following code:

Dim firstString As String = “Test string”

Dim secondString As String = “Comparison Test”

Dim result As Integer = firstString.CompareTo(secondString)

The last valuable method is String.CompareOrdinal, which checks for casing differences
via ordinal comparison rules, which basically means comparing the numeric values of the
corresponding Char objects that the string is composed of. The following is an example:

Dim firstString As String = “test”

Dim secondString As String = “TeSt”

‘Returns:

‘0 if the first string is equal to the second

‘< 0 if the first string is less than the second

‘> 0 if the first string is greater than the second

Dim result As Integer = String.CompareOrdinal(firstString, secondString)

Checking for Empty or Null Strings
The System.String class provides a method named IsNullOrEmpty that easily enables
checking if a string is null or if it does not contain any characters. You can use such a
method as follows:

If String.IsNullOrEmpty(stringToCheck) = False Then

‘The string is neither null nor empty

Else

‘The string is either null or empty

End If

Of course, you could also perform your check against True instead of False. In such situa-
tions both conditions (null or empty) are evaluated. This can be useful because you often
need to validate strings to check if they are valid. There could be situations in which you
need to just ensure that a string is null or not empty. In this case you should use the
usual syntax:

If stringToCheck Is Nothing Then

‘String is null

End If

If stringToCheck = ““ Then

From the Library of Wow! eBook

ptg

128 CHAPTER 4 Data Types and Expressions

TABLE 4.7 Format Symbols Accepted

Symbol Description

C or c Currency

D or d Decimal

E or e Scientific

F or f Fixed point

G or g General

N or n Number

P or p Percentage

R or r Roundtrip

X or x Hexadecimal

‘String is empty

End If

Formatting Strings
Often you need to send output strings according to a particular format, such as currency,
percentage, and decimal numbers. The System.String class offers a useful method named
Format that enables you to easily format text. Consider the following code example,
paying attention to comments:

’Returns “The cost for traveling to Europe is $1,000.00

Console.WriteLine(String.Format(“The cost for traveling to Europe is {0:C}

dollars”, 1000))

‘Returns “You are eligible for a 15.50% discount”

Console.WriteLine(String.Format(“You are eligible for a {0:P} discount”,

15.55F))

‘Returns “Hex counterpart for 10 is A”

Console.WriteLine(String.Format(“Hex counterpart for 10 is {0:X}”, 10))

The first thing to notice is how you present your strings; Format accepts a number of
values to be formatted and then embedded in the main string, which are referenced with
the number enclosed in brackets; for example {0} is the second argument of Format, {1} is
the second one, and so on. Symbols enable the format; for example, C stands for currency,
whereas P stands for percentage, and X stands for hexadecimal. Visual Basic 2010 offers the
symbols listed in Table 4.7.

From the Library of Wow! eBook

ptg

129Working with .NET Fundamental Types
4

TABLE 4.8 Symbols You Can Use for Custom Formats

Symbol Description

0 A numeric placeholder showing 0

A digit placeholder

% Percentage symbol

. Decimal dot

, Thousands separator

; Section separator

“ABC” or ’ABC’ String literals

\ Escape

E or e combined with + or – Scientific

ROUNDTRIP

Roundtrip ensures that conversions from floating point to String and that converting
back is allowed.

Of course, you can format multiple strings in one line of code, as in the following example:

Console.Writeline(String.Format(“The traveling cost is” &

“ {0:C}. Hex for {1} is ‘{1,5:X}’”, 1000, 10))

The preceding code produces the following result:

The traveling cost is $1,000.00. Hex for 10 is ‘ A’

As you can see, you can specify a number of white spaces before the next value. This is
accomplished typing the number of spaces you want to add followed by a : symbol and
then by the desired format symbol. String.Format also enables the use of custom formats.
Custom formats are based on the symbols shown in Table 4.8.

According to Table 4.7, we could write a custom percentage representation:

’Returns “Custom percentage %1,550”

Console.WriteLine(String.Format(“Custom percentage {0:%##,###.##} “, 15.50))

From the Library of Wow! eBook

ptg

130 CHAPTER 4 Data Types and Expressions

Or you could also write a custom currency representation. For example, if you live in
Great Britain, you could write the following line for representing the Sterling currency:

Console.WriteLine(String.Format(“Custom currency {0:£#,###.00} “, 987654))

Another interesting feature in customizing output is the ability to provide different
formats according to the input value. For example, you can decide to format a number
depending if it is positive, negative, or zero. At this regard, consider the following code:

Dim number As Decimal = 1000

Console.WriteLine(String.

Format(“Custom currency formatting:

{0:£#,##0.00;*£#,##0.00*;Zero}”,

number))

Here you specify three different formats, separated by semicolons. The first format affects
positive numbers (such as the value of the number variable); the second one affects nega-
tive numbers, and the third one affects a zero value. The preceding example therefore
produces the following output:

Custom currency formatting: £1,000.00

If you try to change the value of number to –1000, the code produces the following output:

Custom currency formatting: *£1,000.00*

Finally, if you assign number = 0, the code produces the following output:

Custom currency formatting: Zero

Creating Copies of Strings
Strings in .NET are reference types. Because of this, you cannot assign a string object to
another string to perform a copy, because this action will just copy the reference to the
actual string. Fortunately, the System.String class provides two useful methods for
copying strings: Copy and CopyTo. The first one creates a copy of an entire string:

Dim sourceString As String = “Alessandro Del Sole”

Dim targetString As String = String.Copy(sourceString)

Copy is a shared method and can create a new instance of String and then put into the
instance the content of the original string. If you instead need to create a copy of only a
subset of the original string, you can invoke the instance method CopyTo. Such method
works a little differently from Copy, because it returns an array of Char. The following code
provides an example:

Dim sourceString As String = “Alessandro Del Sole”

Dim charArray(sourceString.Length) As Char

From the Library of Wow! eBook

ptg

131Working with .NET Fundamental Types
4

sourceString.CopyTo(11, charArray, 0, 3)

Console.WriteLine(charArray)

You first need to declare an array of char, in this case as long as the string length. The first
argument of CopyTo is the start position in the original string. The second is the target
array; the third one is the start position in the target array, and the fourth one is the
number of characters to copy. In the end, such code produces Del as the output.

CLONE METHOD

The String class also offers a method named Clone. You should not confuse this
method with Copy and CopyTo, because it will just return a reference to the original
string and not a real copy.

Inspecting Strings
When working with strings you often need to inspect or evaluate their content. The
System.String class provides both methods and properties for inspecting strings. Imagine
you have the following string:

Dim testString As String = “This is a string to inspect”

You can retrieve the string’s length via its Length property:

’Returns 27

Dim length As Integer = testString.Length

Another interesting method is Contains that enables knowing if a string contains the
specified substring or array of Char. Contains returns a Boolean value, as you can see in
the following code snippet:

’Returns True

Dim contains As Boolean = testString.Contains(“inspect”)

‘Returns False

Dim contains1 As Boolean = testString.Contains(“Inspect”)

Just remember that evaluation is case-sensitive. There are also situations in which you
might need to check if a string begins or ends with a specified substring. You can verify
both situations using StartsWith and EndsWith methods:

’Returns False, the string starts with “T”

Dim startsWith As Boolean = testString.StartsWith(“Uh”)

‘Returns True

Dim endsWith As Boolean = testString.EndsWith(“pect”)

From the Library of Wow! eBook

ptg

132 CHAPTER 4 Data Types and Expressions

Often you might also need to get the position of a specified substring within a string. To
accomplish this, you can use the IndexOf method. For example you could retrieve the
start position of the first “is” substring as follows:

’Returns 2

Dim index As Integer = testString.IndexOf(“is”)

The code returns 2 because the start index is zero-based and refers to the “is” substring of
the “This” word. You do not need to start your search from the beginning of the string; you
can specify a start index, or you can specify how the comparison must be performed via
the StringComparison enumeration. Both situations are summarized in the following code:

’Returns 5

Dim index1 As Integer = testString.IndexOf(“is”, 3,

StringComparison.InvariantCultureIgnoreCase)

STRINGCOMPARISON ENUMERATION

You can refer to IntelliSense when typing code for further details on the
StringComparison enumeration options. They are self-explanatory, and for the sake of
brevity, all options cannot be shown here.

IndexOf performs a search on the exact substring. You might also need to search for the
position of just one character of a set of characters. This can be accomplished using the
IndexOfAny method as follows:

’Returns 1

Dim index2 As Integer = testString.

IndexOfAny(New Char() {“h”c, “s”c, “i”c})

The preceding code has an array of Char storing three characters, all available in the main
string. Because the first character in the array is found first, IndexOfAny returns its posi-
tion. Generally IndexOfAny returns the position of the character that is found first. There
are counterparts of both IndexOf and IndexOfAny: LastIndexOf and LastIndexOfAny. The
first two methods perform a search starting from the beginning of a string, whereas the
last two perform a search starting from the end of a string. This is an example:

’Returns 5

Dim lastIndex As Integer = testString.LastIndexOf(“is”)

‘Returns 22

Dim lastIndex1 As Integer = testString.LastIndexOfAny(New Char()

{“h”c, “s”c, “i”c})

Notice how LastIndexOf returns the second occurrence of the “is” substring if you
consider the main string from the beginning. Indexing is useful, but this stores just the

From the Library of Wow! eBook

ptg

133Working with .NET Fundamental Types
4

position of a substring. If you need to retrieve the text of a substring, you can use the
SubString method that works as follows:

’Returns “is a string”

Dim subString As String = testString.Substring(5, 11)

You can also just specify the start index, if you need the entire substring starting from a
particular point.

Editing Strings
The System.String class provides members for editing strings. The first method described
is named Insert and enables adding a substring into a string at the specified index.
Consider the following example:

Dim testString As String = “This is a test string”

‘Returns

‘“This is a test,for demo purposes only,string”

Dim result As String = testString.Insert(14, “,for demo purposes only,”)

As you can see from the comment in the code, Insert adds the specified substring from
the specified index but does not append or replace anything. Insert’s counterpart is
Remove, which enables removing a substring starting from the specified index or a piece
of substring from the specified index and for the specified number of characters. This is
an example:

’Returns “This is a test string”

Dim removedString As String = testString.Remove(14)

Another common task is replacing a substring within a string with another string. For
example, imagine you want to replace the “test” substring with the “demo” substring within
the testString instance. This can be accomplished using the Replace method as follows:

’Returns

‘“This is a demo string”

Dim replacedString As String = testString.Replace(“test”, “demo”)

The result of Replace must be assigned to another string to get the desired result. (See
“Performance Tips” at the end of this section.) Editing strings also contain splitting tech-
niques. You often need to split one string into multiple strings, especially when the string
contains substrings separated by a symbol. For example, consider the following code in
which a string contains substrings separated by commas, as in CSV files:

Dim stringToSplit As String = “Name,Last Name,Age”

From the Library of Wow! eBook

ptg

134 CHAPTER 4 Data Types and Expressions

You might want to extract the three substrings Name, Last Name, and Age and store them
as unique strings. To accomplish this you can use the Split method, which can receive as
an argument the separator character:

Dim result() As String = stringToSplit.Split(“,”c)

For Each item As String In result

Console.WriteLine(item)

Next

The preceding code retrieves three strings that are stored into an array of String and
produces the following output:

Name

Last Name

Age

Split has several overloads that you can inspect with IntelliSense. One of these enables
you to specify the maximum number of substrings to extract and split options, such as
normal splitting or splitting if substrings are not empty:

Dim result() As String = stringToSplit.Split(New Char() {“,”c}, 2,

StringSplitOptions.RemoveEmptyEntries)

In this overload you have to explicitly specify an array of Char; in this case there is just a
one-dimension array containing the split symbol. Such code produces the following
output, considering that only two substrings are accepted:

Name

Last Name, Age

Opposite to Split, there is also a Join method that enables joining substrings into a
unique string. Substrings are passed as an array of String and are separated by the speci-
fied character. The following code shows an example:

’Returns “Name, Last Name, Age”

Dim result As String = String.Join(“,”,

New String() {“Name”, “Last Name”, “Age”})

Another way to edit strings is trimming. Imagine you have a string containing white
spaces at the end of the string or at the beginning of the string or both. You might want
to remove white spaces from the main string. The System.String class provides three
methods: Trim, TrimStart, and TrimEnd that enable accomplishing this task, as shown in
the following code (see comments):

Dim stringWithSpaces As String = “ Test with spaces “

‘Returns “Test with spaces”

Dim result1 As String = stringWithSpaces.Trim

‘Returns “Test with spaces “

From the Library of Wow! eBook

ptg

135Working with .NET Fundamental Types
4

Dim result2 As String = stringWithSpaces.TrimStart

‘Returns “ Test with spaces”

Dim result3 As String = stringWithSpaces.TrimEnd

All three methods provide overloads for specifying characters different than white spaces.
(Imagine you want to remove an asterisk.) Opposite to TrimStart and TrimEnd,
System.String exposes PadLeft and PadRight. The best explanation for both methods is a
practical example. Consider the following code:

Dim padResult As String = testString.PadLeft(30, “*”c)

It produces the following result:

*********This is a test string

Basically PadLeft creates a new string, whose length is the one specified as the first argu-
ment of the method and that includes the original string with the addition of a number
of symbols that is equal to the difference from the length you specified and the length of
the original string. In our case, the original string is 21 characters long whereas we speci-
fied 30 as the new length. So, there are 9 asterisks. PadRight does the same, but symbols
are added on the right side, as in the following example:

Dim padResult As String = testString.PadRight(30, “*”c)

This code produces the following result:

This is a test string*********

Both methods are useful if you need to add symbols to the left or to the right of a string.

PERFORMANCE TIPS

Because of its particular nature, each time you edit a string you are not actually edit-
ing the string but you are instead creating a new instance of the System.String
class. As you may imagine, this could lead to performance issues. That said, although
it’s fundamental to know how you can edit strings; you should always prefer the
StringBuilder object especially when concatenating strings. StringBuilder is dis-
cussed later in this chapter.

Concatenating Strings
Concatenation is perhaps the most common task that developers need to perform on
strings. In Visual Basic 2010 you have some alternatives. First, you can use the addition
operator:

Dim firstString As String = “Hello! My name is “

Dim secondString As String = “Alessandro Del Sole”

Dim result As String = firstString + secondString

From the Library of Wow! eBook

ptg

136 CHAPTER 4 Data Types and Expressions

Another and better approach is the String.Concat method:

Dim concatResult As String =

String.Concat(firstString, secondString)

Both ways produce the same result, but both ways have a big limitation; because strings
are immutable, and therefore the CLR needs to create a new instance of the String class
each time you perform a concatenation. This scenario can lead to a significant loss of
performance; if you need to concatenate 10 strings, the CLR creates 10 instances of the
String class. Fortunately, the .NET Framework provides a more efficient way for concate-
nating strings: the StringBuilder object.

The StringBuilder Object
The System.Text.StringBuilder class provides an efficient way for concatenating strings.
You should always use StringBuilder in such situations. The real difference is that
StringBuilder can create a buffer that grows along with the real needs of storing text.
(The default constructor creates a 16-byte buffer.) Using such the StringBuilder class is
straightforward. Consider the following code example:

’Requires an Imports System.Text directive

Function ConcatenatingStringsWithStringBuilder() As String

Dim result As New StringBuilder

‘Ensures that the StringBuilder instance

‘has the capacity of at least 100 characters

result.EnsureCapacity(100)

result.Append(“Hello! My name is “)

result.Append(“Alessandro Del Sole”)

Return result.ToString

End Function

You simply instantiate the StringBuilder class using the New keyword and then invoke the
Append method that receives as an argument the string that must be concatenated. In the
end you need to explicitly convert the StringBuilder to a String invoking the ToString
method. This class is powerful and provides several methods for working with strings, such
as AppendLine (which appends an empty line with a carriage return), AppendFormat (which
enables you to format the appended string), and Replace (which enables you to replace all
occurrences of the specified string with another string). The EnsureCapacity method used
in the code example ensures that the StringBuilder instance can contain at least the spec-
ified number of characters. Basically you can find in the StringBuilder class the same
methods provided by the String class (Replace, Insert, Remove, and so on) so that
working with StringBuilder will be familiar and straightforward.

From the Library of Wow! eBook

ptg

137Working with .NET Fundamental Types
4

Working with Dates

Together with strings, you often need to handle dates and moments in time. To accomplish
this, the .NET Framework 4.0 provides the System.DateTime type, which is a value type.

MINVALUE AND MAXVALUE

Being a value type, System.DateTime has two shared fields, MinValue and MaxValue,
which respectively store the minimum accepted date and the maximum one. Minimum
date is 01/01/0001 00:00:00 a.m. whereas maximum date is 12/31/9999
11:59:59 p.m.

Creating Dates
The Visual Basic grammar offers also the Date keyword that is basically a lexical represen-
tation of the System.DateTime object, so you can use both definitions. For consistency, we
use the Date reserved keyword but keep in mind that this keyword creates (or gets a refer-
ence to) an instance of the System.DateTime type. Basically working with dates is an easy
task. You can create a new date creating an instance of the DateTime class:

Dim myBirthDate As New Date(1977, 5, 10)

The constructor has several overloads but the most common is the preceding one, where
you can specify year, month, and day. For example, such values could be written by the
user and then converted into a DateTime object. Another common situation in which you
need to create a date is for storing the current system clock date and time. This can be
easily accomplished using the DateTime.Now property as follows:

Dim currentDate As Date = Date.Now

Such code produces the following result, representing the moment when I’m writing
this chapter:

8/4/2009 10:35:49 AM

When you get an instance of a DateTime, you can retrieve a lot of information about it.
For example, consider the following code taking care of comments:

’Creates a new date; May 10th 1977, 8.30 pm

Dim myBirthDate As New Date(1977, 5, 10,

20, 30, 0)

‘In 1977, May 10th was Tuesday

Console.WriteLine(myBirthDate.DayOfWeek.

ToString)

From the Library of Wow! eBook

ptg

138 CHAPTER 4 Data Types and Expressions

‘8.30 pm

Console.WriteLine(“Hour: {0}, Minutes: {1}”,

myBirthDate.Hour,

myBirthDate.Minute)

‘Is the date included within the Day Light Saving Time period?

Console.WriteLine(“Is Day light saving time: {0}”,

myBirthDate.IsDaylightSavingTime.

ToString)

‘Is leap year

Console.WriteLine(“Is leap: {0}”,

Date.IsLeapYear(myBirthDate.Year).

ToString)

The code first creates the following date, representing my birth date: 5/10/1977 8:30:00
PM. Then it retrieves some information, such as the name of the day in the week (repre-
sented by the DayOfWeek enumeration), hours, and minutes (via the Hour and Minute
integer properties) and the inclusion of the specified date within Daylight Saving Time.
The DateTime object also exposes a shared method named IsLeapYear that can establish
if the specified year is a leap year. In our example, the year is not passed directly, but it is
provided via the Year property of the myBirthDate instance. The following is the result
of the code:

Tuesday

Hour: 20, Minutes: 30

Is Day light saving time: True

Is leap: False

Finally, you can declare dates with the so-called date literals. The following is an example
of how you can customize the date format:

Dim customDate As Date = #2/25/2010 8:00:00 PM#

Converting Strings into Dates
It is not unusual to ask the user to provide a date within an application. Typically this is
accomplished via the user interface and, if you do not provide a specific user control (such
as the WPF DatePicker or the Win Forms DateTimePicker) for selecting dates in a graphi-
cal fashion, such input will be provided in the form of a string. Because of this, you need
a way for converting the string into a date, unless the string is invalid (so you need valida-
tion) so that you can then manipulate the user input as an effective DateTime object. To
accomplish this kind of conversion, the System.DateTime class provides two methods that
you already saw when discussing value types: Parse and TryParse. For example, consider

From the Library of Wow! eBook

ptg

139Working with .NET Fundamental Types
4

the following code that receives an input by the user and attempts to convert such input
into a DateTime object:

Sub ParsingDates()

Console.WriteLine(“Please specify a date:”)

Dim inputDate As Date

Dim result As Boolean = Date.TryParse(Console.ReadLine, inputDate)

If result = False Then

Console.WriteLine(“You entered an invalid date”)

Else

Console.WriteLine(inputDate.DayOfWeek.ToString)

End If

End Sub

The TryParse method receives the string to convert as the first argument (which in this
case is obtained by the Console window) and the output object passed by reference
(inputDate); it returns True if the conversion succeeds or False if it fails. Basically the
conversion succeeds if the input string format is accepted and recognized by the DateTime
type. If you run this code and enter a string in the following format: 1977/05/10, the
conversion succeeds because such format is accepted by DateTime. So you can then manip-
ulate the new date as you like. (In the preceding example the code shows the day of the
week for the specified date, which in my example is Tuesday.)

TIP

In many cases you work with data coming from a database. The ADO.NET engine and
layered technologies, such as LINQ, map dates from databases directly into a
System.DateTime object so that you will have the possibility of working and manipulat-
ing such objects from and to data sources.

Formatting Dates
You need to present dates for several scenarios, and you might be required to perform this
task in different ways. Fortunately, the System.DateTime provides a lot of ways for format-
ting dates. The easiest way is invoking the ToString method, which accepts an argument
that enables specifying how a date must be presented. For example, consider the follow-
ing code snippet that writes the current date in both the extended (D) and the short (d)
date formats:

Console.WriteLine(DateTime.Now.ToString(“D”))

Console.WriteLine(DateTime.Now.ToString(“d”))

Such code produces the following output:

Wednesday, August 05, 2009

8/5/2009

From the Library of Wow! eBook

ptg

140 CHAPTER 4 Data Types and Expressions

TABLE 4.10 System.DateTime Useful Methods

Method Description Type Returned

ToLocalTime Returns the full date representation according to
regional settings

Date
(System.DateTime)

ToLongDateString Returns a long format date (without time) String

ToShortDateString Returns a short format date (without time) String

ToLongTimeString Returns a long format time (without date) String

The result is based on the regional and culture settings of your system. Table 4.9 summa-
rizes symbols that you can use with the ToString method.

ToString also recognizes date literals. The following is an example of how you can
customize and write a date:

Console.WriteLine(Date.Today.ToString(“dd/MM/yyyy”))

The above code prints the current date in the Day/Month/Year format. System.DateTime
provides a plethora of other useful methods that you can use for formatting dates. Such
methods also return different data types, depending on the scenario in which they have to
be used in. Table 4.10 summarizes the most important methods that you can always
inspect with IntelliSense and the Object Browser.

TABLE 4.9 Date Formatting Symbols with ToString

Symbol Preview

D Wednesday, August 05, 2009

D 8/5/2009

T 3:11:26 PM

T 3:11 PM

F Wednesday, August 05, 2009 3:11:26 PM

F Wednesday, August 05, 2009 3:11 PM

G 8/5/2009 3:11:26 PM

G 8/5/2009 3:11 PM

S 2009-08-05T15:11:26

U Wednesday, August 05, 2009 1:11:26 PM

U 2009-08-05 15:11:26Z

From the Library of Wow! eBook

ptg

141Working with .NET Fundamental Types
4

TABLE 4.10 Continued

Method Description Type Returned

ToShortTimeString Returns a short format time (without date) String

ToUniversalTime Returns a full date representation according to the
Coordinated Universal Time specifications.

Date
(System.DateTime)

ToOADate Returns an OLE Automation date format Double

ToFileTime Returns the Windows file time representation of a
date

Long

ToFileTimeUtc Returns the Windows file time representation of a
date, according to the Coordinated Universal Time
specifications.

Long

The following code snippet takes all the preceding methods to demonstrate how the
output differs depending on the method:

Console.WriteLine(“Local time: {0}”, Date.Now.ToLocalTime)

Console.WriteLine(“Long date: {0}”, Date.Now.ToLongDateString)

Console.WriteLine(“Short date: {0}”, Date.Now.ToShortDateString)

Console.WriteLine(“Long time: {0}”, Date.Now.ToLongTimeString)

Console.WriteLine(“Short time: {0}”, Date.Now.ToShortTimeString)

Console.WriteLine(“Universal time: {0}”, Date.Now.

ToUniversalTime.ToString)

Console.WriteLine(“File time: {0}”, Date.Now.

ToFileTime.ToString)

Console.WriteLine(“File time UTC: {0}”, Date.Now.

ToFileTimeUtc.ToString)

Console.WriteLine(“OLE Automation date: {0}”, Date.Now.

ToOADate.ToString)

The preceding code produces the following result that you can compare with methods as
described in Table 4.9:

Local time: 08/05/2009 14:57:22

Long date: Wednesday, August 05, 2009

Short date: 8/5/2009

Long time: 2:57:22 PM

Short time: 2:57 PM

Universal time: 8/5/2009 12:57:22 PM

File time: 128939506428847656

File time UTC: 128939506428886718

OLE Automation date: 40030.6231815741

From the Library of Wow! eBook

ptg

142 CHAPTER 4 Data Types and Expressions

Subtracting Dates and Adding Time to Time
It’s not unusual to need to know the amount of time spent between two dates. The
System.DateTime enables accomplishing this invoking a Subtract method, which returns
a System.TimeSpan value. For example, consider the following code that subtracts a date
from another one:

Dim birthDate As Date = New Date(1977, 5, 10, 20, 30, 0)

Dim secondDate As Date = New Date(1990, 5, 11, 20, 10, 0)

Dim result As System.TimeSpan = secondDate.Subtract(birthDate)

‘In days

Console.WriteLine(result.Days)

‘In “ticks”

Console.WriteLine(result.Ticks)

You can subtract two DateTime objects and get a result of type TimeSpan (discussed next).
You can then get information on the result, such as the number of days that represent the
difference between the two dates or the number of ticks. The above code produces the
following result:

4748

4103124000000000

You can also add values to a date. For example you can edit a date adding days, hour,
minutes, seconds, or ticks or incrementing the year. Consider the following code snippet:

Dim editedDate As Date = birthDate.AddDays(3)

editedDate = editedDate.AddHours(2)

editedDate = editedDate.AddYears(1)

Console.WriteLine(editedDate)

Such code adds three days and two hours to the date and increments the year by one unit.
In the end it produces the following output:

5/13/1978 10:30:00 PM

Dates are important and although they allow working with time, too, the .NET Framework
provides an important structure specific for representing pieces of time: System.TimeSpan.

NOTE ABOUT OPERATORS

You can use standard operators such as the addition and subtraction operators when
working with both DateTime and TimeSpan objects. This is possible because both
objects overload the standard operators. Overloading operators is discussed in Chapter
11, “Structures and Enumerations.”

From the Library of Wow! eBook

ptg

143Working with .NET Fundamental Types
4

Working with Time

You often need to represent intervals of time in your applications, especially in conjunc-
tion with dates. The .NET Framework provides a structure, therefore a value type, named
System.TimeSpan. Such structure can represent time from a minimum value (one tick)
until a maximum value (one day). A tick is the smallest unit for time representations and
is equal to 100 nanoseconds. Whereas TimeSpan represents a summed amount of time
between two given time values, the time portion of a Date object represents a single
specific moment in time.

MINIMUM AND MAXIMUM VALUES

As for other value types, System.TimeSpan also provides two shared properties named
MinValue and MaxValue that return respectively the following ticks: -
10675199.02:48:05.4775808 and 10675199.02:48:05.4775807. For the sake of
clarity, both values are respectively equals to System.Int64.MinValue and
System.Int64.MaxValue.

You can find several places in which using TimeSpan is needed other than simply working
with dates. For example, you might want to create your performance benchmarks using
the StopWatch object that returns a TimeSpan. Or you might need such structure when
working with animations in WPF applications. The following code example simulates a
performance test; a System.StopWatch object is started and an intensive loop is performed,
and then the StopWatch gets stopped. The StopWatch class offers an Elapsed property that
is of type TimeSpan and that can be useful to analyze the amount of elapsed time:

Dim watch As New Stopwatch

watch.Start()

For i = 0 To 10000

‘Simulates intensive processing

System.Threading.Thread.SpinWait(800000)

Next

watch.Stop()

Console.WriteLine(watch.Elapsed.Seconds)

Console.WriteLine(watch.Elapsed.Milliseconds)

Console.WriteLine(watch.Elapsed.Ticks)

The preceding code produced the following result on my machine, but, of course, it will
be different on yours, depending on your hardware:

49

374

493746173

From the Library of Wow! eBook

ptg

144 CHAPTER 4 Data Types and Expressions

Basically the TimeSpan structure is similar to the area of the DateTime type that is related
to time. Notice that TimeSpan offers several similar properties, such as Days, Hours,
Minutes, Seconds, Milliseconds, and methods such as AddDays, AddHours, AddMinute, and
Subtract. TimeSpan is all about time; this means that although there are similarities, as
mentioned before, with the time-related DateTime members, you cannot (obviously) work
with dates. The following code provides an example about creating a TimeSpan instance
starting from an existing date:

Sub TimeSpanInstance()

Dim currentDate As Date = Date.Now

‘Because the System namespace is imported at project

‘level, we do not need an Imports directive

Dim intervalOfTime As TimeSpan = currentDate.TimeOfDay

Console.WriteLine(“My friend, in the current date “ &

“there are {0} days; time is {1}:{2}:{3}”,

intervalOfTime.Days,

intervalOfTime.Hours,

intervalOfTime.Minutes,

intervalOfTime.Seconds)

End Sub

The preceding code produces the following result:

My friend, in the current date there are 0 days; time is 19:13

Because in the specified interval there is only the current day, the first argument returns
zero. Take a look back at the section “Subtracting Dates and Adding Time to Time” to see
an example of TimeSpan usage for an interval of time retrieved subtracting two dates.

Working with TimeZone and TimeZoneInfo

You might often ask what people are doing on the other side of world when in your
country it’s a particular time of the day. Working with time zones can also be important
for your business if you need to contact people who live in different and far away coun-
tries. The .NET Framework provides two types, TimeZone and TimeZoneInfo, which enable
retrieving information on time zones. Both types are exposed by the System namespace.
For example, imagine you want to retrieve information on the time zone of your country.
This can be accomplished as follows (assuming regional settings on your machine are
effectively related to your country):

Dim zone As TimeZone = TimeZone.CurrentTimeZone

TimeZone is a reference type and through its CurrentTimeZone property it provides a lot of
information such as the name of the time zone or the daylight-saving time period as
demonstrated here:

Console.WriteLine(zone.DaylightName)

From the Library of Wow! eBook

ptg

145Working with .NET Fundamental Types
4

Console.WriteLine(zone.StandardName)

Console.WriteLine(zone.IsDaylightSavingTime(Date.Now))

This code produces the following result on my machine:

W. Europe Daylight Time

W. Europe Standard Time

True

The official MSDN documentation states that using the TimeZoneInfo class should be
preferred instead of TimeZone. This is because TimeZoneInfo also provides the ability of
creating custom time zones. The following code shows how you can retrieve current time
zone information using TimeZoneInfo:

Dim tz As TimeZoneInfo = TimeZoneInfo.Local

‘Shows the current time zone Identifier

Console.WriteLine(tz.Id)

Creating a custom time zone is also a simple task, which is accomplished by the following
code:

Dim customZone As TimeZoneInfo = TimeZoneInfo.

CreateCustomTimeZone(“CustomTimeZone”,

Date.UtcNow.Subtract(Date.Now),

“Custom Zone”, “Custom Zone”)

All you need is specifying a custom identifier, the difference between the UTC time span
and the local time span, a daylight identifier, and a standard identifier. TimeZoneInfo also
provides another useful method for enumerating time zones recognized by the system,
named GetSystemTimeZones and that you can use like this:

For Each timez As TimeZoneInfo In TimeZoneInfo.GetSystemTimeZones

Console.WriteLine(timez.DisplayName)

Next

An excerpt of the output provided by this simple iteration is the following:

(UTC-12:00) International Date Line West

(UTC-11:00) Midway Island, Samoa

(UTC-10:00) Hawaii

(UTC-09:00) Alaska

(UTC-08:00) Pacific Time (US & Canada)

(UTC-08:00) Tijuana, Baja California

(UTC-07:00) Arizona

(UTC-07:00) Chihuahua, La Paz, Mazatlan

(UTC-07:00) Mountain Time (US & Canada)

(UTC-06:00) Central America

(UTC-06:00) Central Time (US & Canada)

From the Library of Wow! eBook

ptg

146 CHAPTER 4 Data Types and Expressions

(UTC-05:00) Eastern Time (US & Canada)

(UTC-05:00) Indiana (East)

(UTC-04:30) Caracas

(UTC-04:00) Santiago

(UTC-03:30) Newfoundland

(UTC-01:00) Cape Verde Is.

(UTC) Casablanca

(UTC) Coordinated Universal Time

(UTC) Dublin, Edinburgh, Lisbon, London

(UTC) Monrovia, Reykjavik

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

(UTC+02:00) Windhoek

(UTC+03:00) Baghdad

(UTC+03:00) Kuwait, Riyadh

(UTC+03:00) Moscow, St. Petersburg, Volgograd

(UTC+03:00) Nairobi

(UTC+06:00) Almaty, Novosibirsk

(UTC+06:00) Astana, Dhaka

(UTC+06:30) Yangon (Rangoon)

(UTC+07:00) Krasnoyarsk

(UTC+08:00) Beijing, Chongqing, Hong Kong, Urumqi

(UTC+08:00) Perth

(UTC+08:00) Taipei

(UTC+09:00) Yakutsk

(UTC+09:30) Adelaide

(UTC+10:00) Vladivostok

(UTC+11:00) Magadan, Solomon Is., New Caledonia

(UTC+12:00) Auckland, Wellington

(UTC+12:00) Fiji, Kamchatka, Marshall Is.

(UTC+13:00) Nuku’alofa

Thanks to this information, you could use the TimeZoneInfo class for converting between
time zones. The following code demonstrates how to calculate the hour difference
between Italy and Redmond, WA:

’Redmond time; requires specifying the Time Zone ID

Dim RedmondTime As Date = TimeZoneInfo.

ConvertTimeBySystemTimeZoneId(DateTime.Now, “Pacific Standard Time”)

Console.WriteLine(“In Italy now is {0} while in Redmond it is {1}”,

Date.Now.Hour,RedmondTime.Hour)

Invoking the ConvertTimeBySystemZoneId method, you can convert between your local
system time and another time, based on the zone ID. If you don’t know zone IDs, just
replace the previous iterations for showing the content of the timez.Id property instead
of DisplayName.

From the Library of Wow! eBook

ptg

147Working with .NET Fundamental Types
4

Working with GUIDs

How many times do you need to represent something with a unique identifier? Probably
your answer is “very often.” Examples are items with the same name but with different
characteristics. The .NET Framework enables creating unique identifiers via the
System.Guid structure (therefore a value type). Such type enables generating a unique,
128-bit string, identifier. To generate a unique identifier, invoke the Guid.NewGuid method
that works as follows:

’Declaring a Guid

Dim uniqueIdentifier As Guid

‘A unique identifier

uniqueIdentifier = Guid.NewGuid

Console.WriteLine(uniqueIdentifier.ToString)

‘Another unique identifier,

‘although to the same variable

uniqueIdentifier = Guid.NewGuid

Console.WriteLine(uniqueIdentifier.ToString)

If you run the preceding code, you notice that each time you invoke the NewGuid method
a new GUID is generated, although you assign such value to the same variable. This makes
sense, because you use the GUID each time you need a unique identifier. On my machine
the preceding code produces the following result:

96664b7d-1c8a-42a5-830f-3548dfe3ff8e

4767a1ff-a7c8-4db0-b37e-5b22a387cf00

EXAMPLES OF GUIDS

The Windows operating system makes a huge usage of GUIDs. If you try to inspect the
Windows Registry, you find lot of examples.

The Guid.NewGuid method provides auto-generated GUIDs. If you need to provide your
own GUID, you can use the New constructor followed by the desired identifier:

’Specifying a Guid

uniqueIdentifier = New Guid(“f578c96b-5918-4f79-b690-6c463ffb2c3e”)

The constructor has several overloads, which enable generating GUIDs also based on bytes
array and integers. Generally you use GUIDs each time you need to represent something

From the Library of Wow! eBook

ptg

148 CHAPTER 4 Data Types and Expressions

FIGURE 4.10 The Create GUID tool from Visual Studio.

as unique. Several .NET types accept GUIDs, so you need to know how you can create
them in code, although this is not the only way.

Creating GUIDs with the Visual Studio Instrumentation
The Visual Studio IDE provides a graphical tool for generating GUIDs. You can run this
tool by choosing the Create Guid command from the Tools menu. Figure 4.10 shows the
Create Guid window.

You can choose what format you need for your GUID, such as Windows-like GUIDs.
When you get your GUID, you can copy it to the clipboard and then reuse it in your code.

Working with Arrays

As a developer you of course know what arrays are. They are basically a place in which
you can store a set of items, generally of the same type. In the .NET Framework 4.0 (as in
older versions), arrays are reference types all deriving from the System.Array class and can
be both one-dimensional and multidimensional.

ARRAYS VERSUS COLLECTIONS

Collections, especially generic ones, are generally more efficient than arrays. I always
recommend working with collections instead of arrays, except when strictly needed. (For
example, you might need jagged arrays.)

From the Library of Wow! eBook

ptg

149Working with .NET Fundamental Types
4

You can either declare an array and use it later in your code or declare it and assign it with
objects. The following is an example of declaring an array of String objects, meaning that
it can store only objects of type String:

Dim anArrayOfString() As String

In this line of code an array of String is declared. This array has no predefined bounds, so
it is flexible and useful if you cannot predict how many items it needs to store. There is also
an alternative syntax, which allows placing parentheses at the end of the type, as follows:

’Alternative syntax

Dim anArrayOfString As String()

You are free to use whichever syntax you like. For the sake of consistency the first one is
used.

IS OPTION STRICT ON?

The preceding and the following code examples assume that Option Strict is set to
On. If it is off, adding instances of System.Object is also allowed but might cause
errors at runtime. It is recommended to set Option Strict to On to avoid implicit con-
version, and this is one of those cases.

You can initialize arrays directly when declaring them, as in the following code that
declares an array of strings and stores three instances of the System.String class:

’Inline initialization with implicit bounds

Dim anArrayOfThreeStrings() As String = New String() {“One”, “Two”, “Three”}

Notice how you assign an array using the New keyword followed by the type name and a
couple of parentheses. Brackets contain the items to store. The declared array has no
bounds limits, but actually after the assignment its upper bound is 2 so its bounds are
determined by the number of values it is initialized with.

ARRAYS BASE

Arrays are zero-based. This means that an array with an upper bound of 2 can store
three items (index of zero, index of one, and index of two).

This approach works with arrays of other .NET types, too, as in the following code in
which Char and Byte are used:

Dim anArrayOfChar() As Char = New Char() {“a”c, “b”c, “c”c}

Dim anArrayOfByte() As Byte = New Byte() {1, 2, 3}

From the Library of Wow! eBook

ptg

150 CHAPTER 4 Data Types and Expressions

If you already know how many items the array can store, you can specify the bounds
limits. For example, imagine you want to store three instances of System.Byte into an
array of Byte. This can be accomplished via the following code:

Dim anExplicitBoundArrayOfByte(2) As Byte

anExplicitBoundArrayOfByte(0) = 1

anExplicitBoundArrayOfByte(1) = 2

anExplicitBoundArrayOfByte(2) = 3

INLINE INITIALIZATION WITH EXPLICIT BOUNDS

Inline initialization is not allowed against arrays declared with explicit bounds. In such
situations the only allowed syntax is the one shown in the previous code snippet.

The upper limit is enclosed in parentheses. Storing items is accomplished through indices.
(The first one is always zero.) As with assignment, you can retrieve the content of a partic-
ular item using indices:

’Outputs 2

Console.WriteLine(anExplicitBoundArrayOfByte(1).ToString)

You can also perform tasks on each element in the array using a For Each loop, as in the
following code snippet, which works the same on an array of Byte and on array of String:

For Each value As Byte In anExplicitBoundArrayOfByte

Console.WriteLine(value)

Next

For Each value As String In anArrayOfThreeStrings

Console.WriteLine(value)

Next

Another important task that you should perform when working with not explicitly bound
arrays is checking if they contain something. You can accomplish this checking if the
array is Nothing:

If anArrayOfString Is Nothing Then

‘The array is not initialized

End If

This is because attempting to access a null array causes the runtime to throw an exception.

The ReDim Keyword
There are situations in which you need to increase the capacity of an array that you previ-
ously declared with explicit bounds. Let’s retake one of the previous arrays:

Dim anExplicitBoundArrayOfByte(2) As Byte

anExplicitBoundArrayOfByte(0) = 1

From the Library of Wow! eBook

ptg

151Working with .NET Fundamental Types
4

anExplicitBoundArrayOfByte(1) = 2

anExplicitBoundArrayOfByte(2) = 3

At runtime you might need to store an additional Byte, so in this case you should first
increase the array’s size. To accomplish this, the Visual Basic grammar provides a special
keyword named ReDim. ReDim basically redeclares an array of the same type with new
bounds. But this keyword would also clean all the previously stored items; so what if you
just need to add a new item to an existing list without clearing? Fortunately the Visual
Basic grammar provides another keyword named Preserve that is the best friend of ReDim
in such situations and enables maintaining the previously stored values, preventing clean-
ing. The following code redeclares the preceding array without cleaning previous values:

ReDim Preserve anExplicitBoundArrayOfByte(3)

At this point you can add a new item using the new available index:

anExplicitBoundArrayOfByte(3) = 4

Notice how you do not specify again the type of the array when using ReDim.

Multidimensional Arrays
Arrays can have multiple dimensions. Generally two-dimensional (also known as
rectangular) and three-dimensional arrays are the most common situations. The follow-
ing code declares a two-dimensional array with four values, but with no explicit dimen-
sions specified:

Dim multiArray(,) As Integer = {{1, 2}, {3, 4}}

You can also specify dimensions as follows:

Dim multiArrayWithExplicitBounds(5, 1) As Integer

You cannot initialize arrays inline in the case of multidimensional arrays. You can then
access indices as follows:

multiArrayWithExplicitBounds(1, 0) = 1

multiArrayWithExplicitBounds(2, 0) = 2

multiArrayWithExplicitBounds(1, 1) = 3

ARRAY LITERALS

Visual Basic 2010 offers a new feature for working with both multidimensional arrays
and jagged arrays (discussed next), named Array Literals. Basically this feature enables
the compiler to infer the appropriate type for arrays. Because it requires that you are
familiar with the Local Type Inference, Array Literals are discussed in Chapter 21.

From the Library of Wow! eBook

ptg

152 CHAPTER 4 Data Types and Expressions

Jagged Arrays
Jagged arrays are basically arrays of arrays and are similar to multidimensional arrays.
However, they differ because each item of a dimension is an array. Here you see examples
of jagged arrays of Integer. To declare a jagged array, you can use the following syntax:

’A 9-entry array on the left and

‘an unbound array on the right

Dim firstJaggedArray(8)() As Integer

As you can see, a jagged array declaration is characterized by a double couple of parenthe-
ses. You can also declare a jagged array that is not explicitly bound, as in the following
code snippet:

Dim unboundJaggedArray()() As Integer

Although you can perform inline initializations, this coding technique could become diffi-
cult with complex arrays. Because of this, it could be more convenient declaring the array
and then assigning its indices as follows:

Dim oneIntArray() As Integer = {1, 2, 3}

Dim twoIntArray() As Integer = {4, 5, 6}

unboundJaggedArray = {oneIntArray, twoIntArray}

By the way, the following initialization is perfectly legal:

Dim unboundJaggedArray()() As Integer _

= {New Integer() {1, 2, 3}, New Integer() {4, 5, 6}}

As I explain in Chapter 21, the new Array Literals feature makes inline initialization easier.
You can then normally access arrays (that is, items) in a jagged array, for example,
performing a For..Each loop:

’Returns 1 2 3 4 5 6

For Each arr As Integer() In unboundJaggedArray

For Each item As Integer In arr

Console.WriteLine(item.ToString)

Next

Next

Sorting, Creating, Copying and Inspecting Arrays with the System.Array Class
As I mentioned at the beginning of this section, all arrays derive from the System.Array
class and therefore are reference types. This is an important consideration, because you
have to know how to manipulate them. System.Array provides several static and instance
members for performing tasks on arrays. Here we discuss the most important members and
methods overloads, because all of them are self-explanatory, and IntelliSense will be your
friend in showing the necessary information. First, here’s an example of an array of byte:

Dim anArrayOfByte() As Byte = New Byte() {1, 2, 3}

From the Library of Wow! eBook

ptg

153Working with .NET Fundamental Types
4

In this array, bounds are not explicit. Particularly at runtime, you might need to access
array indices but to avoid IndexOutOfRange exceptions you do need to know at least the
upper bound. Just for clarification, imagine you want to perform a For..Next loop against
an array. To accomplish this, you first need to know the bounds. The GetLowerBound and
GetUpperBound methods enable retrieving lower and upper bounds of an array, as shown
in the following code:

’Returns 0 and 2

Console.WriteLine(“Lower bound {0}, upper bound {1}”,

anArrayOfByte.GetLowerBound(0).ToString,

anArrayOfByte.GetUpperBound(0).ToString)

Both methods receive as an argument the dimension of the array. This is because they can
work both on one-dimensional arrays and on multidimensional arrays. A zero dimension
means that you are working with a one-dimensional array or with the first dimension of a
multidimensional array. Another common task is about sorting arrays. There are two
methods that you can use, Sort and Reverse. As you can easily understand, Sort performs
ordering an array in an ascending way, whereas Reverse performs ordering in a descend-
ing way. Starting from the anArrayOfByte array, the following code reverses the order:

’Array now contains 3, 2, 1

Array.Reverse(anArrayOfByte)

To sort the array back, you can simply invoke the Sort method:

Array.Sort(anArrayOfByte)

Both methods perform ordering according to the IComparable(Of T) interface. You can
also search for a particular item within an array. For this purpose you can use two
methods: IndexOf and BinarySearch. Both return the index of the specified item, but the
first one just stops searching when the first occurrence is found, whereas the second one
searches through the entire array but only if the array is sorted according to the imple-
mentation of the IComparable interface. Their usage is very straightforward:

’A conversion to Byte is required

‘Both return 1

Dim position As Integer = Array.IndexOf(anArrayOfByte, CByte(2))

Dim position2 As Integer = Array.BinarySearch(anArrayOfByte, CByte(2))

Both methods receive an Object as the second argument. But we have an array of Byte.
Because writing just 2 tells the compiler to recognize such a number as an Integer, we
need to explicitly convert it to Byte.

NOTE ON SYSTEM.ARRAY METHODS

System.Array also provides methods that take a lambda expression as arguments.
Lambdas are discussed in Chapter 21, so this chapter does not apply them to arrays.
A quick recap is done for your convenience in the appropriate place.

From the Library of Wow! eBook

ptg

154 CHAPTER 4 Data Types and Expressions

Another common task on arrays is copying. Because they are reference types, assigning an
array to another just copies the reference. To create a real copy of an array, you can take
advantage of the shared Copy method and of the instance CopyTo method. First, you need
to declare a target array. Continuing the example about the anArrayOfByte array, you
could declare the new one as follows:

’Declares an array to copy to,

‘with bounds equals to the source array

Dim targetArray(anArrayOfByte.GetUpperBound(0)) As Byte

To ensure the upper bound is the same as in the original array, an invocation to the
GetUpperBound method is made. Next you can copy the array:

’Copies the original array into the target,

‘using the original length

Array.Copy(anArrayOfByte, targetArray, anArrayOfByte.Length)

Array.Copy needs you to pass the source array, the target array, and the total number of
items you want to copy. Supposing you want to perform a complete copy of the source
array, you can just pass its length. The alternative is to invoke the instance method CopyTo:

anArrayOfByte.CopyTo(targetArray, 0)

The method receives the target array as the first argument and the index where copying
must begin as the second argument. A third way for copying an array is invoking the
Clone method, which is inherited from System.Object. Note that Copy and CopyTo provide
more granularity and control over the copy process. The last scenario creates arrays on-
the-fly. You could need to perform such a task at runtime given a number of items of a
specified type, for example when you receive several strings as the user input. The
System.Array class provides a shared method named CreateInstance, which creates a
new instance of the System.Array class. It receives two arguments: the System.Type that
the array must be of and the upper bound. For example, the following code creates a new
array of String that can store three elements:

Dim runTimeArray As Array = Array.CreateInstance(GetType(String), 2)

PAY ATTENTION TO CREATEINSTANCE

You should use CreateInstance with care, because you can write code that is correctly
compiled but that can cause runtime errors (for example with regard to array bounds).

Because the first argument is the representation of the System.Type you want to assign to
the array, you must use the GetType keyword to retrieve information about the type. You
can assign items to each index invoking the SetValue method, which is an instance
method. The following line of code assigns a string to the zero index of the previous array:

runTimeArray.SetValue(CStr(“Test string”), 0)

From the Library of Wow! eBook

ptg

155Common Operators
4

TABLE 4.11 Arithmetic Operators

Operator Description

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

\ Integer division operator

^ Exponentiation operator

Mod Integer division remainder

If you want to retrieve your items, simply invoke the GetValue method specifying the index:

’Returns “Test string”

Console.WriteLine(runTimeArray.GetValue(0))

Common Operators
When working with data types, you often need to perform several tasks on them.
Depending on what type you work with, the Visual Basic programming language offers
different kinds of operators, such as arithmetic operators, logical and bitwise operators,
and shift operators. In this section you learn about Visual Basic operators and how you
can use them in your own code. Let’s begin by discussing arithmetic operators that are
probably the most frequent operators you will use.

Arithmetic Operators

Visual Basic 2010 provides some arithmetic operators, listed in Table 4.11.

The first three operators are self-explanatory, so I would like to focus on the other ones.
First, an important consideration should be done on the division operators. As shown in
Table 4.11, Visual Basic offers two symbols, the slash (/) and backslash (\). The first one
can be used in divisions between floating point numbers (such as Double and Single
types), and the second can be used only in divisions between integer numbers. This
baclslash is fast when working with integers and truncates the result in case it is a floating
point number. Basically, the backslash accepts and returns just integers. To understand this
concept, consider the following division between Doubles:

’Division between double: returns 2.5

Dim dblResult As Double = 10 / 4

From the Library of Wow! eBook

ptg

156 CHAPTER 4 Data Types and Expressions

The result of such calculation is 2.5. Now consider the following one:

’Division between integers: returns 2

Dim intResult As Integer = 10 \ 4

The result of this calculation is 2. This is because the \ operator truncated the result, due
to its integer nature. If you try to use such operators in a division involving floating point
numbers, the Visual Basic compiler throws an exception which is useful for avoiding
subtle errors. By the way, such an exception occurs only with Option Strict On, which
you should always set as your default choice.

SUPPORTED TYPES

The integer division operator supports the following data types: SByte, Byte, Short,
UShort, Integer, UInteger, Long, and ULong, that is, all numeric types that do not sup-
port a floating point.

For divisions between floating point numbers, it’s worth mentioning that divisions
between Single and Double are also allowed but this causes the compiler to perform some
implicit conversions that should be avoided. In such situations, you should just perform
an explicit conversion, as in the following code:

’Division between Single and Double

Dim singleValue As Single = 987.654

Dim doubleValue As Double = 654.321

Dim division As Single = singleValue / CSng(doubleValue)

The next interesting operator is the exponentiation operator. A simple example follows:

Dim result As Double = 2 ^ 4 ‘returns 16

The exponentiation operator returns a Double value. Because of this, even if operands are
other types (such as Integer or Long), they will be always converted to Double. Behind the
scenes, the ^ operator invokes the Pow method exposed by the System.Math class. So you
could also rewrite the preceding line of code as follows:

Dim result As Double = System.Math.Pow(2,4) ‘returns 16

The last built-in operator is Mod (which stands for Modulus) that returns the remainder of a
division between numbers. The following lines of code show an example:

’Mod: returns 0

Dim remainder As Integer = 10 Mod 2

‘Mod: returns 1

From the Library of Wow! eBook

ptg

157Common Operators
4

Dim remainder As Integer = 9 Mod 2

A typical usage of Mod is for determining if a number is an odd number. To accomplish
this, you could create a function like the following:

Function IsOdd(ByVal number As Integer) As Boolean

Return (number Mod 2) <> 0

End Function

If the remainder is different from zero, the number is odd and therefore returns True. Mod
supports all numeric types, including unsigned types and floating point ones. The .NET
Framework offers another way for retrieving the remainder of a division, which is the
System.Math.IEEERemainnder method that works as follows:

’Double remainder

Dim dblRemainder As Double = System.Math.IEEERemainder(10.42, 5.12)

Although both Mod and IEEERemainder return the remainder of a division between
numbers, they use different formulas behind the scenes and therefore the result may differ.
According to the MSDN documentation, this is the formula for the IEEERemainder method:

IEEERemainder = dividend - (divisor * Math.Round(dividend / divisor))

This is instead the formula for the Modulus operator:

Modulus = (Math.Abs(dividend) - (Math.Abs(divisor) *

(Math.Floor(Math.Abs(dividend) / Math.Abs(divisor))))) *

Math.Sign(dividend)

You can see how calculations work differently, especially where Modulus gets the absolute
value for dividend and divisor.

SYSTEM.MATH CLASS

This section provides an overview of the arithmetic operators built into the Visual Basic
2010 programming language. The System.Math class provides lots of additional meth-
ods for performing complex calculations but this is beyond the scope here.

Assignment Operators

You can use operators shown in the previous paragraph for incremental operations.
Consider the following code:

Dim value As Double = 1

value += 1 ‘Same as value = value + 1

From the Library of Wow! eBook

ptg

158 CHAPTER 4 Data Types and Expressions

value -= 1 ‘Same as value = value - 1

value *= 2 ‘Same as value = value * 2

value /= 2 ‘Same as value = value / 2

value ^= 2 ‘Same as value = value ^ 2

Dim test As String = “This is”

test &= “ a string” ‘same as test = test & “ a string”

You can therefore abbreviate your code using this particular form when performing opera-
tions or concatenations. Also notice that += assignment operator works on strings as well.

Logical, Bitwise and Shift Operators

Visual Basic 2010 offers logical, bitwise, and shift operators. Logical operators are special
operators enabling comparisons between Boolean values and also returning Boolean
values. Bitwise and shift operators enable performing operations bit by bit. Next let’s
discuss both logical and bitwise operators.

Logical Operators
In Visual Basic 2010, there are eight logical/bitwise operators: Not, And, Or, Xor,
AndAlso,OrElse, IsFalse, IsTrue. In this subsection you learn about the first four, while
the other ones will be covered in the next subsection. The first operator, Not, basically
returns the opposite of the actual Boolean value. For example, the following lines of code
return False because although the 43 number is greater than 10, Not returns the opposite:

’Returns False

Dim result As Boolean = (Not 43 > 10)

Logical operators can also be used with reference types. For example, you can return the
opposite of the result of a comparison between objects (see section “Comparison
Operators” for details):

Dim firstPerson As New Person

Dim secondPerson As New Person

‘Returns True

result = (Not firstPerson Is secondPerson)

This code returns True; the comparison between firstPerson and secondPerson returns
False because they point to two different instances of the Person class, but Not returns
the opposite. Generally you use such operators for reverting the state of an object basing
on a Boolean property. The next operator is And, which compares two Boolean values or

From the Library of Wow! eBook

ptg

159Common Operators
4

expressions and returns True if both values or expressions are True; otherwise, if at least
one value is False, And returns False. Here is an example of And:

’Returns False

result = 10 > 15 and 30 > 15

‘Returns True

result = 20 > 15 and 30 > 15

‘Returns True

result = 20 > 15 and 15 = 15

And is also useful for comparing Boolean properties of objects. For example, you might
want to check if a text file exists on disk and that it is not zero-byte; you could write the
following code:

If My.Computer.FileSystem.FileExists(“C:\MyFile.txt”) = True And

My.Computer.FileSystem.ReadAllText(“C:\MyFile.txt”).Length > 0 Then

‘Valid file

End If

If both actions return True, And returns True. In our example this should mean that we
encountered a valid text file. The next operator is Or. Such an operator works like this:
if expressions or values are True, it returns True; if both are False, it returns False; and
if one of the two expressions is True, it returns True. The following code demonstrates
this scenario:

’Returns True

result = 10 > 15 or 30 > 15

‘Returns True

result = 10 < 15 or 30 > 15

‘Returns False

result = 10 > 15 or 30 < 15

The last operator is Xor (eXclusive Or). Such an operator compares two Boolean expressions
(or values) and returns True only if one of the two expressions is True whereas in all other
cases it returns False. Continuing the first example, Xor returns the values described
inside comments:

’Returns True

result = 10 > 15 Xor 30 > 15

‘Returns False

result = 20 > 15 Xor 30 > 15

‘Returns False

result = 20 > 15 Xor 15 = 15

From the Library of Wow! eBook

ptg

160 CHAPTER 4 Data Types and Expressions

Short-Circuiting Operators
There are situations in which you do not need to perform the evaluation of the second
expression in a Boolean comparison, because evaluating the first one provides the result
you need. In such scenarios you can use two short-circuiting operators, AndAlso and OrElse.
Short-circuiting means that code execution is shorter and performances are improved.
Such operators are particularly useful when you need to invoke an external method from
within an If..Then code block. For example, let’s consider again the previous example for
the And operator:

If My.Computer.FileSystem.FileExists(“C:\MyFile.txt”) = True And

My.Computer.FileSystem.ReadAllText(“C:\MyFile.txt”).Length > 0 Then

‘Valid file

End If

The Visual Basic compiler performs both evaluations. What would it happen if the file does
not exists? It throws a FileNotFoundException when the ReadAllText method is invoked,
because the And operator requires both expressions to be evaluated. Of course, you should
implement error handling routines for such code, but this example is just related to opera-
tors. You can simply prevent your code from encountering the previously described
problem using AndAlso. You need to replace And with AndAlso, as in the following code:

If My.Computer.FileSystem.FileExists(“C:\MyFile.txt”) = True AndAlso

My.Computer.FileSystem.ReadAllText(“C:\MyFile.txt”).Length > 0 Then

‘Valid file

End If

AndAlso evaluates the first expression; if this returns False, the second expression is not
evaluated at all. In this case, if the file does not exist, the code exits from the If block.
AndAlso’s counterpart is OrElse, which evaluates the second expression only when the
first one is False. Finally, in Visual Basic there are two other operators named IsTrue and
IsFalse. The first one works in conjunction with the OrElse operator while the second one
with the AndAlso. You cannot explicitly invoke such operators in your code because it is
the job of the Visual Basic compiler invoking them within an evaluation expression. This
means that types that you want to be evaluated via OrElse or AndAlso must expose both
of them. The following is a simple sample:

Public Structure myType

Public Shared Operator IsFalse(ByVal value As myType) As Boolean

Dim result As Boolean

‘ Insert code to calculate IsFalse of value.

Return result

End Operator

Public Shared Operator IsTrue(ByVal value As myType) As Boolean

Dim result As Boolean

‘ Insert code to calculate IsTrue of value.

Return result

From the Library of Wow! eBook

ptg

161Common Operators
4

End Operator

End Structure

Bitwise Operators
Performing bitwise operations basically means performing operations with two binary
numbers, bit by bit. The problem here is that Visual Basic does not allow working directly
with binary numbers, so you need to write code against decimal or hexadecimal numbers
that the Visual Basic compiler will actually treat, behind the scenes, in their binary repre-
sentation, but you still need to write them in a comprehensible way.

CONVERTING BETWEEN DECIMAL AND BINARY

You can use the Windows calculator to perform conversions between decimal/hexadeci-
mal and binary numbers.

Bitwise operators in Visual Basic are still And, Or, Not, and Xor. But different from logical
operations, in which such operators evaluate expressions, bitwise operations are related to
bit manipulations. You might wonder why you would need to perform bitwise operations
in the era of WPF, Silverlight, and other high-level technologies. You could get multiple
answers to this question, but probably the most useful one is providing the example of
applications that interact with hardware devices in which there is still the need of working
in a bit-by-bit fashion. Another common situation in Visual Basic is the combination of
Enum flags. Let’s now see some examples. The And operator combines two operands into a
result; inside such a result, it puts a 1 value where both operands have 1 in a particular
position; otherwise it puts a zero. For a better explanation, consider the following code:

Dim result As Integer = 152 And 312

The binary counterpart for 152 is 10011000, whereas the binary counterpart for 312 is
100111000. The result variable’s value is 24, whose binary counterpart is 11000. If you
observe the following representation

10011000

100111000

11000

you can notice how the third line, which represents the result of the And operation,
contains 1 only in positions in which both operands have 1. If you then convert the result
back to a decimal number, you will get 24. The Or operator works similarly: It combines
two operands into a result; inside such a result, it puts a 1 value if at least one of the
operands has a 1 value in a particular position. Consider this code:

Dim result As Integer = 152 Or 312

From the Library of Wow! eBook

ptg

162 CHAPTER 4 Data Types and Expressions

Both 152 and 312 binary counterparts are the same as the previous example. The Or oper-
ator produces 110111000 as a binary output, whose decimal counterpart is 440. To under-
stand this step, take a look at this comparison:

10011000

100111000

110111000

It’s easy to see that the result contains 1 where at least one of the operands contains 1 in a
particular position. The Xor operator combines two operands into a result; inside such a
result, it puts a 1 value if at least one of the operands has a 1 value in a particular posi-
tion, but not if both have 1 in that position. (In such a case it places 0.) Consider this
bitwise operation:

Dim result As Integer = 152 Xor 312

The 152 and 312 binary counterparts are the same as in the preceding example. But this line
of code returns 416, whose binary counterpart is 110100000. So let’s see what happened:

10011000

100111000

110100000

As you can see, Xor placed 1 where at least one of the operands has 1 in a particular posi-
tion, but where both operands have 1, it placed 0. The Not operator is probably the easiest
to understand. It just reverses the bits of an operand into a result value. For example,
consider this line of code:

Dim result As Integer = Not 312

In the following comparison, the second line is the result of the preceding negation:

100111000

011000111

This result has –313 as its decimal counterpart.

BINARY NUMBERS

This book does not teach binary numbers, so the code shown in this and in the follow-
ing section assumes that you are already familiar with binary representations of deci-
mal numbers.

Shift Operators
Shift operators are also something that makes more sense with binary numbers than with
decimal or hexadecimal numbers, although you need to provide them via their decimal
representations. Basically with shift operators you can move (that is, shift) a binary repre-

From the Library of Wow! eBook

ptg

163Common Operators
4

sentation left or right for the specified number of positions. The left-shift operator is <<
whereas the right-shift operator is >>. For example, consider the following Integer:

’Binary counterpart is

‘101000100

Dim firstValue As Integer = 324

The binary representation for 324 is 101000100. At this point we want to left-shift such
binary for four positions. The following line accomplishes this:

’Returns 5184, which is

‘1010001000000

Dim leftValue As Integer = firstValue << 4

With the left-shifting of four positions, the number 101000100 produces 1010001000000
as a result. Such binary representation is the equivalent of the 5184 decimal number,
which is the actual value of the leftValue variable. The right-shift operator works the
same but moves positions on the right:

’Returns 20, which is

‘10100

Dim rightValue As Integer = firstValue >> 4

This code moves 101000100 for four positions to the right, so the binary result is 10100.
Its decimal equivalent is then 20, which is the actual value of the rightValue variable.

SUPPORTED TYPES

Shift operators support Byte, Short, Integer, Long, SByte, UShort, UInteger and
ULong data types. When using shift operators with unsigned types, there is no sign bit
to propagate and therefore the vacated positions are set to zero.

Concatenation Operators

As in the previous versions, Visual Basic 2010 still offers concatenation operators that are
the + and & symbols. The main difference is that the + symbol is intended for numeric
additions, although it can works also with strings; the & symbol is instead defined only
for strings, and it should be preferred when concatenating strings so that you can avoid
possible errors. Listing 4.2 shows an example of concatenation.

LISTING 4.2 Concatenation Operators

Module ConcatenationOperators

Sub ConcatenationDemo()

From the Library of Wow! eBook

ptg

164 CHAPTER 4 Data Types and Expressions

TABLE 4.12 Numeric Comparison Operators

Operator Description

= Equality operator

<> Inequality operator

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Dim firstString As String = “Alessandro”

Dim secondString As String = “Del Sole”

Dim completeString As String = firstString & secondString

‘The following still works but should be avoided

‘Dim completeString As String = firstString + secondString

End Sub

End Module

Comparison Operators

As in its predecessors, Visual Basic 2010 still defines some comparison operators. Typically
comparison operators are of three kinds: numeric operators, string operators, and object
operators. Let’s see such operators in details.

Numeric Comparison Operators
You can compare numeric values using the operators listed in Table 4.12.

Such operators return a Boolean value that is True or False. The following code snippet
shows an example. (Comments within the code contain the Boolean value returned.)

Sub NumericOperators()

Dim firstNumber As Double = 3

Dim secondNumber As Double = 4

Dim comparisonResult As Boolean = False

‘False

From the Library of Wow! eBook

ptg

165Common Operators
4

comparisonResult = (firstNumber = secondNumber)

‘True

comparisonResult = (secondNumber > firstNumber)

‘False

comparisonResult = (secondNumber <= firstNumber)

‘True

comparisonResult = (secondNumber <> firstNumber)

End Sub

String Comparison Operators
String comparison was discusses in the section “Working with Strings,” so refer to that topic.

Objects Comparison Operators: Is, IsNot and TypeOf
You can compare two or more objects to basically understand if they are or point to the
same instance or what type of object you are working with. Basically there are three opera-
tors for comparing objects: Is, IsNot, and TypeOf. Is and IsNot are intended to under-
stand if two objects point to the same instance. Consider the following code:

Dim firstPerson As New Person

Dim secondPerson As New Person

‘Returns True, not same instance

If firstPerson IsNot secondPerson Then

End If

‘Returns False, not same instance

If firstPerson Is secondPerson Then

End If

‘Returns True, same instance

Dim onePerson As Person = secondPerson

If secondPerson Is onePerson Then

End If

firstPerson and secondPerson are two different instances of the Person class. In the first
comparison, IsNot returns True because they are two different instances. In the second
comparison, Is returns False because they are still two different instances. In the third
comparison, the result is True because you may remember that simply assigning a refer-
ence type just copies the reference to an object. In this case, both secondPerson and
onePerson point to the same instance. The last example is related to the TypeOf operator.

From the Library of Wow! eBook

ptg

166 CHAPTER 4 Data Types and Expressions

Typically you use it to understand if a particular object has inheritance relationships with
another one. Consider the following code snippet:

’Returns True

Dim anotherPerson As Object = New Person

If TypeOf anotherPerson Is Person Then

End If

We have here an anotherPerson object of type Object, assigned with a new instance of
the Person class. (This is possible because Object can be assigned with any .NET type.) The
TypeOf comparison returns True because anotherPerson is effectively an instance of
Person (and not simply object). TypeOf is useful if you need to check for the data type of a
Windows Forms or WPF control. For example, a System.Windows.Controls.Button control
in WPF inherits from System.Windows.Controls.FrameworkElement and then TypeOf x is
FrameworkElement returns True.

OPERATORS PRECEDENCE ORDER

Visual Basic operators have a precedence order. For further information, refer to the
MSDN Library: http://msdn.microsoft.com/en-us/library/fw84t893(VS.100).aspx.

Iterations, Loops, and Conditional Code Blocks
Hundreds of programming techniques are based on loops and iterations. Both loops and
iterations basically enable the repetition of some actions for a specific number of times or
when a particular condition is True or False. All these cases are discussed next.

Iterations

Iterations in Visual Basic 2010 are performed via For..Next and For Each loops. Let’s
analyze them more in details.

For..Next
A For..Next loop enables repeating the same action (or group of actions) for a finite
number of times. The following code shows an example in which the same action (writing
to the Console window) is performed 10 times:

For i As Integer = 1 To 10

Console.WriteLine(“This action has been repeated {0} times”, i)

Next

In such loops you need to define a variable of a numeric type (i in the preceding
example) that acts as a counter.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/fw84t893(VS.100).aspx

ptg

167Iterations, Loops, and Conditional Code Blocks
4

TIP

You may also assign the variable with another variable of the same type instead of
assigning a numeric value.

The above code produces the following result:

This action has been repeated 1 times

This action has been repeated 2 times

This action has been repeated 3 times

This action has been repeated 4 times

This action has been repeated 5 times

This action has been repeated 6 times

This action has been repeated 7 times

This action has been repeated 8 times

This action has been repeated 9 times

This action has been repeated 10 times

Notice that you can also initialize the counter with zero or with any other numeric value.

TIP

Use Integer or UInteger variables as counters in For..Next loops. This is because
such data types are optimized for the Visual Basic compiler. Other numeric types are
also supported but are not optimized, so you are encouraged to always use Integer
or UInteger.

You can also decide how the counter must be incremented. For example, you could decide
to increment the counter of two units instead of one (as in the previous example). This
can be accomplished via the Step keyword:

For i As Integer = 1 To 10 Step 2

Console.WriteLine(“Current value is {0}”, i)

Next

This code produces the following output:

Current value is 1

Current value is 3

Current value is 5

Current value is 7

Current value is 9

Step can also work with negative numbers and allows performing a going-back loop:

For i As Integer = 10 To 1 Step -2

From the Library of Wow! eBook

ptg

168 CHAPTER 4 Data Types and Expressions

Console.WriteLine(“Current value is {0}”, i)

Next

You can also decide to break a For loop when a particular condition is satisfied, and you
do not need to still perform the iteration. This can be accomplished with the Exit For
statement, as shown in the following example:

For i As Integer = 1 To 10

Console.WriteLine(“Current value is {0}”, i)

If i = 4 Then Exit For

Next

In the preceding example, when the counter reaches the value of 4, the For loop is inter-
rupted and control is returned to the code that immediately follows the Next keyword.
There is also another way for controlling a For loop; there could be situations in which
you need to pass the control directly to the next iteration of the loop when a particular
condition is satisfied (which is the opposite of Exit For). This can be accomplished with
the Continue For statement, as shown in the following code snippet:

For i As Integer = 1 To 10

If i = 4 Then ‘Ignore the 4 value

i += 1 ‘Increments to 5

Continue For ‘Continues from next value, that is 6

End If

Console.WriteLine(“Current value is {0}”, i)

Next

In the preceding example we are doing some edits on the counter. Notice that each time
you invoke a Continue For, the counter itself is incremented one unit.

For Each
A For Each loop allows performing an action or a group of actions on each item from an
array or a collection. Although collections are discussed in Chapter 16, it is a good idea to
provide a code example with them, because this is the typical usage of a For Each loop.
For example, consider the following code:

’A collection of Process objects

Dim procList As List(Of Process) = Process.GetProcesses.ToList

For Each proc As Process In procList

Console.WriteLine(proc.ProcessName)

Console.WriteLine(“ “ & proc.Id)

Next

In the preceding code snippet, there is a collection containing references to all the
running processes on the machine. Each process is represented by an instance of the
System.Diagnostics.Process class; therefore List(Of Process) is a collection of
processes. Supposing we want to retrieve some information for each process, such as the

From the Library of Wow! eBook

ptg

169Iterations, Loops, and Conditional Code Blocks
4

name and the identification number, we can iterate the collection using a For Each state-
ment. You need to specify a variable that is the same type of the item you are investigat-
ing. In the preceding code you are just performing reading operations, but you can also
edit items’ properties. For example, you might have a collection of Person objects, and
you could retrieve and edit information for each Person in the collection, as in the
following code:

’A collection of Person objects

Dim people As New List(Of Person)

‘Populate the collection here..

‘....

For Each p As Person In people

p.LastName = “Dr. “ & p.LastName

Console.WriteLine(p.LastName)

Next

This code will add the Dr. prefix to the LastName property of each Person instance.

FOR..EACH AVAILABILITY

Behind the scenes, For Each can be used against objects that implement the
IEnumerable or IEnumerable(Of T) interfaces. Such objects expose the enumerator
that provides support about For Each iterations.

You can still use Exit For when you need to break out from a For Each statement.
Basically a For Each loop has better performances with collections than with arrays, but
you have to know that you can use it in both scenarios.

Loops

As in the previous versions of the language, Visual Basic 2010 offers two kinds of loops:
Do..Loop and While..End While. In this section we take a look at both loops.

Do..Loop
The Do..Loop is the most used loop in Visual Basic and the most flexible. Basically such a
loop can have two behaviors: repeating a set of actions until a condition is false and
repeating a set of actions until a condition is true. The first scenario is accomplished using
a Do While statement, as demonstrated in Listing 4.3.

LISTING 4.3 Performing a Do While Loop

Sub LoopWhileDemo()

Dim max As Integer = 0

Do While max < Integer.MaxValue

max += 1

‘Do something else here

From the Library of Wow! eBook

ptg

170 CHAPTER 4 Data Types and Expressions

If max = 7000000 Then Exit Do

Loop

Console.WriteLine(“Done: “ & max.ToString)

End Sub

The code is quite easy: Whereas the value of max is less than the maximum value of the
Integer type, increment max itself is one unit. Do While evaluates a False condition. (The
loop goes on because max is less than Integer.MaxValue.) The code also demonstrates how
you can exit from a loop using an Exit Do statement. This passes the control to the next
statement after the Loop keyword. The other scenario is when you need to evaluate a True
condition. This can be accomplished via a Do Until loop. Listing 4.4 demonstrates this.

LISTING 4.4 Demonstrating a Do Until Loop

Sub LoopUntilDemo()

Dim max As Integer = 0

Do Until max = Integer.MaxValue

max += 1

If max = 7000000 Then Exit Do

Loop

Console.WriteLine(“Done: “ & max.ToString)

End Sub

The difference here is that the loop ends when the condition is True, that is, when the
value of max equals the value of Integer.MaxValue. Same as before, Exit Do can end the
loop. The interesting thing in both cases is that you can evaluate the condition on the
Loop side instead of the Do one. Listing 4.5 shows how you could rewrite both examples.

LISTING 4.5 Evaluating Conditions on the Loop Line

’Loop is executed at least once

Sub LoopUntilBottomDemo()

Dim max As Integer = 0

Do

max += 1

If max = 7000000 Then Exit Do

Loop Until max = Integer.MaxValue

Console.WriteLine(“Done: “ & max.ToString)

End Sub

‘Loop is executed at least once

Sub LoopWhileBottomDemo()

Dim max As Integer = 0

Do

From the Library of Wow! eBook

ptg

171Iterations, Loops, and Conditional Code Blocks
4

max += 1

If max = 7000000 Then Exit Do

Loop While max < Integer.MaxValue

Console.WriteLine(“Done: “ & max.ToString)

End Sub

Both loops behave the same way as previous ones, with one important difference: Here
the loop is executed at least once.

PERFORMANCE TIPS

Basically the For loops are faster than Do ones. Because of this you should prefer For
loops particularly when you know that you will do a finite number of iterations.

While..End While
A While..End While loop performs actions when a condition is False. Listing 4.6 shows
an example.

LISTING 4.6 While..End While Loop

Sub WhileEndWhileDemo()

Dim max As Integer = 0

While max < Integer.MaxValue

max += 1

If max = 7000000 Then Exit While

End While

Console.WriteLine(“Done: “ & max.ToString)

End Sub

Basically the loop behaves the same as Do While, because both evaluate the same condition.

NOTE

The While..End While loop is less efficient than a Do While and is deprecated,
although it is still supported. You should then always prefer a Do While loop.

Conditional Code Blocks
If..Then..Else
The If..Then..Else is the most classical block for conditionally executing actions. An If
evaluates an expression as True or False and according to this allows specifying actions to
take. Listing 4.7 shows an example.

From the Library of Wow! eBook

ptg

172 CHAPTER 4 Data Types and Expressions

LISTING 4.7 Demonstrating the If..Then..Else Block

Sub IfThenElseDemo()

Console.WriteLine(“Type a number”)

‘Assumes users type a valid number

Dim number As Double = CDbl(Console.ReadLine)

If number >= 100 Then

Console.WriteLine(“Your number is greater than 100”)

ElseIf number < 100 And number > 50 Then

Console.WriteLine(“Your number is less than 100 and greater than 50”)

Else

‘General action

Console.WriteLine(“Your number is: {0}”, number)

End If

End Sub

If checks if the condition is True; if so, it takes the specified action. Of course you can also
specify to evaluate a condition for False (for example, If something = False Then). You
can also use an ElseIf to delimit the condition evaluation. If no expression satisfies the
condition, the Else statement provides an action that will be executed in such a situation.

CODING TIP

The Visual Studio 2010 IDE introduces a new important feature, which is known as
code blocks delimiters selection. Because you can nest different If..Then blocks or
you can have a long code file, when you place the cursor near either the If/Then key-
words or near the End If statement, the IDE highlights the related delimiter (End If,
if you place the cursor on an If and vice versa).

Notice how the code uses an And operator to evaluate the condition. You can, of course,
use other operators such as logical and short-circuit operators as well. Another typical
example is when you need to check if a condition is false using the Not operator. The
following is an example:

If Not number >= 100 Then

‘Number is False

End If

Not also requires the same syntax when working with reference types but in this case you
can also use the IsNot operator. The following example checks if the instance of the
Person class is not null:

Dim p As Person ‘p is actually null

From the Library of Wow! eBook

ptg

173Iterations, Loops, and Conditional Code Blocks
4

‘You can check with IsNot

If p IsNot Nothing Then

‘p is not null

Else

‘p is null

End If

IsNot is not available with value types.

Select Case
Select Case is a statement that allows evaluating an expression against a series of values.
Generally Select Case is used to check if an expression matches a particular value in situ-
ations evaluated as True. Listing 4.8 provides an example.

LISTING 4.8 Using the Select Case Statement for Evaluating Expressions

Sub SelectCaseDemo()

Console.WriteLine(“Type a file extension (without dot):”)

Dim fileExtension As String = Console.ReadLine

Select Case fileExtension.ToLower

Case Is = “txt”

Console.WriteLine(“Is a text file”)

Case Is = “exe”

Console.WriteLine(“Is an executable”)

Case Is = “doc”

Console.WriteLine(“Is a Microsoft Word document”)

Case Else

Console.WriteLine(“Is something else”)

End Select

End Sub

The code in Listing 4.8 simply compares the string provided by the user with a series of
values. If no value matches the string, a Case Else is used to provide a general result.
Comparison is performed with the Is operator and the equality operator. The following
syntax is also accepted:

Case “txt”

IntelliSense adds by default the Is = symbology that is definitely clearer. You can also
break from a Select Case statement in any moment using an Exit Select statement.
Select..Case also offers another syntax to apply when you want to check if a value falls
within a particular range. To accomplish this you use the To keyword instead of the Is =

From the Library of Wow! eBook

ptg

174 CHAPTER 4 Data Types and Expressions

operators, like in the following code that waits for the user to enter a number and then
checks what range the number falls in:

Console.WriteLine(“Enter a number from 1 to 50:”)

Dim result As Integer = CInt(Console.ReadLine)

Select Case result

‘The user entered a number in the range from 1 to 25

Case 1 To 25

Console.WriteLine(“You entered {0} which is a small number”,

result.ToString)

‘The user entered a number in the range from 26 to 50

Case 26 To 50

Console.WriteLine(“You entered {0} which is a high number”,

result.ToString)

‘The user entered a number < 1 or > 50

Case Else

Console.WriteLine(“You entered a number which is out of range”)

End Select

In other words, considering the preceding example, Case 1 To 25 means: in case the
value to check is in the range between the left value (1) and the right value (25), then take
the nested action.

CODING TIP

For the If..End If block, the code blocks delimiters selection feature is also avail-
able for Select..End Select blocks.

PERFORMANCE TIPS

The Visual Basic compiler evaluates expressions as a sequence. Because of this, in
Select Case statements it evaluates all conditions until the one matching the value is
found. Consequently, the first Case instructions in the sequence should be related to
values considered the most frequent.

Constants

Constants provide a way for representing an immutable value with an identifier. There
could be situations in which your applications need to use the same value (which can be
of any .NET type); therefore, it can be convenient to define an easy-to-remember identifier
instead of a value. What would happen if such a value were a Long number? You declare
constants as follows:

Const defaultIntegerValue As Integer = 123456789

Const aConstantString As String = “Same value along the application”

Constants are basically read-only fields that can be declared only at the module and class
level or within a method and must be assigned with a value when declared. Constants

From the Library of Wow! eBook

ptg

175Iterations, Loops, and Conditional Code Blocks
4

within methods have public visibility by default, whereas constants at the module and
class level can have one of the .NET scopes, as in the following lines:

Private Const defaultIntegerValue As Integer = 123456789

Public Const aConstantString As String= “Same value along the application”

The reason why constants must be assigned when declared is that the expression is evalu-
ated at compile time. Starting from Visual Basic 2008, there are a couple of things to
consider. Look at the following line of code:

Private Const Test = “Test message”

The type for the Test variable is not specified. Until Visual Basic 2005, with Option
Strict Off such a declaration would assign Object. In Visual Basic 2008 and 2010, if
Option Infer is On, the compiler assigns String whereas if it is Off, the compiler goes
back assigning Object.

With..End With statement

Visual Basic provides an alternative way for invoking object members that is the
With..End With statement. Consider the following code block, in which a new Person
class is instantiated and then properties are assigned while methods are invoked:

Dim p As New People.Person

p.FirstName = “Alessandro”

p.LastName = “Del Sole”

Dim fullName As String = p.ToString

Using a With..End With statement you just need to specify the name of the class once and
then simply type a dot so that IntelliSense shows up members that you can use, as follows:

Dim p As New People.Person

With p

.FirstName = “Alessandro”

.LastName = “Del Sole”

Dim fullName As String = .ToString

End With

There is no difference between the two coding techniques, so feel free to use the one you
like most. With..End With just offers the advantage of speeding the code writing up a
little and can be useful if you have a lot of members to invoke or assign at one time.

WITH..END WITH NOTE

With..End With has no equivalent in other .NET languages, so if you have to interop-
erate it could be a good idea assigning members the normal way. Although the compiler
translates the With..End With blocks as single members’ invocations, in such scenar-
ios the best approach is a .NET-oriented coding style more than a VB-oriented one.

From the Library of Wow! eBook

ptg

176 CHAPTER 4 Data Types and Expressions

Summary
Every development environment relies on data types. Basically the .NET Framework relies
on two kinds of data types: value types and reference types. Both kinds of types are
managed by the Common Type System, which provides a common infrastructure to .NET
languages for working with types. In this chapter you learned the important basics of the
.NET development and the Visual Basic language, which can be summarized as follows:

. Common Type System

. Value types and reference types

. System.Object and inheritance levels in value types and reference types

. Memory allocation of both value types and reference types

. Converting between types and conversion operators

. Most common value types and reference types

. Common operators

You often need to work with and analyze data types. Visual Basic 2010 provides several
ways for performing work on types and data they store. To accomplish this you can use

. Iterations, such as For..Next and For..Each

. Loops, such as Do..Loop

. Conditional code blocks, such as If..End If and Select Case..End Select

It’s important to understand all the preceding features because they often recur in your
developer life; these features appear extensively in the rest of the book. But you also might
encounter errors when working with types. The next two chapters discuss two fundamen-
tal topics in the .NET development with Visual Basic: debugging and handling errors.

From the Library of Wow! eBook

ptg

CHAPTER 5

Debugging Visual Basic
2010 Applications

IN THIS CHAPTER

. Quick Recap: Debugging
Overview

. Preparing an Example

. Debugging Instrumentation

. Debugger Visualizers

. Debugging in Code

Debugging is one of the most important tasks in your
developer life. Debugging enables you to investigate for
errors and analyze the application execution flow over an
object’s state. Visual Studio 2010 offers powerful tools for
making debugging an easier task. In this chapter you get
details about the Visual Studio instrumentation, and you
also learn how to make your code suitable to interact better
with the debugger. Remember that some improvements
introduced by Microsoft to the 2010 edition are specific to
particular technologies (such as WPF or the Task Parallel
Library) and therefore will eventually be described in the
appropriate chapters. In this chapter you find information
regarding the generality of Visual Basic applications. Chapter
2, “Getting Started with the Visual Studio 2010 IDE,”
provides an overview of the most common debugging tasks
whereas in this chapter you learn about more advanced
debugging tools and techniques available in the IDE. Be sure
you read Chapter 2 before going on with this one.

Preparing an Example
Most debugging features illustrated in this chapter require
some code before you can use them. At the moment we are
more interested in the Visual Studio 2010 instrumentation
than in complex code, so we start with a simple code
example that is a good base for understanding how the
debugger works. Therefore, you can create a new Visual
Basic project for the Console and then type the code, as
shown in Listing 5.1.

From the Library of Wow! eBook

ptg

178 CHAPTER 5 Debugging Visual Basic 2010 Applications

LISTING 5.1 Preparing the Base for the Debugger

Module Module1

Sub Main()

Console.WriteLine(“Enter a valid string:”)

Dim lineRead As String = Console.ReadLine()

Dim result As Boolean = Test(lineRead)

Console.WriteLine(“Is a valid string: “ & result.ToString)

Console.ReadLine()

End Sub

Function Test(ByVal name As String) As Boolean

If String.IsNullOrEmpty(name) = False Then

Return True

Else

Return False

End If

End Function

End Module

The code is quite simple. The application just asks the user to enter a string and then
returns False if the string is null or is empty, whereas it returns True if the string is valid.
With such simple code you can now begin learning the advanced debugging instrumenta-
tion available in Visual Studio 2010.

Debugging Instrumentation
The Visual Studio 2010 IDE offers several powerful tools for deeply debugging applica-
tions. Such tools are part of the development environment instrumentation and are
discussed in this section.

Debugging in Steps

When the application execution breaks, for example when the debugger finds a break-
point, you can usually continue to execute the application running just one line of code
per time or a small set of lines of code per time. In Chapter 2, you learned about the Step
Into command; in this section we discuss other similar commands that cause different
debugger behaviors.

From the Library of Wow! eBook

ptg

179Debugging Instrumentation

HOW CAN I EXECUTE SUCH TECHNIQUES?

Debugging techniques described in this section can be accomplished by invoking com-
mands available in the Debug menu of Visual Studio 2010. In the meantime, shortcuts
are available for invoking the same commands using the keyboard. These are provided
when discussing each command.

Step Into
The Step Into command executes one instruction per time. It is similar to Step Over, but if
the instruction to be executed is a method, the method is executed one instruction per
time and, when finished, the execution goes back to the caller. You can invoke Step Into
by pressing F11.

NOTE ON KEYBOARD SHORTCUTS

The keyboard shortcuts utilized in this chapter assume that you are using the Visual
Studio default keyboard layout and can vary depending on the IDE configuration settings.
The Debug menu shows the appropriate keyboard shortcuts for your active configuration.

Step Over
Similarly to Step Into, Step Over executes one instruction per time. The difference is that if
the instruction to be executed is a method, the debugger does not enter the method and
completes its execution before going back to the caller. You can invoke Step Over by press-
ing F10. This can be useful when you need to debug a portion of code that invokes several
methods that you already tested and that you do not need to delve into each time.

Step Out
Step Out works only within methods and enables executing all lines of code next to the
current one, until the method completes. If you consider the code shown in Listing 5.1
and place a breakpoint on the If statement inside the Test method definition, invoking
Step Out can cause the debugger to execute all the lines of code next to the If, completing
the execution of the method. In such an example, after Step Out completes, the control is
returned to the second Console.Writeline statement in Sub Main. You can invoke Step
Out by pressing Shift+F11.

Run to Cursor
You can place the cursor on a line of code, right-click the line of code, and tell the debug-
ger to execute all the code until the selected line. This can be accomplished by selecting
the Run to Cursor command on the pop-up menu.

Set Next Statement
Within a code block, you can set the next statement to be executed when resuming the
application execution after a breakpoint or a stop. Continuing the previous code example,
if you place a breakpoint on the first Console.Writeline statement, inside the Main
method, the application stops the execution at that point. Now imagine you want the
debugger to resume debugging from the second Console.Writeline statement (therefore

5

From the Library of Wow! eBook

ptg

180 CHAPTER 5 Debugging Visual Basic 2010 Applications

skipping the debugging of the Test method invocation), executing the lines of code before.
You can just right-click the Console.Writeline statement and select Set Next Statement
from the pop-up menu, and this line will be the first that you can step through.

Show Next Statement
This command moves the cursor to the next executable statement. This can be useful if
you have long code files, and breakpoints are not immediately visible. You can invoke it
simply by right-clicking the code editor and choosing the Show Next Statement
command from the pop-up menu.

Mixed Mode Debugging

You can debug Visual Basic applications built upon both managed and native code with
the Mixed Mode feature. In the previous versions of the environment, this feature was
only available for 32-bit applications while now it is available also for 64-bit applications.
To enable mixed-mode debugging, follow these steps:

1. In Solution Explorer, select the project you want to debug.

2. Open My Project and select the Debug tab.

3. Select the Enable Unmanaged Code Debugging checkbox.

“Just My Code” Debugging

You may remember from Chapter 2 and Chapter 3, “The Anatomy of a Visual Basic
Project,” that every time you create a Visual Basic application the IDE generates some
background code. Moreover, your code often invokes system code that you do not neces-
sarily need to investigate. Starting from Visual Basic 2005, and then also in Visual Basic
2010, the IDE offers the capability of debugging just your own code, excluding system and
auto-generated code. This feature is also known as Just My Code debugging. This is useful
because you can focus on your code. Just My Code is enabled by default in Visual Studio
2010. To disable it or enable it, you simply need to open the Options window, select the
Debugging node on the left, and then flag or unflag the Enable Just My Code (Managed
Only) check box, as shown in Figure 5.1.

Behind the scenes, Just My Code adds (or removes) some .NET attributes to auto-generated
code that can influence the debugger behavior. To see a simple example, open or create a
project and then click the Show All Files button in Solution Explorer. After doing this, go
to the Settings.designer.vb code file. Listing 5.2 shows the content of the My namespace
definition inside the file.

LISTING 5.2 Understanding Just My Code Behind the Scenes

Namespace My

<Global.Microsoft.VisualBasic.HideModuleNameAttribute(), _

Global.System.Diagnostics.DebuggerNonUserCodeAttribute(), _

Global.System.Runtime.CompilerServices.CompilerGeneratedAttribute()> _

From the Library of Wow! eBook

ptg

181Debugging Instrumentation

FIGURE 5.1 Enabling/disabling Just My Code debugging.

Friend Module MySettingsProperty

<Global.System.ComponentModel.Design.HelpKeywordAttribute(“My.Settings”)> _

Friend ReadOnly Property Settings() As

Global.DebuggingFeatures.My.MySettings

Get

Return Global.DebuggingFeatures.My.MySettings.Default

End Get

End Property

End Module

End Namespace

You can notice that the module MySettingsProperty is decorated with a particular
attribute named System.Diagnostics.DebuggerNonUserCodeAttribute. This attribute indi-
cates to the debugger that the code is not your code (user code) and it will not be
debugged when Just My Code is on. Basically three attributes influence the debugger’s
behavior in this feature. Table 5.1 shows the complete list.

5

TABLE 5.1 Just My Code Attributes

Attribute Description

DebuggerNonUserCode Indicates to the debugger that the code is not user code and therefore
is treated as system code

DebuggerHidden Indicates to the debugger that code will not be visible at all to the
debugger and therefore excluded from debugging

DebuggerStepThrough Indicates to the debugger that the Step Into procedure is not allowed

From the Library of Wow! eBook

ptg

182 CHAPTER 5 Debugging Visual Basic 2010 Applications

Of course, you can use attributes of your own so that you can influence the behavior of
the debugger when Just My Code is disabled.

Working with Breakpoints and Trace Points

In Chapter 2 we introduced breakpoints and saw how we can break the application execu-
tion before some statements are executed. In Visual Studio 2010, breakpoints are more
powerful than in the previous versions of the IDE. We now discuss some interesting
features of breakpoints when debugging Visual Basic applications.

The Breakpoints Window
Using the Breakpoints window you can manage all breakpoints in your solution. You can
open such a window by pressing Ctrl+Alt+B. Supposing we placed three breakpoints in
our sample application, Figure 5.2 shows how the Breakpoints window looks.

In the Breakpoints window you can easily manage your breakpoints. For example, you
could delete, temporarily disable, or enable again the breakpoints. You can also specify the
behavior for each breakpoint, such as Hit count, Filter, and other functionalities that we
describe next. Also, you can easily switch to the source code in which the breakpoint is
located or to the disassembly view. (See Figure 5.9 in the “Call Stack Window” section
later in this chapter.) An important opportunity is exporting and importing breakpoints;
Visual Studio 2010 can export to Xml files the list of breakpoints or import a list from an
Xml file. If you have lots of breakpoints, you can search breakpoints according to specific
criteria using the Label feature that we focus on next. Basically the Breakpoints window
provides a graphical unified instrument for performing operations on breakpoints. We
now discuss these operations.

Editing Breakpoints Labels
Visual Studio 2010 enables adding labels to breakpoints. Labels are a kind of identifier that
can identify more than one breakpoint, and their purpose is categorizing breakpoints so
that you can easily find and manage them within the Edit Breakpoint Label window. You

FIGURE 5.2 The Breakpoints window.

From the Library of Wow! eBook

ptg

183Debugging Instrumentation
5

can add a label to a breakpoint from the Edit Breakpoint Label window or by right-click-
ing the red ball on the left of the desired breakpoint in the code editor and then selecting
the Edit Labels command from the pop-up menu. The Edit Breakpoint Labels window is
shown in Figure 5.3.

You simply need to specify labels and click Add. When you finish, select the label you
want from the list and click OK so that the label is assigned to the breakpoint. You can
assign the same label to multiple breakpoints performing the same steps or you can assign
multiple labels to a single breakpoint. Assigning labels to breakpoints can be reflected into
the Breakpoints window in which you can search for breakpoints specifying labels in the
search box.

Location
You can change the position of a breakpoint by right-clicking the breakpoint and then
selecting the Location command from the pop-up menu. In the appearing dialog you
need to specify the line of code and character position in which you want the breakpoint
to be moved to. This can be useful because you can move a breakpoint without losing
breakpoint settings.

Hit Count
With the hit term we mean each time a breakpoint is encountered and therefore the appli-
cation execution should stop. You can control the hit’s behavior. For example, imagine
you have a cyclic code that contains a breakpoint, but you need to break the execution
only when the cycle arrives at a particular point. By using the Hit Count command, you
can specify when the debugger must break the application. For example, consider the
following code snippet:

For i As Integer = 0 To 3

Console.WriteLine(“Breakpoint test”)

Next

FIGURE 5.3 The Edit Breakpoint Labels window enables categorizing breakpoints.

From the Library of Wow! eBook

ptg

184 CHAPTER 5 Debugging Visual Basic 2010 Applications

Imagine you place a breakpoint on the Console.WriteLine statement and that you want
the debugger to break only starting from the second iteration. You can specify this condi-
tion by right-clicking the breakpoint and then selecting the Hit Count command. In the
Breakpoint Hit Count dialog you need to specify the condition. The default setting is
always break, which means that the debugger breaks the execution each time a breakpoint
is encountered. For our example, set the condition as Break When the Hit Count Is
Greater Than or Equal To with value 2. Figure 5.4 shows the Hit Count window.

With this setting, the above code would break on the second iteration. It can be conve-
nient when you need to debug your code only from a certain point.

When Hit
When Hit enables specifying a tracepoint. The difference between a breakpoint and a
tracepoint is that in this second case the debugger will not break the execution of the
application and writes the information that you specify in the Output window. To set a hit
condition, right-click a breakpoint and then select the When Hit command from the pop-
up menu. This opens the When Breakpoint Is Hit window, which is shown in Figure 5.5.

FIGURE 5.4 The Breakpoint Hit Count window enables customizing breakpoints’ behavior.

FIGURE 5.5 Specifying tracepoint conditions.

From the Library of Wow! eBook

ptg

185Debugging Instrumentation
5

You can set one of the special expressions indicated in the window to build a kind of log
message that will be written to the Output window. A tracepoint is highly customizable,
so you can also specify a Visual Basic macro and decide whether the execution needs to
continue. This feature is useful when you prefer getting a log message about the applica-
tion state instead of breaking the execution.

Condition
Such a command enables specifying whether a breakpoint must be hit or not depending if
the supplied expressions are evaluated to True or get changed. Information on conditions
is provided by the following page of the MSDN Library: http://msdn.microsoft.com/en-
us/library/za56x861(VS.100).aspx. When a condition is set, the debugger then steps into
the Hit Count tool.

Locals Window

The Locals window shows the active local variables and their values. Considering the
example in Listing 5.1, when stepping into the Main method the Local window shows
information about lineRead and result variables, as shown in Figure 5.6.

As you can see, the window shows names of the local variables, their types (in our
example Boolean and String), and their actual values. When a variable is not initialized
yet, the window shows the default value (for example, Nothing for reference types and
zero for Integers). Moreover, if a variable represents an object such as a class or a collec-
tion, the variable can be expanded to show members and their values. You can also
change variables’ values by double-clicking each one. Some variables cannot be viewed
without executing code, such as in-memory queries (although they can be still viewed but
the IDE will run the code in memory in order to be able to display the results).

Command Window

The Command window enables evaluating expressions or running functions without
running the application or continuing the debug. Figure 5.7 shows the Command window
evaluating an Integer.Parse statement and an invocation to our Test method.

FIGURE 5.6 The Locals window shows information on local variables.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/za56x861(VS.100).aspx
http://msdn.microsoft.com/en-us/library/za56x861(VS.100).aspx

ptg

186 CHAPTER 5 Debugging Visual Basic 2010 Applications

This can be useful, because we do not need to run our application to see if a method
works, and we could also evaluate complex expressions before writing code. Just remem-
ber that only functions are allowed whereas procedures are not supported. Expressions can
be constituted by several .NET objects and Visual Basic keywords, but not all of them are
supported. You can get a complete list of supported keywords and expressions from the
related MSDN web page available at this address: http://msdn.microsoft.com/en-
us/library/099a40t6(VS.100).aspx. To evaluate an expression or test a function, you need
to first write a question mark (?) symbol. Using a double question (??) mark causes the
debugger to open a Quick Watch window, which is discussed later in this chapter. It is
worth mentioning that the ? symbol works when either in debug mode or not, while the
?? symbol requires the IDE to be already in debug mode.

Call Stack Window

The Call Stack window shows the method calls stack frame. In other words, you can see
how methods call run in the stack. The window can show the programming language that
the method is written with and can also display calls to external code. By default, the Call
Stack window shows information about Just My Code. To understand methods calls, press
F11 to step into the code. Figure 5.8 shows the Call Stack window related to Listing 5.1.

FIGURE 5.8 The Call Stack window shows methods calls in the Stack.

FIGURE 5.7 The Command window enables evaluating expressions and functions.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/za56x861(VS.100).aspx
http://msdn.microsoft.com/en-us/library/za56x861(VS.100).aspx

ptg

187Debugging Instrumentation
5

As you can see, the window shows the names of methods being executed and the
programming language they were written with. Moreover, calls to .NET Framework system
methods are shown. Another interesting feature is that you can see the assembly code for
code execution. Right-click the window and select the Go to Disassembly command from
the pop-up menu. As shown in Figure 5.9, you can see Visual Basic lines of code and the
related underlying assembly code that you can step into by pressing F11.

You can also customize what kind of information you want to visualize by expanding the
View Options control. This feature provides great granularity on what’s happening behind
the scenes and allows understandings if methods calls are executed correctly. You can
invoke the Call Stack window also pressing Ctrl+Alt+C.

THREADS AND CALL STACK

The Call Stack window can show information only on the current thread. Therefore,
methods calls on other threads are ignored by the window.

Watch Windows

Watch windows enable monitoring object variables or expressions so that you can track
what a variable is doing. There are four Watch windows available so that you can track
different objects or expressions. To add items to a Watch window, when in break mode

FIGURE 5.9 The assembly code execution shows in Call Stack.

From the Library of Wow! eBook

ptg

188 CHAPTER 5 Debugging Visual Basic 2010 Applications

right-click the object in the code editor and then select the Add Watch command from
the pop-up menu. Continuing our example of Listing 5.1, imagine you want to keep track
of the Test method state. Run the application in Step Into mode by pressing F11. When
the debugger breaks the application execution, right-click the Test method definition and
then click Add Watch. The method is considered as an expression. The first available
Watch window is shown and contains the Test item but advertising that no argument has
been supplied, as shown in Figure 5.10.

If you continue stepping into the code, you notice that when the debugger begins step-
ping into the Test method the expression will be first evaluated as False. (This is the
default value for Boolean.) When the code completes the execution, the Watch window
contains the actual evaluation of the expression; in our example, if the user writes a valid
string in the Console window, the expression will be evaluated as True, as shown in
Figure 5.11.

In this way you can control if your variables or methods are correctly executed.

Quick Watch Window
The Quick Watch window is an additional Watch window that enables quickly evaluating
one expression or variable per time, choosing between items you previously added to
Watch windows or right-clicking an object in the code editor and then selecting the Quick
Watch command. In this scenario, the expression or variable is evaluated considering its
state at the moment that you request the Quick Watch to appear. Figure 5.12 shows the
Quick Watch window.

You can pick an expression from the Expression combo box. When you choose the expres-
sion, you can click Reevaluate to run the evaluation. Just remember that this dialog is a
modal dialog and therefore you need to close it before you can go back to Visual Studio.

FIGURE 5.10 Adding an expression to a Watch window.

From the Library of Wow! eBook

ptg

189Debugging Instrumentation
5

FIGURE 5.11 Evaluation of the expression is completed within the Watch window.

FIGURE 5.12 The Quick Watch window.

Threads Window

.NET applications can run multiple threads. This can happen also with your applications.
You can get a view of the running threads and debugging threads within the Threads
window, which you can enable by pressing Ctrl+Alt+H. Figure 5.13 shows the Threads
window open when the sample application is in break mode.

From the Library of Wow! eBook

ptg

190 CHAPTER 5 Debugging Visual Basic 2010 Applications

The window shows a list of running threads and enables stepping into the call stack for
the various threads. If the source code is available for threads different than the current
one, you can step into this code. In our example the main thread is the Console applica-
tion that is marked green. You can also organize and filter the view, search within the Call
Stack, and get information on the thread’s priority. The Threads window is particularly
useful with multithreaded applications, whereas for Parallel applications the Visual Studio
2010 debugger provides other tools, which are described in Chapter 44, “Processes and
Multithreading.”

Autos Window

The Autos window shows the variables used by the current statement and by the previous
three and next three statements. Figure 5.14 shows an example of the Autos window.

For the Autos window, you can change variables’ values by double-clicking each one.

FIGURE 5.13 The Threads window.

FIGURE 5.14 The Autos window.

From the Library of Wow! eBook

ptg

191Debugger Visualizers
5

64-BIT SUPPORT

One of the new features in the Visual Studio 2010 debugger is that now mixed mode
with 64-bit applications debugging is supported.

Debugger Visualizers
Debugger visualizers are built-in tools that enable viewing information on objects,
controls, members, and variables (generally complex data) in a particular format. For
example, if you place a breakpoint on the following line of code of the sample project

Dim result As Boolean = Test(lineRead)

you can then open the Locals window and select the lineRead variable. In the Value
column, notice the small magnifying glass that you can click. From there you can choose
how you want to visualize information on the lineRead variable, such as Text format,
XML format, and HTML format. Of course, trying to view the content of plain text as
XML content dos not provide any benefits, but in the case you have a string representing
XML data or HTML code, you could get an appropriate representation to understand
what’s happening. Visualizers are also useful when you have a large multiline string and
you need to see how it is formatted. In our example, Figure 5.15 shows the Text visualizer
for the lineRead variable.

Basically the visualizers’ purpose is to provide a graphical tool for analyzing what’s
happening on expressions.

FIGURE 5.15 Viewing information with debugger visualizers.

From the Library of Wow! eBook

ptg

192 CHAPTER 5 Debugging Visual Basic 2010 Applications

CUSTOM DEBUGGER VISUALIZERS

Visual Studio 2010 offers default debugger visualizers that are useful in common situa-
tions, but you might need custom visualizers. It is possible to build custom visualizers,
but this is beyond the scope of this chapter. Information on creating custom visualizers
is available in the MSDN documentation at the following address:
http://msdn.microsoft.com/en-us/library/e2zc529c(VS.100).aspx

Debugging in Code
The .NET Framework offers the ability to interact with the debugger via managed code.
You can use two classes, System.Diagnostics.Debug and System.Diagnostics.Trace, to
verify conditions and evaluations that can be useful to provide feedback about your code
if it is working correctly. Information generated by these classes can eventually be added
to the application.

DEBUG AND TRACE ARE SINGLETON

Both Debug and Trace classes are single instance shared classes and therefore
expose only shared members.

The Debug Class

The Debug class, exposed by the System.Diagnostics namespace, provides interaction
with the Visual Studio debugger and enables understanding if your code is working
correctly via instrumentation that evaluates conditions at a certain point of your code.
Basically the Debug class exposes only shared methods and can display contents into the
Output window so that you can programmatically interact with the debugger without the
need to set breakpoints. Table 5.2 provides an overview of Debug methods.

TABLE 5.2 Debug Class Methods

Method Description

Assert Checks for a condition and shows a message if the condition is False

Close Empties the buffer and releases trace listeners

Fail Generates an error message

Flush Empties the buffer and forces data to be written to underlying trace listeners

Indent When writing to the Output window, increases the text indentation

Print Writes the specified message to the listeners; supports text formatting

Unindent When writing to the Output window, decreases the text indentation

Write Writes the specified message to the listeners without line terminator; supports
text formatting

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/e2zc529c(VS.100).aspx

ptg

193Debugging in Code
5

TABLE 5.2 Continued

Method Description

DEBUG OUTPUT

Saying that the Debug class can display contents to the Output window is true only in
part. Developers can use other built-in outputs known as trace listeners to redirect the
output. Later in this chapter we provide an overview of trace listeners.

Continuing the code example in Listing 5.1, try to add the following lines of code after
the declaration and assignment of the result variable within the Main method:

Debug.WriteLine(“Value of result is “ & result.ToString)

Debug.WriteLineIf(result = True, “Result is valid because = True”)

‘If you type an empty or null string,

‘then the condition “result=True” is False therefore

‘shows an error message

Debug.Assert(result = True, “Needed a valid string”)

Now run the application and type in a valid (nonempty) string. Figure 5.16 shows how
the Output window appears when the runtime encounters the Debug methods.

WriteIf Writes the specified message to the listeners without a line terminator if the
supplied condition is True; supports text formatting

WriteLine Writes the specified message to the listeners with a line terminator; supports
text formatting

WriteLineIf Writes the specified message to the listeners with a line terminator if the
supplied condition is True; supports text formatting

FIGURE 5.16 Writing debug information to the Output window.

From the Library of Wow! eBook

ptg

194 CHAPTER 5 Debugging Visual Basic 2010 Applications

The first line shows the Boolean value of the result variable. The WriteLine method can
be useful if you need to monitor objects’ values without breaking the application. This
method also adds a line terminator so that a new line can begin. The Write method does
the same but does not add a line terminator. The WriteLineIf (and WriteIf) writes a
message only if the specified condition is evaluated as True. If you enter a valid string, the
WriteLineIf method writes a message. Notice that there is an invocation to the Assert
method. This method causes the runtime to show a message box containing the specified
message that is shown only if the specified expression is evaluated as False. According to
this, if you enter a valid string in the sample application, the expression is evaluated as
True therefore, no message is shown. If you instead enter an empty string (that is, press
Enter), the runtime shows the dialog represented in Figure 5.17.

The Fail method, which is not shown in the example, shows a similar dialog but without
evaluating any condition. In Table 5.2, methods descriptions mention trace listeners. We
now provide an overview of the Trace class and then an overview of the particular objects.

The Trace Class

The Trace class, which is also exposed by the System.Diagnostics namespace, works
exactly like the Debug class. One important difference influences the building process. The
output of the Debug class is included in the build output only if the DEBUG constant is
defined, whereas the Trace class’ output is included in the build output only if the TRACE
constant is defined. When you build your applications with the Debug configuration
active, both constants are defined, so both outputs are included. The Release configuration
defines instead only the TRACE constant, so it includes only this output.

FIGURE 5.17 The Assertion dialog.

From the Library of Wow! eBook

ptg

195Debugging in Code
5

Understanding Trace Listeners

In the preceding examples related to the Debug class (and consequently related to the
Trace class too), we saw how to send the output of the debugger to the Output window.
The .NET Framework enables sending the output to other targets, known as trace listeners.
A trace listener is basically an object that “listens” to what is happening at debugging time
and then collects information under various forms. For example, you could collect infor-
mation as XML files or just send such information to the Output window. Both Debug and
Trace classes expose a property named Listeners that represents a set of built-in listeners.
Table 5.3 groups the .NET Framework built-in listeners.

SYSTEM.DIAGNOSTICS NAMESPACE REQUIRED

All listeners listed in Table 5.3 are exposed by the System.Diagnostics namespace,
which is not mentioned for the sake of brevity. Usually this namespace is imported by
default, according to the options set within My Project. If the background compiler
advises that classes are not defined, you should add an Imports
System.Diagnostics directive to your code.

When you invoke members from the Debug and Trace classes, by default the output is
redirected to the output window. This is because the DefaultTraceListener is attached to
the application by the debugger. Now suppose you want to redirect the output to a text
file. This can be accomplished by writing the following lines of code:

Trace.Listeners.Clear()

TABLE 5.3 .NET Built-In Trace Listeners

Listener Description

DefaultTraceListener Redirects the output to the Output window.

TextWriterTraceListener Redirects the output to a text file.

XmlWriterTraceListener Redirects the output to an XML file.

EventLogTraceListener Redirects the output to the operating system’s events log.

DelimitedListTraceListener Redirects the output to a text file. Information is separated by
a symbol.

EventSchemaTraceListener Redirects the output to an Xml schema that is formed on the
supplied arguments.

ConsoleTraceListener Redirects the output to the Console window.

From the Library of Wow! eBook

ptg

196 CHAPTER 5 Debugging Visual Basic 2010 Applications

Trace.Listeners.Add(New

TextWriterTraceListener

(“C:\users\alessandro\desktop\TraceOutput.txt”))

‘This will ensure the file is closed when

‘the debugger shuts down

Trace.AutoFlush = True

Trace.WriteLineIf(result = True, “You entered a valid string”)

LISTENERS DO NOT OVERWRITE FILES

All built-in trace listeners that redirect output to a file do not overwrite the file itself if
already existing. They just append information to an existing file. If you need to create
a new file each time from scratch, remember to remove the previous version (for exam-
ple, invoking the File.Delete method).

The Trace.Listener.Clear method ensures all previous information from other listeners
gets cleared. You simply need to add a new instance of the TextWriterTraceListener class
to listeners’ collection. At this point you just need to supply the name of the output file as
an argument. If you add the preceding code after the declaration and assignment of the
result variable within the Main method of our main example, the output is redirected to
a text file, as shown in Figure 5.18.

The AutoFlush property set as True ensures that the text file is correctly closed when the
debugger shuts down. In the end, you write evaluations as you would do when sending
output to the Output window (see WriteLineIf method). A class named
DelimitedListTraceListener inherits from TextWriterTraceListener and enables writing

FIGURE 5.18 The debugging output has been redirected to a text file.

From the Library of Wow! eBook

ptg

197Debugging in Code
5

information to a file using a delimitation symbol. By default, this symbol is a comma
(basically output files are CSV files, Comma Separated Value, that can be opened with
Microsoft Excel), but you can set the Delimiter property value with another symbol. The
usage remains the same as its base class. You also might want to redirect output to an Xml
file. This can be accomplished adding an instance of the XmlWriterTraceListener class, as
shown in the following code:

Trace.Listeners.Clear()

Trace.Listeners.Add(New

XmlWriterTraceListener

(“C:\users\alessandro\desktop\TraceOutput.xml”))

‘This will ensure the file is closed when

‘the debugger shuts down

Trace.AutoFlush = True

Trace.WriteLineIf(result = True, “You entered a valid string”)

The usage is the same as in the TextWriterTraceListener example. If you try to run the
preceding code, you can obtain a well-formed Xml document, as shown in Figure 5.19.

FIGURE 5.19 The output produced by the XmlWriterTraceListener class.

From the Library of Wow! eBook

ptg

198 CHAPTER 5 Debugging Visual Basic 2010 Applications

As you should understand, writing the output to an Xml document is a more powerful
task because of the amount of information collected. All the information persisted to the
Xml document is reflected by properties of the instance of the XmlWriterTraceListener
class. Each property is named as the related information in the Xml document; for
example, the Computer property represents the name of the computer running the debug-
ger, the ProcessName property represents the name of the process that the debugger is
attached to, and the ProcessID and ThreadID properties respectively represent the process
identification number and thread identification number of the process. Another listener
that you can use for producing Xml files is named EventSchemaTraceListener. This object
will basically create an Xml schema starting from debugging information; the
EventSchemaTraceListener constructor has several overloads that enable specifying how
the schema will be formed. The following code shows an example:

Trace.Listeners.Add(New

EventSchemaTraceListener(“Test.xsd”,

“My listener”,

32768,

TraceLogRetentionOption.LimitedCircularFiles,

65536, 10))

Explaining this class in detail is beyond the scope of this book. If you would like to read
further details on this class, you can read the official MSDN documentation at
http://msdn.microsoft.com/en-us/library/system.diagnostics.eventschematracelistener(VS.100)
.aspx. The EventLogTraceListener class works similar to the previous ones. The following
lines of code attach a new instance of the class to the debugger, and the debug output is
redirected to the Windows Event Log:

Trace.Listeners.Clear()

Trace.Listeners.Add(New EventLogTraceListener

(“Chapter 5 - Debugging applications”))

‘This will ensure the log resources are released when

‘the debugger shuts down

Trace.AutoFlush = True

Trace.WriteLineIf(result = True, “You entered a valid string”)

APPLICATION LOG REQUIRES ADMINISTRATOR

Writing to the application log requires administrative privileges. If you run Windows
Vista or Windows 7 and you have the User Account Control active on your system, you
should also run Visual Studio 2010 as an administrator.

The preceding code creates a new entry in the application log of the operating system.
Figure 5.20 shows the content of the application log, which is reachable via the Event
viewer shortcut of the Administrative tools menu.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.diagnostics.eventschematracelistener(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.eventschematracelistener(VS.100).aspx

ptg

199Debugging in Code
5

MY.APPLICATION.LOG

Visual Basic 2010 offers an alternative to the EventLogTraceListener that is provid-
ed by the My namespace. As we see in Chapter 20, “The ‘My’ Namespace,” an object
name My.Application.Log provides a simpler way for writing the trace output to the
application log.

The last listener object is named ConsoleTraceListener and enables sending messages to
the Console window. You use this object as the previous ones. At this point we should
focus on an important feature of listeners: Hard coding listeners in Visual Basic code is not
mandatory. The good news is that you can add listeners to a configuration file that can be
manually edited externally from Visual Studio.

Setting Listeners in Configuration Files
To set listeners to a configuration file, first you need one. In Solution Explorer, right-click
the project name and then select the Add New Item command from the pop-up menu.
When the Add New Item dialog appears, you can search for the Application Configuration
File template using the search box, as shown in Figure 5.21.

If you now double-click the configuration file in Solution Explorer, you notice a section
that is named System.Diagnostics, as in the following snippet:

<system.diagnostics>

<sources>

<source name=”DefaultSource” switchName=”DefaultSwitch”>

FIGURE 5.20 Windows’s Event viewer shows the application log containing our debug output.

From the Library of Wow! eBook

ptg

200 CHAPTER 5 Debugging Visual Basic 2010 Applications

FIGURE 5.21 Adding a new configuration file to the project.

<listeners>

<add name=”FileLog”/>

</listeners>

</source>

</sources>

<switches>

<add name=”DefaultSwitch” value=”Information” />

</switches>

</system.diagnostics>

Basically this section represents the same-named namespace and offers the capability to
specify trace listeners. By default, a DefaultTraceListener is added. This can be under-
stood examining the preceding code snippet. You might also add other listeners, such as a
TextWriterTraceListener or an XmlWriterTraceListener. The following code snippet
shows how you can add a TextWriterTraceListener to the App.config file, remembering
that it must be nested into the System.Diagnostics node:

<trace autoflush=”true”>

<listeners>

<add name=”DemoTestWriter”

type=”System.Diagnostics.TextWriterTraceListener”

initializeData=”output.txt”/>

<!— If you want to disable the DefaultTraceListener—>

<remove name=”Default”/>

</listeners>

</trace>

From the Library of Wow! eBook

ptg

201Debugging in Code
5

As you can see, you need to supply a name, the type (that is, the class name), and the
output file. The following code snippet shows instead how you can add an
XmlWriterTraceListener:

<trace autoflush=”true”>

<listeners>

<add name=”DemoTestWriter”

type=”System.Diagnostics.XmlWriterTraceListener”

initializeData=”output.xml”/>

<!-- If you want to disable the DefaultTraceListener-->

<remove name=”Default”/>

</listeners>

</trace>

Of course, if you Visual Basic code you do not need also a configuration file. App.config
could be a good choice if another person that cannot edit your source code should change
how the debugger information is collected, because the configuration file can be edited
externally from Visual Studio.

Using Debug Attributes in Your Code

In the section “‘Just My Code’ Debugging,” I explained how some attributes can influence
the debugger’s behavior versus auto-generated code and that you can use versus your own
code. The .NET Framework also provides other attributes that you can use to decorate your
code for deciding how the debugger should behave versus such code. Table 5.4 lists other
attributes that complete the list in Table 5.1.

As previously described in this chapter, discussing custom debugger visualizers is beyond
the scope of this book, so the DebuggerVisualizer attribute is not discussed here.

TABLE 5.4 Debug Attributes

Attribute Description

DebuggerVisualizer Indicates the IDE that the code implements a custom debugger
visualizer

DebuggerStepperBoundary When a DebuggerNonUserCode attribute is also specified, causes
the debugger to run the code instead of stepping through

DebuggerBrowsable Establishes how data should be shown in the Data Tips windows

DebuggerDisplay Allows customizing strings and messages in Data Tips

DebuggerTypeProxy Allows overriding how data tips are shown for a particular type

From the Library of Wow! eBook

ptg

202 CHAPTER 5 Debugging Visual Basic 2010 Applications

NOTE ON DEBUG ATTRIBUTES

The above attributes are effectively used and useful when debugging the application
from within Visual Studio. When you compile the application in Release mode, debug
attributes are ignored and do not affect your code at runtime.

DebuggerStepperBoundary
This attribute is used only in multithreading scenarios and has effects only when a
DebuggerNonUserCode is also specified. It is used to run code instead of stepping through it
when you are stepping into user code that does not actually relate to the thread you were
instead debugging. Due to its particular nature, this attribute is not discussed in detail.
The MSDN Library provides additional information at this address:
http://msdn.microsoft.com/en-us/library/system.diagnostics.debuggerstepperboundaryat-
tribute(VS.100).aspx.

DebuggerBrowsable
The usage of the DebuggerBrowsable attribute in Visual Basic is quite new. Although
supported because it’s provided by the .NET Framework, decorating code with this
attribute produced no effects until Visual Basic 2005. Now it is instead possible to use it to
establish how an item should be visualized in Data Tips or variables windows specifying
one of the following arguments exposed by the
System.Diagnostics.DebuggerBrowsableState enumeration:

. Collapsed, which establishes that an item is collapsed and that you have to click the
+ symbol to expand it and see its children elements

. Never, which causes the specified item to never be visible in windows such as
Autos and Locals

. RootHidden, which forces the debugger to show just the children elements of the
specified item

For example, consider the following code snippet that retrieves an array of processes (each
represented by an instance of the System.Diagnostics.Process class):

<DebuggerBrowsable(DebuggerBrowsableState.RootHidden)>

Private ProcessesList As Process()

Sub ShowProcesses()

ProcessesList = Process.GetProcesses

End Sub

The preceding code causes the debugger to show only the children element of the array,
excluding the root (ProcessesList), as shown in Figure 5.22.

DebuggerDisplay
The DebuggerDisplay attribute also enables establishing how an item should be shown
inside Data Tips. With this attribute you can replace Visual Studio default strings and

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.diagnostics.debuggerstepperboundaryattribute(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debuggerstepperboundaryattribute(VS.100).aspx

ptg

203Debugging in Code
5

FIGURE 5.22 Using the DebuggerBrowsable you can establish how an object can be shown
in debugger windows.

customize the description for an object within Data Tips. For example, imagine you have
the code shown in Listing 5.2, in which a Person class and code creates a list of people.

LISTING 5.2 Using the DebuggerDisplay Attribute

Module Module1

Sub Main()

Dim p As New List(Of Person)

p.Add(New Person With {.FirstName = “Alessandro”, .LastName = “Del Sole”})

p.Add(New Person With {.FirstName = “MyFantasyName”,

.LastName = “MyFantasyLastName”})

Console.ReadLine()

End Sub

End Module

<DebuggerDisplay(“This person is {FirstName} {LastName}”)>

Class Person

Property FirstName As String

Property LastName As String

End Class

From the Library of Wow! eBook

ptg

204 CHAPTER 5 Debugging Visual Basic 2010 Applications

In this book it’s not important to focus on how collections of objects are created, whereas
it’s interesting to understand what the DebuggerDisplay attribute does. Now place a break-
point on the Console.ReadLine statement and then run the application. If you pass the
mouse pointer over the p object, Data Tips for this object will be activated. The debugger
then displays data that are formatted the way we described in the DebuggerDisplay
attribute. Figure 5.23 shows the result of our customization.

DebuggerTypeProxy
As its name implies, the DebuggerTypeProxy enables overriding how debug information
for a specific data type is shown within Data Tips. Listing 5.3 shows how you can imple-
ment such an attribute.

LISTING 5.3 Using the DebuggerTypeProxy Attribute

Module Module1

Sub Main()

Dim p As New List(Of Person)

p.Add(New Person With {.FirstName = “Alessandro”, .LastName = “Del Sole”})

p.Add(New Person With {.FirstName = “MyFantasyName”,

.LastName = “MyFantasyLastName”})

Console.ReadLine()

End Sub

End Module

<DebuggerTypeProxy(GetType(PersonProxy))>

Class Person

FIGURE 5.23 The DebuggerDisplay attribute enables customizing Data Tips messages.

From the Library of Wow! eBook

ptg

205Debugging in Code
5

Property FirstName As String

Property LastName As String

End Class

Class PersonProxy

Dim myProxy As Person

Sub New(ByVal OnePerson As Person)

myProxy = OnePerson

End Sub

ReadOnly Property Length As Integer

Get

Return String.Concat(myProxy.FirstName, “ “, myProxy.LastName).Length

End Get

End Property

End Class

The PersonProxy class basically gets the instance of the Person class being debugged, reads
the information from such instance, and returns via the Length property the length of the
string composed by the FirstName and LastName properties. The Length property here is
just a basic example, but it is useful to understand where the real proxy is. To activate the
proxy, you need to decorate the Person class with the DebuggerTypeProxy attribute whose
argument is the Type representation of what you need to debug. This type is retrieved
using a GetType keyword. If you now try to run the application, you can see that the
debugger can display the new Length information, as shown in Figure 5.24.

So you have a powerful way to customize debug information.

FIGURE 5.24 The DebuggerTypeProxy enables customizing the debug information.

From the Library of Wow! eBook

ptg

206 CHAPTER 5 Debugging Visual Basic 2010 Applications

Summary
Debugging is a primary task in developing applications. The Visual Studio 2010 IDE offers
lots of useful tools that can enhance the debugging experience. In this chapter you
learned what Just My Code is and then you learned how you can work with breakpoints
and trace points, passing through debugging in steps. You also saw the debugger windows
in action, enabling deep control over variables and objects. In the end you learned how to
customize your own code to take advantages of the Visual Studio debugging tools decorat-
ing your code with debug attributes. But debugging is just one part in the development
process that fights against errors. Exceptions are the other part that are discussed in
Chapter 6, “Handling Errors and Exceptions.”

From the Library of Wow! eBook

ptg

CHAPTER 6

Handling Errors and
Exceptions

IN THIS CHAPTER

. Introducing Exceptions

. Handling Exceptions

Every application might encounter errors during its execu-
tion, even when you spend several nights on testing the
application and all the possible execution scenarios.
Especially runtime errors are often unpredictable because
the application execution is conditioned by user actions.
Because of this, error handling is a fundamental practice
that, as a developer, you need to know in depth. In this
chapter you learn how the .NET Framework enables
handling errors and how to get information to solve prob-
lems deriving such errors. In other words, you learn about
.NET exceptions.

Introducing Exceptions
In development environments different than .NET,
programming languages can handle errors occurring during
the application execution in different ways. For example,
the Windows native APIs return a 32-bit HRESULT number in
case an error occurs. Visual Basic 6 uses the On Error state-
ments, whereas other languages have their own error-
handling infrastructure. As you can imagine, such
differences cannot be allowed in the .NET Framework
because all languages rely on the Common Language
Runtime, so all of them must intercept and handle errors
the same way. With that said, the .NET Framework identi-
fies errors as exceptions. An exception is an instance of the
System.Exception class (or of a class derived from it) and
provides deep information on the error occurred. Such an
approach provides a unified way for intercepting and
handling errors. Exceptions are not only something occur-
ring at runtime, during the application execution.

From the Library of Wow! eBook

ptg

208 CHAPTER 6 Handling Errors and Exceptions

Exceptions can be thrown by the Visual Basic compiler also at compile time or by the back-
ground compiler when typing code. You can also notice that errors occurring when
designing the user interface of an application or errors occurring when working within the
Visual Studio 2010 IDE are mostly called exceptions. This is because such tasks (and most
of the Visual Studio IDE) are powered by the .NET Framework. In Chapter 2, “Getting
Started with the Visual Studio 2010 IDE,” we introduced the Visual Studio debugger and
saw how it can be used for analyzing error messages provided by exceptions (see the
“About Runtime Errors” section in Chapter 2). In that case we did not implement any
error handling routine because we just were introducing the debugging features of Visual
Studio during the development process. But what if an error occurs at runtime when the
application has been deployed to your customer without implementing appropriate error
handling code? Imagine an application that attempts to read a file that does not exist and
in which the developer did not implement errors checks. Figure 6.1 shows an example of
what could happen and that should never happen in a real application.

As you can see from Figure 6.1, in case of an error the application stops its execution, and
no resume is possible. Moreover, identifying what kind of error occurred can also be diffi-
cult. Because of this, as a developer it is your responsibility to implement code for inter-
cepting exceptions and take the best actions possible to solve the problem, also based on
users’ choices. The best way to understand exceptions is to begin to write some code that
causes an intercept errors, so this is what we are going to do in the next section.

Handling Exceptions
Visual Basic 2010 enables deep control over exceptions. With regard to this, an important
concept is that you not only can check for occurring exceptions but you can also condi-
tionally manage solutions to exceptions and raise exceptions when needed. In this section

FIGURE 6.1 Without handling exceptions, solving errors is difficult.

From the Library of Wow! eBook

ptg

209Handling Exceptions
6

we discuss all these topics, providing information on how you can intercept and manage
exceptions in your application.

Are You Upgrading from Visual Basic 6?

One of the (very few) commonalities between Visual Basic 6 and Visual Basic .NET and
higher is the syntax approach. This should help a little more in migrating from Visual
Basic 6 to 2010. Although Visual Basic 2010 (more precisely, VB.NET from 2002 to 2010)
still enables the usage of the On Error Goto and On Error Resume statements, when
developing .NET applications with Visual Basic, you should never use such statements for
two reasons. First, exceptions are the only way that enables interoperation with other
.NET languages such as Visual C# and Visual F#. This is fundamental when developing
class libraries or components that could be potentially reused from other languages differ-
ent than Visual Basic. The second reason is that the old-fashioned way for handling errors
is not as efficient as handling .NET exceptions. If you decided to migrate, you should
completely forget On Error and exclusively use exceptions.

System.Exception, Naming Conventions and Specialization

System.Exception is the most general exception and can represent all kinds of errors
occurring in applications. It is also the base class for derived exceptions, which are specific
to situations you may encounter. For example, the System.IOException derives from
System.Exception, is thrown when the application encounters input/output errors when
accessing the disk, and can be handled only for this particular situation. On the other
hand, System.Exception can handle not only this situation but also any other occurring
errors. You can think of System.Exception as of the root in the exceptions hierarchy. We
explain later in code the hierarchy of exception handling. Classes representing exceptions
always terminate with the word Exception. You encounter exceptions such as
FileNotFoundException, IndexOutOfRangeException, FormatException, and so on. This is
not mandatory, but a recommended naming convention. Generally .NET built-in excep-
tions inherit from System.Exception, but because they are reference types, you find
several exceptions inheriting from a derived exception.

Try..Catch..Finally

You perform exception handling writing a Try..Catch..Finally code block. The logic is
that you say to the compiler: “Try to execute the code; if you encounter an exception,
take the specified actions; whenever the code execution succeeds or it fails due to an
exception, execute the final code.” The most basic code for controlling the execution flow
regarding exceptions is the following:

Try

‘Code to be executed

Catch ex As Exception

‘Code to handle the exception

End Try

From the Library of Wow! eBook

ptg

210

IntelliSense does a great job here. When you type the Try keyword and then press Enter,
it automatically adds the Catch statement and the End Try terminator. The ex variable
gets the instance of the System.Exception that is caught and that provides important
information so that you can best handle the exception. To see what happens, consider the
following code snippet:

Try

Dim myArray() As String = {“1”, “2”, “3”, “4”}

Console.WriteLine(myArray(4))

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

Here we have an array of strings in which the upper range of the array is 3. The Try block
tries to execute code that attempts writing the content of the fourth index to the Console
window. Unfortunately, such an index does not exist, but because the code is formally
legal, it will be correctly compiled. When the application runs and the runtime encoun-
ters this situation, it throws an exception to communicate the error occurrence. So the
Catch statement intercepts the exception and enables deciding what actions must be
taken. In our example the action to handle the exception is to write the complete error
message of the exception. If the code within Try succeeds, the execution passes to the first
code after the End Try terminator. In our example the control transfers to the Catch block
that contains code that writes to the Console window the actual error message that looks
like the following:

Index was outside the bounds of the array

Basically the runtime never throws a generic System.Exception exception. There are
specific exceptions for the most common scenarios (and it is worth mentioning that you
can create custom exceptions as discussed in Chapter 12, “Inheritance”) that are helpful to
identify what happened instead of inspecting a generic exception. Continuing our
example, the runtime throws an IndexOutOfRangeException that means the code
attempted to access and index greater or smaller than allowed. Based on these considera-
tions, the code could be rewritten as follows:

Try

Dim myArray() As String = {“1”, “2”, “3”, “4”}

Console.WriteLine(myArray(4))

Catch ex As IndexOutOfRangeException

Console.WriteLine(“There is a problem: probably you are “

& Environment.NewLine &

CHAPTER 6 Handling Errors and Exceptions

From the Library of Wow! eBook

ptg

211Handling Exceptions
6

“ attempting to access an index that does not exists”)

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

As you can see, the most specific exception needs to be caught before the most generic
one. This is quite obvious, because if you first catch the System.Exception, all other
exceptions will be ignored. Intercepting specific exceptions can also be useful because you
can both communicate the user detailed information, and you can decide what actions
must be taken to solve the problem. Anyway, always adding a Catch block for a generic
System.Exception is a best practice. This allows providing a general error handling code
in case exceptions that you do not specifically intercept will occur. You could also need to
perform some actions independently from the result of your code execution. The Finally
statement enables executing some code either if the Try succeeds or if it fails, passing
control to Catch. For example you might want to clean up resources used by the array:

Dim myArray() As String = {“1”, “2”, “3”, “4”}

Try

Console.WriteLine(myArray(4))

Catch ex As IndexOutOfRangeException

Console.WriteLine(“There is a problem: probably you are “

& Environment.NewLine &

“ attempting to access an index that does not exists”)

Catch ex As Exception

Console.WriteLine(ex.Message)

Finally

myArray = Nothing

End Try

Notice how objects referred within the Finally block must be declared outside the
Try..End Try block because of visibility. The code within Finally will be executed what-
ever will be the result of the Try block. This is important; for example, think about files.
You might open a file and then try to perform some actions on the file that for any reason
can fail. In this situation you would need to close the file, and Finally ensures you can
do that both if the file access is successful and if it fails (throwing an exception). An
example of this scenario is represented in Listing 6.1.

LISTING 6.1 Use Finally to Ensure Resources Are Freed Up and Unlocked

Imports System.IO

From the Library of Wow! eBook

ptg

212

Module Module1

Sub Main()

Console.WriteLine(“Specify a file name:”)

Dim fileName As String = Console.ReadLine

Dim myFile As FileStream = Nothing

Try

myFile = New FileStream(fileName, FileMode.Open)

‘Seek a specific position in the file.

‘Just for example

myFile.Seek(5, SeekOrigin.Begin)

Catch ex As FileNotFoundException

Console.WriteLine(“File not found.”)

Catch ex As Exception

Console.WriteLine(“An unidentified error occurred.”)

Finally

If myFile IsNot Nothing Then

myFile.Close()

End If

End Try

Console.ReadLine()

End Sub

End Module

The code in Listing 6.1 is quite simple. First, it asks the user to specify a filename to be
accessed. Accessing files is accomplished with a FileStream object. Notice that the myFile
object is declared outside the Try..End Try block so that it can be visible within Finally.
Moreover, its value is set to Nothing so that it has a default value, although null. If we did
not assign this default value, myFile would just be declared but not yet assigned so the
Visual Basic compiler would throw a warning message. By the way, setting the default
value to Nothing will not prevent a NullReferenceException at runtime unless the variable
gets a value. The Try block attempts accessing the specified file. The FileStream.Seek
method here is just used as an example needed to perform an operation on the file. When
accessing files there could be different problems, resulting in different kinds of exceptions.
In our example, if the specified file does not exist, a FileNotFoundException is thrown by
the runtime, and the Catch block takes control over the execution. Within the block we
just communicate that the specified file was not found. If instead the file exists, the code
performs a seeking. In both cases, the Finally block ensures that the file gets closed, inde-
pendently on what happened before. This is fundamental, because if you leave a file
opened, other problems would occur.

CHAPTER 6 Handling Errors and Exceptions

From the Library of Wow! eBook

ptg

213Handling Exceptions
6

Exceptions Hierarchy
In Listing 6.1 we saw how we can catch a specific exception, such as
FileNotFoundException, and then the general System.Exception. By the way,
FileNotFoundException does not directly derive from System.Exception; instead, it
derives from System.IO.IOException that is related to general input/output problems.
Although you are not obliged to also catch an IOException when working with files,
adding it could be a good practice because you can separate error handling for disk
input/output errors from other errors. In such situations the rule is that you have to catch
exceptions from the most specific to the most general. Continuing the previous example,
Listing 6.2 shows how you can implement exceptions hierarchy.

LISTING 6.2 Understanding Exceptions Hierarchy

Imports System.IO

Module Module1

Sub Main()

Console.WriteLine(“Specify a file name:”)

Dim fileName As String = Console.ReadLine

Dim myFile As FileStream = Nothing

Try

myFile = New FileStream(fileName, FileMode.Open)

‘Seek a specific position in the file.

‘Just for example

myFile.Seek(5, SeekOrigin.Begin)

Catch ex As FileNotFoundException

Console.WriteLine(“File not found.”)

Catch ex As IOException

Console.WriteLine(“A general input/output error occurred”)

Catch ex As Exception

Console.WriteLine(“An unidentified error occurred.”)

Finally

If myFile IsNot Nothing Then

myFile.Close()

End If

End Try

Console.ReadLine()

End Sub

End Module

From the Library of Wow! eBook

ptg

214

FileNotFoundException is the most specific exception, so it must be caught first. It derives
from IOException, which is intercepted as second. System.Exception is instead the base
class for all exceptions and therefore must be caught last.

System.Exception Properties
The System.Exception class exposes some properties that are useful for investigating
exceptions and then understanding what the real problem is. Particularly when you catch
specialized exceptions, it could happen that such exception is just the last ring of a chain
and that the problem causing the exception itself derives from other problems.
System.Exception’s properties enable a better navigation of exceptions. Table 6.1 lists
available properties.

CHAPTER 6 Handling Errors and Exceptions

Listing 6.3 shows how you can retrieve deep information on the exception. In the
example, information is retrieved for the System.IO.FileNotFoundException, but you can
use such properties for each exception you like.

LISTING 6.3 Investigating Exceptions Properties

Imports System.IO

TABLE 6.1 System.Exception’s Properties

Property Description

Message Gets the complete error message generated from the exception

Source Represents the name of the application or the object that threw the exception

TargetSite Retrieves the method that actually throws the exception

Data Stores a sequence of key/value pairs containing additional information on the
exception

Help Allows specifying or retrieving the name of the help file associated with the
exception

InnerException Gets the instance of the exception object that actually caused the current
exception

StackTrace Retrieves the methods calls hierarchy in the Call Stack when the exception
occurred

From the Library of Wow! eBook

ptg

215Handling Exceptions
6

Module Module1

Sub Main()

Console.WriteLine(“Specify a file name:”)

Dim fileName As String = Console.ReadLine

Dim myFile As FileStream = Nothing

Try

myFile = New FileStream(fileName, FileMode.Open)

‘Seek a specific position in the file.

‘Just for example

myFile.Seek(5, SeekOrigin.Begin)

Catch ex As FileNotFoundException

Console.WriteLine()

Console.WriteLine(“Error message: “ & ex.Message & Environment.NewLine)

Console.WriteLine(“Object causing the exception: “

& ex.Source & Environment.NewLine)

Console.WriteLine(“Method where the exception is thrown; “

& ex.TargetSite.ToString & Environment.NewLine)

Console.WriteLine(“Call stack:” & ex.StackTrace & Environment.NewLine)

Console.WriteLine(“Other useful info:”)

For Each k As KeyValuePair(Of String, String) In ex.Data

Console.WriteLine(k.Key & “ “ & k.Value)

Next

Catch ex As IOException

Console.WriteLine(“A general input/output error occurred”)

Catch ex As Exception

Console.WriteLine(ex.Message)

Finally

If myFile IsNot Nothing Then

myFile.Close()

End If

End Try

Console.ReadLine()

End Sub

End Module

If we run this code and specify a filename that does not exist, we can retrieve a lot of
useful information. Figure 6.2 shows the result of the code.

From the Library of Wow! eBook

ptg

216 CHAPTER 6 Handling Errors and Exceptions

As you can see from Figure 6.2, the Message property contains the full error message. In
production environments, this can be useful to provide customers a user-friendly error
message. The Source property shows the application or object causing the exception. In
our example it retrieves Mscorlib, meaning that the exception was thrown by the
Common Language Runtime. The Target property retrieves the method in which the
exception was thrown. It is worth mentioning that this property retrieves the native
method that caused the error, meaning that the method was invoked by the Common
Language Runtime. This is clearer if we take a look at the content of the Stack property.
We can see the hierarchy of method calls in descending order: the .ctor method is the
constructor of the FileStream class, invoked within the Main method; the next method,
named Init, attempts to initialize a FileStream and is invoked behind the scenes by the
CLR. Init and then invokes the native WinIOError function because accessing the file was
unsuccessful. Analyzing such properties can be useful to understand what happened.
Because there is no other useful information, iterating the Data property produced no
result. By the way, if you just need to report a detailed message about the exception, you
can collect most of the properties’ content just invoking the ToString method of the
Exception class. For example, you could replace the entire Catch ex as
FileNotFoundException block as follows:

Catch ex As FileNotFoundException

Console.WriteLine(ex.ToString)

This edit produces the result shown in Figure 6.3. As you can see, the result is a little
different from the previous one. We can find a lot of useful information, such as the name
of the exception, complete error message, filename, Call Stack hierarchy, and line of code
that caused the exception.

Typically you use ToString just to show information, whereas you use properties to
analyze exception information.

FIGURE 6.2 Getting information on the exception.

From the Library of Wow! eBook

ptg

217Handling Exceptions
6

FIGURE 6.3 Invoking the Exception.ToString method offers detailed information.

CHECK VALUES INSTEAD OF CATCHING EXCEPTIONS

Catching exceptions is necessary but it is also performances consuming. There are sit-
uations in which you could simply check the value of an object instead of catching
exceptions. For example, you could check with an If..Then statement if an object is
null instead of catching a NullReference exception (when possible, of course).
Exceptions are best left to handle “exceptional” situations that occur in code, so you
should limit the over use of them when possible.

You can also ignore exceptions by simply not writing anything inside a Catch block. For
example, the following code catches a FileNotFoundException and prevents an undesired
stop in the application execution but takes no action:

Try

testFile = New FileStream(FileName, FileMode.Open)

Catch ex As FileNotFoundException

End Try

Nested Try..Catch..Finally Blocks
You also have the ability to nest Try..Catch..Finally code blocks. Nested blocks are
useful when you have to try the execution of code onto the result of another Try..Catch
block. Consider the following code that has the purpose of showing the creation time of
all files in a given directory:

Try

Dim allFiles As String() =

From the Library of Wow! eBook

ptg

218 CHAPTER 6 Handling Errors and Exceptions

Directory.GetFiles(“C:\TestDirectory”)

Try

For Each f As String In allFiles

Console.WriteLine(File.GetCreationTime(f).ToString())

Next

Catch ex As IOException

Catch ex As Exception

End Try

Catch ex As DirectoryNotFoundException

Catch ex As Exception

End Try

The first Try..Catch attempts reading the list of files from a specified directory. Because
you may encounter directory errors, a DirectoryNotFoundException is caught. The result
(being an array of String) is then iterated within a nested Try..Catch block. This is
because the code is now working on files and then specific errors might be encountered.

Exit Try Statements
You can exit from within a Try..Catch..Finally block at any moment using an Exit Try
statement. If there is a Finally block, Exit Try pulls the execution into Finally that
otherwise resumes the execution at the first line of code after End Try. The following code
snippet shows an example:

Try

‘Your code goes here

Exit Try

‘The following line will not be considered

Console.WriteLine(“End of Try block”)

Catch ex As Exception

End Try

‘Resume the execution here

The Throw Keyword

There are situations in which you need to programmatically throw exceptions or in which
you catch exceptions but you do not want to handle them in the Catch block that inter-
cepted exceptions. Programmatically throwing exceptions can be accomplished via the

From the Library of Wow! eBook

ptg

219Handling Exceptions
6

Throw keyword. For example, the following line of code throws an ArgumentNullException
that typically occurs when a method receives a null argument:

Throw New ArgumentNullException

Typically you need to manually throw exceptions when they should be handled by
another portion of code, also in another application. A typical example is when you
develop class libraries. A class library must be the most abstract possible, so you cannot
decide what actions to take when an exception is caught, because this is the responsibility
of the developer who creates the application that references your class library. If both
developers are the same person, this remains a best practice because you should always
separate the logic of class implementations from the client logic (such as the user inter-
face). To provide a clearer example, a class library cannot show a graphical message box or
a text message into the Console window. It instead needs to send to the caller code the
exception caught, and this is accomplished via the Throw keyword. We can provide a code
example. Visual Studio 2010 creates a new blank solution and then adds a new Class
Library project that you could name, for example, TestThrow. Listing 6.4 shows the
content of the class.

LISTING 6.4 Throwing Back Exceptions to Caller Code

Imports System.IO

Public Class TestThrow

Public Sub TestAccessFile(ByVal FileName As String)

If String.IsNullOrEmpty(FileName) Then

Throw New ArgumentNullException(“FileName”,

“You passed an invalid file name”)

End If

Dim testFile As FileStream = Nothing

Try

testFile = New FileStream(FileName, FileMode.Open)

Catch ex As FileNotFoundException

Throw New FileNotFoundException(“The supplied file name was not found”)

Catch ex As Exception

Throw

Finally

If testFile IsNot Nothing Then

testFile.Close()

End If

End Try

End Function

End Class

From the Library of Wow! eBook

ptg

220 CHAPTER 6 Handling Errors and Exceptions

The TestThrow class’ purpose is just attempting to access a file. This is accomplished by
invoking the TestAccess method that receives a FileName argument of type String. The
first check is on the argument: If it is null, the code throws back to the caller an
ArgumentNullException that provides the argument name and a description. In such a
scenario the method catches but does not handle the exception. This is thrown back to
the caller code, which is responsible to handle the exception (for example asking the user
to specify a valid filename). The second check is on the file access. The
Try..Catch..Finally block implements code that tries to access the specified file, and if
the file is not found, it throws back the FileNotFoundException describing what
happened. In this way the caller code is responsible for handling the exception, for
example asking the user to specify another filename. Also notice how a generic
System.Exception is caught and thrown back to the caller by simply invoking the Throw
statement without arguments. This enables the method to throw back to the caller the
complete exception information.

RETHROW TECHINQUE

Throwing back an exception to the caller code is also known as the rethrow technique.

Now we can create an application that can reference the TestThrow class library and
handle exceptions on the client side. Add to the solution a new Visual Basic project for
the Console and add a reference to the TestThrow class library by selecting Project, Add
Reference. Adding a reference to another assembly enables using types exposed publicly
from such an assembly. Finally, write the code shown in Listing 6.5.

LISTING 6.5 Handling Exceptions on the Client Side

Imports System.IO

Module Module1

Sub Main()

Console.WriteLine(“Specify the file name:”)

Dim name As String = Console.ReadLine

Dim throwTest As New TestThrow.TestThrow

Try

throwTest.TestAccessFile(name)

Catch ex As ArgumentNullException

Console.WriteLine(“You passed an invalid argument”)

Catch ex As FileNotFoundException

Console.WriteLine(ex.Message)

From the Library of Wow! eBook

ptg

221Handling Exceptions
6

Catch ex As Exception

Console.WriteLine(ex.ToString)

Finally

Console.ReadLine()

End Try

End Sub

End Module

The code in Listing 6.5 first asks the user to specify a filename to access. If you press Enter
without specifying any filename, the TestAccessFile method is invoked passing an
empty string, so the method throws an ArgumentNullException, as shown in Figure 6.4.

If this situation happened inside a Windows application, you could provide a MessageBox
showing the error message. With this approach, you maintain logics separately. If you
instead specify a filename that does not exist, the caller code needs to handle the
FileNotFoundException, and the result is shown in Figure 6.5.

FIGURE 6.4 Passing an empty string as an argument causes an ArgumentNullException.

FIGURE 6.5 The caller code handles the FileNotFoundException and shows a user-friendly
message.

From the Library of Wow! eBook

ptg

222 CHAPTER 6 Handling Errors and Exceptions

The caller code writes the content of the ex.Message property to the Console window,
which is populated with the error message provided by the Thrown statement from the
class library. If any other kinds of exceptions occur, a generic System.Exception is
handled, and its content is shown to the user.

CATCHING MOST EXCEPTIONS

Depending on what tasks you perform within a Try..Catch block, always catch excep-
tions specific for those tasks. For example, if your code works with files, don’t limit to
catch a FileNotFoundException but also consider file-related and disk-related excep-
tions. In order to get a listing of the exceptions that a class was designed to throw, you
can read the MSDN documentation related to that class. The documentation in fact
describes in detail what exceptions are related to the desired object.

Performance Overhead
Basically invoking the Throw keyword causes the runtime to search through all the code
hierarchy until it finds the caller code that can handle the exception. Continuing our
previous example, the Console application not necessarily could be the first caller code.
There could be another class library that could rethrow the exception to another class that
could then rethrow the exception to the main caller code. Obviously going through the
callers’ hierarchy is a task that could cause performance overhead, so you should take care
about how many callers there are in your code to reduce the overhead. In the end, if the
caller code is missing a Catch block, the result will be the same shown in Figure 6.1, which
should always be avoided.

The When Keyword

Sometimes you may need to catch an exception only when a particular condition exists.
You can conditionally control the exception handling using the When keyword, which
enables taking specific actions when a particular condition is evaluated as True.
Continuing the example of the previous paragraph, the TestThrow class throws an
ArgumentNullException in two different situations (although similar). The first one is if
the string passed to the TestAccessFile method is empty; the second one is if the string
passed to the method is a null value (Nothing). So it could be useful to decide what
actions to take depending on what is the actual matter that caused the exception.
According to this, we could rewrite the code shown in Listing 6.5 as instead shown in
Listing 6.6.

LISTING 6.6 Conditional Exception Handling With The When Keyword

Imports System.IO

Module Module1

Sub Main()

From the Library of Wow! eBook

ptg

223Handling Exceptions
6

Console.WriteLine(“Specify the file name:”)

Dim name As String = Console.ReadLine

Dim throwTest As New TestThrow.TestThrow

Try

Dim result As Boolean = throwTest.TestAccessFile(name)

Catch ex As ArgumentNullException When name Is Nothing

Console.WriteLine(“You provided a null parameter”)

Catch ex As ArgumentNullException When name Is String.Empty

Console.WriteLine(“You provided an empty string”)

Catch ex As FileNotFoundException

Console.WriteLine(ex.Message)

Catch ex As Exception

Console.WriteLine(ex.ToString)

Finally

Console.ReadLine()

End Try

End Sub

End Module

As you can see from Listing 6.6, using the When keyword you can conditionally handle
exceptions depending if the expression on the right is evaluated as True. In this case,
when handling the ArgumentNullException, the condition is evaluating the name variable.
If name is equal to Nothing, the exception is handled showing a message saying that the
string is null. If name is instead an empty string (which is different from a null string),
another kind of message is shown. When can be applied only to Catch statements and
works only with expressions. Of course, you can use the When keyword also with value
types; for example, you might have a counter that you increment during the execution of
your code and, in case of exceptions, you may decide what actions to take based on the
value of your counter. The following code gives an idea of such a scenario:

Dim oneValue As Integer = 0

Try

‘perform some operations

‘on oneValue

Catch ex As Exception When oneValue = 1

Catch ex As Exception When oneValue = 2

Catch ex As Exception When oneValue = 3

End Try

From the Library of Wow! eBook

ptg

224 CHAPTER 6 Handling Errors and Exceptions

Catching Exceptions Without a Variable

You do not always need to specify a variable in the Catch block. This can be the case in
which you want to take the same action independently from the exception that occurred.
For example, consider the following code:

Try

Dim result As String =

My.Computer.FileSystem.ReadAllText(“C:\MyFile.txt”)

Catch ex As Exception

Console.WriteLine(“A general error occurred”)

End Try

The ex variable is not being used and no specific exceptions are handled. So the preceding
code can be rewritten as follows, without the ex variable:

Try

Dim result As String =

My.Computer.FileSystem.ReadAllText(“C:\MyFile.txt”)

Catch

Console.WriteLine(“A general error occurred”)

End Try

Whichever exception occurs, the code shows the specified message. This also works with
regard to the re-throw technique. The following code simply re-throws the proper excep-
tion to the caller:

Try

Dim result As String =

My.Computer.FileSystem.ReadAllText(“C:\MyFile.txt”)

Catch

Throw

End Try

Summary
Managing errors is something that every developer needs to take into consideration. The
.NET Framework provides a unified system for managing errors which is the exception
handling. System.Exception is the root class in the exceptions hierarchy, and exceptions
are handled using a Try..Catch..Finally block. You can create nested
Try..Catch..Finally blocks and check exceptions conditionally using the When keyword.
In the end you can programmatically generate exceptions using the Throw keyword that is
particularly useful in class libraries development. This chapter provided a high-level
overview of exceptions; now you can decide what kinds of exceptions you need to handle
for your code and how to take actions to solve errors.

From the Library of Wow! eBook

ptg

CHAPTER 7

Class Fundamentals

IN THIS CHAPTER

. Declaring Classes

. Properties

. Scope

. Methods

. Partial Classes

. Partial Methods

. Constructors

. Shared Members

. Common Language
Specifications

In your everyday life, you perform all activities using
objects. You use a fork to eat; you drive your car to reach
your office; and you spend money to buy things. Each of
these objects has its own characteristics. There are
hundreds of car models; they have different colors, differ-
ent engines, different accessories, but they all are cars.
Object-oriented programming (OOP) is similar to this view of
life. In fact, OOP relies on objects; for example, you can
have an object that enables working on files or another
object that enables managing pictures. In.NET development
an object is typically represented by a class. Structures are
also objects but their purpose is to represent a value more
than to take actions. For car characteristics, objects have
their own characteristics known as properties. But they also
have some members that enable taking actions, known as
methods. In this chapter you learn how classes in.NET
development are structured and how to create your own
classes, implementing all members that the .NET
Framework enables in the context.

Declaring Classes
Classes in Visual Basic 2010 are declared with Class..End
Class statements. Classes support the following visibility
modifiers: Public, Protected, Friend, Private and
Protected Friend. Classes with Public can be reached
from other assemblies whereas classes with Friend visibility
can be reached from within the assembly that defines them.
Both modifiers are the only valid ones for non nested
classes, as you will see later in this chapter.

From the Library of Wow! eBook

ptg

226 CHAPTER 7 Class Fundamentals

CLASSES’ SCOPE

For further information on types and members scope, see the section “Scope” in
this chapter.

The following are the only acceptable class declarations:

Public Class Test

End Class

Friend Class Test

End Class

If you omit the qualifier (that is, Public or Friend keyword), the Visual Basic compiler
assigns Public by default. Classes can define members, such as fields, properties, methods
(all covered in this chapter) but also other classes and structures. The next section covers
members that can be defined within classes so that you can have a complete overview
about creating your custom classes.

CLASS LIBRARIES

You can define classes in whatever code file you like. Usually developers assign a sin-
gle code file to one class. If you plan to develop a reusable assembly, exposing class-
es or types’ definitions only, you can use the Class Library project template that
enables building a .dll assembly that can be referenced by other projects and applica-
tions and that is particularly useful for the modular development.

Nested Classes

You can organize classes within other classes. The following code snippet shows how you
can define a nested class:

Public Class Test

Friend Class NestedClass

End Class

End Class

Nested classes can also be marked as Private, and this is the only situation in which the
qualifier is enabled. If you make a class private, you cannot use that class outside the
class that defines it. Continuing with the preceding example, if the NestedClass class
were marked as Private, you could use it only within the Test class. If a nested class is

From the Library of Wow! eBook

ptg

227Fields

not private, you can invoke it the usual way; you need to write the full name of the class
as follows:

Dim nc As New Test.NestedClass

Typically, classes are organized within namespaces (as described in Chapter 9, “Organizing
Types Within Namespaces”), but there can be situations in which you need to organize
small frameworks of classes, and then nested classes can be a good solution.

Fields
Fields are the places in which you store information to and read information from. They
are declared in the form of class level variables and differ from local variables in that these
are declared at the method or property level. The following code shows how simple it is to
declare fields:

Class FieldsDemo

‘a private field

Private counter As Integer

‘a public field

Public publicCounter As Integer

Public Sub DoSomething()

‘a local variable

Dim localVariable As Integer = 0

End Sub

End Class

Fields can be reachable from within the class and its members, and if you specify one of
the appropriate qualifiers (such as Public), they can also be reached from the external
world. Inside fields you store the actual information your custom objects need.

USING FIELDS

With the introduction of auto-implemented properties (see next section), fields are now
typically used to store information at the class level. They lose part of their purpose
regarding properties, although you can still use fields as a repository for property infor-
mation when auto-implemented properties are not enough for your needs.

You can also provide inline initialization of fields, as in the following snippet:

Private counter As Integer = 2

7

From the Library of Wow! eBook

ptg

228 CHAPTER 7 Class Fundamentals

‘With reference types

Public inlineDemo As Person = New Person

Assigning a field inline or not is something that depends exclusively on your needs.
Probably you will initialize fields at run-time when you receive an input from the user or
with a value received from the constructor, whereas you might prefer inline initialization
when you need to start from a certain value. Fields can also be read-only. When you need
to provide a field with an immutable value, you can use read-only fields as follows:

’read-only fields

Private ReadOnly counter As Integer = 3

Private ReadOnly testReference As Person = New Person

A read-only value requires inline initialization. If not, zero will be assigned to value types
and Nothing assigned to reference types. Read-only fields work similarly to constants with
one big difference: Constants are evaluated at compile time whereas read-only fields are
evaluated at runtime.

SCOPE

Fields, as much as properties, have scope. To understand how you can limit or grant
access to fields and properties using the appropriate qualifiers, refer to the “Scope”
section in this chapter.

Avoiding Ambiguities with Local Variables

As previously mentioned, fields are at class level contrary to local variables that are at the
method/property level. There could be situations in which a local variable has the same
name of a field. For example, consider the following code in which two items are named
counter: a class level field and a local variable:

Public Class AvoidingAmbiguities

Private counter As Integer

Public Sub DoSomething()

‘a local variable

Dim counter As Integer

counter = CInt(Console.ReadLine)

End Sub

End Class

The code will be correctly compiled; basically no conflict exists between the two counter
members because the second one is enclosed within a method and has no external visibil-

From the Library of Wow! eBook

ptg

229Properties

ity. This also means that the assignment performed within the DoSomething method will
not affect the counter private field. If you instead need to assign such a field, you need to
use the Me keyword as follows:

Public Sub DoSomething()

‘a local variable

Dim counter As Integer

‘Will assign the class level field

Me.counter = CInt(Console.ReadLine)

End Sub

Properties
Properties are the public way that callers have to access data stored within fields. With
properties you decide what kind of permissions users can have to read and write the actual
information. Properties are typically used as fields but they act as methods. In Visual Basic
2010, properties have been completely revisited; in fact, until Visual Basic 2008, a typical
property was implemented as follows:

Private _firstName As String

Public Property FirstName As String

Get

Return _firstName

End Get

Set(ByVal value As String)

_firstName = value

End Set

End Property

You had a private field in which you stored an incoming value and whose value you
returned to the callers. Now in Visual Basic 2010, the same property can be defined as
follows:

Public Property FirstName As String

This feature is known as auto-implemented properties and is something that was already
available in Visual C# 3.0. Now you just need to specify the name and the type for the
property. The Visual Basic compiler handles read-and-write operations for you. The result-
ing code is much cleaner, and you can avoid the need of writing several lines of code. If
you had 10 properties, until Visual Basic 2008 you had to write 10 of the previously

7

From the Library of Wow! eBook

ptg

230 CHAPTER 7 Class Fundamentals

shown code blocks, whereas now you simply need to write 10 lines of code-defining prop-
erties. An interesting thing is that if you try to define a private field as in the old code and
then an auto-implemented property, you receive this code:

’Error: field matching implicit

‘auto-generated identifier

Private _firstName As String

Public Property FirstName As String

The Visual Basic compiler throws an exception because, behind the scenes, it creates a
private field with the same name for handling read/write operations on the property. Of
course, you can simply change the identifier if you need a private field for your purposes.

AUTO-IMPLEMENTED PROPERTIES IN THIS BOOK

Except when specifically needed, we always use auto-implemented properties when pro-
viding code examples that require properties. This is because they provide a much
cleaner way for writing code; moreover, code samples seldom need customizations of
the read/write actions.

Auto-implemented properties are straightforward if you need a default behavior for your
properties that simply store and return a value., In some situations you need to perform
manipulations over a value before you return it; you store a value provided by the user
(property Setter) and then you return the value with some edits (property Getter). In this
case you cannot use auto-implemented properties, but you can still write properties the
old-fashioned way. The following code snippet shows an example:

Public Class Woman

Private Const Prefix As String = “Mrs.”

Private _firstName As String

Public Property FirstName As String

Get

Return Prefix & Me._firstName

End Get

Set(ByVal value As String)

Me._firstName = value

End Set

End Property

End Class

In the preceding code, the value stored by the property is edited before it is returned by
simply adding a prefix. Because the default Visual Studio’s behavior is all about auto-
implemented properties, you do not gain a great advantage from IntelliSense in this

From the Library of Wow! eBook

ptg

231Properties

scenario. To write code faster, if you do not need auto-implemented properties, follow
these steps:

1. Write an auto-implemented property;

2. On the following line of code, type the End Property delimiter.

3. The Visual Basic compiler throws an error and Visual Studio suggests adding the
missing getter and setter as a solution. Click this action and you’re done.

As an alternative you can simply type Property and then hit Tab so that Visual Studio will
add a property stub using a predefined code-snippet.

There are also some situations in which you cannot use auto-implemented properties:
read-only properties and write-only properties.

Read-Only Properties

It’s not unusual to give a class the capability of exposing data but not of modifying such
data. Continuing the example of the Person class, imagine you want to expose the
FirstName and LastName properties plus a FullName property that returns the full name of
the person. This property should be marked as read-only because only the FirstName and
LastName properties should be editable, and FullName is the result of the concatenation of
these two properties. You can therefore define a read-only property as follows:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public ReadOnly Property FullName As String

Get

Return Me.FirstName & “ “ & Me.LastName

End Get

End Property

End Class

The ReadOnly keyword marks properties as read-only. As you can easily understand, auto-
implemented properties cannot work here because you need a space to write code for
returning a value.

Write-Only Properties

Opposite to read-only properties, you can also implement write-only properties. In real-life
applications, write-only properties are uncommon, so you will probably never implement
such members. It makes much more sense providing read-only members than members
that you can only write to but not read from. Anyway, you can implement write-only

7

From the Library of Wow! eBook

ptg

232 CHAPTER 7 Class Fundamentals

properties marking your properties with the WriteOnly keyword as demonstrated in the
following code snippet:

Private _fictitiousCounter As Integer

Public WriteOnly Property FictitiousCounter As Integer

Set(ByVal value As Integer)

_fictitiousCounter = value

End Set

End Property

You have different options here; one is storing the value received by the setter within a
field that you can then eventually reutilize. Otherwise, you can perform some tasks
directly within the setter.

Exposing Custom Types

Properties can expose both reference and value types, and they are not limited to built-in
.NET types, meaning that you can expose your custom classes and structures through prop-
erties. The following code shows an Order class that exposes a property of type Customer;
such type is another custom class representing a fictitious customer of your company:

Public Class Customer

Public Property CompanyName As String

Public Property ContactName As String

End Class

Public Class Order

Public Property CustomerInstance As Customer

Public Property OrderID As Integer

End Class

You can use the same technique for exposing custom structures. After all, you do nothing
different than when you expose strings and integers. Remember that if you do not initial-
ize properties with values, value types returned by properties will have a default value
while reference types could result in null references causing runtime errors.

Accessing Properties

Accessing properties is a simple task. You access properties for both reading and writing
information that a type needs. The following code demonstrates this:

Dim p As New Person

‘Properties assignment (write)

p.FirstName = “Alessandro”

p.LastName = “Del Sole”

From the Library of Wow! eBook

ptg

233Properties

‘Properties reading

If p.LastName.ToLower = “del sole” Then

Console.WriteLine(p.LastName)

End If

Default Properties

Visual Basic language enables defining default properties. A default property is a property
marked with the Default keyword that enables assignments to the objects defining the
property without the need of invoking the property itself. Default properties are strictly
related to data arrays and collections of objects, because they provide the ability of
managing an index. For example, imagine you have an array of strings defined within a
class as follows:

Private listOfNames() As String = _

{“Alessandro”, “Del Sole”, “VB 2010 Unleashed”}

A default property enables easy access to such an array, both for reading and writing. The
following code demonstrates how you can implement a default property:

Default Public Property GetName(ByVal index As Integer) As String

Get

Return listOfNames(index)

End Get

Set(ByVal value As String)

listOfNames(index) = value

End Set

End Property

PARAMETERS TYPES

The preceding example shows the most common use of default properties, where they
accept a numeric index. By the way, default properties can accept any data type as the
parameter, not only numeric types. The only rule is actually that the default property
must have a parameter

Notice the Default keyword and how the property accesses the array taking advantage of
the index argument to return the desired item in the array. Supposing the preceding defin-
ition was contained within a class named TestDataAccess, the following code demon-
strates how you can access the default property:

Dim t As New TestDataAccess

t(2) = “Visual Basic 2010 Unleashed”

Console.WriteLine(t(1))

7

From the Library of Wow! eBook

ptg

234 CHAPTER 7 Class Fundamentals

Console.WriteLine(t(2))

As you can see, you do not need to specify the property name when performing assign-
ments or invocations. The preceding code would produce the following result:

Del Sole

Visual Basic 2010 Unleashed

INDEXERS

Visual Basic default properties can be compared to Visual C# indexers. It’s important
to know this terminology because you will often hear about indexers.

Scope
All .NET types and their members have scope, which represents the level of visibility and
accessibility that a type or its members can have. For example, the public scope enables
members of classes or structure within a class library to be reachable by other classes or
assemblies. On the other hand, the private scope can prevent members of classes or struc-
tures to be reached from outside the class or structure in which they are defined. You
assign scope to your objects or members via qualifiers, which are special keywords or
combination of keywords that establish how an object or its members can be reached
from outside the object. Table 7.1 summarizes scope levels in Visual Basic 2010.

The following code snippet gives you an alternative view of scope:

’The class is visible to other

‘external assemblies.

Public Class ScopeDemo

TABLE 7.1 Scope Levels in Visual Basic 2010

Qualifier Description

Public Allow types and members to be accessed from anywhere, also from external
assemblies. It assigns no access restrictions.

Private Types and members are visible only within the object in which they are defined.

Friend Types and members are visible within the assembly that contains declarations.

Protected Types and members are visible within the objects they are defined in and from
derived classes.

Protected
Friend

Types and members are visible within the assembly, the objects they are
defined in, and from derived classes.

From the Library of Wow! eBook

ptg

235Scope
7

‘This field is visible only

‘within the class

Private counter As Integer

‘Visible within this assembly, this class,

‘derived classes, other assemblies: no restrictions

Public Property FirstName As String

Public Property LastName As String

‘Only within this class and derived classes

Protected Property Age As Integer

‘Within this assembly

Friend Property ReservedInformation As String

‘Within this assembly, this class and derived classes

Protected Friend Function ReturnSomeInformation()

Return FirstName & “ “ & LastName

End Function

End Class

Public and Private qualifiers are self-explanatory, so you probably need some more infor-
mation about the other ones. To make things easier, let’s create a new class that derives
from the preceding ScopeDemo, as in the following code snippet:

Public Class InheritedScopeDemo

Inherits ScopeDemo

End Class

If you try to reach the base class’ members, you notice that only the ones marked with
Friend, Protected Friend, and Protected are visible to the new class (other than Public,
of course). But this happens until you are working with one assembly, more precisely with
the assembly that defines all the preceding members. What about another assembly refer-
encing the first one? If you have created a Visual Basic solution for testing the preceding
code, add a new Visual Basic project to the solution, and to the new project add a refer-
ence to the previous one. In the new project, write the following code:

Dim testScope As New Scope.InheritedScopeDemo

If you try to invoke members of the testScope object, you can see only the FirstName and
LastName properties because they were marked as Public. This qualifier is the only one
allowing members to be reached from external assemblies. As you may imagine, establish-
ing the appropriate scope is fundamental. For example, you might need a field for storing
some data that you do not want to share with the external world; marking a field as

From the Library of Wow! eBook

ptg

236

Private prevents derived classes from reaching the field. So you should instead mark it as
Protected or Protected Friend according to the access level you want to grant.
Particularly when working with inheritance, scope is important.

Methods
In the .NET terminology, method is the word that represents procedures in other program-
ming languages; basically a method is a member that performs an operation. Methods are
of two kinds: Sub (which does not return values) and Function (which instead returns a
value). The following are minimal examples of methods:

Sub DoSomething()

If IO.File.Exists(“C:\SomeFile.txt”) = False Then

Throw New IO.FileNotFoundException

Else

Console.WriteLine(“The file exists”)

End If

End Sub

Function DoSomethingElse() As Boolean

Dim result As Boolean = IO.File.Exists(“C:\SomeFile.txt”)

Return result

End Function

This book makes intensive use of methods, so detailed descriptions on implementations
are provided across chapters.

SCOPE

Methods’ visibility within types can be assigned using one of the qualifiers listed in
Table 7.1. If no qualifier is specified, Public is assigned by default.

Invoking Methods

To invoke a method you simply call its name. Continuing with the preceding example,
you can invoke the DoSomething method by simply typing the following line:

DoSomething()

If the method is a Function, you should assign the invocation to a variable as follows:

Dim targetOfInvocation As Boolean = DoSomethingElse()

CHAPTER 7 Class Fundamentals

From the Library of Wow! eBook

ptg

237Methods
7

This is important if you need to evaluate the value returned by the method. If you do not
need to evaluate the result, you can simply invoke Function as if it were Sub:

’Allowed

DoSomethingElse()

You can basically invoke functions anywhere you need a value. Continuing with the
preceding example, the following code is acceptable:

Console.WriteLine(DoSomethingElse())

In the preceding examples, we act as if the method were defined within a module. If the
method is exposed by a class, you need to add a dot symbol after the class name and then
type the name of the method as follows:

Public Class Person

Public Sub DoSomething()

End Sub

End Class

...

Dim p As New Person

p.DoSomething()

The Visual Basic grammar also provides the Call keyword that enables invoking methods,
but it’s obsolete and deprecated. You can use it as follows:

Call DoSomething()

Methods Arguments: ByVal and ByRef

Methods can receive parameters and can then work with data provided by parameters. In
the .NET terminology, parameters are also known as arguments. We mainly use the word
arguments because it’s the one that you typically find within the documentation and about
topics related to.NET development. The following code shows a simple sample of a
method definition receiving an argument and subsequent invocation of that method
passing an argument:

Public Sub PrintString(ByVal stringToPrint As String)

Console.WriteLine(stringToPrint)

End Sub

Sub RunTest()

From the Library of Wow! eBook

ptg

238

PrintString(“Visual Basic 2010 Unleashed”)

End Sub

Arguments can be passed by value and by reference. You pass arguments by value adding
the ByVal keyword, whereas you pass them by reference specifying the ByRef keyword. If
you do not specify either keyword, the Visual Basic code editor automatically adds a ByVal
keyword and passes arguments by value as a default. There are differences between passing
arguments by value and by reference; before providing code examples for a better under-
standing, these differences are all related to the variables you pass as arguments and can
be summarized as follows:

. If you pass by value a value type, the compiler creates a copy of the original value so
changes made to the argument are not reflected to the original data. If you pass a
value type by reference, changes made to the argument are reflected to the original
data, because in this case the argument is the memory address of the data;

. If you pass by reference a reference type, changes made to the argument are reflected
to the original data because you are working on the reference pointer. If you pass a
reference type by value, changes will not be reflected to the original data because the
compiler creates a copy of the reference.

Listing 7.1 shows how value types can be passed by value and by reference.

LISTING 7.1 Passing Arguments by Value

Module ByValByRefDemo

Dim testInt As Integer = 10

‘Creates a copy of the original value(testInt)

‘and does not change it. Returns 10

Sub ByValTest(ByVal anInt As Integer)

anInt = 20

Console.WriteLine(testInt)

End Sub

‘Gets the reference of the original value (testInt)

‘and changes it. Returns 20

Sub ByRefTest(ByRef anInt As Integer)

anInt = 20

Console.WriteLine(testInt)

End Sub

Sub Main()

ByValTest(testInt)

ByRefTest(testInt)

Console.ReadLine()

CHAPTER 7 Class Fundamentals

From the Library of Wow! eBook

ptg

239Methods
7

End Sub

End Module

Both the ByValTest and ByRefTest methods receive an argument of type Integer. Such an
argument is the testInt variable. In the ByValTest method, the argument is passed by
value, so the compiler creates a copy of the original data and changes made to the argu-
ment variable are not reflected to the original one, in fact the code returns 10, which is
the original value for the testInt variable. In the ByRefTest method, the argument is
passed by reference. This means that the compiler gets the memory address of the original
value and changes made to the argument variable are also reflected to the original data, in
fact this code returns 20 which is the new value for the testInt variable. Now consider
the following code that provides a similar demonstration for passing reference type both
by value and by reference:

Dim testString As String = “Visual Basic 2010”

Sub ByValStringTest(ByVal aString As String)

aString = “Visual Basic 2010 Unleashed”

Console.WriteLine(testString)

End Sub

Sub ByRefStringTest(ByRef aString As String)

aString = “Visual Basic 2010 Unleashed”

Console.WriteLine(testString)

End Sub

Invoking the ByValStringTest method, passing the testString variable as an argument
will not change the original value for the reasons previously explained. Invoking the
ByRefStringTest method, still passing the testString variable as an argument, will also
change the original value of the testString variable that becomes now Visual Basic
2010 Unleashed.

PASSING ARRAYS

When passing arrays as arguments, keep in mind that changes on the arguments’ vari-
ables will be reflected to the original data if you pass the array by value or by refer-
ence. This is because arrays are reference types.

ParamArray Arguments
Another way for supplying arguments to a method is the ParamArray keyword. As its
name implies, the keyword enables specifying an array of a given type to be accepted by
the method. Each item in the array is then treated as a single argument. The following
example shows how to implement ParamArray arguments:

Sub ParamArrayTest(ByVal ParamArray names() As String)

‘Each item in the array is an

From the Library of Wow! eBook

ptg

240

‘argument that you can manipulate

‘as you need

For Each name As String In names

Console.WriteLine(name)

Next

End Sub

You can then invoke the method as follows:

ParamArrayTest(“Alessandro”, “Del Sole”, “Visual Basic 2010 Unleashed”)

This method produces the following result, considering that each string is an argument:

Alessandro

Del Sole

Visual Basic 2010 Unleashed

ParamArray arguments are always passed by value, and because they are real arrays, they
are reference types, so in reality arrays are passed by reference (and changes to the array
values will persist). For example, you can first declare an array and then pass it to the
method invocation:

Dim args() As String = {“Alessandro”, “Del Sole”,

“Visual Basic 2010 Unleashed”}

ParamArrayTest(args)

Because of being arrays, you can perform any other operations that these objects
support. Basically you can pass to methods an array as an argument or an arbitrary
number of single arguments that behind the scenes are turned into an array. Finally,
remember that you cannot pass an array with empty fields. For example, the following
code will not be compiled:

ParamArrayTest(“Alessandro”, , “Visual Basic 2010 Unleashed”)

The Visual Basic background compiler shows an error message saying Omitted Argument
Cannot Match ParamArray Argument.

Optional Arguments
Methods can receive optional arguments. This means that methods modify their behavior
according to the number of arguments they received. Optional arguments are defined
with the Optional keyword. The following code snippet shows how you can define
optional arguments:

’Returns the full name of a person

Function FullName(ByVal FirstName As String,

Optional ByVal LastName As String = ““,

Optional ByVal Title As String = ““) As String

CHAPTER 7 Class Fundamentals

From the Library of Wow! eBook

ptg

241Methods
7

‘Assumes that the optional Title parameter

‘was not passed by comparing the default value

If Title = ““ Then Title = “Mr. “

Dim result As New System.Text.StringBuilder

result.Append(Title)

result.Append(LastName)

result.Append(FirstName)

Return result.ToString

End Function

The purpose of the preceding FullName method is simple (and simplified). It should return
the full name of a person, but the LastName and Title arguments are optional, meaning
that the caller must provide at least the FirstName. Optional arguments must be assigned
with a default value; in the preceding code, the default value is an empty string.

DEFAULT VALUES

Default values for optional arguments must be constant expressions. This is the rea-
son why I did not assign a String.Empty object but assigned a = “” value. The compil-
er provides the appropriate warnings if the default value is not good.

Default values are important for at least one reason: there are no other ways for under-
standing if an optional argument were passed, so a default value is needed for comparison.
Moreover, there could be situations in which a default value would be necessary, for
example for objects initializations. In the preceding code, to check if the optional Title
parameter were passed, a comparison is performed against the Title’s value. If its value
equals the default value, we can assume that the argument was not supplied. This example
provides a custom value in case the argument was not passed. For example, if we write the
following invocation

Console.WriteLine(FullName(“Alessandro”))

we would get the following result: Mr. Alessandro. Behind the scenes, the Visual Basic
compiler generates a new invocation that includes all optional parameters with a default
value, as follows: FullName(“Alessandro”,””,””). Although useful, optional arguments
are not always the best choice, and we do not recommend their usage. This is because
they are strictly related to the Visual Basic language and are not compliant with other
.NET languages, so if you produce class libraries, you should be aware of this. Instead, the
.NET Framework provides a cleaner way for handling methods with different arguments
and signatures that is powerful, known as overloading, which is discussed next.

Optional Nullable Arguments Visual Basic 2010, like F# and C# 4.0 as well, also intro-
duces a new important feature related to optional arguments that has the capability to

From the Library of Wow! eBook

ptg

242

pass nullable types as optional arguments. For example, the following code is now
allowed in VB 2010:

Sub NullableDemo(ByVal firstArgument As String,

Optional ByVal secondArgument As _

Nullable(Of Integer) = Nothing)

If secondArgument Is Nothing Then

‘We can assume that the

‘optional argument was not supplied

End If

End Sub

As you can see, nullable arguments are now supported, but you are still required to
provide a default value, which can also be null. Remember that optional nullable argu-
ments can only go after non optional ones in the argument list. They are particularly
useful when dealing with scenarios like Microsoft Office automation, where optional argu-
ments are common.

Overloading Methods

One of the most powerful features in the object-oriented development with the .NET
Framework is the capability of overloading methods. Overloading means providing multi-
ple signatures of the same method, in which signature is the number and types of argu-
ments a method can receive. The following code snippet shows an example of
overloading:

Private Function ReturnFullName(ByVal firstName As String,

ByVal lastName As String)

Return firstName & “ “ & lastName

End Function

Private Function ReturnFullName(ByVal firstName As String,

ByVal lastName As String,

ByVal Age As Integer)

Return firstName & “ “ & lastName & “ of age “ & Age.ToString

End Function

Private Function ReturnFullName(ByVal title As String,

ByVal firstName As String,

ByVal lastName As String)

Return title & “ “ & firstName & “ “ & lastName

End Function

Private Function ReturnFullName(ByVal title As String,

ByVal firstName As String,

ByVal lastName As String,

CHAPTER 7 Class Fundamentals

From the Library of Wow! eBook

ptg

243Methods
7

ByVal Age As Integer)

Return title & “ “ & firstName & “ “ & lastName & _

“ of age “ & Age.ToString

End Function

As you can see, there are four different implementations of one method named
ReturnFullName. Each implementation differs from the others in that it receives a different
number of arguments. The preceding example is simple, and the arguments are self-
explanatory; each implementation returns the concatenation of the supplied arguments.
Probably you wonder why you need overloading and providing four different implemen-
tations of a single method when you would obtain the same result with optional argu-
ments. The answer is that this approach is the only accepted method by the Microsoft
Common Language Specification and ensures that every .NET language can use the differ-
ent implementations, whereas optional arguments are not supported from other .NET
languages. Another good reason for using overloads is that you can return strongly typed
results from methods. If you need to work with specific data types, you can use over-
loaded signatures instead of providing one signature that returns Object. The Visual Basic
grammar defines an Overloads keyword as one that can be used to define overloaded
signatures; the following example is an excerpt of the previous one, now using Overloads:

Private Overloads Function ReturnFullName(ByVal firstName As String,

ByVal lastName As String)

Return firstName & “ “ & lastName

End Function

Private Overloads Function ReturnFullName(ByVal firstName As String,

ByVal lastName As String,

ByVal Age As Integer)

Return firstName & “ “ & lastName & “ of age “ & Age.ToString

End Function

Basically there’s no difference in using the Overloads keywords. If you decide to use it,
you must decorate it with all other definitions. To support overloading, signatures must
differ from each other in some points:

. Signatures cannot differ only in ByVal or ByRef arguments. If two signatures have
two arguments of the same type, the arguments cannot differ only in ByVal/ByRef
but they consist of different types.

. In the case of Function, overloaded implementations can return the same type or
different types. If they return different types but have exactly the same arguments,
the code cannot be compiled. This means that different implementations must have
different arguments.

. If you decide to provide optional arguments, signatures cannot differ only on
optional arguments. This is because there can be no ambiguity, in that the compiler
has to know exactly what overloaded method it needs to invoke, based on the para-
meters you provide.

From the Library of Wow! eBook

ptg

244

You invoke methods defined in this way as you would normally with other methods.
Moreover, IntelliSense provides a great help on finding the most appropriate overload for
your needs, as shown in Figure 7.1.

CHAPTER 7 Class Fundamentals

Coercion
It can happen that an invocation to an overloaded method supplies a compliant type but
not the same type established in the signature. For example, consider the following over-
loaded method:

Private Sub CoercionDemo(ByVal anArgument As Double)

Debug.WriteLine(“Floating point”)

End Sub

Private Sub CoercionDemo(ByVal anArgument As Integer)

Debug.WriteLine(“Integer”)

End Sub

The Visual Basic compiler can decide what signature is the most appropriate according to
the argument passed. This is particularly important when working with numeric types.
Moreover, the compiler can also handle coercion, meaning that it can perform conversion
when there’s no loss of precision. Consider the following code:

Dim testValue As Byte = 123

CoercionDemo(testValue)

The CoercionDemo overloads do not support Byte, only Double and Integer. Because Byte
is basically an integer type, the Visual Basic compiler converts the object into an Integer
type because this expansion conversion will always be successful. The compiler can also
decide what is the best overload fitting the scenario.

Overloading Properties
Now that you know what overloading is, you need to know that the technique is not
limited to methods but can also be applied to properties. The following code snippet
shows an example:

Property Test(ByVal age As Integer) As Integer

Get

End Get

Set(ByVal value As Integer)

FIGURE 7.1 IntelliSense helps you choose among overloads.

From the Library of Wow! eBook

ptg

245Methods
7

End Set

End Property

Property Test(ByVal name As String) As String

Get

End Get

Set(ByVal value As String)

End Set

End Property

Because of their different implementations, in this scenario you cannot use auto-imple-
mented properties, mainly because overloads cannot differ only because of their return
type. To provide overloaded properties, you need to remember the same limitations listed
for methods.

Exit from Methods

Methods execution typically completes when the End Sub or End Function statements are
encountered. You often need to break methods execution before the execution completes.
In the case of Sub methods, you can accomplish this using the Exit Sub statement. The
following example checks the value of an integer and immediately breaks if the value is
greater than 10. If not, it loops until the value is 10 and then breaks:

Sub TestingValues(ByVal anInteger As Integer)

If anInteger > 10 Then

Exit Sub

ElseIf anInteger < 10 Then

Do Until anInteger = 10

anInteger += 1

Loop

Exit Sub

End If

End Sub

You can also use the Return keyword without a value instead of Exit Sub. For Function
methods, things are a little different because they return a value. When the method
execution completes regularly, you return a value via the Return keyword. Until now you
found several examples of methods returning values.

AVOID VISUAL BASIC 6 STYLE

If you migrate from Visual Basic 6, you probably return values from functions assigning
the result to the name of the function itself. In .NET development this is depreciated,
although it will be compiled. The Return keyword is optimized for returning values and
all .NET languages have a specific keyword, so you should always prefer this approach.

From the Library of Wow! eBook

ptg

246 CHAPTER 7 Class Fundamentals

When you instead need to break the method execution, you can use the Exit Function
statement, as shown in the following code snippet:

Function TestingValue(ByVal anInteger As Integer) As Boolean

Dim result As Boolean

If anInteger < 10 Then

Do Until anInteger = 10

anInteger += 1

Loop

result = True

‘Returns False

ElseIf anInteger = 10 Then

Exit Function

Else

result = False

End If

Return result

End Function

Keep in mind that Function methods always have to return something. Because of this,
Exit Function returns the default value of the return data type. In the preceding example,
the method returns Boolean, so Exit Function returns False. If the method returned
Integer or another numeric type, Exit Function would return zero. If the method
returned a reference type, Exit Function would return Nothing. Another best practice in
returning value is to assign the result of the evaluation to a variable (result in the preced-
ing example) and then provide a single invocation to the Return instruction because this
can optimize the compilation process, other than making coding easier.

Partial Classes
Starting from Visual Basic 2005, you can split the definition of a class across multiple parts
using the partial classes feature. You do not actually create different classes; you simply
create one class implemented within multiple parts, typically across multiple files. This
feature was first introduced for separating Visual Studio’s auto-generated code from devel-
oper’s code but it is useful in different scenarios. To see a practical implementation of
partial classes, simply create a new Windows Forms project. Then click the Show All Files
button in Solution Explorer, expand the Form1.vb item, and double-click the
Form1.designer.vb file. Inside this file you can find the definition of the Form1 class, as
shown in Listing 7.2.

LISTING 7.2 Visual Studio Auto-Generated Partial Class

Partial Class Form1

From the Library of Wow! eBook

ptg

247Partial Classes
7

Inherits System.Windows.Forms.Form

‘Form overrides dispose to clean up the component list.

<System.Diagnostics.DebuggerNonUserCode()> _

Protected Overrides Sub Dispose(ByVal disposing As Boolean)

Try

If disposing AndAlso components IsNot Nothing Then

components.Dispose()

End If

Finally

MyBase.Dispose(disposing)

End Try

End Sub

‘Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

‘NOTE: The following procedure is required by the Windows Form Designer

‘It can be modified using the Windows Form Designer.

‘Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

components = New System.ComponentModel.Container()

Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

Me.Text = “Form1”

End Sub

End Class

As you can see, the class definition includes the Partial keyword. This indicates to the
compiler that elsewhere in the project another piece of the class is defined within a differ-
ent code file. In this case, the other piece is the Form1.vb file whose code is simple when
you create a new project:

Public Class Form1

End Class

Both files implement one class. By the way, this approach makes your code much cleaner.
In this example, partial classes help developers to concentrate on their own code ensuring
that auto-generated code will not be confusing. The Visual Studio IDE makes a huge usage
of partial classes; LINQ to SQL and ADO.NET Entity Framework are just a couple of exam-
ples. Following is a custom example of partial classes. Imagine you have this implementa-
tion of the Person class within a code file named Person.vb:

Public Class Person

From the Library of Wow! eBook

ptg

248 CHAPTER 7 Class Fundamentals

Public Property FirstName As String

Public Property LastName As String

Public Property Age As Integer

Public Overrides Function ToString() As String

Return String.Concat(FirstName, “ “, LastName)

End Function

Public Sub New(ByVal Name As String, ByVal SurName As String,

ByVal Age As Integer)

Me.FirstName = Name

Me.LastName = SurName

Me.Age = Age

End Sub

End Class

Then you decide to implement the ICloneable interface to provide a custom implementa-
tion of the Clone method, but you want to separate the implementation from the rest of the
class code. At this point you can add a new code file to the project and write the following:

Partial Public Class Person

Implements ICloneable

Public Function Clone() As Object Implements System.ICloneable.Clone

Return Me.MemberwiseClone

End Function

End Class

This last code will be still part of the Person class; simply it has been defined in another
place.

PARTIAL CLASSES TIPS

You can split your classes within multiple files. Generally you create partial classes
within just two files, but you have to know that you are allowed to create them within
two or more files. Partial classes also take whatever scope you define in one of the
partial class definitions.

Also notice how IntelliSense can improve your coding experience by showing a list of the
partial classes that you can complete (see Figure 7.2).

FIGURE 7.2 IntelliSense helps choose the available partial classes.

From the Library of Wow! eBook

ptg

249Partial Methods
7

A partial approach can also be applied to Structures as follows:

Partial Structure Test

End Structure

PARTIAL CLASSES HOW-TO

Partial classes can be split across multiple parts—parts, not files. This is because one
Visual Basic code file can contain the implementation of theoretically infinite types, so
you can split a class definition within the same code file using partial classes. You
can, but you probably will not. Partial classes are particularly useful for splitting defini-
tions across multiple files, which is covered when discussing LINQ to SQL and the
ADO.NET Entity Framework.

Partial classes indeed have a limitation: You cannot define them within other classes. For
example, the following code will correctly be compiled, but it does not implement partial
classes, while it creates two different classes:

Class TestPartial

‘Compiles, but creates a new partial class

‘instead of extending the previous Person

Partial Class Person

End Class

End Class

Another interesting feature first introduced by .NET Framework 3.5 is partial methods.

Partial Methods
Since Visual Basic 2008 and the .NET Framework 3.5, you can take advantage of another
interesting feature that has been included in Visual Basic 2010: partial methods. Basically
this feature has been mainly introduced in LINQ to ADO.NET, but it can be used in differ-
ent scenarios for other language features. The concept behind partial methods is the same
as partial classes: Methods implementations can be split across multiple parts. Partial
methods have three particular characteristics: They must be Private methods, they
cannot return values (that is, only Sub methods are allowed), and their bodies must be
empty in the class in which methods are defined. Consider the following code, in which a
class named Contact is split across partial classes and a partial method is defined:

Public Class Contact

From the Library of Wow! eBook

ptg

250 CHAPTER 7 Class Fundamentals

Public Property FirstName As String

Public Property LastName As String

Public Property EmailAddress As String

Public Sub New(ByVal Name As String,

ByVal LastName As String, ByVal Email As String)

Me.FirstName = Name

Me.LastName = LastName

Me.EmailAddress = Email

End Sub

Partial Private Sub Validate(ByVal Email As String)

End Sub

End Class

A partial method is marked with the Partial keyword. It has a Private scope, returns no
value, and its definition’s body is empty. Suppose you want to implement the actual code
for your method. For example, we could verify if the Email address provided by the user is
a valid address; to accomplish this, we can use regular expressions.

ABOUT REGULAR EXPRESSIONS

Regular expressions are an advanced way to work with text. The .NET Framework pro-
vides the System.Text.RegularExpression namespace that exposes classes for
managing regular expressions with .NET languages.

The following code shows how you can implement a partial class in which the actual code
for a partial method is provided:

Partial Public Class Contact

Private Sub Validate(ByVal Email As String)

Dim validateMail As String = _

“^([\w-\.]+)@((\[[0-9]{1,3}\.” &

“[0-9]{1,3}\.)|(([\w-]+\.)+))” &

“([a-zA-z]{2,4}|[0-9]{1,3})(\]?)$”

If Text.RegularExpressions.

Regex.IsMatch(Email, validateMail) _

= False Then

Throw New _

InvalidOperationException _

From the Library of Wow! eBook

ptg

251Constructors
7

(“The specified mail address is not valid”)

End If

End Sub

End Class

When you effectively implement the partial method, you do not need to mark it again as
Partial. This qualifier must be added only in the empty method definition. The preced-
ing code checks if the specified email address is valid; if it is not, it throws an
InvalidOperationException.

PRACTICAL IMPLEMENTATIONS

Partial methods are mentioned when discussing LINQ to SQL so that you can get an
overview of practical implementations of partial methods, which are particularly useful
when you need to provide custom validation techniques.

To describe partial methods in another way, the concept is “to accomplish this particular
task, you do need this particular method. But the implementation of the method is left to
your choice.”

Constructors
A constructor is a method you invoke to create a new instance of a class that is represented
by the New keyword in Visual Basic. For example, if you have the following Contact class

Public Class Contact

Public Property FirstName As String

Public Property LastName As String

Public Property Email As String

Public Property Address As String

Public Sub New()

End Sub

End Class

you can then create a new instance of the Contact class as follows:

’First syntax

Dim aContact As Contact

aContact = New Contact

‘Second syntax

Dim aContact As New Contact

From the Library of Wow! eBook

ptg

252 CHAPTER 7 Class Fundamentals

‘Third syntax

Dim aContact As Contact = New Contact

All the three preceding syntaxes are enabled, so you can use the one you prefer. (I use the
second one for better readability.) In other words, creating an instance means giving life to
a new copy of the object so that you can use it for your purposes, such as storing data or
performing tasks. All classes must have a constructor. If you do not provide a constructor,
Visual Basic provides one for you. The default constructor is hidden in the code editor, but
it has public visibility and contains no code; it serves just for instantiating the object. If
you want to make it visible, click the Declaration combo box in the code editor and
select the New method, as shown in Figure 7.3.

Constructors are useful for initializing objects’ members. Because of this, and because
constructors are basically methods, they can receive arguments. For example, you could
implement the constructor in a way that receives appropriate arguments for initializing
the Contact class’ properties:

Public Sub New(ByVal name As String,

ByVal surName As String,

ByVal emailAddress As String,

ByVal homeAddress As String)

Me.FirstName = name

Me.LastName = surName

Me.Email = emailAddress

FIGURE 7.3 Making the default constructor visible.

From the Library of Wow! eBook

ptg

253Constructors
7

Me.Address = homeAddress

End Sub

In this way you can easily assign members of the class. You invoke the parameterized
constructor as follows:

Dim aContact As New Contact(“Alessandro”,

“Del Sole”,

“alessandro.delsole@visual-basic.it”,

“5Th street”)

At this point your object is ready to be used and is populated with data. You might also
want to add simple validations for arguments received by the constructor. This is impor-
tant because if you need data initialization, you also need valid data. For example you can
throw an ArgumentException if arguments are invalid:

Public Sub New(ByVal name As String,

ByVal surName As String,

ByVal emailAddress As String,

ByVal homeAddress As String)

If surName = ““ Then _

Throw New ArgumentException(“surName”)

Me.FirstName = name

Me.LastName = surName

Me.Email = emailAddress

Me.Address = homeAddress

End Sub

Continuing the discussion about members’ initialization, you might have members (typi-
cally fields) with inline initialization. In this scenario, when you invoke the constructor,
members’ initialization is also performed even if the constructor contains no code about
initialization. This is demonstrated by the following code snippet:

Public Class Contact

Private ReadOnly InitializationDemo As Integer = 100

‘Just for demo purposes!

Public Sub New()

Console.WriteLine(InitializationDemo.ToString)

Console.ReadLine()

End Sub

End Class

The constructor does not perform any initialization, but when the class gets instantiated,
the value is assigned. The preceding code produces 100 as the output. Another interesting

From the Library of Wow! eBook

ptg

254 CHAPTER 7 Class Fundamentals

thing is that constructors are the only place in which you can initialize read-only fields.
We can rewrite the preceding code as follows:

Public Class Contact

Private ReadOnly InitializationDemo As Integer

‘Just for demo purposes!

Public Sub New()

InitializationDemo = 100

Console.WriteLine(InitializationDemo.ToString)

Console.ReadLine()

End Sub

Notice that the code is correctly compiled and the produced output is 100. This technique
is important if you plan to expose read-only members in your classes.

Overloading Constructors

Because constructors are effectively methods, they support the overloading feature. You
can therefore provide multiple implementations of the New method, taking care of the
limitations described for methods. You cannot use the Overloads keyword; the compiler
does not need it. For example, continuing the example of the Contact class, we can
provide different implementations of the constructor as follows:

Public Sub New()

Me.FirstName = “Assigned later”

Me.LastName = “Assigned later”

Me.Email = “Assigned later”

Me.Address = “Assigned later”

End Sub

Public Sub New(ByVal surName As String)

If String.IsNullOrEmpty(surName) Then _

Throw New ArgumentException(“surName”)

Me.LastName = surName

‘Will be assigned later

Me.FirstName = ““

Me.Email = ““

Me.Address = ““

End Sub

Public Sub New(ByVal name As String,

ByVal surName As String,

From the Library of Wow! eBook

ptg

255Constructors
7

ByVal emailAddress As String,

ByVal homeAddress As String)

If surName = ““ Then _

Throw New ArgumentException(“surName”)

Me.FirstName = name

Me.LastName = surName

Me.Email = emailAddress

Me.Address = homeAddress

End Sub

The first overload receives no arguments and provides a default members’ initialization.
The second overload receives just an argument, initializing other members with empty
strings. The last overload is the most complete and provides initialization features for all
the properties exposed by the class.

Nested Invocations
Overloads are useful, but when working with constructors, you might want to consider a
common place for initializing members. To accomplish this you can invoke constructors’
overloads from another overload. For example, consider the following code snippet:

Public Sub New(ByVal LastName As String)

Me.New(LastName, ““)

End Sub

Public Sub New(ByVal LastName As String, ByVal Email As String)

Me.LastName = LastName

Me.Email = Email

End Sub

The first overload can invoke the second overload, passing required arguments. In the
preceding example only an empty string is passed, but according to your scenario you
could make a different elaboration before passing the argument. The good news in this
technique is that you need to provide initialization code only once (in this case, in the
second overload). By the way, take care about the hierarchical calls; the first overload can
invoke the second one because this receives more arguments but not vice versa. This kind
of approach can be used also because both overloads have an argument in common; for
example, if you instead also had a ContactID property of type Integer that you wanted to
initialize via the constructor and you had the following overloads:

Public Sub New(ByVal LastName As String)

End Sub

Public Sub New(ByVal ContactID As Integer)

From the Library of Wow! eBook

ptg

256 CHAPTER 7 Class Fundamentals

End Sub

In this case the two overloads have no arguments in common; because of this, if you want
to provide a common place for initializations, you need to implement a private construc-
tor as follows:

Private Sub New()

‘Replace with your

‘initialization code

Me.ContactID = 0

Me.LastName = “Del Sole”

End Sub

Then you can redirect both preceding overloads to invoke a private constructor:

Public Sub New(ByVal LastName As String)

Me.New()

Me.LastName = LastName

End Sub

Public Sub New(ByVal ContactID As Integer)

Me.New()

Me.ContactID = ContactID

End Sub

PRIVATE CONSTRUCTORS

There is a little bit more to say about private constructors that is discussed later in this
chapter about shared members. At the moment you need to remember that if you place
a private constructor, you must remove the public one with the same signature. For exam-
ple, if you have a Private Sub New(), you cannot also have a Public Sub New().

Object Initializers

Since Visual Basic 2008 and .NET 3.5, the Visual Basic grammar offers another feature,
named object initializers, that enables inline initialization of objects’ members when creat-
ing an instance, without the need of providing specific constructors’ overloads. For a
better understanding, let’s provide a practical example. We can implement the Contact
class without implementing a constructor overloads that receives any arguments for
initialization:

Public Class Contact

Public Property FirstName As String

Public Property LastName As String

Public Property Email As String

From the Library of Wow! eBook

ptg

257Shared Members
7

Public Property Address As String

End Class

To instantiate the class and initialize its members, according to the classical, old-fashioned
syntax, we should write the following code:

Dim aContact As New Contact

With aContact

.FirstName = “Alessandro”

.LastName = “Del Sole”

.Email = “alessandro.delsole@visual-basic.it”

.Address = “5Th street”

End With

The Visual Basic 2008 and 2010 syntax enables instead the object initializers way, which
works as in the following snippet:

Dim aContact As New Contact With {.LastName = “Del Sole”,

.FirstName = “Alessandro”,

.Email = “alessandro.delsole@visual-basic.it”,

.Address = “5Th street”}

You simply add the With keyword after the instance declaration. The keyword is followed
by a couple of brackets. Within the brackets, you can easily assign members by writing
members’ names preceded by a dot symbol; members are separated by commas. This code
demonstrates how you can provide inline initialization of members even if no construc-
tor’s overloads receive an appropriate number of arguments for the purpose of initializa-
tion. From now on I will often write code using object initializers; this feature is important
with for advanced language features that are covered in the next part of the book.

WHY OBJECT INITIALIZERS?

You may wonder why this feature has been introduced to the .NET languages, consider-
ing that there were already several ways for providing initialization. The reason is LINQ.
As you see later in the book, object initializers provide a way for initializing objects
within queries; another important feature known as anonymous types takes advantage
of object initializers. Chapter 21, “Advanced Languages Features,” discusses anony-
mous types.

Shared Members
Classes can expose instance and shared members. Until now, all discussions used instance
members for examples. It’s important to understand what the difference between instance
and shared members is, because you can successfully use both of them in your classes.
Basically, when you create a new instance of a class, you create a copy of that class with its

From the Library of Wow! eBook

ptg

258 CHAPTER 7 Class Fundamentals

own life and its own data. On the other hand, with shared member you work with only
one copy of a class and of its data. Classes can support different situations, such as all
shared members or just a few shared members. For example, if you have a class exposing
only shared members, you work with exactly one copy of the class. If you have only a few
shared members within a class, all instances of that class access only one copy of the data
marked as shared.

SHARED/STATIC

In Visual Basic we talk about shared members. This is because these members are
marked with the Shared keyword. In other programming languages such behavior is
represented by the “static” definition; shared and static mean the same thing. Typically
the static definition is better when talking about interoperability with other .NET lan-
guages; both definitions refer to the same thing and we use the shared definition for
consistency.

Generally you expose only shared members in two main circumstances: with mere
methods libraries or with classes that can exist in only one copy (known as singleton), such
as the Application class in Windows Forms applications. Now we cover how to imple-
ment shared members within classes.

Shared Classes

Visual Basic, differently from other .NET languages such as Visual C#, does not provide
the capability of creating shared classes; to accomplish this you have two alternatives:
create a class the usual way and mark all members as shared, or you can create a module.
Modules are a specific Visual Basic feature that work almost as shared classes (see Chapter
10, “Modules”).

Shared Fields

Shared fields are useful to store information that is common to all instances of a class. For
example, imagine you have a class named Document and that represents a text document.
You could implement a shared field acting as a counter of all the documents opened in
your application:

Public Class Document

Private Shared _documentCounter As Integer

Public Sub New()

_documentCounter += 1

End Sub

End Class

From the Library of Wow! eBook

ptg

259Shared Members
7

The code in the example increments the counter each time a new instance is created. The
documentCounter field is common to all instances of the Document class because it is
marked with the Shared keyword.

Shared Properties

In an object-oriented approach, fields should be wrapped by properties that gain access to
fields. This happens also with shared members. Continuing with the preceding example, a
shared property would be implemented as follows:

Private Shared _documentCounter As Integer

Public Shared ReadOnly Property DocumentCounter As Integer

Get

Return _documentCounter

End Get

End Property

In this case the property is also marked as read-only because its value is incremented only
when a new instance of the class is created, passing through the related field, but of course
shared properties support both Get and Set. Because the preceding code offers a read-only
property, you cannot take advantage of the new auto-implemented properties feature. If
you do not need a read-only property, you can declare a shared property as follows:

Public Shared Property DocumentCounter As Integer

By doing so, you can avoid the implementation of private shared fields.

Shared Methods

Shared methods can be invoked without the need of creating an instance of the class that
defines them. As in the previous members, shared methods are decorated with the Shared
keyword. A common use of shared methods is within class libraries that act as helper
repositories of functions. For example, you can have a class that provides methods for
compressing and decompressing files using the System.IO.Compression namespace. In
such scenario, you do not need to create an instance of the class; in fact, shared methods
just need to point to some files and not to instance data. The following code snippet
provides an example of shared methods:

Public Class CompressionHelper

Public Shared Sub Compress(ByVal fileName As String,

ByVal target As String)

‘Code for compressing files here

End Sub

Public Shared Sub Decompress(ByVal fileName As String,

From the Library of Wow! eBook

ptg

260 CHAPTER 7 Class Fundamentals

ByVal uncompressed As String)

‘Code for decompressing files here

End Sub

End Class

...

Sub Test()

CompressionHelper.Compress(“Sourcefile.txt”, “Compressedfile.gz”)

CompressionHelper.Decompress(“Compressedfile.gz”, “Sourcefile.txt”)

End Sub

As you can see, you invoke shared methods by writing the name of the class instead of
creating an instance and invoking methods onto the instance. This approach is useful for
organizing functions in libraries according to their purpose (established via the class
name). If you try to invoke shared methods from an instance, the Visual Basic compiler
throws a warning message advising that such invocation might be ambiguous. Of course,
you can remove such warnings by editing the Instance Variable Accesses Shared Member
option in the Compiler tab within My Project. By the way, I suggest you leave the default
setting unchanged because it can help avoiding ambiguous code.

OVERLOADING

Shared methods, as with other methods, support overloading.

When implementing shared methods, you should be aware of some considerations. First,
you cannot work with instance members from within shared methods. For example, the
following code throws a compilation error:

’Instance field

Private instanceField As Integer

‘Cannot refer to an instance member

Public Shared Function testSharedInstance() As Integer

Return instanceField

End Function

To solve this error, you should mark as Shared the member you are working with
(instanceField in the preceding example):

’Shared field

Private Shared sharedField As Integer

‘Correct

Public Shared Function testSharedInstance() As Integer

From the Library of Wow! eBook

ptg

261Shared Members
7

Return sharedField

End Function

The alternative is to change the method from shared to instance, removing the Shared
keyword from the method definition. But this is not a game. You need to evaluate how
your methods will behave and how they will use members exposed by your classes.
According to this, you can decide if methods can be shared or must be instance ones.
Another consideration is related to classes exposing only shared methods. Because in this
scenario the class does not need to be instantiated, a private empty constructor must be
supplied as follows:

Private Sub New()

‘No code

End Sub

This constructor contains no code (but it could for initialization purposes) and is just
needed to prevent instance creation.

SHARED SUB MAIN

In all code examples shown until here, you saw how console applications provide a
module containing the entry point for applications, which is the Sub Main. Because
modules are basically shared classes, you can supply a class containing shared mem-
bers also with a Shared Sub Main that works as in modules. Although modules are
suggested instead of shared classes, because they cause less confusion and are a
Visual Basic-specific feature, you need to know how to implement the Shared Sub
Main within classes, because if you ever use conversion tools from Visual C# to VB (or
if you get code examples translated into VB by Visual C# folks), you will typically find a
class named Program containing the previously mentioned shared entry point.

Shared Constructors

Classes can implement shared constructors, as shown in the following code:

’Private visibility

Shared Sub New()

‘Initialization of shared

‘members

instanceField = 10

End Sub

Shared constructors are particularly useful for initializing shared members or for loading
data that is common to all instances of a class; a shared constructor is invoked immedi-
ately before the normal constructor that creates a new instance of the class. With that said
the following code is appropriate and accepted by the compiler:

Shared Sub New()

‘Initialization of shared

From the Library of Wow! eBook

ptg

262 CHAPTER 7 Class Fundamentals

‘members

instanceField = 10

End Sub

Sub New()

End Sub

Another important thing to take care of is that shared constructors have Private visibility
and they are the only point in the class in which you can initialize a read-only field.

Common Language Specification
One of the most important features of the .NET Framework is the CLR, which offers a
common infrastructure for different .NET languages. You may also remember from
Chapter 1, “Introducing the .NET Framework 4.0,” that all .NET compilers produce
Intermediate Language (IL) code. Because of this, .NET languages can interoperate: An
assembly produced with Visual Basic can be used by an application written in Visual C#
and vice versa. But different languages have, of course, different characteristics; so if devel-
opers use specific features of a language, the risk is that another language cannot use that
produced assembly or they might encounter several errors. This can occur when compa-
nies produce reusable components, such as class libraries or user controls that should be
used from whatever .NET application written in whatever language you want without
problems. To provide a common set of rules that developers should follow to ensure inter-
operability, Microsoft wrote the Common Language Specification (or CLS) that are a set of
rules that every developer has to follow to produce reusable assemblies. This chapter
provides an overview of the CLS and gives you information about applying such rules to
the topics discussed in this chapter. Each time a new topic is covered, tips for making code
CLS-compliant is provided.

COMMON LANGUAGE SPECIFICATION WEBSITE

Microsoft offers a dedicated page to CLS on the MSDN portal that you should look at:
http://msdn.microsoft.com/en-us/library/12a7a7h3(VS.100).aspx

Where Do I Need to Apply?

CLS are important when producing reusable components, such as class libraries or user
controls. Because only public classes and public members from public classes can be used
from other applications also written in different languages, the Common Language
Specification applies only to

. Public classes

. Public members exposed by public classes, such as methods or properties, and
members that can be inherited

. Objects used by public members, such as types passed as arguments to methods

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/12a7a7h3(VS.100).aspx

ptg

263Common Language Specification
7

In all other cases, such as private members, applying CLS is ignored by the compiler.
Another situation when you do not need to apply CLS is when you do not produce reusable
components. For example, the UI side of a Windows application (Win Forms or WPF) is not
required to be CLS-compliant because external applications will not invoke the UI.

Marking Assemblies and Types as CLS-Compliant

Chapter 2, “Getting Started with the Visual Studio 2010 IDE,” and Chapter 3, “The
Anatomy of a Visual Basic Project,” offer an overview of assemblies. When you produce a
reusable component such as a class library or a user control, such as a .dll assembly, you
need to ensure that it is CLS-compliant. You can add the following attribute to the assem-
bly definition:

<Assembly: CLSCompliant(True)>

This attribute tells the compiler to check if a type used in your code is CLS-compliant. If
the compiler finds a CLS-incompliant type, it throws a warning message. Assembly
members should also be marked as CLS-compliant, if you plan that they will be. For
example, a class is defined CLS-compliant as follows:

<CLSCompliant(True)> Public Class Person

You might wonder why you should add this attribute at the class level if you specified one
at the assembly level. The reason is that you might implement CLS-incompliant classes
(therefore assigning False to the CLSCompliant attribute), and this is useful for communi-
cating both the compiler and code analysis tools that a CLS-incompliant class should not
be checked.

CODE ANALYSIS

There are different code analysis tools for checking if code is CLS-compliant. The first
one is the well-known Microsoft FxCop, which can be installed by double-clicking the
same-name shortcut in the Windows SDK subfolder of Windows’s Start Menu. The sec-
ond one is the code analysis instrumentation available in Visual Studio Team System,
which is covered in Chapter 58, “Advanced Analysis Tools.” Both tools are important for
finding errors about CLS compliance of your code.

Naming Conventions

Assigning comprehensible identifiers to types and members is, of course, a best practice in
every development environment. This becomes a rule in.NET development, especially if
you want your code to be CLS-compliant. To understand this, you need to first know that
the Common Language Specification enables only two notations, Pascal and Camel. If you
are an old Visual Basic 6 developer or a Visual C++ one, you might be familiar with the
Hungarian notation that is not supported by .NET rules. An identifier is Pascal-cased when
the first letter of each word composing the identifier is uppercase. The following identifier
is Pascal-case: FirstName. An identifier is instead defined as camel-case when the first char-
acter of the first word composing the identifier is lowercase. The following identifier is

From the Library of Wow! eBook

ptg

264 CHAPTER 7 Class Fundamentals

camel-cased: firstName. It’s important to know this difference to understand where and
when you should use one notation or the other one. You use the Pascal notation in the
following situations:

. Namespaces’ identifiers

. Identifiers of all public members within an assembly, such as classes, properties,
methods, and custom types

Instead use the camel notation in the following situations:

. Identifiers of all private members within an assembly, such as fields, methods, and
so on. This is not actually a requirement (because private members are not affected
by CLS in terms of naming conventions) but a good programming practice.

. Arguments’ names for methods, both public and private

No other naming notation is enabled in the Common Language Specification. Obviously,
if you do not plan to write CLS-compliant code, you can use any notation you like,
although, it’s preferable to use a .NET-oriented notation. Another important rule about
naming conventions is in methods’ names. You should first place the name of the verb
and then the target of the action. For example, CompressFile is correct whereas
FileCompress is not. The following code shows an example of a well-formed class:

’Public members of an assembly

‘are pascal cased

Public Class NamingConventionsDemo

‘private fields are camel-cased

Private documentCounter As Integer = 0

‘public properties are pascal-cased

Public Property FirstName As String

‘public methods are pascal-cased

‘arguments are camel-cased

Public Function CompressFile(ByVal sourceFile As String,

ByVal targetFile As String) As Boolean

End Function

‘private methods are camel-cased

‘arguments are camel-cased

Private Sub checkForFileExistance(ByVal fileName As String)

End Sub

End Class

From the Library of Wow! eBook

ptg

265Common Language Specification
7

Because of their importance, this book follows the preceding naming conventions, even
for CLS-incompliant code.

Rules About Classes

The Common Language Specification influences classes’ implementation with basically a
few rules. The most rules are related to inheritance as much as for methods. Because inher-
itance hasn’t been covered yet, (discussed in Chapter 12, “Inheritance,”), the only rule
mentioned here is that if a class exposes only shared members, it must have an empty
private constructor and must be marked as NotInheritable, as follows:

<CLSCompliant(True)> Public NotInheritable Class GzipCompress

‘Empty private constructor

Private Sub New()

End Sub

Public Shared Sub Compress(ByVal fileName As String,

ByVal target As String)

End Sub

Public Shared Sub Decompress(ByVal fileName As String,

ByVal source As String)

End Sub

End Class

The other rules about classes are described in Chapter 12.

Rules About Properties

The Common Language Specification provides a couple of rules about properties imple-
mentation:

. All properties exposed by a class must have the same access level, meaning that they
must be all instance properties or all shared properties or all virtual properties.
Virtual properties (that is, marked with the MustOverride keyword) are described in
Chapter 12.

. Get, Set, and the property itself must return and receive the same type; the type
must also be CLS-compliant. If the property returns String, both Get and Set must
handle String, too. The type must be passed by value and not by reference.

Rules About Methods

CLS influence methods both for inheritance implementations and for declarations. You
need to know that arguments with a nonfixed length must be specified only with the
ParamArray keyword.

From the Library of Wow! eBook

ptg

266 CHAPTER 7 Class Fundamentals

Rules About Arrays

For arrays, CLS rules are simple:

. Items within arrays must be CLS-compliant types.

. Arrays must have fixed length greater than zero.

. Arrays must be zero-based. (This is mostly a rule for compilers.)

Summary
In this chapter you learned several important concepts about object-oriented program-
ming with Visual Basic 2010. You saw how classes are the most important item in the
object-oriented programming; you learned how to declare classes and how to expose
members from classes, such as methods, properties, and fields. Summarizing these
features, you may remember how fields are the real state of objects and how properties are
a way for ruling access to fields from the external world. You can also remember how
methods are procedures that take actions. Methods are flexible also due to the overloading
technique that enables implementing different signatures of the same method. There is a
special method known as constructor, which creates an instance of a class and gives the
class the real life. Each time you create an instance of a class, you create a new copy of an
object with its own life and data. But there are situations in which you need only one
copy of an object and data, and that is where shared members come in. You also took a
tour of interesting features such as partial classes and partial methods that enable a better
organization of your classes’ infrastructure. But as in all fantastic worlds, the risk of doing
something wrong is always there, especially if you consider the CLR infrastructure that
enables .NET languages to interoperate among them. Because of this, a set of rules named
Common Language Specification has been created to ensure that all classes and their
members can be used from all .NET languages with the minimum risk of errors. After this
overview of classes, it’s time to understand how they live within memory.

From the Library of Wow! eBook

ptg

CHAPTER 8

Managing an Object’s
Lifetime

IN THIS CHAPTER

. Understanding Memory
Allocation

. Understanding the Garbage
Collection

. Understanding the Finalize
Method

. Understanding Dispose and the
IDisposible Interface

. Object Resurrection

. Advanced Garbage Collection

Real life is often a great place to get programming exam-
ples. Think of life: Humans are born; they grow up; they
live their lives; they do tons of things; and, at a certain
point of life, they die. Managing objects in programming
environments works similarly. You give life to an object by
creating an instance; then you use it in your own applica-
tion while it is effectively useful to the application. But
there is a point at which you do not need an object
anymore, so you need to destroy it to free up memory and
other resources, bringing an object to “death.”
Understanding how object lifetime works in .NET program-
ming is fundamental because it gives you the ability to
write better code; code that can take advantage of system
resources to consume resources the appropriate way or
return unused resources to the system.

Understanding Memory Allocation
Chapter 4, “Data Types and Expressions,” discusses value
types and reference types, describing how both of them are
allocated in memory: Value types reside in the stack
whereas reference types are allocated on the managed heap.
When you create a new instance of a reference type, via the
New keyword, the .NET Framework reserves some memory
in the managed heap for the new object instance.
Understanding memory allocation is fundamental, but an
important practice is to also release objects and resources
when they are unused or unnecessary. This returns free
memory and provides better performances. For value types
the problem is of easy resolution: Being allocated on the
stack, they are simply removed from memory when you

From the Library of Wow! eBook

ptg

268 CHAPTER 8 Managing an Object’s Lifetime

assign the default zero value. The real problem is about reference types. Basically you need
to destroy the instance of an object; to accomplish this you assign Nothing to the instance
of a reference type.

When you perform this operation, the .NET Framework marks the object reference as no
longer used and marks the memory used by the object as unavailable to the application,
but it actually does not immediately free up the heap, and the runtime cannot immedi-
ately reuse such memory. Memory previously used by no-longer-referenced objects can be
released by the .NET Framework after some time because the .NET Framework knows
when it is the best moment for releasing resources. Such a mechanism is complex, but
fortunately it is the job of the garbage collector.

Understanding Garbage Collection
In your applications you often create object instances or allocate memory for resources.
When you perform these operations, .NET Framework checks for available memory in the
heap. If available memory is not enough, .NET Framework launches a mechanism known
as garbage collection, powered by an internal tool named garbage collector. The garbage
collector can also be controlled by invoking members of the System.GC class, but the
advantage is leaving.NET Framework the job of handling the process automatically for
you. Basically the garbage collector first checks for all objects that have references from
your applications, including objects referenced from other objects, enabling to keep alive
object graphs. Objects having any references are considered as used and alive, so the
garbage collector marks them as in use and therefore will not clean them up. With that
said, any other objects in the heap are surely considered as unused and therefore the
garbage collector removes the object and references to the object. After this, it compresses
the heap and returns free memory space that can be reallocated for other new objects or
resources. In all this sequence of operations, you do nothing. The garbage collector takes
care of anything required. You can also decide to release objects when you do not need
them any more setting their reference to Nothing so that you can free up some memory.
The following snippet shows how you can logically destroy an instance of the Person class:

Dim p As New Person

p.FirstName = “Alessandro”

p.LastName = “Del Sole”

p = Nothing

When you assign an object reference with Nothing, the CLR automatically invokes the
destructor (the Finalize method is covered in next section) that any class exposes because
the most basic implementation is provided by System.Object. At this point there is a
problem. The garbage collection behavior is known as nondeterministic, meaning that no
one can predict the moment when the garbage collector is invoked. In other words, after
you set an object reference to Nothing, you cannot know when the object will be effec-
tively released. There can be a small delay, such as seconds, but also a long delay, such as
minutes or hours. This can depend on several factors; for example, if no additional

From the Library of Wow! eBook

ptg

269Understanding the Finalize Method

memory is required during your application’s lifetime, an object could be released at the
application shut down. This can be a problem of limited importance if you have only in-
memory objects that do not access to external resources, such as files or the network. You
do not have to worry about free memory because, when required, the garbage collector
will kick in. Anyway, you can force a garbage collection process by invoking the
System.GC.Collect method. The following is an example:

p = Nothing

‘Forces the garbage collector

‘so that the object is effectively

‘cleaned up

System.GC.Collect()

Forcing the garbage collection process is not a good idea. As you can easily imagine,
frequently invoking a mechanism of this type can cause performance overhead and signif-
icantly slow down your application performances. (Although .NET 4.0 introduces some
improvements that are covered in last section of this chapter.) When you work with in-
memory objects that do not access external resources, such as the Person class, leave the
.NET Framework the job of performing a garbage collection only when required. The real
problem is when you have objects accessing to external resources, such as files, databases,
and network connections that you want to be free as soon as possible when you set your
object to Nothing and therefore you cannot wait for the garbage collection process to kick
in. In this particular scenario you can take advantage of two methods that have little
different behaviors: Finalize and Dispose.

OUT OF SCOPE OBJECTS

Objects that go out of scope will also be marked for garbage collection if they have no
external reference to them, even if you don’t set them explicitly to Nothing.

Understanding the Finalize Method
The Finalize method can be considered as a destructor that executes code just before an
object is effectively destroyed, that is when memory should be effectively released. This
method is inherited from System.Object; therefore any class can implement the method
taking care of declaring it as Protected Overrides as follows:

Protected Overrides Sub Finalize()

‘Write your code here for releasing

‘such as closing db connections,

‘closing network connections,

‘and other resources that VB cannot understand

MyBase.Finalize() ‘this is just the base implementation

End Sub

8

From the Library of Wow! eBook

ptg

270 CHAPTER 8 Managing an Object’s Lifetime

If you need to destroy an object that simply uses memory, do not invoke Finalize. You
need instead to invoke it when your object has a reference to something that Visual Basic
cannot understand because the garbage collector does not know how to release that refer-
ence, so you need to instruct it by providing code for explicitly releasing resources.
Another situation is when you have references to something that is out of the scope of the
object, such as unmanaged resources, network connections, and files references different
than .NET streams. If an object explicitly provides a Finalize implementation, the CLR
automatically invokes such a method just before removing the object from the heap. This
means that you do not need to invoke it manually. Notice that Finalize is not invoked
immediately when you assign Nothing to the object instance you want to remove.
Although Finalize enables you to control how resources must be released, it does not
enable you to control when they are effectively released. This is due to the nondeterminis-
tic behavior of the garbage collector that frees up resources in the most appropriate
moment, meaning that minutes or hours can be spent between the Finalize invocations
and when resources are effectively released, although invoking Finalize marks the object
as no longer available. Of course you could force the garbage collection process and wait
for all finalizers to be completed, if you want to ensure that objects are logically and phys-
ically destroyed. Although this is not a good practice, because manually forcing a garbage
collection causes performance overhead and loss of .NET Framework optimizations, you
can write the following code:

’Object here is just for demo purposes

Dim c As New Object

c = Nothing

GC.Collect()

GC.WaitForPendingFinalizers()

There are also a few considerations on what Finalize should contain within its body.
Here is a simple list:

. Do not throw exceptions within Finalize because the application cannot handle
them and therefore it would crash.

. Invoke only shared methods except when the application is closing; this will avoid
invocations on instance members from objects that can be logically destroyed.

. Continuing the previous point, do not access external objects from within Finalize.

To complete the discussion, it is worth mentioning that destruction of objects that explic-
itly provide Finalize require more than one garbage collection process. The reason why
destroyed objects are removed from the heap at least at the second garbage collection is
that Finalize could contain code that assigns the current object to a variable, keeping a
reference still alive during the first garbage collection. This is known as object resurrection
and is discussed later in this chapter. As a consequence, implementing Finalize can nega-
tively impact performances and should be used only when strictly required.

From the Library of Wow! eBook

ptg

271Understanding Dispose and the IDisposable Interface

Understanding Dispose and the IDisposable
Interface
One of the issues of the Finalize destructor is that you cannot determine whether
resources will be freed up and when an object will be physically destroyed from memory.
This is because of the nondeterministic nature of the garbage collector, meaning that
unused references will still remain in memory until the GC kicks in, and generally this is
not a good idea. It is instead a good approach providing clients the ability to immediately
release resources (such as network connections, data connections, or system resources) just
before the object is destroyed setting it to Nothing. The .NET Framework provides a way
for releasing resources immediately and under your control, which is the Dispose method.
Implementing Dispose avoids the need of waiting for the next garbage collection enabling
cleaning up resources immediately, right before the object is destroyed. Differently from
Finalize, Dispose must be invoked manually. To provide a Dispose implementation, your
class must implement the IDisposable interface. Visual Studio 2010 provides a skeleton of
IDisposable implementation when you add the Implements directive. The code in Listing
8.1 shows the implementation.

LISTING 8.1 Implementing the IDisposable Interface

Class DoSomething

Implements IDisposable

#Region “IDisposable Support”

Private disposedValue As Boolean ‘ To detect redundant calls

‘ IDisposable

Protected Overridable Sub Dispose(ByVal disposing As Boolean)

If Not Me.disposedValue Then

If disposing Then

‘ TODO: dispose managed state (managed objects).

End If

‘ TODO: free unmanaged resources (unmanaged objects) and

‘ override Finalize() below.

‘ TODO: set large fields to null.

End If

Me.disposedValue = True

End Sub

‘ TODO: override Finalize() only if Dispose(ByVal disposing As Boolean) above

‘has code to free unmanaged resources.

‘Protected Overrides Sub Finalize()

8

From the Library of Wow! eBook

ptg

272 CHAPTER 8 Managing an Object’s Lifetime

‘Do not change this code. Put cleanup

‘code in Dispose(ByVal disposing As Boolean) above.

‘ Dispose(False)

‘ MyBase.Finalize()

‘End Sub

‘ This code added by Visual Basic to correctly implement the disposable pattern.

Public Sub Dispose() Implements IDisposable.Dispose

‘ Do not change this code. Put cleanup

‘code in Dispose(ByVal disposing As Boolean) above.

Dispose(True)

GC.SuppressFinalize(Me)

End Sub

#End Region

End Class

Notice how Dispose is declared as Overridable so that you can provide different imple-
mentations in derived classes. Visual Studio is polite enough to provide comments
showing you the right places for writing code that release managed or unmanaged
resources. Also notice how there is an implementation of Finalize that is enclosed in
comments and therefore is inactive. Such a destructor should be provided only if you have
to release unmanaged resources. You invoke the Dispose method before setting your
object reference to nothing, as demonstrated here:

Dim dp As New DoSomething

‘Do your work here...

dp.Dispose()

dp = Nothing

As an alternative you can take advantage of the Using..End Using statement covered in
next subsection. When implementing the Dispose pattern, in custom classes you need to
remember to invoke the Dispose method of objects they use within their body so that
they can correctly free up resources. Another important thing to take care of is checking if
an object has already been disposed when Dispose is invoked but the auto-generated code
for the Dispose method already keeps track of this for you.

DISPOSE AND INHERITANCE

When you define a class deriving from another class that implements IDisposable,
you do not need to override Dispose unless you need to release additional resources
in the derived class.

From the Library of Wow! eBook

ptg

273Understanding Dispose and the IDisposable Interface

Using..End Using Statement

As an alternative to directly invoking Dispose, you can take advantage of the Using..End
Using statement. This code block automatically releases and removes from memory the
object that it points to, invoking Dispose behind the scenes for you. The following code
example shows how you can open a stream for writing a file ensuring that the stream will
be released even if you do not explicitly close it:

Using dp As New IO.StreamWriter(“C:\TestFile.txt”, False)

dp.WriteLine(“This is a demo text”)

End Using

Notice how you simply create an instance of the object via the Using keyword. The End
Using statement causes Dispose to be invoked on the previously mentioned instance. The
advantage of Using..End Using is also that the resource is automatically released in cases
of unhandled exceptions, and this can be useful.

Putting Dispose and Finalize Together

Implementing Dispose and Finalize cannot necessarily be required. It depends only on
what kind of work your objects perform. Table 8.1 summarizes what and when you
should implement.

8

You already have examples about Finalize and Dispose, so here you get an example of
their combination. Before you see the code, you have to know that you will see invoca-
tions to Win32 unmanaged APIs that you do not need in real applications but these kinds
of functions are useful to understand to know how to release unmanaged resources. Now
take a look at Listing 8.2.

TABLE 8.1 Implementing Destructors

What When

No destructor Objects that just work in memory and that reference other .NET in memory
objects.

Finalize Executing some code before the object gets finalized. The limitation is that
you cannot predict when the GC comes in.

Dispose Your objects access external resources that you need to free up as soon as
possible when destroying the object.

Finalize and
Dispose

Your objects access unmanaged resources that you need to free up as soon
as possible when destroying the object.

From the Library of Wow! eBook

ptg

274

LISTING 8.2 Implementing Dispose and Finalize

Imports System.Runtime.InteropServices

Public Class ProperCleanup

Implements IDisposable

Private disposedValue As Boolean ‘ To detect redundant calls

‘A managed resource

Private managedStream As IO.MemoryStream

‘Unmanaged resources

<DllImport(“winspool.drv”)>

Shared Function OpenPrinter(ByVal deviceName As String,

ByVal deviceHandle As Integer,

ByVal printerDefault As Object) _

As Integer

End Function

<DllImport(“winspool.drv”)>

Shared Function _

ClosePrinter(ByVal deviceHandle As Integer) _

As Integer

End Function

Private printerHandle As Integer

‘Initializes managed and unmanaged resources

Public Sub New()

managedStream = New IO.MemoryStream

OpenPrinter(“MyDevice”, printerHandle, &H0)

End Sub

‘Just a sample method that does nothing

‘particular except for checking if the object

‘has been already disposed

Public Function FormatString(ByVal myString As String) As String

If disposedValue = True Then

Throw New ObjectDisposedException(“ProperCleanup”)

Else

Return “You entered: “ & myString

End If

End Function

CHAPTER 8 Managing an Object’s Lifetime

From the Library of Wow! eBook

ptg

275Understanding Dispose and the IDisposable Interface
8

‘ IDisposable

Protected Overridable Sub Dispose(ByVal disposing As Boolean)

If Not Me.disposedValue Then

If disposing Then

‘ TODO: dispose managed state (managed objects).

managedStream.Dispose()

End If

‘ TODO: free unmanaged resources (unmanaged objects)

‘ and override Finalize() below.

‘ TODO: set large fields to null.

ClosePrinter(printerHandle)

End If

Me.disposedValue = True

End Sub

‘ TODO: override Finalize() only if Dispose(ByVal disposing As Boolean)

‘ above has code to free unmanaged resources.

Protected Overrides Sub Finalize()

‘ Do not change this code. Put cleanup code in

‘ Dispose(ByVal disposing As Boolean) above.

Dispose(False)

MyBase.Finalize()

End Sub

‘ This code added by Visual Basic to correctly implement the disposable pattern.

Public Sub Dispose() Implements IDisposable.Dispose

‘ Do not change this code. Put cleanup code

‘ in Dispose(ByVal disposing As Boolean) above.

Dispose(True)

GC.SuppressFinalize(Me)

End Sub

End Class

The code in Listing 8.2 has some interesting points. First, notice how both managed
resources (a System.IO.MemoryStream) and unmanaged resources (OpenPrinter and
ClosePrinter API functions) are declared. Second, notice how the constructor creates
instances of the above resources. Because there are unmanaged resources, it is necessary to
override the Finalize method. Visual Basic is polite enough to show you comments
describing this necessity, so you simply uncomment the Finalize block definition. Such
method invoke the Dispose one passing False as an argument; this can ensure that
Dispose will clean up unmanaged resources as you can understand examining the condi-
tional code block within the method overload that accepts a Boolean argument. Finally,
notice how the other Dispose overload, the one accepting no arguments, invokes the

From the Library of Wow! eBook

ptg

276

other overload passing True (therefore requiring managed resources to be released), and
then it invokes the GC.SuppressFinalize method to ensure that Finalize is not invoked.
There are no unmanaged resources to release at this point because Finalize was previ-
ously invoked to clean unmanaged resources.

Object Resurrection
With the object resurrection phrase, we describe the scenario in which an object is restored
after its reference was removed, although the object was not removed yet from memory.
This is an advanced technique, but it is not very useful and Microsoft strongly discourages
you from using it in your applications. It is helpful to understand something more about
objects’ lifetime. Basically an object being finalized can store a self-reference to a global
variable, and this can keep the object alive. In simpler words, a reference to a “died”
object is restored when within the Finalize method the current object is assigned (using
the Me keyword) to a class level or module level variable. Here’s a small code example for
demonstrating object resurrection; keep in mind that the code is simple to focus on the
concept more than on the code difficulty, but you can use this technique with more and
more complex objects. You add this code to a module:

Public resurrected As ResurrectionDemo

Sub TestResurrection()

Dim r As New ResurrectionDemo

‘This will invoke Finalize

r = Nothing

End Sub

The resurrected variable is of type ResurrectionDemo, a class that will be implemented
next. This variable holds the actual reference to the finalizing object so that it can keep it
alive. The TestResurrection method creates an instance of the class and sets it to Nothing
causing the CLR to invoke Finalize. Now notice the implementation of the
ResurrectionDemo class and specifically the Finalize implementation:

Class ResurrectionDemo

Protected Overrides Sub Finalize()

‘The object is resurrected here

resurrected = Me

GC.ReRegisterForFinalize(Me)

End Sub

End Class

Notice how Finalize’s body assigns the current object to the resurrected variable which
holds the reference. When an object is resurrected, Finalize cannot be invoked a second

CHAPTER 8 Managing an Object’s Lifetime

From the Library of Wow! eBook

ptg

277Advanced Garbage Collection
8

time because the garbage collector removed the object from the finalization queue. This is
the reason why the GC.ReRegisterForFinalize method is invoked. As a consequence,
multiple garbage collections are required for a resurrected object to be cleaned up. At this
point, just think of how many system resources this might require. Moreover, when an
object is resurrected, previously referenced objects are also resurrected. This can result in
application faults because you cannot know if objects’ finalization already occurred. As
mentioned at the beginning of this section, the object resurrection technique rarely takes
place in real-life application because of its implications and generally can be successfully
used only in scenarios in which you need to create pools of objects whose frequent
creation and destruction could be time-consuming.

Advanced Garbage Collection
The garbage collection is a complex mechanism, and in most cases you do not need to
interact with the garbage collector because, in such cases, you must be extremely sure
that what you are doing is correct. The .NET Framework automatically takes care of what
the CLR needs. Understanding advanced features of the garbage collector can provide a
better view of objects’ lifetime. The goal of this section is therefore to show such
advanced features.

Interacting with the Garbage Collector

The System.GC class provides several methods for manually interacting with the garbage
collector. In this chapter you already learned some of them. Remember Collect that
enables forcing a garbage collection; WaitForPendingFinalizers enabling to wait for all
Finalize methods to be completed before cleaning up resources; ReRegisterForFinalize
that puts an object back to the finalization queue in object resurrection; and
SuppressFinalize that is used in the Dispose pattern for avoiding unnecessary finaliza-
tions. There are other interesting members; for example, you can get an approximate
amount of allocated memory as follows:

Dim bytes As Long = System.GC.GetTotalMemory(False)

You pass False if you do not want a garbage collection to be completed before returning
the result. Another method is KeepAlive that adds a reference to the specified object
preventing the garbage collector from destroying it:

GC.KeepAlive(anObject)

You can then tell the garbage collector that a huge amount of unmanaged memory should
be considered within a garbage collection process; you accomplish this invoking the
AddMemoryPressure method that requires the amount of memory as an argument. Next
you can tell the garbage collection that an amount of unmanaged memory has been
released invoking the RemoveMemoryPressure method. There are other interesting
members enabling garbage collector interaction, covered in the next subsection for their
relationship with the specific topic.

From the Library of Wow! eBook

ptg

278

Understanding Generations and Operation Modes

The garbage collector is based on generations that are basically a counter representing how
many times an object survived to the garbage collection. The .NET Framework supports
three generations. The first one is named gen0 and is when the object is at its pure state.
The second generation is named gen1 and is when the object survived to one garbage
collection, whereas the last generation is named gen2 and is when the object survived to
more than two garbage collections. This is a good mechanism for the garbage collector’s
performances because it first goes to remove objects at gen2 instead of searching for all
live references. The garbage collection process is available in two modes: server and work-
station. It is important to know this because in server mode the garbage collection runs on
a single thread and therefore needs to block other threads while executing. In a worksta-
tion context, the garbage collection can be executed on multiple threads. This is known as
concurrent GC. Until .NET Framework 3.5 SP 1, concurrent GC could perform garbage
collections on both gen0 and gen1 concurrently or most of a gen2 without pausing
managed code but never gen2 concurrently with the other ones. In .NET Framework 4.0
there is a new feature named Background GC that enables collecting all generations
together, still limited to workstation mode, and that also enable allocating memory while
collecting. The good news is that you can now take advantage of a feature introduced in
.NET Framework 3.5, which enables registering from garbage collection events, for getting
noticed about gen2 completion. The code in Listing 8.3 demonstrates this (read comments
for explanations).

LISTING 8.3 Registering for garbage collection events

Sub Main()

Try

‘Registers for notification about gen2 (1st arg) and

‘large objects on the heap (2nd arg)

GC.RegisterForFullGCNotification(10, 10)

‘Notifications are handled via a separate thread

Dim thWaitForFullGC As New Thread(New _

ThreadStart(AddressOf WaitForFullGCProc))

thWaitForFullGC.Start()

Catch ex As InvalidOperationException

‘Probably concurrent GC is enabled

Console.WriteLine(ex.Message)

End Try

End Sub

Public Shared Sub WaitForFullGCProc()

While True

‘Notification status

CHAPTER 8 Managing an Object’s Lifetime

From the Library of Wow! eBook

ptg

279Summary
8

Dim s As GCNotificationStatus

‘Register for an event advising

‘that a GC is imminent

s = GC.WaitForFullGCApproach()

If s = GCNotificationStatus.Succeeded Then

‘A garbage collection is imminent

End If

‘Register for an event advising

‘that a GC was completed

s = GC.WaitForFullGCComplete()

If s = GCNotificationStatus.Succeeded Then

‘A garbage collection is completed

End If

End While

End Sub

You can see how you can easily subscribe for garbage collection events invoking
WaitForFullGCComplete and WaitForFullApproach.

Summary
Understanding how memory and resources are released after objects usage is fundamental
in every development environment. In .NET this is accomplished by the garbage collector,
a complex mechanism that comes after you set an object reference to Nothing or when
you attempt to create new instances of objects but no more memory is available. You can
also implement explicit destructors, such as Finalize or Dispose, according to specific
scenarios in which you do need to release external or unmanaged resources before destroy-
ing an object. The garbage collection process has been improved in.NET Framework 4.0 so
that it can support a new operation mode, known as Background GC that enables execut-
ing the process across multiple threads in every generation step.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 9

Organizing Types
Within Namespaces

IN THIS CHAPTER

. Understanding Namespaces

. Organizing Types Within
Namespaces

.NET Framework ships with tons of built-in types. Such an
enormous quantity necessarily needs a hierarchical organi-
zation in which types must be divided into their areas of
interest (data access, file manipulation, communications,
and so on). Moreover, the .NET Framework provides an
extensible platform, and companies can also build their
own custom components exposing types that could have
the same name of existing built-in types in.NET Framework.
To avoid naming conflicts and to enable a hierarchical orga-
nization of the code, Visual Basic offer the namespaces
feature discussed in this chapter.

Understanding What Namespaces
Are
Namespaces provide a way for a better organization of the
code and avoiding conflicts between types with the same
name. Consider a complex hierarchical framework of
objects (such as .NET Framework) in which you have the
need to expose more than one type with a particular identi-
fier. The typical example is when software companies
produce class libraries; different companies could have the
need to provide their own implementation of the Person
class, or the same company could provide different imple-
mentations of the Person class within the same assembly,
so there could be ambiguities for developers when invoking
a particular implementation of the Person class. To solve
this coding problem, programming languages in the .NET
family offer the capability of organizing types within name-
spaces. For example, imagine using assemblies from two
companies, Company1 and Company2 with both produced

From the Library of Wow! eBook

ptg

282 CHAPTER 9 Organizing Types Within Namespaces

assemblies exposing their own implementation of the Person class. You need to use one of
the two implementations, but you still need to reference both assemblies in your project.
The following code

Dim p As New Person

can cause the Visual Basic compiler to throw an exception because it does not know
which of the two implementations you want to invoke. By using namespaces, you can
avoid this ambiguity as follows:

Dim p1 As New Company1.Person

Dim p2 As New Company2.Person

In this code example, Company1 and Company2 are namespaces that virtually encapsulate
lots of types whereas both Company1.Person and Company2.Person represent the full name
of the Person class. The .NET Framework Base Class Library highly relies on namespaces.
The main namespace in the BCL is System, which is basically the root in the BCL hierar-
chy. System exposes dozens of other namespaces, such as System.Xml, System.Data,
System.Linq, and so on. Each of these namespace expose types and other nested name-
spaces, and in this way a hierarchical framework is more maintainable. Namespaces solve
a coding problem and an object implementation problem. This is because namespaces are
all about coding, because the Common Language Runtime does not recognize name-
spaces, whereas it does recognize only full class names, such as Company2.Person in the
previous example or System.Object or System.Console. Namespaces are just a logical
feature that helps developers to write better organized and reusable code. Basically the
CLR never encounters conflicts because it recognizes only full class names, but you learn
later in this chapter that as a developer you may encounter such conflicts and a help in
writing and organizing code is necessary, especially when working with long named
classes (see the “Imports Directives” section).

Organizing Types Within Namespaces
Namespaces are defined within Namespace..End Namespace blocks. Every namespace can
expose the following types and members:

. Classes

. Structures

. Enumerations

. Modules

. Interfaces

. Delegates

. Nested namespaces

Listing 9.1 shows an example of a namespaces exposing most of the preceding listed
members.

From the Library of Wow! eBook

ptg

283Organizing Types Within Namespaces

LISTING 9.1 Organizing Types Within a Namespace

Namespace People

Public Interface IContactable

ReadOnly Property HasEmailAddress As Boolean

End Interface

Public MustInherit Class Person

Public Property FirstName As String

Public Property LastName As String

Public Overrides Function ToString() As String

Return FirstName & “ “ & LastName

End Function

End Class

Public Enum PersonType

Work = 0

Personal = 1

End Enum

Public Class Contact

Inherits Person

Implements IContactable

Public Property EmailAddress As String

Public Overrides Function ToString() As String

Return MyBase.ToString()

End Function

Public ReadOnly Property HasEmailAddress As Boolean _

Implements IContactable.HasEmailAddress

Get

If String.IsNullOrEmpty(Me.EmailAddress) Then

Return False

Else

Return True

End If

End Get

End Property

End Class

9

From the Library of Wow! eBook

ptg

284 CHAPTER 9 Organizing Types Within Namespaces

Public Class Employee

Inherits Person

Public Property Title As String

Public Overrides Function ToString() As String

Return Me.Title & “ “ & Me.FirstName & “ “ & Me.LastName

End Function

End Class

Public Class Customer

Inherits Person

Public Property CompanyName As String

Public Overrides Function ToString() As String

Return Me.LastName & “ from “ & Me.CompanyName

End Function

End Class

Module GlobalDeclarations

Public Data As Object

End Module

Public Structure PersonInformation

Public Property PersonCategory As PersonType

Public Property HasEmailAddress As Boolean

End Structure

End Namespace

As you can see from Listing 9.1, you can organize your custom objects within a name-
space. The code implements an abstract class Person, three derived classes (Contact,
Employee, and Customer), an interface (which is then implemented by the Contact class),
an enumeration (PersonType), a structure (PersonInformation), and a module
(GlobalDeclarations). The namespace becomes part of the full name of a type. For
example, the full name for the Contact class is People.Contact. Therefore, if you need to
access a type defined within a namespace, you need to refer to it writing the full name, as
in the following line of code:

Dim firstContact As New People.Contact

ADDING IMPORTS

Later in this chapter we discuss the Imports directives that will prevent the need to
add the namespace identifier to the full type name every time.

From the Library of Wow! eBook

ptg

285Organizing Types Within Namespaces

Namespaces can also expose partial classes. This is a common situation within .NET
Framework built-in namespaces.

Why Are Namespaces So Useful?

The purpose of namespaces is to enable a better organization of types. Regarding this,
there are situations in which an object’s hierarchy could expose two different types with
different behaviors but with the same name. For example, imagine you have two Person
classes; the first one should represent a business contact, and the second one should repre-
sent your friends. Of course, you cannot create two classes with the same name within
one namespace. Because of this, you can organize such types in different namespaces
avoiding conflicts. The code in Listing 9.2 shows how you can define two Person classes
within two different namespaces.

LISTING 9.2 Avoiding Conflicts with Different Namespaces

Namespace People

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Overrides Function ToString() As String

Return FirstName & “ “ & LastName

End Function

End Class

End Namespace

Namespace MyFriends

‘Will not conflict with People.Person

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Property Sibling As String

Public Overrides Function ToString() As String

Return FirstName & “ “ & LastName & “: “ & Sibling

End Function

End Class

End Namespace

This is the way how two classes with the same name can coexist within the same assem-
bly. To access both of them you just need to invoke their full name as follows:

Dim aFriend As New MyFriends.Person

9

From the Library of Wow! eBook

ptg

286 CHAPTER 9 Organizing Types Within Namespaces

Dim aContact As New People.Person

NOTE

The Person class is here just an example. You can recur to inheritance as in Listing
9.1 instead of providing different namespaces, but the Person class is the simplest
example possible for demonstrating topics, which is the reason to continue to use
such a class.

Nested Namespaces

You can nest namespaces within namespaces to create a complex hierarchy of namespaces.
However, you should be careful in creating complex hierarchies of namespaces because
this can lead to particular complexity in your code that can cause difficulties in maintain-
ability and reuse. You simply nest a namespace within another one by adding a new
Namespace..End Namespace block. For example, in Listing 9.1 there are two different kinds
of people: a personal contact and two business people (Customer and Employee). You could
then consider defining a new namespace for your business objects and one for your
personal objects. Listing 9.3 shows a shorter version of the first example, in which nested
namespaces expose the two different kinds of classes.

LISTING 9.3 Implementing Nested Namespaces

Namespace People

Public Interface IContactable

ReadOnly Property HasEmailAddress As Boolean

End Interface

Public MustInherit Class Person

Public Property FirstName As String

Public Property LastName As String

Public Overrides Function ToString() As String

Return FirstName & “ “ & LastName

End Function

End Class

Namespace Work

Public Class Customer

Inherits Person

Public Property CompanyName As String

Public Overrides Function ToString() As String

Return Me.LastName & “ from “ & Me.CompanyName

End Function

From the Library of Wow! eBook

ptg

287Organizing Types Within Namespaces

End Class

Public Class Employee

Inherits Person

Public Property Title As String

Public Overrides Function ToString() As String

Return Me.Title & “ “ & Me.FirstName & “ “ & Me.LastName

End Function

End Class

End Namespace

Namespace Personal

Public Class Contact

Inherits Person

Implements IContactable

Public Property EmailAddress As String

Public Overrides Function ToString() As String

Return MyBase.ToString()

End Function

Public ReadOnly Property HasEmailAddress As Boolean _

Implements IContactable.HasEmailAddress

Get

If String.IsNullOrEmpty(Me.EmailAddress) Then

Return False

Else

Return True

End If

End Get

End Property

End Class

End Namespace

End Namespace

As you can see from Listing 9.3, nesting namespaces is an easy task. Creating complex
hierarchies can lead to problems in code readability because of several possible indenta-
tions. Luckily Visual Basic enables an alternative syntax for defining nested namespaces
without writing indented code. Listing 9.4 shows how you can create nested namespace
with the alternative syntax.

9

From the Library of Wow! eBook

ptg

288 CHAPTER 9 Organizing Types Within Namespaces

LISTING 9.4 Nesting Namespace Without Indented Code

Namespace People

Public Interface IContactable

ReadOnly Property HasEmailAddress As Boolean

End Interface

Public MustInherit Class Person

Public Property FirstName As String

Public Property LastName As String

Public Overrides Function ToString() As String

Return FirstName & “ “ & LastName

End Function

End Class

End Namespace

Namespace People.Work

Public Class Employee

Inherits Person

Public Property Title As String

Public Overrides Function ToString() As String

Return Me.Title & “ “ & Me.FirstName & “ “ & Me.LastName

End Function

End Class

Public Class Customer

Inherits Person

Public Property CompanyName As String

Public Overrides Function ToString() As String

Return Me.LastName & “ from “ & Me.CompanyName

End Function

End Class

End Namespace

Namespace People.Personal

Public Class Contact

Inherits Person

Implements IContactable

Public Property EmailAddress As String

From the Library of Wow! eBook

ptg

289Organizing Types Within Namespaces

Public Overrides Function ToString() As String

Return MyBase.ToString()

End Function

Public ReadOnly Property HasEmailAddress As Boolean _

Implements IContactable.HasEmailAddress

Get

If String.IsNullOrEmpty(Me.EmailAddress) Then

Return False

Else

Return True

End If

End Get

End Property

End Class

End Namespace

As you can see from Listing 9.4, you can nest namespaces by adding a dot after the parent
namespace and then specifying the child namespace name without the need of nesting
namespaces on the code side. This enables getting the same result, but your code will be
more readable. By the way, you are free to use both methodologies.

Scope

Namespaces have scope of visibility. As a rule, namespaces have public visibility because
they can be recognized within the project, from other projects that reference the project
defining the namespace and from external assemblies. Because of this behavior, name-
space declarations can be adorned neither with qualifiers nor with attributes. Members
defined within namespaces can only be Friend or Public. If you do not want the external
world to use some members defined within a namespace, you need to mark such members
as Friend. By default, Visual Basic considers members within namespaces as Friend. If you
want them to be of public access, you need to explicitly mark them as Public.

Root Namespace

Each application has a root namespace that contains all types defined in the applica-
tion. When you create a new project, Visual Studio automatically assigns the root name-
space (also known as first level namespace) with the name of the project. This is
important to understand, for several reasons. First, if you develop class libraries or
reusable components, the root namespace must follow the naming conventions of the
Common Language Specification. Second, you must know how your types and auto-
generated code are organized within your project. For example, the project containing
the code of this chapter is named OrganizingTypesWithinNamespaces. By default, Visual
Studio assigned the root namespace identifier with the
OrganizingTypesWithinNamespaces identifier. Continuing the previous example, you

9

From the Library of Wow! eBook

ptg

290 CHAPTER 9 Organizing Types Within Namespaces

access the People namespace in this way: OrganizingTypesWithinNamespaces.People.
You then get access to People’s objects as follows:

OrganizingTypesWithinNamespaces.People.Person

To replace the identifier for your root namespace, you simply need to open the My Project
window and open the Application tab. You find a text box named Root namespace, which
is represented in Figure 9.1.

Here you can change the root namespace; if you develop class libraries, the root name-
space should have the following form: CompanyName.ProductName.

ROOT NAMESPACE

When invoking a member defined inside the root namespace, you do not need to
include the name of the namespace. This is the only exception when invoking mem-
bers. For example, if you need to access the People namespace we defined in the
code example, simply type People and not
OrganizingTypesWithinNamespaces.People.

Global Keyword

Namespaces are versatile and enable the creation of complex infrastructures of objects.
There could be situations in which you need to define namespaces with names already
defined in the .NET Framework, such as System. Although this should never be done, you
might face some problems. Consider the following code:

Namespace System

Public Class GlobalDemo

Sub New()

Throw New System.NotImplementedException

End Sub

End Class

End Namespace

Such code will not be compiled because the compiler looks for a
NotImplementedException within our System namespace and not the one of the Base Class

FIGURE 9.1 Checking and editing the root namespace.

From the Library of Wow! eBook

ptg

291Organizing Types Within Namespaces
9

Library. Although such a scenario is unusual, Microsoft’s developers provided a way for
avoiding such problems. You can use the Global keyword to ensure that the compiler
invokes the specified member from the Base Class Library namespaces and not from
custom ones. In our case, the Throw statement should be rewritten as follows:

Throw New Global.System.NotImplementedException

With this approach we can be sure that the appropriate objects from the Base Class
Libraries namespaces will be invoked. This approach is always used behind the scenes by
Visual Studio for auto-generated code. To get an example, you can simply inspect My
Project’s files.

Imports Directives

It often happens that you need to invoke types defined within long-named nested name-
spaces. To invoke types you need to write the full name of the type, which includes the
identifier of the namespace that defines a particular type, as in the following code:

Dim aFile As New System.IO.FileStream(“C:\test.txt”,

System.IO.FileMode.Open)

Dim onePerson As New ImportsDirectives.People.Work.Customer

Although IntelliSense has been highly improved from previous versions and it helps in
writing code, it can result quite annoyingly in typing long-named namespaces. To help
developers in writing code faster, Visual Basic enables the usage of Imports directives. Such
directives enable avoiding the need to write the full namespace identifier preceding the
types’ names. The preceding code can be rewritten as follows:

Imports System.IO

Imports ImportsDirectives.People.Work

...

Dim aFile As New FileStream(“C:\test.txt”, FileMode.Open)

Dim onePerson As New Customer

POSITION IN CODE OF IMPORTS DIRECTIVES

Imports directives can be added to each code file you need. They must be the first
lines of code, preceding any other code except the Option Strict, Option Compare,
Option Explicit and Option Infer directives that are the only lines of code always
on the top.

Basically you can now invoke types exposed by the System.IO namespace without the
need of writing the namespace identifier each time. In this particular code example we
had just two invocations of members from the namespace, but in an application that
manipulates files, you could have hundreds of invocations; with a single Imports direc-
tive. You do not need to write the namespace identifier before the types’ names each time.

From the Library of Wow! eBook

ptg

292

System.IO is a .NET built-in namespace, but the same applies to your own namespaces (in
our example, the ImportsDirectives.People.Work). You can also take advantage of
another technique that enables assigning an identifier to a long namespace so that invoca-
tions can be smarter (feature known as namespace alias):

Imports work = ImportsDirectives.People.Work

...

Dim onePerson As New work.Customer

IMPORTING XML NAMESPACES

Starting from Visual Basic 2008, Imports directives also enable importing Xml name-
spaces. This feature is discussed in Chapter 28, “Manipulating Xml Documents with
LINQ and Xml Literals,” for LINQ to Xml.

Imports directives also enable importing class names. This enables invoking only shared
members without the need of writing the full class name. Consider the following code,
which deletes a file from disk:

System.IO.File.Delete(“C:\text.txt”)

Delete is a shared method exposed by the System.IO.File class. You can rewrite the
above code as follows:

Imports System.IO.File

...

Delete(“C:\text.txt”)

This can be useful if you need to invoke lots of shared members from a particular class.

Project Level Default Imports
By default, Visual Studio 2010 adds some auto-generated Imports directives each time you
create a new Visual Basic project, so you do not need to manually add such statements.
Default Imports are specific to the project type; this means that if you create a Console
application, there will be Imports related to these kinds of application; if you create a Web
application, there will be Imports related to the most common namespaces for Web appli-
cations and so on. You can easily add project level namespaces via the My Project window.
In the References tab, you can find a group box named Imported namespaces, as shown in
Figure 9.2.

You can simply click the check box corresponding to each available namespace to add
project-level Imports directives. This avoids the need of manually typing such Imports.

CHAPTER 9 Organizing Types Within Namespaces

From the Library of Wow! eBook

ptg

293Organizing Types Within Namespaces
9

FIGURE 9.2 Setting project-level namespaces.

Moreover, if a particular namespace is not available in the list, you can manually enter its
name, and it will be added.

TIP

You can add a namespace alias also in the Imported namespaces list. For example, if
you want to import the System.Windows.Forms namespace you can type something
like F = System.Windows.Forms and then access namespace members as if you
wrote the alias in the code (e.g. F.TextBox).

Avoiding Ambiguities
There might be situations in which you need to access objects with the same name, coming
from different namespaces. For example, both Windows Forms and Windows Presentation
Foundation technologies provides a MessageBox class. In interoperability scenarios, there-
fore where you have both references to Windows Forms and WPF assemblies, invoking
such objects could result in ambiguities. For example, consider the following code:

Imports System.Windows.Forms

Imports System.Windows

Class Window1

Public Sub MyMethod()

MessageBox.Show(““)

End Sub

End Class

Both System.Windows and System.Windows.Forms namespaces expose a MessageBox class,
but you need those Imports for working with other classes. In such situations, adding
Imports directives can cause the background compiler to throw an exception. This is
because the code is ambiguous in invoking the MessageBox class, because it is not clear

From the Library of Wow! eBook

ptg

294 CHAPTER 9 Organizing Types Within Namespaces

which of the two classes the runtime should invoke. In this case you can avoid ambigui-
ties by writing the full name of the class:

’Invokes the WPF MessageBox

System.Windows.MessageBox.Show(““)

You could also solve this ambiguity by using namespace aliasing. Another example is the
one provided by Listing 9.2. There we have two different implementations of the Person
class, and therefore adding an Imports directive would lead to ambiguities. Because of
this, in that case it is necessary to invoke members with their full name. Generally when
you have multiple namespaces defining classes with the same name, you should write the
full class name including the namespace. Probably this is one of the best examples for
understanding why namespaces are so useful.

Namespaces and Common Language Specification

The Common Language Specification provides a couple of simple rules about namespaces.
The first rule is about naming and establishes that namespaces identifiers must be Pascal-
cased. For example, MyCustomTypes is a well-formed namespace identifier. The second rule
establishes that to be CLS-compliant a namespace must expose at least five types (classes,
structures, enumerations, delegates, and so on). If this is not your case, you should prefer
single classes or modules or consider merging types within another namespace already
containing other types.

Summary
.NET Framework Base Class Library ships with tons of built-in types that are organized
within namespaces. As a developer you can build your custom types; therefore, you can
organize them in namespaces. Namespaces are also a way to have different implementa-
tions of objects with the same name within a complex framework hierarchy. Because they
are visible to other projects or assemblies, namespaces have a Public or Friend scope.
Namespaces are also flexible; you can implement complex hierarchies nesting namespaces,
and you can use whatever identifier you like. To avoid conflicts with .NET built-in name-
spaces, Visual Basic offers the Global keyword. You need have to face namespaces many
times in object-oriented programming, so this chapter gives you the basis for feeling at
home with this important feature of the .NET Framework.

From the Library of Wow! eBook

ptg

CHAPTER 10

Modules

IN THIS CHAPTER

. Modules Overview

. Differences Between Modules
and Classes

Visual Basic programming language provides a simplified
way for working with shared classes. In this brief chapter
you learn about the module feature.

Modules Overview
Modules are a specific feature of Visual Basic programming
language. You can think of modules as classes exposing
only shared members; each module is defined within a
Module..End Module code block. The following code
provides an example of a module:

Module Module1

Sub Main()

‘DoSomething is a method defined elsewhere

DoSomething()

End Sub

End Module

Differently from Visual C#, Visual Basic does not directly
support shared classes, whereas it provides support for
classes with only shared members. According to this, the
preceding module is the Visual Basic representation of the
following class:

Class Program

Shared Sub Main()

‘DoSomething is a method defined elsewhere

DoSomething()

From the Library of Wow! eBook

ptg

296 CHAPTER 10 Modules

End Sub

End Class

If you had any other member in this class, it should be marked as Shared. Modules are
particularly useful when you want to implement objects and members that can be easily
shared across your application and that do not need an instance.

Multiple modules can be defined in one code file, or multiple code files can define one or
more modules as well. For example, the following module defines a field and a property
that you can reach from anywhere in your project:

’From anywhere in your project you’ll be able

‘to reach the two objects

Module Declarations

Friend myFirstField As String

Friend Property myFirstProperty As Integer

End Module

Because you cannot create an instance of a module, you have just one copy in memory of
both the field and the property. The following example defines instead a method that
assigns variables defined inside a different module:

Module Methods

Friend Sub DoSomething()

myFirstField = “A string”

myFirstProperty = 0

End Sub

End Module

It is worth mentioning that, different from classes, you do not need to invoke methods
writing first the name of the class that defines methods. For example, if the DoSomething
method were defined within a class named Program, you should use the following syntax:

Program.DoSomething()

With modules this is not necessary, so you simply need to invoke the method name:

DoSomething()

This is true unless there is a conflict with the method name and a local method of the
same name.

Scope

Typically modules are required within a project and are not usually exposed to the exter-
nal world. Because of this, the default scope qualifier for modules is Friend. But because of
their particular nature, modules are also allowed to be Public but neither Private nor

From the Library of Wow! eBook

ptg

297Summary

Protected/Protected Friend. Members defined within modules can instead be also
marked as Private.

ABOUT PUBLIC MODULES

There is a particular exception to the previous discussion: creating a custom extension
methods library. Because in Visual Basic you define extension methods within mod-
ules, if you want to export such methods, you need to mark them as Public. Extension
methods are discussed in Chapter 21, “Advanced Language Features.”

Differences Between Modules and Classes
There are some differences between modules and classes. In this brief section you take a
look at the differences.

No Constructor

As previously mentioned, modules can be considered as shared classes, although Visual
Basic provides support for classes with only shared members but not direct support for
shared classes. Because of their shared nature, as a general rule modules do not support
the constructor (Sub New). An exception is that you can declare a Sub New in a module
that will be private and any code in the private constructor will be executed the first time
any call to the module is made.

No Inheritance Support

Modules cannot inherit from other modules or classes or be inherited. Therefore, the
Inherits, NotInheritable, and MustInherit keywords are not supported by modules.

INHERITANCE AND SHARED MEMBERS

Although it is not a good programming practice, it is legal to create a NotInheritable
Class that exposes only shared members.

No Interface Implementation

Modules cannot implement interfaces. If you need to implement interfaces, you should
consider developing a class with shared members instead of a module.

Summary
Modules are an alternative for working with shared members and data. Although with
some limitations if compared to classes, they are useful for exchanging information across
the project. In this chapter you got an overview of modules, and you saw what the differ-
ences between modules and classes are.

1
0

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 11

Structures and
Enumerations

IN THIS CHAPTER

. Implementing Structures

. Overloading Operators

. Structures and Common
Language Specification

. Enumerations

Until now, we discussed a lot of important concepts
about.NET development with Visual Basic. Just to mention
some key topics, we covered class fundamentals, objects’
lifetime, types’ organization, and exceptions’ handling. We
applied all these concepts to reference types (classes). But in
your developer life, you will often work with value types,
both built-in and custom ones. In Chapter 4, “Data Types
and Expressions,” you started with the most important
built-in value types in the .NET Framework, but to complete
your skills you now need to know how to implement your
own value types. In this chapter you get this information.
You first understand structures and how to create them.
Then you learn how to extend structures with custom
versions of operators. Finally, you learn about enumera-
tions, another kind of value types in.NET Framework. This
is not just a simple illustration, because you also gain infor-
mation on memory allocation to get a complete overview
of this development area.

Structures in .NET development are the way to create
custom value types. You find a lot of similarities between
classes and structures, although this section explains some
important differences. You create structures using a
Structure..End Structure block. The following code
provides an example of a structure representing a fictitious
order received by your company:

Public Structure Order

Public Property OrderID As Integer

Public Property OrderDate As Date

Public Property ShippedDate As Date

Public Property CustomerID As Integer

From the Library of Wow! eBook

ptg

300 CHAPTER 11 Structures and Enumerations

Public Property EmployeeID As Integer

End Sub

End Structure

Structure can expose several members, such as fields, properties, and methods, as it
happens for classes. The first important difference is about constructors. First, to create an
instance of a structure, it is not mandatory to use the New keyword as for classes. The
following code shows how you can instantiate a structure:

Dim o As Order

Dim o1 As New Order

Both syntaxes are legal. The only difference is that if you don’t use the New keyword the
variable will be marked as unused until you assign a value and the VB compiler will show
a warning message about this. Then you can simply assign (or invoke) members of the
structure typing the name followed by a dot:

o.OrderDate = Date.Now

o.OrderID = 1

‘Other assignments..

Notice that, when you declare a structure without assigning its members, the compiler
assigns the structure members a default value (which is usually zero for value types and
Nothing for reference types). You can also utilize the object initializers feature discussed in
Chapter 7, “Class Fundamentals,” to initialize members of a structure. The following
syntax is allowed but requires the specification of the New keyword:

Dim o As New Order With {.OrderID = 1, .OrderDate = Date.Now,

.ShippedDate = Date.Now.AddDays(1), .CustomerID = 1,

.EmployeeID = 1}

The second difference is that Visual Basic automatically provides an implicit constructor
with no parameters, and you are not enabled to explicitly provide a constructor that
receives no parameters; if you try, the Visual Basic compiler throws an error. You are
instead enabled to provide a constructor that receives arguments, as follows:

Public Sub New(ByVal Id As Integer,

ByVal OrderDate As Date,

ByVal ShippedDate As Date,

ByVal CustomerId As Integer,

ByVal EmployeeId As Integer)

Me.OrderID = Id

Me.OrderDate = OrderDate

Me.ShippedDate = ShippedDate

Me.CustomerID = CustomerId

From the Library of Wow! eBook

ptg

301Structures and Enumerations

Me.EmployeeID = EmployeeId

End Sub

As previously stated, structures can expose methods and fields but also shared members.
Consider the following new implementation of the structure:

Public Structure Order

Private Shared orderCount As Integer

Public Property OrderID As Integer

Public Property OrderDate As Date

Public Property ShippedDate As Date

Public Property CustomerID As Integer

Public Property EmployeeID As Integer

Public Sub New(ByVal Id As Integer,

ByVal OrderDate As Date,

ByVal ShippedDate As Date,

ByVal CustomerId As Integer,

ByVal EmployeeId As Integer)

Me.OrderID = Id

Me.OrderDate = OrderDate

Me.ShippedDate = ShippedDate

Me.CustomerID = CustomerId

Me.EmployeeID = EmployeeId

orderCount += 1

End Sub

Public Shared Function Count() As Integer

Return orderCount

End Function

End Structure

As you can see, now there is a private shared field that provides a counter for the instances
of the type. Moreover, a shared method named Count returns the number of instances of
the structure. The following code snippet demonstrates how the method works:

Dim firstOrder As New Order(1, Date.Now, Date.Now, 1, 1)

Dim secondOrder As New Order(2, Date.Now, Date.Now, 1, 1)

‘Returns 2

Console.WriteLine(Order.Count)

1
1

From the Library of Wow! eBook

ptg

302 CHAPTER 11 Structures and Enumerations

The preceding code returns 2, because there are two active instances of the structure.
Notice that the code would not work if you initialize the structure using object initializers,
because the orderCount field is incremented in the parameterized constructor.

Assignments
Because structures are value types, assigning an instance of a structure to a variable
declared as of that type creates a full copy of the data. The following brief code demon-
strates this:

’Creates a real copy of firstOrder

Dim thirdOrder As Order

thirdOrder = firstOrder

In the preceding code, thirdOrder is a full copy of firstOrder. You can easily check this
by using the data tips feature of the Visual Studio Debugger or adding the variable to a
Watch window.

Passing Structures to Methods
Structures can be passed to methods as arguments. For example, consider the following
method that simulates an order processing taking an instance of the previously shown
Order structure:

Private Sub ShowOrderInfo(ByVal orderInstance As Order)

Console.WriteLine(“Order info:”)

Console.WriteLine(“ID: {0}, Date received: {1}”,

orderInstance.OrderID,

orderInstance.OrderDate)

Console.ReadLine()

End Sub

You can then simply invoke the method passing the desired instance as follows:

Dim firstOrder As New Order(1, Date.Now, Date.Now, 1, 1)

ShowOrderInfo(firstOrder)

The preceding code produces an output that looks like this:

ID: 1, Date received: 08/19/2009 23:41:37

From the Library of Wow! eBook

ptg

303Memory Allocation

Members’ Visibility
Structures’ members require you to specify a scope qualifier. Structures accept only
Private, Public, and Friend qualifiers. If no qualifier is specified, Public is provided by
default. Only fields can also be declared using the Dim keyword and are equivalent to
Public. The following line demonstrates this:

Public Structure Order

‘Means Public:

Dim orderCount As Integer

Inheritance Limitations and Interfaces
Implementation
As for other built-in value types, structures implicitly inherit from the System.ValueType
type that inherits from System.Object. This is the only inheritance level allowed for struc-
tures. This means that, different from reference types (classes), structures can neither
inherit nor derive from other structures; therefore, the Inherits keyword is not allowed
within structures. Because structures derive from System.Object, they inherit only from
such class as the Equals, GetHashCode, and ToString methods that can also be overridden
within structures. Chapter 12, “Inheritance,” provides detailed information on inheritance
and overriding. Structures can instead implement interfaces; therefore, the Implements
keyword is enabled. Chapter 13, “Interfaces” discusses interfaces.

Memory Allocation
Structures are value types. This means that they are allocated in the stack. Such behavior
provides great efficiency to structures, because when they are no longer necessary, the CLR
simply removes them from the stack and avoids the need of invoking the garbage collec-
tor as happens for reference types. But this is just a general rule. Structures’ members can
expose any kind of .NET type and therefore reference types, too. The following revisited
implementation of the Order structure provides an example, exposing an
OrderDescription property of type String that is a reference type:

Public Structure Order

Public Property OrderID As Integer

Public Property OrderDate As Date

Public Property ShippedDate As Date

1
1

From the Library of Wow! eBook

ptg

304 CHAPTER 11 Structures and Enumerations

Public Property CustomerID As Integer

Public Property EmployeeID As Integer

Public Property OrderDescription As String

End Structure

In this scenario, the garbage collection process is invoked to free up memory space when
the OrderDescription is released and therefore causes some performance overhead. With
that said, value types are faster and more efficient than reference types only if they do not
expose members that are reference types. Another important consideration is that when
you pass or assign a structure to a method or to a variable, the actual value and data of the
structure is passed (or copied in assignments) unless you pass the structure to a method by
reference. If the data you want to represent is large, you should consider reference types.

Organizing Structures
You can optimize structures’ efficiency with a little bit of work. This work is related to
the order that you implement members within a structure. For example, consider the
following code:

Public Structure VariousMembers

Public Property anInteger As Integer

Public Property aByte As Byte

Public Property aShort As Short

End Structure

Notice the order how members are exposed. Because of their memory allocation in bytes,
it’s preferable to expose members in the order of bytes they require. With that said, this is
a revisited, more efficient version of the structure:

Public Structure VariousMembers

Public Property aByte As Byte

Public Property aShort As Short

Public Property anInteger As Integer

End Structure

If you are in doubt, don’t worry. The .NET Framework offers an interesting attribute
named StructLayout, exposed by the System.Runtime.InteropServices namespaces,
which tells the compiler to organize a structure in the most appropriate way and that you
can use as follows:

’Requires

‘Imports System.Runtime.InteropServices

<StructLayout(LayoutKind.Auto)>

Public Structure VariousMembers

Public Property aByte As Byte

Public Property aShort As Short

From the Library of Wow! eBook

ptg

305Overloading Operators

Public Property anInteger As Integer

End Structure

IMPORTANT NOTE

Remember that if you use the StructLayout attribute, you cannot pass your structure
to unmanaged code such as Windows APIs. If you try, the compiler throws an excep-
tion. This is because the Windows APIs expect members to be presented in a prede-
fined order and not reorganized at compile time.

Overloading Operators
In Chapter 4 you learned about operators offered by the Visual Basic grammar. Although
Visual Basic does not enable creating new custom operators, it offers the possibility of
overloading existing operators. In other words, you have the ability to extend existing oper-
ators with custom versions. You might wonder when and why this could be necessary. You
get an answer to this question with the following code. Consider the simple structure that
represents a three-dimensional coordinate:

Public Structure ThreePoint

Public Property X As Integer

Public Property Y As Integer

Public Property Z As Integer

Public Sub New(ByVal valueX As Integer, ByVal valueY As Integer,

ByVal valueZ As Integer)

Me.X = valueX

Me.Y = valueY

Me.Z = valueZ

End Sub

End Structure

Now imagine that, for any reason, you want to sum two instances of the structure using
the + operator. If you try and write the following code

’Won’t compile, throws an error

Dim result As ThreePoint = t1 + t2

the Visual Basic compiler throws an error saying that the + operator is not defined for the
ThreePoint structure. You should begin understanding why operator overloading can be a
good friend. The same situation is for other operators. In Visual Basic you overload opera-
tors using a Public Shared Operator statement within your type definition. For example,
the following code overloads the + and - operators:

1
1

From the Library of Wow! eBook

ptg

306 CHAPTER 11 Structures and Enumerations

Public Shared Operator +(ByVal firstValue As ThreePoint,

ByVal secondValue As ThreePoint) As ThreePoint

Return New ThreePoint With {.X = firstValue.X + secondValue.X,

.Y = firstValue.Y + secondValue.Y,

.Z = firstValue.Z + secondValue.Z}

End Operator

Public Shared Operator -(ByVal firstValue As ThreePoint,

ByVal secondValue As ThreePoint) As ThreePoint

Return New ThreePoint With {.X = firstValue.X - secondValue.X,

.Y = firstValue.Y - secondValue.Y,

.Z = firstValue.Z - secondValue.Z}

End Operator

Of course this is just an example, and you might want to perform different calculations.
Both overloads return a ThreePoint structure whose members have been populated with
the sum and the difference between the X, Y, and Z properties, respectively, from both
initial instances. When overloading operators, you need to remember that some of them
require you to also overload the negation counterpart. For example, the equality = opera-
tor cannot be overloaded alone but requires the overloading of the inequality <> operator.
You will be informed by the Visual Basic background compiler when an operator can’t be
overloaded alone. The following code shows an overloading example of equality and
inequality operators for the ThreePoint structure:

Public Shared Operator =(ByVal firstValue As ThreePoint,

ByVal secondValue As ThreePoint) As Boolean

Return (firstValue.X = secondValue.X) _

AndAlso (firstValue.Y = secondValue.Y) _

AndAlso (firstValue.Z = secondValue.Z)

End Operator

Public Shared Operator <>(ByVal firstValue As ThreePoint,

ByVal secondValue As ThreePoint) As Boolean

Return (firstValue.X <> secondValue.X) _

OrElse (firstValue.Y <> secondValue.Y) _

OrElse (firstValue.Z <> secondValue.Z)

End Operator

IntelliSense can help you understand what operators can be overloaded. For your conve-
nience a list of operators that can be overloaded is summarized in Table 11.1.

From the Library of Wow! eBook

ptg

307Overloading Operators

TABLE 11.1 Operators That Can Be Overloaded

Operator Type

+ Unary/Binary

- Unary/Binary

OPERATORS CONTEXT

Overloading operators is discussed in this chapter because operators such as sum or
subtraction make more sense with value types, but obviously this technique is also
allowed with classes, for example for comparison operators. You can certainly overload
operators within reference types, too.

Overloading CType

The CType operator also can be overloaded to provide appropriate mechanisms for
converting to and from a custom type. The interesting thing in overloading CType is that
you have to consider both situations studied in Chapter 4, known as widening and
narrowing conversions (see that topic for further details). Continuing the previous

1
1

Not Unary

IsTrue Unary

IsFalse Unary

* Binary

/ Binary

\ Binary

& Binary

^ Binary

Mod Binary

Like Binary

CType Unary

= Logical

<> Logical

>, >= Logical

<, =< Logical

And/Or/Xor Logical

<< Shift

>> Shift

From the Library of Wow! eBook

ptg

308 CHAPTER 11 Structures and Enumerations

example of the ThreePoint structure, the following code snippet offers a special imple-
mentation of CType enabling conversions to and from an array of integers:

’From ThreePoint to Array of Integer

Public Shared Narrowing Operator CType(ByVal instance As ThreePoint) _

As Integer()

Return New Integer() {instance.X,

instance.Y,

instance.Z}

End Operator

‘From Integer() to ThreePoint

Public Shared Widening Operator CType(ByVal instance As Integer()) _

As ThreePoint

If instance.Count < 3 Then

Throw New ArgumentException(“Array is out of bounds”,

“instance”)

Else

Return New ThreePoint With {.X = instance(0),

.Y = instance(1),

.Z = instance(2)}

End If

End Operator

The code is quite simple. Notice how you must specify a keyword corresponding to the
effective kind of conversion (Widening and Narrowing) and how, within the Widening defi-
nition, the code performs a basic validation ensuring that the array of integers contains at
least three items.

CTYPE CONVENTIONS

As a convention, your type should implement an overload of CType that converts from a
String into the custom type. Such conversion should also be offered implementing
two methods conventionally named as Parse and TryParse that you saw in action in
Chapter 4 with several primitive types.

Structures and Common Language Specification
The Common Language Specification has established specific rules for structures. If you
want your structure to be CLS-compliant, you need to overload the equality and inequal-
ity operators and redefine the behavior of the Equals and GetHashCode methods inherited
from Object. Listing 11.1 shows an example of a CLS-Compliant structure.

From the Library of Wow! eBook

ptg

309Enumerations

LISTING 11.1 Building a CLS-Compliant Structure

<CLSCompliant(True)>

Public Structure ClsCompliantStructure

Public Shared Operator =(ByVal obj1 As CLSCompliantStructure,

ByVal obj2 As CLSCompliantStructure) As Boolean

Return obj1.Equals(obj2)

End Operator

Public Shared Operator <>(ByVal obj1 As CLSCompliantStructure,

ByVal obj2 As CLSCompliantStructure) As Boolean

Return Not obj1.Equals(obj2)

End Operator

Public Overrides Function Equals(ByVal obj As Object) As Boolean

Return Object.Equals(Me, obj)

End Function

Public Overrides Function GetHashCode() As Integer

Return Me.GetHashCode

End Function

End Structure

If you are not already familiar with overriding, you can read the next chapter and then
take a look back at the preceding code.

Enumerations
Enumerations are another kind of value types available in the .NET Framework. They repre-
sent a group of constants enclosed within an Enum..End Enum code block. An enumeration
derives from System.Enum, which derives from System.ValueType. The following is an
example of enumeration:

’These are all Integers

Public Enum Sports

Biking ‘0

Climbing ‘1

Swimming ‘2

Running ‘3

Skiing ‘4

End Enum

By default, enumerations are sets of integer values. The preceding code defines a Sports
enumeration of type Integer, which stores a set of integer constants. The Visual Basic
compiler can also automatically assign an integer value to each member within an
enumeration, starting from zero as indicated in comments. You can eventually manually

1
1

From the Library of Wow! eBook

ptg

310 CHAPTER 11 Structures and Enumerations

assign custom values, but you should avoid this when possible, because the standard
behavior ensures that other types can use your enumeration with no errors. The following
code shows instead how you can change the result type of an enumeration:

Public Enum LongSports As Long

Biking

Climbing

‘and so on...

End Enum

IntelliSense can help you understand that enumerations support only numeric types, such
as Byte, Short, Integer, Long, UShort, UInteger, ULong, and SByte. Notice that enumera-
tions can be made of mixed numeric data types if assigned with values of different
numeric types.

WRITING ENUMERATIONS

Enumerations are easy to use and fast to implement. They are essentially read-only
groups of read-only constants. Because of this, use them when you are sure that those
values need no modifications; otherwise, consider implementing a structure instead.

Using Enumerations

You use enumerations as any other .NET type. For example, consider the following
method that receives the Sports enumeration as an argument and returns a response
depending on what value has been passed:

Private Sub AnalyzeSports(ByVal sportsList As Sports)

Select Case sportsList

Case Is = Sports.Biking

Console.WriteLine(“So, do you really like biking my friend?”)

Case Is = Sports.Climbing

Console.WriteLine(“I do not like climbing like you!”)

Case Else

Console.WriteLine(“Every sport is good!”)

End Select

End Sub

The following code snippet then declares a variable of type Sports, assigns a value, and
then invoke the method passing the variable:

Dim mySport As Sports = Sports.Climbing

AnalyzeSports(mySport)

From the Library of Wow! eBook

ptg

311Enumerations

Notice how IntelliSense comes in when you need to specify a value whose type is an
enumeration. Figure 11.1 shows the IntelliSense’s pop-up window related to our custom
enumeration.

1
1

Useful Methods from System.Enum

As mentioned at the beginning of this section, all enumerations derive from the
System.Enum class. Such a type exposes some shared methods that enable performing oper-
ations on enumerations. This subsection explains how you can take advantage of methods
for working on enumerations.

GetValues and GetNames
The first two methods described are GetValues and GetNames. Both enable retrieving an
array of items stored within an enumeration, but GetValues gets an array of integers corre-
sponding to the numeric values of enumerations’ items whereas GetNames retrieves an
array of strings storing the names of enumerations’ items. Continuing the example of the
Sports enumeration, consider the following code:

For Each item As Integer In System.Enum.GetValues(GetType(Sports))

Console.WriteLine(item)

Next

FIGURE 11.1 IntelliSense provides flexibility in choosing and assigning enumerations.

From the Library of Wow! eBook

ptg

312

This code’s output is the following list:

0

1

2

3

4

GetNames works similarly except that it returns an array of strings:

For Each item As String In System.Enum.GetNames(GetType(Sports))

Console.WriteLine(item)

Next

And this code produces the following output:

Biking

Climbing

Swimming

Running

Skiing

Notice how both methods require a System.Type argument instead of a System.Enum;
therefore, it’s necessary to invoke the GetType operator. Another interesting thing is about
syntax. The System.Enum class full name for invoking its methods is used here because the
Enum class is exposed by the System namespace that is always imported at project level.
Technically you could just write invocations as follows: Enum.GetNames. But this is not
allowed in Visual Basic because of conflicts with the Enum reserved keyword. To use the
simplified syntax, you can enclose the Enum work within square brackets as follows:

[Enum].GetNames(GetType(Sports))

The Visual Basic compiler enables this syntax perfectly equivalent to the previous one.
Notice that the IDE will add the square brackets for you when typing Enum. Now, let’s
discover other useful methods.

GetName
GetName works similarly to GetNames, except that it returns just a single name for a
constant. Consider the following code:

’Returns Climbing

Console.WriteLine(System.Enum.GetName(GetType(Sports), 1))

You just need to pass the type instance and the value in that enumeration that you want
to retrieve the name of.

CHAPTER 11 Structures and Enumerations

From the Library of Wow! eBook

ptg

313Enumerations
1

1

IsDefined
IsDefined checks if the specified constant exists within an enumeration and returns a
Boolean value. The following code looks first for an existing value and then for a non
existing one:

’Returns True

Console.WriteLine(System.Enum.IsDefined(GetType(Sports), “Climbing”))

‘Returns False

Console.WriteLine(System.Enum.IsDefined(GetType(Sports), “Soccer”))

ToString and Parse
System.Enum also provides two methods for converting to and from string. The ToString
method is inherited from System.Object and is redefined so that it can provide a string
representation of the specified value. Consider the following code snippet:

’Sports.Climbing

Dim mySport As Sports = CType(1, Sports)

Console.WriteLine(mySport.ToString)

Such code returns Climbing, which is the string representation of the specified constant
value. Also notice how, if Option Strict is On, you must explicitly convert the value into
a Sports enumeration using CType. Parse is basically the opposite of ToString and gets the
corresponding numeric value within an enumeration depending on the specified string.
The following code provides an example:

Console.WriteLine(“Enter your favorite sport:”)

Dim sport As String = Console.ReadLine

Dim result As Sports = CType(System.Enum.Parse(GetType(Sports),

sport, True), Sports)

‘Returns 2

Console.WriteLine(“The constant in the enumeration for {0} is {1}”,

sport.ToString, CInt(result))

Console.ReadLine()

The above code requires the input from the user, who has to enter a sport name. Using
Parse, the code obtains the element in the enumeration corresponding to the entered
string. For example, if you enter Swimming, the code produces the following output:

The constant in the enumeration for Swimming is 2

Notice how Parse can receive a third argument of type Boolean that enables specifying if
the string comparison must ignore casing.

ASSIGNING ENUMS TO INTEGERS

You can assign an enumeration variable to an Integer type without a conversion operator.

From the Library of Wow! eBook

ptg

314 CHAPTER 11 Structures and Enumerations

Using Enums As Return Values From Methods

A common usage of enumerations is representing different results from methods that
return a numeric value, as it often happens for Windows API functions or for methods
that return a number for communicating the result of the code. For example, consider the
following code which defines an enumeration that a method uses in order to communi-
cate the result of a simple elaboration on a file:

Public Enum Result

Success = 0

Failed = 1

FileNotFound = 2

End Enum

Public Function ElaborateFile(ByVal fileName As String) As Result

Try

Dim text As String = My.Computer.FileSystem.ReadAllText(fileName)

‘Do some work here on your string

Return Result.Success

Catch ex As IO.FileNotFoundException

Return Result.FileNotFound

Catch ex As Exception

Return Result.Failed

End Try

End Function

Actually each Return statement returns an Integer value from 0 to 2 depending on the
method result, but using an enumeration provides a more convenient way for understand-
ing the result, as demonstrated in the following code:

Sub OpenFile()

Dim res As Result = ElaborateFile(“myfile.txt”)

‘Success = 0

If res = Result.Success Then

Console.WriteLine(“Success”)

‘FileNotFound = 2

ElseIf res = Result.FileNotFound Then

Console.WriteLine(“File not found”)

‘Failed = 1

ElseIf res = Result.Failed Then

Console.WriteLine(“The elaboration failed”)

End If

End Sub

From the Library of Wow! eBook

ptg

315Enumerations
1

1

Enum Values As Bit Flags

Enumerations can be designed for supporting bitwise operations by marking them with
the Flags attribute. This allows combining enumeration values with bitwise operators
such as OR. Consider the following implementation of the Sports enumeration that was
described previously:

<Flags>

Public Enum Sports

Biking

Climbing

Swimming

Running

Skiing

End Enum

By applying the Flags attribute, the values for each enumeration value now become bitflag
patterns that have a binary representation such as the following:

00000000

00000001

00000010

00000100

00001000

Basically combining all values with the OR operator will result in a 11111111 binary
value. For example, you could perform an evaluation like the following:

’sportsTest is 0000010

Dim sportsTest As Sports =

Sports.Biking And Sports.Climbing Or Sports.Swimming

This kind of approach is really useful when you want to be able to perform bitwise opera-
tions and comparisons.

Enumerations and Common Language Specification

When introducing enumerations, you learned that they support only numeric types.
There is another limitation if you plan to implement CLS-compliant enumerations. Only
CLS-compliant types can characterize CLS-compliant enumerations; therefore, the SByte,
UShort, UInteger, and ULong types cannot be used within CLS-compliant enumerations.
Another important consideration is that CLS-compliant enumerations must be decorated
with the Flag attribute. The following is an example of a CLS-compliant enumeration:

<Flags()> Public Enum ClsCompliantEnum As Byte

FirstValue = 0

SecondValue = 1

ThirdValue = 2

End Enum

From the Library of Wow! eBook

ptg

316 CHAPTER 11 Structures and Enumerations

NOTE

The Flag attribute indicates the compiler that an enumeration has to be considered as
a bit field.

Summary
In this chapter you saw in action another important part of the .NET development with
Visual Basic, which is related to creating custom value types. Structures are the .NET way
for building custom value types and can expose methods, properties, and fields. There are
several similarities with classes, but structures are value types allocated in the stack and
cannot inherit or derive from other structures but can implement interfaces. Because of
their nature, structures are susceptible of operations. This requires, in certain situations,
the need for specific operators. The .NET Framework enables overloading operators to
provide custom implementations of unary, binary, and logical operators, a technique that
is allowed also for classes. Another kind of value types is enumerations, which represent a
group of read-only constants and that are optimized for Integer values, offering several
shared methods for performing operations on constants composing the enumeration. An
overview of how Common Language Specification rules the implementation of structures
and enumerations completes the chapter.

From the Library of Wow! eBook

ptg

CHAPTER 12

Inheritance

IN THIS CHAPTER

. Applying Inheritance

. Deep Diving System.Object

. Introducing Polymorphism

. Overriding Members

. NotOverridable Keyword

. Conditioning Inheritance

. Acccessing Base Classes
Members

. Constructors’ Inheritance

. Shadowing

. Overriding Shared Members

. Practical Inheritance: Building
Custom Exceptions

Inheritance is the feature that enables designing classes
that derive from simpler classes, known as base classes.
Derived classes implement members defined within the
base class and have the possibility of defining new members
or of redefining inherited members. Members that a derived
class inherits from the base one can be methods, properties,
and fields, but such members must have Public, Protected,
Friend or Protected Friend scope (see Chapter 7, “Class
Fundamentals,” for details about scopes). In .NET develop-
ment inheritance represents a typical “is-a” relationship. For
a better understanding, a good example is real life. When
you say “person,” you identify a general individual. Every
one of us is a person, with a name and a last name. But a
person also has a gender, either man or woman. In such a
situation, a single person is the base class and a woman is a
derived class, because it inherits the name and last name
attributes from the person but also offers a gender attribute.
But this is only the first layer. Each man or each woman
can have a job and jobs are made of roles. So a woman can
be employed by a company; therefore, as an employee she
will have an identification number, a phone number, and
an office room number. In this representation there is a
deeper inheritance; because a person can be compared to a
base class, a woman can be compared to an intermediate
base class (also deriving from the person), and the
employee is the highest level in the inheritance hierarchy. If
we want to go on, we could still define other roles, such as
secretary, program manager, receptionist, phone operator,
and so on. Each of these roles could be represented by a
class that derives from the employee role. As you can see,
this articulate representation is something that in a devel-
opment environment such as.NET Framework enables

From the Library of Wow! eBook

ptg

318 CHAPTER 12 Inheritance

defining a complex but powerful framework of objects. In this chapter you get a complete
overview of the inheritance features in.NET Framework with Visual Basic 2010, and you
will understand how you can take advantage of inheritance for both building hierarchical
frameworks of custom objects and more easily reusing your code.

Applying Inheritance
Before explaining how inheritance is applied in code, a graphical representation can be
useful. Figure 12.1 shows how you can create robust hierarchies of custom objects with
inheritance.

You derive a class from a base class using the Inherits keyword. For example, consider the
following implementation of the Person class that exposes some basic properties:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

‘A simplified implementation

Public Function FullName() As String

If FirstName = ““ And LastName = ““ Then

Throw New _

InvalidOperationException(“Both FirstName and LastName are empty”)

Else

Return String.Concat(FirstName, “ “, LastName)

End If

End Function

End Class

FIGURE 12.1 A graphical representation of a custom framework of objects using inheritance.

From the Library of Wow! eBook

ptg

319Applying Inheritance
1

2

INHERITS SYSTEM.OBJECT

In the .NET Framework development, every class inherits from System.Object. Because
of this, there is no need to add an inherits directive each time you implement a custom
type, because the Visual Basic compiler will do this for you behind the scenes.

The class also offers a FullName method that returns the concatenation of the two
FirstName and LastName properties, providing a simplified and basic validation that here
is for demonstration purposes. Now we can design a new class that inherits from Person,
and in this scenario Person is the base class. The new class is named Contact and repre-
sents a personal contact in our everyday life:

Public Class Contact

Inherits Person

Public Property Email As String

Public Property Phone As String

Public Property BirthDate As Date

Public Property Address As String

End Class

Contact is the derived class. It receives all public members from Person (in this example
both the FirstName and LastName properties and the FullName method) and provides
implementation of custom members. This is a typical application of .NET inheritance, in
which one derived class inherits from the base class. The .NET Framework does not enable
inheriting from multiple classes. You can create a derived class from only a base class. But
there are situations in which multiple levels of inheritance would be required; continuing
the example of the Person class, there are several kinds of people that you will meet in
your life, such as customers, employees of your company, and personal contacts. All these
people will have common properties, such as the first name and the last name; therefore,
the Person class can be the base class for each of them, providing a common infrastruc-
ture that can then be inherited and customized. But over a person representation, if you
consider a customer and an employee, both people will have other common properties,
such as a title, a business phone number, and an email address. They will differ in the end
because of proper characteristics of their role. For this purpose you can implement inter-
mediate classes that are derived classes from a first base class and base classes for other and
more specific ones. For example, you could implement an intermediate infrastructure for
both customers and employees. The following code snippet provides a class named
BusinessPerson that inherits from Person:

Public Class BusinessPerson

Inherits Person

Public Property Email As String

Public Property Title As String

From the Library of Wow! eBook

ptg

320

Public Property BusinessPhone As String

End Class

This class inherits the FirstName and LastName properties from Person (other than
methods such as ToString and other public methods exposed by System.Object) and
exposes other common properties for classes with a different scope. For example, both a
customer and an employee would need the preceding properties but each of them needs
its own properties. Because of this, the BusinessPerson class is the intermediate derived
class in the hierarchic framework of inheritance. Now consider the following classes,
Customer and Employee:

Public Class Customer

Inherits BusinessPerson

Public Property CustomerID As Integer

Public Property CompanyName As String

Public Property Address As String

Public Property ContactPerson As String

End Class

Public Class Employee

Inherits BusinessPerson

Public Property EmployeeID As Integer

Public Property HomePhone As String

Public Property MobilePhone As String

Public Property HireDate As Date

End Class

Both classes receive the public properties from BusinessPerson and both implement their
custom properties according to the particular person they intend to represent. We can
summarize the situation as follows:

Customer exposes the following properties:

. FirstName and LastName, provided at a higher level by Person

. Email, Title, and BusinessPhone provided by BusinessPerson

. CustomerID, CompanyName, Address, and ContactPerson provided by its implementa-
tion

Employee exposes the following properties:

. FirstName and LastName, provided at a higher level by Person

. Email, Title, and BusinessPhone provided by BusinessPerson

CHAPTER 12 Inheritance

From the Library of Wow! eBook

ptg

321Illustrating System.Object in Detail
1

2

. EmployeeID, HomePhone, MobilePhone, and HireDate provided by its implementation

Because at a higher level we also exposed a method named FullName, which has public
visibility, such a method is also visible from derived classes.

MEMBERS’ SCOPE AND INHERITANCE

Remember that only Public, Protected, Friend, and Protected Friend members
can be inherited within derived classes.

When available, you can use derived classes the same way as you would do with any other
class, even if you do not know at all that a class derives from another one. The following,
simple code demonstrates this:

’Employee inherits from BusinessPerson

‘which inherits from Person

Dim emp As New Employee With {.EmployeeID = 1,

.Title = “Dr.”,

.LastName = “Del Sole”,

.FirstName = “Alessandro”,

.Email = “alessandro.delsole@visual-basic.it”,

.BusinessPhone = “000-000-000000”,

.HomePhone = “000-000-000000”,

.MobilePhone = “000-000-000000”,

.HireDate = New Date(6 / 24 / 2009)}

Until now we saw only properties in an inheritance demonstration. Methods are also
influenced by inheritance and by interesting features that make them powerful.

INHERITANCE AND COMMON LANGUAGE SPECIFICATION

The Common Language Specification establishes that a CLS-compliant class must
inherit only from another CLS-compliant class; otherwise, it will not be CLS-compliant.

Illustrating System.Object in Detail
As you remember from Chapter 4, “Data Types and Expressions,” in.NET development all
types implicitly derive from System.Object, considering both reference and value types.
Because of the inheritance relationship, custom types also inherit some methods, and
therefore you have to know them. Table 12.1 summarizes inherited methods.

From the Library of Wow! eBook

ptg

322

You need to understand what members are exposed by System.Object because they will
be all inherited by your custom classes and by all built-in classes in.NET Framework. I
already discussed Finalize and GetType methods, respectively, in Chapter 8 and Chapter
4. Such methods are inherited by all .NET types. The GetHashCode method returns the
hash that is assigned at runtime by the CLR to a class instance. The following code
provides an example:

Dim p As New Object

Dim hashCode As Integer = p.GetHashCode

Console.WriteLine(hashCode.ToString)

On my machine the code produces the following result: 33156464. This is useful to
uniquely identify a class’ instance. New is the constructor, as described in Chapter 7. When
creating custom classes, a constructor is inherited and implicitly defined within classes
and constitutes the default constructor. Object also exposes two shared members, Equals
and ReferenceEquals that return a Boolean value. It’s worth mentioning that shared
methods are also inherited by derived classes, but they cannot be overridden (as better
described in next section). For example, the following code establishes if both specified
objects are considered the same instance:

’Two different instances

Dim firstObject As New Object

Dim secondObject As New Object

‘Returns False

Dim test As Boolean = Object.ReferenceEquals(firstObject, secondObject)

CHAPTER 12 Inheritance

TABLE 12.1 System.Object Methods

Member Description

Finalize Performs cleanup operations; already described in Chapter 8, “Managing an
Object’s Lifetime”

GetType Returns the System.Type object related to the instance of the class

GetHashCode Returns the hash code for the current instance

New Creates an instance of the class

Equals Checks for equality between instances of the class

MemberwiseClone Provides a shallow copy of a class instance

ReferenceEquals Checks if the two specified instances are the same instance

ToString Provides a string representation of the current object

From the Library of Wow! eBook

ptg

323Introducing Polymorphism
1

2

Next, code instead checks if two instances are considered equal by the compiler:

’Returns False

Dim test As Boolean = Object.Equals(firstObject, secondObject)

There is also an overload of the Equals method that is instead an instance method. The
following code shows an example of instances comparisons using Equals:

’Returns False

Console.WriteLine(firstObject.Equals(secondObject))

‘Copies the reference to the instance

Dim testObject As Object = firstObject

‘Returns True

Console.WriteLine(testObject.Equals(firstObject))

For assignments, it is always possible to assign any type to an Object instance as demon-
strated here:

Dim aPerson As New Person

Dim anObject As Object = aPerson

Because Object is the mother of all classes, it can receive any assignment. The last method
in System.Object (that you will often use) is ToString. This method provides a string
representation of the object. Because System.Object is the root in the class hierarchy, this
method just returns the pure name of the class. Therefore, the following line of code
returns System.Object:

Console.WriteLine(firstObject.ToString)

But this is not appropriate for value types, in which you need a string representation of a
number, or for custom classes, in which you need a custom representation. Taking the
example of the famous Person class, it would be more useful to get a string composed by
the last name and the first name instead of the name of the class. Fortunately, the .NET
Framework inheritance mechanism provides the ability to change the behavior of inher-
ited members as it is exposed by base classes, known as overriding.

Introducing Polymorphism
Polymorphism is another key concept in the object-oriented programming. As its name
implies, polymorphism enables an object to assume different forms. In.NET development,
it basically means that you can treat an object as another one, due to the implementation
of common members. A first form of polymorphism is when you assign base classes with

From the Library of Wow! eBook

ptg

324

derived classes. For example, both Contact and Customer classes are derived of the Person
class. Now consider the following code:

Dim c As New Contact

Dim cs As New Customer

‘C is of type Contact

Dim p As Person = c

The new instance of the Person class receives an assignment from an instance of the
Contact class. This is always possible because Person is the parent of Contact (in which
base is the parent of derived). Therefore you might also have the following assignment:

’Cs is of type Customer

Dim p As Person = cs

In this scenario, Person is polymorphic in that it can “impersonate” multiple classes that
derive from itself.

RETRIEVING THE ACTUAL TYPE

Use the TypeOf operator, discussed in Chapter 4, to check if the polymorphic base
class is representing a derived one.

Basically polymorphism is useful when you need to work with different kinds of objects
using one common infrastructure that works the same way with all of them. Now let’s
continue with the preceding example. The Person class exposes the usual FirstName and
LastName properties also common to Contact and Customer. At this point you can remem-
ber how our previous implementations of the Person class offered a method named
FullName that returns the concatenation of both the LastName and FirstName properties.
For the current discussion, consider the following simplified version of the FullName
method, as part of the Person class:

Public Function FullName() As String

Return String.Concat(FirstName, “ “, LastName)

End Function

All classes deriving from Person inherit this method. All deriving classes do need a
method of this kind for representing the full name of a person, but they would need
different implementations. For example, the full name for a customer should include the
company name, whereas the full name for a personal contact should include the title.
This means that all classes deriving from Person will still need the FullName method
(which is part of the commonalities mentioned at the beginning of this section) but with
a custom implementation fitting the particular need. For this, the .NET Framework
enables realizing polymorphism by overriding members, as the next section describes.

CHAPTER 12 Inheritance

From the Library of Wow! eBook

ptg

325Overriding Members
1

2

NOTE ON POLYMORPHISM

Overriding is the most important part of polymorphism in.NET development, but also
interfaces play a role. Chapter 13, “Interfaces,” explain how interfaces complete poly-
morphism.

Overriding Members
When a class derives from another one, it inherits members, and the members behave as
they are defined in the base class. (For this purpose remember the scope). As for other
.NET languages, Visual Basic enables redefining inherited methods and properties so that
you can change their behavior. This technique is known as overriding and requires a little
work on both the base class and the derived class. If you want to provide the ability of
overriding a member, in the base class you have to mark such member as Overridable.
Let’s continue the example of the Person class, defined as follows:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

‘Simplified version, with no validation

Public Function FullName() As String

Return String.Concat(LastName, “ “,

FirstName)

End Function

End Class

The goal is providing derived classes the ability of overriding the FullName method so that
they can provide a custom and more appropriate version. So the method definition must
be rewritten as follows:

Public Overridable Function FullName() As String

At this point we could provide a simplified version of the Contact class, inheriting from
Person. Such implementation will override the FullName method to provide a custom
result. Let’s begin with the following code:

Public Class Contact

Inherits Person

Public Property Email As String

From the Library of Wow! eBook

ptg

326

Public Overrides Function FullName() As String

‘By default returns the base class’

‘implementation

Return MyBase.FullName()

End Function

End Class

Two things are important here. First, the Overrides keyword enables redefining the behav-
ior of a member that has been marked as Overridable in the base class. Second, Visual
Studio automatically provides an implementation that is the behavior established in the
base class, due to the MyBase keyword that is discussed later. IntelliSense is powerful in this
situation, too, because when you type the Overrides keyword, it will show all overridable
members, as shown in Figure 12.2, making it easier to choose what you have to override.

CHAPTER 12 Inheritance

Figure 12.2 is also useful to understand what members from System.Object are overridable.
The instance overload of Equals, GetHashCode, and ToString are methods that you can
redefine. You cannot instead override (neither mark as Overridable) shared members, and
this is demonstrated by the fact that the shared overload of Equals and ReferenceEquals
are not available in the IntelliSense pop-up window. At this point we could provide a new
implementation of the FullName method specific for the Contact class:

Public Overrides Function FullName() As String

‘A simplified implementation

‘with no validation

Dim result As New Text.StringBuilder

result.Append(Me.FirstName)

result.Append(“ “)

result.Append(Me.LastName)

result.Append(“, Email:”)

result.Append(Me.Email)

FIGURE 12.2 IntelliSense helps you choose overridable members.

From the Library of Wow! eBook

ptg

327Overriding Members
1

2

Return result.ToString

End Function

Now you can create a new instance of the Contact class and invoke the FullName method
to understand how overriding changed its behavior:

Dim testContact As New Contact With _

{.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Email = “Alessandro.delsole@visual-basic.it”}

Console.WriteLine(testContact.FullName)

The preceding code produces the following result:

Alessandro Del Sole, Email:Alessandro.delsole@visual-basic.it

Such a result is, of course, more meaningful if related to the specific kind of class. Another
common situation is redefining the behavior of the ToString method that is inherited
from Object and that is marked as Overridable. For example, in the Contact class we
could override ToString as follows:

Public Overrides Function ToString() As String

Dim result As New Text.StringBuilder

result.Append(Me.FirstName)

result.Append(“ “)

result.Append(Me.LastName)

result.Append(“, Email:”)

result.Append(Me.Email)

Return result.ToString

End Function

We can then invoke this method as follows:

Console.WriteLine(testContact.ToString)

Typically overriding ToString is more appropriate if you need to return a string represen-
tation of a class, as in the preceding example. The FullName method is just an example of
how you can override a custom method that is defined in a base class of yours and that is
not inherited from System.Object.

OVERRIDDEN IS OVERRIDABLE

When a member is overridden using the Overrides keyword, the member is also
implicitly Overridable. Because of this, you cannot use the Overridable keyword on
a member marked with Overrides; the compiler would throw an error message, requir-
ing you to remove the Overridable keyword.

From the Library of Wow! eBook

ptg

328 CHAPTER 12 Inheritance

NotOverridable Keyword

You can mark an overridden method or property as NotOverridable so that derived classes
cannot override them again. The NotOverridable keyword cannot be used versus methods
or properties that do not override a base member. Continuing the example of the Contact
class previously defined, the NotOverridable keyword can be used as follows:

Public NotOverridable Overrides Function FullName() As String

Return String.Concat(MyBase.FullName(), “: “, Email)

End Function

In this way the FullName method within the Contact class overrides the base class, but
derived classes cannot override it again. Basically NotOverridable is used only within
derived classes that override base class’s members, because in a base class the default
behavior for members is that they cannot be overridden unless you explicitly mark them
as Overridable.

Overloading Derived Members

You can use the overloading technique described in Chapter 7 also within derived classes,
with a few differences. You saw in Chapter 7 how overloaded members must not be
marked with the Overloads keyword within a class. Instead in a derived class using the
Overloads keyword is mandatory if you implement a new overload of a member with
different signature. The following code provides an example of overloading the FullName
method within the Contact class that you previously saw:

Public Overloads Function FullName(ByVal Age As Integer)

Return MyBase.FullName & “ of age: “ & Age.ToString

End Function

If another signature of the member is available within the derived class, the Overloads
keyword is required; otherwise, the compiler throws a warning message saying that
another signature is declared as Overrides or Overloads. If instead no other signatures are
available within the derived class, the Overloads keyword is required to prevent from
shadowing the base class’s member. Shadowing will be discussed at the end of this chapter.

Conditioning Inheritance
Inheritance is an important feature in OOP with .NET. There could be situations in which
inheritance is not good, for example to prevent others from accessing members in the
base class. Or there could be custom frameworks implementations in which a high-level
class should not be used directly, and therefore it should be always inherited. The Visual
Basic language enables accomplishing both scenarios via special keywords, as discussed in
the next section.

From the Library of Wow! eBook

ptg

329Conditioning Inheritance
1

2

NotInheritable Keyword

There are situations in which you might want to prevent inheritance from your classes.
This can be useful if you do not want a client to modify in any way the base object’s
behavior and its members. To accomplish this, you simply need to mark a class with the
NotInheritable keyword. The following code shows an example of a class that cannot
be derived:

Public NotInheritable Class BusinessPerson

Inherits Person

Public Property Email As String

Public Property Title As String

Public Property BusinessPhone As String

End Class

As you can see, the BusinessPerson class is marked as NotInheritable and cannot be
derived by other classes. It can still inherit from other classes but, obviously, members
cannot be marked as Overridable, being not inheritable. Another typical example of not
inheritable classes is when you have a class exposing only shared members, as shown in
the following code:

<CLSCompliant(True)>

Public NotInheritable Class CompressionHelper

Private Sub New()

End Sub

Public Shared Sub CompressFile(ByVal source As String,

ByVal target As String)

‘Your code goes here

End Sub

Public Shared Sub DecompressFile(ByVal compressed As String,

ByVal original As String)

‘Your code goes here

End Sub

End Class

The class is also decorated with the CLSCompliant attribute because such a situation is
explicitly established by the Common Language Specification. NotInheritable is the
Visual Basic counterpart of the sealed keyword in Visual C#. It’s important to know also
the C# representation, because in .NET terminology not inheritable classes are defined as
sealed and many analysis tools use this last word. NotInheritable classes provide better

From the Library of Wow! eBook

ptg

330 CHAPTER 12 Inheritance

performance; the compiler can optimize the usage of this kind of classes, but obviously
you cannot blindly use classes that cannot be inherited only to avoid a small overhead.
You should always design classes that fit your needs.

NOTE

As a better programming practice, developers should always mark classes with
NotInheritable unless they explicitly plan for the class to be inheritable by a con-
suming class.

MustInherit and MustOverride Keywords

Inheritance is straightforward because it enables building custom objects’ frameworks. In
this context, an object can represent the base infrastructure for different kinds of classes.
We saw how the Person class is the base infrastructure for the Customer, Employee, and
Contact derived classes. Because of its implementation, the Person class does nothing
special. It has a generic behavior, and you will probably never create instances of that
class, whereas it is more likely that you will create instances of its derived classes. In this
scenario, therefore, when you have a general purpose base class that acts just as a basic
infrastructure for derived classes, you can force a class to be inherited so that it cannot be
used directly. To accomplish this, the Visual Basic language provides the MustInherit
keyword that states that a class will work only as a base class and cannot be used directly
unless you create a derived class.

ABSTRACT CLASSES

In .NET terminology, classes marked as MustInherit are also known as abstract class-
es. This is important to remember because you will often encounter this term within
the documentation and in several analysis tools.

The following code shows a new implementation of the Person class:

Public MustInherit Class Person

Public Property FirstName As String

Public Property LastName As String

End Class

Now you can only derive classes from Person. Another interesting feature is the capability
to force members to be overridden. This can be accomplished using the MustOverride
keyword on methods and properties. Continuing with the example of the person class, we
can rewrite the FullName method definition as follows:

Public MustOverride Function FullName() As String

When you mark a method with MustOverride, the method has no body. This makes sense
because if it must be redefined within a derived class, it would be totally unhelpful provid-

From the Library of Wow! eBook

ptg

331Accessing Base Classes Members
1

2

ing a base implementation. The same thing happens with properties, meaning that you
will have only a declaration.

Inheriting from an Abstract Class
When you create a class that inherits from an abstract class (that is, marked as
MustInherit), the only thing you need to pay particular attention to is overriding
members. To help developers in such a scenario, the Visual Studio IDE automatically
generates members’ stubs for methods and properties marked as MustOverride in the base
abstract class. For example, if you create a new implementation of the Contact class, when
you press Enter after typing the Inherits line of code, Visual Studio generates an empty
stub for the FullName method as follows:

Public Class Contacts

Inherits Person

Public Overrides Function FullName() As String

End Function

End Class

At this point you can be sure that all MustOverride members have an implementation. In
our example you might want to complete the code adding the implementation shown in
the “Overriding Members” section in this chapter.

Abstract Classes and Common Language Specification
The Common Language Specification contains a small rule regarding abstract classes. This
rule establishes that to be CLS-compliant, members in abstract classes must explicitly be
marked as CLSCompliant. The following code provides an example:

<CLSCompliant(True)>

Public MustInherit Class Person

<CLSCompliant(True)> Public Property FirstName As String

<CLSCompliant(True)> Public Property LastName As String

<CLSCompliant(True)> Public MustOverride Function FullName() As String

End Class

Accessing Base Classes Members
Sometimes you need to access base classes’ members from derived classes. There are
several reasons for accomplishing this and therefore you need to know how. Visual Basic
provides two special keywords for invoking base members, MyBase and MyClass. Both are
discussed in this section.

From the Library of Wow! eBook

ptg

332 CHAPTER 12 Inheritance

MyBase Keyword

When you need to get a reference to the base class of the derived class you are working
on, you can invoke the MyBase keyword. This keyword represents an instance of the base
class and enables working on members as they are exposed by the base class, instead of
the ones exposed by the derived class. Consider the following implementation of the
Person class, in which a FullInformation method provides a representation of all the info
supplied to the class:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Property Age As Integer

Public Overridable Function FullInformation() As String

Dim info As New Text.StringBuilder

info.Append(“Name: “)

info.Append(Me.FirstName)

info.Append(“ Last name: “)

info.Append(Me.LastName)

info.Append(“ Age: “)

info.Append(Me.Age.ToString)

Return info.ToString

End Function

End Class

Now we can create a new implementation of the Contact class, inheriting from Person. A
new class needs to override the FullInformation method from the base class. When you
type the Overrides keyword, Visual Studio generates a default implementation that looks
like the following:

Public Overrides Function FullInformation() As String

Return MyBase.FullInformation

End Function

Basically the code returns the result offered by the FullInformation method as it is imple-
mented in the base class, which is accomplished via the MyBase keyword. We can now
rewrite the complete code for the Contact class as follows:

Public Class Contact

Inherits Person

Public Property Title As String

From the Library of Wow! eBook

ptg

333Accessing Base Classes Members
1

2

Public Overrides Function FullInformation() As String

Dim firstInfo As String = MyBase.FullInformation

Dim newInfo As New Text.StringBuilder

newInfo.Append(firstInfo)

newInfo.Append(“ Title: “)

newInfo.Append(Me.Title)

Return newInfo.ToString

End Function

End Class

Notice that the overridden method does not perform a complete string concatenation
while it invokes first the MyBase.FullInformation method. This is a best practice, because
one of inheritance purposes is favoring code reusability; therefore, this invocation is better
than rewriting the code from scratch. The following code snippet shows how you can
interact with both base class and with derived class properties, assuming that FirstName
and LastName have been declared as Overridable in the base class and overridden within
the derived class:

Public Sub New(ByVal name As String,

ByVal surName As String,

ByVal age As Integer,

ByVal title As String)

‘Goes to the base class properties

MyBase.FirstName = name

MyBase.LastName = surName

‘Current instance properties

Me.Age = age

Me.Title = title

End Sub

ME AND MYBASE

The Me keyword refers to the instance of the current class, whereas MyBase refers to the
base class that the current class derives from. This difference is evident when a member
is overridden, but if members are not redefined, both keywords refer to the same code.

There are a few things to know about constructors within derived classes; the next section
provides this information.

From the Library of Wow! eBook

ptg

334 CHAPTER 12 Inheritance

MyClass Keyword

Another way for accessing base classes’ members is the MyClass keyword. Imagine you
have a base class exposing some overridable members, such as properties or methods; then
you have a derived class that overrides those members. The MyClass keyword avoids the
application of overriding and invokes members on the derived class as if they were
NotOverridable on the base class. In other words, MyClass enables executing members of
a base class in the context of a derived class, ensuring that the member version is the one
in the base class. Listing 12.1 shows an example.

LISTING 12.1 Demonstrating the MyClass Keyword

Public Class BaseClassDemo

Public Overridable ReadOnly Property Test As String

Get

Return “This is a test in the base class”

End Get

End Property

Public Function DoSomething() As String

Return MyClass.Test

End Function

End Class

Public Class DerivedClassDemo

Inherits BaseClassDemo

Public Overrides ReadOnly Property Test As String

Get

Return “This is a test in the derived class”

End Get

End Property

End Class

Module Module1

Sub Main()

Dim derived As New DerivedClassDemo

‘Invokes the member within the derived

‘class but as if it was not overridden

Dim result As String = derived.DoSomething

End Sub

End Module

From the Library of Wow! eBook

ptg

335Constructors’ Inheritance
1

2

The BaseClassDemo base class exposes an overridable property that returns a text message,
for demo purposes. It also exposes a public method that just shows the text stored within
the Test property. Within the derived DerivedClassDemo, the Test property is overridden
whereas the DoSomething method is not. This method is still available when you create an
instance of the DerivedClassDemo class. Because the method is defined within the base
class and then it is executed within the derived class’s context, if you implemented the
method as follows:

Public Function DoSomething() As String

Return Me.Test

End Function

it would return the content of the derived Test property. There are instead situations in
which you want to ensure that only base class members are used within other members
that are not overridden; this can be accomplished using the MyClass keyword. If you run
the code shown in Listing 12.1, the result variable contains the following string: ”This
is a test in the base class” although the DoSomething method has been invoked on
an instance of the derived class. Of course, you can still use the overridden Test property
for other purposes in your derived class. MyClass is similar to Me in that both get a refer-
ence to the instance of the current class, but MyClass behaves as if members in the base
class were marked as NotOverridable and therefore as if they were not overridden in the
derived class.

Constructors’ Inheritance
The previous section discussed the MyBase keyword and how it can be used to access
members from a base class. The keyword also has another important purpose, which is
about constructors. Consider the following constructor that is implemented within the
Person class (that is, the base class) shown in the previous section:

Public Sub New(ByVal firstName As String,

ByVal lastName As String,

ByVal age As Integer)

Me.FirstName = firstName

Me.LastName = lastName

Me.Age = age

End Sub

The problem now is in derived classes. The rule is that if you have a constructor receiving
arguments in the base class, you do need to provide a constructor receiving arguments
also within a derived class, and the constructor needs to invoke the base class. The follow-
ing code shows how a constructor needs to be implemented within the Contact class:

Public Sub New(ByVal name As String,

From the Library of Wow! eBook

ptg

336 CHAPTER 12 Inheritance

ByVal surName As String,

ByVal age As Integer,

ByVal title As String)

MyBase.New(name, surName, age)

Me.Title = title

End Sub

As you can see from the preceding code snippet, the first line of code is an invocation to
the constructor of the base class and this is a rule that you must follow. After that line of
code, you can provide any other initialization code. This particular requirement is neces-
sary if you plan to provide a constructor that receives arguments within the base class,
whereas it’s not necessary if you implement a constructor that does not receive argu-
ments or if you do not provide any constructor (which is implicitly provided by the
Visual Basic compiler).

Shadowing
The beginning of this chapter explained that classes can inherit from base classes exposed
by class libraries such as .dll assemblies and that you do not necessarily need the source
code. It can happen that you create a class deriving from another class exposed by a
compiled assembly and implement a new member. It can also happen that the publisher
of the compiled base class releases a new version of the class, providing a member with
the same name of your custom member, but you cannot edit the base class, because you
don’t have the source code. Visual Basic 2010 provides an interesting way for facing such a
situation, known as shadowing. Although the Visual Basic compiler still enables compiling
(it throws warning messages), basically your class needs to “shadow” the member with the
same name of your custom one. This is accomplished using the Shadows keyword. For
example, consider this particular implementation of the Person class, exposing also a
Title property, of type String:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Property Title As String

End Class

Now consider the following implementation of the Contact class, which requires a value
defined within the Titles enumeration:

Public Class Contact

Inherits Person

Public Property Title As Titles

From the Library of Wow! eBook

ptg

337Overriding Shared Members
1

2

End Class

Public Enum Titles

Dr

Mr

Mrs

End Enum

The Contact class exposes a Title property, but its base class already has a Title property;
therefore, the Visual Basic compiler shows a warning message related to this situation. If
you want your code to use the derived Title property, you need to mark your member
with Shadows as follows:

Public Class Contact

Inherits Person

Public Shadows Property Title As Titles

End Class

You can accomplish the same result by marking the property within the derived class as
Overloads:

Public Overloads Property Title As Titles

In this particular example we can use auto-implemented properties. If the property
within the derived class returned the same type of the one within the base class, it would
make more sense using old-fashioned properties so that you have the ability to customize
the behavior.

Overriding Shared Members
Shared members cannot be overridden. This means that you can only use them as they
have been inherited from the base class or provide a shadowing implementation for creat-
ing a new definition from scratch. For example, consider this simplified implementation
of the Person class, which exposes a shared Counter property:

Public Class Person

Public Shared Property Counter As Integer

End Class

If you now create a Contact class that inherits from Person, you can use the Counter prop-
erty as previously implemented, or you can shadow the base definition as follows:

Public Class Contact

Inherits Person

From the Library of Wow! eBook

ptg

338 CHAPTER 12 Inheritance

Public Shared Shadows Property Counter As Integer

End Class

If you intend to provide an overloaded member with a different signature, you can use
overloading as follows:

Public Shared Shadows Property Counter As Integer

Public Shared Shadows Property Counter(ByVal maximum As Integer) As Integer

Get

End Get

Set(ByVal value As Integer)

End Set

End Property

Another limitation of shared members is that you cannot invoke MyBase and MyClass
keywords within them. Moreover, you cannot invoke shared members using the MyBase
keyword. For example, if you assign the Counter shared property defined in the person
class, you must write Person.Counter = 0 instead of MyBase.Counter = 0.

Practical Inheritance: Building Custom Exceptions
In Chapter 6, “Error Handling and Exceptions,” you learned about exceptions in .NET
development; you saw what exceptions are and how you can intercept exceptions at run-
time to create well-formed applications that can handle errors. The .NET Framework ships
with hundreds of exceptions related to many aspects of .NET development. There could be
situations in which you need to implement custom exceptions. Building custom excep-
tions is possible due to inheritance. A custom exception can inherit from the root
System.Exception class or from another exception (such as System.IO.IOException) that
necessarily inherits from System.Exception. Custom exceptions should always be CLS-
compliant. Let’s retake the Person class implementation, adding a method that returns the
full name of the person and that requires at least the last name:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Function FullName() As String

If String.IsNullOrEmpty(Me.LastName) Then

Throw New MissingLastNameException(“Last name not specified”)

Else

Return String.Concat(LastName, “ “, FirstName)

End If

From the Library of Wow! eBook

ptg

339Practical Inheritance: Building Custom Exceptions
1

2

End Function

End Class

As you can see, if the LastName property contains an empty or null string the code throws
a MissingLastNameException. This exception is custom and must be implemented.

NAMING CONVENTIONS

Remember that every exception class’s identifier must terminate with the Exception
word. Microsoft naming convention rules require this.

The MissingLastNameException is implemented as follows:

<Serializable()>

Public Class MissingLastNameException

Inherits Exception

Public Sub New()

MyBase.New()

End Sub

Public Sub New(ByVal message As String)

MyBase.New(message)

End Sub

Public Sub New(ByVal message As String, ByVal inner As Exception)

MyBase.New(message, inner)

End Sub

Protected Sub New(ByVal info As Runtime.Serialization.SerializationInfo,

ByVal context As _

Runtime.Serialization.StreamingContext)

MyBase.New(info, context)

End Sub

End Class

There is a series of considerations:

. As a custom exception, it inherits from System.Exception.

. The class is decorated with the Serializable attribute; this is one of the Common
Language Specification establishments and enables developers to persist the state of
the exception to disk (see Chapter 43, “Serialization”).

. Custom exceptions expose three overloads of the base constructors plus one over-
load marked as Protected that is therefore available to eventually derived classes
and that receives information on serialization.

From the Library of Wow! eBook

ptg

340 CHAPTER 12 Inheritance

. Custom exceptions are caught exactly as any other built-in exception.

When you have your custom exception, you can treat it as other ones:

Try

Dim p As New Person

‘Will cause an error, because

‘the LastName was not specified

Console.WriteLine(p.FullName)

Catch ex As MissingLastNameException

Console.WriteLine(“ERROR: please specify at least the last name”)

Catch ex As Exception

Console.WriteLine(“Generic error”)

Console.WriteLine(ex.ToString)

Finally

Console.ReadLine()

End Try

The preceding code intentionally causes an exception to demonstrate how the
MissingLastNameException works, by missing to assign the LastName property in the
Person class instance.

AVOID COMPLEX INHERITANCE CHAINS

Building a complex inheritance chain is something that should be carefully considered,
because as the chain grows, the child classes will be tied and rely on the base classes
not changing, at risk of disrupting the inheritance chain.

Summary
Inheritance is a key topic in the object-oriented programming with Visual Basic and.NET
Framework. In this chapter you learned lots of important concepts. First you learned what
inheritance is and how you can take advantage of inheritance for creating frameworks of
custom objects. Then you saw how to derive classes from base classes using the Inherits
keyword and how your derived classes automatically inherit some members from
System.Object, which is the root in the class hierarchy. When deriving classes you need
to consider how constructors and shared members behave, and the chapter provided an
overview. But inheritance would be of less use without polymorphism. You saw how poly-
morphism requires implementing one common infrastructure for multiple objects taking
advantage of the ability to redefine inherited members’ behavior. For this purpose, the
.NET Framework enables the overriding technique that you can use to modify the behav-
ior of derived members. You often want to condition inheritance, establishing when
classes should be sealed (NotInheritable) or abstract (MustInherit). In inheritance scenar-
ios you also often need to have access to base class members; therefore, you need the
MyBase and MyClass keywords. But you seldom work with theories; because of this, the
chapter closes with a practical demonstration of inheritance, showing how you can build
custom exceptions to use in your applications.

From the Library of Wow! eBook

ptg

CHAPTER 13

Interfaces

IN THIS CHAPTER

. Defining Interfaces

. Implementing and Accessing
Interfaces

. Inheritance and Polymorphism

. Interfaces Inheritance

. Defining CLS-Compliant
Interfaces

. Most Common .NET in
Interfaces

Most people have a car. Cars have an engine, four wheels,
gear, and other instrumentations. There are lots of different
companies that produce cars, and each company produces
different models. All companies have to build car models
adhering to some particular specifications established by
the law, and such specifications provide information on
what minimal components will compose cars, including a
list of those components that therefore are common to
every car. In.NET development we can compare interfaces
to the previously described law specifications. Interfaces
provide a list of members that an object must implement to
accomplish particular tasks in a standardized way. They are
also known as contracts, because they rule how an object
must behave to reach some objectives. You saw an example
in Chapter 8, “Managing an Object’s Lifetime,” for the
IDisposable interface that must be implemented if an
object wants to provide the capability to release resources
that are not only in-memory objects, according to a stan-
dardized way, meaning that.NET Framework knows that the
Dispose method from IDisposable is required to free up
resources. In this chapter you first learn how to define and
implement custom interfaces; then you get an overview of
the most common interfaces in.NET Framework. You learn
why interfaces are important because you will surely
wonder why you should use them.

Defining Interfaces
An interface is a reference type which is defined within an
Interface..End Interface block. Interfaces define only
signatures for members that classes will then expose and

From the Library of Wow! eBook

ptg

342 CHAPTER 13 Interfaces

are basically a set of the members’ definitions. Imagine you want to create an interface
that defines members for working with documents. This is accomplished with the
following code:

Public Interface IDocument

Property Content As String

Sub Load(ByVal fileName As String)

Sub Save(ByVal fileName As String)

End Interface

The interface is marked as Public because the default scope for interfaces is Friend.
Assigning public visibility ensures external assemblies use the interface (which is a
common scenario).

INTERFACES SCOPE

Interfaces can be declared Private, Protected, or Protected Friend only if they are
defined within a type such as a class.

As a convention, interface identifiers begin with a capital I. This is not mandatory (except
when creating CLS-compliant interfaces), but I strongly recommend you follow the
convention. The most important consideration is that the interface definition contains
only members’ definitions with no body. For both Load and Save methods’ definition,
there is only a signature but not the method body and implementation, which are left to
classes that implement the interface. Another important thing is that members defined
within interfaces cannot be marked with one of the scope qualifiers, such as Public,
Friend, and so on. By default, members defined by interfaces are Public. Finally, being
reference types, interfaces need to be treated as such. See Chapter 4, “Data Types and
Expressions”, for further information on reference types.

NESTED CLASSES

Interfaces can surprisingly define classes. A class defined within an interface is a typi-
cal Class..End Class block as you would normally define one. This is certainly an
uncommon scenario and can be useful to avoid naming conflicts with other classes,
but you have to know that it is possible.

From the Library of Wow! eBook

ptg

343Implementing and Accessing Interfaces

Implementing and Accessing Interfaces
Implementing interfaces means telling a class that it needs to expose all members defined
within the interface. This task is accomplished by using the Implements keyword followed
by the name of the interface. The following code snippet shows how to implement the
IDocument interface within a Document class:

Public Class Document

Implements IDocument

Public Property Content As String Implements IDocument.Content

Public Sub Load(ByVal fileName As String) Implements IDocument.Load

End Sub

Public Sub Save(ByVal fileName As String) Implements IDocument.Save

End Sub

End Class

You immediately notice that, when pressing Enter, the Visual Studio IDE automatically
generate members’ templates for you. This is useful: You do not need to waste your time
in writing members’ signatures. You also notice that when a member is defined within a
class because of the interface implementation, the Implements keyword is also added at
the end of the member followed by the related element in the interface.

MULTIPLE IMPLEMENTATIONS

Different from inheritance, classes and structures can implement more than one inter-
face. You see an example later in the chapter when discussing IEnumerable and
IEnumerator.

The Document class is basic and is for demo purposes only. To complete the implementa-
tion example, we can write code to populate methods for performing operations estab-
lished in the interface, as shown in Listing 13.1.

LISTING 13.1 Implementing Interfaces

Public Class Document

Implements IDocument

Public Property Content As String Implements IDocument.Content

‘Gets the content of a text document

Public Sub Load(ByVal fileName As String) Implements IDocument.Load

1
3

From the Library of Wow! eBook

ptg

344 CHAPTER 13 Interfaces

Try

Content = My.Computer.FileSystem.ReadAllText(fileName)

Catch ex As Exception

Throw

End Try

End Sub

‘Saves a text document to file

Public Sub Save(ByVal fileName As String) Implements IDocument.Save

Try

My.Computer.FileSystem.WriteAllText(fileName,

Content, False)

Catch ex As Exception

Throw

End Try

End Sub

End Class

Basically when you implement interfaces, you need to populate members’ templates with
your own code. This can ensure that your object is respecting the contract established by
the interface. When a class implements an interface, it also needs to access members that
it defines. You have two alternatives for this purpose. The first one is simple and intuitive
and consists of creating an instance of the class that implements the interface. Continuing
with the example of the Document class shown in Listing 13.1, the following code shows
how you can accomplish this:

Dim myDocument As New Document

myDocument.Load(“SomeDocument.txt”)

Console.WriteLine(myDocument.Content)

The code basically invokes instance members of the class with no differences for normal
classes’ implementations. The second alternative is declaring an interface variable. You
declare a variable whose type is the interface; the variable receives the result of an explicit
conversion from the class that implements the interface to the interface itself. More than
words, code can provide a good explanation:

Dim myDocument As IDocument = CType(New Document, IDocument)

myDocument.Load(“SomeDocument.txt”)

Console.WriteLine(myDocument.Content)

The result is the same. You often find code that makes use of interface variables, so spend
a little time to become familiar with this approach. After this discussion you will probably

From the Library of Wow! eBook

ptg

345Interfaces and Polymorphism

wonder why you need to define and implement interfaces because you just need to write
code as you would do without them. The answer is polymorphism.

Passing Interfaces As Method Arguments

One of the most powerful features when working with interfaces is that methods can
receive interfaces as parameters. This means that you can pass in any object as these para-
meters so long as it implements the given interface. The following example shows a
method that accepts an argument of type IList, meaning that any object implementing
the IList interface can be accepted:

’Interfaces as parameters

Public Class WorkWithLists

Public Function Elaborate(ByVal items As IList) As Integer

‘Just for demo, returns 0 if the list contains something

If items.Count > 0 Then

Return 0

Else

‘if not, adds a new object to the list

Dim item As New Object

items.Add(item)

Return -1

End If

End Function

End Class

This is with no doubt one of the most important features in programming by contracts
with interfaces.

Interfaces and Polymorphism
Chapter 12, “Inheritance,” discusses polymorphism with a basic purpose to offer a
common infrastructure to different kinds of objects. In the discussion, interfaces find their
natural habitat. They provide a common set of members that classes need to implement if
they need to perform a particular series of tasks. A typical example is the IDisposable
interface that you met in Chapter 8. All classes that need to provide a mechanism for
releasing resources implement that interface, which exposes a set of common members.
Another example is the ICloneable interface that defines a Clone method that classes can
implement to provide the ability to copy a class instance. You can easily understand that
interfaces are generic; they are not specific to any class, but instead they are the most
generic as possible so that the generality of classes can implement them. To provide a code

1
3

From the Library of Wow! eBook

ptg

346 CHAPTER 13 Interfaces

example, let’s retake the IDocument interface proposed in the previous section. This inter-
face was implemented by a Document class. But the same interface can be implemented in
other kinds of classes. For example, we can define an Invoice class that can implement
the same IDocument interface because it exposes a common set of members that can be
easily used within the Invoice class. Then the new class can provide new members
specific to its particular needs and behavior. The following code demonstrates this:

Public Class Invoice

Implements IDocument

Public Property Content As String Implements IDocument.Content

Public Sub Load(ByVal fileName As String) Implements IDocument.Load

End Sub

Public Sub Save(ByVal fileName As String) Implements IDocument.Save

End Sub

Public Property InvoiceNumber As Integer

Public Function CalculateDiscount(ByVal price As Decimal,

ByVal percent As Single) As Decimal

End Function

End Class

As you can see, the IDocument interface can serve the Invoice class with its members; then
the class defines new members (InvoiceNumber and CalculateDiscount) strictly related to
its behavior. By the way, the IDocument interface provides polymorphic code that can be
used in different situations and objects with a common infrastructure.

Interfaces Inheritance
Two situations are related to both inheritance and interfaces. The first scenario is when
you create a class that derives from another one that implements an interface. In such a
scenario the derived class also inherits members implemented through an interface and
does not need to implement the interface again. Moreover, if the base class is marked as
overridable members implemented via an interface, the derived class can override such
members if not private. The second scenario is a pure interface inheritance, in which an
interface can inherit from another one. Continuing the previous examples, we can

From the Library of Wow! eBook

ptg

347Defining CLS-Compliant Interfaces

consider creating an IInvoice interface that inherits from IDocument providing some more
specific members to represent an invoice. The following code demonstrates this:

Public Interface IInvoice

Inherits IDocument

‘New members

Property InvoiceNumber As Integer

Function CalculateDiscount(ByVal price As Decimal,

ByVal percent As Single) As Decimal

End Interface

As you can see, the Inherits keyword is used also for interface inheritance. In this example
the new interface inherits all members’ definitions from the IDocument interface plus adds
two new members, the InvoiceNumber property and the CalculateDiscount method.

Defining CLS-Compliant Interfaces
The Common Language Specification also provides rules for interfaces. The first rule is
that if you mark an interface as CLS-compliant, you cannot use CLS-incompliant types
within signatures. The following interface is not correct because it is marked as
CLSCompliant but uses a noncompliant type:

’Incorrect: UInteger is not CLS compliant

<CLSCompliant(True)> Public Interface ITest

Property Counter As UInteger

End Interface

The second rule is that a CLS-compliant interface cannot define shared members. The last
rule is that all members must be explicitly marked with the CLSCompliant attribute. The
following is an example of CLS-compliant interface:

<CLSCompliant(True)> Public Interface IClsCompliant

<CLSCompliant(True)> Property Counter As Integer

<CLSCompliant(True)> Function DoSomething() As Boolean

End Interface

1
3

From the Library of Wow! eBook

ptg

348 CHAPTER 13 Interfaces

NAMING CONVENTIONS

It is an implicit rule that identifiers for all CLS-compliant interfaces must begin with a
capital I letter. IDocument is a correct identifier whereas MyDocumentInterface is
not. Also identifiers cannot contain the underscore character (_) and are written accord-
ing to the Pascal-casing conventions.

Most Common .NET Interfaces
Because of their importance in polymorphism, the .NET Framework defines a large quan-
tity of interfaces implemented by the most types within the Framework. You need to
understand the most common built-in interfaces because they provide great flexibility in
your code, too, and in several situations you need to implement such interfaces in your
objects that need to perform particular tasks. Table 13.1 summarizes the most common
.NET interfaces.

The ICloneable interface is discussed in Chapter 4, and the IDisposable interface is
discussed in Chapter 8; therefore, this chapter does not revisit these interfaces. Instead
learn how you can implement the other ones in your code.

The IEnumerable Interface

You implement the IEnumerable interface each time you want your class to support
For..Each loops. Each time you iterate an object (typically a collection) using For Each, it
is because that object implements IEnumerable. The .NET Framework offers lots of collec-
tions (including generic ones) and enables creating custom collections inheriting from
built-in ones; therefore, implementing IEnumerable will probably be spared for you. It’s
important to understand how the interface works, especially for its intensive usage when

TABLE 13.1 Most Common Interfaces

Interface Description

ICloneable Its purpose is to provide methods for cloning objects.

IDisposable Implemented when a class needs to provide methods for releasing resources.

IEnumerable Implemented to provide the Enumerator, which enables objects to be iterated.

IComparable When an object wants to provide the capability of sorting, it must implement
this interface.

IConvertible To be implemented if an object enables conversion.

IFormattable Provides support for formatting data.

From the Library of Wow! eBook

ptg

349Most Common .NET Interfaces
1

3

working with LINQ. IEnumerable provides one method, named GetEnumerator, which
generally is implemented as follows:

Public Function GetEnumerator() As System.Collections.IEnumerator _

Implements System.Collections.IEnumerable.GetEnumerator

Return CType(Me, IEnumerator)

End Function

As you can see, the method returns the result of the conversion of the class instance to an
IEnumerator object; this means that IEnumerable must be implemented together with
another interface, named IEnumerator that offers methods and properties for moving
between items in a collection and for providing information on the current item. To
provide an example, imagine you have a class named Contacts that acts as a repository of
items of type Contact and that implements IEnumerable to provide iterations’ capabilities.
Listing 13.2 shows how this is accomplished in code, including a sample loop performed
invoking For..Each.

LISTING 13.2 Implementing IEnumerable and IEnumerator

Public Class Contacts

Implements IEnumerable, IEnumerator

Public Function GetEnumerator() As System.Collections.IEnumerator _

Implements System.Collections.IEnumerable.GetEnumerator

Return CType(Me, IEnumerator)

End Function

Private position As Integer = -1

Public ReadOnly Property Current As Object _

Implements System.Collections.IEnumerator.Current

Get

Return Items(position)

End Get

End Property

Public Function MoveNext() As Boolean _

Implements System.Collections.IEnumerator.MoveNext

position += 1

Return (position < Items.Length)

End Function

Public Sub Reset() Implements System.Collections.IEnumerator.Reset

position = -1

End Sub

From the Library of Wow! eBook

ptg

350

Private Items() As Contact = New Contact() {New Contact With _

{.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Email = “alessandro.delsole” & _

“@visual-basic.it”,

.PhoneNumber = “000-0000-00”},

New Contact With _

{.FirstName = “Robert”,

.LastName = “Green”,

.Email = “email@something.com”,

.PhoneNumber = “000-0000-00”} _

}

End Class

Public Class Contact

Public Property FirstName As String

Public Property LastName As String

Public Property Email As String

Public Property PhoneNumber As String

End Class

Module Module1

Sub Main()

Dim c As New Contacts

‘Returns “Del Sole”, “Green”

For Each Cont As Contact In c

Console.WriteLine(Cont.LastName)

Next

Console.ReadLine()

End Sub

End Module

The Contacts class stores an array of Contact objects and provides a private field,
position, which is used for returning information. The Current property returns the item
in the array corresponding to the current position, whereas the MoveNext method incre-
ments the position variable and returns True if the position number is still less than the
upper bound in the array. In the end, Reset just restores the initial value for position.
You also notice how, within the Sub Main in Module1, a simple For..Each loop is given for

CHAPTER 13 Interfaces

From the Library of Wow! eBook

ptg

351Most Common .NET Interfaces
1

3

demonstration purposes. If you run the code, you see that it correctly returns last names
for both actual contacts within the Contacts class.

IENUMERABLE(OF T)

As for other interfaces a generic version of IEnumerable supports specific types.
Because Chapter 15, “Delegates and Events,” discusses generics, this chapter shows
the nongeneric version that basically works the same except that it is related to Object.

The IComparable Interface

You implement the IComparable interface when you want to offer custom comparison
instrumentation to your objects. IComparable requires you to implement a CompareTo
method that returns an Integer value which is less than zero if the instance is less than
the compared object, zero if the instance equals the compared object and greater than
zero if the instance is greater than the compared object. For example, imagine you want to
provide a comparison to the Person class based on the length of the LastName property.
Listing 13.3 shows how you can accomplish this.

LISTING 13.3 Implementing the IComparable Interface

Public Class Person

Implements IComparable

Public Property FirstName As String

Public Property LastName As String

Public Property Email As String

Public Function CompareTo(ByVal obj As Object) As Integer Implements

System.IComparable.CompareTo

If Not TypeOf (obj) Is Person Then

Throw New ArgumentException

Else

Dim tempPerson As Person = DirectCast(obj, Person)

If Me.LastName.Length < tempPerson.LastName.Length Then

Return -1

ElseIf Me.LastName.Length = tempPerson.LastName.Length Then

Return 0

Else

Return 1

From the Library of Wow! eBook

ptg

352

End If

End If

End Function

End Class

Module Module1

Sub Main()

Dim p1 As New Person With {.LastName = “Del Sole”,

.FirstName = “Alessandro”}

Dim p2 As New Person With {.LastName = “AnotherLastName”,

.FirstName = “AnotherFirstName”}

Dim c As New ComparableHelper(p1)

Console.WriteLine(c.CompareTo(p2))

Console.ReadLine()

End Sub

End Module

You may notice how a first check is performed on the object type, which must be Person.
If not, the code throws an ArgumentException (meaning that the argument is not valid).
The comparison is accomplished in a simple way using unary operators. Next, to perform
the comparison you just need to create an instance of the Person class and then invoke its
CompareTo method, passing the Person you want to compare to the current instance.

ICOMPARER INTERFACE

If you want to provide custom sorting for arrays, you need to implement the IComparer
interface. The following article in the Microsoft Knowledge Base provides a good exam-
ple that is extensible to Visual Basic 2010.

Utilizing the Generic IComparable(Of T)
Although Chapter 15 discusses generics, this is a good point for showing something inter-
esting about them. Lots of interfaces within the .NET Framework have a generic counter-
part. For example, there is an IEnumerable(Of T) or IComparable(Of T), in which T is a
specific .NET type instead of Object, which would require conversions and, therefore,
performance overhead. We could rewrite the Person class shown in Listing 13.3 using the
IComparable(Of T) interface to provide support for Person objects. This is accomplished
by the following code:

Public Class Person

Implements IComparable(Of Person)

Public Property FirstName As String

CHAPTER 13 Interfaces

From the Library of Wow! eBook

ptg

353Most Common .NET Interfaces
1

3

Public Property LastName As String

Public Property Email As String

Public Function CompareTo(ByVal other As Person) As Integer _

Implements System.IComparable(Of Person).CompareTo

If Me.LastName.Length < other.LastName.Length Then

Return -1

ElseIf Me.LastName.Length = other.LastName.Length Then

Return 0

Else

Return 1

End If

End Function

End Class

You soon notice how DirectCast conversions disappear and how the CompareTo method
receives an argument of type Person instead of Object. This means less code and more
precision. In Chapter 15 and Chapter 16, “Working with Collections,” you gain detailed
information about generics and generic collections.

The IConvertible Interface

Objects implementing the IConvertible interface expose a series of ToXXX methods
exactly as the Convert class does so that such objects can easily be converted into another
type. This example uses a structure instead of a class, for the sake of simplicity. Listing
13.4 shows how the IConvertible interface can be implemented.

LISTING 13.4 Implementing the IConvertible Interface

Public Structure ThreePoint

Implements IConvertible

Public Function GetTypeCode() As System.TypeCode Implements _

System.IConvertible.GetTypeCode

Return TypeCode.Object

End Function

‘Just a custom return value

Public Function ToBoolean(ByVal provider As System.IFormatProvider) _

As Boolean Implements System.IConvertible.ToBoolean

Return X > Y

End Function

Public Function ToByte(ByVal provider As System.IFormatProvider) _

As Byte Implements System.IConvertible.ToByte

From the Library of Wow! eBook

ptg

354

Return Convert.ToByte(SumPoints)

End Function

Public Function ToChar(ByVal provider As System.IFormatProvider) _

As Char Implements System.IConvertible.ToChar

Return Convert.ToChar(SumPoints)

End Function

Public Function ToDateTime(ByVal provider As System.IFormatProvider) _

As Date Implements System.IConvertible.ToDateTime

Return Convert.ToDateTime(SumPoints)

End Function

Public Function ToDecimal(ByVal provider As System.IFormatProvider) _

As Decimal Implements System.IConvertible.ToDecimal

Return Convert.ToDecimal(SumPoints)

End Function

Public Function ToDouble(ByVal provider As System.IFormatProvider) _

As Double Implements System.IConvertible.ToDouble

Return Convert.ToDouble(SumPoints)

End Function

Public Function ToInt16(ByVal provider As System.IFormatProvider) _

As Short Implements System.IConvertible.ToInt16

Return Convert.ToInt16(SumPoints)

End Function

Public Function ToInt32(ByVal provider As System.IFormatProvider) _

As Integer Implements System.IConvertible.ToInt32

Return SumPoints()

End Function

Public Function ToInt64(ByVal provider As System.IFormatProvider) _

As Long Implements System.IConvertible.ToInt64

Return Convert.ToInt64(SumPoints)

End Function

Public Function ToSByte(ByVal provider As System.IFormatProvider) _

As SByte Implements System.IConvertible.ToSByte

Return Convert.ToSByte(SumPoints)

End Function

Public Function ToSingle(ByVal provider As System.IFormatProvider) _

As Single Implements System.IConvertible.ToSingle

Return Convert.ToSingle(SumPoints)

CHAPTER 13 Interfaces

From the Library of Wow! eBook

ptg

355Most Common .NET Interfaces
1

3

End Function

‘Required “Overloads”

Public Overloads Function ToString(ByVal provider As System.IFormatProvider) _

As String Implements System.IConvertible.ToString

Return String.Format(“{0}, {1}, {2}”, Me.X, Me.Y, Me.Z)

End Function

Public Function ToType(ByVal conversionType As System.Type,

ByVal provider As System.IFormatProvider) _

As Object Implements System.IConvertible.ToType

Return Convert.ChangeType(SumPoints, conversionType)

End Function

Public Function ToUInt16(ByVal provider As System.IFormatProvider) _

As UShort Implements System.IConvertible.ToUInt16

Return Convert.ToUInt16(SumPoints)

End Function

Public Function ToUInt32(ByVal provider As System.IFormatProvider) _

As UInteger Implements System.IConvertible.ToUInt32

Return Convert.ToUInt32(SumPoints)

End Function

Public Function ToUInt64(ByVal provider As System.IFormatProvider) _

As ULong Implements System.IConvertible.ToUInt64

Return Convert.ToUInt64(SumPoints)

End Function

Public Property X As Integer

Public Property Y As Integer

Public Property Z As Integer

Public Sub New(ByVal valueX As Integer,

ByVal valueY As Integer,

ByVal valueZ As Integer)

Me.X = valueX

Me.Y = valueY

Me.Z = valueZ

End Sub

Public Function SumPoints() As Integer

Return (Me.X + Me.Y + Me.Z)

End Function

End Structure

From the Library of Wow! eBook

ptg

356

The ThreePoint structure is simple; it just exposes three integer properties (x, y and z)
whose sum is returned via a SumPoints method. The goal of the IConvertible implemen-
tation is therefore enabling returning the result of the method converted into different
types. Basically each conversion method invokes the corresponding one of the Convert
class, with some exceptions. The first one is the ToBoolean method, which returns a
customized result depending on the value of x and y, but this is just for demonstration
purposes. (You can invoke the Convert.ToBoolean as well.) The second exception is the
ToString method. When you implement an interface that provides a method already
existing in the class (even because of inheritance), Visual Studio renames the interface’s
method adding a 1 in the end. For example, every class exposes ToString because it is
inherited from System.Object; therefore the ToString version provided by the interface is
automatically renamed to ToString1. But this is not elegant. A better technique is over-
loading because the method is marked with Overloads and named correctly.

IMPORTANT NOTICE

IConvertible does not adhere to the Common Language Specification, because it
makes use of CLS-incompliant types, such as UInt16, UInt32, and so on. You should
be aware of this if you plan to develop objects that need instead to be CLS-compliant.

The IFormattable Interface

The IFormattable interface enables implementing a new overload of the ToString method
to provide customized string formatting with deep control over the process, also defining
custom qualifiers. Listing 13.5 shows how you can implement the IFormattable interface.

LISTING 13.5 Implementing the IFormattable Interface

Imports System.Globalization

Public Class Person

Implements IFormattable

Public Property FirstName As String

Public Property LastName As String

Public Property Email As String

Public Overloads Function ToString(ByVal format As String,

ByVal formatProvider As System.IFormatProvider) _

As String Implements System.IFormattable.ToString

If String.IsNullOrEmpty(format) Then format = “G”

If formatProvider Is Nothing Then formatProvider = _

CHAPTER 13 Interfaces

From the Library of Wow! eBook

ptg

357Most Common .NET Interfaces
1

3

CultureInfo.CurrentCulture

Select Case format

‘General specifier. Must be implemented

Case Is = “G”

Return String.Format(“{0} {1}, {2}”,

Me.FirstName, Me.LastName, Me.Email)

Case Is = “F”

Return FirstName

Case Is = “L”

Return LastName

Case Is = “LF”

Return String.Format(“{0} {1}”, Me.LastName, Me.FirstName)

Case Else

Throw New FormatException

End Select

End Function

End Class

Module Module1

Sub Main()

Dim p As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Email = “alessandro.delsole@visual-basic.it”}

Console.WriteLine(“{0:G}”, p)

Console.WriteLine(“{0:L}”, p)

Console.WriteLine(“{0:F}”, p)

Console.WriteLine(“{0:LF}”, p)

Console.ReadLine()

End Sub

End Module

Listing 13.5 shows a particular implementation of the Person class, which exposes the
FirstName, LastName, and Email properties. It implements the IFormattable interface that
offers a new overload of the ToString method. This method receives two arguments; the
first one, format, represents the qualifier. For example, in standard formatting the c letter
represents currency. Here you can specify your own qualifiers. Because of this, the first
check is if format is null or empty. In such case, a G qualifier is assigned by default. G
stands for General and is the only qualifier that must be implemented. When you provide
G, you can create your own qualifiers. The next check is on formatProvider that basically
represents the culture for string formatting. If null, the code assigns the local system
culture. The subsequent Select..End Select block takes into consideration some identi-
fiers as custom qualifiers. L stands for LastName, F stands for FirstName, and LF stands for
LastName + FirstName. You can change or extend this code simply by intercepting your

From the Library of Wow! eBook

ptg

358 CHAPTER 13 Interfaces

custom identifiers within this block. Running the code shown in Listing 13.5 produces the
following result:

Alessandro Del Sole, alessandro.delsole@visual-basic.it

Del Sole

Alessandro

Del Sole Alessandro

You can easily compare the output result with the code and understand how custom
formatting works.

Summary
In this chapter you learned about interfaces, another key topic in the object-oriented
programming. Interfaces, which are defined within Interface..End Interface blocks,
provide signatures of sets of members that an object must implement to accomplish
specific tasks. You may remember the example of the IDisposable interface that must be
implemented by objects that need to provide methods for freeing up resources. You saw
how to create and implement custom interfaces in your code via the Implements keyword
and then how to invoke objects that implement interfaces both creating class instances
and via interface variables. You understood why interfaces are important and why the
.NET Framework makes an intensive usage of interfaces, talking about polymorphism and
how interfaces can contribute to provide standardized infrastructures for multiple objects.
It’s important to define interfaces adhering to the Common Language Specification, so
you got information about this. Finally, code examples have been provided for the most
common .NET built-in interfaces, to provide a deeper understanding of how things
happen behind the scenes and to reuse those interfaces in your code.

From the Library of Wow! eBook

ptg

CHAPTER 14

Generics and Nullable
Types

IN THIS CHAPTER

. Introducing Generics

. Creating and Consuming
Generics

. Introducing Nullable Types

When you organize your home things, you probably
place things according to their kind. For example, you have
a place for food that is different from the place where you
put clothes. But also foods are different. You will not treat
fish like meat or pizza and so on. So you need safe places
for each kind of food, avoiding the risks deriving from
considering all foods the same way; the same is for clothes
and any other home item. The .NET development would be
similar without Generics. Consider groups of .NET objects
of different types, all grouped into a collection of Object.
How can you be sure to treat an item in the collection as
you should if the collection stores different types that you
identify as Object? What if you want to create just a collec-
tion of strings? Generics solve this problem. In this chapter
you learn what Generics are, getting the basics about them.
In Chapter 16, “Working with Collections,” you then learn
about generic collections and see why Generics are so
useful. This chapter also introduces nullable types, which
are generic on their own.

Introducing Generics
Generic types are .NET types that can adapt their behavior
to different kind of objects without the need of defining a
separate version of the type. In other words, you can imple-
ment an only generic type to work with integers, strings,

From the Library of Wow! eBook

ptg

360 CHAPTER 14 Generics and Nullable Types

custom reference types, and any other .NET type with a single implementation. Generics
offer several advantages:

. Strongly typed programming techniques: Generic objects can hold only the
specified type and avoid accidents of handling objects of different types within the
same group.

. Better performances: Because Generics enable handling only the specified type,
they avoid the need of boxing and unboxing from and to System.Object, and this
retains for performance overhead.

. Code reuse: As you will better see in a few moments, Generics enable creating
objects that behave the same way and that have the same infrastructure whatever
kind of .NET type you pass them.

. The ability of writing better code: Avoiding working with nongeneric
System.Object, you not only get all IntelliSense features for the specified type, but
you also take advantages from not using late-binding techniques.

Generally the use of Generics is related to the creation of strongly typed collections for
storing groups of items of the same type. Because of this, there are two considerations: the
first one is that you should check if the .NET Framework provides a built-in generic
collection suiting your needs before creating custom ones (read Chapter 16); the second
consideration is that code examples shown in this chapter will be related to creating a
generic collection so that you know how to create one if .NET built-in generics are not
sufficient for you.

Creating and Consuming Generics
Creating a generic type is accomplished by providing a parameterized type definition. The
following is an example:

Class CustomType(Of T)

End Class

The Of keyword is followed by the type that the new object can handle. T is the type para-
meter and represents the .NET type that you want to be held by your generic type. The
type parameter’s name is left to your own choosing, but you often find T as a common
name in the .NET Framework base class library. At this point you must write code to
manipulate the T type in a way that will be convenient for possibly every .NET type. Now
imagine you want to build a custom collection that you want to reuse with any .NET type.
Listing 14.1 shows how to accomplish this.

LISTING 14.1 Building a Custom Generic Type

Public Class CustomType(Of T)

From the Library of Wow! eBook

ptg

361Creating and Consuming Generics

Private items() As T

Public Sub New(ByVal upperBound As Integer)

ReDim items(upperBound - 1)

End Sub

Private _count As Integer = 0

‘Cannot provide auto-implemented properties when read-only

Public ReadOnly Property Count As Integer

Get

Return _count

End Get

End Property

Public Sub Add(ByVal newItem As T)

If newItem IsNot Nothing Then

Me.items(Me._count) = newItem

Me._count += 1

End If

End Sub

Default Public ReadOnly Property Item(ByVal index As Integer) As T

Get

If index < 0 OrElse index >= Me.

Count Then Throw New IndexOutOfRangeException

Return items(index)

End Get

End Property

End Class

TIP

You notice that the code in Listing 14.1 uses arrays to store objects. Arrays do not
support removing objects or, at least, this cannot be accomplished easily, and this is
the reason why you only find an Add method. By the way, in this particular case you do
not need to focus on how to add and remove items (Chapter 16 is about this) whereas
you instead need to understand how to handle the generic type parameter.

The code shows how simple it is to manage the type parameter. It can represent any .NET
type but, as in the previous example, an array can be of that type and store objects of that
type. Because arrays cannot be empty, the constructor receives the upper bound that is
then used by ReDim. The Add method equally receives an argument of type T whose value
is pushed into the array. This introduces another important concept: generic methods,

1
4

From the Library of Wow! eBook

ptg

362 CHAPTER 14 Generics and Nullable Types

that is, where methods can accept generic parameters (named type argument). Notice how a
Count property returns the number of items in the array. In this particular scenario, auto-
implemented properties cannot be used because a read-only property needs a Get block.
Finally, the Item property enables retrieving the specified object in the array at the given
index. The new class therefore can handle different types with the same infrastructure.

WHAT CAN BE GENERICS?

You can define as generic the following types: classes, interfaces, delegates, struc-
tures, and methods.

Consuming Generic Types

To instantiate and consume generic types, you pass to the constructor the type you want
to be handled. For example, the following code creates a new instance of the CustomType
class enabling it to handle only integers or types that are converted to Integer via a
widening conversion:

Dim integerCollection As New CustomType(Of Integer)(2)

integerCollection.Add(0)

integerCollection.Add(1)

‘Writes 1

Console.WriteLine(integerCollection(1).ToString)

Basically you pass the desired type to the constructor after the Of keyword. When invok-
ing the Add method, you can notice how IntelliSense tells you that the method can receive
only Integer. If you pass a different type, you get an error message. But this does not
work only with .NET common types. You can use this technique with custom types, too.
For example, you can create a generic collection of Person objects (supposing you have
defined a Person class in your code) as follows:

Dim onePerson As New Person

onePerson.FirstName = “Alessandro”

onePerson.LastName = “Del Sole”

Dim secondPerson As New Person

secondPerson.FirstName = “Robert”

secondPerson.LastName = “White”

Dim personCollection As New CustomType(Of Person)(2)

personCollection.Add(onePerson)

personCollection.Add(secondPerson)

‘Returns 2

Console.WriteLine(personCollection.Count)

From the Library of Wow! eBook

ptg

363Creating and Consuming Generics

Hopefully Generics’ purpose is now clearer. Their purpose is to provide reusable infrastruc-
tures for different types avoiding mixed groups of objects in favor of strongly typed objects.

Implementing Generic Methods

In Listing 14.1 you saw how to implement a method that receives a generic type parame-
ter. By the way, generic methods are something more. You can add the Of keyword to a
generic method to parameterize the method, other than getting generic-type parameters.
The following code provides an example, where two arrays of integers are swapped:

’Array are passed by reference in this case

Public Sub Swap(Of T1)(ByRef array1() As T1, ByRef array2() As T1)

Dim temp() As T1

temp = array1

array1 = array2

array2 = temp

End Sub

Continuing the executive code shown in the “Consuming Generic Types” section, the
following snippet shows how you can invoke the generic method above to swap the
content of two arrays of integers:

Dim arr1() As Integer = {1, 2, 3}

Dim arr2() As Integer = {4, 5, 6}

integerCollection.Swap(Of Integer)(arr1, arr2)

‘Demonstrates that arr2 now

‘contains values previously

‘stored in arr1

For Each item In arr2

Console.WriteLine(item)

Next

Understanding Constraints

With constraints you can control Generics’ behavior, and both provide additional func-
tionalities and limit the implementation to specific data types. Let’s begin by understand-
ing constraints on methods.

Methods Constraints
Imagine you want the ability to compare two items within an array. To accomplish this
you need to take advantage of the IComparable interface, and because of this, you want to

1
4

From the Library of Wow! eBook

ptg

364 CHAPTER 14 Generics and Nullable Types

require that the type argument implements the IComparable interface. The following code
demonstrates this:

Public Function CompareItems(Of T As IComparable)(ByVal sourceArray() As T,

ByVal index1 As Integer,

ByVal index2 As Integer)

As Integer

Dim result As Integer = _

sourceArray(index1).CompareTo(sourceArray(index2))

Return result

End Function

Notice how the As clause in the method argument requires the type to implement the
IComparable interface. If the type does not implement the interface, the generic method
cannot be used. This simplifies how objects can be compared, in that you can directly
invoke the CompareTo method on the first item in the array. This approach is useful for
another reason: If you did not specify the IComparable constraint, you could attempt a
conversion from T to IComparable at runtime, but this would throw an
InvalidCastException if the object does not implement the interface. Therefore using
constraints you can ensure that your objects suit your needs.

Type Constraints
At a higher level, you can apply constraints to generic objects’ definitions. For example
you can require the type parameter to implement the IComparable interface as follows:

Public Class CustomType(Of T As IComparable)

End Class

You can specify what interfaces the object must implement or what class it has to inherit
from. This is an example that accepts types deriving from System.IO.Stream:

Public Class CustomType(Of T As System.IO.Stream)

End Class

In this example, acceptable types would be StreamWriter, StreamReader, BinaryWriter,
and BinaryReader objects.

New Constraints
You can combine the As New keywords to require the type argument to expose an explicit
parameterless constructor. This is accomplished by the following definition:

Public Class CustomType(Of T As New)

Public Sub TestInstance()

From the Library of Wow! eBook

ptg

365Creating and Consuming Generics

Dim instance As New T

End Sub

End Class

The TestInstance method is an example of how you can instantiate the T type. This
approach gives you the ability to create new instances of the type and prevents the type
from being an interface or an abstract (MustInherit) class.

Providing Multiple Constraints
You can combine multiple constraints to provide a series of requirements in your generic
types. Multiple constraints are enclosed in curly braces and separated by commas. The
following code defines a generic type accepting only reference types that implement the
ICloneable interface and an explicit parameterless constructor:

Public Class CustomType(Of T As {Class, ICloneable, New})

End Class

INHERITANCE CONSTRAINT

You can also provide inheritance constraints other than interfaces constraint, as
described at the beginning of this section. Simply provide the name of the abstract or
base class you require to be inherited in the type parameter.

The Class keyword in the constraint indicates that only reference types are accepted. You
use the Structure keyword if you want to accept only value types, keeping in mind that
in such a scenario you cannot combine it with the New keyword. The following code
demonstrates how you can directly access the Clone method because of the ICloneable
implementation constraint:

Public Sub TestConstraint()

Dim newObj As New T

Dim clonedObj As Object = newObj.Clone()

End Sub

NESTED TYPES

The type parameter can be used only within the body of the generic type. Nested types
can still take advantage of the type parameter as well so that you can create complex
infrastructures in your generic types.

1
4

From the Library of Wow! eBook

ptg

366 CHAPTER 14 Generics and Nullable Types

Overloading Type Parameters

You can overload generic definitions providing different signatures for the type parameter,
similar to what happens in methods overloads. The following code provides an example:

Public Class CustomType

End Class

Public Class CustomType(Of T1, T2)

End Class

Public Class CustomType(Of T As {Class, ICloneable, New})

End Class

It is worth mentioning that providing a nongeneric version of your class is not necessary.
In this way you can provide different implementations for your generic types. Now
consider the following overloading attempt:

Class CustomType(Of T1, T2)

End Class

‘Fails at compile time

Class CustomType(Of T1 As IComparable, T2 As ICloneable)

End Class

This code is not compiled because although in the second definition some constraints are
defined, the type implementation is considered by the compiler with the same identical
signature. Similarly you can provide overloaded methods using techniques learned in
Chapter 7, “Class Fundamentals,” but against generic methods as demonstrated in the
following code:

Sub DoSomething(Of T1, T2)(ByVal argument1 As T1, ByVal argument2 As T2)

End Sub

Sub DoSomething(Of T)(ByVal argument As T)

End Sub

From the Library of Wow! eBook

ptg

367Introducing Nullable Types

Overloading provides great granularity over Generics implementation, and you will often
see examples in built-in generic collections.

Introducing Nullable Types
As we mentioned talking about value types and reference types, value types have a default
value that is typically zero whereas reference types have a default value that is Nothing.
This is because a reference type can store null values, whereas value types cannot.
Attempting to assign a null value to a value type would result in resetting to the default
value for that type. This is a limitation, because there are situations in which you need to
also store null values in value types, for example when fetching data from a SQL Server
database. You can have a hypothetical Orders table where the Ship date column enables
null values. SQL Server has its own data types, and one of these is the DBNull that enables
null values. Because Visual Basic 2010 enables mapping SQL Server data types to .NET data
types, as you see in Part 4, “Data Access with ADO.NET and LINQ,” it could be a problem
trying to map a NULL type in SQL Server into a DateTime type in VB. To avoid such prob-
lems, starting from .NET Framework 2.0, Microsoft introduced the Nullable types.

WHY NULLABLE TYPES IN THIS CHAPTER?

I’m covering nullable types in this chapter because they are generic types and are
required in the next chapters.

Nullable types were first introduced with Visual Basic 2005 and differ from other types
because they can both have a value but can also have a null value. Nullable types are
generic types, and variables are declared as Nullable(Of T) or adding a question mark just
after the type name. You declare a nullable value type as follows:

Dim nullInt As Nullable(Of Integer)

You can also add inline initialization:

Dim nullInt As Nullable(Of Integer) = Nothing

Nullable types expose two properties, HasValue and Value. The first one is of type
Boolean and allows understanding if a variable stores a value so that you can avoid using
it if it is null. The second one returns the actual value of the type. For example, the
following code checks if the preceding declared nullInt variable has a value and shows
its value if it has one:

’Has no value, so WriteLine is not executed

If nullInt.HasValue Then

1
4

From the Library of Wow! eBook

ptg

368 CHAPTER 14 Generics and Nullable Types

Console.WriteLine(nullInt.Value)

End If

Because we assigned Nothing, HasValue is False. The next example declares a Boolean
nullable and demonstrates how you can use the value. Moreover, the code shows the alter-
native syntax for declaring nullable types, writing the question mark:

Dim nullBool As Boolean? = False

If nullBool.HasValue Then

Console.WriteLine(nullBool.Value)

End If

Nullable types also expose a method called GetValueOrDefault which returns the current
value for the type instance if the HasValue property is True. If HasValue is False, the
method returns the default value for the type or the specified default value. The following
code describes how you use GetValueOrDefault:

Dim anInt As Integer? = 10

‘HasValue is True, so returns 10

Dim anotherInt As Integer = anInt.GetValueOrDefault

Dim anInt As Integer?

‘HasValue is False, so returns 0

‘which is the default Value for Integer

Dim anotherInt As Integer = anInt.GetValueOrDefault

Dim anInt As Integer?

‘HasValue is False, so returns the default value

‘specified as the method argument

Dim anotherInt As Integer = anInt.GetValueOrDefault(10)

Dim anInt As Integer? = 5

‘HasValue is True, so returns the current value

‘while the method argument is ignored

Dim anotherInt As Integer = anInt.GetValueOrDefault(10)

Using nullables is straightforward, and you will understand why they are so useful in Part
5, “Building Windows Applications.”

Summary
Generics are a great benefit in the .NET development with Visual Basic 2010. Generics are
.NET types that can adapt their behavior to different kinds of objects without the need of
defining a separate version of the type. In other words, you can implement an only
generic type being able to work with integers, strings, custom reference types and any
other .NET type with a single implementation. They provide several benefits, including
strongly typed programming, IntelliSense support and better performance. Basically

From the Library of Wow! eBook

ptg

369Summary

Generics require the Of keyword to specify the type parameter that you can manipulate in
your object body.

Brief Reminder
Remember that you should first check if one of the built-in generic types satisfies your
needs before you create a new custom one. This will avoid additional work and error pos-
sibilities.

Within Generics definition you can implement your own custom methods both in the
usual fashion and as generic methods, which basically still require the Of keyword
followed by the type specification. Generics are also very flexible thanks to the constraints
feature. It allows accepting only types that accord to the specified requirements, such as
interfaces implementation, inheritance, presence of an explicit constructor. Nullable types
are special generic types that allow null values for value types. They basically work like
other types but expose a HasValue property for checking if the object is null or populated.
During the rest of the book you will find hundreds of Generics usages, especially after
Chapter 16 where I will cover collections and generic collections.

1
4

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 15

Delegates and Events

IN THIS CHAPTER

. Understanding Delegates

. Handling Events

. Offering Events to the
External World

Until now you saw how to create and manipulate your
objects, working with the result of operations performed
onto object instances or shared members. All the work we
made until now does not provide a way for understanding
the moment when a particular thing happens or for being
notified of a happening. In.NET development, as for many
other programming environments, getting notifications for
happenings and knowing the moment when something
happens is accomplished handling events, which are infor-
mation that an object sends to the caller, such as the user
interface or a thread, about its state so that the caller can
make decisions according to the occurred event. Events in
.NET programming are powerful and provide great granular-
ity about controlling each happening. This granularity can
take place because of another feature named delegates,
which provide the real infrastructure for event-based
programming and, because of this, we first discuss delegates
before going into the events discussion.

Understanding Delegates
Delegates are type safe function pointers. The main differ-
ence between classic function pointers (such as C++ point-
ers) and delegates is that function pointers can point
anywhere, and this can be dangerous, whereas delegates can
point only to those methods that respect delegates’ signa-
tures. Delegates hold a reference to a procedure (its address)
and enable applications to invoke different methods at
runtime, but such methods must adhere to the delegate
signature; moreover, delegates enable invoking a method

From the Library of Wow! eBook

ptg

372 CHAPTER 15 Delegates and Events

from another object. This is important according to the main purpose of delegates, which
is offering an infrastructure for handling events.

WHERE ARE DELEGATES USED?

Generally delegates are used in event handling architectures, but they are powerful and
can be used in other advanced techniques. You find examples of delegates usage in
multithreading or in LINQ expressions. In Chapter 21, “Advanced Language Features,”
you learn about lambda expressions that enable implementing delegates on-the-fly.

Delegates are reference types deriving from System.Delegate. Because of this they can also
be defined at namespace level, as you might recall from Chapter 9, “Organizing Types
Within Namespaces,” or at the class and module level as well. In the next section you
learn to define delegates. Pay attention to this topic, because delegates have their particu-
lar syntax for being defined and that can be a little bit confusing.

Declaring Delegates

A delegate is defined via the Delegate keyword followed by the method signature it
needs to implement. Such a signature can be referred to as a Sub or as a Function and
may or may not receive arguments. The following code defines a delegate that can
handle reference to methods able to check an email address, providing the same signa-
ture of the delegate:

Public Delegate Function IsValidMailAddress(ByVal emailAddress _

As String) As Boolean

DELEGATES SUPPORT GENERICS

Delegates support generics, meaning that you can define a Delegate Function
(Of T) or Delegate Sub(Of T).

Notice that IsValidMailAddress is a type and not a method as the syntax might imply.
emailAddress is a variable containing the email address to check while any methods
respecting the signature return a Boolean value depending on the check result. To use a
delegate, you need to create an instance of it. The delegate’s constructor requires you to
specify an AddressOf clause pointing to the actual method that accomplishes the required
job. After you get the instance, the delegate points to the desired method that you can call
using the Invoke method. The following code demonstrates the described steps:

‘The method’s signature is the same of the delegate: correct

Function CheckMailAddress(ByVal emailAddress As String) As Boolean

‘Validates emails via regular expressions, according to the

From the Library of Wow! eBook

ptg

373Understanding Delegates

‘following pattern

Dim validateMail As String = “^([\w-\.]+)@((\[[0-9]{1,3}\.” & _

“[0-9]{1,3}\.)|(([\w-]+\.)+))([a-zA-z]{2,4}|[0-9]{1,3})(\]?)$”

Return Text.RegularExpressions.Regex.IsMatch(emailAddress,

validateMail)

End Function

Sub Main()

‘Creates an instance of the delegate and points to

‘the specified method

Dim mailCheck As New IsValidMailAddress(AddressOf CheckMailAddress)

‘You invoke a delegate via the Invoke method

Dim result As Boolean = mailCheck.

Invoke(“alessandro.delsole@visual-basic.it”)

Console.WriteLine(“Is valid: {0}”, result)

End Sub

At this point you might wonder why delegates are so interesting if they require so much
code just for a simple invocation. The first reason is that you can provide how many
methods you like that respect the delegate signature and decide which of the available
methods to invoke. For example, the following code provides an alternative (and much
simplified) version of the CheckMailAddress method, named CheckMailAddressBasic:

Function CheckMailAddressBasic(ByVal emailAddress As String) As Boolean

Return emailAddress.Contains(“@”)

End Function

Although different, the method still respects the delegate signature. Now you can invoke
the new method simply by changing the AddressOf clause, without changing code that
calls Invoke for calling the method:

‘Alternative syntax: if you already declared

‘an instance, you can simply do this assignment

mailCheck = AddressOf CheckMailAddressBasic

‘No changes here!

Dim result As Boolean = mailCheck.

Invoke(“alessandro.delsole@visual-basic.it”)

Console.WriteLine(“Is valid: {0}”, result)

If you still wonder why all this can be useful, consider a scenario in which you have
hundreds of invocations to the same method. Instead of replacing all invocations, you

1
5

From the Library of Wow! eBook

ptg

374 CHAPTER 15 Delegates and Events

simply change what the delegate is pointing to. Invoke is also the default member for the
Delegate class, so you can simply rewrite the above invocation as follows:

Dim result As Boolean = mailCheck(“alessandro.delsole@visual-basic.it”)

This also works against methods that do not require arguments.

ADVANCED DELEGATES TECHNIQUES

Starting with Visual Basic 2008, the .NET Framework introduced new language features
such as lambda expressions and relaxed delegates. Both are intended to work with
delegates (and in the case of lambda expressions to replace them in some circum-
stances), but because of their strict relationship with LINQ, they are discussed in
Chapter 21, which is preparatory for the famous data access technology.

Combining Delegates: Multicast Delegates

A delegate can hold a reference (that is, the address) to a method. It is possible to create
delegates holding references to more than one method by creating multicast delegates. A
multicast delegate is the combination of two or more delegates into a single delegate,
providing the delegate the ability to make multiple invocations. The following code
demonstrates how to create a multicast delegate, having two instances of the same dele-
gate pointing to two different methods:

’The delegate is defined at namespace level

Public Delegate Sub WriteTextMessage(ByVal textMessage As String)

‘....

Private textWriter As New WriteTextMessage(AddressOf WriteSomething)

Private complexWriter As New WriteTextMessage(AddressOf _

WriteSomethingMoreComplex)

Private Sub WriteSomething(ByVal text As String)

Console.WriteLine(“Simply report your text: {0}”, text)

End Sub

Private Sub WriteSomethingMoreComplex(ByVal text As String)

Console.WriteLine(“Today is {0} and you wrote {1}”,

Date.Today.ToShortDateString, text)

End Sub

‘Because Combine returns System.Delegate, with Option Strict On

‘an explicit conversion is required.

Private CombinedDelegate As WriteTextMessage = CType(System.Delegate.

Combine(textWriter,

complexWriter),

WriteTextMessage)

From the Library of Wow! eBook

ptg

375Handling Events

‘....

CombinedDelegate.Invoke(“Test message”)

In this scenario you have two methods that behave differently, but both respect the dele-
gate signature. A new delegate (CombinedDelegate) is created invoking the
System.Delegate.Combine method that receives the series of delegates to be combined as
arguments. It is worth mentioning that Combine returns a System.Delegate; therefore, an
explicit conversion via CType is required with Option Strict On. With a single call to
CombinedDelegate.Invoke, you can call both WriteSomething and
WriteSomethingMoreComplex. The preceding code produces the following output:

Simply report your text: Test message

Today is 24/09/2009 and you wrote Test message

DELEGATE KEYWORD AND SYSTEM.DELEGATE

Delegate is a reserved keyword in Visual Basic. Because of this, to invoke the
System.Delegate.Combine shared method the full name of the class has been uti-
lized. You can still take advantage of the shortened syntax including Delegate within
square brackets. In other words, you can write something like this:
[Delegate].Combine(params()). This works because the System namespace is
imported by default, and square parentheses make the compiler consider the enclosed
word as the identifier of a class exposed by one of the imported namespaces, instead
of a reserved keyword.

Handling Events
Events are members that enable objects to send information on their state to the caller.
When something occurs, an event tells the caller that that things occurred so that the
caller can make decisions on what actions to take. Generally you handle events in UI-
based applications, although not always. The .NET Framework takes a huge advantage
from delegates to create event infrastructures, and this is what you can do in creating your
custom events. In this section you first learn how to catch existing events, and then you
get information on creating your own events. This approach is good because it provides a
way to understand how delegates are used in event handling.

Registering for events: AddHandler and RemoveHandler

To provide your applications the capability of intercepting events raised from any object,
you need to register for events. Registering means giving your code a chance to receive
notifications and to take actions when it is notified that an event was raised from an
object. To register for an event notification, you use the AddHandler keyword that requires
two arguments: The first one is the event exposed by the desired object, and the second

1
5

From the Library of Wow! eBook

ptg

376 CHAPTER 15 Delegates and Events

one is a delegate pointing to a method executed when your code is notified of an event
occurring. The code in Listing 15.1 shows an example using a System.Timers.Timer object.

LISTING 15.1 Registering and Catching Events

Public Class EventsDemo

‘Declares a Timer

Private myTimer As Timers.Timer

‘A simple counter

Private counter As Integer

‘Interval is the amount of time in ticks

Public Sub New(ByVal interval As Double)

‘Register for notifications about the Elapsed event

AddHandler myTimer.Elapsed, AddressOf increaseCounter

‘Assigns the Timer.Interval property

Me.myTimer.Interval = interval

Me.myTimer.Enabled = True

End Sub

‘Method that adheres to the delegate signature and that is

‘executed each time our class get notifications about

‘the Elapsed event occurring

Private Sub increaseCounter(ByVal sender As Object,

ByVal e As Timers.ElapsedEventArgs)

counter += 1

End Sub

End Class

Comments within Listing 15.1 should clarify the code. Notice how the AddHandler
instruction tells the runtime what event from the Timer object must be intercepted
(Elapsed). Also notice how, via the AddressOf keyword, you specify a method that
performs some action when the event is intercepted. AddHandler at this particular point
requires the method to respect the ElapsedEventHandler delegate signature. With this
approach, the increaseCounter method is executed every time the
System.Timers.Timer.Elapsed event is intercepted. AddHandler provides great granularity
on controlling events, because it enables controlling shared events and works within a
member body, too. The AddHandler counterpart is RemoveHandler, which enables deregis-
tering from getting notifications. For example, you might want to deregister before a
method completes its execution. Continuing with the example shown in Listing 15.1, you
can deregister before you stop the timer:

RemoveHandler myTimer.Elapsed, AddressOf increaseCounter

Me.myTimer.Enabled = False

From the Library of Wow! eBook

ptg

377Handling Events

As you see in the next section, this is not the only way to catch events in Visual Basic.

Declaring Objects with the WithEvents Keyword

By default, when you declare a variable for an object that exposes events, Visual Basic
cannot see those events. This is also the case of the previous section’s example, where you
declare a Timer and then need to explicitly register for event handling. A solution to this
scenario is to declare an object with the WithEvents keyword that makes events visible to
Visual Basic. Thanks to WithEvents, you do not need to register for events, and you can
take advantage of the Handles clause to specify what event a method is going to handle.
The code in Listing 15.2 demonstrates this, providing a revisited version of the
EventsDemo class.

LISTING 15.2 Catching Events with WithEvents and Handles

Public Class WithEventsDemo

Private WithEvents myTimer As Timers.Timer

Private counter As Integer

Public Sub New(ByVal interval As Double)

Me.myTimer.Interval = interval

Me.myTimer.Enabled = True

End Sub

Private Sub increaseCounter(ByVal sender As Object,

ByVal e As Timers.ElapsedEventArgs) _

Handles myTimer.Elapsed

counter += 1

End Sub

End Class

Notice that if you do not specify a Handle clause, the code cannot handle the event,
although it respects the appropriate delegate’s signature.

WPF EXCEPTION

An exception to the last sentence is Windows Presentation Foundation (WPF). Because
of the particular events’ infrastructure (routed events), the code can catch events even
if you do not explicitly provide a Handles clause. Of course, take care of this situation.

1
5

From the Library of Wow! eBook

ptg

378 CHAPTER 15 Delegates and Events

Offering Events to the External World
In the previous section you learned how to handle existing events. Now it’s time to get
your hands dirty on implementing and raising custom events within your own objects.
Basically Visual Basic provides two ways for implementing events: the Event keyword and
custom events, an addition still alive from VB 2005. Let’s discover both of them.

Raising Events

You declare your own events utilizing the Event keyword. This keyword requires you to
specify the event name and eventually a delegate signature. Although not mandatory
(Event allows specifying no arguments), specifying a delegate signature is useful so that
you can take advantage of AddHandler for subsequently intercepting events. The code in
Listing 15.3 shows an alternative implementation of the Person class in which an event is
raised each time the LastName property is modified.

LISTING 15.3 Implementing and Raising Events

Public Class Person

Public Event LastNameChanged(ByVal sender As Object,

ByVal e As EventArgs)

Public Property FirstName As String

Private _lastName As String

Public Property LastName As String

Get

Return _lastName

End Get

Set(ByVal value As String)

If value <> _lastName Then

_lastName = value

RaiseEvent LastNameChanged(Me, EventArgs.Empty)

End If

End Set

End Property

End Class

Notice that in this particular case you need to implement the LastName property the old-
fashioned way, so that you can perform subsequent manipulations. The code checks that
the property value changes; then the LastNameChanged event is raised, and this is accom-
plished via the RaiseEvent keyword. Also notice how the LastNameChanged event defini-
tion adheres to the EventHandler delegate signature. This can be considered as the most
general delegate for the events infrastructure. The delegate defines two arguments: The

From the Library of Wow! eBook

ptg

379Offering Events to the External World

first one, which is generally named sender, is of type Object and represents the object
that raised the event and a second argument, generally named e, of type
System.EventArgs that is the base type for classes containing events information. You get
a deeper example in next section. At this point intercepting the event is simple. You just
need to register for event notifications or create an instance of the Person class with
WithEvents. The following code demonstrates this:

Sub TestEvent()

Dim p As New Person

AddHandler p.LastNameChanged,

AddressOf personEventHandler

p.LastName = “Del Sole”

Console.ReadLine()

End Sub

Private Sub personEventHandler(ByVal sender As Object,

ByVal e As EventArgs)

Console.WriteLine(“LastName property was changed”)

End Sub

Now every time you change the value of the LastName property you can intercept the edit.

Passing Event Information
In the previous code example you got a basic idea about passing event information via the
base System.EventArgs class. In the .NET Framework you can find hundreds of classes that
inherit from System.EventArgs and that enable passing custom event information to
callers. This is useful whenever you need additional information on what happened
during the event handling. Continuing with the previous example, imagine you want to
check if the LastName property value contains blank spaces while you raise the
LastNameChanged event, sending to callers this information. This can be accomplished
creating a new class that inherits from System.EventArgs. Listing 15.4 shows how you can
implement the class and how you can take advantage of it in the Person class.

LISTING 15.4 Providing Custom Event Information

Public Class LastNameChangedEventArgs

Inherits EventArgs

Private _lastName As String

Public ReadOnly Property LastName As String

Get

Return _lastName

End Get

End Property

Public ReadOnly Property ContainsBlank As Boolean

1
5

From the Library of Wow! eBook

ptg

380 CHAPTER 15 Delegates and Events

Get

Return Me.LastName.Contains(“ “)

End Get

End Property

Public Sub New(ByVal lastName As String)

Me._lastName = lastName

End Sub

End Class

Public Class Person

Private _lastName As String

Public Property LastName As String

Get

Return _lastName

End Get

Set(ByVal value As String)

If value <> _lastName Then

_lastName = value

Dim e As New LastNameChangedEventArgs(value)

RaiseEvent LastNameChanged(Me, e)

End If

End Set

End Property

Public Event LastNameChanged(ByVal sender As Object,

ByVal e As LastNameChangedEventArgs)

End Class

Notice how the LastNameChangedEventArgs class exposes public properties representing
information you want to return to the caller. When raising the event in the Person class,
you create a new instance of the LastNameChangedEventArgs and pass the required infor-
mation elaborated by the instance. Now you can change the event handler described in
the previous section as follows:

Private Sub personEventHandler(ByVal sender As Object,

ByVal e As LastNameChangedEventArgs)

Console.WriteLine(“LastName property was changed”)

Console.WriteLine(“Last name contains blank spaces: “ &

e.ContainsBlank)

End Sub

In this way you can easily handle additional event information. Finally, it is important to
understand how you can get the instance of the object that raised the event, because it is

From the Library of Wow! eBook

ptg

381Offering Events to the External World

something that you will often use in your applications. You accomplish this by simply
converting the sender into the appropriate type. The following code shows how to get the
instance of the Person class that raised the above LastNameChanged event:

Dim raisingPerson As Person = DirectCast(sender, Person)

Creating Custom Events

Starting from Visual Basic 2005, you have the ability to define your own events imple-
menting the custom events. They are useful because they provide a kind of relationship
with a delegate. Generally custom events are also useful in multithreaded applications.
You declare a custom event via the Custom Event keywords combination, supplying the
event name and signature as follows:

Public Custom Event AnEvent As EventHandler

AddHandler(ByVal value As EventHandler)

End AddHandler

RemoveHandler(ByVal value As EventHandler)

End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As System.EventArgs)

End RaiseEvent

End Event

IntelliSense is very cool here, because when you type the event declaration and press
Enter, it adds a skeleton for the custom event that is constituted by three members:
AddHandler is triggered when the caller subscribes for an event with the AddHandler
instruction; RemoveHandler is triggered when the caller removes an event registration; and
RaiseEvent is triggered when the event is raised. In this basic example the new event is of
the type EventHandler, which is a delegate that represents an event storing no informa-
tion and that is the most general delegate. Now take a look at the following example that
demonstrates how to implement a custom event that can affect all instances of the
Person class:

Public Delegate Sub FirstNameChangedHandler(ByVal info As String)

Dim handlersList As New List(Of FirstNameChangedHandler)

Public Custom Event FirstNameChanged As FirstNameChangedHandler

AddHandler(ByVal value As FirstNameChangedHandler)

handlersList.Add(value)

Debug.WriteLine(“AddHandler invoked”)

1
5

From the Library of Wow! eBook

ptg

382 CHAPTER 15 Delegates and Events

End AddHandler

RemoveHandler(ByVal value As FirstNameChangedHandler)

If handlersList.Contains(value) Then

handlersList.Remove(value)

Debug.WriteLine(“RemoveHandler invoked”)

End If
End RemoveHandler

RaiseEvent(ByVal info As String)

‘Performs the same action on all instances

‘of the Person class

For Each del As FirstNameChangedHandler In handlersList

‘del.Invoke(info

Next

End RaiseEvent

End Event

This code provides an infrastructure for handling changes on the FirstName property in
the Person class. In this case we build a list of delegates that is populated when the caller
registers with AddHandler. When the caller invokes RemoveHandler, the delegate is popped
from the list. The essence of this resides in the RaiseEvent stuff, which implements a loop
for performing the same operation on all instances of the delegate and therefore of the
Person class. To raise custom events you use the RaiseEvent keyword. For this, you need
to edit the FirstName property implementation in the Person class as follows:

Private _firstName As String

Public Property FirstName As String

Get

Return _firstName

End Get

Set(ByVal value As String)

If value <> _firstName Then

_firstName = value

RaiseEvent FirstNameChanged(FirstName)

End If

End Set

End Property

You raise the event the same way for noncustom events, with the difference that custom
events provide deep control over what is happening when the caller registers, deregisters,
or raises the event.

From the Library of Wow! eBook

ptg

383Summary

Summary
Delegates are type-safe function pointers that store the address of a Sub or Function,
enabling the invoking of different methods at runtime. Delegates are reference types
declared via the Delegate keyword and that enable invoking methods via the Invoke
method. They can be used in different programming techniques, but the most important
scenario where you use delegates is within event-based programming. Events take advan-
tage of delegates in that the objects require their signature to be respected. Coding events
is something that can be divided into main areas, such as catching events and exposing
events from your objects. To catch events you can register and deregister via the
AddHandler and RemoveHandler keywords, or you simply declare objects exposing events
via the WithEvents reserved word, and then you provide event handlers respecting the
appropriate delegate signature and adding the Handles clause. You instead define your
own events in two ways: via the Event keyword or with custom events. The advantage of
providing custom events is that you can have deep control over the event phases, such as
registering and deregistering. In this discussion, it is important to remember that you can
provide custom event information creating classes that inherit from System.EventArgs
where you can store information useful to the caller. 1

5

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 16

Working with
Collections

IN THIS CHAPTER

. Understanding Collections
Architecture

. Working with Nongeneric
Collections

. Working with Generic
Collections

. Building Custom Collections

. Concurrent CollectionsApplications often require working with data. Until now
you got information on how to store data within classes
and structures, but it is common for you to need to create
groups of data. In .NET development this is accomplished
using special classes known as collections, which enable
storing a set of objects within one class. The .NET
Framework provides lots of collections, each of them
specific to a particular need or scenario. The main distinc-
tion is between nongeneric collections and generic collec-
tions, but all of them can store a set of objects. Collections
are not merely groups of data. They are the backend infra-
structure for engines such as the ADO.NET Entity
Framework and LINQ, so understanding collections is an
important task. At a higher level collections infrastructure is
offered by the System.Collections namespace and by some
interfaces that bring polymorphism to collections. In this
chapter you learn about the .NET Framework’s collections,
both nongeneric and generic ones. You also learn how to
create and consume custom collections, and you get an
overview of concurrent collections.

Understanding Collections
Architecture
Collections are special classes that can store sets of objects;
the .NET Framework offers both nongeneric and generic
collections. Whatever kind of collection you work on,
collections implement some interfaces. The first one is
ICollection that derives from IEnumerable and provides
both the enumerator (which enables For..Each iterations)
and special members, such as Count (which returns the

From the Library of Wow! eBook

ptg

386 CHAPTER 16 Working with Collections

number of items within a collection) and CopyTo (which copies a collection to an array).
Collections also implement IList or IDictionary; both inherit from ICollection and
expose members that enable adding, editing, and removing items from a collection. The
difference is that IDictionary works with key/value pairs instead of single objects as IList.

The previously mentioned interfaces are about nongeneric collections. If you work with
generic collections, the collections implement the generic counterpart of those interfaces
such as ICollection(Of T), IList(Of T), and IDictionary(Of TKey, TValue). It’s
important to understand this implementation because this provides similarities between
collections so that you can learn members from one collection and be able to reuse them
against other kinds of collections.

USE THE OBJECT BROWSER

Remember that the Object Browser tool can provide thorough information on objects’
architecture meaning that if you don’t remember what members are exposed by a col-
lection, this tool can be your best friend.

Working with Nongeneric Collections
The System.Collections namespace defines several nongeneric collections. The name-
space also defines interfaces mentioned in the previous section. Here you learn to work
with nongeneric collections so that in the next section you can easily understand why
generic ones are more efficient.

The ArrayList Collection

System.Collections.ArrayList is the most common nongeneric collection in the .NET
Framework and represents an ordered set of items. With the word ordered we mean that
you add items to the collection one after the other, which is different from sorting.
ArrayList collections can store any .NET type because, at a higher level, it accepts items
of type Object. The following code shows how you can create a new ArrayList and how
you can set how many items it can contain by setting the Capacity property:

Dim mixedCollection As New ArrayList

mixedCollection.Capacity = 10

Adding new items to an ArrayList is a simple task. To accomplish this you invoke the Add
method that receives as an argument the object you want to add, as demonstrated by the
following snippet:

mixedCollection.Add(32)

mixedCollection.Add(“32”)

mixedCollection.Add(“Alessandro”)

mixedCollection.Add(Date.Today)

The preceding code adds an Integer, two Strings, and a Date. Of course, you can also add
composite custom types. Always be careful with ArrayLists. The first two items’ value is

From the Library of Wow! eBook

ptg

387Working with Nongeneric Collections

32, but the first one is an Integer whereas the second is a String. If you would like to
compare such items or iterate them, you should explicitly convert from String to Integer
or vice versa, and this would require boxing/unboxing operations. Generally you work
with collections of a single type; therefore, I suggest you avoid nongeneric collections in
favor of generic ones. For example, if you have to work with a set of strings, you should
use the List(Of String). The second part of this chapter discusses generic collections.

WHY YOU SHOULD PREFER GENERICS

The second part of this chapter is about generic collections. You should prefer this
kind of collections for two reasons; the first is that they are strongly typed and avoid
the possibility of errors that can be caused when working with items of type Object.
The second reason is that each time you add a value type to a nongeneric collection,
the type is first subject to boxing (that was discussed in Chapter 4, “Data Types and
Expressions”) that can cause performance overhead and does not provide the best
object management.

You can also add a block of items in a single invocation using the AddRange method. The
following code shows how you can add an array of strings to the existing collection:

Dim anArray() As String = {“First”, “Second”, “Third”}

mixedCollection.AddRange(anArray)

Add and AddRange add items after the last existing item. You might want to add items at a
specified position. This can be accomplished via the Insert and InsertRange methods
whose first argument is the position and the second one is the object. The following code
demonstrates this:

mixedCollection.Insert(3, “New item”)

mixedCollection.InsertRange(3, anArray)

To remove items from the collection you have two methods, Remove that enables removing
a specific object and RemoveAt that enables removing the object at the specified position:

’Removes the string “32”

mixedCollection.RemoveAt(1)

‘Removes 32

mixedCollection.Remove(32)

An interesting method is also TrimToSize that enables resizing the collection based on the
number of items effectively stored. For example, consider the following code:

Dim mixedCollection As New ArrayList

mixedCollection.Capacity = 10

1
6

From the Library of Wow! eBook

ptg

388 CHAPTER 16 Working with Collections

mixedCollection.Add(32)

mixedCollection.Add(“32”)

mixedCollection.Add(“Alessandro”)

mixedCollection.Add(Date.Today)

mixedCollection.TrimToSize()

When created, the ArrayList can store up to 10 items. After the TrimToSize invocation,
Capacity’s value is 4, which is the number of items effectively stored. If you have a large
collection, the ArrayList provides a BinarySearch method that enables searching the
collection for a specified item, returning the index of the item itself:

’Returns 2

Dim index As Integer = mixedCollection.BinarySearch(“Alessandro”)

If the item is not found within the collection, the return value is a negative number. If the
collection contains more than one item matching the search criteria, BinarySearch
returns only one item which is not necessarily the first one. This collection also exposes
other interesting members that are summarized in Table 16.1.

You can access an item from the ArrayList using the index as follows:

Dim anItem As Object = mixedCollection(0)

TABLE 16.1 ArrayList Members

Member Description

Count A property that returns the number of items within the collection.

CopyTo A method that copies the ArrayList instance into an array.

Contains A method that returns True if the specified item exists within the collection.

ToArray Copies the content of the ArrayList into an array of Object.

IndexOf Returns the zero base index of the specified item.

GetRange Creates a new ArrayList that is just a subset of the initial one, based on the speci-
fied criteria.

Sort Performs a sorting operation over the collection.

Reverse Performs a descending sorting operation over the collection.

Item Property that gets or sets an item at the specified index. This is the default property
of the ArrayList class.

Clear Removes all items from the collection.

From the Library of Wow! eBook

ptg

389Working with Nongeneric Collections
1

6

Of course, you need to perform a conversion into the appropriate type, which is some-
thing that you can accomplish in line if you already know the type:

Dim anItem As Integer = CInt(mixedCollection(0))

If the conversion fails, an InvalidCastException is thrown. The ArrayList implements
the IList interface and thus can take advantage of the enumerator; therefore, you can
iterate it via a For..Each loop as follows:

For Each item As Object In mixedCollection

Console.WriteLine(item.ToString)

Next

You just need to pay attention to the fact that each item is treated as an Object; therefore,
you must be aware of conversions. The ArrayList collection provides members that you
find in other kinds of collections, so this is the reason why the most common members
are discussed here.

The Queue Collection

The System.Collections.Queue collection works according to the FIFO (First-In, First-Out)
paradigm, meaning that the first item you add to the collection is the first pulled out from
the collection. Queue exposes two methods, Enqueue that adds a new item to the collection
and Dequeue that removes an item from the collection. Both methods receive an argument
of type Object. The following code provides an example:

Sub QueueDemo()

Dim q As New Queue

q.Enqueue(1)

q.Enqueue(2)

‘Returns

‘1

‘2

Console.WriteLine(q.Dequeue)

Console.WriteLine(q.Dequeue)

End Sub

You just need to invoke the Dequeue method to consume and automatically remove an
item from the collection. You can also invoke the Peek method which just returns the first
item from the collection without removing it. Always be careful when adding items to a

From the Library of Wow! eBook

ptg

390

queue because you are working in a fashion that is not strongly typed. If you plan to work
with objects of a specified type (for example, you need a collection of Integer), consider
using a Queue(Of T) that behaves the same way except that it is strongly typed. The
collection also exposes a Count property that returns the number of items in the collec-
tion. The constructor provides an overload that enables specifying the capacity for the
collection.

The Stack Collection

The System.Collections.Stack collection mimics the same-named memory area and
works according to the LIFO (Last-In, First-Out) paradigm meaning that the last item you
add to the collection is the first that is pulled out from the collection. Stack exposes three
important methods: Push that adds an item to the collection, Pop that allows consuming
and removing an item from the collection, and Peek that returns the top item in the
collection without removing it. The following is an example:

Dim s As New Stack

s.Push(1)

s.Push(2)

‘Returns 2 and leaves it in the collection

Console.WriteLine(s.Peek)

‘Returns 2 and removes it

Console.WriteLine(s.Pop)

‘Returns 1 and removes it

Console.WriteLine(s.Pop)

As for Queue, here you work with Object items. Although this enables pushing different
kinds of objects to the collection, it is not a good idea. You should prefer the generic
counterpart (Stack(Of T)) that enables working with a single type in a strongly typed
fashion. The Stack collection also exposes the Count property which returns the number
of objects that it stores.

The HashTable Collection

The System.Collections.HashTable collection can store items according to a key/value pair,
where both key and value are of type Object. The HashTable peculiarity is that its items are
organized based on the hash code of the key. The following code provides an example:

Dim ht As New Hashtable

ht.Add(“Alessandro”, “Del Sole”)

ht.Add(“A string”, 32)

ht.Add(3.14, New Person)

‘Number of items

Console.WriteLine(ht.Count)

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

391Working with Nongeneric Collections
1

6

‘Removes an item based on the key

ht.Remove(“Alessandro”)

Items within a HashTable can be accessed by the key, as shown in the last line of code in
the preceding example. It also offers two methods named ContainsKey and ContainsValue
that enable checking if a key or a value exists within the collection, as demonstrated here:

’Checks if a key/value exists

Dim checkKey As Boolean = ht.ContainsKey(“A string”)

Dim checkValue As Boolean = ht.ContainsValue(32)

Note that if you do not check if a key already exist, as in the preceding example, and
attempt to add a key that already exists, then an ArgumentException is thrown. This is
because keys must be unique. A single item within the collection is of type
DictionaryEntry that exposed two properties, Key and Value. For example, you can iterate
a HashTable as follows:

’iterate items

For Each item As DictionaryEntry In ht

Console.WriteLine(“{0} {1}”, item.Key, item.Value)

Next

HashTable also offers two other properties named Keys and Values that return an
ICollection containing respectively keys in the key/value pair and values in the same
pair, as demonstrated here:

’iterate keys

For Each key As Object In ht.Keys

Console.WriteLine(key)

Next

It is recommend that you use a strongly typed Dictionary(Of T, T) that provides more
efficiency. (And this suggestion is appropriate when discussing other dictionaries.)

The ListDictionary Collection

The System.Collections.Specialized.ListDictionary collection works exactly like
HashTable but it differs in that it is more efficient until it stores up to 10 items. It is not
preferred once the items count exceeds 10.

The OrderedDictionary Collection

The System.Collections.Specialized.OrderedDictionary collection works like
HashTable but it differs in that items can be accessed via either the key or the index, as
demonstrated by the following code:

Dim od As New OrderedDictionary

od.Add(“a”, 1)

From the Library of Wow! eBook

ptg

392

‘Access via index

Dim item As DictionaryEntry = CType(od(0), DictionaryEntry)

Console.WriteLine(item.Value)

The SortedList Collection

The System.Collections.SortedList collection works like HashTable but it differs in that
items can be accessed either via the key, or the index items are automatically sorted based
on the key, for example, look at the following code:

Dim sl As New SortedList

sl.Add(“Del Sole”, 2)

sl.Add(“Alessandro”, 1)

For Each item As String In sl.Keys

Console.WriteLine(item)

Next

It sorts items based on the key; therefore, it produces the following result:

Alessandro

Del Sole

The HybridDictionary Collection

The System.Collections.Specialized.HybridDictionary collection is a dynamic class in
that it implements a ListDictionary until the number of items is small and then switches
to HashTable if the number of items grows large. Technically it works like HashTable.

The StringCollection Collection

The System.Collections.Specialized.StringCollection is similar to the ArrayList
collection except that it is limited to accepting only strings. The following code provides
an example:

Dim stringDemo As New StringCollection

stringDemo.Add(“Alessandro”)

stringDemo.Add(“Del Sole”)

‘Returns True

Dim containsString As Boolean = stringDemo.Contains(“Del Sole”)

stringDemo.Remove(“Alessandro”)

Basically you can use the same members of ArrayList and perform the same operations.

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

393Working with Nongeneric Collections
1

6

The StringDictionary Collection

The System.Collections.Specialized.StringDictionary collection works like the
HashTable collection but differs in that it accepts only key/value pairs of type String,
meaning that both keys and values must be String. The following is a small example:

Dim stringDemo As New StringDictionary

stringDemo.Add(“Key1”, “Value1”)

stringDemo.Add(“Alessandro”, “Del Sole”)

‘Simple iteration

For Each value As String In stringDemo.Values

Console.WriteLine(value)

Next

You can recall the HashTable collection for a full member listing.

The NameValueCollection Collection

The NameValueCollection behaves similarly to the StringDictionary collection, but it
differs in that NameValueCollection enables accessing items via either the key or the
index. The following code snippet provides a brief demonstration:

Dim nv As New NameValueCollection

nv.Add(“First string”, “Second string”)

Dim item As String = nv(0)

The Add method also provides an overload accepting another NameValueCollection as
an argument.

The BitArray Collection

The System.Collections.BitArray collection enables storing bit values represented by
Boolean values. A True value indicates that a bit is on (1) whereas a False value indicates
that a bit is off (0). You can pass to the BitArray arrays of Integer numbers or Boolean
values, as demonstrated by the following code:

Dim byteArray() As Byte = New Byte() {1, 2, 3}

‘Length in zero base

Dim ba As New BitArray(byteArray)

For Each item As Object In ba

Console.WriteLine(item.ToString)

Next

From the Library of Wow! eBook

ptg

394

This code produces the following output, which is a human-readable representation of the
bits in the collection:

True

False

False

False

False

False

False

False

False

True

False

False

False

False

False

False

True

True

False

False

False

False

False

False

The constructor also accepts a length argument that enables specifying how large the
collection must be.

The Bitvector32 Collection

System.Collections.Specialized.BitVector32 has basically the same purpose of
BitArray but it differs in two important elements; the first one is that BitVector32 is a
structure that is a value type and therefore can take advantage of a faster memory alloca-
tion. On the other hand, the collection manages only 32-bit integers. All data is stored as
32-bit integers that are effectively affected by changes when you edit the collection. The
most important (shared) method is CreateMask that enables creating a mask of bits. The
method can create an empty mask (which is typically for the first bit) or create subsequent
masks pointing to the previous bit. When done, you can set the bit on or off passing a
Boolean value. The following code provides an example:

’Passing zero to the constructor

‘ensures that all bits are clear

Dim bv As New BitVector32(0)

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

395Working with Generic Collections
1

6

Dim bitOne As Integer = BitVector32.CreateMask

Dim bitTwo As Integer = BitVector32.CreateMask(bitOne)

Dim bitThree As Integer = BitVector32.CreateMask(bitTwo)

bv(bitOne) = True

bv(bitTwo) = False

bv(bitThree) = True

The Data property stores the actual value of the collection, as demonstrated here:

’Returns 5 (the first bit + the second bit = the third bit)

Console.WriteLine(bv.Data)

If you instead want to get the binary representation of the data, you can simply use the
name of the instance. The following code demonstrates this:

Console.WriteLine(bv)

This code produces the following result:

BitVector32{00000000000000000000000000000101}

MEMBERS AND EXTENSION METHODS

Collections provide special members, such as properties and methods, and are extend-
ed by most of the built-in extension methods. Providing a thorough discussion on each
member is not possible; IntelliSense can put you in the right direction to provide expla-
nations for each member. Moreover each member has a self-explanatory identifier;
therefore, it is difficult to understand what a member does when you understand the
high-level logic. In this chapter you are introduced to the most important members from
collections so that you can perform the most common operations.

Working with Generic Collections
The .NET Framework offers generic counterparts of the collections described in the previous
section. Moreover, it offers new generic collections that are specific to particular technolo-
gies such as WPF. In this section you learn to work with generic built-in collections and
how you can take advantage of a strongly typed fashion. Generic collections are exposed by
the System.Collections.Generic namespace except a different namespace is explained.

The List(Of T) Collection

The System.Collections.Generic.List(Of T) collection is a generic ordered list of items.
It is a strongly typed collection, meaning that it can accept only members of the specified
type. It is useful because it provides support for adding, editing, and removing items

From the Library of Wow! eBook

ptg

396

within the collection. For example, imagine you need to store a series of Person objects to
a collection. This can be accomplished as follows:

Dim person1 As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

Dim person2 As New Person With {.FirstName = “XXXXX”,

.LastName = “ZZZZZZZZ”,

.Age = 44}

Dim person3 As New Person With {.FirstName = “YYYYY”,

.LastName = “DDDDDDDD”,

.Age = 18}

Dim personList As New List(Of Person)

personList.Add(person1)

personList.Add(person2)

personList.Add(person3)

You notice that the List(Of T) has lots of members in common with its nongeneric
counterpart that is the ArrayList. This is because the first one implements the IList(Of
T) interface, whereas the second one implements IList but both provide the same
members with the generics difference. The following code shows how you can access an
item within the collection using the IndexOf method and how you can remove an item
invoking the Remove method, passing the desired instance of the Person class:

’Returns the index for Person2

Dim specificPersonIndex As Integer = personList.IndexOf(person2)

‘Removes person3

personList.Remove(person3)

The List(Of T) still provides members such as Capacity, AddRange, Insert, and
InsertRange whereas it exposes a method named TrimExcess that works like the
ArrayList.TrimToSize. Because the List(Of T) implements the IEnumerable(Of T) inter-
face, you can then iterate the collection using a classic For..Each loop but each item is
strongly typed, as demonstrated here:

For Each p As Person In personList

Console.WriteLine(p.LastName)

Next

If you need to remove all items from a collection, you can invoke the Clear method, and
when you do not need the collection anymore, you simply assign it to Nothing:

personList.Clear()

personList = Nothing

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

397Working with Generic Collections
1

6

There are also other interesting ways to interact with a collection, such as special exten-
sion methods. Extension methods are discussed in Chapter 21, “Advanced Language
Features.” For now, you simply need to know that they are special methods provided by
the IEnumerable(Of T) interface that enables performing particular operations against a
collection. For example, the Single method enables retrieving the unique instance of a
type that matches the specified criteria:

’Returns a unique Person whose LastName

‘property is Del Sole

Dim specificPerson As Person = personList.Single(Function(p) _

p.LastName = “Del Sole”)

This method receives a lambda expression as an argument that specifies the criteria.
Lambda expressions are also discussed in Chapter 21. Another interesting method is
FindAll, which enables generating a new List(Of T) containing all the type instances
that match a particular criteria. The following snippet retrieves all the Person instances
whose LastName property starts with the letter “D”:

’Returns a new List(Of Person) storing

‘all Person instances whose LastName starts

‘with “D”

Dim specificPeople = personList.FindAll(Function(p) _

p.LastName.StartsWith(“D”))

As usual IntelliSense can be your best friend in situations such as this. Because all
members from each collection cannot be described here, that technology can help you
understand the meaning and the usage of previously mentioned members whose names
are always self-explanatory.

INVESTIGATING COLLECTIONS AT DEBUG TIME

You may remember from Chapter 5, “Debugging Visual Basic 2010 Applications,” the
Data Tips features of the Visual Studio debugger. They are useful if you need to investi-
gate the content of collections while debugging, especially if you need to get informa-
tion on how collections and their items are populated.

Working with Collection Initializers

Visual Basic 2010 introduces a new language feature known as collection initializers. Basically
this feature works like the object initializers, except that it is specific for instantiating and popu-
lating collections inline. To take advantage of collection initializers, you need to use the From
reserved keyword enclosing items within brackets, as demonstrated in the following code:

’With primitive types

Dim listOfIntegers As New List(Of Integer) From {1, 2, 3, 4}

From the Library of Wow! eBook

ptg

398

The preceding code produces the same result as the following:

Dim listOfIntegers As New List(Of Integer)

listOfIntegers.Add(1)

listOfIntegers.Add(2)

listOfIntegers.Add(3)

listOfIntegers.Add(4)

You can easily understand how collection initializers enable writing less code that’s more
clear. This feature can also be used with any other .NET type. The following code snippet
shows how you can instantiate inline a List(Of Person):

’With custom types

Dim person1 As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

Dim person2 As New Person With {.FirstName = “XXXXX”,

.LastName = “ZZZZZZZZ”,

.Age = 44}

Dim person3 As New Person With {.FirstName = “YYYYY”,

.LastName = “DDDDDDDD”,

.Age = 18}

Dim people As New List(Of Person) From {person1,

person2,

person3}

The code also shows how you can take advantage of implicit line continuation if you have
long lines for initializations. When you have an instance of the new collection, you can
normally manipulate it. Of course, this feature works with any other collection type.

NON GENERIC COLLECTIONS

Collection initializers are also supported by nongeneric collections using the same syntax.

The ReadOnlyCollection(Of T) Collection

The System.Collections.ObjectModel.ReadOnlyCollection(Of T) is the read-only coun-
terpart of the List(Of T) class. Being read-only, you can add items to the collection only
when you create an instance, but then you cannot change it. The constructor requires an
argument of type IList(Of T) so that the new collection will be generated starting from

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

399Working with Generic Collections
1

6

an existing one. The following code demonstrates how you can instantiate a new
ReadonlyCollection:

Dim person1 As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

Dim person2 As New Person With {.FirstName = “XXXXX”,

.LastName = “ZZZZZZZZ”,

.Age = 44}

Dim person3 As New Person With {.FirstName = “YYYYY”,

.LastName = “DDDDDDDD”,

.Age = 18}

Dim people As New List(Of Person) From {person1, person2, person3}

Dim readonlyPeople As New ReadOnlyCollection(Of Person)(people)

As an alternative, you can create a ReadonlyCollection invoking the List(Of
T).AsReadOnly method, as shown in the following code:

’Same as above

Dim readonly As ReadOnlyCollection(Of Person) = people.AsReadOnly

Invoking AsReadOnly produces the same result of creating an explicit instance.

The Dictionary(Of TKey, TValue) Collection

The System.Collections.Generic.Dictionary(Of TKey, TValue) collection is the generic
counterpart for the HashTable. Each item within a Dictionary is a key/value pair; there-
fore, the constructor requires two arguments (TKey and TValue) where the first one is the
key and the second one is the value. The following code shows instantiating a
Dictionary(Of String, Integer) in which the String argument contains a person’s
name and the Integer argument contains the person’s age:

Dim peopleDictionary As New Dictionary(Of String, Integer)

peopleDictionary.Add(“Alessandro”, 32)

peopleDictionary.Add(“Stephen”, 27)

peopleDictionary.Add(“Rod”, 44)

A single item in the collection is of type KeyValuePair(Of TKey, TValue) and both argu-
ments reflect the collection’s ones. For a better explanation, take a look at the following
iteration that performs an action on each KeyValuePair:

For Each item As KeyValuePair(Of String, Integer) In peopleDictionary

Console.WriteLine(item.Key & “ of age “ & item.Value.ToString)

Next

From the Library of Wow! eBook

ptg

400

The above code will produce the following output:

Alessandro of age 32

Stephen of age 27

Rod of age 44

Each KeyValuePair object has two properties, Key and Value, which enable separated
access to parts composing the object. You can then manipulate the Dictionary like you
would other collections.

The SortedDictionary(Of TKey, TValue) Collection

The System.Collections.Generic.SortedDictionary(Of TKey, TValue) works exactly
like the Dictionary collection except that items are automatically sorted each time you
perform a modification. We can rewrite the code shown in the section about the
Dictionary(Of TKey, TValue) collection as follows:

Dim peopleDictionary As New SortedDictionary(Of String, Integer)

peopleDictionary.Add(“Alessandro”, 32)

peopleDictionary.Add(“Stephen”, 27)

peopleDictionary.Add(“Rod”, 44)

For Each item As KeyValuePair(Of String, Integer) In peopleDictionary

Console.WriteLine(item.Key & “ of age “ & item.Value.ToString)

Next

This code will produce the following result:

Alessandro of age 32

Rod of age 44

Stephen of age 27

Notice how the result has a different order than the one we added items to the collection
with. In fact, items are sorted alphabetically. This collection performs sorting based on
the Key part.

The ObservableCollection(Of T) Collection

The System.Collections.ObjectModel.ObservableCollection(Of T) is a special collec-
tion that is typically used in WPF applications. Its main feature is that it implements the
INotifyPropertyChanged interface, and therefore it can raise an event each time its items
are affected by any changes, such as adding, replacing, or removing. Thanks to this mech-
anism, the ObservableCollection is the most appropriate collection for the WPF data-
binding because it provides support for two-way data-binding in which the user interface

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

401Working with Generic Collections
1

6

gets notification of changes on the collection and is automatically refreshed to reflect
those changes. Although a practical example of this scenario is offered in the chapters
about WPF, this section shows you how the collection works. The first consideration is
that such an object is defined by the WindowsBase.dll assembly that is added by default to
WPF applications’ references, whereas you need to manually add one in other kinds of
applications. (This example uses the Console application template; therefore, you need to
manually add a reference to the assembly to reproduce the code.) Second, the
ObservableCollection is exposed by the System.Collections.ObjectModel namespace,
meaning that you need to add an Imports directive for this namespace. Now consider the
following code snippet:

Dim people As New ObservableCollection(Of Person)

AddHandler people.CollectionChanged,

AddressOf CollectionChangedEventHandler

The people variable represents an instance of the collection, and its purpose is to store a
set of Person class instances. Because the collection exposes a CollectionChanged event,
which enables intercepting changes to items in the collection, we need an event handler
to understand what is happening. The following code shows an example of event handler
implementation:

Private Sub CollectionChangedEventHandler(ByVal sender As Object,

ByVal e As Specialized.

NotifyCollectionChangedEventArgs)

Select Case e.Action

Case Is = Specialized.NotifyCollectionChangedAction.Add

Console.WriteLine(“Added the following items:”)

For Each item As Person In e.NewItems

Console.WriteLine(item.LastName)

Next

Case Is = Specialized.NotifyCollectionChangedAction.Remove

Console.WriteLine(“Removed or moved the following items:”)

For Each item As Person In e.OldItems

Console.WriteLine(item.LastName)

Next

End Select

End Sub

The System.Collections.Specialized.NotifyCollectionChangedEventArgs type exposes
some interesting properties for investigating changes on the collection. For example, the
Action property enables you to understand if an item was added, moved, replaced, or
removed by the collection via the NotifyCollectionChangedAction enumeration. Next,
the collection exposes other interesting properties such as NewItems, which returns an
IList object containing the list of items that were added, and OldItems, which returns an
IList object containing the list of items that were removed/moved/replaced. The

From the Library of Wow! eBook

ptg

402

NewStartingIndex and the OldStartingIndex provide information on the position where
changes (respectively adding and removing/replacing/moving) occurred. Now consider the
following code, which declares three new instances of the Person class and then adds
them to the collection and finally removes one:

Dim person1 As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

Dim person2 As New Person With {.FirstName = “XXXXX”,

.LastName = “ZZZZZZZZ”,

.Age = 44}

Dim person3 As New Person With {.FirstName = “YYYYY”,

.LastName = “DDDDDDDD”,

.Age = 18}

people.Add(person1)

people.Add(person2)

people.Add(person3)

people.Remove(person1)

The ObservableCollection basically works like the List one; therefore, it exposes
methods such as Add, Remove, RemoveAt, and so on, and it also supports extension
methods. The good news is that each time a new item is added or an item is removed, the
CollectionChanged event is raised and subsequently handled. Because of our previous
implementation, if you run the code, you get the following output:

Added the following items:

Del Sole

Added the following items:

ZZZZZZZZ

Added the following items:

DDDDDDDD

Removed or moved the following items:

Del Sole

Because of its particularity, the ObservableCollection(Of T) can also be useful in scenar-
ios different from WPF that remain the best place where you can use it.

The ReadonlyObservableCollection(Of T) Collection

As for the List(Of T) and also for the ObservableCollection(Of T), there is a read-only
counterpart named ReadonlyObservableCollection(Of T) which works like the
ReadonlyCollection(Of T) plus the implementation of the CollectionChanged event. The
collection is also exposed by the System.Collections.ObjectModel namespace.

CHAPTER 16 Working with Collections

From the Library of Wow! eBook

ptg

403Working with Generic Collections
1

6

The LinkedList(Of T) Collection

Think of the System.Collections.Generic.LinkedList(Of T) collection as a chain in
which each ring is an item in the collection that is linked to the others. In other words,
an item is linked to the previous one and the next one and points to them. Each item in
the collection is considered as a LinkedListNode(Of T), so if you decide to create a
LinkedList(Of Person), each Person instance will be represented by a LinkedListNode(Of
Person). Table 16.2 summarizes the most common methods and properties for the collec-
tion over the ones that you already know (derived from IList(Of T)).

The following code provides an example of creating and consuming a LinkedList(Of
Person) collection (see comments for explanations):

Dim person1 As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

Dim person2 As New Person With {.FirstName = “XXXXX”,

TABLE 16.2 LinkedList Members

Member Type Description

AddFirst Method Adds a new item as the first in the collection

AddLast Method Adds a new item as the last in the collection

AddBefore Method Adds a new item before the specified node

AddAfter Method Adds a new item after the specified node

Clear Method Clears all items in the collection

Contains Method Checks if the specified item exists in the collection

CopyTo Method Copies the collection into an array

Count Property Returns the number of items in the collection

First Property Returns the first node in the collection

Last Property Returns the last node in the collection

Remove Method Removes the specified item from the collection

RemoveFirst Method Removes the first item from the collection

RemoveLast Method Removes the last item from the collection

From the Library of Wow! eBook

ptg

404 CHAPTER 16 Working with Collections

.LastName = “ZZZZZZZZ”,

.Age = 44}

Dim person3 As New Person With {.FirstName = “YYYYY”,

.LastName = “DDDDDDDD”,

.Age = 18}

‘Creates a new LinkedList

Dim linkedPeople As New LinkedList(Of Person)

‘Creates a series of nodes

Dim node1 As New LinkedListNode(Of Person)(person1)

Dim node2 As New LinkedListNode(Of Person)(person2)

Dim node3 As New LinkedListNode(Of Person)(person3)

‘The first item in the collection

linkedPeople.AddFirst(node1)

‘The last one

linkedPeople.AddLast(node3)

‘Add a new item before the last one and after

‘the first one

linkedPeople.AddBefore(node3, node2)

‘Removes the last item

linkedPeople.RemoveLast()

‘Gets the instance of the last item

‘(person2 in this case)

Dim lastPerson As Person = linkedPeople.Last.Value

‘Determines if person1 is within the collection

Dim isPerson1Available As Boolean = linkedPeople.Contains(person1)

The most important difference between this collection and the other ones is that items
are linked. This is demonstrated by an Enumerator structure exposed by every instance of
the collection that enables moving between items, as demonstrated in the following
code snippet:

Dim peopleEnumerator As LinkedList(Of Person).

Enumerator = linkedPeople.GetEnumerator

Do While peopleEnumerator.MoveNext

‘Current is a property that is of type T

‘(Person in this example)

Console.WriteLine(peopleEnumerator.Current.LastName)

Loop

From the Library of Wow! eBook

ptg

405Building Custom Collections
1

6

This code basically demonstrates that items in the collections are linked and that each one
points to the next one.

The Queue(Of T) and Stack(Of T) Collections

The .NET Framework offers generic versions of the Queue and Stack collections, known as
System.Collections.Generic.Queue(Of T) and System.Collections.Generic.Stack(Of
T). Their behavior is the same as nongeneric version, except that they are strongly typed.
Because of this, you already know how to work with generic versions so they are not
discussed here.

Building Custom Collections
Generally built-in collections are good for most scenarios. There could be situations in
which you need to implement custom collections. You have basically two alternatives:
creating a collection from scratch or recur to inheritance. The first choice can be hard;
typically you create a class implementing the ICollection(Of T) and IList(Of T) (or
IDictionary) interfaces but you need to manually write code for performing the most
basic actions onto items. The other choice is inheriting from an existing collection. This is
also a good choice for another reason: You can create your custom base class for other
collections. Imagine you want to create a custom collection that stores sets of FileInfo
objects, each one representing a file on disk. It would not be useful to reinvent the wheel,
so inheriting from List(Of T) is a good idea. The following code inherits from List(Of
FileInfo) and extends the collection implementing a new ToObservableCollection
method, which converts the current instance into an ObservableCollection(Of
FileInfo) and overrides ToString to return a customized version of the method:

Public Class FileInfoCollection

Inherits List(Of FileInfo)

Public Overridable Function ToObservableCollection() As _

ObservableCollection(Of FileInfo)

Return New ObservableCollection(Of FileInfo)(Me)

End Function

Public Overrides Function ToString() As String

Dim content As New StringBuilder

For Each item As FileInfo In Me

content.Append(item.Name)

Next

Return content.ToString

End Function

End Class

From the Library of Wow! eBook

ptg

406 CHAPTER 16 Working with Collections

Now you have a strongly typed collection working with FileInfo objects; moreover you
extended the collection with custom members.

Concurrent Collections
The .NET Framework 4.0 introduces the Task Parallel Library (TPL), which offers support
for multicore CPU architectures. The library exposes new generic collections, via the
System.Collections.Concurrent namespace that is new in .NET 4.0. Table 16.3 gives you
a list of the new classes.

You get an overview of these collections in the appropriate chapters, but for completeness,
you now have a full list of available collections.

Summary
Applications often require data access. You store data within classes and structures, but
often you need to group a set of data and collections to help you in this task. The .NET
Framework offers both nongeneric collections (such as ArrayList, Queue, Stack, and
HashTable) and generic ones (such as List(Of T), ObservableCollection(Of T),
Dictionary(Of TKey, TValue), Queue(Of T) and Stack(Of T)). In both cases you have
the ability of adding, removing, and editing items within collections using generally the
same members (due to the interfaces implementations). Moreover, Visual Basic 2010 intro-
duces the collection initializers feature that enables instantiating and populating collections
inline. Although you typically use collections for manipulating data, the .NET Framework
provides some special read-only collections, such as ReadonlyCollection(Of T). Finally,
you learned to create custom collections, which is not an uncommon scenario.

TABLE 16.3 Concurrent Collections

Name Description

ConcurrentStack(Of T) A thread-safe stack collection

ConcurrentQueue(Of T) A thread-safe queue collection

ConcurrentDictionary(Of TKey,
TValue)

A thread-safe strongly typed dictionary of key/value
pairs

ConcurrentBag(Of T) A thread-safe list of objects

ConcurredLinkedList(Of T) A thread-safe collection in which items are linked to one
another

From the Library of Wow! eBook

ptg

CHAPTER 17

Visually Designing
Objects

IN THIS CHAPTER

. Visual Studio Class Designer

. Class View Window

Visual Studio 2010 is a great place for writing code. It
offers a powerful code editor with the presence of
IntelliSense that dramatically simplifies your coding experi-
ence. Writing code is only one aspect of application devel-
opment. Architecting objects before writing code is as
important as writing the code itself. Visual Studio is power-
ful enough to let you reach both objectives at one time:
graphically designing objects for your applications and
contextually writing code related to such objects. The
built-in tool that allows performing this task is known as
Class Designer, and in this chapter you get a high-level
overview of it.

Visual Studio Class Designer
Visual Studio 2010 offers an instrument known as Visual
Studio Class Designer that has been a part of the IDE since
the previous versions. You can design objects in a visual
way by taking advantage of a graphical tool. You design
objects; Visual Studio generates code. In this chapter you
learn how to design objects according to object-oriented
principles using the Class Designer to create a new imple-
mentation of the Person class and of a couple of derived
classes. Before continuing to read, simply create a new,
empty VB project for the Console. This is the base for your
subsequent work.

From the Library of Wow! eBook

ptg

408 CHAPTER 17 Visually Designing Objects

NOTE ON VISUAL BASIC EXPRESS

The Visual Studio Class Designer is available only on Visual Studio 2010 Standard
Edition or higher; therefore, if you have only Visual Basic 2010 Express, you can skip
this chapter.

Enabling the Class Designer

To enable the Visual Studio Class Designer, you need to click the View Class Diagram
button in Solution Explorer. When ready, the Class Designer appears as a new window
within the IDE and shows a graphical representation of the main application module,
including the definition of the Main method. Basically all tasks you can perform on the
Class Designer can be accomplished by invoking commands exposed by the context menu
that you get when right-clicking the designer’s surface. Figure 17.1 shows the previously
mentioned representation of Module1 and the available commands.

Figure 17.1 also shows the Add command expanded; it provides a list of available objects
that you can add to the diagram. Such objects include classes, enumerations, interfaces,
structures, delegates, and modules. You can also select the Comment command to add

FIGURE 17.1 The Visual Studio Class Designer when launched plus available commands for
design operations.

From the Library of Wow! eBook

ptg

409Visual Studio Class Designer
1

7

sticky notes on the designer’s surface. Table 17.1 summarizes the goal of other commands
in the context menu.

CLASS DIAGRAMS FILES

Class diagrams generated with the Visual Studio Class Designer are stored within a
.cd file that becomes part of the solution. By default, the file is named
ClassDiagram1.cd, but you can rename it as you like via Solution Explorer.

At this point it’s time to use the Class Designer. Your goal is to design an IPerson inter-
face that an abstract class named Person can implement and that will also is the base class
for two other derived classes, Customer and Contact, both created with this interesting
graphical tool.

Adding and Designing Objects

The first step to perform is creating an interface. To accomplish this, follow these steps:

1. Right-click the designer surface (see Figure 17.1) and select the Add, Interface
command.

TABLE 17.1 Commands List for the Class Designer

Command Description

Add Provides subcommands for adding objects to the designer’s surface.

Zoom Allows zooming the designer surface for a better visualization.

Group Members Establishes how objects’ members must be grouped. By Kind means that
members are divided in types groups (for example, properties, methods,
and so on). By Access means that members are grouped according to their
scope (for example, all public members, all private members, and so on).
Sorted Alphabetically means that objects’ members are listed in alphabeti-
cal order with no grouping options.

Change Members
Format

Sets how members’ names appear.

Layout Diagram Rearranges items on the designer’s surface for a better view.

Adjust Shapes
Width

Automatically adapts objects’ width so that their members’ names are
more readable.

Export Diagram as
Image

Allows exporting the generated diagram as an image, in different formats
such as .Bmp, .Jpg, .Png, and .Tiff.

From the Library of Wow! eBook

ptg

410 CHAPTER 17 Visually Designing Objects

2. When the New Interface dialog appears, specify the IPerson name and leave all
other options unchanged, which are self-explanatory. Figure 17.2 shows the dialog.
This adds a new item on the designer, representing an interface.

3. Right-click the new interface and select the Add, |Property command. For each
object type the context menu provides specific commands related to members that
the particular object can contain. Figure 17.3 shows how you can accomplish this.
When the new property is added to the interface, it is focused and highlighted for
renaming, so rename it to FirstName. Notice that the default type for members is
Integer; therefore, you need to open the Properties window (by pressing F4) and
write the appropriate type in the Type field.

4. Repeat the previous step to add a new LastName property and a FullName method,
both of type String. About methods, the Class Designer implements Sub methods by
default that are switched to Function when you specify a return type via the
Properties window. This step is shown in Figure 17.4.

If you now double-click the new interface, Visual Studio 2010 shows the code that it
generated behind the scenes, as shown in Listing 17.1.

LISTING 17.1 IPerson Interface with Code Generated by Visual Studio

Public Interface IPerson

Property LastName As String

Property FirstName As String

Function FullName() As String

End Interface

FIGURE 17.2 The New Interface dialog allows specifying the name of the new interface and
other settings as the access level and the filename.

From the Library of Wow! eBook

ptg

411Visual Studio Class Designer
1

7

FIGURE 17.3 Adding members to the new interface.

FIGURE 17.4 Specifying a return type for methods and the new completed interface.

From the Library of Wow! eBook

ptg

412 CHAPTER 17 Visually Designing Objects

The next step is to add an abstract class named Person, which serves as the base class for
subsequent classes. To accomplish this, right-click the designer and select the Add,
Abstract Class command. Name the new class Person and, when ready, you notice within
the designer that is marked as MustInherit. Next, double-click the new class and add an
Implements IPerson statement below the class declaration. This ensures that the new class
is going to implement the IPerson interface. This is reflected in the class diagram and
confirmed by the appearance of properties and methods defined within the interface
inside the new class and by a rounded symbol that identifies an interface relationship.
Figure 17.5 shows the result of the preceding operations.

Listing 17.2 shows the full code for the Person class.

LISTING 17.2 Code for an Abstract Class

Public MustInherit Class Person

Implements IPerson

Public Property FirstName As String Implements IPerson.FirstName

Public MustOverride Function FullName() As String Implements IPerson.FullName

FIGURE 17.5 A new abstract class that implements an interface, all in design way.

From the Library of Wow! eBook

ptg

413Visual Studio Class Designer
1

7

Public Property LastName As String Implements IPerson.LastName

End Class

Notice how the FullName method is declared as MustOverride. The Properties window
offers deep control to classes. Table 17.2 summarizes the most important properties except
those related to filenames and locations.

The Properties window also offers the Remarks and Summary fields that allow specifying
descriptions under the form of XML comments, and this feature is available for all
members, not just classes. Also, the Properties window shows the Generic, Implements,
and Inherits fields which are disabled by design.

Implementing Derived Classes

The Class Designer is powerful enough to provide support for class inheritance. Suppose
you want to create two classes deriving from Person, for example Contact and Customer.
To create a Contact class that inherits from Person, follow these steps:

1. Right-click the designer surface and select the Add, Class command. When the New
Class dialog appears, specify the class name and leave the other properties unchanged.

2. When the new class is added to the designer’s surface, double-click it and in the
code editor add an Inherits Person statement below the class declaration, then
switch back to the class diagram. This establishes an inheritance relationship
between the two classes. You notice that the designer does not show inherited prop-
erties while it is limited to show overridden methods (FullName in our example).

3. Add two new properties, Age of type Integer and Email of type String, using skills
gained in the Previews subsection. The result of this implementation is shown in
Figure 17.6.

TABLE 17.2 Class Control Properties

Property Description

Access Use to set class’s scope.

Name The class name.

Custom attrib-
utes

Use to decorate the class with attributes.

Inheritance
modifiers

Set to MustInherit for an abstract class, to NotInheritable for a sealed
class, or to None for a general implementation.

From the Library of Wow! eBook

ptg

414 CHAPTER 17 Visually Designing Objects

Now create a new Customer class that still inherits from Person following the previous
listed steps, adding two new properties: CompanyName of type String and CustomerID of
type Integer. The result of this new implementation is shown in Figure 17.7.

To understand how Visual Studio interpreted your operations, click both the Customer and
Contact class. For your convenience, the code of both classes is shown in Listing 17.3.

LISTING 17.3 Code for Derived Classes Generated by the IDE

Public Class Contact

Inherits Person

Public Property Age As Integer

Public Property Email As String

Public Overrides Function FullName() As String

End Function

End Class

Public Class Customer

Inherits Person

Public Property CustomerID As Integer

Public Property CompanyName As String

FIGURE 17.6 The implementation of a derived class.

From the Library of Wow! eBook

ptg

415Visual Studio Class Designer
1

7FIGURE 17.7 The implementation of a second derived class.

It’s worth noticing how the IDE correctly wrote inheritance code and marked as Overrides
the FullName method in both classes. Obviously the generated code can be considered as a
mere template; therefore, you have to populate it your own way. To complete your work,
you need to write the methods body for FullName in both classes. The following is an
example related to the Contact class:

Public Overrides Function FullName() As String

Return String.Format(“{0} {1}, of age: {2}”,

Me.LastName,

Me.FirstName,

Me.Age.ToString)

End Function

While the following is the implementation for the Customer class:

Public Overrides Function FullName() As String

Return String.Format(“Customer {0} is {1}”,

Me.CustomerID,

Public Overrides Function FullName() As String

End Function

End Class

From the Library of Wow! eBook

ptg

416 CHAPTER 17 Visually Designing Objects

Me.CompanyName)

End Function

In this section you have seen an alternative way for designing classes in Visual Basic 2010
that is important, particularly to get a hierarchical representation. Most of all, such work
has been completed with a few mouse clicks.

Creating Multiple Diagrams

You are not limited to creating one diagram. You can add multiple class diagrams to your
project so that you can have a graphical representation of a complex hierarchical object’s
structure. To add diagrams to your project, simply right-click the project name in Solution
Explorer and select the Add New Item command. When the Add New Item dialog
appears, select the Class Diagram item in the Common Items list. (See Figure 17.8).

This can be useful if you have to graphically represent complex frameworks, and if you
need large design surfaces.

Exporting the Diagram

As a respectable graphical tool, the Class Designer can export diagrams as images. The tool
supports the following image formats:

. Windows Bitmap (24 Bit)

. Portable Network Graphics (.Png)

FIGURE 17.8 Adding a new class diagram to the project.

From the Library of Wow! eBook

ptg

417Class View Window
1

7

. Jpeg

. Tag Image File Format (.Tiff)

. Graphics Interchange Format (.Gif)

To export diagrams to images, simply right-click the designer’s surface and select the Export
Diagram as Image command. Figure 17.9 shows the Export Diagram as Image dialog.

You can select multiple diagrams if available. You need to select the location, which by
default points to the project’s folder. The combo box at the bottom of the dialog allows
you to choose the image format.

Class View Window
Since the previous versions of Visual Studio, the IDE offers another graphical tool for
managing objects, known as the Class View window. To enable this tool you can press
Ctrl+Shift+C if it’s not already available as a floating window. Basically it’s a browsing tool
that shows a graphical representation of the objects’ hierarchy in your solution and that
allows searching for specific members or getting information about types being part of
your project, including base types. Figure 17.10 shows this tool window in action, point-
ing to the same project used in the previous section.

FIGURE 17.9 Exporting diagrams to images.

From the Library of Wow! eBook

ptg

418 CHAPTER 17 Visually Designing Objects

FIGURE 17.10 The Class View tool window.

As you can see in Figure 17.10, the Class View allows browsing custom objects in your
projects (including base types such as interfaces) and built-in objects invoked by your
project. Moreover, you can browse references to assemblies and expand them so that you
can still get information on members for your custom objects. The Class View window
also provides a Settings command that allows specifying what kind of objects will be
shown. (For example, you can decide if the view must include base types.)

Class Details Window
Another interesting tool that allows designing objects by taking advantage of the visual
instrumentation of the IDE is the Class Details Window that you enable by selecting
View, Other Windows, Class Details. This tool displays members from the selected object
in the Class Diagram designer and allows adding, editing, or removing members from the
object, such as methods, properties, events and so on. It is worth mentioning that the
tool supports IntelliSense, for example when you provide the data type. Figure 17.11
shows an example.

You supply the member name according to the member type, then you specify the data
type and the modifier. With regard to the modifier, a list of modifiers is available from a
combo box. You can also select the Hide checkbox if you want a member to be removed
from the visual diagram.

From the Library of Wow! eBook

ptg

419Summary
1

7

FIGURE 17.11 The Class Details tool window.

Summary
In this chapter you saw how to design objects for your application using the built-in
Visual Studio tool known as Visual Studio Class Designer. This tool allows designing
objects via a specific designer that offers support for adding all kinds of .NET objects, such
as classes, structures, interfaces, delegates, enumerations, and modules. Behind the scenes,
this tool generates code related to design operations. You saw how easily you can imple-
ment interfaces, abstract classes, and derive classes learning steps that you will be required
to perform for other objects. Completing the topic, the chapter provided information on
creating multiple diagrams and exporting diagrams to images. The last topic in this
chapter is an overview of the Class View tool window that is basically an object browser
limited to the current solution.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 18

“Generate From Usage”
Coding Techniques

IN THIS CHAPTER

. Coding New Types

. Generating Complex Objects

Writing the code of your application is one of the tasks
that you will spend a lot of time on. During the years, the
Visual Studio IDE evolved with several functionalities for
helping developers in writing code faster and easier: syntax
highlighting, more and more advanced IntelliSense capa-
bilities, and specific code editors for different kinds of files
taking advantage of the previously mentioned features.
Although the availability of such deep functionalities
existed, the previous versions of the IDE lacked the capa-
bility to help developers in implementing new objects on-
the-fly—objects that you did not previously consider but
that later become necessary or existing objects that must
be extended. You might perhaps consider this tooling as
old-fashioned, but it is instead useful for at least a couple
of reasons: You are writing code and you understand that
you need a new object that was not part of the architec-
ture; you can implement the object according to the needs
that you gradually discover while writing code. Second,
such an approach is also used in advanced techniques such
as the test-driven development. In this chapter you learn
how to use this instrumentation and get the most out of
its capabilities.

Coding New Types
One of the most important new features in the Visual
Studio 2010 IDE is the ability to generate on-the-fly objects
that do not exist yet. This feature is known as Generate
From Usage. To understand how it works, simply create a

From the Library of Wow! eBook

ptg

422 CHAPTER 18 “Generate From Usage” Coding Techniques

new Console application named GenerateFromUsage and within the Main method type the
following code:

Sub Main()

Dim p As New Person

End Sub

Because the Person class has not been implemented, the Visual Basic compiler throws an
exception, offering the usual pop-up button that suggests solutions. But with Visual Basic
2010 things change; now you have additional solutions, as shown in Figure 18.1.

As you can see in Figure 18.1, the IDE provides the ability of generating a new Person class
directly when writing code offering a Generate ‘Class Person’ object. There is also another
choice named Generate, which is discussed later in this chapter. Now focus on the first choice
and click the Generate ‘Class Person’ command. At this point Visual Studio creates a new
code file named Person.vb that you can find in Solution Explorer as part of the project. This
code file contains a basic definition for the Person class that is simply declared as follows:

Class Person

End Class

FIGURE 18.1 New error correction options for Visual Studio 2010.

From the Library of Wow! eBook

ptg

423Coding New Types
1

8

DEFAULT ACCESSIBILITY

When generating objects on-the-fly, Visual Studio assigns the default visibility to both
objects and members. If you want to provide a different scope, you need to do it by
writing qualifiers manually or by selecting the Generate Other command.

Now go back to the Main method; you notice that the error message disappeared. Type the
following assignment:

p.LastName = “Del Sole”

Because the LastName property is not exposed by the Person class, the Visual Basic
compiler throws a new error still offering solutions, as shown in Figure 18.2.

The IDE correctly recognizes the assignment and proposes adding a new property or a new
field in the Person class. Click the Generate property stub to add a new property that is
implemented in the Person class as follows:

Class Person

Property LastName As String

FIGURE 18.2 Generating members on-the-fly.

From the Library of Wow! eBook

ptg

424 CHAPTER 18 “Generate From Usage” Coding Techniques

The IDE also correctly specifies the data type to the property (String in the preceding
example) based on the assignment content. Repeat this last step to add a second property
named FirstName of type String using your first name for convenience. My code looks
like the following:

p.LastName = “Del Sole”

p.FirstName = “Alessandro”

Now we should provide a method that returns the full name for the person. Generating a
method stub is also an easy task. Simply write the following:

Dim fullName As String = p.FullName

Now the IDE offers three different solutions, as shown in Figure 18.3.

You can choose to generate a method, property, or field. The IDE can distinguish what
kind of solutions it can propose in that particular coding scenario. Click the Generate
method stub command, and Visual Studio implements the FullName method as follows:

Function FullName() As String

Throw New NotImplementedException

End Function

FIGURE 18.3 Generating a new method stub.

From the Library of Wow! eBook

ptg

425Coding New Types
1

8

The new method simply throws a NotImplementedException; therefore, you need to
replace it with your code. All examples shown until now in this book provide the follow-
ing implementation:

Function FullName() As String

Return String.Concat(LastName, “ “, FirstName)

End Function

At this point you have generated your definitely working Person class without exiting
from the code editor. This is the most basic approach to the new feature, but such tooling
is powerful and allows defining different kinds of objects according to the context that
you are writing code in. This is what the next sections discuss.

Generating Shared Members

Visual Studio is intelligent enough to understand whenever you try to define a shared
member. For example, imagine you want to implement a method that returns the number
of active instances of the Person class. If you type the following code:

Person.ReturnInstanceCount()

and then select the Generate method stub correction option, Visual Studio generates the
following code:

Shared Sub ReturnInstanceCount()

Throw New NotImplementedException

End Sub

On-the-Fly Code and Object Initializers

You might often use object initializers to create objects instances in line; generating code
on-the-fly is powerful. Consider the following declaration:

Dim p As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”}

When you write this code, the Person class and its FirstName and LastName properties do
not exist. At this point you can open the correction options and choose the Generate
Class command. Visual Studio automatically associates the previous assignments to the
class that is initialized in line and generates the appropriate members. Code generation for
the previous code snippet produces the following result:

Class Person

Property LastName As String

Property FirstName As String

End Class

From the Library of Wow! eBook

ptg

426 CHAPTER 18 “Generate From Usage” Coding Techniques

With a single mouse click you have accomplished a task that would normally require a
couple more steps, as described in the previous section.

Generating Complex Objects
You can now generate new objects on-the-fly taking advantage of default solutions
proposed by Visual Studio. You are not limited to generating previously described classes
and members. Visual Studio enables you to generate the following types:

. Classes

. Structures

. Interfaces

. Delegates

. Enumerations

The following is instead the list of members that you can generate for the preceding types:

. Methods

. Properties

. Fields

You can generate objects on-the-fly by running the New Type dialog that you can activate
choosing Generate Other solution instead of Generate Class. For example, imagine you
want to generate a new structure on-the-fly. First, type the following line of code:

Dim threeDim As New ThreePoint

Because the ThreePoint type does not exist, Visual Studio 2010 throws an error proposing
fixes. At this point, click the Generate New Type solution, as shown in Figure 18.4.

The Generate New Type window displays, which allows getting deeper control over the
type generation, as shown in Figure 18.5.

As you can see there are several options for generating a new type. First, the Access combo
box allows specifying the accessibility level that can be Public, Friend, or the default level
for the selected type. The Kind combo box allows specifying what type you intend to
generate. Figure 18.5 also shows a list of available types. For our example, leave the default
settings unchanged. In the lower part of the dialog, you can establish where the type must
be declared and in what file. You can select what project (if the solution contains more
than one project) defines the new type and what code file declares the new type. Here it’s
worth mentioning that you can decide to create a new file (default choice) or to add the

From the Library of Wow! eBook

ptg

427Generating Complex Objects
1

8

FIGURE 18.4 Selecting the Generate Other command for constructing different types.

FIGURE 18.5 The Generate New Type dialog.

From the Library of Wow! eBook

ptg

428 CHAPTER 18 “Generate From Usage” Coding Techniques

code to an existing one using the Add to Existing File control box. When you click OK,
the new type is created. Visual Studio generates the following structure declaration:

Public Structure ThreePoint

End Structure

Now you can repeat the steps when you added members to the Person class in the first
section of this chapter. For example, first write the following code:

ThreePoint.X = 10

ThreePoint.Y = 20

ThreePoint.Z = 30

None of the X, Y, and Z properties has been implemented yet within the ThreePoint
structure; therefore, you can add them via the correction options. (Refer to Figure 18.2
for a recap.)

Interfaces Additions

The Visual Studio 2010 IDE offers default solutions according to naming conventions it
finds in your code. This is particularly true if you want to generate interfaces instead of
other types. For example, if you type

Dim interfaceVariable as ITestInterface

The IDE notices that ITestInterface’s identifier begins with the I letter; therefore, it
assumes you want to generate an interface. Because of this, the default solution in the
correction options will not be Generate Class but Generate Interface. The stub for the new
interface is simply the following:

Interface ITestInterface

End Interface

If you want to change the accessibility level for the new interface, you need to generate it
invoking the Generate New Type window or writing the appropriate qualifier manually.

Summary
An overview about one of the most important new IDE features in Visual Studio 2010 that
also applies to Visual Basic 2010, known as Generate From Usage was presented. You saw
how you can generate objects on-the-fly, writing first code and then generating objects
that you invoke with just a couple of mouse clicks. You also saw how you can generate
customized objects running the Generate New Type dialog that provides deep control over
types to be generated on-the-fly.

From the Library of Wow! eBook

ptg

CHAPTER 19

Manipulating Files and
Streams

IN THIS CHAPTER

. Manipulating Directories and
Pathnames

. Handling Expressions for
Directories and Pathnames

. Manipulating Files

. Introducing Streams

Manipulating files, directories, drives, and pathnames has
always been one of the most common requirements for
every role in IT for home users. Since MS-DOS you have
probably had this necessity tons of times. In application
development for the .NET Framework with Visual Basic
2010, manipulating files is even more straightforward
because you have two opportunities: accessing system
resources with the usual ease due to self-explanatory classes
and members and because of the Common Language
Runtime as a supervisor. In this chapter you learn how to
manipulate files, directories, and drives by taking advantage
of specific .NET classes. Moreover, you learn about trans-
porting such simplicity into more general data exchange
objects, known as streams.

Manipulating Directories and
Pathnames
The .NET Framework makes it easier to work with directo-
ries and pathnames, providing the System.IO.Directory
and System.IO.Path classes. Such classes offer shared
methods for accessing directories and directory names,
allowing deep manipulation of folders and names. To be
honest, System.IO.Path also provides members for working
against filenames, and due to its nature it is included in this
section. There are also situations in which you need to work
against single directories as instances of .NET objects, and
this is where the System.IO.DirectoryInfo class comes in.
In this section you learn to get the most from such classes
for directory manipulation.

From the Library of Wow! eBook

ptg

430 CHAPTER 19 Manipulating Files and Streams

TIP

All code examples provided in this chapter require an Imports System.IO directive to
shorten lines of code.

The System.IO.Path Class

Often you need to work with pathnames, directory names, and filenames. The .NET
Framework provides the System.IO.Path class, offering shared members that allow manip-
ulating pathnames. For example, you might want to extract the filename from a path-
name. This is accomplished invoking the GetFileName method as follows:

’Returns “TextFile.txt”

Dim fileName As String = Path.GetFileName(“C:\TextFile.txt”)

The GetExtension method returns instead only the file extension and is used as follows:

’Returns “.txt”

Dim extension As String = Path.GetExtension(“C:\TextFile.txt”)

To ensure that a filename has an extension, you can also invoke the HasExtension method
that returns True if the filename has one. There are situations in which you need to
extract the filename without considering its extension. The GetFileNameWithoutExtension
accomplishes this:

’Returns “TextFile”

Dim noExtension As String = Path.

GetFileNameWithoutExtension(“C:\TextFile.txt”)

Another common situation is retrieving the directory name from a full pathname that
includes a filename, too. The GetDirectoryName method allows performing this:

’Returns “C:\Users\Alessandro\My Documents”

Dim dirName As String =

Path. GetDirectoryName(“C:\Users\Alessandro\My Documents\Document.txt”)

When working with filenames, you might want to replace the extension. This is accom-
plished by invoking the ChangeExtension method as follows:

’Returns “MyFile.Doc”

Dim extReplaced As String = Path.ChangeExtension(“MyFile.Txt”, “.doc”)

Notice that such a method simply returns a string that contains the required modification
but does not rename the file on disk (which is covered later). Path is also useful when you

From the Library of Wow! eBook

ptg

431Manipulating Directories and Pathnames

need to create temporary files or to store files in the Windows’s temporary folder. You
invoke the GetTempFileName method to get a unique temporary file:

Dim temporaryFile As String = Path.GetTempFileName

The method returns the filename of the temporary file so that you can easily access it and
treat it like any other file, being sure that its name is unique. If you instead need to access
Windows’s temporary folder, you can invoke the GetTempPath method as follows:

Dim temporaryWinFolder As String = Path.GetTempPath

You could combine both temporary folder name and temporary filename to create a tempo-
rary file in the temporary folder. Combining pathnames is accomplished invoking the
Combine method, which just takes two arguments such as the first pathname and the second
one. You can also generate a random filename invoking the GetRandomFileName method:

Dim randomFile As String = Path.GetRandomFileName

The difference with GetTempFileName is that this one also creates a physical file on disk,
returning the full path. System.IO.Path offers two other interesting methods:
GetInvalidFileNameChars and GetInvalidPathChars that both return an array of Char
storing, respectively, with unaccepted characters within filenames and within directory
names. They are useful if you generate a string that will be then used as a file or folder name.

The System.IO.Directory Class

To access directories you take advantage of the System.IO.Directory class that offers
shared members that allow performing common operations on folders. All members are
self-explanatory. For example, you can check if a directory already exists and, if not, create
a new one as follows:

If Not Directory.Exists(“C:\Test”) Then

Directory.CreateDirectory(“C:\Test”)

End If

The Move method allows moving a directory from one location to another; it takes two
arguments, the source directory name and the target name:

Directory.Move(“C:\Test”, “C:\Demo”)

If the target directory already exists, an IOException is thrown. You can easily get or set
attribute information for directories invoking special methods. For example you can get
the directory creation time invoking the GetCreationTime method that returns a Date type
or the SetCreationTime that requires a date specification, to modify the creation time:

Dim createdDate As Date = Directory.GetCreationTime(“C:\Demo”)

Directory.SetCreationTime(“C:\Demo”, New Date(2009, 5, 10))

1
9

From the Library of Wow! eBook

ptg

432 CHAPTER 19 Manipulating Files and Streams

Table 19.1 summarizes members for getting/setting attributes.

You can easily get other information, such as the list of files available within the desired
directory. Until .NET Framework 3.5 SP 1 you were limited in invoking the GetFiles
method, returning an array of string (each one is a filename), which works like this:

’Second argument is optional, specifies a pattern for search

Dim filesArray() As String = Directory.GetFiles(“C:\”, “*.exe”)

Now in .NET 4.0 you can invoke the EnumerateFiles that returns an IEnumerable(Of
String) and that works like this:

’get files

Dim filesEnumerable As IEnumerable(Of String) = _

Directory.EnumerateFiles(“C:\”, “*.exe”)

For Each item In filesEnumerable

Console.WriteLine(“File name: {0}”, item)

Next

Probably this difference does not make much sense at this particular point of the book,
but you learn later that IEnumerable objects are LINQ-enabled; therefore, you can write
LINQ queries against sequences of this type. Similarly to GetFiles and EnumerateFiles,
you invoke GetDirectories and EnumerateDirectories to retrieve a list of all subdirecto-
ries’ names within the specified directory. Next, the GetFilesEntries and

TABLE 19.1 Members for Getting/Setting Attributes

Method Description

GetAccessControl/SetAccessControl Gets/Sets the ACL entries for the specified direc-
tory via a System.Security.AccessControl
.DirectorySecurity object

GetCreationTime/SetCreationTime Gets/Sets the creation time for the directory

GetCreationTimeUtc/
SetCreationTimeUtc

Gets/Sets the directory creation time in the
Coordinated Universal Time format

GetLastAccessTime/SetLastAccessTime Gets/Sets the directory last access time

GetLastAccessTimeUtc/
SetLastAccessTimeUtc

Gets/Sets the directory last access time in the
Coordinated Universal Time format

GetLastWriteTime/SetLastWriteTime Gets/Sets the directory last write time

GetLastWriteTimeUtc/
SetLastWriteTimeUtc

Gets/Sets the directory last write time in the
Coordinated Universal Time format

From the Library of Wow! eBook

ptg

433Manipulating Directories and Pathnames

EnumerateFilesEntries return a list of all filenames and subdirectories names within the
specified directory.

TIP

An important difference in using new methods in .NET 4.0 is that they start enumerat-
ing as the Framework is still gathering files/directories, making things faster and
more efficient.

To delete a directory you simply invoke the Delete method. Notice that it works only if a
directory is empty and simply requires the directory name:

’Must be empty

Directory.Delete(“C:\Demo”)

If the folder is not empty, an IOException is thrown. Delete has an overload that accepts
a Boolean value if you want to delete empty subdirectories, too. The Directory class also
provides the ability of retrieving a list of available drives on your machine. This is accom-
plished by invoking the GetLogicalDrives method that returns an array of String that
you can then iterate:

Dim drivesOnMyMachine() As String = Directory.

GetLogicalDrives

For Each drive In drivesOnMyMachine

Console.WriteLine(drive)

Next

On my machine the preceding code produces the following output:

A:\

C:\

D:\

E:\

The last example is about retrieving the current directory, which is accomplished by
invoking the GetCurrentDirectory method:

Dim currentFolder As String = Directory.GetCurrentDirectory

You can also easily set the current folder by invoking the shared SetCurrentDirectory
method, passing the folder name as an argument. Accessing directories via the Directory
class is straightforward, but in some circumstances you have no access to specific informa-
tion. For this, there is a more flexible class that allows working on specific directories:
DirectoryInfo.

1
9

From the Library of Wow! eBook

ptg

434 CHAPTER 19 Manipulating Files and Streams

The System.IO.DirectoryInfo Class

The System.IO.DirectoryInfo class represents a single directory. More precisely, an
instance of the DirectoryInfo class handles information about the specified directory. It
inherits from System.IO.FileSystemInfo, which is a base class that provides the basic
infrastructure for representing directories or files. You create an instance of the
DirectoryInfo class passing the desired directory name as an argument to the constructor:

Dim di As New DirectoryInfo(“C:\Demo”)

Basically you have the same members that you already learned about for the Directory
class, with some differences. First, now members are instance members and not shared.
Second, methods summarized in Table 19.1 are now properties. Third, members are
invoked directly on the instance that represents the directory; therefore, you do not need
to pass the directory name as an argument. For example, you remove an empty directory
invoking the instance method Delete as follows:

di.Delete()

An interesting property is DirectoryInfo.Attributes, which allows specifying values
from the System.IO.FileAttributes enumeration and that determine directory behavior.
For example, you can make a directory hidden and read-only as follows:

di.Attributes = FileAttributes.Hidden Or FileAttributes.ReadOnly

When you specify values from such enumeration, IntelliSense can help you understand
what the value is about; it’s worth mentioning that such values are self-explanatory. There
are situations in which you do not programmatically create instances of DirectoryInfo,
whereas instead you receive an instance from some other objects. For example, the
Directory.CreateDirectory shared method returns a DirectoryInfo object. In such cases
you can get further information as the directory name invoking the FullName property,
which returns the full pathname of the folder, or the Name property that just returns the
name without path. Both work like this:

Dim directoryFullName As String = di.FullName

Dim directoryName As String = di.Name

Use the DirectoryInfo class each time you need to store information for specific directo-
ries, for example within collections.

The System.IO.DriveInfo Class

Similarly to System.IO.DirectoryInfo, System.IO.DriveInfo provides access to drives
information. Using this class is straightforward; it provides information on the disk type,
disk space (free and total), volume label, and other self-explanatory properties that you

From the Library of Wow! eBook

ptg

435Handling Exceptions for Directories and Pathnames

can discover with IntelliSense. The following example shows how you can create an
instance of the class and retrieve information on the specified drive:

Sub DriveInfoDemo()

Dim dr As New DriveInfo(“C:\”)

Console.WriteLine(“Drive type: {0}”, dr.DriveType.ToString)

Console.WriteLine(“Volume label: {0}”, dr.VolumeLabel)

Console.WriteLine(“Total disk space: {0}”, dr.TotalSize.ToString)

Console.WriteLine(“Available space: {0}”,

dr.AvailableFreeSpace.ToString)

dr = Nothing

End Sub

Handling Exceptions for Directories and Pathnames
When working with directories and pathnames, encountering exceptions is not so uncom-
mon. Table 19.2 summarizes directory-related exceptions.

1
9

It is important to implement Try..Catch blocks for handling the previously described
exceptions and provide the user the ability to escape from such situations.

TABLE 19.2 Directory-Related Exceptions

Exception Description

IOException General exception that happens when operations on directo-
ries fail (such as creating existing directories, deleting
nonempty directories, and so on.)

DirectoryNotFoundException Thrown when the directory is not found

PathTooLongException Thrown when the pathname exceeds the size of 248 charac-
ters for folders and 260 for filenames

UnauthorizedAccessException Thrown if the caller code doesn’t have sufficient rights to
access the directory

ArgumentNullException Thrown when the supplied argument is Nothing

ArgumentException Thrown when the supplied argument is invalid

From the Library of Wow! eBook

ptg

436

Manipulating Files
Manipulating files is a daily task for every developer. Luckily the .NET Framework provides
an easy infrastructure for working with files. In this section you learn about the
System.IO.File and System.IO.FileInfo classes that also represent some important
concepts before you go into streams.

The System.IO.File Class

The System.IO.File class provides access to files on disk exposing special shared
members. For example, you can easily create a text file invoking two methods:
WriteAllText and WriteAllLines. Both create a new text file, put into the file the given
text, and then close the file; however, the second one allows writing the content of an
array of strings into multiple lines. The following code provides an example:

File.WriteAllText(“C:\Temp\OneFile.txt”, “Test message”)

Dim lines() As String = {“First”, “Second”, “Third”}

File.WriteAllLines(“C:\Temp\OneFile.txt”, lines)

Such methods are useful because they avoid the need to manually close files on disk when
you perform the writing operation. You can also easily create binary files invoking the
WriteAllBytes method that works like the previous ones but requires the specification of
an array of byte instead of text. The following is a small example:

File.WriteAllBytes(“C:\Temp\OneFile.bin”, New Byte() {1, 2, 3, 4})

Reading files’ content is also straightforward. There are reading counterparts of the previ-
ously described method. ReadAllText and ReadAllLines allow retrieving content from a
text file; the first one returns all content as a String, whereas the second one returns the
content line by line by putting in an array of String. This is an example:

Dim text As String = File.ReadAllText(“C:\Temp\OneFile.txt”)

Dim fileLines() As String = File.ReadAllLines(“C:\Temp\OneFile.txt”)

Similarly you can read data from binary files invoking ReadAllBytes, which returns an
array of Byte, as follows:

Dim bytes() As Byte = File.ReadAllBytes(“C:\Temp\OneFile.bin”)

For text files, you can also append text to an existing file. You accomplish this invoking
AppendAllText if you want to put an entire string or AppendAllLines if you have a
sequence of strings. This is an example:

Dim lines As IEnumerable(Of String) = _

New String() {“First”, “Second”, “Third”}.AsEnumerable

CHAPTER 19 Manipulating Files and Streams

From the Library of Wow! eBook

ptg

437Manipulating Files
1

9

File.AppendAllLines(“C:\Temporary\Test.txt”, lines)

File.AppendAllText(“C:\Temporary\Text.txt”,

“All text is stored within a string”)

Notice how an array of strings is converted into an IEnumerable(Of String) invoking the
AsEnumerable extension method, which is discussed in Chapters 21, “Advanced
Languages Feature,” and 24, “LINQ to Objects.” AppendAllLines takes an IEnumerable(Of
String) as a parameter but you can also pass an array of strings because arrays are actu-
ally enumerable. After reading and writing, copying is also important. The Copy method
allows creating copies of files, accepting two arguments: the source file and the target file.
This is an example:

File.Copy(“C:\OneFolder\Source.txt”, “C:\AnotherFolder\Target.txt”)

You can also move a file from a location to another, invoking Move. Such a method is also
used to rename a file and can be used as follows:

File.Move(“C:\OneFolder\Source.txt”, “C:\AnotherFolder\Target.txt”)

Another useful method is Replace. It allows replacing the content of a file with the
content of another file, making a backup of the first file. You use it as follows:

File.Replace(“C:\Source.Txt”, “C:\Target.txt”, “C:\Backup.txt”)

Of course you are not limited to text files. The File class offers two important methods
that provide a basic encryption service, Encrypt and Decrypt. Basically Encrypt makes a file
accessible only by the user that is currently logged into Windows. You invoke it as follows:

File.Encrypt(“C:\Temp\OneFile.txt”)

If you try to log off from the system and then log on with another user profile, the
encrypted file will not be accessible. You need to log on again with the user profile that
encrypted the file. To reverse the result, simply invoke Decrypt:

File.Decrypt(“C:\Temp\OneFile.txt”)

Finally you can easily delete a file from disk. This is accomplished with the simple
Delete method:

File.Delete(“C:\Temp\OneFile.txt”)

The File class also has members similar to the Directory class. Consider the summariza-
tion made in Table 19.1 about the Directory class’s members. The File class exposes the
same members with the same meaning; the only difference is that such members now
affect files. Those members are not covered again because they behave the same on files.

From the Library of Wow! eBook

ptg

438

MEMBERS RETURNING STREAMS

The System.IO.File class exposes methods that return or require streams, such as
Create and Open. Such members are not covered here for two reasons: The first one is
that the streams discussion will be offered later in this chapter, whereas the second one
is that streams provide their own members for working against files that do the same as
file members and therefore a more appropriate discussion is related to streams.

The System.IO.FileInfo Class

Similarly to what I explained about the System.IO.DirectoryInfo class, there is also a
System.IO.FileInfo counterpart for the System.IO.File class. An instance of the
FileInfo class is therefore a representation of a single file, providing members that allow
performing operations on that particular file or getting/setting information. Because
FileInfo inherits from System.IO.FileSystemInfo like DirectoryInfo, you can basically
find the same members. You create an instance of the FileInfo class passing the filename
to the constructor, as demonstrated here:

Dim fi As New FileInfo(“C:\MyFile.txt”)

You can set attributes for the specified file assigning the Attributes property, which
receives a value from the System.IO.FileAttributes enumeration:

fi.Attributes = FileAttributes.System Or FileAttributes.Hidden

You can still perform operations invoking instance members that do not require the file-
name specification, such as CopyTo, Delete, Encrypt, Decrypt, or MoveTo. The FileInfo,
such as Length (of type Long) that returns the file size in bytes; Name (of type String) that
returns the filename and that is useful when you receive a FileInfo instance from some-
where else; FullName that is the same as Name but also includes the full path; Exists that
determines if the file exists; and IsReadOnly that determines if the file is read-only. Using
FileInfo can be useful if you need to create collections of objects, each representing a file
on disk. Consider the following custom collections that stores series of FileInfo objects:

Class MyFileList

Inherits List(Of FileInfo)

End Class

Now consider the following code that retrieves the list of executable filenames in the spec-
ified folder and creates an instance of the FileInfo class for each file, pushing it into the
collection:

Module FileInfoDemo

Sub FileInfoDemo()

CHAPTER 19 Manipulating Files and Streams

From the Library of Wow! eBook

ptg

439Manipulating Files
1

9

‘An instance of the collection

Dim customList As New MyFileList

‘Create a FileInfo for each .exe file

‘in the specified directory

For Each itemName As String In _

Directory.EnumerateFiles(“C:\”, “*.exe”)

Dim fileReference As New FileInfo(itemName)

customList.Add(fileReference)

Next

‘Iterate the collection

For Each item In customList

Console.WriteLine(“File: {0}, length: {1}, created on: {2}”,

item.Name, item.Length, item.CreationTime)

Next

End Sub

End Module

In this particular case enclosing the code within a module is just for demonstration
purposes. Notice how you can access properties for each file that you could not know in
advance. As for DirectoryInfo, FileInfo also exposes properties that are counterparts for
methods summarized in Table 19.1 and that this time are related to files. Refer to that
table for further information.

Handling File Exceptions

Refer to Table 19.2 for exceptions that can occur when working with files. Other than those
exceptions, you may encounter a FileNotFoundException if the specified file does not exist.

Understanding Permissions

The .NET Framework provides a high-level security mechanism over system resources, so it
can happen that you attempt to access, in both reading or writing, directories or files but
you do not have the required rights. To prevent your code from failing at runtime, you
can check if you have permissions. When working with files and directories, you need to
check the availability of the System.Security.FileIOPermission object. For example, the
following code asks the system (Demand method) if it has permissions to read local files:

Dim fp As New FileIOPermission(PermissionState.None)

fp.AllLocalFiles = FileIOPermissionAccess.Read

Try

fp.Demand()

Catch ex As Security.SecurityException

Console.WriteLine(“You have no permission for local files”)

Catch ex As Exception

End Try

From the Library of Wow! eBook

ptg

440

If your code has no sufficient permissions, a SecurityException is thrown. Checking for
permission is absolutely a best practice and should be applied where possible. In Chapter
46, “Working with Assemblies,” you get some more information about the security model
in the .NET Framework.

Introducing Streams
Streams are sequences of bytes exchanged with some kind of sources, such as files,
memory, and network. A stream is represented by the abstract System.IO.Stream class that
is the base class for different kinds of streams and that implements the IDisposable inter-
face. The Stream class exposes some common members that you find in all other streams.
Table 19.3 summarizes the most important common members.

CHAPTER 19 Manipulating Files and Streams

Now that you have a summarization of common members, you are ready to discover
specific kinds of streams that inherit from Stream.

TABLE 19.3 Streams Common Members

Member Description

Close Closes the stream and releases associated resources

Write Writes the specified sequence of bytes to the stream

WriteByte Writes the specified byte to the stream

Read Reads the specified number of bytes from the stream

ReadByte Reads a byte from the stream

Length Returns the stream’s dimension (property)

Seek Moves to the specified position in the stream

Position Returns the current position (property)

CanRead Determines if the stream supports reading (property)

CanWrite Determines if the stream supports writing (property)

CanSeek Determines if the stream supports seeking (property)

BeginRead Starts an asynchronous reading operation

BeginWrite Starts an asynchronous writing operation

EndRead Waits for an asynchronous operation to be completed

From the Library of Wow! eBook

ptg

441Introducing Streams
1

9

Reading and Writing Text Files

You create text files instantiating the StreamWriter class, which is a specific stream
implementation for writing to text files. The following code, that will be explained,
provides an example:

Dim ts As New StreamWriter(“C:\Temporary\OneFile.txt”,

False, System.Text.Encoding.UTF8)

ts.WriteLine(“This is a text file”)

ts.WriteLine(“with multi-line example”)

ts.Close()

The constructor provides several overloads; the one used in the code receives the file name
to be created—a Boolean value indicated whether the text must be appended if the file
already exists and how the text is encoded. WriteLine is a method that writes a string and
then puts a line terminator character. When you are done you must close the stream
invoking Close. You can also invoke Write to put in just one character. The reading coun-
terpart is the StreamReader that works in a similar way, as demonstrated here:

Dim rf As New StreamReader(“C:\Temporary\OneFile.txt”,

System.Text.Encoding.UTF8)

Dim readALine As String = rf.ReadLine

Dim allContent As String = rf.ReadToEnd

rf.Close()

StreamReader provides the ability to read one line (ReadLine method), one character per
time (Read method), or all the content of the stream (ReadToEnd method) putting such
content into a variable of type String. In both StreamWriter and StreamReader the
constructor can receive an existing stream instead of a string. This is exemplified by the
following code:

Dim fs As New FileStream(“C:\Temporary\OneFile.txt”, FileMode.Create)

Dim ts As New StreamWriter(fs)

‘Work on your file here..

ts.Close()

fs.Close()

First you need an instance of the FileStream class, which basically allows opening a
communication with the specified file and with the mode specified by a value of the
FileMode enumeration (such as Create, Append, CreateNew, Open, and OpenOrTruncate).
This class provides support for both synchronous and asynchronous operations. Then you
point to the FileStream instance in the constructor of the StreamWriter/StreamReader
class. Remember to close both streams when you are done.

From the Library of Wow! eBook

ptg

442 CHAPTER 19 Manipulating Files and Streams

Reading and Writing Binary Files

You can read and write data to binary files using the BinaryReader and BinaryWriter
classes. Both require a FileStream instance and allow reading and writing arrays of bytes.
The following is an example of creating a binary stream:

Dim fs As New FileStream(“C:\Temporary\OneFile.bin”, FileMode.CreateNew)

Dim bs As New BinaryWriter(fs)

Dim bytesToWrite() As Byte = New Byte() {128, 64, 32, 16}

bs.Write(bytesToWrite)

bs.Close()

fs.Close()

The Write method allows writing information as binary but it also accepts base .NET types
such as integers and strings, all written as binary. It provides several overloads so that you
can also specify the offset and the number of bytes to be written. To read a binary file you
instantiate the BinaryReader class. The following example retrieves information from a
file utilizing a Using..End Using block to ensure that resources are correctly freed up
when no longer necessary:

fs = New FileStream(“C:\Temporary\OneFile.bin”, FileMode.Open)

Using br As New BinaryReader(fs)

If fs IsNot Nothing AndAlso fs.Length > 0 Then

Dim buffer() As Byte = br.ReadBytes(CInt(fs.Length))

End If

End Using

fs.Close()

In this case the ReadBytes method, which is used to retrieve data, reads a number of bytes
corresponding to the file length. Because binary data can have different forms, ReadBytes
is just one of a series of methods for reading .NET types such as ReadChar, ReadInt32,
ReadString, ReadDouble, and so on.

Using Memory Streams

Memory streams are special objects that act like file streams but that work in memory,
providing the ability to manipulate binary data. The following code creates a
MemoryStream with 2 Kbytes capacity and puts in a string:

Dim ms As New MemoryStream(2048)

Dim bs As New BinaryWriter(ms)

From the Library of Wow! eBook

ptg

443Introducing Streams
1

9

bs.Write(“Some text written as binary”)

bs.Close()

ms.Close()

To retrieve data you use a BinaryReader pointing to the MemoryStream as you saw in the
paragraph for binary files. So, in this example, you can simply invoke ReadString as follows:

’The stream must be still open

Using br As New BinaryReader(ms)

If ms IsNot Nothing AndAlso ms.Length > 0 Then

Dim data As String = br.ReadString

End If

End Using

ms.Close()

Using Streams with Strings

Although not often utilized, you can take advantage of StringReader and StringWriter
for manipulating strings. The following example generates a new StringBuilder and asso-
ciates it to a new StringWriter. Then it retrieves the list of filenames in the C:\ directory
and puts each string into the writer. You notice that, because of the association between
the two objects, changes are reflected to the StringBuilder. Try this:

Dim sBuilder As New Text.StringBuilder

Dim sWriter As New StringWriter(sBuilder)

For Each name As String In Directory.GetFiles(“C:\”)

sWriter.WriteLine(name)

Next

sWriter.Close()

Console.WriteLine(sBuilder.ToString)

To read strings you can use the StringReader object, whose constructor requires a string
to be read. To continue with the example, we can read the previously created
StringBuilder line by line:

Dim sReader As New StringReader(sBuilder.ToString)

Do Until sReader.Peek = -1

Console.WriteLine(sReader.ReadLine)

Loop

From the Library of Wow! eBook

ptg

444 CHAPTER 19 Manipulating Files and Streams

You notice lots of similarities between string streams and StreamWriter/StreamReader,
because basically both work with text.

Compressing Data with Streams

One of the most interesting features of streams starting from .NET Framework 2.0 is the
ability to compress and decompress data utilizing the GZipStream and DeflateStream
objects. Both are exposed by the System.IO.Compression namespace, and basically they
both compress data using the GZip algorithm. The only difference is that the GZipStream
writes a small header to compressed data. The interesting thing is that they work similarly
to other streams, and when you write or read data into the stream, data is automatically
compressed or decompressed by the runtime. The good news is that you are not limited to
compressing files, but any other kind of stream. Basically compressing and decompressing
data is quite a simple task. There are situations in which you need more attention accord-
ing to the kind of data you need to access for files. To make comprehension easier, take a
look at the code example provided in Listing 19.1 that contains comments that explain
how such streams work. The purpose of the example is to provide the ability to compress
and decompress files that is a common requirement in applications. You are encouraged
to read comments within the code that can help you get started with the GZipStream.

.NET 4.0 IMPROVEMENTS

The .NET Framework 4.0 introduces a couple new improvements to the
System.IO.Compression namespace. First, the limit of 4 Gigabytes for compressed
data has been removed. Second, the compression algorithm has been improved to not
compress again already affected data.

LISTING 19.1 Compressing and Decompressing Streams

Imports System.IO

Imports System.IO.Compression

Module Compression

Sub TestCompress()

Try

Compress(“C:\Temp\Source.Txt”,

“C:\Temp\Compressed.gzp”)

Catch ex As FileNotFoundException

Console.WriteLine(“File not found!”)

Catch ex As IOException

Console.WriteLine(“An input/output error has occurred:”)

Console.WriteLine(ex.Message)

Catch ex As Exception

Console.WriteLine(ex.Message)

From the Library of Wow! eBook

ptg

445Introducing Streams
1

9

End Try

End Sub

Sub TestDecompress()

Try

Decompress(“C:\Temp\Compressed.gzp”,

“C:\Temp\Original.txt”)

Catch ex As FileNotFoundException

Console.WriteLine(“File not found!”)

Catch ex As IOException

Console.WriteLine(“An input/output error has occurred:”)

Console.WriteLine(ex.Message)

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

End Sub

Public Sub Compress(ByVal inputName As String, ByVal outputName As String)

‘Instantiates a new FileStream

Dim infile As FileStream

Try

‘The Stream points to the specified input file

infile = New FileStream(inputName, FileMode.Open, FileAccess.Read,

FileShare.Read)

‘Stores the file length in a buffer

Dim buffer(CInt(infile.Length - 1)) As Byte

‘Checks if the file can be read and assigns to the “count”

‘variable the result of reading the file

Dim count As Integer = infile.Read(buffer, 0, buffer.Length)

‘If the number of read byte is different from the file length

‘throws an exception

If count <> buffer.Length Then

infile.Close()

Throw New IOException

End If

‘closes the stream

infile.Close()

infile = Nothing

‘Creates a new stream pointing to the output file

Dim ms As New FileStream(outputName, FileMode.CreateNew,

From the Library of Wow! eBook

ptg

446 CHAPTER 19 Manipulating Files and Streams

FileAccess.Write)

‘Creates a new GZipStream for compressing, pointing to

‘the output stream above leaving it open

Dim compressedzipStream As New GZipStream(ms,

CompressionMode.Compress,

True)

‘Puts the buffer into the new stream, which is

‘automatically compressed

compressedzipStream.Write(buffer, 0, buffer.Length)

compressedzipStream.Close()

ms.Close()

Exit Sub

Catch ex As IO.FileNotFoundException

Throw

Catch ex As IOException

Throw

Catch ex As Exception

Throw

End Try

End Sub

Public Sub Decompress(ByVal fileName As String, ByVal originalName As String)

Dim inputFile As FileStream

‘Defining the stream for decompression

Dim compressedZipStream As GZipStream

‘Defining a variable for storing compressed file size

Dim compressedFileSize As Integer

Try

‘Reads the input file

inputFile = New FileStream(fileName,

FileMode.Open,

FileAccess.Read,

FileShare.Read)

‘Reads input file’s size

compressedFileSize = CInt(inputFile.Length)

‘Creates a new GZipStream in Decompress mode

compressedZipStream = New GZipStream(inputFile,

From the Library of Wow! eBook

ptg

447Introducing Streams
1

9

CompressionMode.Decompress)

‘In compressed data the first 100 bytes store the original

‘data size, so let’s get it

Dim offset As Integer = 0

Dim totalBytes As Integer = 0

Dim SmallBuffer(100) As Byte

‘Reads until there are available bytes in the first 100

‘and increments variables that we’ll need for sizing

‘the buffer that will store the decompressed file

Do While True

Dim bytesRead As Integer = compressedZipStream.

Read(SmallBuffer, 0, 100)

If bytesRead = 0 Then

Exit Do

End If

offset += bytesRead

totalBytes += bytesRead

Loop

compressedZipStream.Close()

compressedZipStream = Nothing

‘Creates a new FileStream for reading the input file

inputFile = New FileStream(fileName,

FileMode.Open,

FileAccess.Read,

FileShare.Read)

‘and decompress its content

compressedZipStream = New GZipStream(inputFile,

CompressionMode.Decompress)

‘Declares the buffer that will store uncompressed data

Dim buffer(totalBytes) As Byte

‘Reads from the source file the number of bytes

‘representing the buffer length, taking advantage

‘of the original size

compressedZipStream.Read(buffer, 0, totalBytes)

compressedZipStream.Close()

From the Library of Wow! eBook

ptg

448 CHAPTER 19 Manipulating Files and Streams

compressedZipStream = Nothing

‘Creates a new file for putting uncompressed

‘data

Dim ms As New FileStream(originalName,

FileMode.Create,

FileAccess.Write)

‘Writes uncompressed data to file

ms.Write(buffer, 0, buffer.Length)

ms.Close()

ms = Nothing

Exit Sub

‘General IO error

Catch ex As IOException

Throw

Catch ex As Exception

Throw

Exit Try

End Try

End Sub

End Module

TIP

You use GZipStream and DeflateStream the identical way. The only difference is
about the header in the compressed stream. If you need further information on the dif-
ference, here is the official MSDN page: http://msdn.microsoft.com/en-us/library/sys-
tem.io.compression.deflatestream(VS.100).aspx.

Notice how, at a higher level, you just instantiate the stream the same way in both
compression and decompression tasks. The difference is the CompressionMode enumera-
tion value that determines if a stream is for compression or decompression. With this
technique you can invoke just the two custom methods for compressing and decompress-
ing files, meaning that you could apply it to other kinds of data, too.

Networking with Streams

The .NET Framework provides functionalities for data exchange through networks taking
advantage of streams; in particular, it exposes the System.Net.Sockets.NetworkStream
class. Basically reading and writing data via a NetworkStream instance passes through a
System.Net.Sockets.TcpClient class’s instance. Code in Listing 19.2 shows how you can
both write and read data in such a scenario. See comments in code for explanations.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.io.compression.deflatestream(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.io.compression.deflatestream(VS.100).aspx

ptg

449Introducing Streams
1

9

LISTING 19.2 Networking with NetworkStream

Imports System.Net.Sockets

Imports System.Text

Module Network

Sub NetStreamDemo()

‘Instantiating TcpClient and NetworkStream

Dim customTcpClient As New TcpClient()

Dim customNetworkStream As NetworkStream

Try

‘Attempt to connect to socket

‘127.0.0.1 is the local machine address

customTcpClient.Connect(“127.0.0.1”, 587) ‘Port

‘Gets the instance of the stream for

‘data exchange

customNetworkStream = customTcpClient.GetStream()

‘The port is not available

Catch ex As ArgumentOutOfRangeException

Console.WriteLine(ex.Message)

‘Connection problem

Catch ex As SocketException

Console.WriteLine(ex.Message)

End Try

‘Gets an array of byte from a value, which is

‘encoded via System.Text.Encoding.Ascii.GetBytes

Dim bytesToWrite() As Byte = _

Encoding.ASCII.GetBytes(“Something to exchange via TCP”)

‘Gets the stream instance

customNetworkStream = customTcpClient.GetStream()

‘Writes the bytes to the stream; this

‘means sending data to the network

customNetworkStream.Write(bytesToWrite, 0,

bytesToWrite.Length)

‘Establishes the buffer size for receiving data

Dim bufferSize As Integer = customTcpClient.

ReceiveBufferSize

Dim bufferForReceivedBytes(bufferSize) As Byte

‘Gets data from the stream, meaning by the network

From the Library of Wow! eBook

ptg

450 CHAPTER 19 Manipulating Files and Streams

customNetworkStream.Read(bufferForReceivedBytes, 0,

bufferSize)

Dim result As String = Encoding.ASCII.GetString(bufferForReceivedBytes,

0, bufferSize)

End Sub

End Module

There are obviously several ways for data exchange, and this is probably one of the most
basic ones in the era of Windows Communication Foundation. This topic is related to
streams, so an overview was necessary.

Summary
Working with files, directories, and drives is a common requirement for each application.
The .NET Framework provides two main classes for working with directories:
System.IO.Directory and System.IO.Path. The first one allows performing operations
such as creating, moving, renaming, and investigating for filenames. The second one is
about directory and filename manipulation other than gaining access to Windows’s
temporary folder. Similar to Directory, the System.IO.DirectoryInfo class provides access
to directory operations and information, but the difference is that an instance of such a
class represents a single directory. If you instead need to get information on physical
drives on your machine, simply create an instance of the System.IO.DriveInfo class.
Similar to Directory and DirectoryInfo, the System.IO.File and System.IO.FileInfo
classes provide access to files on disk, and their members are the same as for directory
classes except that they allow working with files. The last part of the chapter is about
streams. Streams are sequences of bytes that allow exchanging different kinds of data. All
stream classes inherit from System.IO.Stream. StreamReader, and StreamWriter allow
reading and writing text files. BinaryReader and BinaryWriter allow reading and writing
binary files. MemoryStream allows reading and writing in-memory binary data.
StringReader and StringWriter allow managing in-memory strings. GZipStream and
DeflateStream allow compressing data according to the GZip algorithm. NetworkStream
allows exchanging data through a network. Writing and reading data can often require
several lines of code. Luckily the Visual Basic language offers an important alternative
known as the My namespace that is covered in next chapter.

From the Library of Wow! eBook

ptg

CHAPTER 20

The My Namespace

IN THIS CHAPTER

. Introducing My

. My.Application

. Extending My

. My in Different Applications

. My.Application and
My.Computer

. My.Resources and
My.Settings

. Extending My

The great debate is always the same: better Visual Basic or
Visual C#? Because of the .NET Framework, the Common
Language Runtime, and the IL language, the languages’
evolution brought both VB and C# to do basically the same
things. Of course, there are some differences, and one
language has some features that the other one does not
have, as with the case of void lambdas in C#, which have
been introduced in VB only with this last version, or the
case of VB’s XML literals that C# does not have. Differences
are obvious. One of the Visual Basic features that does not
have commonalities with other managed languages is the
My namespace, belonging to VB starting from Visual Basic
2005. In this chapter you consider the My namespace that
can write productive code, according to the philosophy of
“less code, more productivity.”

Introducing My
The My namespace provides shortcuts for accessing several
common objects in .NET development. Basically My exposes
classes that wrap existing built-in objects and reoffers them
under an easier to use fashion. By using My, you can access
lots of development areas generally writing less code than
you would if you used usual techniques. At a higher level
My exposes the following members:

. My.Application, a property exposing members that
allows access to other properties of the current appli-
cation

From the Library of Wow! eBook

ptg

452 CHAPTER 20 The My Namespace

. My.Computer, a property exposing members that provides shortcuts to common
operations with your machine, such as the file system or the Registry

. My.Settings, a property that provides code support for the Settings tab in My
Project and that also allows using settings from your application

. My.Resources, a namespace that defines several objects providing support for the
Resources tab in My Project and allowing handling resources in code

. My.User, a property providing members for getting or setting information about the
current user that logged into the operating system

. My.WebServices, a property allowing retrieving information on web services con-
sumed by your application

The preceding listed My members are the most general, and you can find them in every
kind of Visual Basic application. There are also specific extensions for the My namespace
related to specific applications, such as WPF. (A description is at the end of this chapter.)
My is interesting because it can be also be extended with custom members providing great
flexibility to your applications. If something within My does not satisfy you, you can
change it. After all, My is a namespace, meaning that it is implemented in code.

“MY” IS A RESERVED KEYWORD

Due to its particular role within the Visual Basic programming language, although it just
refers to a namespace, My is also a reserved word in Visual Basic.

My.Application
The My.Application properties expose members allowing getting information on the
running instance of the application. This information can be divided into three major
groups: application information at assembly level, culture for localization and deploy-
ment, and environment information. Let’s discover all these features.

APPLICATION FRAMEWORK

In specific kinds of applications, such as Windows Forms and WPF applications,
My.Application also provides support for the application framework and application
events. This is discussed in the last section of this chapter.

Retrieving Assembly Information

Basically My.Application maps the same-named tab within My Project. Because of this, it
provides the ability of investigating in code assemblies’ information. This can be accom-
plished via the My.Application.Info property (of type
Microsoft.VisualBasic.ApplicationServices.AssemblyInfo) that retrieves information

From the Library of Wow! eBook

ptg

453My.Application

about the current assembly, such as the name, version, company name, copyright, and so
on. The following code shows how you can accomplish this:

’Assembly information

Console.WriteLine(“Assembly name: {0}”,

My.Application.Info.AssemblyName)

Console.WriteLine(“Assembly version: {0}”,

My.Application.Info.Version)

Console.WriteLine(“Company name: {0}”,

My.Application.Info.CompanyName)

‘Returns the directory where the application is running from

Console.WriteLine(“Running from: {0}”,

My.Application.Info.DirectoryPath)

Another interesting feature is that you can get information on all referenced assemblies, as
shown in the following iteration:

Console.WriteLine(“References:”)

For Each item In My.Application.Info.LoadedAssemblies

Console.WriteLine(item)

Next

The LoadedAssemblies property is of type ReadonlyCollection(Of
System.Reflection.AssemblyInfo), so you become more skilled after reading Chapter 47,
“Reflection.”

Working with Cultures

In Chapter 36, “Localizing Applications,” you get more information about localizing appli-
cations, but at this particular point of the book, you can get an interesting taste using My.
Basically two cultures are settable for your application: the thread’s culture, which is about
string manipulation and formatting, and the user interface culture, which is about adapt-
ing resources to the desired culture. You can get information on both by invoking the
Culture and UICulture properties from My.Application; then you can set different
cultures for both the main culture and UI culture by invoking the ChangeCulture and
ChangeUICulture methods. The following code accomplishes this:

Dim culture As CultureInfo = My.Application.Culture

Console.WriteLine(“Current culture: {0}”, culture.Name)

Dim UICulture As CultureInfo = My.Application.UICulture

Console.WriteLine(“Current UI culture: {0}”, UICulture.Name)

My.Application.ChangeCulture(“it-IT”)

My.Application.ChangeUICulture(“it-IT”)

Console.WriteLine(“New settings: {0}, {1}”,

2
0

From the Library of Wow! eBook

ptg

454 CHAPTER 20 The My Namespace

My.Application.Culture.Name,

My.Application.UICulture.Name)

First, the code retrieves information about cultures. Such information is of type
System.Globalization.CultureInfo. This object provides lots of information on
cultures, but in this case we use Name that returns the culture name. Notice how you can
change cultures by invoking ChangeCulture and ChangeUICulture just by passing a string
representing the culture’s name. On my machine the preceding code produces the
following result:

Current culture: en-US

Current UI culture: en-US

New settings: it-IT, it-IT

If you need to pass a custom culture, you should create a new CultureInfo object and
then pass the name of the new culture. Typically you will not remember each culture
name, so if you want to investigate available cultures, you can write a simple iteration
taking advantage of the shared GetCultureInfo method:

For Each c In CultureInfo.GetCultures(CultureTypes.AllCultures)

Console.WriteLine(c.Name)

Next

Deployment and Environment Information

The My.Application property basically allows managing the following environment
information:

. Getting information on the ClickOnce deployment for the current application

. Retrieving environment variables

. Writing entries to the Windows Applications log

. Retrieving command line arguments

Next you see in detail how you can get/set such information using My.Application.

Deployment Information
It can be useful to get information on the state of the deployment if your application has
been installed via the ClickOnce technology (discussed in detail in Chapter 55,
“Deploying Applications with ClickOnce”). You might want to provide the ability of
downloading files on-demand or to implement additional behaviors according to the
updates status. You can use the IsNetworkDeployed property to know if an application has

From the Library of Wow! eBook

ptg

455My.Application

been deployed to a network via ClickOnce and the My.Application.Deployment property
(which wraps System.Deployment.Application.ApplicationDeployment) to make other
decisions. The following code shows information on the deployment status only if the
application has been deployed to a network:

’Deployment and environment information

If My.Application.IsNetworkDeployed = True Then

Console.

WriteLine(“Application deployed to a network via ClickOnce”)

Console.WriteLine(“Current deployment version: {0}”,

My.Application.Deployment.CurrentVersion)

Console.WriteLine(“The application runs from: {0}”,

My.Application.Deployment.ActivationUri)

Console.WriteLine(“Is first time run: {0}”,

My.Application.Deployment.IsFirstRun)

End If

The CurrentVersion property is useful to understand the current deployment version, while
ActivationUri is the address where the application manifest is invoked from. You can also
programmatically check for updates invoking specific methods, such as CheckForUpdate,
CheckForUpdateAsync, and CheckForUpdateAsyncCancel. The following is an example:

My.Application.Deployment.CheckForUpdate()

Luckily, My.Application.Deployment members’ names are self-explanatory, and with the
help of IntelliSense and a little bit of curiosity, you have in your hands all the power of
such an object.

Retrieving Environment Variables
There are situations where you need to retrieve the content of the operating system’s envi-
ronment variables. This can be accomplished by invoking the GetEnvironmentVariable
that receives the name of the variable as an argument. The following code shows how to
retrieve the content of the PATH environment variable:

Dim PathEnvironmentVariable As String = My.Application.

GetEnvironmentVariable(“PATH”)

Writing Entries to the Windows’ Applications Log
The .NET Framework provides several ways for interacting with the operating system logs,
but the My namespace offers an easy way to write information to the Windows application
log. My.Application offers a Log property, of type Microsoft.VisualBasic.Logging.Log,

2
0

From the Library of Wow! eBook

ptg

456 CHAPTER 20 The My Namespace

which exposes members for writing information. The following code snippet shows how
you can write a message to the application log invoking the WriteEntry method:

My.Application.Log.WriteEntry(“Demonstrating My.Application.Log”,

TraceEventType.Information)

The first argument is the message, and the second one is a member of the TraceEventType
enumeration whose members are self-explanatory, thanks to IntelliSense, and allow speci-
fying the level of your message. Alternatively, you can write the content of an entire
exception invoking the WriteException method:

Try

Catch ex As Exception

My.Application.Log.WriteException(ex)

End Try

You can also get control over the listeners and the file used by the .NET Framework by
utilizing the TraceSource and DefaultFileLogWriter.

Retrieving Command-Line Arguments
If you need to retrieve command-line arguments for your application, My.Application
offers a convenient way. To complete the following demonstration, go to the Debug tab of
My Project and set whatever command-line arguments you like in the Command Line
Arguments text box. My.Application offers a CommandLineArgs property, which is a
ReadOnlyCollection(Of String) that stores such arguments. Each item in the collection
represents a command-line argument. The following code shows how you can iterate such
collection and check for available command-line arguments:

For Each argument As String In My.Application.CommandLineArgs

Console.WriteLine(argument)

Next

My.Computer
My.Computer provides lots of shortcuts for accessing features on the local system, starting
from the clipboard arriving at the Registry, passing through audio capabilities. This is basi-
cally a class exposing several properties, each one related to a computer area. This is a list
of My.Computer properties:

. FileSystem: Provides members for accessing files, directories, and other objects on disk

. Clipboard: Provides members for setting data to and getting data from the system
clipboard

. Audio: Allows playing audio files

. Mouse: Allows retrieving information on the installed mouse

From the Library of Wow! eBook

ptg

457My.Computer

. Keyboard: Provides members for getting information on the state of keys in the
keyboard

. Registry: Provides members for getting and setting information to Windows Registry

. Network: Offers members for performing operations within the network that the
computer is connected to

. Ports: Allows retrieving information on the computer’s serial ports

. Screen: Allows retrieving information on the screen properties (Windows Forms only)

. Info: Provides a series of information about the running machine

As usual, IntelliSense provides detailed information on each member from the preceding
properties. In the next section you learn to access your machine information with
My.Computer, but providing examples for each member is not possible. Because of this,
members for the biggest areas are summarized and code examples for the most important
members are provided.

Working with the File System

My.Computer provides lots of shortcuts for performing most-common operations on files
and directories via the FileSystem property. Members are self-explanatory and easy to
understand, so you can always take advantage of IntelliSense. To demonstrate how easy it
is to work with the file system, let’s go through some examples. The following code copies
a directory into another one, then it creates a new directory, and finally it retrieves the
current directory:

My.Computer.FileSystem.CopyDirectory(“C:\Source”, “C:\Target”)

My.Computer.FileSystem.CreateDirectory(“C:\Temp”)

Dim currentDir As String = My.Computer.FileSystem.CurrentDirectory

You can also get information on Windows’s special directories via the SpecialDirectories
property as follows:

’Gets My Pictures path

Dim picturesFolder As String =

My.Computer.FileSystem.SpecialDirectories.MyPictures

Working with files is also straightforward. For example, you can read or create a text file in
one line of code:

’Read the content of a text file

Dim content As String =

My.Computer.FileSystem.ReadAllText(“C:\ADocument.txt”)

‘Creates a new text file

My.Computer.FileSystem.WriteAllText(“C:\ADocument.txt”, “File content”,

append:=False)

2
0

From the Library of Wow! eBook

ptg

458 CHAPTER 20 The My Namespace

This can be useful if you do not need to create a text file dynamically, for example line by
line. For files, you can simply iterate a directory to get an array of strings storing all file-
names as follows:

For Each item As String In My.Computer.FileSystem.GetFiles(“C:\”)

‘Do something here

Next

This last example allows extracting the filename of a full path name:

’Returns MyFile.txt

Dim parsedString As String =

My.Computer.FileSystem.GetName(“C:\Temp\MyFile.txt”)

My.Computer.FileSystem is straightforward and simplifies access to the file system
resources avoiding the need to write lots of lines of code.

Working with the Clipboard

The My.Computer.Clipboard property provides members for working with the system clip-
board. Table 20.1 summarizes the members.

TABLE 20.1 My.Computer.Clipboard Members

Member Description

Clear Clears the clipboard content

ContainsAudio Checks if the clipboard contains an audio file

ContainsData Checks if the clipboard contains data according to the specified
format

ContainsFileDropList Checks if the clipboard contains a file drop-down list

ContainsImage Checks if the clipboard contains an image

ContainsText Checks if the clipboard contains some text

GetAudioStream Gets an audio file from the clipboard as a stream

GetData Gets data from the clipboard according to the specified format

GetDataObject Gets data from the clipboard as IDataObject

GetImage Retrieves an image from the clipboard

GetFileDropDownList Retrieves a file drop-down list from the clipboard

GetText Retrieves text from the clipboard

SetAudio Copies the specified audio to the clipboard

SetData Copies the specified custom data to the clipboard

From the Library of Wow! eBook

ptg

459My.Computer

The following code shows how you can clear the clipboard and then copy some text; in
the end the code checks if some text is available and, if so, returns the text:

My.Computer.Clipboard.Clear()

My.Computer.Clipboard.SetText(“This is some text”)

If My.Computer.Clipboard.ContainsText Then

Console.WriteLine(My.Computer.Clipboard.GetText)

End If

Playing Audio Files

My.Computer.Audio provides three methods for audio files reproduction. The first one is
Play, which can play a .Wav file. The following is an example:

My.Computer.Audio.Play(“C:\MySound.Wav”, AudioPlayMode.WaitToComplete)

You need to pass at least the filename as the first argument; as an alternative, you can pass
the .wav file as a byte array or a FileStream. The AudioPlayMode enumeration allows speci-
fying how the audio file needs to be played. WaitToComplete means that no other code
will be executed until the reproduction ends; Background, which is the default setting,
means that the audio is reproduced asynchronously; last, BackgroundLoop means that the
audio file is reproduced in the loop until you explicitly invoke the Stop method as follows:

My.Computer.Audio.Play(“C:\MySound.Wav”,

AudioPlayMode.BackgroundLoop)

‘Other code...

My.Computer.Audio.Stop()

The last method is PlaySystemSound, whose first argument is the system sound to repro-
duce, which works like this:

My.Computer.Audio.PlaySystemSound(Media.SystemSounds.Exclamation)

Sounds examples other than Exclamation are Asterisk, Beep, Hand, and Question.

2
0

SetDataObject Copies the specified System.Windows.Forms.DataObject to the clip-
board

SetImage Copies the specified image to the clipboard

SetText Copies the specified text to the clipboard

Member Description

TABLE 20.1 Continued

From the Library of Wow! eBook

ptg

460 CHAPTER 20 The My Namespace

Managing the Keyboard

You can check for the state of some keyboard keys. My.Computer.Keyboard allows accom-
plishing this via six properties. Three are about the Caps-lock, Num-lock, and Scroll-lock
keys, whereas the other three allow getting the state (pressed or not) of Alt, Shift, and Ctrl.
The following code provides a complete example:

’All Boolean values

Console.WriteLine(My.Computer.Keyboard.AltKeyDown)

Console.WriteLine(My.Computer.Keyboard.CtrlKeyDown)

Console.WriteLine(My.Computer.Keyboard.ShiftKeyDown)

Console.WriteLine(My.Computer.Keyboard.CapsLock)

Console.WriteLine(My.Computer.Keyboard.NumLock)

Console.WriteLine(My.Computer.Keyboard.ScrollLock)

Working with the Registry

My.Computer provides fast access to Windows Registry. It exposes a Registry property
wrapping lots of functionalities of Microsoft.Win32.Registry class for faster work.
My.Computer.Registry offers some properties, of type Microsoft.Win32.RegistryKey,
representing the most important areas of the Registry, such as HKEY_LOCAL_MACHINE
(wrapped by the LocalMachine property), HKEY_ALL_USER (wrapped by Users),
HKEY_CURRENT_USER (wrapped by CurrentUser), and HKEY_CLASSES_ROOT (wrapped
by ClassesRoot). All of them provide methods for creating subkeys, querying, deleting,
and setting values within subkeys. For example, the following code (which requires an
Imports Microsoft.Win32 directive) creates a subkey in the
HKEY_CURRENT_USER\Software key, providing a company name and the application
name. The code also sets permissions for writing/reading the key and its eventual subkeys:

Dim regKey As RegistryKey = My.Computer.Registry.

CurrentUser.CreateSubKey(“Software\DelSole\MyApplication”,

RegistryKeyPermissionCheck.ReadWriteSubTree,

RegistryOptions.None)

Because the CreateSubKey returns a RegistryKey object, you can invoke instance members
from this type. For example, you can add values to the new key by invoking the SetValue
method as follows:

’Value-name, actual value

regKey.SetValue(“MyValue”, 1)

You get the value of the desired subkey by invoking the GetValue method as follows:

’Returns “1”

Dim value As String = CStr(My.Computer.Registry.

GetValue(“HKEY_CURRENT_USER\Software\DelSole\MyApplication”,

“MyValue”,

Nothing))

From the Library of Wow! eBook

ptg

461My.Computer

Remember that GetValue returns Object, so you need to perform an explicit conversion
according to the value type you expect. You also have the ability to determine what kind
of value is associated to a value name. This can be accomplished by getting a
RegistryValueKind value, such as DWord, Binary, String, and QWord, (which is an enumer-
ation from Microsoft.Win32) via the GetValueKind method so that you can also be more
precise when requiring values:

’Returns DWORD

Dim valueKind As RegistryValueKind = regKey.GetValueKind(“MyValue”)

If valueKind = RegistryValueKind.DWord Then

Dim value2 As Integer = _

CInt(My.Computer.

Registry.

GetValue(“HKEY_CURRENT_USER\Software\DelSole\MyApplication”,

“MyValue”, Nothing))

End If

There is also a GetNames method that returns an array of strings, each representing a value
in the specified subkey if more than one value is stored within the subkey. The following
code instead removes the previously created value:

regKey.DeleteValue(“MyValue”)

Remember to close the Registry key when you do not use it anymore:

regKey.Close()

Finally, you can delete a subkey by invoking the DeleteSubKey as follows:

My.Computer.Registry.

CurrentUser.DeleteSubKey(“Software\DelSole\MyApplication”,

True)

Other than the mentioned properties about Registry areas, My.Computer.Registry exposes
just two interesting methods, SetValue and GetValue, which basically require you to
specify long strings and that usually can be replaced by the same-named methods of the
instance of RegistryKey. By the way, with My.Computer.Registry you can perform lots of
tasks onto the system Registry writing code easier and faster.

Accessing the Network

If your machine is connected to a network, you can use the My.Computer.Network prop-
erty that wraps some functionalities of the System.Net namespace. The most interesting
members are the IsNetworkAvailable property that returns True if the machine is
connected, the DownloadFile method that allows downloading a file from the network,
UploadFile that allows uploading a file to the specified target on the network, and Ping

2
0

From the Library of Wow! eBook

ptg

462 CHAPTER 20 The My Namespace

that sends a ping to the specified address. The following code checks first for network
availability, then sends a ping to my English language blog, and in the end attempts to
download a file from the Italian VB Tips & Tricks community (where I’m a team member)
passing credentials as strings:

If My.Computer.Network.IsAvailable Then

Try

‘2000 is the timeout

Dim available As Boolean = My.Computer.

Network.

Ping(“http://community.visual-

basic.it/AlessandroEnglish”,

2000)

My.Computer.Network.DownloadFile(“http://www.visual-

basic.it/scarica.asp?ID=1016”,

“C:\WpfDemo.zip”,

“MyUserName”,

“MyPassword”)

Catch ex As System.Net.WebException

Catch ex As Exception

End Try

End If

Notice how a System.Net.WebException is caught in case there are any network problems
especially with the DownloadFile method. The DownloadFile requires you to specify the
source as the first argument and the target file as the second one. You can also specify the
source as a System.Uri; moreover the method can also download html contents.
UploadFile works similarly, in that it requires the name of the file to be uploaded and
the address, also allowing credentials specifications. Both methods offer several overloads
that IntelliSense explains in details. About Ping, the methods returns True if the website
is reachable.

Getting Computer Information

My.Computer provides the ability of retrieving information on the current machine. The
first information is the machine name, which is available from My.Computer.Name, a
property of type String. Second is the My.Computer.Info property of type Microsoft
.VisualBasic.Devices.ComputerInfo, which collects information such as the total
and available memory, both physical and virtual or the name, platform, and version

From the Library of Wow! eBook

ptg

463My.Computer

of the operating system. The following code shows how you can get some information on
the system:

Console.WriteLine(“Computer name {0}: “, My.Computer.Name)

Console.WriteLine(“Total physical memory {0}: “,

My.Computer.Info.TotalPhysicalMemory)

Console.WriteLine(“Available physical memory {0}: “,

My.Computer.Info.AvailablePhysicalMemory)

Console.WriteLine(“Operating system full name {0}: “,

My.Computer.Info.OSFullName)

Console.WriteLine(“Operating system version: {0}”,

My.Computer.Info.OSVersion)

Console.WriteLine(“Installed User Interface culture: {0}”,

My.Computer.Info.InstalledUICulture.Name)

My.Computer also exposes a Clock property that offers three subproperties: GmtTime that
returns the local date and time expressed as GMT, LocalTime that returns the local date
and time, and TickCount that returns the number of ticks considering the machine timer.
This is how you can use it:

Console.WriteLine(“GMT Time for local machine: {0}”,

My.Computer.Clock.GmtTime.ToString)

You can interact with system hardware with two other properties, Mouse and Screen. The
first one allows knowing if your mouse has a wheel, if buttons’ functionalities are swapped,
or how many lines the scroll will be each time you move the wheel. This is an example:

Console.WriteLine(“Mouse buttons are swapped: {0}”,

My.Computer.Mouse.ButtonsSwapped.ToString)

Console.WriteLine(“Mouse has wheel: {0}”,

My.Computer.Mouse.WheelExists.ToString)

Screen is also interesting because it allows retrieving information on your display, such as
the resolution, the device name, or the actual working area. The following is an example:

Console.WriteLine(“Screen resolution: {0} x {1}”,

My.Computer.Screen.Bounds.Width,

My.Computer.Screen.Bounds.Height)

Console.WriteLine(“Bits per pixel: {0}”,

My.Computer.Screen.BitsPerPixel)

Console.WriteLine(“Working area: {0} x {1}”,

My.Computer.Screen.WorkingArea.Width,

My.Computer.Screen.WorkingArea.Height)

2
0

From the Library of Wow! eBook

ptg

464 CHAPTER 20 The My Namespace

As you can see you can obtain detailed information about both the computer and the
operating system, including localization properties. My.Computer members for retrieving
information are always self-explanatory, but you can always take advantage of IntelliSense
and the Object Browser tool.

My.Settings
One of the most common requirements for applications is providing the ability of storing
user preferences, such as the graphic theme, personal folders, options, and so on.
Generally there are two kinds of settings that the .NET Framework allows saving within
the application configuration file: application-level settings and user-level settings.
Application-level settings are related to the general behavior of the application, and users
will not have the ability of providing modifications. User-level settings are related to each
user profile that runs the applications and allows storing and editing preferences. Starting
from Visual Basic 2005, My namespace provides a class named My.Settings, which offers
members that easily allow working with settings at both levels, but only user-level settings
can be written. At a higher level My.Settings is the code representation of the Settings tab
in My Project. Because of this we start discussing My.Settings by talking about the
Settings designer and then explaining how you can work with settings in code. With that
said, create a new Console project (if not yet) and open My Project; then click the Settings
tab. Figure 20.2 shows the Settings Designer.

Basically each setting is represented by a variable that can be of any .NET type (as long as
it is marked as serializable) storing the desired value. This variable can be provided at both
application level and user level, with the condition that only user-level variables can be
also written. You now learn how to design settings and then how to use them in code.
Imagine you want to provide a simple way for checking if the application is running for
the first time. In the Name column replace the default Settings identifier with
IsFirstTimeRun. In the Type column choose the Boolean type from the combo box, and
in the Scope column ensure that User is selected. In the Value column choose True from
the combo box. Notice that Visual Studio can provide appropriate values depending on

FIGURE 20.1 Information on the local machine using My.Computer.

Figure 20.1 shows the global result of the preceding code running on my machine.

From the Library of Wow! eBook

ptg

465My.Settings

FIGURE 20.2 Settings designer.

the setting type; for Boolean values, it offers True and False. After this sequence, your
Settings Designer looks like Figure 20.3.

2
0

FIGURE 20.3 Providing a Boolean user-level setting.

From the Library of Wow! eBook

ptg

466 CHAPTER 20 The My Namespace

You can now write some code to check if the application is running for the first time and,
if so, set the IsFirstTimeRun setting to False as follows:

Sub UserSettingsDemo()

If My.Settings.IsFirstTimeRun = True Then

Console.WriteLine(“The application is running for the first time”)

My.Settings.IsFirstTimeRun = False

My.Settings.Save()

Else

Console.

WriteLine(“The application is already familiar with your system!”)

End If

End Sub

When you first launch the application, you get the following result:

The application is running for the first time

The code also changed the IsFirstTimeRun setting from True to False; this is possible
because it is a user-level setting. If it were an application-level setting, it would be offered
as a read-only property.

APPLICATION-LEVEL ONLY SETTINGS

With the Settings Designer you can define different kinds of settings, both at applica-
tion level and user level. Among these settings, Connection Strings and Web Services
URL are only available at application level to avoid modifications in code. In this way,
only the appropriate personnel can make the right modifications if needed.

Notice also that you have to invoke the Save method; otherwise changes will not be
saved. To check that everything works, simply rerun the application; you should now get
the following message:

The application is already familiar with your system!

With the same technique you can easily define other settings of different type. You are
not limited to types shown in the default combo box. You can choose any other .NET
type that supports serialization by clicking the Browse command at the bottom of the
combo box. This displays the Select a Type window (see Figure 20.4) where you can make
your choice.

Settings definitions and default values are stored within the application configuration
(app.config) file as XML definition. If your project does not already contain a configura-
tion file, Visual Studio 2010 adds one. User-level settings are defined within a section

From the Library of Wow! eBook

ptg

467My.Settings

FIGURE 20.4 Selecting a nondefault .NET type for designing settings.

named userSettings. The following is an excerpt from the app.config file for the demo
project showing the definition of the previously described IsFirstTimeRun setting:

<userSettings>

<MyNamespace.My.MySettings>

<setting name=”IsFirstTimeRun” serializeAs=”String”>

<value>True</value>

</setting>

</MyNamespace.My.MySettings>

</userSettings>

Notice how each setting is defined by a setting node that also defines the setting’s name
and way of serialization. (Although serialized as a string, based on its value, the .NET
Framework can recognize the setting as Boolean.) Each setting node has a child node
named value that stores the default value for the setting.

CONFIGURATION FILE NAMING

Your application configuration file is named app.config as long as it is included in your
project folder. When the application is built into the target folder (such as the default
Debug and Release subfolders), the configuration file takes the complete name of the
executable (for example, MyApplication.exe) plus the .config extension (for example,
MyApplication.exe.config).

Similarly, application-level settings are stored within a section named applicationSettings.
The following is the excerpt related to the test setting previously shown:

<applicationSettings>

<MyNamespace.My.MySettings>

2
0

From the Library of Wow! eBook

ptg

468 CHAPTER 20 The My Namespace

<setting name=”Setting” serializeAs=”String”>

<value>test</value>

</setting>

</MyNamespace.My.MySettings>

</applicationSettings>

Settings also have a Visual Basic code counterpart. Each setting is mapped to a Visual Basic
property. To understand this, click the Show All Files button in Solution Explorer and
then expand the My Project folder; double-click the Settings.designer.vb file under
Settings.Settings. Among the code that defines My.Settings, you can also find the defini-
tion for your custom settings. The IsFirstTimeRun setting defined in the previous
example is mapped to a VB property as follows:

<Global.System.Configuration.UserScopedSettingAttribute(), _

Global.System.Diagnostics.DebuggerNonUserCodeAttribute(), _

Global.System.Configuration.DefaultSettingValueAttribute(“True”)> _

Public Property IsFirstTimeRun() As Boolean

Get

Return CType(Me(“IsFirstTimeRun”), Boolean)

End Get

Set(ByVal value As Boolean)

Me(“IsFirstTimeRun”) = Value

End Set

End Property

The System.Configuration.UserScopedSettingAttribute tells the compiler that the
setting has user-level scope, whereas the
System.Configuration.DefaultSettingValueAttribute tells the compiler that the default
value for the property is True. Notice how an explicit conversion with CType is performed
to avoid any problems when deserializing. Now you know how and where settings are
defined, but you still probably do not know where they are actually stored when you run
the application outside Visual Studio (for example in production environments). The .NET
Framework creates a folder for the application within the AppData\Local folder in
Windows, which has user-level scope. If you consider the current example, named
MyNamespace on my machine, the .NET Framework created the following folders struc-
ture (on Windows 7 but it is the same on Windows Vista):
C:\Users\Alessandro\AppData\Local\MyNamespace\MyNamespace.vshost.exe_Url_wizb0y

pr4ultyjhh1g1o352espg4ehdd\1.0.0.0. This auto-generated folder contains a file named
user.config that contains the simple, following markup:

<?xml version=”1.0” encoding=”utf-8”?>

<configuration>

<userSettings>

<MyNamespace.My.MySettings>

<setting name=”IsFirstTimeRun” serializeAs=”String”>

<value>False</value>

</setting>

From the Library of Wow! eBook

ptg

469My.Settings

</MyNamespace.My.MySettings>

</userSettings>

</configuration>

As you can see it is the same piece of XML code that was originally defined within the
application configuration file, but now it stays as a single file within a user-level folder.
This file is the place where changes to an application’s settings are effectively saved. Visual
Studio provides a convenient way for restoring such files to the default settings’ value by
just clicking the Synchronize button in the Settings Designer.

My.Settings Events

My.Settings provides some interesting events that allow understanding of what is
happening behind the scenes. Here are the following four events:

. SettingChanging, which is raised just before a setting value is changed

. PropertyChanged, which is raised just after a setting value has been changed

. SettingsLoaded, which is raised just after settings values are loaded

. SettingsSaving, which is raised just before settings values are persisted to disk

To handle such events you simply need to double-click the Settings.vb file that is auto-
matically added by Visual Studio when you define a custom setting. The file just contains
a partial class definition for My.Settings so that it makes it easier to write custom code
without putting your hands on the auto-generated one. Creating event handlers is
straightforward. When the Settings.vb file is open, select the MySettings events item in
the upper-left combo box and select the event you want to handle in the upper right, as
shown in Figure 20.5. When selected, Visual Studio 2010 automatically generates an event
handler stub.

For example, imagine you want to validate a setting before changes are saved. To accom-
plish this, add a new String setting in the Settings Designer and name the setting as
ValidationTest. The goal is to avoid saving the string value if it is null. The following
code accomplishes this:

Private Sub MySettings_SettingsSaving(ByVal sender As Object,

ByVal e As

System.ComponentModel.CancelEventArgs) _

Handles Me.SettingsSaving

If My.Settings.ValidationTest Is Nothing Then

Throw New NullReferenceException(“Cannot save a null string”)

e.Cancel = True

End If

End Sub

The SettingsSaving event allows performing some checks before values are saved. The e
variable of type System.ComponentModel.CancelEventArgs provides a Cancel property that

2
0

From the Library of Wow! eBook

ptg

470 CHAPTER 20 The My Namespace

FIGURE 20.5 Handling My.Settings events.

cancels saving when set to True. The following example shows instead how you can
handle the SettingChanging event that is raised before a setting value gets changed:

Private Sub MySettings_SettingChanging(ByVal sender As Object,

ByVal e As _

System.Configuration.

SettingChangingEventArgs) _

Handles Me.SettingChanging

Console.WriteLine(“About to change the settings values”)

‘Waits for one second

System.Threading.Thread.Sleep(1000)

End Sub

My.Settings provides a convenient way for managing user settings in a strongly typed
way offering a modern infrastructure that is more efficient than older .ini files.

My.Resources
Visual Studio and the .NET Framework allow including resources within your application.
Basically resources are different kinds of information that would be usually available from
external files, such as sounds, images, and text. You can embed in your application all
resources you want using My.Resources and the Resources Designer.

From the Library of Wow! eBook

ptg

471My.Resources

WPF RESOURCES

Things behave little differently in WPF and Silverlight applications. Because of their partic-
ular infrastructure, embedding resources using the Resources Designer is a practice that
you must avoid. To understand how WPF resources work, take a look at the official page
in the MSDN Library: http://msdn.microsoft.com/en-us/library/ms750613(VS.100).aspx.

Differently from other My members, My.Resources is a namespace defining subsequent
members that can wrap in code resources that you define in the designer. At this point
you need to open My Project and then select the Resources tab. Figure 20.6 shows the
Resources Designer.

2
0

Each time you add a new resource, Visual Studio generates a .NET property that provides
managed access to the resource itself. For example, in the Name column replace the
String1 default identifier with TestString and type Resources demonstration in the
Value column. If you like, you can also provide a comment. Visual Studio generates a
TestString property of type String and Friend visibility that you can access like any
other property, as in the following code:

Console.WriteLine(My.Resources.TestString)

The interesting thing is that the Visual Basic compiler will try to format the string accord-
ing to the current culture settings. Clicking the Add Resource button you will be prompted

FIGURE 20.6 The Resources Designer.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms750613(VS.100).aspx

ptg

472

with a series of kinds of files to add as resources. If you add a text file, the file will be repre-
sented by a String property. Particularly, you can both add existing or new files. For
example, click the Add Resource button and select the New Image, JPEG Image...
command. After you specify the new image name, Visual Studio 2010 shows the image
editor where you can leverage your drawing ability. Figure 20.7 shows an editor in action.

CHAPTER 20 The My Namespace

After you create your image, or even if you add an existing one from disk, the IDE gener-
ates a property of type System.Drawing.Bitmap pointing to the image. If you have a
Windows Forms application, you could simply recall your image as follows:

’PictureBox1 is a Windows Forms “PictureBox” control

‘MyCustomImage is the name of the new custom image

Me.PictureBox1.Image = My.Resources.MyCustomImage

You can then pick images from resources if you need to populate a PictureBox control at
design time by clicking the Browse button from the Properties window to set the Image
property. Figure 20.8 shows how you can select an image directly from resources.

The same is for icons; you can create and draw a new icon with the Visual Studio Designer
and then assign it to a Windows Forms Icon property. For audio files, you can add only
.Wav files to ensure that they are automatically recognized as audio files. Such files are
then mapped as System.IO.UnmanagedMemoryStream objects and can be played via
My.Computer as follows:

FIGURE 20.7 The Visual Studio 2010’s built-in image editor.

From the Library of Wow! eBook

ptg

473My.Resources
2

0

FIGURE 20.8 Assigning an image to a PictureBox picking from resources.

My.Computer.Audio.Play(My.Resources.

AnAudioFile,

AudioPlayMode.WaitToComplete)

You can also add files different than text, pictures, icons, and audio. When Visual Studio
cannot recognize a file type, it returns it from resources as byte array (System.Byte()), so
you should implement code to analyze the particular resource. Visual Studio also creates a
project-level folder named Resources where it stores resource files. Another interesting
thing is to understand how resources are defined in code. Each time you add a resource
via the designer, the IDE generates a Visual Basic property for it. For example, the follow-
ing code shows how the new jpeg image is mapped in code:

Friend ReadOnly Property MyCustomImage() As System.Drawing.Bitmap

Get

Dim obj As Object = ResourceManager.

GetObject(“MyCustomImage”, resourceCulture)

Return CType(obj, System.Drawing.Bitmap)

End Get

End Property

And this is how the first string resource is mapped:

Friend ReadOnly Property TestString() As String

Get

Return ResourceManager.

GetString(“TestString”, resourceCulture)

End Get

End Property

The ResourceManager class provides methods for retrieving resources according to the
specified culture that by default is the system one. Such properties are available in the
Resources.designer.vb file that should never be edited manually.

From the Library of Wow! eBook

ptg

474 CHAPTER 20 The My Namespace

Getting Resources by Name in Code

There are situations in which you need to access resources by name in code. This can be
accomplished via the Reflection, which is a topic discussed in Chapter 47. The following
code provides an example:

’Returns the specified resource of type String

‘usage:

‘Dim myRes As String = GetResourceByName(“TestString”)

Function GetResourceByName(ByVal resourceName As String) As String

‘An example for [Application Name].[Resource File]

‘is the current app:

‘MyNamespace.Resources.resx

Dim rm As New ResourceManager(“[Application Name].[Resource File]”,

Assembly.GetExecutingAssembly)

Return rm.GetString(resourceName)

End Function

In this case the method returns resources of type String but you can implement methods
that return a different type.

My.User
My.User is a property that allows getting information on the user that logged into the
Windows operating system and that is running the application. Such a property is of type
Microsoft.VisualBasic.ApplicationServices.User and is a wrapper of this last
mentioned one, meaning that you can invoke both and obtain the same results. Utilizing
My.User is straightforward because it offers just a few but easy-to-understand members, as
summarized in Table 20.2.

TABLE 20.2 My.User Members

Member Type Description

CurrentPrincipal Property Retrieves information on the current user based on the
System.Security.Principal implementation for a role-
based security

InitializeWithWindowsUser Method Associates the application with the current principal
that logged into Windows

Name Property A string that stores the name of the currently logged
user

IsAuthenticated Property A Boolean value representing if the current user is
authenticated

From the Library of Wow! eBook

ptg

475My.User
2

0

TABLE 20.2 Continued

Member Type Description

Listing 20.1 shows how you can get information on the current user that runs the applica-
tion. Notice how an invocation to InitializeWithWindowsUser is required to associate the
current user to the application.

LISTING 20.1 Using My.User to Get Information on the Current User

Module Module1

Sub Main()

MyUserInformation()

Console.ReadLine()

End Sub

Sub MyUserInformation()

My.User.InitializeWithWindowsUser()

Console.WriteLine(“Current user is: {0}”, My.User.Name)

Console.WriteLine(“User is authenticated: {0}”, My.User.IsAuthenticated)

Console.WriteLine(“Application is running as Administrator: {0}”,

My.User.IsInRole(“BUILTIN\Administrators”))

Console.WriteLine(My.User.CurrentPrincipal.

Identity.AuthenticationType.ToString)

End Sub

End Module

The code shown in Listing 20.1 produces, on my machine, the following output:

Current user is: DELSOLEFISSO7\Alessandro

User is authenticated: True

Application is running as Administrator: False

NTLM

Notice how the username is provided as “Computer name\user name” and also how the
role for the IsInRole method requires the name of the machine. (BUILTIN is a default
value for all machines.) The authentication type is determined via the
CurrentPrincipal.Identity.AuthenticationType property. Here, Identity is a
System.Security.Principal.IIdentity object that provides information about a user,
considering the role-based security system in the .NET Framework (for more information

IsInRole Method Returns True if the current user belongs to the speci-
fied role

From the Library of Wow! eBook

ptg

476 CHAPTER 20 The My Namespace

check the MSDN documentation). With a few lines of code you can get information about
the current user without the need of dealing with classes and members from the
Microsoft.VisualBasic.ApplicationServices.User object.

My.WebServices
When you have in your application references to web services, you can easily reach
members provided by the proxy classes using My.WebServices. For example, if you have a
proxy class named DataAccess exposing a GetCustomers method, you can simply write the
following line:

My.WebServices.DataAccess.GetCustomers()

This is a rapid way for invoking members from referenced web services (as long as they are
in the same solution of your application).

Extending My
One of the most interesting features of the My namespace is that it is extensible with
custom members. You can both extend My at the root level or extend existing members
such as Application and Computer. The first goal of this section is to show how you can
extend My at the higher level, implementing functionalities for working with collections,
such as a property that allows converting from a generic collection into an
ObservableCollection(Of T). We need to mimic how Visual Basic 2010 handles the My
namespace, so first add a new module to the project and name it MyCollectionsUtils.
Each member you want to be added to My must start with the My letters; this is the reason
for using the MyCollectionsUtils identifier. The compiler can then distinguish that this
member belongs to My if you enclose it within such a namespace. Add a reference to the
WindowsBase.dll assembly (not required in WPF applications) and then write the code
shown in Listing 20.2.

LISTING 20.2 Extending My at Root Level

Imports System.Collections.ObjectModel

Namespace My

<Global.Microsoft.VisualBasic.HideModuleName(),

Global.System.Diagnostics.DebuggerNonUserCode()>

Module MyCollectionsUtils

Private helper As New _

ThreadSafeObjectProvider(Of ObservableCollectionHelper)

Friend ReadOnly Property CollectionsUtils _

From the Library of Wow! eBook

ptg

477Extending My
2

0

As ObservableCollectionHelper

Get

Return helper.GetInstance

helper = Nothing

End Get

End Property

End Module

End Namespace

Class ObservableCollectionHelper

Public Function ConvertToObservableCollection(Of T) _

(ByVal collection As ICollection(Of T)) _

As ObservableCollection(Of T)

Return New ObservableCollection(Of T)(collection)

End Function

End Class

FRIEND VISIBILITY

Module’s members are marked as Friend to reproduce the default Visual Basic behavior.

There are some tasks to perform after examining Listing 20.2. First, notice how the
ObservableCollectionHelper class exposes a public method that effectively converts an
ICollection(Of T) into a new ObservableCollection. Also notice how there is the need
to explicitly provide a Namespace My..End Namespace declaration, which encloses custom
members for My. The MyCollectionsUtils module exposes members that are effectively
accessible via My. To replicate the VB default behavior, the module is marked as
System.Diagnostics.NonUserCode so that the debugger does not step into such code (if
you instead need debugger support, simply remove this attribute) and as
Microsoft.VisualBasic.HideModuleName that prevents the module name to be shown by
IntelliSense when invoking your custom members. Then notice how the helper field is of
type ThreadSafeObjectProvider(Of T). According to the Microsoft documentation, this is
a best practice because it ensures that each thread invoking My.CollectionsUtils has
access to a separate instance. The read-only property CollectionsUtils then wraps the
ObservableCollectionHelper.ConvertToObservableCollection method exposing through
the GetInstance invocation. When you have created your extension, you can use it in a
simple way. The following code shows how you can convert a List(Of Integer) into an
ObservableCollection using your custom My.CollectionsUtils member:

Dim someInts As New List(Of Integer) From {1, 2, 3}

From the Library of Wow! eBook

ptg

478 CHAPTER 20 The My Namespace

Dim obs As ObservableCollection(Of Integer) =

My.CollectionsUtils.ConvertToObservableCollection(someInts)

For Each number As Integer In obs

Console.WriteLine(number)

Next

After seeing how you can extend My at the root level, let’s now see how you can customize
existing members.

Extending My.Application and My.Computer

Extending existing members such as Application and Computer is straightforward, because
both are implemented as partial classes, so you can simply add your own partial classes
without the need of editing auto-generated code. Previous considerations remain
unchanged, meaning that your partial classes’ names need to start with My (such as
MyApplication and MyComputer) and that both must be enclosed within an explicit decla-
ration of a Namespace My..End Namespace code block. For example, imagine you want to
extend My.Application with a method that associates a file extension with your applica-
tion so that each time you double-click a file with that particular extension it will be
opened by your application. Listing 20.3 accomplishes this (notice that if you run
Windows Vista or Windows 7 you need to start Visual Studio with administrative rights).

LISTING 20.3 Extending My.Application

Imports Microsoft.Win32

Namespace My

Partial Friend Class MyApplication

Public Function AssociateExtension(ByVal extension As String,

ByVal mimeType As String) As Boolean

Try

‘Creates a registry entry for the extension

My.Computer.Registry.ClassesRoot.

CreateSubKey(extension).SetValue(““,

mimeType, RegistryValueKind.String)

‘Creates a registry entry for the Mime type

‘Environment.GetCommandLineArgs(0) returns

‘the executable name for Console applications

My.Computer.Registry.ClassesRoot.

CreateSubKey(mimeType & “\shell\open\command”).

SetValue(““, Environment.GetCommandLineArgs(0) & “ ““%l”” “,

From the Library of Wow! eBook

ptg

479Extending My
2

0

RegistryValueKind.String)

Return True

Catch ex As Exception

Return False

End Try

End Function

End Class

End Namespace

Notice how the MyApplication class is marked as Partial Friend. This is required to
match the definition provided by Visual Basic to My.Application. Now you can use the
extension as you would normally do with My.Application. The following is an example:

Dim succeeded As Boolean =

My.Application.AssociateExtension(“.ale”,

“AlessandroDelSole/document”)

Extending My.Computer works similarly. For example, we could implement a property that
returns the MIME type for the specified filename. Code in Listing 20.4 accomplishes this.

LISTING 20.4 Extending My.Computer

Imports Microsoft.Win32

Namespace My

Partial Friend Class MyComputer

Public ReadOnly Property MimeType(ByVal fileName As String) As String

Get

Return getMimeType(fileName)

End Get

End Property

Private Function getMimeType(ByVal fileName As String) As String

Dim mimeType As String = String.Empty

Dim fileExtension = System.IO.Path.

GetExtension(fileName).ToLower()

Dim registryKey = Registry.ClassesRoot.

OpenSubKey(fileExtension)

If registryKey IsNot Nothing And _

registryKey.GetValue(“Content Type”) _

From the Library of Wow! eBook

ptg

480 CHAPTER 20 The My Namespace

IsNot Nothing Then

mimeType = registryKey.

GetValue(“Content Type”).ToString

Else

mimeType = ““

End If

Return mimeType

End Function

End Class

End Namespace

You still need to mark the class as Partial Friend enclosing it within the My namespace
declaration. At this point you can use your extension as usual, for example to retrieve the
MIME type of a text file:

Dim mimeType As String = My.Computer.MimeType(“Testfile.txt”)

Of course, you are not limited to extending Application and Computer but you can also
extend Settings and Resources.

Extending My.Resources and My.Settings

Extending My.Resources and My.Settings is also possible although with a few differences.
Resources is a namespace, so you need to declare it as follows:

Namespace My.Resources

Friend Module MyResources

‘Your code here

End Module

End Namespace

Generally you do not need custom extensions to Resources; you could decide to offer
alternative localized versions of some contents. Extending My.Settings works more simi-
larly to Application and Computer, but generally you do not need to provide custom
extensions here because the Visual Studio 2010 Designer provides a graphical environ-
ment for performing all operations you need and selecting all available .NET types.

My in Different Applications
Now that you know how My can be customized, you can easily understand why different
kinds of Visual Basic applications have their own customizations, provided by the IDE. For
example, Windows Forms applications provide a My.Forms property that allows access to
forms instances, as follows:

Dim oneForm As Form1 = My.Forms.Form1

From the Library of Wow! eBook

ptg

481My in Different Applications
2

0

This is mainly due to the support offered in code by the My namespace to the Application
Framework feature. This feature allows executing special tasks at the beginning and at the
end of the application lifetime, such as showing splash screens or establishing what form
is the main application form. In Windows Forms applications the application framework
is enabled by default, and you can get in touch with it by opening My Project and select-
ing the Application tab, as shown in Figure 20.9.

Enabling the application framework allows visually managing features with no lines of
code, although you are allowed to customize the related auto-generated code. For
example, the following line manually establishes that My.Settings has to be saved when
the application shuts down:

My.Application.SaveMySettingsOnExit = True

The following line shows instead how you can set the minimum number of milliseconds
for a splash screen to be shown:

My.Application.MinimumSplashScreenDisplayTime = 1000

For WPF applications the application framework is slightly different, as shown in Figure
20.10.

FIGURE 20.9 The application framework designer for Windows Forms applications.

From the Library of Wow! eBook

ptg

482 CHAPTER 20 The My Namespace

The following lines show how you can take advantage of My.Application in WPF to
retrieve some information:

’The main Window XAML’s uri

Dim startup As String = My.Application.StartupUri.ToString

‘Main Window

Dim mainWindow As Window = My.Application.MainWindow

‘Application resources

Dim appResources As ResourceDictionary = My.Application.Resources

Generally all members are self-explanatory, so IntelliSense can be a great friend to you in
this situation, too. In both Windows Forms and WPF applications, the View Application
Events button redirects you to the appropriate file for defining application events
(Application.xaml.vb in WPF and Application.Designer.vb in Win Forms). For web applica-
tions, Silverlight applications do not support the My namespace whereas ASP.NET applica-
tions do not offer the My.Application and My.WebServices members; they instead expose
the My.Response and My.Request properties that respectively wrap members from
System.Web.HttpResponse and System.Web.HttpRequest.

FIGURE 20.10 The application framework for WPF applications.

From the Library of Wow! eBook

ptg

483My in Different Applications
2

0

Understanding Application Events

Applications that provide support for the application framework can be also managed
with application events. This is the typical case of client applications such as Windows
Forms and WPF applications. Windows Forms applications provide the following events:

. NetworkAvailabilityChanged, which is raised when the network becomes available
or the connection is no longer available

. ShutDown, which is raised when the application shuts down

. Startup, which is raised when the application starts

. StartupNextInstance, which is raised when another instance of the application
starts up

. UnhandledException which is raised when the application encounters an unhandled
exception during tasks that involve the application framework

Applications events are handled within the code file that implements My.Application
customizations, which by default is Application.designer.vb. The following example shows
how you can intercept the network state change:

Private Sub MyApplication_NetworkAvailabilityChanged(ByVal sender As Object,

ByVal e As Microsoft.VisualBasic.

Devices.

NetworkAvailableEventArgs) _

Handles

Me.NetworkAvailabilityChanged

If e.IsNetworkAvailable = False Then

‘Network no longer available

Else

‘Network available

End If

End Sub

In WPF applications you have more events that you can handle. First, application events in
WPF are handled in the Application.xaml.vb file. You have the following events available:

. Activated, which is raised when the application gets the foreground focus

. Deactivated, which is raised when the application loses the foreground focus

. DispatcherUnhandledException, which is raised when the Dispatcher object
encounters an unhandled exception

. Exit, which is raised when the application shuts down

From the Library of Wow! eBook

ptg

484 CHAPTER 20 The My Namespace

. LoadCompleted, Navigated, Navigating, NavigationFailed, NavigationProgress,
and NavigationStopped, which are raised in case of navigation applications, which
is self-explanatory if you think of navigation between pages

. Startup, which is raised when the application starts up and specifies the main UI
object

. FragmentNavigation, which is raised when navigating to a specific XAML Uri

. SessionEnding, which is raised when the user logs off from Windows or is shutting
down the system

The following example shows how you can intercept the SessionEnding event and decide
to back up your work if the e.ReasonSessionEnding property has value
ReasonSessionEnding.Shutdown:

Private Sub Application_SessionEnding(ByVal sender As Object,

ByVal e As _

SessionEndingCancelEventArgs) _

Handles Me.SessionEnding

If e.ReasonSessionEnding = ReasonSessionEnding.Shutdown Then

‘Backup your files here

End If

End Sub

Application events provide a great way for getting information on what happens behind
the scenes of the application lifetime.

Summary
The My namespace is a unique feature of Visual Basic language starting from VB 2005,
offering lots of shortcuts to most common operations. In this chapter you saw how you
can interact with your application with My.Application and how you can perform opera-
tions on your system with My.Computer, including file operations, Registry operations and
clipboard operations. You then got information about an important feature provided by
My.Settings, which has the capability to save and load user preferences using the Visual
Studio Designer and managed code, which is a convenient way if compared to old initial-
ization files. Next you saw about My.Resources, a special place for embedding files in your
executable, typically for Console and Windows Forms applications. Finally, you got in
touch with one of the most important features in My: the ability to extend the namespace
with custom members, both at root level and existing members.

From the Library of Wow! eBook

ptg

CHAPTER 21

Advanced Language
Features

IN THIS CHAPTER

. Local Type Inference

. Array Literals

. Extension Methods

. Delegates

. Lambda Expressions

. Ternary If operator

. Generic VarianceThe previous version of the .NET Framework, numbered
3.5, introduced revolutionary technologies such as LINQ.
Because of its complex infrastructure, all .NET languages
(especially VB and C#) required new keywords, syntaxes,
and constructs to interact with LINQ but that could be
successfully used in lots of other scenarios. Visual Basic
2010 continues to support those language features and
introduces new ones to make your coding experience even
better. Most of language features discussed in this chapter
are important for the comprehension of the next chapters,
so I recommend you to pay particular attention to topics
presented here.

Local Type Inference
Local type inference is a language feature that allows you to
omit specifying the data type of a local variable even if
Option Strict is set to On. The Visual Basic compiler can
deduce (infer) the most appropriate data type depending on
the variable’s usage. The easiest way to understand and
hopefully appreciate local type inference is to provide a
code example. Consider the following code and pay atten-
tion to the comments:

Sub Main()

‘The compiler infers String

Dim oneString = “Hello Visual Basic 2010!”

‘The compiler infers Integer

Dim oneInt = 324

From the Library of Wow! eBook

ptg

486 CHAPTER 21 Advanced Language Features

‘The compiler infers Double

Dim oneDbl = 123.456

‘The compiler infers Boolean

Dim oneBool = True

End Sub

As you can see, the code doesn’t specify the type for all variables because the compiler can
infer the most appropriate data type according to the usage of a variable. To ensure that
the VB compiler inferred the right type, simply pass the mouse pointer over the variable
declaration to retrieve information via a useful tooltip, as shown in Figure 21.1.

BEHIND THE SCENES OF LOCAL TYPE INFERENCE

Types’ inference is determined via the dominant type algorithm. You can get further
information in the Visual Basic 9.0 language specifications document available at
http://www.microsoft.com/downloads/details.aspx?FamilyID=39DE1DD0-F775-40BF-
A191-09F5A95EF500&displaylang=en.

Obviously the local type inference works also with custom types, as demonstrated by the
following example:

Dim p As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”}

‘The compiler infers Person

Dim onePerson = p

FIGURE 21.1 A tooltip indicates what type the Visual Basic compiler inferred to local vari-
ables.

From the Library of Wow! eBook

http://www.microsoft.com/downloads/details.aspx?FamilyID=39DE1DD0-F775-40BFA191-09F5A95EF500&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=39DE1DD0-F775-40BFA191-09F5A95EF500&displaylang=en

ptg

487Local Type Inference
2

1

You can also use local type inference within loops or in any other circumstance you like:

’The compiler infers System.Diagnostic.Process

For Each proc In Process.GetProcesses

Console.WriteLine(proc.ProcessName)

Next

Option Infer Directive

To enable or disable local type inference, the Visual Basic grammar provides the Option
Infer directive. Option Infer On enables inference whereas Option Infer Off disables it.
Generally you do not need to explicitly provide an Option Infer directive because it is
offered at the project level by Visual Studio. By default, Option Infer is On. If you want to
change default settings for the current project, simply open My Project and then switch to
the Compile tab. There you can find the Visual Basic compiler options including Option
Infer. If you instead want to change settings for each new project, simply choose the
Options command from the Tools menu. When the Options dialog appears, move to the
Projects and Solutions tab and select the VB defaults item, as shown in Figure 21.2.

You then need to add an Option Infer On directive if you want to switch back to local
type inference.

FIGURE 21.2 Changing the default behavior for Option Infer.

From the Library of Wow! eBook

ptg

488 CHAPTER 21 Advanced Language Features

Local Type Inference Scope

The word local in the Local Type Inference definition has a special meaning. Local type
inference works only with local variables defined within code blocks, whereas it does not
work with class-level declarations. For example, consider the following code:

Class Person

Property LastName As String

Property FirstName As String

Function FullName() As String

‘Local variable: local type inference works

Dim completeName = Me.LastName & “ “ & Me.FirstName

Return completeName

End Function

End Class

Local type inference affects the completeName local variable, which is enclosed within a
method. Now consider the following code:

’Both Option Strict and Option Infer are On

Class Person

‘Local type inference does not work with

‘class level variables. An error will be

‘thrown.

Private completeName

The preceding code will not be compiled because local type inference does not affect class-
level declarations; therefore, the Visual Basic compiler throws an error if Option Strict is
On. If Option Strict is Off, the completeName class-level variable will be considered of
type Object but still it is not affected by local type inference, so be aware of this possible
situation. The conclusion is that you always need to explicitly provide a type for class-
level variables, whereas you can omit the specification with local variables.

WHY LOCAL TYPE INFERENCE?

If you are an old-school developer you probably will be surprised and perhaps unhappy
by local type inference because you always wrote your code the most strongly typed
possible. Generally you will not be obliged to declare types taking advantage of local
type inference except when you need to generate anonymous types, which are dis-
cussed later in this chapter. I always use (and suggest) the local type inference
because it’s straightforward and avoids the need of worrying about types, especially
with different kinds of query result when working with LINQ. I often use this feature in
the rest of the book.

From the Library of Wow! eBook

ptg

489Array Literals
2

1

Array Literals
Visual Basic 2010 introduces a new feature known as array literals. Basically it works like
the local type inference but it is specific to arrays. For example, consider this array of
strings declaration as you would write it in Visual Basic 2008:

Dim anArrayOfStrings() As String = {“One”, “Two”, “Three”}

Now in Visual Basic 2010 you can simply write it as follows:

’The compiler infers String()

Dim anArrayOfStrings = {“One”, “Two”, “Three”}

According to the preceding code, you are still required to only place a couple of parenthe-
ses, but you can omit the type that is correctly inferred by the compiler as you can easily
verify by passing the mouse pointer over the variable declaration. Of course, array literals
work also with value types, as shown here:

’The compiler infers Double

Dim anArrayOfDouble = {1.23, 2.34, 3.45}

‘The compiler infers Integer

Dim anArrayOfInteger = {4, 3, 2, 1}

Array literals also support mixed arrays. For example, the following array is inferred as an
array of Object:

’Does not work with Option Strict On

Dim mixedArray = {1.23, “One point Twentythree”}

The preceding code will not be compiled if Option Strict is On and the compiler will
show a message saying that the type cannot be inferred, which is a situation that can be
resolved explicitly by assigning the type to the array. You could therefore explicitly declare
the array as Dim mixedArray() As Object but you need to be careful in this because
mixed arrays could lead to errors.

Multidimensional and Jagged Arrays

Array literals also affect multidimensional and jagged arrays. The following line of code
shows how you can declare a multidimensional array of integers taking advantage of
array literals:

Dim multiIntArray = {{4, 3}, {2, 1}}

In this case you do not need to add parentheses. The Visual Basic compiler infers the type
as follows:

Dim multiIntArray(,) As Integer = {{4, 3}, {2, 1}}

From the Library of Wow! eBook

ptg

490 CHAPTER 21 Advanced Language Features

Figure 21.3 shows how you can check the inferred type by passing the mouse pointer over
the declaration, getting a descriptive tooltip.

Array literals work similarly on a jagged array. For example, you can write a jagged array of
strings as follows:

Dim jaggedStringArray = {({“One”, “Two”}),

({“Three”, “Four”})}

This is the same as writing:

Dim jaggedStringArray()() As String = {({“One”, “Two”}),

({“Three”, “Four”})}

And the same as for multidimensional arrays in which the code editor can provide help
on type inference, as shown in Figure 21.4.

Array literals can help in writing more elegant and shorter code.

Extension Methods
Extension methods are a feature that Visual Basic 2010 inherits from its predecessor. As for
other features discussed in this chapter, their main purpose is being used with LINQ,
although they can also be useful in hundreds of different scenarios. Basically extension
methods are special methods that can extend the data type they are applied to. The most

FIGURE 21.3 Type inference for a multidimensional array.

FIGURE 21.4 Type inference for a jagged array.

From the Library of Wow! eBook

ptg

491Extension Methods
2

1

important thing is that you can extend existing types even if you do not have the source
code and without the need to rebuild class libraries that expose types you go to extend—
and this is important. For example, you can extend .NET built-in types, as you see in this
section, although you do not have .NET source code. We now discuss extension methods
in two different perspectives: learning to use existing extension methods exposed by .NET
built-in types and implementing and exporting custom extension methods. The first code
example retrieves the list of processes running on the system and makes use of an exten-
sion method named ToList:

Dim processList = Process.GetProcesses.ToList

ToList converts an array or an IEnumerable collection into a strongly typed List(Of T),
in this case into a List(Of Process) (notice how the assignment works with local type
inference) Extension methods are easily recognizable within IntelliSense because they are
characterized by the usual method icon plus a blue down arrow, as shown in Figure 21.5.

They are also recognizable because the method definition is marked as <Extension> as you
can see from the descriptive tooltip shown in Figure 21.5, but this will also be discussed in
creating custom methods. The next example uses the AsEnumerable method for convert-
ing an array of Process into an IEnumerable(Of Process):

Dim processEnumerable As IEnumerable(Of Process) =

Process.GetProcesses.AsEnumerable

Extension methods can execute hundreds of tasks, so it is not easy to provide a general
summarization, especially because they can be customized according to your needs. At a
higher level, .NET built-in extension methods accomplish three main objectives: convert-
ing types into other types, data filtering, and parsing. The most common built-in .NET
extension methods are provided by the System.Linq.Enumerable class and are summa-
rized in Table 21.1.

FIGURE 21.5 Recognizing extension methods within IntelliSense.

From the Library of Wow! eBook

ptg

492 CHAPTER 21 Advanced Language Features

TABLE 21.1 Built-in Extension Methods

Method Description

Aggregate Accumulates items of a sequence

All Checks whether elements within a sequence satisfy a condition

Any Checks whether any elements within a sequence satisfy a condition

AsEnumerable Converts a sequence of elements into an IEnumerable(Of T)

Average Retrieves the result of the average calculation from the members of a
sequence

Cast Performs the conversion from an IEnumerable(Of T) into the specified
type. It is generally used explicitly when the compiler cannot infer the
appropriate type

Concat Returns the concatenation of two sequences

Contains Checks if a sequence contains the specified item

Count Returns the number of items in a sequence

DefaultIfEmpty Returns the elements of the specified sequence or the type parameter’s
default value in a singleton collection if the sequence is empty

Distinct Ensures that no duplicates are retrieved from a sequence or removes
duplicates from a sequence

ElementAt Obtains the object in the sequence at the specified index

ElementAtOrDefault Like ElementAt but returns a default value if the index is wrong

Except Given two sequences, creates a new sequence with elements from the
first sequence that are not also in the second one

First Gets the first element of a sequence

FirstOrDefault Like First but returns a default value if the first element is not what you
are searching for

GroupBy Given a criteria, groups elements of a sequence into another sequence

GroupJoin Given a criteria, joins elements from two sequences into one sequence

Intersect Creates a sequence with common elements from two sequences

Join Join elements from two sequences based on specific criteria, such as
equality

Last Retrieves the last item in a sequence

LastOrDefault Like Last but returns a default value if the specified instance is not
found

From the Library of Wow! eBook

ptg

493Extension Methods
2

1

TABLE 21.1 Continued

Method Description

LongCount Returns the number of items in a sequence under the form of Long
(System.Int64) type

Max Retrieves the highest value in a sequence

Min Retrieves the minimum value in a sequence

OfType Filters an IEnumerable collection according to the specified type

OrderBy Orders elements in a sequence using the specified criteria

OrderByDescending Orders elements in a sequence using the specified criteria in a descend-
ing order

Reverse Reverses the order of items in a sequence

Select Puts an item into a sequence for queries

SelectMany Puts more than one item into a sequence for queries

SequenceEquals Determines whether two sequences are equal by comparing the
elements by using the default equality comparer for their type or using a
specified comparer

Single Returns the only item from a sequence that matches the specified crite-
ria

SingleOrDefault Like Single but returns a default value if the specified item could not be
found

Skip When creating a new sequence, skips the specified number of items and
returns the remaining items from the starting sequence

SkipWhile Like Skip but only while the specified condition is satisfied

Sum In a sequence of numeric values, returns the sum of numbers

Take Returns the specified number of items starting from the beginning of a
sequence

TakeWhile Like Take but only while the specified condition is satisfied

ThenBy After invoking OrderBy, provides the ability of a subsequent ordering
operation

ThenByDescending After invoking OrderBy, provides the ability of a subsequent ordering
operation in a descending way

ToArray Converts an IEnumerable(Of T) into an array

ToDictionary Converts an IEnumerable(Of T) into a Dictionary(Of T, T)

ToList Converts an IEnumerable(Of T) into a List(Of T)

From the Library of Wow! eBook

ptg

494 CHAPTER 21 Advanced Language Features

ARGUMENTS AS LAMBDAS

In most cases you use lambda expressions as arguments for extension methods.
Lambda expressions are discussed later in this book; therefore, examples where lamb-
das are not used are provided.

In next part of this book, which is dedicated to data access with LINQ, you see how exten-
sion methods are used for filtering, ordering, and parsing data. The following code snippet
shows an example of filtering data using the Where extension method:

’A real app example would use

‘a lambda expression instead of a delegate

Dim filteredProcessList = Process.GetProcesses.

Where(AddressOf EvaluateProcess).ToList

Private Function EvaluateProcess(ByVal p As Process) As Boolean

If p.ProcessName.ToLowerInvariant.StartsWith(“e”) Then Return True

End Function

The preceding code simply adds Process objects to a list only if the process name starts
with the e letter. The evaluation is performed through a delegate; although in this chapter
you learn how to accomplish this using the lambda expression. Table 21.1 cannot be
exhaustive because the .NET Framework offers other extension methods specific to some
development areas that are eventually discussed in the appropriate chapters. IntelliSense
provides help about extension methods not covered here. By reading Table 21.1 you can
also understand that extension methods from System.Linq.Enumerable work on or return
results from a sequence of elements. This notion is important because you use such methods
against a great number of different collections (that is, sequences of elements of a particu-
lar type), especially when working with LINQ.

EXTENSION METHODS BEHAVIOR

Although extension methods behave as instance methods, the Visual Basic compiler
translates them into static methods. This is because extension methods are defined
within modules (or static classes if created in Visual C#).

Union Creates a new sequence with unique elements from two sequences

Where Filters a sequence according to the specified criteria

ToLookup Converts an IEnumerable(Of T) into a LookUp(Of TSource, TKey)

TABLE 21.1 Continued

Method Description

From the Library of Wow! eBook

ptg

495Extension Methods
2

1

Coding Custom Extension Methods

One of the most interesting things when talking about extension methods is that you can
create your custom extensions. This provides great power and flexibility to development
because you can extend existing types with new functionalities, even if you do not have
the source code for the type you want to extend. There are a set of rules and best practices
to follow in coding custom extension methods; the first considerations are the following:

. In Visual Basic, extension methods can be defined only within modules, because
they are considered as shared methods by the compiler.

. Only Function and Sub methods can be coded as extensions. Properties and other
members cannot work as extensions.

. Methods must be decorated with the System.Runtime.CompilerServices.Extension
attribute. Decorating modules with the same attribute is also legal but not required.

. Extension methods can be overloaded.

. Extension methods can extend reference types, value types, delegates, arrays, inter-
faces, and generic parameters but cannot extend System.Object to avoid late
binding problems.

. They must receive at least an argument. The first argument is always the type that
the extension method goes to extend.

For example, imagine you want to provide a custom extension method that converts an
IEnumerable(Of T) into an ObservableCollection(Of T). The ObservableCollection is
a special collection exposed by the System.Collections.ObjectModel namespace from
the WindowsBase.dll assembly, which is usually used in WPF applications. (You need to
add a reference to WindowsBase.dll.) The code in Listing 21.1 shows how this can be
implemented.

LISTING 21.1 Implementing Custom Extension Methods

Imports System.Runtime.CompilerServices

Imports System.Collections.ObjectModel

<Extension()> Module Extensions

<Extension()> Function ToObservableCollection(Of T) _

(ByVal List As IEnumerable(Of T)) _

As ObservableCollection(Of T)

Try

Return New ObservableCollection(Of T)(List)

Catch ex As Exception

Throw

End Try

From the Library of Wow! eBook

ptg

496 CHAPTER 21 Advanced Language Features

End Function

End Module

The code in Listing 21.1 is quite simple. Because the ObservableCollection is generic, the
ToObservableCollection extension method is also generic and goes to extend the generic
IEnumerable type, which is the method argument. The constructor of
ObservableCollection provides an overload that accepts an IEnumerable to populate the
new collection and then returns an instance of the collection starting from the
IEnumerable data. Using the new method is straightforward:

Dim processCollection = Process.GetProcesses.ToObservableCollection

Now suppose you want to extend the String type to provide an extension method that
can check whether a string is a valid email address. In such a situation the best check can
be performed using regular expressions. The following code shows how you can imple-
ment this extension method:

’Requires an Imports System.Text.RegularExpressions statement

<Extension()> Function IsValidEMail(ByVal EMailAddress As String) _

As Boolean

Dim validateMail As String = _

“^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.)” & _

“|(([\w-]+\.)+))([a-zA-z]{2,4}|[0-9]{1,3})(\]?)$”

Return Regex.IsMatch(EMailAddress, _

validateMail)

End Function

The goal is not to focus on the comparison pattern via regular expressions, which is
complex. Just notice how the result of the comparison (Regex.IsMatch) is returned by the
method that extends Strings because such type is the first (and only) argument in the
method. You can then simply use the method as follows:

Dim email As String = “Alessandro.delsole@visual-basic.it”

If email.IsValidEMail Then

Console.WriteLine(“Valid address”)

Else

Console.WriteLine(“Invalid address”)

End If

You may remember that extension methods are basically shared methods but behave as
instance members; this is the reason why the new method is available on the email
instance and not on the String type.

From the Library of Wow! eBook

ptg

497Extension Methods
2

1

Overloading Extension Methods
Extension methods support the overloading technique and follow general rules already
described in Chapter 7, “Class Fundamentals,” especially that overloads cannot differ only
because of their return type but must differ in their signature.

Exporting Extension Methods

You can create libraries of custom extension methods and make them reusable also from
other languages. This could be useful if you need to offer your extension methods to other
applications written in different programming languages. To accomplish this, you need to
be aware of a couple of things. First, the module defining extensions must be explicitly
marked as Public, and the same is true for methods. Second, you need to write a public
sealed class with an empty private constructor, because the CLR provides access to exten-
sion methods through this class, to grant interoperability between languages. Listing 21.2
shows a complete example.

LISTING 21.2 Building an Extension Methods Library

Imports System.Runtime.CompilerServices

Imports System.Collections.ObjectModel

Imports System.Text.RegularExpressions

<Extension()> Public Module Extensions

<Extension()> Public Function ToObservableCollection(Of T) _

(ByVal List As IEnumerable(Of T)) _

As ObservableCollection(Of T)

Try

Return New ObservableCollection(Of T)(List)

Catch ex As Exception

Throw

End Try

End Function

<Extension()> Public Function IsValidEMail(ByVal EMailAddress As String) _

As Boolean

Dim validateMail As String = _

“^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.)” & _

“|(([\w-]+\.)+))([a-zA-z]{2,4}|[0-9]{1,3})(\]?)$”

Return Regex.IsMatch(EMailAddress, _

validateMail)

End Function

From the Library of Wow! eBook

ptg

498 CHAPTER 21 Advanced Language Features

End Module

Public NotInheritable Class MyCustomExtensions

Private Sub New()

End Sub

End Class

Basically creating a public sealed class is necessary because modules are a specific feature
of Visual Basic; therefore, such a class is the bridge between our code and other languages.
By compiling the code shown in Listing 21.2 as a class library, .NET languages can take
advantage of your extension methods.

TESTING CUSTOM EXTENSION LIBRARIES

If you want to be sure that class libraries exposing custom extension methods work
correctly, simply create a new Visual C# project (a VB one is good as well) and add a
reference to the new assembly. Then write code that invokes extended types and check
via IntelliSense if your custom methods are effectively available.

EXPORTING EXTENSION METHODS TIPS

Exporting extension methods requires a little bit of attention. For example, extending
types in which you do not own the source code can be dangerous because it may lead to
conflicts if in the future the original author adds extensions with the same name. It can
be instead a good idea to encapsulate extensions within specific namespaces. Microsoft
created a document containing a series of best practices that can be found at the fol-
lowing address: http://msdn.microsoft.com/en-us/library/bb384936(VS.100).aspx

Anonymous Types
As their name implies, anonymous types are .NET objects that have no name and can be
generated on-the-fly. They were first introduced with .NET Framework 3.5, and their main
purpose is collecting data from LINQ queries. Generally you prefer named types to anony-
mous types outside particular LINQ scenarios; however, it’s important to understand how
anonymous types work. Declaring an anonymous type is straightforward, as shown in the
following code snippet:

Dim anonymous = New With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Email = ““,

.Age = 32}

As you can see, no name for the new type is specified, and a new instance is created just
invoking the New With statement. Creating an anonymous type takes advantage of two

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/bb384936(VS.100).aspx

ptg

499Anonymous Types
2

1

previously described features, object initializers and local type inference. Object initializers
are necessary because anonymous types must be generated in one line, so they do need
such a particular feature; local type inteference is fundamental, because you have no other
way for declaring a new type as an anonymous type, meaning that only the compiler can
do it via local type inference. This is the reason why declaring an anonymous type cannot
be accomplished using the As clause. For example, the following code throws an error and
will not be compiled:

’Throws an error: “the keyword does not name a type”

Dim anonymous As New With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

Local type inference is also necessary for another reason. As you can see, you can assign
but not declare properties when declaring an anonymous type. (FirstName, LastName, Age,
and Email are all properties for the new anonymous type that are both implemented and
assigned.) Therefore, the compiler needs a way to understand the type of a property and
then implement one for you, and this is only possible due to the local type inference. In
the preceding example, for the FirstName, LastName, and Email properties, the compiler
infers the String type, whereas for the Age property it infers the Integer type. When you
have an anonymous type, you can just use it like any other .NET type. The following code
provides an example:

’Property assignment

anonymous.Email = “alessandro.delsole@visual-basic.it”

‘Property reading

Console.WriteLine(“{0} {1}, of age: {2}”,

anonymous.FirstName,

anonymous.LastName,

anonymous.Age.ToString)

As previously mentioned, you can work with an anonymous type like with any other .NET
type. The difference is that anonymous types do not h1ave names. Such types can also
implement read-only properties. This can be accomplished using the Key keyword with a
property name, as demonstrated here:

’The Age property is read-only and can

‘be assigned only when creating an instance

Dim anonymousWithReadOnly = New With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

Key .Age = 32}

In this example the Age property is treated as read-only and therefore can be assigned only
when creating an instance of the anonymous type. You probably wonder why anonymous
types can be useful. You get more practical examples in Part 4, “Data Access with
ADO.NET and LINQ.”

From the Library of Wow! eBook

ptg

500 CHAPTER 21 Advanced Language Features

Relaxed Delegates
When you code methods that are pointed to by delegates, your methods must respect the
delegate’s signature. An exception to this rule is when your method receives arguments
that are not effectively used and therefore can be omitted. Such a feature is known as
relaxed delegates. The simplest example to help you understand relaxed delegates is to
create a Windows Forms application. After you’ve created your application, drag a Button
control from the toolbox onto the form’s surface. Double-click the new button to activate
the code editor so that Visual Studio generates an event handler stub for you and type the
following code:

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) _

Handles Button1.Click

MessageBox.Show(“It works!”)

End Sub

As you can see, the method body simply shows a text message but does not make use of
both sender and e arguments received by the event handler (which is a method pointed
by a delegate). Because of this, Visual Basic allows an exception to the method signature
rule, and therefore the preceding method can be rewritten as follows:

’Relaxed delegate

Private Sub Button1_Click() Handles Button1.Click

MessageBox.Show(“It works! - relaxed version”)

End Sub

The code still works correctly because the compiler can identify the preceding method as a
relaxed delegate. This feature can be useful especially in enhancing code readability.

Lambda Expressions
Lambda expressions exist in the .NET development from the previous version, and there-
fore they have been available since Visual Basic 2008. Because of their flexibility, they are
one of the most important additions to .NET programming languages in the past years.
The main purpose of lambda expressions, as for other language features, is related to
LINQ, as you see in the next chapters. They can also be successfully used in lots of
programming scenarios. Lambdas in Visual Basic 2010 have been improved in several
aspects: To provide a logical approach we discuss lambda expressions by first talking about
the VB 2008 syntax and then diving into the new characteristics. Basically lambda expres-
sions in Visual Basic are anonymous methods that can be generated on-the-fly within a
line of code and can replace the use of delegates. The easiest explanation of lambdas is
that you can use a lambda wherever you need a delegate.

From the Library of Wow! eBook

ptg

501Lambda Expressions
2

1

UNDERSTANDING LAMBDA EXPRESSIONS

Lambda expressions are powerful, but they are not probably easy to understand at
first. Because of this, several steps of explanations are provided before describing
their common usage, although this might be annoying.

You create lambda expressions using the Function keyword. When used for lambda
expressions, such keyword returns a System.Func(Of T, TResult) (with overloads) dele-
gate that encapsulates a method that receives one or more arguments of type T and
returns a result of type TResult. System.Func is defined within the System.Core.dll
assembly and can accept as many T arguments for as many parameters that are required
by the anonymous method. The last argument of a System.Func type is always the return
type of a lambda. For example, the following line of code creates a lambda expression that
accepts two Double values and returns another Double constituted by the multiplication of
the first two numbers:

Dim f As Func(Of Double, Double, Double) = Function(x, y) x * y

As you can see, the Function keyword does not take any method name. It just receives
two arguments, and the result is implemented after the last parenthesis. Such a lambda
expression returns a System.Func(Of Double, Double, Double) in which the first two
doubles correspond to the lambda’s arguments, whereas the third one correspond to the
lambda’s result type. You can then invoke the obtained delegate to perform a calculation,
as in the following line:

’Returns 12

Console.WriteLine(f(3, 4))

Of course, this is not the only way to invoke the result of a lambda expression, but it is an
important starting point. Basically the code provides a lambda instead of declaring an
explicit delegate. Now consider the following code that rewrites the previously shown
lambda expression:

Function Multiply(ByVal x As Double, ByVal y As Double) As Double

Return x * y

End Function

Dim f As New Func(Of Double, Double, Double)(AddressOf Multiply)

‘Returns 12

Console.WriteLine(f(3, 4))

As you can see, this second code explicitly creates a method that performs the required
calculation that is then passed to the constructor of the System.Func. Invoking the dele-
gate can then produce the same result. The difference is that using a lambda expression
brought major elegance and dynamicity to our code. System.Func can receive up to 16
arguments; independently from how many arguments you need, remember that the last
one is always the return value. Another common scenario is a lambda expression that

From the Library of Wow! eBook

ptg

502 CHAPTER 21 Advanced Language Features

evaluates an expression and returns a Boolean value. To demonstrate this, we can recall
the IsValidEMail extension method that was described in the “Extension Methods”
section to construct complex code. Listing 21.3 shows how you can invoke extension
methods for a lambda expression to evaluate if a string is a valid email address, getting
back True or False as a result.

LISTING 21.3 Complex Coding with Lambda Expressions

Module TestLambda

Sub ComplexEvaluation()

Dim checkString As Func(Of String, Boolean) = Function(s) s.IsValidEMail

Console.WriteLine(checkString(“alessandro.delsole@visual-basic.it”))

End Sub

End Module

<Extension()> Module Extensions

<Extension()> Public Function IsValidEMail(ByVal EMailAddress As String) _

As Boolean

Dim validateMail As String = _

“^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.)” & _

“|(([\w-]+\.)+))([a-zA-z]{2,4}|[0-9]{1,3})(\]?)$”

Return Regex.IsMatch(EMailAddress, _

validateMail)

End Function

End Module

If you look at Listing 21.3 you notice that the checkString delegate takes a String to eval-
uate and returns Boolean. Such an evaluation is performed invoking the IsValidEMail
extension method.

OK, BUT WHY LAMBDAS?

Probably you wonder why you should need lambda expressions instead of simply invok-
ing methods. The reason is code robustness offered by delegates, as you will remem-
ber from Chapter 15, “Delegates and Events.” Therefore if you decide to use
delegates, using lambda expressions is a good idea while it becomes a necessity if
you access data with LINQ.

You often use lambda expressions as arguments for extension methods. The following
code shows how you can order the names of running processes on your machine, includ-
ing only names starting with the “e” letter:

Dim processes = Process.GetProcesses.

From the Library of Wow! eBook

ptg

503Lambda Expressions
2

1

OrderBy(Function(p) p.ProcessName).

Where(Function(p) p.ProcessName.ToLowerInvariant.

StartsWith(“e”))

The OrderBy extension method receives a lambda expression as an argument that takes an
object of type System.Diagnostics.Process and orders the collection by the process
name, whereas the Where extension method still receives a lambda as an argument point-
ing to the same Process instance and that returns True if the process name starts with the
“e” letter. To get a complete idea of how the lambda works, the best way is rewriting code
without using the lambda. The following code demonstrates this concept; and the first
lambda remains to provide an idea of how code can be improved using such a feature:

’An explicit method that evaluates the expression

Private Function EvaluateProcess(ByVal p As Process) As Boolean

If p.ProcessName.ToLowerInvariant.StartsWith(“e”) Then

Return True

Else

Return False

End If

End Function

Dim processes = Process.GetProcesses.

OrderBy(Function(p) p.ProcessName).

Where(AddressOf EvaluateProcess)

As you can see, avoiding the usage of lambda expressions requires you to implement a
method that respects the signature of the System.Func delegate and that performs the
required evaluations. Such a method is then pointed via the AddressOf keyword. You can
easily understand how lambda expressions facilitate writing code and make code clearer,
especially if you compare the OrderBy method that still gets a lambda expression. For the
sake of completeness, it’s important to understand that lambda expressions improve the
coding experience, but the Visual Basic compiler still translates them the old-fashioned
way, as explained later in the “Lexical Closures” section. All the examples provided until
now take advantage of the local type inference feature and leave to the VB compiler the
work of inferring the appropriate types. The next section discusses this characteristic.

Type Inference and Lambda Expressions

At a higher level, lambda expressions fully support local type inference so that the Visual
Basic compiler can decide for you the appropriate data type. For lambdas, there is some-
thing more to say. Basically type inference is determined on how you write your code. For
example, let’s recall the first lambda expression at the beginning of this section:

Dim f As Func(Of Double, Double, Double) = Function(x, y) x * y

In the preceding code, local type inference affects both arguments and the result of the
Function statement; the compiler can infer Double to the x and y parameters and there-
fore can determine Double as the result type; this is possible only because we explicitly
provided types in the delegate declaration, that is, Func(Of Double, Double, Double).

From the Library of Wow! eBook

ptg

504 CHAPTER 21 Advanced Language Features

Because a local type inference is determined by the compiler using the dominant algorithm,
there must be something explicitly typed. For a better understanding, rewrite the preced-
ing code as follows:

’The compiler infers Object

Dim f = Function(x, y) x * y

In this case because no type is specified anywhere, the compiler infers Object for the f
variable, but in this special case it also throws an exception because operands are not
supported by an Object, and therefore the code will not be compiled if Option Strict is
On. If you set Option Strict Off, you can take advantage of late binding. In such a
scenario both the result and the arguments will be treated as Object at compile time, but
at runtime the CLR can infer the appropriate type depending on the argument received by
the expression. The other scenario is when the type result is omitted but arguments’ types
are provided. The following code demonstrates this:

Dim f = Function(x As Double, y As Double) x * y

In this case the result type for the f variable is not specified, but arguments have been
explicitly typed so that the compiler can infer the correct result type.

Multiline Lambdas

Visual Basic 2010 now provides support for multiline lambda expressions, a feature that
was already available in Visual C#. Basically there is now the ability to write complete
anonymous delegates within a line of code, as demonstrated in the following snippet:

Console.WriteLine(“Enter a number:”)

Dim number = CDbl(Console.ReadLine)

Dim result = Function(n As Double)

If n < 0 Then

Return 0

Else

Return n + 1

End If

End Function

Console.WriteLine(result(number))

In this particular case the compiler can infer the System.Func(Of Double, Double) result
type because the n argument is of type Double. Within the method body you can perform
required evaluations, and you can also explicitly specify the return type (take a look at the
first lambda example) to get control over the System.Func result. Another example is for
multiline lambdas without variable declarations, as in the following code:

Dim processes = Process.GetProcesses.

Where(Function(p)

From the Library of Wow! eBook

ptg

505Lambda Expressions
2

1

Try

‘Returns True

p.ProcessName.ToLowerInvariant.

StartsWith(“e”)

Catch ex As Exception

Return False

End Try

End Function)

Basically this code performs the same operations described in the “Lambda Expressions”
section, but now you have the ability to write more complex code, for example if you
need to provide error handling infrastructures as previously shown.

Sub Lambdas

Back in Visual Basic 2008, lambda expressions were represented only by functions that
could return a value and that were realized via the Function keyword, as shown at the
beginning of this section. Visual Basic 2010 also introduces a new feature, known as Sub
lambdas that C# developers know as anonymous methods. This new feature allows using the
Sub keyword instead of the Function one so that you can write lambda expressions that
do not return a value. The following code demonstrates this:

Dim collection As New List(Of String) From {“Alessandro”,

“Del Sole”,

alessandro.delsole@visual-basic.it”}

collection.ForEach(Sub(element) Console.WriteLine(element))

The preceding code iterates a List(Of String) collection and sends to the console window
the result of the iteration. A Sub lambda is used because here no return value is required.

ARRAY.FOREACH AND LIST(OF T).FOREACH

The System.Array and the System.Collections.Generic.List(Of T) classes offer
a ForEach method that allows performing loops similarly to the For..Each statement
described in Chapter 4, “Data Types and Expressions.” The difference is that you can
take advantage of lambda expressions and eventually of delegates to iterate elements.

Consider that trying to replace Sub with Function causes an error. (That makes sense,
because Console.WriteLine does not return values while Function does.) Like Function,
arguments’ types within Sub can be inferred by the compiler. In this case the element is of
type String, because it represents a single element in a List(Of String) collection.
Generally you can use Sub lambdas each time a System.Action(Of T) is required, opposite
to the System.Func(Of T, T) required by Function. System.Action(Of T) is a delegate
that represents a method accepting just one argument and that returns no value. Sub
lambdas can also be implemented as multiline lambdas. The following code shows a

From the Library of Wow! eBook

ptg

506 CHAPTER 21 Advanced Language Features

multiline implementation of the previous code, where a simple validation is performed
onto every string in the collection:

’ “collection” has the same previous implementation

collection.ForEach(Sub(element)

Try

If String.IsNullOrEmpty(element) = False Then

Console.WriteLine(element)

Else

Console.

WriteLine(“Cannot print empty strings”)

End If

Catch ex As Exception

End Try

End Sub)

In this way you can also implement complex expressions, although they do not return a
value.

LAMBDA EXPRESSIONS AND OBJECT LIFETIME

When methods end their job, local variables get out of scope and therefore are subject
to garbage collection. By the way, lambda expressions within methods hold references
to local variables unless you explicitly release resources related to the lambda.
Consider this when planning objects’ lifetime management.

Lexical Closures

To provide support for lambda expressions, the Visual Basic compiler implements a back-
ground feature known as lexical closures. Before going into the explanation, remember that
you will not generally use closures in your code because they are typically generated for
compiler use only, but it’s important to know what they are and what they do. Basically
lexical closures allow access to the same class-level variable to multiple functions and
procedures. A code example provides a better explanation. Consider the following code, in
which the Divide method takes advantage of a lambda expression to calculate the division
between two numbers:

Class ClosureDemo

Sub Divide(ByVal value As Double)

Dim x = value

Dim calculate = Function(y As Double) x / y

Dim result = calculate(10)

End Sub

End Class

From the Library of Wow! eBook

ptg

507Ternary If Operator
2

1

Because both the Divide method and its lambda expression have access to the x local vari-
able, the compiler internally rewrites the preceding code in a more logical way that looks
like the following:

Class _Closure$__1

Public x As Double

Function _Lambda$__1(ByVal y As Double) As Double

Return x * y

End Function

End Class

Class ClosureDemo

Sub Divide(ByVal value As Double)

Dim closureVariable_A_8 As New _

_Closure$__1

_Closure$__1.closureVariable_A_8 = value

Dim calculate As Func(Of Double, Double) _

= AddressOf _Closure$__1._Lambda$__1

Dim result = calculate(10)

End Sub

End Class

Identifiers are not easy to understand, but they are generated by the compiler that is the
only one responsible for their handling. The lexical closure feature creates a new public
class with a public field related to the variable having common access; moreover it gener-
ated a separated method for performing the division that is explicitly accessed as a dele-
gate (and here you will remember that lambdas can be used every time you need a
delegate) from the Divide method. In conclusion, lexical closures provide a way for a
logical organization of the code that provides behind-the-scenes support for lambda
expressions but, as stated at the beginning of this section, they are exclusively the respon-
sibility of the Visual Basic compiler.

Ternary If Operator
The ternary If operator is generally used with lambda expressions and allows evaluating
conditions on-the-fly. With this operator you can evaluate a condition and return the
desired value either in case the condition is True or it is False. Imagine you have a Person
class exposing both FirstName and LastName string properties and that you want to first
verify that an instance of the Person class is not Nothing and, subsequently, that its

From the Library of Wow! eBook

ptg

508 CHAPTER 21 Advanced Language Features

LastName properties are initialized. The following code shows how you can accomplish the
first task (see comments):

Sub EvaluatePerson(ByVal p As Person)

‘Check if p (a Person instance) is Nothing

‘If it is Nothing, returns False else True

‘The result is returned as a delegate

Dim checkIfNull = If(p Is Nothing, False, True)

‘If False, p is Nothing, therefore

‘throws an exception

If checkIfNull = False Then

Throw New ArgumentNullException(“testPerson”)

End If

End Sub

As you can see, the If operator receives three arguments: The first one is the condition to
evaluate; the second is the result to return if the condition is True; whereas the third one
is the result to return if the condition is False. In this specific example, if the Person
instance is null the code returns False; otherwise it returns True. The result of this code is
assigned to a Boolean variable (checkIfNull) that contains the result of the evaluation. If
the result is False, the code throws an ArgumentNullException. Basically you could write
the preceding code in a simpler way, as follows:

If p Is Nothing Then

‘do something

Else

Throw New ArgumentNullException

End If

The difference is that with the ternary operator you can perform inline evaluations also
with lambda expressions, and this scenario is particularly useful when working with LINQ
queries. Now it’s time to check if the LastName property was initialized. The following
code snippet shows an example that returns a String instead of a Boolean value:

Dim executeTest = If(String.IsNullOrEmpty(p.LastName) = True,

“LastName property is empty”,

“LastName property is initialized”)

The explanation is simple: If the LastName property is an empty string or a null string, the
code returns a message saying that the property is empty; otherwise it returns a message
saying that the property has been correctly initialized. Basically you could rewrite the code
in the classic fashion as follows:

If String.IsNullOrEmpty(p.LastName) = True Then

‘LastName property is empty

From the Library of Wow! eBook

ptg

509Generic Variance
2

1

Else

‘LastName property is initialized

End If

The following lines show how you can test the preceding code:

’Throws an ArgumentNullException

EvaluatePerson(Nothing)

‘A message says that the LastName property is initialized

EvaluatePerson(New Person With {.LastName = “Del Sole”})

Generic Variance
Visual Basic 2010 introduces the concept of generic variance, divided into two areas:
covariance and contra variance. This concept is basically related to inheritance versus
generics and generic collections; a couple of examples are provided next for a better
explanation.

Covariance

Basically covariance allows assigning strongly typed collections (such as List) of derived
classes to IEnumerable collections of abstract classes. The code in Listing 21.3 shows how
covariance works.

LISTING 21.3 Covariance in Visual Basic 2010

Module Covariance

Sub Main()

‘Using collection initializers

Dim stringsCollection As New List(Of String) _

From {“Understanding “, “covariance “, “in VB 2010”}

‘This code is now legal

Dim variance As IEnumerable(Of Object) = stringsCollection

For Each s In variance

Console.WriteLine(s)

Next

Console.ReadLine()

End Sub

End Module

From the Library of Wow! eBook

ptg

510 CHAPTER 21 Advanced Language Features

If you examine Listing 21.3 you notice that the variance variable is generic of type
IEnumerable(Of Object) and receives the assignment of a generic List(Of String)
content, in which Object is the base class of String. Until Visual Basic 2008 this code was
illegal, and therefore it would throw a compile exception. In Visual Basic 2010 this code is
legal but it works only with IEnumerable(Of T) collections. If you try to replace
IEnumerable(Of Object) with List(Of Object), the compiler still throws an error
suggesting that you use an IEnumerable. By the way, you assigned a collection of String
to a collection of Object, and this is how covariance works. The For..Each loop correctly
recognizes items in the IEnumerable as String, and therefore it produces the simple,
following output:

Understanding

covariance

in VB 2010

Contra Variance

Contra variance basically works the opposite of covariance: From a derived class we can
take advantage of an abstract class or of a base class. To understand how contra variance
works, the best example is to create a client application in which two events of the same
control are handled by the same event handler. For this, create a new Windows
Presentation Foundation application and write the following XAML code to define a
simple Button control:

<Button Content=”Button” Height=”50” Name=”Button1” Width=”150” />

CREATING WPF APPLICATIONS

If you are not familiar with WPF applications, you notice one important thing when cre-
ating such projects: The designer provides a graphical editor and the code editor for
the XAML code (which is XML-styled). You can write the previous snippet within the
XAML code editor or drag a Button control from the toolbox onto the Window, which is
not a problem. You can also notice, in Solution Explorer, the presence of the code-
behind file that has an .xaml.vb extension. There you can write the code shown next.
Chapter 31, “Creating WPF Applications,” discusses WPF applications in detail.

Like other controls, the Button control exposes several events. For example, let’s consider
the MouseDoubleClick event and the KeyUp event and decide that it would be a good idea
to handle both events writing a unique event handler. To accomplish this, we can take
advantage of contra variance. Consider the following code, which explicitly declares
handlers for events:

Public Sub New()

From the Library of Wow! eBook

ptg

511Summary
2

1

‘ This call is required by the Windows Form Designer.

InitializeComponent()

‘ Explicitly specify handlers for events

AddHandler Button1.KeyUp, AddressOf CommonHandler

AddHandler Button1.MouseDoubleClick, AddressOf CommonHandler

End Sub

Both events point to the same delegate, which is implemented as follows:

Private Sub CommonHandler(ByVal sender As Object,

ByVal e As EventArgs)

MessageBox.Show(“You did it!”)

End Sub

The KeyUp event should be handled by a delegate that receives a
System.Windows.Input.KeyEventArgs argument, whereas the MouseDoubleClick by a dele-
gate receives a System.Windows.Input.MouseButtonEventArgs argument. Because both
objects inherit from System.EventArgs, we can provide a unique delegate that receives an
argument of such type and that can handle both events. If you now try to run the applica-
tion, you see that the message box is correctly shown if you either double-click the button
or press a key when the button has the focus. The advantage of contra variance is that we
can take advantage of abstract classes to handle the behavior of derived classes.

Summary
In this chapter you got the most out of some advanced language features that provide
both special support for the LINQ technology and improvements to your coding experi-
ence. Local Type Inference enables developers to avoid specifying types in local variables
assignment because the Visual Basic compiler automatically provides the most appropriate
one. Array Literals, a new VB 2010 feature, extend local type inference to arrays. Extension
methods allow extending existing objects, even if you do not own the source code (such
as in case of the .NET Framework) with custom methods. Anonymous types allow generat-
ing no-name types on-the-fly that you often use within LINQ queries. Relaxed delegates
allow writing code smarter and faster because you are authorized to not respect delegates’
signatures if you do not use arguments. Lambda expressions strengthen your code by
introducing anonymous delegates that can be generated on-the-fly, improving your code
quality and efficiency; multiline lambdas, and sublambdas introduced by VB 2010 that
make VB even nearer to C#. Generic covariance and contra variance provide further
control over generic IEnumerable collections when you work with inheritance.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 22

Introducing ADO.NET
and DataSets

IN THIS CHAPTER

. Introducing ADO.NET

. Introducing DataSets

For many years .NET developers have written data-centric
applications in only two ways: connected or disconnected
modes. For the disconnected fashion, DataSets played an
important role, and still today lots of developers build or
maintain applications based on DataSets, and probably you
are one of them. But times change and technology goes on.
Different data platforms, such as the ADO.NET Entity
Framework and LINQ to SQL, have been introduced to the
.NET world, and the classic approach is becoming obsolete.
If you think of Silverlight applications, you cannot use
DataSets. You instead use LINQ. Of course, there can be
situations in which you can still take advantage of the old
approach (such as the connected mode), and this is left to
your strategy. Because of these considerations, the purpose
of this chapter to provide a quick recap on connected mode
and disconnected mode with DataSets. We instead focus
deeper on what is new in data access with LINQ in next
chapters. Basically, you get information that can put you
on the right track for comparing and appreciating the
power of LINQ.

Introducing ADO.NET
SYSTEM REQUIREMENTS

To proceed with the code examples shown in this
chapter, you need to have Microsoft SQL Server 2008
Express installed on your system. You also need to
install the sample Northwind database, available for
free from the MSDN Code Gallery at http://code.
msdn.microsoft.com/northwind.

From the Library of Wow! eBook

http://code.msdn.microsoft.com/northwind
http://code.msdn.microsoft.com/northwind

ptg

514 CHAPTER 22 Introducing ADO.NET and DataSets

ADO.NET is the .NET Framework area that provides you with the ability to access data
from databases. ADO.NET can be observed from two perspectives, known as connected
and disconnected modes, and can access data from different data sources thanks to data
providers. In the next sections you learn about providers and connection modes and how
you can access data in a connected environment.

After completing these procedures, a recap on DataSets is offered before starting to learn
LINQ in the next chapter.

Data Providers

Data providers are .NET objects that allow the .NET Framework to speak with data sources.
Data sources are generally databases, such as SQL Server, Oracle, and Access, but also
Microsoft Excel’s spreadsheets. The .NET Framework includes several built-in data providers
exposed by the System.Data namespace. Table 22.1 summarizes built-in data providers.

These are the most common providers, but several companies provided their own, such as
MySQL or PostgreSQL. Notice also how the OleDb provider is available to provide support
for data sources such as Microsoft Access databases or Excel spreadsheets. In this book, for
this chapter and to the ones dedicated to LINQ, Visual Basic topics utilizing the SQL
Server provider are covered. There are obviously some differences when writing code for
each provider; however, you also find several similarities in connecting to data sources
and manipulating data. Such operations are discussed in next sections.

TABLE 22.1 .NET Data Providers

Provider Namespace

SQL
Server

System.Data.SqlClient

OleDb System.Data.OleDb

ODBC System.Data.Odbc

Oracle System.Data.Oracle (requires reference to the System.Data.Oracle.dll assembly).
Notice that you cannot reference the Oracle client if you are using the .NET
Framework 4.0 Client Profile.

From the Library of Wow! eBook

ptg

515Introducing ADO.NET
2

2

Connection Modes

ADO.NET provides support for both connected and disconnected modes. The big differ-
ence between the two modes is that in a connected fashion you explicitly open and close
connections against a data source so that you can work with data. This is something that
you accomplish with Connection, DataReader and Command objects. In a disconnected
environment you basically work against in-memory data that is later persisted to the
underlying data source. Generally this is achieved with DataSets, although you see starting
from Chapter 25, “LINQ to SQL,” how such an approach is the same in LINQ to
ADO.NET. I’m sure that you already worked with both modes in your developer experi-
ence, so here’s just a quick recap so that you appreciate the difference between what you
learn in this chapter and what you learn studying LINQ.

Understanding Connections and Data Readers

To establish a connection to a database, you need to create an instance of the
SqlConnection class passing the connection string as an argument. Then you invoke the
Open method to open the connection so that you can perform your data operations.
Finally, you invoke Close to close the connection. The following code, which requires an
Imports System.Data.SqlClient directive, demonstrates how you establish a connection
to the Northwind database:

Using myConnection As New _

SqlConnection(“Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;” &

“Integrated Security=True;MultipleActiveResultSets=True”)

myConnection.Open()

End Using

Utilizing a Using..End Using block ensures that the connection will be correctly released
without the need of invoking Close.

Inserting Data
To perform an insert operation, you create an instance of the SqlCommand class passing the
SQL instructions that perform the actual insertion. The constructor also requires the
connection to be specified. The following code demonstrates this:

Using myConnection As New _

SqlConnection(“Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;” &

“Integrated Security=True;MultipleActiveResultSets=True”)

myConnection.Open()

Using addCustomer As New SqlCommand(“INSERT INTO CUSTOMERS(CompanyName, “&

“CustomerID) VALUES (@COMPANYNAME,

@CUSTOMERID)”,

From the Library of Wow! eBook

ptg

516

myConnection)

addCustomer.Parameters.AddWithValue(“@COMPANYNAME”, “Del Sole”)

addCustomer.Parameters.AddWithValue(“@CUSTOMERID”, “DELSO”)

addCustomer.ExecuteNonQuery()

End Using

End Using

Notice how you can provide parameterized query strings specifying values with the
SqlCommand.Parameters.AddWithValue method. The code adds a new customer to the
Customers table in the database, specifying to fields, CompanyName, and CustomerID. The
ExecuteNonQuery method allows executing a Transact-SQL operation instead of a simple
query.

Updating Data
Updating data works similarly to inserting, in that you write the same code, changing the
SQL instructions in the query string. The following code provides an example affecting
the previously added customer:

Using updateCustomer As New SqlCommand(“UPDATE CUSTOMERS SET “ &

“COMPANYNAME=@NAME WHERE

CUSTOMERID=@ID”,

myConnection)

updateCustomer.Parameters.AddWithValue(“@NAME”, “Alessandro Del Sole”)

updateCustomer.Parameters.AddWithValue(“@ID”, “DELSO”)

updateCustomer.ExecuteNonQuery()

End Using

So, you simply use an Update SQL instruction.

Deleting Data
Deletion works the same as other operations, differing only about the SQL code that uses
a Delete statement. The following code demonstrates this:

Using deleteCustomer As New SqlCommand(“DELETE FROM WHERE CUSTOMERID=@ID”,

myConnection)

deleteCustomer.Parameters.AddWithValue(“@ID”, “DELSO”)

deleteCustomer.ExecuteNonQuery()

End Using

Querying Data
Querying data is the last operation; it is important because it demonstrates a fundamen-
tal object: the SqlDataReader. The object allows retrieving a series of rows from the

CHAPTER 22 Introducing ADO.NET and DataSets

From the Library of Wow! eBook

ptg

517Introducing DataSets
2

2

specified database object. The following code demonstrates how you can retrieve a series
of customers:

Using myConnection As New _

SqlConnection(“Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;” &

“Integrated Security=True;MultipleActiveResultSets=True”)

myConnection.Open()

Using queryCustomers As New SqlCommand(“SELECT * FROM CUSTOMERS”,

myConnection)

Dim reader As SqlDataReader = queryCustomers.ExecuteReader()

While reader.Read

Console.WriteLine(“Customer: {0}”, reader(“CompanyName”))

End While

End Using

End Using

The query string contains a projection statement that allows querying data. The
ExecuteReader method sends the reading query string to the data source and retrieves the
desired information. Now that you have recalled the ways for working with data in a
connected mode, it is time to recall the disconnected mode and DataSets.

Introducing DataSets
A DataSet is basically an in-memory database that allows working in a disconnected
mode. Being disconnected means that first a connection is open, data is read from the
data source and pushed to the DataSet, and finally the connection is closed and you will
work against in-memory data stored by the DataSet. DataSets introduced a first attempt of
typed programming against in-memory data, a concept that has been unleashed in the
modern data access layers such as LINQ to SQL and ADO.NET Entity Framework. Now you
get a quick recap on DataSets with Visual Basic before facing LINQ.

Creating DataSets

You create DataSets starting from a database adding a new data source to your project.
This is accomplished by clicking the Add New Data Source command from the Data
menu in Visual Studio 2010. This launches the Data Source Configuration Wizard where
you choose the Database source, as shown in Figure 22.1.

From the Library of Wow! eBook

ptg

518

When you proceed, you are prompted for specifying if you want to create a DataSet or an
Entity Data Model. Select DataSet and click Next. At this point you are prompted to
specify the database connection. For example, with the Northwind database available on
SQL Server, your connection looks similar to the one shown in Figure 22.2 which repre-
sents what I have on my machine.

CHAPTER 22 Introducing ADO.NET and DataSets

FIGURE 22.1 The first step of the Data Source Configuration Wizard.

FIGURE 22.2 Specifying the database connection.

From the Library of Wow! eBook

ptg

519Introducing DataSets
2

2

Next you are prompted to specify database objects you want to be represented by the new
DataSet. Choose how many tables you like but ensure that the Products table is also
selected, to complete the next code examples. When the wizard completes, Visual Studio
generates a DataSet that you can manage via the designer, represented in Figure 22.3.

The designer shows how database objects have been mapped into the DataSet. Each table
is represented by a DataTable object. Each record in a table is represented by a DataRow
object while each field is a property having its own data type. DataSets use Data Adapters
to read and write data. A Data Adapter is actually a bridge between the data source and
the DataSet. Basically each DataTable works with a specific adapter; with more than one
adapter, there is the need of an object taking care of all of them, which is the job of the
TableAdapterManager. If you work with Windows Forms and WPF (new in VS 2010) appli-
cations, Visual Studio generates all adapters for you. For Console applications, like in the
following example, a few steps must be performed manually. When you have your
DataSet, you need an instance of the DataSet and of table adapters:

’DataSet here is also the project name

Imports DataSet.NorthwindDataSetTableAdapters

...

Dim WithEvents NWindDataSet As New NorthwindDataSet

Dim WithEvents ProductsTblAdapter As New ProductsTableAdapter

Dim WithEvents TblAdapterManager As New TableAdapterManager

FIGURE 22.3 The DataSet designer.

From the Library of Wow! eBook

ptg

520 CHAPTER 22 Introducing ADO.NET and DataSets

Then you populate the DataSet’s object invoking the adapter Fill method. In the mean-
time you also assign a TableAdapterManager if you have more than one adapter:

ProductsTblAdapter.Fill(NWindDataSet.Products)

TblAdapterManager.ProductsTableAdapter = ProductsTblAdapter

The next paragraphs recap insert/update/delete operations. At the moment remember
that you can save back changes to your data source invoking the adapter’s Update
method as follows:

ProductsTblAdapter.Update(NWindDataSet.Products)

Inserting Data
Each DataTable exposes a NewTableRow method, where Table is the name of the
DataTable. In the example of the Products table, the method is named NewProductsRow.
This method returns a new instance of the ProductRow object that you can fill with your
information. Finally you invoke the AddProductsRow method to send your data to the
DataSet. Of course, each table has a corresponding Add method. The following code
demonstrates how you can insert a new product:

’Insert

Dim row As NorthwindDataSet.ProductsRow = NWindDataSet.

Products.NewProductsRow

row.ProductName = “Italian spaghetti”

row.Discontinued = False

NWindDataSet.Products.AddProductsRow(row)

ProductsTblAdapter.Update(NWindDataSet.Products)

Generally when performing CRUD (Create/Read/Update/Delete) operations you work
against rows.

Updating Data
To update a row, you first retrieve the instance of the corresponding DataRow so that you
can perform manipulations. Then you can update your data. The following snippet
demonstrates this:

’Update

Dim getRow As NorthwindDataSet.ProductsRow

getRow = NWindDataSet.Products.FindByProductID(1)

getRow.Discontinued = True

ProductsTblAdapter.Update(NWindDataSet.Products)

Notice how the instance has been retrieved via the FindByProductID method. When you
create a DataSet, Visual Studio generates a FindByXXX method that allows you to retrieve
the instance of the specified row.

From the Library of Wow! eBook

ptg

521Summary
2

2

Deleting Data
Deleting a row is even simple. You get the instance of the row and then invoke the
DataRow.Delete method. The following code demonstrates this:

’Delete

Dim delRow As NorthwindDataSet.ProductsRow

delRow = NWindDataSet.Products.FindByProductID(1)

delRow.Delete()

ProductsTblAdapter.Update(NWindDataSet.Products)

To delete an object you could also invoke the TableAdapter.Delete method but this
would require the complete specification of the row’s properties.

Querying Data
You query data from DataSets basically by writing query strings. But this was the old
approach; now in Visual Basic 2010 you can take advantage of LINQ to DataSets, which is
covered in Chapter 26, “LINQ to DataSets.”

Summary
ADO.NET is the .NET Framework area providing the data access infrastructure for data
access. With ADO.NET you access data in two modes: connected and disconnected. For
the connected mode, you create Connection objects to establish a connection, Command
objects to send SQL query strings to the data source, and DataReader for fetching data;
finally you close the Connection object. In a disconnected environment, you take advan-
tage of DataSets that are in-memory representations of databases and where each table is a
DataTable object, each record is a DataRow object, and where TableAdapter objects act like
a bridge between the database and the DataSet. You perform CRUD operations invoking
the Add, Delete, Update, and New methods of DataTable objects, whereas a better tech-
nique for querying data is offered by LINQ to DataSets in Chapter 26. After this brief recap
on the old-fashioned data access techniques, you are ready to start a new journey through
the LINQ technology.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 23

Introducing LINQ

IN THIS CHAPTER

. What Is LINQ?

. LINQ Examples

. Language Support

. Understanding Providers

. Overview of LINQ Architec-ture

Developers create applications that in most cases need to
access data sources and manipulate data. During the years
hundreds of different data sources and file formats saw the
light, and each of them has its own specifications, require-
ments, and language syntaxes. Whenever an application
requires accessing data from a database or parsing a struc-
tured file, in most cases manipulation commands are
supplied as strings, making it difficult to reveal bugs at
compile time. LINQ solves all these problems in one solu-
tion, changing how developers write code and improving
productivity. This chapter provides an overview of this
revolutionary technology that is reprised and discussed in
detail in the next chapters.

What Is LINQ?
The LINQ project has been the most important new feature
in.NET Framework 3.5, affecting both Visual Basic 2008 and
Visual C# 3.0. LINQ stands for Language INtegrated Query
and is a project that Microsoft began developing in 2003.
The first beta versions saw the light starting from 2005 until
it became part of the CLR with .NET 3.5, and due to its
importance, it is still part of .NET Framework 4.0. As its
name implies, LINQ is a technology that allows querying
data directly from the programming language. To under-
stand why LINQ is so important and why it is so revolu-
tionary, we have to first start a brief discussion. Most
real-world applications need to access data, by querying,
filtering, and manipulating data as well. The word “data”
has several meanings. In the modern computer world there
are hundreds of different data sources, such as databases,

From the Library of Wow! eBook

ptg

524 CHAPTER 23 Introducing LINQ

XML documents, Microsoft Excel spreadsheets, web services, in-memory collections, and
so on. Moreover, each of these kinds of data sources can be further differentiated. For
example, there is not just one kind of database, but there are lots of databases, such
Microsoft SQL Server, Microsoft Access, Oracle, MySQL, and so on. Each of these databases
has its own infrastructure, its own administrative tools, and its own syntax. As you can
easily imagine, developers need to adopt different programming techniques and syntaxes
according to the specific data source they are working on, and this can be complex.
Obviously accessing an XML document is completely different from accessing a SQL
Server database; therefore, there is the need for specific types and members for accessing
such data sources, and one is different from the other one. So, the first thing that
Microsoft considered is related to the plethora of programming techniques to adopt
depending on the data source. The next part of this discussion is related to practical limi-
tations of the programming techniques before LINQ came in. For example, consider
accessing a SQL Server database with DataSets. Although powerful, this technique has
several limitations that can be summarized as follows:

. You need to know both the SQL Server syntax and the Visual Basic/Visual C#
syntax. Although preferable, this is not always possible, and in some cases it is it can
lead to confusion.

. SQL queries are passed to the compiler as strings. This means that if you write a bad
query (for example because of a typo), this will not be visible at compile time but
only when your application runs. IntelliSense support is not provided when writing
SQL syntax; therefore typos can easily happen. The same occurs for possibly bad
query logical implementations. Both scenarios are certainly to be avoided, but often
they can be subtle bugs to identify.

. In most cases the developer will not also deeply know the database structure if she is
not also an administrator. This means that she cannot necessarily know what data
types are exposed by the database, although it is always a preferable situation.

Now consider querying in-memory collections of .NET objects. Before LINQ, you could
only write long and complex For and For..Each loops or conditional code blocks (such as
If..Then or Select..Case) to access collections. The last example is related to XML docu-
ments: Before LINQ, you had two ways for manipulating XML files. The first one was
treating them as text files, which is one of the worst things in the world, The second
method was to recur to the System.Xml namespace that makes things difficult when you
need to simply read and write a document. All these considerations caused Microsoft to
develop LINQ; so again we ask the question, “What is LINQ?” The answer is the following:
LINQ provides a unified programming model that allows accessing, querying, filtering,
and manipulating different kinds of data sources, such as databases, Xml documents, and
in-memory collections, using the same programming techniques independently from the
data source. This is accomplished via special keywords of typical SQL derivation that are
now integrated into.NET languages and that allow working in a completely object-oriented
way. Developers can take advantage of a new syntax that offers the following returns:

. The same techniques can be applied to different kinds of data sources.

From the Library of Wow! eBook

ptg

525LINQ Examples

. Because querying data is performed via new keywords integrated in the language,
this allows working in a strongly typed way, meaning that eventual errors can be
found at compile time instead of spending a large amount of time investigating
problems at runtime.

. Full IntelliSense support.

LINQ syntax is straightforward, as you see in this chapter and in the following ones and
can deeply change how you write your code.

LINQ IN THIS BOOK

LINQ is a big technology and has lots of features so that discussing the technology in
deep detail would require a dedicated book. What you find in this book is first the
Visual Basic syntax for LINQ. Second, you learn how to use LINQ for querying and
manipulating data, which is the real purpose of LINQ. You will not find dedicated sce-
narios such as LINQ in WPF, LINQ in Silverlight, and so on. Just keep in mind that you
can bind LINQ queries to every user control that supports the IEnumerable interface or
just convert LINQ queries into writable collections (which is shown here) to both pre-
sent and edit data via the UI. For example, you can directly assign (or first convert to a
collection) a LINQ query to a Windows Forms BindingSource control or to a WPF
CollectionViewSource one or to an ASP.NET DataGrid as well.

LINQ Examples
To understand why LINQ is revolutionary, the best way is beginning with some code
examples. In the next chapters you get a huge quantity of code snippets, but this chapter
offers basic queries to provide a high-level comprehension. Imagine you have a Person
class exposing the FirstName, LastName, and Age properties. Then, imagine you have a
collection of Person objects, of type List(Of Person). Last, imagine you want to extract
from the collection all Person instances whose LastName property begins with the D letter.
This scenario is accomplished via the following code snippet that uses a LINQ query:

’ “people” is of type List(Of Person)

Dim peopleQuery = From pers In people

Where pers.LastName.StartsWith(“D”)

Order By pers.Age Descending

Select pers

This form of code is known as query expression because it allows extracting from a data
source only a subset of data according to specific criteria. Notice how query expressions
are performed using some keywords that recall the SQL syntax, such as From, Where, Order
By, and Select. Such keywords are also known as clauses, and the Visual Basic grammar
offers a large set of clauses that is examined in detail in the next chapters. The first
consideration is that while typing code IntelliSense speeds up your coding experience,
providing the usual appropriate suggestions. This is due to the integration of clauses with

2
3

From the Library of Wow! eBook

ptg

526 CHAPTER 23 Introducing LINQ

the language. Second, because clauses are part of the language, you can take advantage of
the background compiler that determines if a query expression fails before running the
application. Now let’s examine what the query does. The From clause specifies the data
source to be queried, in this case a collection of Person objects, which allows specifying a
condition that is considered if evaluated to True; in the above example, each Person
instance is taken in consideration only if its LastName property begins with the D letter.
The Order By clause allows sorting the result of the query depending on the specified
criteria that here is the value of the Age property in descending order. The Select clause
extracts objects and pulls them into a new IEnumerable(Of Person) collection that is the
type for the peopleQuery variable. Although this type has not been explicitly assigned,
local type inference is used, and the Visual Basic compiler automatically infers the appro-
priate type as the query result. Another interesting consideration is that queries are now
strongly typed. You are not writing queries as strings because you work with reserved
keywords and .NET objects, and therefore your code can take advantage of the Common
Language Runtime control, allowing better results at both compile time and at runtime.
Working in a strongly typed way is one of the greatest LINQ features thanks to its integra-
tion with the CLR.

IMPLICIT LINE CONTINUATION

Differently from Visual Basic 2008, in Visual Basic 2010 you can omit the underscore
(_) character within LINQ queries as demonstrated by the previous code.

The same result can be obtained by querying a data source with extension methods. The
following code demonstrates this:

Dim peopleQuery2 = people.Where(Function(pers) pers.LastName.

StartsWith(“D”)).OrderBy(Function(pers) pers.Age).

Select(Function(pers) pers)

The .NET Framework offers extension methods that replicate Visual Basic and Visual C#
reserved keywords and that receives lambda expressions as arguments pointing to the
data source.

Language Support
In Chapter 21, “Advanced Language Features,” you got an overview of some advanced
language features in the Visual Basic 2010 language. Some of those features were already
introduced with Visual Basic 2008 and have the purpose of providing support for LINQ.
Particularly, the language support to LINQ is realized via the following features:

. Local type inference

. Anonymous types

. Lambda expressions

From the Library of Wow! eBook

ptg

527Understanding Providers

. Extension methods

. If ternary operator

. Nullable types

. Xml literals

. Object initializers

The addition of keywords such as From, Where, and Select complete the language support
for this revolutionary technology. In the next chapters you see LINQ in action and you
learn how to use all the language features and the dedicated keywords.

Understanding Providers
The .NET Framework 4.0 provides the ability of using LINQ against six built-in kinds of
data sources, which are summarized in Table 23.1.

2
3

Therefore there is a specific LINQ implementation according to the data source (objects,
datasets, SQL databases, and Xml documents). Such implementations are known as stan-
dard providers. Due to their importance, each provider is covered in a specific chapter.
LINQ implementation is also referred to as providers or standard providers. There could be
situations in which you need to use a custom data source and you would like to take the
advantage of the LINQ syntax. Luckily LINQ is also extensible with custom providers that
can allow access to any kind of data source, and this is possible due to its particular infra-
structure. (A deep discussion on LINQ infrastructure is out of the scope here, and you might
want to consider a specific publication, while the focus is on the Visual Basic language for
LINQ.) Custom implementations such as LINQ to CSV, LINQ to Windows Desktop Search,
and LINQ to NHibernate give a good idea about the power of this technology.

TABLE 23.1 LINQ Standard Providers

Provider name Description

LINQ to
Objects

Allows querying in-memory collections of .NET objects

LINQ to
DataSets

Allows querying data stored within DataSets

LINQ to SQL Allows querying and manipulating data from an SQL Server database via a
specific object relational mapping engine

LINQ to XML Allows querying and manipulating Xml documents

LINQ to
Entities

Allows querying data exposed by an Entity Data Model (see ADO.NET Entity
Framework for details)

Parallel LINQ A new implementation that allows querying data using the Task Parallel Library

From the Library of Wow! eBook

ptg

528 CHAPTER 23 Introducing LINQ

EXTENDING LINQ

The following document in the MSDN Library can help you get started with extending
LINQ with a custom provider: http://msdn.microsoft.com/en-us/library/bb546158.aspx.

Overview of LINQ Architecture
Providing deep information on the LINQ architecture is out of the scope of this book
Getting a high-level overview can help you understanding how LINQ works. Basically
LINQ is the last layer of a series, as shown in Figure 23.1.

At the bottom there is the Common Language Runtime that provides the runtime infra-
structure for LINQ. The next layer is constituted by the managed languages that offer
support to LINQ with special reserved keywords and features. The next layer is all about
data and is represented by data sources that LINQ allows querying. The last layer is LINQ
itself with its standard providers. You may or may not love architectures built on several
layers, but LINQ has one big advantage: particularly when working with databases: It will
do all the work behind the scenes for sending the SQL commands to the data source
avoiding the need for you to perform it manually, offering also several high-level classes
and members for accessing data in a completely object-oriented way. You see practical
demonstrations of this discussion in the appropriate chapters.

FIGURE 23.1 LINQ is at the top of a layers infrastructure.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/bb546158.aspx

ptg

529Summary
2

3

Summary
In this chapter you got a brief overview of Language INtegrated Query that will be better
discussed in the next chapters. You learned what LINQ is and how it can improve query-
ing data sources thanks to integrated reserved keywords and taking advantage of a
strongly typed approach. You got an overview of the built-in LINQ providers, and you got
information on the specific language support for LINQ. Now you are ready to delve into
LINQ in next chapters.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 24

LINQ to Objects

IN THIS CHAPTER

. Introducing LINQ to Objects

. Querying in Memory Objects

. Introducing Standard Query
Operators

LINQ changes the way you write code. This is something
that you will often hear when talking about LINQ. It
provides the ability of querying different data sources
taking advantage of the same syntax, background compiler,
IntelliSense, and CLR control with its intuitive program-
ming model. LINQ’s syntax is so straightforward that you
become familiar with the technology quickly. In this
chapter you learn about LINQ to Objects, which is the start-
ing point of every LINQ discussion. You see how easy
querying .NET objects is, such as in-memory collections,
and you see in the next chapters how basically you can use
the same approach against different data sources and LINQ
providers. Take your time to read this chapter; it’s impor-
tant—especially the second part, which is about standard
query operators, which explains concepts that pervade
every LINQ provider and that will not be explained again in
other chapters, except where expressly required.

Introducing LINQ to Objects
In the previous chapter I provided an overview of the LINQ
technology and told you that it provides a unified program-
ming model for querying different types of data sources
using generally the same syntax constructs. You got a few
examples of LINQ syntax, but from now on you see LINQ
in action in different scenarios, therefore with more exam-
ples. This chapter is about LINQ to Objects, which is the
standard provider for querying in-memory objects. This
definition considers collections, arrays, and any other
object that implements the IEnumerable or IEnumerable(Of
T) interface (or interfaces deriving from them). LINQ to

From the Library of Wow! eBook

ptg

532 CHAPTER 24 LINQ to Objects

Objects can be basically considered as the root of LINQ providers, and it’s important to
understand how it works because the approach is essentially the same in accessing data-
bases and Xml documents. We focus on code more than on introducing the provider with
annoying discussions, so let’s start.

Querying in Memory Objects
LINQ to Object’s purpose is querying in-memory collections in a strongly typed fashion
using recently added keywords that recall SQL instructions syntax and that are now inte-
grated in the Visual Basic language, allowing the compiler to manage your actions at
compile time. Before querying data, you need a data source. For example, imagine you
have the following Product class that represents some food products of your company:

Class Product

Property ProductID As Integer

Property ProductName As String

Property UnitPrice As Decimal

Property UnitsInStock As Integer

Property Discontinued As Boolean

End Class

CODING TIP: USING OBJECT INITIALIZERS

In this chapter and the next ones dedicated to LINQ, you notice that in most cases
classes do not implement an explicit constructor. You see the advantages of object ini-
tializers in both normal code and in LINQ query expressions, which is the reason why
custom classes have no explicit constructors. This is not a mandatory rule whereas it
is instead an approach specific to LINQ that you need to be familiar with.

At this point consider the following products, as a demonstration:

Dim prod1 As New Product With {.ProductID = 0,

.ProductName = “Pasta”,

.UnitPrice = 0.5D,

.UnitsInStock = 10,

.Discontinued = False}

Dim prod2 As New Product With {.ProductID = 1,

.ProductName = “Mozzarella”,

.UnitPrice = 1D,

.UnitsInStock = 50,

.Discontinued = False}

Dim prod3 As New Product With {.ProductID = 2,

From the Library of Wow! eBook

ptg

533Querying in Memory Objects

.ProductName = “Crabs”,

.UnitPrice = 7D,

.UnitsInStock = 20,

.Discontinued = True}

Dim prod4 As New Product With {.ProductID = 3,

.ProductName = “Tofu”,

.UnitPrice = 3.5D,

.UnitsInStock = 40,

.Discontinued = False}

The code is simple; it just creates several instances of the Product class populating its
properties with some food names and characteristics. Usually you collect instances of your
products in a typed collection. The following code accomplishes this, taking advantage of
collection initializers:

Dim products As New List(Of Product) From {prod1,

prod2,

prod3,

prod4}

Because the List(Of T) collection implements IEnumerable(Of T), it can be queried with
LINQ. The following query shows how you can retrieve all nondiscontinued products in
which the UnitsInStock property value is greater than 10:

Dim query = From prod In products

Where prod.UnitsInStock > 10 _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod

CODING TIP: IMPLICIT LINE CONTINUATION

In LINQ queries you can take advantage of the new Visual Basic 2010 feature known
as implicit line continuation that avoids the need of writing the underscore character at
the end of a line. An exception in LINQ queries is when you use logical operators, as in
the preceding code snippet, in which the underscore is required. The code provides an
easy view of this necessity. As an alternative, you can place the logical operator (And,
in the example) on the preceding line in order to avoid the underscore.

Such kind of LINQ query is also known as query expression. The From keyword points to the
data source; the prod identifier represents one product in the products list. The Where
keyword allows filtering data in which the specified condition is evaluated to True. The
Order By keywords allow sorting data according to the specified property. Select pushes
each item that matches the specified Where conditions into an IEnumerable(Of T) result.

2
4

From the Library of Wow! eBook

ptg

534 CHAPTER 24 LINQ to Objects

Notice how local type inference avoids the need of specifying the query result type that is
inferred by the compiler as IEnumerable(Of Product). Later in this chapter you will better
understand why type inference is important in LINQ queries for anonymous types’ collec-
tions. At this point you can work with the result of your query; for example, you can
iterate the preceding query variable to get information on the retrieved products:

For Each prod In query

Console.WriteLine(“Product name: {0}, Unit price: {1}”,

prod.ProductName, prod.UnitPrice)

Next

This code produces on your screen a list of products that are not discontinued and where
there is a minimum of 11 units in stock. For your convenience, Listing 24.1 shows the
complete code for this example, providing a function that returns the query result via the
Return instruction. Iteration is executed later within the caller.

LISTING 24.1 Querying In-Memory Collections with LINQ

Module Module1

Sub Main()

Dim result = QueryingObjectsDemo1()

For Each prod In result

Console.WriteLine(“Product name: {0}, Unit price: {1}”,

prod.ProductName, prod.UnitPrice)

Next

Console.Readline()

End Sub

Function QueryingObjectsDemo1() As IEnumerable(Of Product)

Dim prod1 As New Product With {.ProductID = 0,

.ProductName = “Pasta”,

.UnitPrice = 0.5D,

.UnitsInStock = 10,

.Discontinued = False}

Dim prod2 As New Product With {.ProductID = 1,

.ProductName = “Mozzarella”,

.UnitPrice = 1D,

.UnitsInStock = 50,

.Discontinued = False}

From the Library of Wow! eBook

ptg

535Querying in Memory Objects

Dim prod3 As New Product With {.ProductID = 2,

.ProductName = “Crabs”,

.UnitPrice = 7D,

.UnitsInStock = 20,

.Discontinued = True}

Dim prod4 As New Product With {.ProductID = 3,

.ProductName = “Tofu”,

.UnitPrice = 3.5D,

.UnitsInStock = 40,

.Discontinued = False}

Dim products As New List(Of Product) From {prod1,

prod2,

prod3,

prod4}

Dim query = From prod In products

Where prod.UnitsInStock > 10 _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod

Return query

End Function

End Module

Class Product

Property ProductID As Integer

Property ProductName As String

Property UnitPrice As Decimal

Property UnitsInStock As Integer

Property Discontinued As Boolean

End Class

If you run the code in Listing 24.1, you get the following result:

Product name: Mozzarella, Unit price: 1

Product name: Tofu, Unit price: 3.5

Such a result contains only those products that are not discontinued and that are available
in more than 11 units. You can perform complex queries with LINQ to Objects. The

2
4

From the Library of Wow! eBook

ptg

536 CHAPTER 24 LINQ to Objects

following example provides a LINQ to Objects representation of what you get with rela-
tional databases and LINQ to SQL or LINQ to Entities. Consider the following class that
must be added to the project:

Class ShippingPlan

Property ProductID As Integer

Property ShipDate As Date

End Class

The purpose of the ShippingPlan is storing the ship date for each product, represented by
an ID. Both the ShippingPlan and Product classes expose a ProductID property that
provides a basic relationship. Now consider the following code that creates four instances
of the ShippingPlan class, one for each product and a collection of items:

Dim shipPlan1 As New ShippingPlan With {.ProductID = 0,

.ShipDate = New Date(2010, 1, 1)}

Dim shipPlan2 As New ShippingPlan With {.ProductID = 1,

.ShipDate = New Date(2010, 2, 1)}

Dim shipPlan3 As New ShippingPlan With {.ProductID = 2,

.ShipDate = New Date(2010, 3, 1)}

Dim shipPlan4 As New ShippingPlan With {.ProductID = 3,

.ShipDate = New Date(2010, 4, 1)}

Dim shipPlans As New List(Of ShippingPlan) From {

shipPlan1,

shipPlan2,

shipPlan3,

shipPlan4}

At this point the goal is to retrieve a list of product names and the related ship date. This
can be accomplished as follows:

Dim queryPlans = From prod In products

Join plan In shipPlans On plan.ProductID Equals prod.ProductID

Select New With {.ProductName = prod.ProductName,

.ShipDate = plan.ShipDate}

As you can see the Join clause allows joining data from two different data sources having
in common one property. This works similarly to the JOIN Sql instruction. Notice how you
can take advantage of anonymous types to generate a new type on-the-fly that stores only
the necessary information, without the need of creating a custom class for handling that
information. The problem is now another one. If you need to use such a query result
within a method body, no problem. The compiler can distinguish what and how many
members an anonymous type exposes so that you can use such members in a strongly
typed way. The problem is when you need to return a query result like that as the result of
a function. You cannot declare a function as an IEnumerable(Of anonymous type), so you
should return a nongeneric IEnumerable which, in other words, returns an IEnumerable(Of

From the Library of Wow! eBook

ptg

537Querying in Memory Objects

Object); therefore, you cannot invoke members from anonymous types except if you recur
to late binding. This makes sense, because anonymous types’ members have visibility only
within the parent member that defines them. To solve this problem, you need to define a
custom class holding query results. For example, consider the following class:

Class CustomProduct

Property ProductName As String

Property ShipDate As Date

End Class

It stores information from both Product and ShippingPlan classes. Now consider the
following query:

Dim queryPlans = From prod In products

Join plan In shipPlans On plan.ProductID Equals prod.ProductID

Select New CustomProduct With {.ProductName = prod.ProductName,

.ShipDate = plan.ShipDate}

It creates an instance of the CustomProduct class each time an object matching the condi-
tion is encountered. In this way you can return the query result as the result of a function
returning IEnumerable(Of CustomProduct). This scenario is represented for your conve-
nience in Listing 24.2.

LISTING 24.2 Complex LINQ to Objects Queries

Function QueryObjectsDemo2() As IEnumerable(Of CustomProduct)

Dim prod1 As New Product With {.ProductID = 0,

.ProductName = “Pasta”,

.UnitPrice = 0.5D,

.UnitsInStock = 10,

.Discontinued = False}

Dim prod2 As New Product With {.ProductID = 1,

.ProductName = “Mozzarella”,

.UnitPrice = 1D,

.UnitsInStock = 50,

.Discontinued = False}

Dim prod3 As New Product With {.ProductID = 2,

.ProductName = “Crabs”,

.UnitPrice = 7D,

.UnitsInStock = 20,

.Discontinued = True}

Dim prod4 As New Product With {.ProductID = 3,

.ProductName = “Tofu”,

.UnitPrice = 3.5D,

2
4

From the Library of Wow! eBook

ptg

538 CHAPTER 24 LINQ to Objects

.UnitsInStock = 40,

.Discontinued = False}

Dim products As New List(Of Product) From {prod1,

prod2,

prod3,

prod4}

Dim shipPlan1 As New ShippingPlan With {.ProductID = 0,

.ShipDate = New Date(2010, 1, 1)}

Dim shipPlan2 As New ShippingPlan With {.ProductID = 1,

.ShipDate = New Date(2010, 2, 1)}

Dim shipPlan3 As New ShippingPlan With {.ProductID = 2,

.ShipDate = New Date(2010, 3, 1)}

Dim shipPlan4 As New ShippingPlan With {.ProductID = 3,

.ShipDate = New Date(2010, 4, 1)}

Dim shipPlans As New List(Of ShippingPlan) From {

shipPlan1,

shipPlan2,

shipPlan3,

shipPlan4}

Dim queryPlans = From prod In products

Join plan In shipPlans On _

plan.ProductID Equals prod.ProductID

Select New CustomProduct _

With {.ProductName = prod.ProductName,

.ShipDate = plan.ShipDate}

Return queryPlans

End Function

Sub QueryPlans()

Dim plans = QueryObjectsDemo2()

For Each plan In plans

Console.WriteLine(“Product name: {0} will be shipped on {1}”,

plan.ProductName, plan.ShipDate)

Next

Console.ReadLine()

End SubIf you invoke the QueryPlans method, you get the following output:

Product name: Pasta will be shipped on 01/01/2010

Product name: Mozzarella will be shipped on 02/01/2010

Product name: Crabs will be shipped on 03/01/2010

Product name: Tofu will be shipped on 04/01/2010

From the Library of Wow! eBook

ptg

539Querying in Memory Objects

You would obtain the same result with anonymous types if the iteration were performed
within the method body and not outside the method itself. This approach is always useful
and becomes necessary in scenarios such as LINQ to Xml on Silverlight applications. LINQ
to Objects offers a large number of operators, known as standard query operators that are
discussed in this chapter. An important thing you need to consider is that you can also
perform LINQ queries via extension methods. Language keywords for LINQ have exten-
sion methods counterparts that can be used with lambda expressions for performing
queries. The following snippet provides an example of how the previous query expression
can be rewritten invoking extension methods:

Dim query = products.Where(Function(p) p.UnitsInStock > 10 And _

p.Discontinued = False).

OrderBy(Function(p) p.UnitPrice).

Select(Function(p) p)

Notice how extension methods are instance methods of the data source you are query-
ing. Each method requires a lambda expression that returns instances of the Product
class, allowing performing the required tasks. Before studying operators, there is an
important concept that you must understand that is related to the actual moment when
queries are executed.

Understanding Deferred Execution

When the CLR encounters a LINQ query, the query is not executed immediately. LINQ
queries are executed only when they are effectively used. This concept is known as deferred
execution and is part of all LINQ providers that you encounter, both standard and custom
ones. For example, consider the query that is an example in the previous discussion:

Dim query = From prod In products

Where prod.UnitsInStock > 10 _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod

This query is not executed until you effectively use its result. If the query is defined
within a function and is the result of the method, the Return instruction causes the query
to be executed:

Dim query = From prod In products

Where prod.UnitsInStock > 10 _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod

‘The query is executed here:

Return query

2
4

From the Library of Wow! eBook

ptg

540 CHAPTER 24 LINQ to Objects

Iterating the result also causes the query to be executed:

Dim query = From prod In products

Where prod.UnitsInStock > 10 _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod

‘The query is executed here, the Enumerator is invoked

For Each prod In query

Console.WriteLine(“Product name: {0}, Unit price: {1}”,

prod.ProductName, prod.UnitPrice)

Next

Another example of query execution is when you just invoke a member of the result as in
the following example:

Console.WriteLine(query.Count)

You can also force queries to be executed when declared, invoking methods on the query
itself. For example, converting a query result into a collection causes the query to be
executed as demonstrated here:

Dim query = (From prod In products

Where prod.UnitsInStock > 10 _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod).ToList ‘the query is executed here

This is also important at debugging time. For example, consider the case where you have a
query and you want to examine its result while debugging, taking advantage of Visual
Studio’s data tips. If you place a breakpoint on the line of code immediately after the
query and then pass the mouse pointer over the variable that receives the query result, the
data tips feature pops up a message saying that the variable is an in-memory query and
that clicking to expand the result processes the collection. This is shown in Figure 24.1.

FIGURE 24.1 Visual Studio data tips show how the query has not been executed yet.

From the Library of Wow! eBook

ptg

541Introducing Standard Query Operators

At this point the debugger executes the query in memory. When executed, you can
inspect the query result before it is passed to the next code. Data tips enable you to
examine every single item in the collection. Figure 24.2 demonstrates this.

2
4

TIP

The preceding discussion is also valid if adding query result variables to the Watch win-
dow.

Deferred execution is a key topic in LINQ development, and you always need to keep in
mind how it works to avoid problems in architecting your code.

Introducing Standard Query Operators
Querying objects with LINQ (as much as Xml documents and ADO.NET models) is accom-
plished via the standard query operators that are a set of Visual Basic keywords allowing
performing both simple and complex tasks within LINQ queries. This chapter covers stan-
dard query operators illustrating their purpose. For this, remember that this topic is
important because you need operators in other LINQ providers as well. You can also
notice that standard query operator generally have extension methods counterparts that
you can use as well.

CODING TIPS

The following examples consistently use local type inference and array literals. They
dramatically speed up writing LINQ queries, and therefore using such a feature is
something that you should try in practical examples. Of course nothing prevents you
from using old-fashioned coding techniques, but showing the power of Visual Basic
2010 is one of this book’s purposes.

FIGURE 24.2 The debugger executes the query so that you can inspect its result.

From the Library of Wow! eBook

ptg

542

Projection Operators

LINQ query expressions extract values from data sources and then push results into a
sequence of elements. This operation of pushing items into a sequence is known as
projection. Select is the projection operator for LINQ queries. Continuing the example of
products shown in the previous section, the following query creates a new sequence
containing all products names:

Dim productNames = From prod In products

Select prod.ProductName

The query result is now an IEnumerable(Of String). If you need to create a sequence of
objects, you can simply select each single item as follows:

Dim productSequence = From prod In products

Select prod

This returns an IEnumerable(Of Product). You can also pick more than one member for
an item:

Dim productSequence = From prod In products

Select prod.ProductID, prod.ProductName

This returns an IEnumerable(Of Anonymous type). Of course, for an anonymous type, you
can use the extended syntax that also allows specifying custom properties names:

Dim productSequence = From prod In products

Select ID = prod.ProductID,

Name = prod.ProductName

This is basically the equivalent of the following:

Dim productSequence = From prod In products

Select New With {.ID = prod.ProductID,

.Name = prod.ProductName}

There is an extension counterpart for Select, which is the Select extension method that
receives a lambda expression as an argument that allows specifying the object or member
that must be projected into the sequence and that works like this:

’IEnumerable(Of String)

Dim prodSequence = products.Select(Function(p) p.ProductName)

Of course query expressions may require more complex projections, especially if you work
on different sources. There is another projection operator known as SelectMany that is an
extension method but that can be performed in expressions, too. To continue with the
next examples, refer to the “Querying In-Memory Objects” section and retake the

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

543Introducing Standard Query Operators
2

4

ShippingPlan and Product classes and code that populates new collections of such objects.
After you’ve done this, consider the following query:

Dim query = From prod In products

From ship In shipPlans

Where prod.ProductID = ship.ProductID

Select prod.ProductName, ship.ShipDate

With nested From clauses we can query different data sources, and the Select clause picks
data from both collections, acting as SelectMany that has an extension method counter-
part that accepts lambda expressions as arguments pointing to the desired data sources.

Restriction Operators

LINQ offers an operator named Where that allows filtering query results according to the
specified condition. For example, continuing with the previous examples of a collection of
products, the following code returns only nondiscontinued products:

Dim query = From prod In products

Where prod.Discontinued = False

Select prod

The same result can be accomplished by invoking a same-named extension method that
works as follows:

Dim result = products.Where(Function(p) p.Discontinued = False).

Select(Function(p) p)

Where supports lots of operators on the line that are summarized in Table 24.1.

TABLE 24.1 Operators Supported by Where

Operator Description

<, > Major and minor operators that return True if the value is respectively smaller or
greater than the other one

=, <> Equality and inequality operators for value types comparisons

Is Returns True if the comparison between two objects succeeds

IsNot Returns True if the comparison between two objects does not succeed

And Allows specifying two conditions and returns True if both conditions are true

AndAlso Allows specifying two conditions and returns True if both conditions are true but if the
first one is False, the second one is skipped

Or Allows specifying two conditions and returns True if at least one of the conditions is
evaluated to True

From the Library of Wow! eBook

ptg

544

The following code provides a more complex example of filtering using Where and logical
operators to retrieve the list of executable files that have been accessed within two dates:

Dim fileList = From item In My.Computer.FileSystem.

GetDirectoryInfo(“C:\”).GetFiles

Where item.LastAccessTime < Date.Today _

AndAlso item.LastAccessTime > New Date(2009, 9, 10) _

AndAlso item.FullName Like “*.exe”

Select item

The preceding code uses AndAlso to ensure that the three conditions are True. Using
AndAlso short circuiting offers the benefit of making evaluations more efficient in one
line. Notice how Like is used to provide a pattern comparison with the filename. You find
a lot of examples about Where in this book, so let’s discuss other operators.

Aggregation Operators

Aggregation operators allow performing simple mathematic calculations on a sequence’s
items using the Aggregate and Into clauses. The combination of such clauses can affect
the following methods:

. Sum, which returns the sum of values of the specified property for each item in the
collection

. Average, which returns the average calculation of values of the specified property for
each item in the collection

. Count and LongCount, which return the number of items within a collection, respec-
tively as Integer and Long types

. Min, which returns the lowest value for the specified sequence

. Max, which returns the highest value for the specified sequence

For example, you can get the sum of unit prices for your products as follows:

’Returns the sum of product unit prices

Dim totalAmount = Aggregate prod In products

Into Sum(prod.UnitPrice)

CHAPTER 24 LINQ to Objects

OrElse Allows specifying two conditions and returns True if both conditions are True

Like Compares a string to a pattern and returns True if the string matches the pattern

Mod Returns the remainder of a division between numbers

TABLE 24.1 Continued

Operator Description

From the Library of Wow! eBook

ptg

545Introducing Standard Query Operators
2

4

Generally you need to specify the object property that must be affected by the calculation
(UnitPrice in this example) and that also works the same way in other aggregation opera-
tors. The following code shows instead how you can retrieve the average price:

’Returns the average price

Dim averagePrice = Aggregate prod In products

Into Average(prod.UnitPrice)

The following snippet shows how you can retrieve the number of products in both
Integer and Long formats:

’Returns the number of products

Dim numberOfItems = Aggregate prod In products

Into Count()

‘Returns the number of products as Long

Dim longNumberOfItems = Aggregate prod In products

Into LongCount()

The following code shows instead how you can retrieve the lowest and highest prices for
your products:

’Returns the lowest value for the specified

‘sequence

Dim minimumPrice = Aggregate prod In products

Into Min(prod.UnitPrice)

‘Returns the highest value for the specified

‘sequence

Dim maximumPrice = Aggregate prod In products

Into Max(prod.UnitPrice)

All of the preceding aggregation operators have extension methods counterparts that work
similarly. For example, you can compute the minimum unit price as follows:

Dim minimum = products.Min(Function(p) p.UnitPrice)

Such extension methods require you to specify a lambda expression pointing to the member
you want to be part of the calculation. Other extension methods work the same way.

NOTE

When using aggregation operators, you do not get back an IEnumerable type. You
instead get a single value type.

From the Library of Wow! eBook

ptg

546

Understanding the Let Keyword

The Visual Basic syntax offers a keyword named Let that can be used for defining tempo-
rary identifiers within query expressions. The following code shows how you can query
Windows Forms controls to get a sequence of text boxes:

Dim query = From ctrl In Me.Controls _

Where TypeOf (ctrl) Is TextBox _

Let txtBox = DirectCast(ctrl, TextBox) _

Select txtBox.Name

The Let keyword allows defining a temporary identifier so that you can perform multiple
operations on each item of the sequence and then invoke the item by its temporary
identifier.

Conversion Operators

LINQ query results are returned as IEnumerable(Of T) (or IQueryable(Of T) as you see in
next chapters), but you often need to convert this type into a most appropriate one. For
example, query results cannot be edited unless you convert them into a typed collection.
To accomplish this LINQ offers some extension methods whose job is converting query
results into other .NET types such as arrays or collections. For example let’s consider the
Products collection of the previous section’s examples and first perform a query expres-
sion that retrieves all products that are not discontinued:

Dim query = From prod In products

Where prod.Discontinued = False

Select prod

The result of this query is IEnumerable(Of Product). The result can easily be converted
into other .NET types. First, you can convert it into an array of Product invoking the
ToArray extension method:

’Returns Product()

Dim productArray = query.ToArray

Similarly you can convert the query result into a List(Of T) invoking ToList. The follow-
ing code returns a List(Of Product) collection:

’Returns List(Of Product)

Dim productList = query.ToList

You can perform a more complex conversion with ToDictionary and ToLookup.
ToDictionary generates a Dictionary(Of TKey, TValue) and receives only an argument

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

547Introducing Standard Query Operators
2

4

that via a lambda expression specifies the key for the dictionary. The value part of the
key/value pair is always the type of the query (Product in this example). This is an example:

’Returns Dictionary(Of Integer, Product)

Dim productDictionary = query.ToDictionary(Function(p) _

p.ProductID)

Because the value is a typed object, the Value property of each KeyValuePair in the
Dictionary is an instance of your type; therefore, you can access members from Value.
The following snippet demonstrates this:

For Each prod In productDictionary

Console.WriteLine(“Product ID: {0}, name: {1}”, prod.Key,

prod.Value.ProductName)

Next

The next operator is ToLookup that returns an ILookup(Of TKey, TElement) where TKey
indicates a key similarly to a Dictionary whereas TElement represents a sequence of
elements. Typically such a type can be used in mapping one-to-many relationships
between an object. Continuing the example of the Product class we can provide an
elegant way for getting the product name based on the ID. Consider the following code
snippet that returns an ILookup(Of Integer, String):

Dim productLookup = query.ToLookup(Function(p) p.ProductID, _

Function(p) p.ProductName & “ has “ & _

p.UnitsInStock & “ units in stock”)

We can now query the products sequence based on the ProductID property and extract
data such as product name and units in stock. Because of the particular structure of
ILookup, a nested For..Each loop is required and works like the following:

For Each prod In productLookup

Console.WriteLine(“Product ID: {0}”, prod.Key)

For Each item In prod

Console.WriteLine(“ {0}”, item)

Next

Next

Prod is of type IGrouping(Of Integer, String), a type that characterizes a single item in
an ILookup. If you run this code you get the following result:

Product ID: 0

Pasta has 10 units in stock

Product ID: 1

From the Library of Wow! eBook

ptg

548

Mozzarella has 50 units in stock

Product ID: 3

Tofu has 40 units in stock

Opposite from operators that convert into typed collections or arrays, two methods
convert from typed collections into IEnumerable or IQueryable. They are named
AsEnumerable and AsQueryable and their usage is straightforward:

Dim newList As New List(Of Product)

‘Populate your collection here..

Dim anEnumerable = newList.AsEnumerable

Dim aQueryable = newList.AsQueryable

There is another operator that filters a sequence retrieving only items of the specified
type, generating a new sequence of that type. Such an operator is named OfType and is
considered a conversion operator. The following code provides an example, where from
an array of mixed types only Integer types are extracted and pushed into an
IEnumerable(Of Integer):

Dim mixed() As Object = {“String1”, 1, “String2”, 2}

Dim onlyInt = mixed.OfType(Of Integer)()

This is the equivalent of using the TypeOf operator in a query expression. The following
query returns the same result:

Dim onlyInt = From item In mixed

Where TypeOf item Is Integer

Select item

It is not uncommon to need to immediately convert a query result into a collection, so
you can invoke conversion operators directly in the expression as follows:

Dim query = (From prod In products

Where prod.Discontinued = False

Select prod).ToList

Remember that invoking conversion operators causes the query to be executed.

Generation Operators

Most of LINQ members are offered by the System.Enumerable class. This also exposes two
shared methods, Range and Repeat, which provide the ability to generate sequences of
elements. Range allows generating a sequence of integer numbers, as shown in the
following code:

’The sequence will contain 100 numbers

‘The first number is 40

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

549Introducing Standard Query Operators
2

4

Dim numbers = Enumerable.Range(40, 100)

It returns IEnumerable(Of Integer); therefore you can then query the generated sequence
using LINQ. Repeat allows instead generating a sequence where the specified item repeats
the given number of times. Repeat is generic in that you need to specify the item’s type
first. For example, the following code generates a sequence of 10 Boolean values and True
is repeated 10 times:

Dim stringSequence = Enumerable.Repeat(Of Boolean)(True, 10)

Repeat returns IEnumerable(Of T), where T is the type specified for the method itself.

Ordering Operators

Ordering operators allow sorting query results according to the given condition. Within
LINQ queries this is accomplished via the Order By clause. This clause allows ordering
query results in both ascending and descending fashions, where ascending is the default
way. The following example sorts the query result so that products are ordered from the
one that has the lowest unit price to the one having the highest unit price:

Dim query = From prod In products

Order By prod.UnitPrice

Select prod

To get a result ordered from the highest value to the lowest, you use the Descending
keyword as follows:

Dim queryDescending = From prod In products

Order By prod.UnitPrice Descending

Select prod

This can shape the query result opposite of the first example. You can also provide more
than one Order By clause to get subsequent ordering options. Using extension methods
provides a little bit more granularity in ordering results. For example you can use the
OrderBy and ThenBy extension methods for providing multiple ordering options as
demonstrated in the following code:

Dim query = products.OrderBy(Function(p) p.UnitPrice).

ThenBy(Function(p) p.ProductName)

As usual, both methods take lambdas as arguments. There are also OrderByDescending and
ThenByDescending extension methods that order the result from the highest value to the
lowest. The last ordering method is Reverse that reverses the query result and that you
can simply use as follows:

Dim revertedQuery = query.Reverse()

From the Library of Wow! eBook

ptg

550

Set Operators

Set operators allow removing duplicates and merge sequences and exclude specified
elements. For example you could have duplicate items within a sequence or collection;
you can remove duplicates using the Distinct operator. The following provides an
example on a simple array of integers:

Dim someInt = {1, 2, 3, 3, 2, 4}

‘Returns {1, 2, 3, 4}

Dim result = From number In someInt Distinct

Select number

The result is a new IEnumberable(Of Integer). In real scenarios you could find this oper-
ator useful in LINQ to SQL or the Entity Framework for searching duplicate records in a
database table. The next operator is Union, which is an extension method and merges two
sequences into a new one. The following is an example:

Dim someInt = {1, 2, 3, 4}

Dim otherInt = {4, 3, 2, 1}

Dim result = someInt.Union(otherInt)

The preceding code returns an IEnumerable(Of Integer) containing 1, 2, 3, 4, 4, 3, 2, 1.
The first items in the new sequences are those from the collection that you invoke Union
on. Next operator is Intersect, which is another extension method. This method creates
a new sequence with elements that two other sequences have in common. The following
code demonstrates this:

Dim someInt = {1, 2, 3, 4}

Dim otherInt = {1, 2, 5, 6}

Dim result = someInt.Intersect(otherInt)

The new sequence is an IEnumerable(Of Integer) containing only 1 and 2, because they
are the only values that both original sequences have in common. The last set operator is
Except that generates a new sequence taking only those values that two sequences do
not have in common. The following code is an example, which then requires a further
explanation:

Dim someInt = {1, 2, 3, 4}

Dim otherInt = {1, 2, 5, 6}

Dim result = someInt.Except(otherInt)

Surprisingly, this code returns a new IEnumerable(Of Integer) containing only 3 and 4,
although 5 and 6 also are values that the two sequences do not have in common. This is
because the comparison is executed only on the sequence that you invoke Except on, and
therefore all other values are excluded.

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

551Introducing Standard Query Operators
2

4

Grouping Operators

The grouping concept is something that you of course already know if you ever worked
with data. Given a products collection, it would be useful dividing products into cate-
gories to provide a better organization of information. For example, consider the following
Category class:

Class Category

Property CategoryID As Integer

Property CategoryName As String

End Class

Now consider the following review of the Product class, with a new CategoryID property:

Class Product

Property ProductID As Integer

Property ProductName As String

Property UnitPrice As Decimal

Property UnitsInStock As Integer

Property Discontinued As Boolean

Property CategoryID As Integer

End Class

At this point we can write code that creates instances of both classes and populates appro-
priate collections, as in the following snippet:

Sub GroupByDemo()

Dim cat1 As New Category With {.CategoryID = 1,

.CategoryName = “Food”}

Dim cat2 As New Category With {.CategoryID = 2,

.CategoryName = “Beverages”}

Dim categories As New List(Of Category) From {cat1,

cat2}

Dim prod1 As New Product With {.ProductID = 0,

.ProductName = “Pasta”,

.UnitPrice = 0.5D,

.UnitsInStock = 10,

.Discontinued = False,

.CategoryID = 1}

Dim prod2 As New Product With {.ProductID = 1,

From the Library of Wow! eBook

ptg

552

.ProductName = “Wine”,

.UnitPrice = 1D,

.UnitsInStock = 50,

.Discontinued = False,

.CategoryID = 2}

Dim prod3 As New Product With {.ProductID = 2,

.ProductName = “Water”,

.UnitPrice = 0.5D,

.UnitsInStock = 20,

.Discontinued = False,

.CategoryID = 2}

Dim prod4 As New Product With {.ProductID = 3,

.ProductName = “Tofu”,

.UnitPrice = 3.5D,

.UnitsInStock = 40,

.Discontinued = True,

.CategoryID = 1}

Dim products As New List(Of Product) From {prod1,

prod2,

prod3,

prod4}

To make things easier to understand, only two categories have been created. Notice also
how each product now belongs to a specific category. To group foods into the Food cate-
gory and beverages into the Beverages category, you use the Group By operator. This is the
closing code of the preceding method, which is explained just after you write it:

Dim query = From prod In products

Group prod By ID = prod.CategoryID

Into Group

Select CategoryID = ID,

ProductsList = Group

‘ “prod” is inferred as anonymous type

For Each prod In query

Console.WriteLine(“Category {0}”, prod.CategoryID)

‘ “p” is inferred as Product

For Each p In prod.ProductsList

Console.WriteLine(“ Product {0}, Discontinued: {1}”,

p.ProductName, p.Discontinued)

Next

Next

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

553Introducing Standard Query Operators
2

4

End Sub

The code produces the following result:

Category 1

Product Pasta, Discontinued: False

Product Tofu, Discontinued: True

Category 2

Product Wine, Discontinued: False

Product Water, Discontinued: False

Basically Group By requires you to specify a key for grouping. This key is a property of the
type composing the collection you are querying. The result of the grouping is sent to a
new IEnumerable(Of T) sequence represented by the Into Group statement. Finally you
invoke Select to pick up the key and items grouped according to the key; the projection
generates an IEnumerable(Of anonymous type). Notice how you need a nested For..Each
loop; this is because each item in the query result is composed of two objects: the key and
a sequence of object (in this case sequence of Product) grouped based on the key. The
same result can be accomplished using extension methods’ counterpart that work like this:

Dim query = products.GroupBy(Function(prod) prod.CategoryID,

Function(prod) prod.ProductName)

Union Operators

You often need to create sequences or collections with items taken from different data
sources. If you consider the example in the previous “Grouping Operators” section, it
would be interesting to create a collection of objects in which the category name is also
available so that the result can be more human-readable. This is possible in LINQ using
union operators (not to be confused with the union Set operator keyword), which
perform operations that you know as joining. To complete the following steps, simply
recall the previously provided implementation of the Product and Category classes and
the code that populates new collections of products and categories. The goal of the first
example is to create a new sequence of products in which the category name is also avail-
able. This can be accomplished as follows:

Dim query = From prod In products

Join cat In categories On _

prod.CategoryID Equals cat.CategoryID

Select CategoryName = cat.CategoryName,

ProductName = prod.ProductName

The code is quite simple to understand. Both products and categories collections are
queried, and a new sequence is generated to keep products and categories whose
CategoryID is equal. This is accomplished via the Join keyword in which the On operator
requires the condition to be evaluated as True. Notice that Join does not accept the equal-
ity operator (=), whereas it requires the Equals keyword. In this case the query result is an

From the Library of Wow! eBook

ptg

554

IEnumerable(Of Anonymous type), but of course you could create a helper class exposing
properties to store the result. You can then iterate the result to get information on your
products, as in the following snippet:

For Each obj In query

Console.WriteLine(“Category: {0}, Product name: {1}”,

obj.CategoryName, obj.ProductName)

Next

The code produces the following output:

Category: Food, Product name: Pasta

Category: Beverages, Product name: Wine

Category: Beverages, Product name: Water

Category: Food, Product name: Tofu

This is the simplest joining example and is known as Cross Join, but you are not limited
to this. For example you might want to group items based on the specified key, which is
known as Group Join. This allows you to rewrite the same example of the previous para-
graph but taking advantage of joining can get the category name. This is accomplished
as follows:

Dim query = From cat In categories

Group Join prod In products On _

prod.CategoryID Equals cat.CategoryID

Into Group

Select NewCategory = cat,

NewProducts = Group

Notice that now the main data source is Categories. The result of this query is generating
a new sequence in which groups of categories store groups of products. This is notable if
you take a look at the Select clause, which picks sequences instead of single objects or
properties. The following iteration provides a deeper idea on how you access information
from the query result:

For Each obj In query

Console.WriteLine(“Category: {0}”, obj.NewCategory.CategoryName)

For Each prod In obj.NewProducts

Console.WriteLine(“ Product name: {0}, Discontinued: {1}”,

prod.ProductName, prod.Discontinued)

Next

Next

Such nested iteration produces the following output:

Category: Food

Product name: Pasta, Discontinued: False

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

555Introducing Standard Query Operators
2

4

Product name: Tofu, Discontinued: True

Category: Beverages

Product name: Wine, Discontinued: False

Product name: Water, Discontinued: False

The Cross Join with Group Join technique is similar. The following code shows how you can
perform a cross group join to provide a simplified version of the previous query result:

Dim query = From cat In categories

Group Join prod In products On _

prod.CategoryID Equals cat.CategoryID

Into Group

From p In Group

Select CategoryName = cat.CategoryName,

ProductName = p.ProductName

Notice that by simply providing a nested From clause pointing to the group you can easily
select what effectively you need from both sequences, for example the category name and
the product name. The result, which is still a sequence of anonymous types, can be simply
iterated as follows:

For Each item In query

Console.WriteLine(“Product {0} belongs to {1}”,

item.ProductName,

item.CategoryName)

Next

It produces the following output:

Product Pasta belongs to Food

Product Tofu belongs to Food

Product Wine belongs to Beverages

Product Water belongs to Beverages

The last union operator is known as Left Outer Join. It is similar to the cross group join, but
it differs in that you can provide a default value in case no item is available for the speci-
fied key. Consider the following code:

Dim query = From cat In categories

Group Join prod In products On _

prod.CategoryID Equals cat.CategoryID

Into Group

From p In Group.DefaultIfEmpty

Select CategoryName = cat.CategoryName,

ProductName = If(p IsNot Nothing,

p.ProductName, “No available product”)

From the Library of Wow! eBook

ptg

556

Notice the invocation of the Group.DefaultIfEmpty extension method that is used with
the If ternary operator to provide a default value. You can then retrieve information from
the query result as in the cross group join sample.

Equality Operators

You might want to compare two sequences to check if they are perfectly equal. The
SequenceEqual extension method allows performing this kind of comparison. It compares
if a sequence is equal considering both items and the items order within a sequence,
returning a Boolean value. The following code returns True because both sequences
contains the same items in the same order:

Dim first = {“Visual”, “Basic”, “2010”}

Dim second = {“Visual”, “Basic”, “2010”}

‘Returns True

Dim comparison = first.SequenceEqual(second)

The following code returns instead False, because although both sequences contain the
same items, they are ordered differently:

Dim first = {“Visual”, “Basic”, “2010”}

Dim second = {“Visual”, “2010”, “Basic”}

‘Returns False

Dim comparison = first.SequenceEqual(second)

Quantifiers

LINQ offers two interesting extension methods for sequences, Any and All. Any allows
checking if at least one item in the sequence satisfies the specified condition. For example,
the following code checks if at least one product name contains the letters “of”:

Dim result = products.Any(Function(p) p.ProductName.Contains(“of”))

The method receives a lambda as an argument that specifies the condition and returns
True if the condition is matched. All instead allows checking if all members in a sequence
match the specified condition. For example, the following code checks if all products are
discontinued:

Dim result = products.All(Function(p) p.Discontinued = True)

Same as above, the lambda argument specifies the condition to be matched.

CHAPTER 24 LINQ to Objects

From the Library of Wow! eBook

ptg

557Introducing Standard Query Operators
2

4

Concatenation Operators

Sequences (that is, IEnumerable(Of T) objects) expose a method named Concat that
allows creating a new sequence containing items from two sequences. The following code
shows an example in which a new sequence of strings is created from two existing arrays
of strings:

Dim firstSequence = {“One”, “Two”, “Three”}

Dim secondSequence = {“Four”, “Five”, “Six”}

Dim concatSequence = firstSequence.Concat(secondSequence)

The result produced by this code is that the concatSequence variable contains the follow-
ing items: “One”, “Two”, “Three”, “Four”, “Five”, and “Six”. The first items in the new
sequence are taken from the one you invoke the Concat method on.

Elements Operators

There are some extension methods that allow getting the instance of a specified item in a
sequence. The first one is Single that gets the instance of only the item that matches the
specified condition. For example, the following code gets the instance of the only product
whose product name is Mozzarella:

Try

Dim uniqueElement = products.Single(Function(p) p.

ProductName = “Mozzarella”)

Catch ex As InvalidOperationException

‘The item does not exist

End Try

Single takes a lambda expression as an argument in which you can specify the condition
that the item must match. It returns an InvalidOperationException if the item does not
exist in the sequence (or if more than one element matches the condition). As an alterna-
tive you can invoke SingleOrDefault, which returns a default value if the item does not
exist instead of throwing an exception. The following code returns Nothing because the
product name does not exist:

Dim uniqueElement = products.SingleOrDefault(Function(p) p.

ProductName = “Mozzarell”)

The next method is First. It can return either the first item in a sequence or the first item
that matches a condition. You can use it as follows:

’Gets the first product in the list

From the Library of Wow! eBook

ptg

558 CHAPTER 24 LINQ to Objects

Dim firstAbsolute = products.First

Try

‘Gets the first product where product name starts with P

Dim firstElement = products.First(Function(p) p.ProductName.

StartsWith(“P”))

Catch ex As InvalidOperationException

‘No item available

End Try

The previous example is self-explanatory: If multiple products have their name starting
with the P letter, First returns just the first one in the sequence or throws an
InvalidOperationException if no item is available. There is also a FirstOrDefault
method that returns a default value, such as Nothing, if no item is available. Finally there
are Last and LastOrDefault that simply return the last item in a sequence and that work
like the preceding illustrated ones.

Partitioning Operators

Partitioning operators allow accomplishing a technique known as paging, which is
common in data access scenarios. There are two main operators in LINQ: Skip and Take,
in which Skip avoids selecting the specified number of elements, and Take puts the speci-
fied number of elements into a sequence. Code in Listing 24.3 shows an example of
paging implementation using the two operators.

LISTING 24.3 Implementing a Basic Paging Technique

Module Partitioning

Private pageCount As Integer

Private Products As List(Of Product)

Sub PopulateProducts()

Dim prod1 As New Product With {.ProductID = 0,

.ProductName = “Pasta”,

.UnitPrice = 0.5D,

.UnitsInStock = 10,

.Discontinued = False}

Dim prod2 As New Product With {.ProductID = 1,

.ProductName = “Mozzarella”,

.UnitPrice = 1D,

.UnitsInStock = 50,

.Discontinued = False}

Dim prod3 As New Product With {.ProductID = 2,

From the Library of Wow! eBook

ptg

559Introducing Standard Query Operators
2

4

.ProductName = “Crabs”,

.UnitPrice = 7D,

.UnitsInStock = 20,

.Discontinued = True}

Dim prod4 As New Product With {.ProductID = 3,

.ProductName = “Tofu”,

.UnitPrice = 3.5D,

.UnitsInStock = 40,

.Discontinued = False}

Products = New List(Of Product) From {prod1,

prod2,

prod3,

prod4}

End Sub

Function QueryProducts() As IEnumerable(Of Product)

Dim query As IEnumerable(Of Product)

‘If pageCount = 0 we need to retrieve the first 10 products

If pageCount = 0 Then

query = From prod In Products _

Order By Prod.ProductID _

Take 10

Else

‘Skips the already shown products

‘and takes next 10

query = From prod In Products _

Order By Prod.ProductID _

Skip pageCount Take 10

End If

‘In real applications ensure that query is not null

Return query

End Function

End Module

The private field pageCount acts as a counter. According to its value, the query skips the
number of elements already visited represented by the value of pageCount. If no elements
were visited, the query skips nothing. The code invoking QueryProducts increase or
decrease by 10 units the pageCount value depending if you want to move forward or back-
ward to the collection items.

From the Library of Wow! eBook

ptg

560 CHAPTER 24 LINQ to Objects

Summary
In this chapter you got a high-level overview of LINQ key concepts. In this particular
discussion you learned about LINQ to Objects as the built-in provider for querying in-
memory collections seeing LINQ in action via specific Visual Basic keywords that recall
the SQL syntax, such as From, Select, Where, and Join. You can build LINQ queries while
writing Visual Basic code, taking advantage of the background compiler, IntelliSense, and
CLR control. Such queries written in the code editor are known as query expressions. Query
expressions generally return an IEnumerable(Of T), but they are not executed immedi-
ately. According to the key concept of deferred execution, LINQ queries are executed only
when effectively utilized, and this is something that you find in subsequent LINQ
providers. With LINQ you can build complex query expressions to query your data
sources; this is accomplished via the standard query operators, which are covered in the
last part of the chapter. LINQ to Objects is the basis of LINQ, and most of the concepts
shown in this chapter will be revisited in next ones.

From the Library of Wow! eBook

ptg

CHAPTER 25

LINQ to SQL

IN THIS CHAPTER

. Introducing LINQ to SQL

. Querying Data with LINQ to SQL

. Insert/Update/Delete
Operations with LINQ

. Advanced LINQ to SQL

. LINQ to SQL with SQL Server
Compact EditionHow many times did you face runtime errors when

sending SQL instructions to your databases for querying or
manipulating data? Your answer is probably “several times.”
Sending SQL instructions in the form of strings has been,
for years, the real way for accessing data in the .NET devel-
opment, but one of the main disadvantages was the lack of
compile time control over your actions. Experienced devel-
opers can also remember when they had to work against
databases in a connected environment taking care of every-
thing that happened. LINQ to SQL solves several of these
issues, providing both a disconnected way for working with
data, where data is mapped into an object model that you
work with until you decide to save back data, and a
strongly typed programming fashion that improves your
productivity by checking queries and CRUD operations at
compile time. In this chapter you explore the most impor-
tant LINQ to SQL functionalities, learning the basics of data
access with such technology.

Introducing LINQ to SQL
LINQ to SQL is an object relational mapping engine for
Microsoft SQL Server relational databases. In the previous
version of the .NET Framework it was the first built-in LINQ
provider for SQL Server offering not only the capability of
querying data (as instead it is for LINQ to DataSets) but also
a complete infrastructure for manipulating data, including
connections, queries, and CRUD
(Create/Read/Update/Delete) operations. LINQ to SQL is
effectively another layer in the data access architecture, but
it is responsible for everything starting from opening the

From the Library of Wow! eBook

ptg

562 CHAPTER 25 LINQ to SQL

connection until closing. One of the advantages from LINQ to SQL is that you will basi-
cally query your data using the usual LINQ syntax thanks to the unified programming
model offered by the technology. But this is not the only advantage. Being an object rela-
tional mapping engine makes LINQ to SQL mapping databases’ tables and relationships
into .NET objects. This allows working in a disconnected way and in a totally strongly
typed fashion so that you can get all the advantages of the CLR management. Each table
from the database is mapped into a .NET class whereas relationships are mapped into .NET
properties, providing something known as abstraction. This allows working against a
conceptual model instead of against the database, and you will work with objects until
you finish your edits that will be persisted to the underlying data source only when effec-
tively required. This provides several advantages: First, you work with strongly typed
objects, and everything is managed by the Common Language Runtime. Second, you do
not work connected to the database, so your original data will be secure until you send
changes after validations. According to the LINQ terminology, classes mapping tables are
called entities. A group of entity is referred to as an entity set. Relationships are instead
called associations. You access LINQ to SQL features by creating specific classes that are
described in next section.

LINQ INTERNALS

This is a language-focused book, so discussing LINQ to SQL internals and architecture
is not possible. A discussion of this kind would probably require a specific book. Here
you will instead learn of manipulating and querying data with LINQ to SQL and the
Visual Basic language, getting also the fundamental information about architecture
when necessary.

Prerequisites

This chapter assumes that you have installed Microsoft SQL Server 2008, at least the
Express Edition, possibly with the Advanced Services version that also includes SQL Server
Management Studio Basic. If you did not install it yet, you can download it from here:
http://www.microsoft.com/express/sql/default.aspx.

Next, the code examples require the SQL Server version of the Northwind sample database
from Microsoft, which is downloadable from here: http://code.msdn.microsoft.com/
northwind. If you installed SQL Server Management Studio (Basic or higher) it is a good
idea to attach the Northwind database to the SQL Server instance so that you can simulate
a production environment.

Understanding LINQ to SQL Classes

To access SQL Server databases with LINQ to SQL, you need a LINQ to SQL class. This
kind of class is generated by Visual Studio when you select members for the new object
model and contains all the Visual Basic code that represents tables, columns, and relation-

From the Library of Wow! eBook

http://www.microsoft.com/express/sql/default.aspx
http://code.msdn.microsoft.com/

ptg

563Introducing LINQ to SQL

ships. Adding a LINQ to SQL class is also necessary to enable the Visual Studio OR/M
Designer for LINQ to SQL. To understand what these sentences mean, follow these prelim-
inary steps:

. Create a new project for the Console and name it LinqToSql.

. Establish a connection to the Northwind database via the Server Explorer tool
window (or the Database Explorer if you work with Visual Basic Express).

. In Solution Explorer, right-click the project name and select Add, New Item. When
the Add New Item dialog appears move to the Data folder and select the LINQ to
SQL Classes item, replacing the default name with Northwind.dbml. Figure 25.1
shows this scenario.

2
5

When you click Add, after a few seconds the Visual Studio 2010 IDE shows the LINQ to
SQL Object Relational Designer that appears empty, as shown in Figure 25.2.

The designer provides a brief description of its job, requiring you to pick items from either
the Server Explorer window or from the toolbox. You need to pick tables from the
Northwind database, passing them to Visual Studio to start the mapping process. Look at
Figure 25.3 and then expand Server Explorer to show the Northwind database structure;
then expand the Tables folder.

Now keep the Ctrl key pressed and click on both the Categories and Products tables. Our
goal is to provide an example of a master-details relationship. When selected, drag the
tables onto the designer surface until you get the result shown in Figure 25.4.

FIGURE 25.1 Adding a new LINQ to SQL class to the project.

From the Library of Wow! eBook

ptg

564 CHAPTER 25 LINQ to SQL

FIGURE 25.2 The LINQ to SQL designer popping up for the first time.

FIGURE 25.3 Preparing to pick tables from the Northwind database.

From the Library of Wow! eBook

ptg

565Introducing LINQ to SQL

At this point we can begin making some considerations. Visual Studio generated a
diagram that is the representation of Visual Basic code. This diagram contains the defini-
tion of two entities, Category and Product. Each of them is mapped to Visual Basic classes
with the same name. If you inspect the diagram, you notice that both classes expose prop-
erties. Each property maps a column within the table in the database. Figure 25.4 also
shows the Properties window opened to show you a new, important concept, the
System.Data.Linq.DataContext class. Every LINQ to SQL object model defines a class that
inherits from DataContext and which is basically the main entry point of a LINQ to SQL
class. It is, in other words, an object-oriented reference to the database. It is responsible for

. Opening and closing connections

. Handling relationships between entities

. Keeping track, with a single instance, of all changes applied to entities during all the
object model lifetime

. Translating Visual Basic code into the appropriate SQL instructions

. Managing entities’ lifetime, no matter how long

Visual Studio generates a new DataContext class forming its name concatenating the data-
base name with the DataContext phrase, so in our example the class is named
NorthwindDataContext. This class, as you can see in Figure 25.4, exposes some properties
including the connection string, base class, and access modifier.

2
5

FIGURE 25.4 The LINQ to SQL designer is now populated.

From the Library of Wow! eBook

ptg

566 CHAPTER 25 LINQ to SQL

INHERITANCE AND SERIALIZATION

Although this chapter also covers advanced LINQ to SQL features, some things are out
of the scope in this language-focused book, such as inheritance and serialization of
data contexts. Such features are better described in the MSDN documentation at the
following address: http://msdn.microsoft.com/en-us/library/bb386976(VS.100).aspx

Now click the Category item in the designer that represents an entity described in
Figure 25.5 within the Properties window.

It is interesting to understand that such a class has public access that requires code (Use
Runtime definition) to support Insert/Update/Delete operations. The Source property also
tells us what the source table in the database is. Now click on the arrow that establishes
the relationship. Figure 25.6 shows how the Properties window describes such an object.

Notice how a one-to-many relationship is represented. The Child Property property shows
the “many” part of the one-to-many relationship, whereas Parent Property shows the
“one” part of the relationship.

RELATIONSHIPS

LINQ to SQL supports only one-to-many relationships, which is different from the
ADO.NET Entity Framework that also supports many-to-many relationships.

FIGURE 25.5 Examining the Category class.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/bb386976(VS.100).aspx

ptg

567Introducing LINQ to SQL
2

5

FIGURE 25.6 Examining associations.

Now that you have a clearer idea about LINQ to SQL classes in a graphical way, it’s time to
understand the architecture. This kind of a class is referred via a .dbml file that groups
nested files. To see nested files you need to activate the View All Files view in Solution
Explorer. The first nested file has a .dbml.diagram extension and is the class diagram that
we just saw in the Visual Studio Designer. All edits, including Visual Studio-generated
items that are performed onto the designer and then reflected into a .designer.vb file (in
our example, Northwind.designer.vb). This file is fundamental because it stores code defin-
itions for the DataContext, entities, and associations classes. Understanding how this file
is defined is important, although you should never edit it manually. Listing 25.1 shows
the definition of the NorthwindDataContext class:

LISTING 25.1 The NorthwindDataContext Class Definition

<Global.System.Data.Linq.Mapping.DatabaseAttribute(Name:=”Northwind”)> _

Partial Public Class NorthwindDataContext

Inherits System.Data.Linq.DataContext

Private Shared mappingSource As System.Data.Linq.Mapping.MappingSource = _

New AttributeMappingSource()

Partial Private Sub OnCreated()

End Sub

Partial Private Sub InsertCategory(instance As Category)

From the Library of Wow! eBook

ptg

568

End Sub

Partial Private Sub UpdateCategory(instance As Category)

End Sub

Partial Private Sub DeleteCategory(instance As Category)

End Sub

Partial Private Sub InsertProduct(instance As Product)

End Sub

Partial Private Sub UpdateProduct(instance As Product)

End Sub

Partial Private Sub DeleteProduct(instance As Product)

End Sub

Public Sub New()

MyBase.New(Global.LinqToSql.My.MySettings.Default.

NorthwindConnectionString, mappingSource)

OnCreated

End Sub

Public Sub New(ByVal connection As String)

MyBase.New(connection, mappingSource)

OnCreated

End Sub

Public Sub New(ByVal connection As System.Data.IDbConnection)

MyBase.New(connection, mappingSource)

OnCreated

End Sub

Public Sub New(ByVal connection As String,

ByVal mappingSource As System.Data.Linq.

Mapping.MappingSource)

MyBase.New(connection, mappingSource)

OnCreated()

End Sub

Public Sub New(ByVal connection As System.Data.IDbConnection,

ByVal mappingSource As System.Data.Linq.

Mapping.MappingSource)

MyBase.New(connection, mappingSource)

OnCreated()

End Sub

Public ReadOnly Property Categories() As System.Data.Linq.Table(Of Category)

Get

Return Me.GetTable(Of Category)

End Get

End Property

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

569Introducing LINQ to SQL
2

5

Public ReadOnly Property Products() As System.Data.Linq.Table(Of Product)

Get

Return Me.GetTable(Of Product)

End Get

End Property

End Class

The class is marked with the DataBase attribute and inherits from DataContext, meaning
that it has to be a managed reference to the database. The constructor provides several
overloads, most of them accepting a connection string if you do not want it to be stored
in the configuration file (which is the default generation). Two properties are important,
Categories and Products of type System.Data.Linq.Table(Of T). This type offers a .NET
representation of a database table. The GetTable method invoked within properties creates
Table(Of T) objects based on entities. Notice how several partial methods for
Insert/Update/Delete operations are defined and can be extended later. Similar to the
DataContext class, both Product and Category classes have a Visual Basic definition
within the same file. As a unified example, Listing 25.2 shows the definition of the
Category class.

LISTING 25.2 The Category Class Definition

<Global.System.Data.Linq.Mapping.TableAttribute(Name:=”dbo.Categories”)> _

Partial Public Class Category

Implements System.ComponentModel.INotifyPropertyChanging,

System.ComponentModel.INotifyPropertyChanged

Private Shared emptyChangingEventArgs As PropertyChangingEventArgs = _

New PropertyChangingEventArgs(String.Empty)

Private _CategoryID As Integer

Private _CategoryName As String

Private _Description As String

Private _Picture As System.Data.Linq.Binary

Private _Products As EntitySet(Of Product)

Partial Private Sub OnLoaded()

End Sub

Partial Private Sub OnValidate(action As System.Data.Linq.ChangeAction)

End Sub

From the Library of Wow! eBook

ptg

570

Partial Private Sub OnCreated()

End Sub

Partial Private Sub OnCategoryIDChanging(value As Integer)

End Sub

Partial Private Sub OnCategoryIDChanged()

End Sub

Partial Private Sub OnCategoryNameChanging(value As String)

End Sub

Partial Private Sub OnCategoryNameChanged()

End Sub

Partial Private Sub OnDescriptionChanging(value As String)

End Sub

Partial Private Sub OnDescriptionChanged()

End Sub

Partial Private Sub OnPictureChanging(value As System.Data.Linq.Binary)

End Sub

Partial Private Sub OnPictureChanged()

End Sub

Public Sub New()

MyBase.New

Me._Products = New EntitySet(Of Product)(AddressOf Me.attach_Products,

AddressOf Me.detach_Products)

OnCreated

End Sub

<Global.System.Data.Linq.Mapping.ColumnAttribute(Storage:=”_CategoryID”,

AutoSync:=AutoSync.OnInsert, DbType:=”Int NOT NULL IDENTITY”,

IsPrimaryKey:=True, IsDbGenerated:=True)> _

Public Property CategoryID() As Integer

Get

Return Me._CategoryID

End Get

Set(ByVal value As Integer)

If ((Me._CategoryID = Value) _

= False) Then

Me.OnCategoryIDChanging(Value)

Me.SendPropertyChanging()

Me._CategoryID = Value

Me.SendPropertyChanged(“CategoryID”)

Me.OnCategoryIDChanged()

End If

End Set

End Property

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

571Introducing LINQ to SQL
2

5

<Global.System.Data.Linq.Mapping.ColumnAttribute(Storage:=”_CategoryName”,

DbType:=”NVarChar(15) NOT NULL”, CanBeNull:=False)> _

Public Property CategoryName() As String

Get

Return Me._CategoryName

End Get

Set(ByVal value As String)

If (String.Equals(Me._CategoryName, Value) = False) Then

Me.OnCategoryNameChanging(Value)

Me.SendPropertyChanging()

Me._CategoryName = Value

Me.SendPropertyChanged(“CategoryName”)

Me.OnCategoryNameChanged()

End If

End Set

End Property

<Global.System.Data.Linq.Mapping.ColumnAttribute(Storage:=”_Description”,

DbType:=”NText”, UpdateCheck:=UpdateCheck.Never)> _

Public Property Description() As String

Get

Return Me._Description

End Get

Set(ByVal value As String)

If (String.Equals(Me._Description, Value) = False) Then

Me.OnDescriptionChanging(Value)

Me.SendPropertyChanging()

Me._Description = Value

Me.SendPropertyChanged(“Description”)

Me.OnDescriptionChanged()

End If

End Set

End Property

<Global.System.Data.Linq.Mapping.ColumnAttribute(Storage:=”_Picture”,

DbType:=”Image”, UpdateCheck:=UpdateCheck.Never)> _

Public Property Picture() As System.Data.Linq.Binary

Get

Return Me._Picture

End Get

Set(ByVal value As System.Data.Linq.Binary)

If (Object.Equals(Me._Picture, Value) = False) Then

Me.OnPictureChanging(Value)

Me.SendPropertyChanging()

Me._Picture = Value

From the Library of Wow! eBook

ptg

572

Me.SendPropertyChanged(“Picture”)

Me.OnPictureChanged()

End If

End Set

End Property

<Global.System.Data.Linq.Mapping.AssociationAttribute(Name:=”Category_Product”,

Storage:=”_Products”, ThisKey:=”CategoryID”, OtherKey:=”CategoryID”)> _

Public Property Products() As EntitySet(Of Product)

Get

Return Me._Products

End Get

Set(ByVal value As EntitySet(Of Product))

Me._Products.Assign(Value)

End Set

End Property

Public Event PropertyChanging As PropertyChangingEventHandler Implements _

System.ComponentModel.INotifyPropertyChanging.PropertyChanging

Public Event PropertyChanged As PropertyChangedEventHandler Implements _

System.ComponentModel.INotifyPropertyChanged.PropertyChanged

Protected Overridable Sub SendPropertyChanging()

If ((Me.PropertyChangingEvent Is Nothing) _

= false) Then

RaiseEvent PropertyChanging(Me, emptyChangingEventArgs)

End If

End Sub

Protected Overridable Sub SendPropertyChanged(ByVal propertyName As [String])

If ((Me.PropertyChangedEvent Is Nothing) _

= false) Then

RaiseEvent PropertyChanged(Me,

New PropertyChangedEventArgs(propertyName))

End If

End Sub

Private Sub attach_Products(ByVal entity As Product)

Me.SendPropertyChanging

entity.Category = Me

End Sub

Private Sub detach_Products(ByVal entity As Product)

Me.SendPropertyChanging

entity.Category = Nothing

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

573Introducing LINQ to SQL
2

5

End Sub

End Class

The class is marked with the System.Data.Linq.TableAttribute attribute, meaning that it
has to represent a database table. It implements both the INotifyPropertyChanging and
INotifyPropertyChanged interfaces to provide the ability of notifying the user interface of
changes about entities. It then defines partial methods that you can extend and customize
when a particular event occurs. (This is covered when discussing data validation.) Each
property is decorated with the System.Data.Linq.Mapping.ColumnAttribute that repre-
sents a column within a database table. This attribute takes some arguments that are self-
explanatory. The most important of them are Storage that points to a private field used as
a data repository and DbType that contains the original SQL Server data type for the
column. It is worth mentioning that Visual Basic provides an appropriate type mapping
according to the related SQL data type. A primary key requires two other attributes,
IsPrimaryKey = True and AutoSync. The second one establishes that it has to be auto-
incremented and synchronized when a new item is added. In the end, notice how Set
properties members perform a series of actions, such as raising events related to the begin-
ning of property editing, storing the new value, and finally raising events related to the
property set completion. This is auto-generated code from Visual Studio, and you should
never change it manually. You are instead encouraged to use the LINQ to SQL designer
that reflects changes in code. The last file for a LINQ to SQL class has a .dbml.layout
extension and is just related to the diagram layout. Now that you are a little bit more
familiar with LINQ to SQL classes, you can begin querying data with LINQ to SQL.

Behind the Scenes of LINQ to SQL Classes

The Visual Studio 2010 IDE generates LINQ to SQL classes invoking a command-line tool
named SQLMetal.exe that is part of the Windows SDK for .NET Framework. The following
is an example of the command line for performing a manual generation of LINQ to SQL
classes for the Northwind database and Visual Basic:

SQLMetal.exe /Server:.\SQLExpress /DataBase:Northwind /dbml:Northwind.dbml

/language:VisualBasic

Of course, SQLMetal.exe offers other command-line options for generating LINQ to SQL
classes, but in most cases you do not need such manual generation, because the IDE will
do all the appropriate work for you. There is only one scenario when you need to manu-
ally create a LINQ to SQL class, which is when mapping SQL Server Compact Edition data-
bases and that is discussed at the end of this chapter. For further information on
SQLMetal, visit the official page on MSDN: http://msdn.microsoft.com/en-
us/library/bb386987(VS.100).aspx.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/bb386987(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb386987(VS.100).aspx

ptg

574

Querying Data with LINQ to SQL
Before you begin querying data with LINQ to SQL, you need to instantiate the
DataContext class. Continuing with the console application example started in the previ-
ous section, you can declare such an instance at the module level as follows:

Private northwind As New NorthwindDataContext

CLASS LEVEL DECLARATION

In this example the instance is declared at the module level because a console appli-
cation is covered. In most cases you work with client applications such as WPF or
Windows Forms; therefore, the instance will be generated at the class level.

Declaring a single instance at the module or class level allows one DataContext to manage
entities for all the object model lifetime.

REAL-WORLD LINQ

In my client applications I used to follow this approach: I provide a class level declara-
tion of the DataContext but I instantiate the object within the constructor. This allows
handling exceptions that could occur at runtime while attempting to connect to the
database, other than performing other initialization actions.

When you create such an instance, the DataContext connects to the database and
provides required abstraction so that you can work against the object model instead of
working against the database. The DataContext class’ constructor also accepts a connec-
tion string if you want it to be hard-coded instead of storing it within a configuration file.
You have different alternatives for querying data. For example, you might want to retrieve
the complete list of products that is accomplished as follows:

’Returns Table(Of Product)

Dim allProduct = northwind.Products

Such code returns a System.Data.Linq.Table(Of Product) that is an object inheriting
from IQueryable(Of T) and that represents a database table. IQueryable(Of T) is the
general type returned by LINQ to SQL queries and inherits from IEnumerable(Of T) but
also offers some more members specific for data manipulation. Although this type can be
directly bound to user interface controls for presenting data as much as IEnumerable, it
does not support data editing. A Table(Of T) instead supports adding, removing, and
saving objects.

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

575Querying Data with LINQ to SQL
2

5

LINQ TO SQL AND WINDOWS FORMS

Chapter 30, “Building Windows Forms Applications,” provides an example about binding
LINQ to SQL models to Windows Forms controls so that you get a complete overview of
the technology.

To perform LINQ queries using filtering, ordering, and projection operators, you simply
use the LINQ keywords and the same programming techniques provided by the unified
programming model of this technology. A little difference from LINQ to Objects is that
LINQ to SQL queries return an IQueryable(Of T) instead of IEnumerable(Of T). For
example, the following LINQ query returns the list of products in which the unit price is
greater than 10:

’Returns IQueryable(Of Product)

Dim queryByPrice = From prod In northwind.Products

Where prod.UnitPrice > 10

Select prod

You can also convert a query into an ordered collection such as the List(Of T) using
extension methods:

’Returns List(Of Product)

Dim queryByPrice = (From prod In northwind.Products

Where prod.UnitPrice > 10

Select prod).ToList

Remember that LINQ queries are effectively executed only when used; therefore, the first
example does not run the query until you invoke something on it. The second query is
instead executed immediately because of the ToList invocation. For example, the follow-
ing iteration would cause the first query to be executed when the enumerator is invoked:

’Returns IQueryable(Of Product)

Dim queryByPrice = From prod In northwind.Products

Where prod.UnitPrice > 10

Select prod

‘Query is executed now

For Each prod In queryByPrice

Console.WriteLine(prod.ProductName)

Next

This iteration shows the list of product names. You can also perform more complex
queries that are probably what you will do in your real applications. The following
method queries products for the specified category, given the category name taking only

From the Library of Wow! eBook

ptg

576

products that are not discontinued, finally ordering the result by the number of units in
stock for product:

Function QueryByCategoryName(ByVal categoryName As String) _

As List(Of Product)

Dim query = From categories In northwind.Categories

Where categories.CategoryName = categoryName

Join prod In northwind.Products

On prod.CategoryID Equals categories.CategoryID

Where prod.Discontinued = False

Order By prod.UnitsInStock

Select prod

Return query.ToList

End Function

You can invoke the method and iterate the result as follows:

Dim productsList = QueryByCategoryName(“Seafood”)

For Each prod In productsList

Console.WriteLine(“Product name: {0}, unit price: {1}”,

prod.ProductName,

prod.UnitPrice)

Next

The preceding code produces the following result:

Product name: Rogede sild, unit price: 9.5000

Product name: Nord-Ost Matjeshering, unit price: 25.8900

Product name: Gravad lax, unit price: 26.0000

Product name: Konbu, unit price: 6.0000

Product name: Ikura, unit price: 31.0000

Product name: Carnarvon Tigers, unit price: 62.5000

Product name: Escargots de Bourgogne, unit price: 13.2500

Product name: Jack’s New England Clam Chowder, unit price: 9.6500

Product name: Spegesild, unit price: 12.0000

Product name: Röd Kaviar, unit price: 15.0000

Product name: Inlagd Sill, unit price: 19.0000

Product name: Boston Crab Meat, unit price: 18.4000

In other cases you need to data-bind your result to user interface controls. If you work
with Windows Forms applications, a good idea is returning a

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

577Querying Data with LINQ to SQL
2

5

System.ComponentModel.BindingList(Of T) that is a collection specific for data-binding.
So the preceding method could be rewritten as follows:

Function QueryByCategoryName(ByVal categoryName As String) _

As System.ComponentModel.BindingList(Of Product)

Dim query = From categories In northwind.Categories

Where categories.CategoryName = categoryName

Join prod In northwind.Products

On prod.CategoryID Equals categories.CategoryID

Where prod.Discontinued = False

Order By prod.UnitsInStock

Select prod

Return New System.ComponentModel.

BindingList(Of Product)(query.ToList)

End Function

Similarly, for WPF applications you would return an ObservableCollection(Of T):

Function QueryByCategoryName(ByVal categoryName As String) _

As System.ObjectModel.ObservableCollection(Of Product)

Dim query = From categories In northwind.Categories

Where categories.CategoryName = categoryName

Join prod In northwind.Products

On prod.CategoryID Equals categories.CategoryID

Where prod.Discontinued = False

Order By prod.UnitsInStock

Select prod

Return New System.ObjectModel.ObservableCollection(query)

End Function

From the Library of Wow! eBook

ptg

578

IMPORTANT NOTE ON LINQ TO SQL QUERIES

An important consideration must be done when performing LINQ to SQL queries (and
LINQ to Entities queries in the next chapter). LINQ to SQL queries can execute only
members that have a corresponding type or function in SQL Server and the SQL syntax;
otherwise an exception will be thrown. For example, try to invoke the
ToLowerInvariant method on the categories.CategoryName statement within the
Where clause in the previous method. The Visual Basic compiler correctly compiles the
code, because the .NET Framework correctly recognizes all members. But SQL Server
does not have a function that does the same, so a NotSupportedException will be
thrown at runtime. Therefore, always ensure that .NET members you invoke have a
counterpart in SQL Server. Keep in mind this rule also for the next chapter.

You could also take advantage of anonymous types for collecting data from different
tables into a unique collection. The following code obtains a list of products for the given
category name, picking up some information:

Dim customQuery = From prod In northwind.Products

Join cat In northwind.Categories On

prod.CategoryID Equals cat.CategoryID

Order By cat.CategoryID

Select New With {.CategoryName = cat.CategoryName,

.ProductName = _

prod.ProductName,

.UnitPrice = prod.UnitPrice,

.Discontinued = _

prod.Discontinued}

This query, when executed, returns an IQueryable(Of Anonymous type). As you already
know, lists of anonymous types can be iterated or also bound to user interface controls for
presenting data but cannot be edited. If you need to create custom objects from query
results, such as collecting data from different tables, you first need to implement a class
that groups all required data as properties. Consider the following class:

Class CustomObject

Property CategoryName As String

Property ProductName As String

Property UnitPrice As Decimal?

Property Discontinued As Boolean?

End Class

Now you can rewrite the preceding query as follows, simply changing the Select clause
allowing generating a new CustomObject instance:

Dim customQuery = From prod In northwind.Products

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

579Insert/Update/Delete Operations with LINQ
2

5

Join cat In northwind.Categories On

prod.CategoryID Equals cat.CategoryID

Order By cat.CategoryID

Select New CustomObject _

With {.CategoryName = cat.CategoryName,

.ProductName = prod.ProductName,

.UnitPrice = prod.UnitPrice,

.Discontinued = prod.Discontinued}

Now the query returns an IQueryable(Of CustomObject). You can convert it into a typed
collection according to your needs or simply iterate it as in the following example:

For Each obj In customQuery

Console.WriteLine(“Category name: {0}, Product name: {1},

Unit price: {2}, Discontinued: {3}”,

obj.CategoryName, obj.ProductName,

obj.UnitPrice, obj.Discontinued)

Next

Providing this approach instead of working against anonymous types can allow you to
bind your collections to user interface controls and provide two-way data binding, or
simpler, can provide the ability of programmatically coding Insert/Update/Delete opera-
tions as explained in the next section.

Insert/Update/Delete Operations with LINQ
LINQ to SQL is not just querying data but is also a complete infrastructure for data
manipulation. This means that you can perform Insert/Update/Delete operations against
your object model using LINQ. Let’s discuss first how a new entity can be added to an
entity set.

Inserting Entities

You instantiate a new entity as any other .NET class and then set its properties. The
following code shows how you can add a new Product to the Products entity set. Notice
how the method receives the belonging category as an argument, which is required for
setting the one-to-many relationship:

Sub AddProduct(ByVal categoryReference As Category)

Dim aProduct As New Product

aProduct.ProductName = “Italian spaghetti”

aProduct.Discontinued = False

aProduct.QuantityPerUnit = “10”

aProduct.UnitPrice = 0.4D

From the Library of Wow! eBook

ptg

580

‘Setting the relationship

aProduct.Category = categoryReference

‘Adding the new product to the object model

northwind.Products.InsertOnSubmit(aProduct)

End Sub

You simply set property values as you would in any other .NET class. Here you have to pay
attention to add a non-null value to non-nullable members. In the previous example,
QuantityPerUnit is a non-nullable and therefore must be assigned with a valid string. You
can then omit assigning nullable members. LINQ to SQL can provide auto-increment
functionalities on primary keys that in the original SQL Server database implement such a
feature. In this example, ProductID is not assigned because it is an auto-incrementable
primary key. You set a one-to-many relationship simply assigning the property referring to
the other part of the relationship (Category in the preceding example) with the instance
of the entity that completes the relationship. When this is performed, you invoke the
InsertOnSubmit method on the instance of the entity set that receives the new entity
(respectively Products and Product in our example). This method saves the new data into
the object model, but it does not send data to the underlying database until you invoke
the SubmitChanges method as follows:

Sub SaveChanges()

Try

northwind.SubmitChanges()

Catch ex As SqlClient.SqlException

Catch ex As Exception

End Try

End Sub

This effectively saves data to the database. If something fails, you need to handle a
SqlClient.SqlException exception. Now add an invocation to the custom SaveChanges
method after the InsertOnSubmit one. At this point you can invoke the custom
AddProduct method for programmatically adding a new product that must be bound to a
specific category because of the one-to-many relationship. Working with a Console appli-
cation you can add such an invocation within the Main module. The following code
accomplishes this:

Dim cerealsCategory As Category = _

northwind.Categories.Single(Function(cat) _

cat.CategoryName = “Grains/Cereals”)

AddProduct(cerealsCategory)

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

581Insert/Update/Delete Operations with LINQ
2

5

You need the instance of the category you want to pass to the method. To accomplish this
you can invoke the Single extension method on the categories’ collection to get the
unique category with the specified name, taking advantage of a lambda expression. As an
alternative, you can directly pass a lambda as an argument as follows:

AddProduct(northwind.Categories.

Single(Function(cat) cat.CategoryName = “Grains/Cereals”))

Both solutions accomplish the same result.

GETTING INSTANCES IN CLIENT APPLICATIONS

In client applications such as Windows Forms, WPF, or Silverlight, getting an instance of
an entity is even simpler. You just need to retrieve the current element of the data con-
trol (for example, ComboBox, DataGrid, or DataGridView) or better, the current select-
ed item in the data source bridge control, such as BindingSource or
CollectionViewSource.

If you run this code and everything works fine, your new product is added to the
Products table of the Northwind database when the DataContext.SubmitChanges method
is invoked and a relationship with the Grains/Cereals category will also be set. You can
easily verify this by opening Server Explorer and then expanding the Northwind Tables
folder; finally right-click the Products table and select Show Table Data. (If you have
instead a local copy of the Northwind database, you need to double-click the database
copy available in the Bin\Debug or Bin\Release folder to open it in Server Explorer.)
Figure 25.7 reproduces the scenario, showing also the new product.

One thing that you need to remember is to check if an entity already exists to prevent
malicious runtime exceptions. To accomplish this, you can take advantage of the Single
extension method that throws an exception if the specified entity does not exist; there-
fore, it can be added. With that said, the AddProduct method can be rewritten as follows
(see comments in code):

Sub AddProduct(ByVal categoryReference As Category)

Try

Dim productCheck = northwind.Products.

Single(Function(prod) _

prod.ProductName = “Italian spaghetti”)

productCheck = Nothing

‘the Product does not exists, so add it

Catch ex As InvalidOperationException

Dim aProduct As New Product

aProduct.ProductName = “Italian spaghetti”

aProduct.Discontinued = False

aProduct.QuantityPerUnit = “10”

From the Library of Wow! eBook

ptg

582

FIGURE 25.7 Checking that the new product has been correctly saved to the database.

aProduct.UnitPrice = 0.4D

aProduct.CategoryID = categoryReference.CategoryID

‘Setting the relationship

aProduct.Category = categoryReference

‘Adding the new product to the object model

northwind.Products.InsertOnSubmit(aProduct)

SaveChanges()

End Try

End Sub

Now that you know how to create and save data, it’s also important to understand how
updates can be performed.

ADDING MULTIPLE ENTITIES

Because the DataContext can handle all CRUD operations during an application’s life-
time, you can add all entities you need and send them to the underlying database with
a unique DataContext.SubmitChanges invocation. Alternatively, instead of making an
InsertOnSubmit invocation for each new entity, you can also send a unique insertion
invoking the InsertAllOnSubmit method.

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

583Insert/Update/Delete Operations with LINQ
2

5

Updating Entities

Updating existing entities is even easier than adding new ones. First, you need to catch
the instance of the entity you want to update. When you get the instance, you simply edit
its properties and then invoke the DataContext.SubmitChanges method. The following
code provides an example:

Sub UpdateProduct(ByVal productInstance As Product)

‘Throws an exception if a null value is passed

If productInstance Is Nothing Then

Throw New NullReferenceException

Else

With productInstance

.ProductName = “Italian Linguine”

.UnitsInStock = 100

End With

End If

SaveChanges()

End Sub

This method requires an instance of the Product entity to be updated. To get an instance
of the desired product, you can still take advantage of a lambda, but this time exception
handling is reverted, as you can see from the following snippet:

Try

UpdateProduct(northwind.Products.

Single(Function(prod) prod.

ProductName = “Italian spaghetti”))

‘The specified product does not exists

Catch ex As InvalidOperationException

End Try

When the NorthwindDataContext.SubmitChanges method is invoked, data is updated also
to the underlying database. Notice that you can update multiple entities and the
SubmitChanges method sends changes all at once. You can easily check for correct updates
following the steps shown in the previous paragraph and summarized in Figure 25.7.

From the Library of Wow! eBook

ptg

584

Deleting Entities

Deleting an entity works similarly to update, at least for retrieving the entity instance.
Deletion is performed by invoking the DeleteOnSubmit method, which works opposite to
the InsertOnSubmit. The following is an example, which also checks if the entity exists:

Sub DeleteProduct(ByVal productInstance As Product)

If productInstance Is Nothing Then

Throw New NullReferenceException

Else

northwind.Products.DeleteOnSubmit(productInstance)

SaveChanges()

End If

End Sub

Remember how the custom SaveChanges method invokes the
NorthwindDataContext.SubmitChanges one. The following code shows invoking the previ-
ous method for performing a product deletion:

Try

DeleteProduct(northwind.Products.

Single(Function(prod) prod.

ProductName = “Italian spaghetti”))

‘The specified product does not exists

Catch ex As InvalidOperationException

End Try

Similarly to InsertAllOnSubmit, you can also invoke DeleteAllOnSubmit to remove multi-
ple entities from the object model.

Mapping Stored Procedures

LINQ to SQL allows mapping stored procedures from the SQL Server database into a .NET
method that you can use within your object model and that is managed by the running
instance of the DataContext. In this way you do not lose advantage of stored procedures
when working with LINQ. To map a stored procedure, go back to the Visual Studio
Designer for LINQ to SQL and ensure that the Methods pane is opened on the right side
of the designer; then open Server Explorer, expand the database structure, and expand the
Stored Procedures folder. After you’ve done this, drag the stored procedure you need onto
the Methods pane. Figure 25.8 shows how to accomplish this against the Northwind data-
base of the current example.

Notice also how the Properties window shows method properties, such as access qualifier
and signature. The Return type property is set as auto-generated because the result is deter-
mined according to the stored procedure type. Some procedures return a single result

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

585Insert/Update/Delete Operations with LINQ
2

5

FIGURE 25.8 Mapping a stored procedure to a .NET method in LINQ to SQL.

value, and therefore the returned type is ISingleResult(Of T) whereas other ones can
return multiple result values, and therefore the returned type is IMultipleResult(Of T).
Behind the scenes, a stored procedure is mapped into a method but such a method also
requires a support class mapping types used by the stored procedure. The following code is
excerpted from the Northwind.designer.vb file and shows the class definition:

Partial Public Class Ten_Most_Expensive_ProductsResult

Private _TenMostExpensiveProducts As String

Private _UnitPrice As System.Nullable(Of Decimal)

Public Sub New()

MyBase.New

End Sub

<Global.System.Data.Linq.Mapping.

ColumnAttribute(Storage:=”_TenMostExpensiveProducts”,

DbType:=”NVarChar(40) NOT NULL”, CanBeNull:=False)> _

Public Property TenMostExpensiveProducts() As String

Get

Return Me._TenMostExpensiveProducts

End Get

Set(ByVal value As String)

If (String.Equals(Me._TenMostExpensiveProducts, value) = False)

Then

Me._TenMostExpensiveProducts = value

From the Library of Wow! eBook

ptg

586

End If

End Set

End Property

<Global.System.Data.Linq.Mapping.ColumnAttribute(Storage:=”_UnitPrice”,

DbType:=”Money”)> _

Public Property UnitPrice() As System.Nullable(Of Decimal)

Get

Return Me._UnitPrice

End Get

Set(ByVal value As System.Nullable(Of Decimal))

If (Me._UnitPrice.Equals(Value) = False) Then

Me._UnitPrice = Value

End If

End Set

End Property

End Class

The class basically works like other auto generated classes in that it sets or returns values
taken from the data source. The method that actually performs the action is mapped as
follows within the NorthwindDataContext class definition:

<Global.System.Data.Linq.Mapping.

FunctionAttribute(Name:=”dbo.[Ten Most Expensive Products]”)> _

Public Function Ten_Most_Expensive_Products() As _

ISingleResult(Of Ten_Most_Expensive_ProductsResult)

Dim result As IExecuteResult = Me.ExecuteMethodCall(Me,

CType(MethodInfo.GetCurrentMethod,

MethodInfo))

Return CType(result.ReturnValue,

ISingleResult(Of Ten_Most_Expensive_ProductsResult))

End Function

The System.Data.Linq.Mapping.FunctionAttribute attribute decorates the method signa-
ture with the original stored procedure name. As you can see, this particular method
returns an ISingleResult(Of T), and invocation to the stored procedure is performed via
reflection. Invoking in code, a stored procedure is as simple as in other methods usage.
The following code takes an ISingleResult(Of T):

’Gets the list of the ten most expensive

‘products from the Products table

Dim result = northwind.Ten_Most_Expensive_Products

You can then iterate the result to get a list of the products as in the following example:

For Each r In result

Console.WriteLine(r.UnitPrice)

Next

CHAPTER 25 LINQ to SQL

From the Library of Wow! eBook

ptg

587Insert/Update/Delete Operations with LINQ
2

5

This simple iteration produces the following result:

263,5000

123,7900

97,0000

81,0000

62,5000

55,0000

53,0000

49,3000

46,0000

45,6000

Notice that an ISingleResult can be iterated only once; otherwise you get an
InvalidOperationException. If you plan to access this result multiple times, the only
way is to convert the result into a generic collection such as the List(Of T). The follow-
ing code converts the stored procedure result into a List, making possible iterations
more than once:

’Gets the list of the ten most expensive

‘products from the Products table into

‘a List(Of T)

Dim result = northwind.Ten_Most_Expensive_Products.ToList

Also notice that converting to IQueryable(Of T) will not allow the result to be accessed
more than once.

Using the Log

LINQ to SQL sends SQL instructions each time it has to perform an operation on our
demand. This is accomplished via its complex infrastructure that relies on the .NET
Framework. By the way, as a developer you may be interested in understanding what
really happens behind the scenes and in getting information about the real SQL instruc-
tions sent to SQL Server. Luckily you can use a SQL log that allows showing SQL instruc-
tions. You simply need to set the DataContext.Log property as follows, before taking
actions you want to inspect:

northwind.Log = Console.Out

If you want to monitor everything happening, simply add the preceding code after the
creation of the DataContext instance. If you apply this code before running the first
example shown in the “Insert/Update/Delete operations with LINQ” section, you get the
result shown in Figure 25.9.

From the Library of Wow! eBook

ptg

588

As you can see, this is useful because you get an idea about the actual SQL instructions
sent by LINQ to SQL to SQL Server. The DataContext.Log property is of type
System.IO.TextWriter; therefore, you can assign it with a stream pointing to a file on
disk if you want the SQL output to be redirected to a file instead of the Console window.

Advanced LINQ to SQL
While you become familiar with LINQ to SQL, you understand how it allows performing
usual data operations in a strongly typed way. Because of this, you also see the need to
perform other operations that you are used to making in classical data development, such
as data validation and handling optimistic concurrency. The next section describes this
but also something more.

Custom Validations

Validating data is one of the most important activities in every data access system, so
LINQ to SQL provides its own methodologies, too. To accomplish data validation, you can
take advantage of partial methods. You may remember that in Chapter 21, “Advanced
Language Features,” you got a practical example of partial methods when discussing LINQ
to SQL. Validation rules are useful in LINQ to SQL for two main reasons: The first one is
that they enable you to understand if supplied data is compliant to your requirements; the
second one is that they allow checking if supplied data has a SQL Server type counterpart.
The following code example demonstrates both examples. Imagine you want to add a new
product to the object model and then save changes to the database, as you already did
following the steps in the first part of the previous section. If you take a look at the
QuantityPerUnit property, for example, recurring to the Visual Studio Designer, you
notice that it is mapped to a String .NET type, but its SQL Server counterpart type is
NVarChar(20), meaning that the content of the property is a string that must not be
longer than 20 characters; otherwise, saving changes to SQL Server will be unsuccessful. To
provide validation rules, the first step is to add a partial class. With that said, right-click
the project name in Solution Explorer, then select Add New Class, and, when requested,

CHAPTER 25 LINQ to SQL

FIGURE 25.9 Showing the LINQ to SQL log result.

From the Library of Wow! eBook

ptg

589Advanced LINQ to SQL
2

5

supply the new class name, for example Product.vb. When the new class is added to the
project, add the Partial keyword as follows:

Partial Public Class Product

End Class

At this point we can implement a partial method that performs validation. Because partial
methods’ signatures are defined within the Northwind.designer.vb code file, here we can
implement the full method body as follows:

Private Sub OnQuantityPerUnitChanging(ByVal value As String)

If value.Length > 20 Then Throw New _

ArgumentException _

(“Quantity per unit must be no longer than 20 characters”)

End Sub

Notice that you have to handle methods whose names finish with Changing, which map
an event that is raised before changes are sent to the object model. The code checks for
the length of the supplied value, and if it does not match the NVarChar(20) type of SQL
Server throws an ArgumentException. To understand how it works, consider the following
code that creates a new product and then attempts to write changes:

Sub AddProduct(ByVal categoryReference As Category)

Try

Dim productCheck = northwind.Products.

Single(Function(prod) _

prod.ProductName = “Italian spaghetti”)

productCheck = Nothing

‘the Product does not exists, so add it

Catch ex As InvalidOperationException

Try

Dim aProduct As New Product

aProduct.ProductName = “Italian spaghetti”

aProduct.Discontinued = False

‘The string is 22 characters long

aProduct.QuantityPerUnit = “1000000000000000000000”

aProduct.UnitPrice = 0.4D

aProduct.CategoryID = categoryReference.CategoryID

‘Setting the relationship

aProduct.Category = categoryReference

From the Library of Wow! eBook

ptg

590 CHAPTER 25 LINQ to SQL

‘Adding the new product to the object model

northwind.Products.InsertOnSubmit(aProduct)

SaveChanges()

Catch e As ArgumentException

Console.WriteLine(e.Message.ToString)

Exit Try

Catch e As Exception

End Try

End Try

End Sub

Notice how a nested Try..End Try block has been provided to handle eventual
ArgumentNullException errors coming from validation. You can still invoke the
AddProduct method in the previous section as follows:

AddProduct(northwind.Categories.

Single(Function(cat) cat.CategoryName = “Grains/Cereals”))

If you now try to run the code, you get an error message advising that the
QuantityPerUnit content cannot be longer than 20 characters. In this way you can
control the content of your data but also ensure that data matches the related SQL Server
type. By using this technique you can perform validation on each data you want.

DATA VALIDATION AND THE UI

One common scenario is implementing the IDataErrorInfo interface in partial
classes so that its members can send notifications to the user interface. Windows
Forms and WPF applications can take advantage of notifications for presenting error
messages in ways different than a simple messages box. The official documentation
for the interface is available here: http://msdn.microsoft.com/en-us/library/system.
componentmodel.idataerrorinfo(VS.100).aspx.

Handling Optimistic Concurrency

Optimistic concurrency is a scenario in which multiple clients send changes to the data-
base simultaneously. LINQ to SQL allows resolving optimistic concurrency with the
DataContext.ChangeConflicts.ResolveAll method. Such method receives an argument
that is an enumeration of type System.Data.Linq.RefreshMode and allows resolving the
exception with one of the enumeration members summarized in Table 25.1.

TABLE 25.1 RefreshMode Enumeration Members

Member Description

KeepCurrentValues If any changes, keeps original values in the database

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.componentmodel.idataerrorinfo(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.idataerrorinfo(VS.100).aspx

ptg

591Advanced LINQ to SQL
2

5

The following is an example of handling optimistic concurrency, providing a revisited
version of the previously utilized SaveChanges custom method:

Sub SaveChanges()

Try

northwind.SubmitChanges()

Catch ex As System.Data.Linq.ChangeConflictException

northwind.ChangeConflicts.ResolveAll(Data.Linq.RefreshMode.

KeepCurrentValues)

northwind.SubmitChanges()

Catch ex As SqlClient.SqlException

Catch ex As Exception

End Try

End Sub

Notice first how a ChangeConflictException is handled. Here the
ChangeConflicts.ResolveAll method is required to resolve concurrency. The
KeepCurrentValues argument allows keeping original values in the database. Also notice
how a subsequent invocation to SubmitChanges is made. This is necessary because the first
invocation caused the exception; therefore, another execution must be attempted.

Using SQL Syntax Against Entities

LINQ to SQL also allows writing SQL code against entities so that you can still take advan-
tage of the object model if you prefer the old-fashioned way of manipulating data. The
DataContext class offers an instance method named ExecuteQuery(Of T) that allows
sending SQL instructions in string form. For example, the following code retrieves a list of
products for the Grain/Cereals category, ordered by product name:

Sub DirectSqlDemo()

Dim products = northwind.

ExecuteQuery(Of Product)(“SELECT * FROM PRODUCTS WHERE “ & _

“CATEGORYID=’5’ ORDER BY PRODUCTNAME”)

TABLE 25.1 Continued

Member Description

KeepChanges If any changes, keeps changes but other values are updated with
original database values

OverwriteCurrentValues Overrides all current values with original values from database

From the Library of Wow! eBook

ptg

592 CHAPTER 25 LINQ to SQL

For Each prod In products

Console.WriteLine(prod.ProductName)

Next

End Sub

ExecuteQuery(Of T) returns an IEnumerable(Of T) that you can then treat as you like,
according to LINQ specifications. You can also send SQL instructions directly to the data-
base invoking the ExecuteCommand method. This method returns no value and allows
performing Insert/Update/Delete operations against the data. For example, the following
code updates the product name of a product:

northwind.ExecuteCommand(“UPDATE PRODUCTS SET “ & _

“PRODUCTNAME=’Italian mozzarella’ WHERE PRODUCTID=’72’”)

If you then want to check that everything work correctly, simply get the instance of the
product and get information:

Dim updatedProduct = _

northwind.Products.First(Function(prod) prod.ProductID = 72)

‘Returns “Italian mozzarella”

Console.WriteLine(updatedProduct.ProductName)

Remember: Sending SQL instructions can prevent you from taking advantage of compile-
time checking offered by the LINQ syntax and exposes your code to possible runtime
errors. Be aware of this.

LINQ to SQL with SQL Server Compact Edition
LINQ to SQL is not limited to querying and manipulating data from SQL Server databases,
but you can also perform the same operations against SQL Server Compact Edition data-
bases (with .sdf extensions). The only big difference is that generating LINQ to SQL classes
for this engine is not supported by the Visual Studio IDE (as it already was in Visual
Studio 2008), so you have to perform a couple of steps manually. First, run the Visual
Studio command prompt which you can find in Start, All Programs, Microsoft Visual
Studio 2010, Visual Studio Tools. When you get the command line, move to the folder
where the SQL Compact database is available. For example, you can play with the
Northwind database in the compact edition version. With that said, type the following
command line:

CD C:\Program Files\Microsoft SQL Server Compact Edition\v3.5\Samples

Next, type the following command line:

SQLMetal /dbml:Northwind.dbml /language:VisualBasic Northwind.sdf

From the Library of Wow! eBook

ptg

593Summary
2

5

This step generates a .dbml file, which is a complete LINQ to SQL class. To create a LINQ
to SQL project supporting your .sdf database, you simply create a Visual Basic project,
right-click the project name in Solution Explorer and then select the Add Existing Item
command. When the dialog appears, select the newly created LINQ to SQL class and
you’re done. Remember that you can use all LINQ to SQL possibilities with SQL Server
Compact Edition databases as well, so everything you learned in this chapter is also
applicable to SQL Compact files. Of course, there are limitations due to the database’s
structure (for example SQL Compact databases do not support stored procedures), but this
is something that is related more to SQL Server than Visual Basic. By the way, LINQ to
SQL is the same in both SQL Server and SQL Compact.

Writing the Connection String

Different from classic LINQ to SQL, when you work with SQL Compact databases, you
need to manually pass the connection string to the database; this is because the class
generation could not take advantage of the IDE automation. This means that when you
declare an instance of the DataContext class, you need to pass the connection string. For
example, instantiating the DataContext for Northwind would be something like this:

Private NorthwindContext As New _

Northwind(“Data Source=E:\My Folder\ Northwind.sdf”)

Summary
LINQ to SQL is a built-in object relational mapping engine for Microsoft SQL Server
databases. The engine maps database information such as tables and columns into .NET
objects such as classes and properties, allowing working in a disconnected fashion against
an object model rather than against the database. Mapped classes are known as entities.
Adding LINQ to SQL classes to your projects can provide the ability of using LINQ for
both querying entities and performing CRUD operations via specific methods offered by
the DataContext class, which is responsible for managing the connection and entities
during an application’s lifetime, including keeping track of changes that can be submitted
to the database in one shot. LINQ to SQL also offers a trace log to understand what SQL
instructions were sent to the database and provides the ability of handling optimistic
concurrency as much as validating data taking advantage of partial methods. Finally, you
can still write your queries the old-fashioned way sending SQL instructions directly to the
data source. LINQ to SQL is useful if you need to work with a light weight or/m and if you
are limited to SQL Server databases. If you instead need something more flexible and
powerful, you should consider the ADO.NET Entity Framework discussed in next chapter.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 26

LINQ to DataSets

IN THIS CHAPTER

. Querying Datasets with LINQ

. LINQ to DataSets’ Extension
Methods

For many years datasets have been the main data access
technology for .NET developers, including Visual Basic
programmers. Although the .NET Framework 3.5 introduced
new object relational mapping technologies such as LINQ
to SQL and ADO.NET Entity Framework, Datasets are still
much diffused especially in older applications. Because of
this, Microsoft produced a LINQ standard provider that is
specific for querying datasets: LINQ to DataSets. In this
chapter you do not find information on manipulating
datasets (see Chapter 22, “Introducing ADO.NET and
DataSets”); instead you learn to query existing datasets using
LINQ, and you become familiar with some peculiarities of
this provider that are not available in the previous ones.

Querying Datasets with LINQ
LINQ to DataSets is the standard LINQ provider for query-
ing datasets and is offered by the System.DataSet.DataSet
Extensions namespace. Querying means that LINQ can
only get information for datasets but not for manipulating
them. If you need to add, remove, replace, or persist data
versus datasets, you need to use old-fashioned techniques.
Instead you can improve getting information using LINQ.
Generally you use datasets in Windows or Web applica-
tions. This chapter shows you code within a Console appli-
cation. This is because we need a high level of abstraction
so that all the code you see here can be used in both

From the Library of Wow! eBook

ptg

596 CHAPTER 26 LINQ to DataSets

Windows and Web applications (except for Silverlight applications that do not support
datasets). To complete the proposed examples, follow these steps:

. Create a new console application and name the project LinqToDataSets.

. Establish a connection to the Northwind database via the Server Explorer window.

. Add a new dataset including the Customers, Orders, and Order Details tables.

When done, you need to manually write some code that populates the dataset. Usually
such tasks are performed by Visual Studio if you generate a dataset within Windows Forms
or WPF applications; however, in this case you need to do it. With that said write the
following code that declares three TableAdapter objects and populates them with data
coming from tables:

Imports LinqToDataSets.NorthwindDataSetTableAdapters

Module Module1

Dim NwindDataSet As New NorthwindDataSet

Dim NorthwindDataSetCustomersTableAdapter As CustomersTableAdapter _

= New CustomersTableAdapter()

Dim NorthwindDataSetOrdersTableAdapter As OrdersTableAdapter _

= New OrdersTableAdapter()

Dim NorthwindDataSetOrderDetailsTableAdapter As _

Order_DetailsTableAdapter _

= New Order_DetailsTableAdapter

Sub Main()

NorthwindDataSetCustomersTableAdapter.Fill(NwindDataSet.Customers)

NorthwindDataSetOrdersTableAdapter.Fill(NwindDataSet.Orders)

NorthwindDataSetOrderDetailsTableAdapter.

Fill(NwindDataSet.Order_Details)

End Sub

End Module

Now you are ready to query your dataset with LINQ. Basically LINQ syntax is the same as
for other providers but with a few exceptions:

. LINQ queries DataTable objects, each representing a table in the database.

. LINQ to DataSets queries return EnumerableRowCollection(Of DataRow) instead of
IEnumerable(Of T) (or IQueryable(Of T)), in which DataRow is the base class for
strongly typed rows. The only exception is when you create anonymous types with-
in queries. In such situations, queries return IEnumerable(Of Anonymous type).

From the Library of Wow! eBook

ptg

597Querying Datasets with LINQ

You can use LINQ to simply retrieve a list of objects. For example, consider the following
code that retrieves the list of orders for the specified customer:

Private Sub QueryOrders(ByVal CustomerID As String)

Dim query = From ord In NwindDataSet.Orders

Where ord.CustomerID = CustomerID

Select ord

End Sub

As you can see, the syntax is the same as other providers. The query variable type is
inferred by the compiler as EnumerableRowCollection(Of OrdersRow). There is a particu-
lar difference: The query result is not directly usable if you want to provide the ability of
editing data. As it is, the query can only be presented; you need first to convert it into a
DataView using the AsDataView extension method. The following code rewrites the preced-
ing query, providing the ability of binding data to a control:

Dim query = (From ord In NwindDataSet.Orders

Where ord.CustomerID = CustomerID

Select ord).AsDataView

When you invoke AsDataView you can bind a LINQ query to any user control that
supports data binding, such as the Windows Forms BindingSource. Don’t invoke instead
AsDataView if you simply need to get information without the need of manipulating data
(for example, with a For..Each loop). You can use other query operators to get different
information; the following code shows, as an example, how you can get the number of
orders made by the specified customer using the Aggregate clause:

Private Function QueryOrders(ByVal CustomerID As String) As Integer

Dim ordersByCustomer = Aggregate ord In NwindDataSet.Orders

Where ord.CustomerID = CustomerID

Into Count()

Return ordersByCustomer

End Function

STANDARD QUERY OPERATORS

LINQ to DataSets allows querying datasets using standard query operators offered by
LINQ to Objects; because of this the chapter does not explore standard operators. It
also provides some additions discussed in next section.

2
6

From the Library of Wow! eBook

ptg

598 CHAPTER 26 LINQ to DataSets

Building Complex Queries with Anonymous Types

Same as you would do with other LINQ providers, you can build complex queries taking
advantage of anonymous types in LINQ to DataSets. The following code shows how you
can join information from the Orders and Order_Details tables retrieving information on
order details for each order made by the given customer. Projection is accomplished gener-
ating anonymous types:

Private Sub QueryOrderDetails(ByVal CustomerID As String)

Dim query = From ord In NwindDataSet.Orders

Where ord.CustomerID = CustomerID

Join det In NwindDataSet.Order_Details

On det.OrderID Equals ord.OrderID

Select New With {.OrderID = ord.OrderID,

.OrderDate = ord.OrderDate,

.ShippedDate = ord.ShippedDate,

.ShipCity = ord.ShipCity,

.ProductID = det.ProductID,

.Quantity = det.Quantity,

.UnitPrice = det.UnitPrice}

End Sub

The query variable is of type IEnumerable(Of Anonymous type), which is different from
normal queries. Remember that IEnumerable results cannot be edited; therefore, you are
limited to presenting data through specific controls such as BindingSource. In LINQ to
DataSets IEnumerable(Of Anonymous type), queries do not support AsDataView; there-
fore, you should consider creating a new DataTable, which is shown in the first example
of the next section.

LINQ to DataSets’ Extension Methods
As a specific provider for datasets, LINQ to DataSets exposes some special extension
methods generally required when converting from data rows collections into other
objects. In this section you get an overview of methods and their usage.

Understanding CopyToDataTable

Tables from databases are represented within datasets via DataTable objects. You can create
custom tables in code using a special extension method named CopyToDataTable which
can convert from EnumerableRowCollection (Of T) into a new DataTable. For example,
imagine you want to create a subset of orders from the Orders table and that you want to
create a new table with this subset of information. The following code accomplishes this:

Dim query = (From ord In NwindDataSet.Orders

Where String.IsNullOrEmpty(ord.ShipCountry) = False

From the Library of Wow! eBook

ptg

599LINQ to DataSets’ Extension Methods

Select ord).CopyToDataTable

query.TableName = “FilteredOrders”

NwindDataSet.Tables.Add(query)

The query retrieves only the orders where the ShipCountry property contains something
and creates a new DataTable with this piece of information. The query variable’s type is
DataTable; therefore, you can treat this new object as you would versus a classical table as
demonstrated by assigning the TableName property and by the addition of the new table
to the dataset. You can also create custom tables with more granularities taking advantage
of anonymous types. For example, imagine you want to create a table that wraps informa-
tion from both the Orders and Order_Details tables. You need to manually create a new
table, add columns, perform the query, and then add rows. The following code demon-
strates this:

Private Function CreateCustomTable() As DataTable

‘Create a new table

Dim customTable As New DataTable(“Custom_orders”)

‘Add columns

With customTable

With .Columns

.Add(“OrderID”, GetType(Integer))

.Add(“Quantity”, GetType(Short))

.Add(“UnitPrice”, GetType(Decimal))

End With

End With

‘Retrieve data from different sources

Dim query2 = From ord In NwindDataSet.Orders,

det In NwindDataSet.Order_Details

Where det.Quantity > 50

Select New With {.OrderID = ord.OrderID,

.Quantity = det.Quantity,

.UnitPrice = det.UnitPrice}

‘Add rows

For Each item In query2

customTable.Rows.Add(New Object() {item.OrderID,

item.Quantity,

item.UnitPrice})

Next

Return customTable

End Function

2
6

From the Library of Wow! eBook

ptg

600 CHAPTER 26 LINQ to DataSets

Notice how the new table is created in code and how columns are added. The
Columns.Add method allows specifying the type (via the GetType keyword) for each
column. We just want to retrieve the OrderID, Quantity, and UnitPrice information only
for those products whose quantity is greater than 50. The LINQ query returns an
IEnumerable(Of Anonymous types). Because of this, you need to iterate the collection and
instantiate a new array of Object for each row, containing the specified information.
When you have the new table populated, you can add it to the dataset and use it as any
other table.

Understanding Field(Of T) and SetField(Of T)

The Field generic extension method allows retrieving a strongly typed form for all values
from a given column within a table. Basically Field receives as an argument the column
name or the column index and then tries to convert values in a column into the specified
type. Because of this, when using Field you should also predict some exceptions, such as
InvalidCastException that can occur if the conversion fails, NullReferenceException if
Field attempts to access a non-Nullable null value, and IndexOutOfRangeException if
you pass an invalid index for the column. For example, the following code retrieves all
strongly typed versions of orders’ data:

Private Sub FieldDemo()

Try

Dim query = From ord In NwindDataSet.Orders

Where ord.Field(Of Date)(“ShippedDate”) < Date.Today

Select New With {

.OrderID = ord.

Field(Of Integer)(“OrderID”),

.OrderDate = ord.

Field(Of Date)(“OrderDate”),

.ShipCountry = ord.

Field(Of String) _

(“ShipCountry”)

}

Catch ex As InvalidCastException

‘Conversion failed

Catch ex As NullReferenceException

‘Attempt to access to a non nullable

‘null object

Catch ex As IndexOutOfRangeException

‘Wrong index

Catch ex As Exception

From the Library of Wow! eBook

ptg

601Summary

End Try

End Sub

There is also a SetField method that allows putting a strongly typed value into the speci-
fied field, and that works like this:

ord.SetField(Of Date)(“OrderDate”,Date.Today)

Summary
Although Microsoft is making lots of investments in much more modern technologies
such as ADO.NET Entity Framework, datasets are a data source that you can find in tons of
applications. Because of this, the .NET Framework provides the LINQ to DataSets provider
that allows querying datasets via the LINQ syntax. Datasets are particular; therefore, there
are specific extension methods that you can use versus datasets, such as CopyToDataTable
that generates a new DataTable from a LINQ query and Field that allows getting strongly
typed information from columns. In this chapter you got an overview of how LINQ works
over datasets, and you can use retrieved information in your applications.

2
6

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 27

Introducing ADO.NET
Entity Framework

IN THIS CHAPTER

. Introducting Entity Framework

. Understanding Entity Data
Models

. Insert/Update/Delete for
Entities

. Querying EDMs with LINQ to
Entities

. Querying EDMs with Entity SQL

. Mapping Stored Procedures

Most applications require accessing data. This is a
sentence that you already read in this book and probably in
many other places, but it is so important. During the past
years .NET developers had to access data using DataSets or
they were required to work directly against the database. A
new way for working with data was introduced in .NET 3.5
with LINQ to SQL, which is revolutionary because it
proposes a conceptual object model that allows working
with managed objects, being responsible for whatever is
necessary in managing also the underlying database. But it
has some limitations. It supports only SQL Server databases;
it does not support many-to-many relationships; and it does
not provide support for modeling data before creating a
database. To provide a modern data platform based on the
idea of the conceptual object model, Microsoft created the
ADO.NET Entity Framework that was first introduced in
.NET Framework 3.5 SP 1 and that now is part of .NET
Framework 4.0 in the second version. In this chapter you
get started with the Entity Framework by learning to
perform the most common operations on data and under-
standing the basics of such a platform.

Introducing Entity Framework
ADO.NET Entity Framework is a modern data platform
included in .NET Framework 4.0 as the second version, also
known as EF 4. It is basically an object relational mapping
engine but it is powerful, absolutely more flexible and
powerful than LINQ to SQL. It allows creating conceptual
object models, known as Entity Data Models that provide a
high level of abstraction from the underlying data source.

From the Library of Wow! eBook

ptg

604 CHAPTER 27 Introducing ADO.NET Entity Framework

Abstraction means that tables and tables’ columns within a database are mapped into
.NET classes and properties, meaning that you do not work against the database but with
.NET objects that represent the database so that you can take advantage of manipulating
.NET objects under the CLR control, with IntelliSense support and the background
compiler check. You do not need to have knowledge of the database infrastructure,
although this is always suggested, because the Entity Framework is responsible for commu-
nications between the object model and the data source. It provides the entire necessary
infrastructure so that you can focus only on writing code for manipulating and querying
data. Working with an abstractive object model means taking advantage of all the .NET
Framework’s power and all available Visual Studio instrumentation. In the next section
you start with the EF by understanding Entity Data Models.

Understanding Entity Data Models
The best way to understand Entity Data Models (from here on just EDMs for brevity) is to
create one. First, create a new Visual Basic project for the Console and name it
EntityFramework. The next steps require the Northwind database that you installed in
Chapter 25, “LINQ to SQL.” Right-click on the project name in Solution Explorer and
select Add New Item. When the Add New Item dialog appears, move to the Data Node,
select the ADO.NET Entity Data Model item template, and name it Northwind.edmx, as
shown in Figure 27.1.

When you click Add, the Entity Data Model Wizard starts. In the first screen you need to
specify the source for the EDM. With EF 4 you can create EDMs starting from an existing

FIGURE 27.1 Adding a new Entity Data Model.

From the Library of Wow! eBook

ptg

605Understanding Entity Data Models
2

7

database or modeling custom EDMs from scratch. Select the existing database options, as
shown in Figure 27.2.

The next screen is important because it requires the specification of the database. You can
click New Connection or select one of the favorite connections from the appropriate
combo box. Figure 27.3 shows how on my machine the connection points to Northwind
as it is available on SQL Server.

Notice how the connection string is represented in the dialog box. Also notice that this is
not the usual connection string, because it contains metadata information that will be
clearer when the EDMs’ infrastructure is explained. You decide whether to save the string
in the configuration file. The next step is crucial, because you have to select what database
objects you want to be mapped into the EDM. Figure 27.4 shows the dialog box.

FOREIGN KEY COLUMNS SUPPORT

The ADO.NET Entity Framework 4 supports mapping foreign keys from the database
into the model. This is the reason why you find a new checkbox in the Entity Data
Model wizard, as shown in Figure 27.4. Simply select the checkbox in order to add the
foreign key’s support.

Also notice how you are required to specify a model namespace. This is important because
the namespace stores Visual Basic definitions for objects that are mapped to database
objects, which are explained later. You can write your own or leave the default identifier
unchanged. At the moment, just choose the Categories and Products tables and then

FIGURE 27.2 Creating an EDM from an existing database.

From the Library of Wow! eBook

ptg

606 CHAPTER 27 Introducing ADO.NET Entity Framework

FIGURE 27.3 Choosing the database and connection settings.

FIGURE 27.4 Selecting objects for the new EDM.

From the Library of Wow! eBook

ptg

607Understanding Entity Data Models
2

7

click Finish. After a few moments, when Visual Studio generates the code for the object
model, the EDM Designer opens as shown in Figure 27.5.

The object model available in the Visual Studio designer is, behind the scenes, defined by
a new Xml document that is the schema for the Entity Data Model. This Xml file is the
one with the .edmx extension, in our case Northwind.edmx. The schema is divided into
three sections that are summarized in Table 27.1.

Much work is accomplished behind the scenes by a command-line tool named
EdmGen.exe that is invoked by Visual Studio. To understand how an EDM is composed, in
Solution Explorer right-click the Northwind.edmx file; select Open With, and when the

FIGURE 27.5 The EDM Designer for Visual Studio.

TABLE 27.1 Sections of the Entity Data Model

Section name Description

Conceptual Schema
Definition Language

Defines entities, relationships, and inheritance. .NET classes are
generated based on this section.

Store Schema Definition
Language

Provides a representation of the original database.

Mapping Specification
Language

Maps entities as they are defined in the CSDL against db objects
as they are defined in the SSDL.

From the Library of Wow! eBook

ptg

608 CHAPTER 27 Introducing ADO.NET Entity Framework

Open With dialog appears, double-click the Xml editor option. At this point Visual Studio
shows the content of the EDM as an Xml file instead of the designer. The file contains
three sections as described in Table 27.1. Listing 27.1 shows the CDSL definition (which is
actually the second section in the XML file).

LISTING 27.1 Conceptual Schema Definition Language

<!-- CSDL content -->

<edmx:ConceptualModels>

<Schema Namespace=”NorthwindModel” Alias=”Self”

xmlns:store=”http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator

“ xmlns=”http://schemas.microsoft.com/ado/2008/09/edm”>

<EntityContainer Name=”NorthwindEntities”>

<EntitySet Name=”Categories” EntityType=”NorthwindModel.Category” />

<EntitySet Name=”Products” EntityType=”NorthwindModel.Product” />

<AssociationSet Name=”FK_Products_Categories”

Association=”NorthwindModel.FK_Products_Categories”>

<End Role=”Categories” EntitySet=”Categories” />

<End Role=”Products” EntitySet=”Products” />

</AssociationSet>

</EntityContainer>

<EntityType Name=”Category”>

<Key>

<PropertyRef Name=”CategoryID” />

</Key>

<Property Name=”CategoryID” Type=”Int32” Nullable=”false”

store:StoreGeneratedPattern=”Identity” />

<Property Name=”CategoryName” Type=”String” Nullable=”false” Max

Length=”15” Unicode=”true” FixedLength=”false” />

<Property Name=”Description” Type=”String” MaxLength=”Max” Unicode=”true”

FixedLength=”false” />

<Property Name=”Picture” Type=”Binary” MaxLength=”Max” FixedLength=”false”/>

<NavigationProperty Name=”Products”

Relationship=”NorthwindModel.FK_Products_Categories”

FromRole=”Categories” ToRole=”Products” />

</EntityType>

<EntityType Name=”Product”>

<Key>

<PropertyRef Name=”ProductID” />

</Key>

<Property Name=”ProductID” Type=”Int32” Nullable=”false”

store:StoreGeneratedPattern=”Identity” />

<Property Name=”ProductName” Type=”String” Nullable=”false” MaxLength=”40”

From the Library of Wow! eBook

ptg

609Understanding Entity Data Models
2

7

Unicode=”true” FixedLength=”false” />

<Property Name=”SupplierID” Type=”Int32” />

<Property Name=”QuantityPerUnit” Type=”String” MaxLength=”20”

Unicode=”true” FixedLength=”false” />

<Property Name=”UnitPrice” Type=”Decimal” Precision=”19” Scale=”4” />

<Property Name=”UnitsInStock” Type=”Int16” />

<Property Name=”UnitsOnOrder” Type=”Int16” />

<Property Name=”ReorderLevel” Type=”Int16” />

<Property Name=”Discontinued” Type=”Boolean” Nullable=”false” />

<NavigationProperty Name=”Category”

Relationship=”NorthwindModel.FK_Products_Categories”

FromRole=”Products” ToRole=”Categories” />

</EntityType>

<Association Name=”FK_Products_Categories”>

<End Role=”Categories” Type=”NorthwindModel.Category” Multiplicity=”0..1”/>

<End Role=”Products” Type=”NorthwindModel.Product” Multiplicity=”*” />

</Association>

</Schema>

</edmx:ConceptualModels>

You can notice how entities (EntityType) are defined along with scalar properties (Property),
relationships (Association), entity sets (EntitySet), and a container named
NorthwindEntities. The next section that we consider is the SSDL, which is constituted by the
Xml markup code shown in Listing 27.2 and which is actually the first section in the XML file.

LISTING 27.2 The Store Schema Definition Language

<edmx:StorageModels>

<Schema Namespace=”NorthwindModel.Store” Alias=”Self”

Provider=”System.Data.SqlClient” ProviderManifestToken=”2008”

xmlns:store=”http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator

“

xmlns=”http://schemas.microsoft.com/ado/2009/02/edm/ssdl”>

<EntityContainer Name=”NorthwindModelStoreContainer”>

<EntitySet Name=”Categories” EntityType=”NorthwindModel.Store.Categories”

store:Type=”Tables” Schema=”dbo” />

<EntitySet Name=”Products” EntityType=”NorthwindModel.Store.Products”

store:Type=”Tables” Schema=”dbo” />

<AssociationSet Name=”FK_Products_Categories”

Association=”NorthwindModel.Store.FK_Products_Categories”>

<End Role=”Categories” EntitySet=”Categories” />

<End Role=”Products” EntitySet=”Products” />

From the Library of Wow! eBook

ptg

610 CHAPTER 27 Introducing ADO.NET Entity Framework

</AssociationSet>

</EntityContainer>

<EntityType Name=”Categories”>

<Key>

<PropertyRef Name=”CategoryID” />

</Key>

<Property Name=”CategoryID” Type=”int” Nullable=”false”

StoreGeneratedPattern=”Identity” />

<Property Name=”CategoryName” Type=”nvarchar” Nullable=”false”

MaxLength=”15” />

<Property Name=”Description” Type=”ntext” />

<Property Name=”Picture” Type=”image” />

</EntityType>

<EntityType Name=”Products”>

<Key>

<PropertyRef Name=”ProductID” />

</Key>

<Property Name=”ProductID” Type=”int” Nullable=”false”

StoreGeneratedPattern=”Identity” />

<Property Name=”ProductName” Type=”nvarchar” Nullable=”false”

MaxLength=”40” />

<Property Name=”SupplierID” Type=”int” />

<Property Name=”CategoryID” Type=”int” />

<Property Name=”QuantityPerUnit” Type=”nvarchar” MaxLength=”20” />

<Property Name=”UnitPrice” Type=”money” />

<Property Name=”UnitsInStock” Type=”smallint” />

<Property Name=”UnitsOnOrder” Type=”smallint” />

<Property Name=”ReorderLevel” Type=”smallint” />

<Property Name=”Discontinued” Type=”bit” Nullable=”false” />

</EntityType>

<Association Name=”FK_Products_Categories”>

<End Role=”Categories” Type=”NorthwindModel.Store.Categories”

Multiplicity=”0..1” />

<End Role=”Products” Type=”NorthwindModel.Store.Products”

Multiplicity=”*” />

<ReferentialConstraint>

<Principal Role=”Categories”>

<PropertyRef Name=”CategoryID” />

</Principal>

<Dependent Role=”Products”>

<PropertyRef Name=”CategoryID” />

</Dependent>

</ReferentialConstraint>

</Association>

</Schema>

</edmx:StorageModels>

From the Library of Wow! eBook

ptg

611Understanding Entity Data Models
2

7

Basically this schema is similar to the previous schema, except that it represents the data-
base structure as you can see from type definition within Property elements. The last
schema is the Mapping Definition Language that is illustrated in Listing 27.3.

LISTING 27.3 Mapping Definition Language

<edmx:Mappings>

<Mapping Space=”C-S”

xmlns=”http://schemas.microsoft.com/ado/2008/09/mapping/cs”>

<EntityContainerMapping

StorageEntityContainer=”NorthwindModelStoreContainer”

CdmEntityContainer=”NorthwindEntities”>

<EntitySetMapping Name=”Categories”><EntityTypeMapping Type

Name=”NorthwindModel.Category”>

<MappingFragment StoreEntitySet=”Categories”>

<ScalarProperty Name=”CategoryID” ColumnName=”CategoryID” />

<ScalarProperty Name=”CategoryName” ColumnName=”CategoryName” />

<ScalarProperty Name=”Description” ColumnName=”Description” />

<ScalarProperty Name=”Picture” ColumnName=”Picture” />

</MappingFragment></EntityTypeMapping></EntitySetMapping>

<EntitySetMapping Name=”Products”><EntityTypeMapping Type

Name=”NorthwindModel.Product”>

<MappingFragment StoreEntitySet=”Products”>

<ScalarProperty Name=”ProductID” ColumnName=”ProductID” />

<ScalarProperty Name=”ProductName” ColumnName=”ProductName” />

<ScalarProperty Name=”SupplierID” ColumnName=”SupplierID” />

<ScalarProperty Name=”QuantityPerUnit” ColumnName=”QuantityPerUnit” />

<ScalarProperty Name=”UnitPrice” ColumnName=”UnitPrice” />

<ScalarProperty Name=”UnitsInStock” ColumnName=”UnitsInStock” />

<ScalarProperty Name=”UnitsOnOrder” ColumnName=”UnitsOnOrder” />

<ScalarProperty Name=”ReorderLevel” ColumnName=”ReorderLevel” />

<ScalarProperty Name=”Discontinued” ColumnName=”Discontinued” />

</MappingFragment></EntityTypeMapping></EntitySetMapping>

<AssociationSetMapping Name=”FK_Products_Categories” Type

Name=”NorthwindModel.FK_Products_Categories”

StoreEntitySet=”Products”>

<EndProperty Name=”Categories”>

<ScalarProperty Name=”CategoryID” ColumnName=”CategoryID” />

</EndProperty>

<EndProperty Name=”Products”>

<ScalarProperty Name=”ProductID” ColumnName=”ProductID” />

</EndProperty>

<Condition ColumnName=”CategoryID” IsNull=”false” />

</AssociationSetMapping>

</EntityContainerMapping>

From the Library of Wow! eBook

ptg

612 CHAPTER 27 Introducing ADO.NET Entity Framework

</Mapping>

</edmx:Mappings>

The content of the MDL is quite simple, in that each ScalarProperty represents an
entity’s property and establishes mapping between the property and the related column
name in the database table.

Understanding the ObjectContext class: The Visual Basic Mapping

Schemas in the Entity Data Model have a Visual Basic counterpart that effectively allows
you to write code to work against entities. To understand this, enable the View All Files
view in Solution Explorer and expand the Northwind.edmx file. Finally, open the
Northwind.designer.vb code file. Similar to the DataContext class in LINQ to SQL, the
ADO.NET Entity Framework provides a class named System.Data.Objects.ObjectContext.
This class, also referred to as the object context, acts as a reference to the Entity Data
Model and encapsulates the entities’ definition so that you can work with entities. It is
also responsible for opening and closing connections, persisting data, keeping track of
changes, and persisting data back to the database. ObjectContext is just the base class (as
the DataContext is in LINQ to SQL) that every entity data model inherits from. Listing
27.4 shows how the object context is defined in our specific scenario.

LISTING 27.4 ObjectContext definition

Public Partial Class NorthwindEntities

Inherits ObjectContext

Public Sub New()

MyBase.New(“name=NorthwindEntities”, “NorthwindEntities”)

OnContextCreated()

End Sub

Public Sub New(ByVal connectionString As String)

MyBase.New(connectionString, “NorthwindEntities”)

OnContextCreated()

End Sub

Public Sub New(ByVal connection As EntityConnection)

MyBase.New(connection, “NorthwindEntities”)

OnContextCreated()

End Sub

Partial Private Sub OnContextCreated()

End Sub

Public ReadOnly Property Categories() As ObjectSet(Of Category)

Get

If (_Categories Is Nothing) Then

_Categories = MyBase.CreateObjectSet(Of Category)(“Categories”)

From the Library of Wow! eBook

ptg

613Understanding Entity Data Models
2

7

End If

Return _Categories

End Get

End Property

Private _Categories As ObjectSet(Of Category)

Public ReadOnly Property Products() As ObjectSet(Of Product)

Get

If (_Products Is Nothing) Then

_Products = MyBase.CreateObjectSet(Of Product)(“Products”)

End If

Return _Products

End Get

End Property

Private _Products As ObjectSet(Of Product)

Public Sub AddToCategories(ByVal category As Category)

MyBase.AddObject(“Categories”, category)

End Sub

Public Sub AddToProducts(ByVal product As Product)

MyBase.AddObject(“Products”, product)

End Sub

End Class

First, notice how several constructors’ overloads give the ability to instantiate the object
context passing also a connection string if you want this to be supplied in code. Next
notice the Categories and Products properties, respectively ObjectSet(Of Category) and
ObjectSet(Of Product). An ObjectSet(Of T) represents an entity set and provides several
methods and members for manipulating entities, such as the AddObject or DeleteObject
methods. In the end notice the presence of two methods, AddToCategories and
AddToProducts. For compatibility with the previous version of the Entity Framework,
Visual Studio still generates as many AddTo methods as many entities are included in the
EDM. Anyway, such methods are considered as deprecated, and you are encouraged to
invoke ObjectSet(Of T).Add and ObjectSet(Of T).DeleteObject methods for manipulat-
ing entities. Basically properties of type ObjectSet handle references to a series of objects.
Such objects are defined in the same code file, one for each entity. For the sake of simplic-
ity, Listing 27.5 shows only the definition of the Category class whereas the Product class
is left out, being substantially defined using the same concepts.

LISTING 27.5 The Category Entity Definition

<EdmEntityTypeAttribute(NamespaceName:=”NorthwindModel”, Name:=”Category”)>

<Serializable()>

<DataContractAttribute(IsReference:=True)>

From the Library of Wow! eBook

ptg

614 CHAPTER 27 Introducing ADO.NET Entity Framework

Partial Public Class Category

Inherits EntityObject

Public Shared Function CreateCategory(ByVal categoryID As Global.System.Int32,

ByVal categoryName As Global.System.String) _

As Category

Dim category As Category = New Category

category.CategoryID = categoryID

category.CategoryName = categoryName

Return category

End Function

<EdmScalarPropertyAttribute(EntityKeyProperty:=True,

IsNullable:=False)>

<DataMemberAttribute()>

Public Property CategoryID() As Global.System.Int32

Get

Return _CategoryID

End Get

Set(ByVal value As Global.System.Int32)

If (_CategoryID <> value) Then

OnCategoryIDChanging(value)

ReportPropertyChanging(“CategoryID”)

_CategoryID = StructuralObject.

SetValidValue(value)

ReportPropertyChanged(“CategoryID”)

OnCategoryIDChanged()

End If

End Set

End Property

Private _CategoryID As Global.System.Int32

Partial Private Sub OnCategoryIDChanging _

(ByVal value As Global.System.Int32)

End Sub

Partial Private Sub OnCategoryIDChanged()

End Sub

<EdmScalarPropertyAttribute(EntityKeyProperty:=False,

IsNullable:=False)>

<DataMemberAttribute()>

Public Property CategoryName() As Global.System.String

Get

Return _CategoryName

End Get

From the Library of Wow! eBook

ptg

615Understanding Entity Data Models
2

7

Set(ByVal value As Global.System.String)

OnCategoryNameChanging(value)

ReportPropertyChanging(“CategoryName”)

_CategoryName = StructuralObject.

SetValidValue(value, False)

ReportPropertyChanged(“CategoryName”)

OnCategoryNameChanged()

End Set

End Property

Private _CategoryName As Global.System.String

Partial Private Sub OnCategoryNameChanging(ByVal value As Global.System.String)

End Sub

Partial Private Sub OnCategoryNameChanged()

End Sub

<EdmScalarPropertyAttribute(EntityKeyProperty:=False, IsNullable:=True)>

<DataMemberAttribute()>

Public Property Description() As Global.System.String

Get

Return _Description

End Get

Set(ByVal value As Global.System.String)

OnDescriptionChanging(value)

ReportPropertyChanging(“Description”)

_Description = StructuralObject.SetValidValue(value, True)

ReportPropertyChanged(“Description”)

OnDescriptionChanged()

End Set

End Property

Private _Description As Global.System.String

Partial Private Sub OnDescriptionChanging(ByVal value As Global.System.String)

End Sub

Partial Private Sub OnDescriptionChanged()

End Sub

<EdmScalarPropertyAttribute(EntityKeyProperty:=False, IsNullable:=True)>

<DataMemberAttribute()>

Public Property Picture() As Global.System.Byte()

Get

Return StructuralObject.GetValidValue(_Picture)

End Get

Set(ByVal value As Global.System.Byte())

From the Library of Wow! eBook

ptg

616 CHAPTER 27 Introducing ADO.NET Entity Framework

OnPictureChanging(value)

ReportPropertyChanging(“Picture”)

_Picture = StructuralObject.SetValidValue(value, True)

ReportPropertyChanged(“Picture”)

OnPictureChanged()

End Set

End Property

Private _Picture As Global.System.Byte()

Partial Private Sub OnPictureChanging(ByVal value As Global.System.Byte())

End Sub

Partial Private Sub OnPictureChanged()

End Sub

<XmlIgnoreAttribute()>

<SoapIgnoreAttribute()>

<DataMemberAttribute()>

<EdmRelationshipNavigationPropertyAttribute(“NorthwindModel”,

“FK_Products_Categories”,

“Products”)>

Public Property Products() As EntityCollection(Of Product)

Get

Return CType(Me, IEntityWithRelationships).RelationshipManager.

GetRelatedCollection(Of Product) _

(“NorthwindModel.FK_Products_Categories”, “Products”)

End Get

Set(ByVal value As EntityCollection(Of Product))

If (Not value Is Nothing) Then

CType(Me, IEntityWithRelationships).

RelationshipManager.InitializeRelatedCollection(Of Product) _

(“NorthwindModel.FK_Products_Categories”, “Products”, value)

End If

End Set

End Property

End Class

Each entity class derives from System.Data.Object.EntityObject and is decorated with
the EdmEntityTypeAttribute attribute, which defines the object context and the entity
name. Notice how the class is also marked as DataContract, which means serializable by
the Windows Communication Foundation technology for data exchange over networks.
Then you can find as many properties as many columns in the database table, marked
with the EdmScalarPropertyAttribute attribute, establishing that each property is a scalar
property in the EDM (therefore mapping to a column) and with the DataMemberAttribute
attribute that establishes that the member can be exchanged via WCF. Entity classes also

From the Library of Wow! eBook

ptg

617Understanding Entity Data Models
2

7

declare partial methods that are related to specific events; for example, OnPictureChanging
is invoked when the caller code sends a request for editing a new or existing picture,
whereas the OnPictureChanged is invoked when editing is completed.

Navigation Properties in Code
Finally notice how those things named Navigation Properties in the EDM are also defined
within entity classes. Basically a navigation property is a .NET property of type
EntityCollection(Of T) or EntityReference(Of T), depending on what side of the rela-
tionship they are mapped to. An EntityCollection(Of T), as in the case of the Category
class, represents the “many” part of the relationship whereas an EntityReference(Of T),
as in the case of the Product class, represents the “one” part of the relationship.
Navigation properties are decorated with the EdmRelationShipNavigationPropertyAttribute
that basically maps a foreign key in the database, requiring specifying the namespace
name, the foreign key name, and the entity set. Such properties return (or receive) an
IEntityWithRelationships type that can (via the RelationshipManager.
GetRelatedCollection(Of T) method for returning or via the RelationshipManager.
InitializeRelatedCollection(Of T) method for setting) handle associations. Now that
you have a clearer idea of what Visual Basic requires behind the scenes, you are ready to
understand the usage of some interesting design-time tools.

Entity Designer Tool Windows

When the EDM designer is active, you notice that some new tool windows appear in the
IDE. The first one is the Mapping Details tool window, which shows how database objects
are mapped to .NET types. Figure 27.6 shows the Mapping Details window.

As you can see in Figure 27.6, on the left side of the Window, you can find the original
SQL definition whereas on the right side of the window, you can find the .NET type
utilized to map SQL types into the EDM. You can manually edit such mapping, but the
suggestion is you leave unchanged what the IDE proposes by default unless you under-
stand that a bad mapping from SQL to .NET has been performed. The second tool is the
Model Browser, which provides a hierarchical graphical view of the object model so that
you can easily browse both the conceptual model and the store model. Figure 27.7 shows
the tool window.

FIGURE 27.6 The Mapping Details tool window.

From the Library of Wow! eBook

ptg

618 CHAPTER 27 Introducing ADO.NET Entity Framework

In this new version of Visual Studio, the tool window also simplifies performing opera-
tions on the entity data model, such as updating the model itself, as explained later in
this chapter with regard to stored procedures. Other than these tool windows, you can
take advantage of the Properties window for getting information on the objects that
compose the entity data model. For example, if you click the blank space in the designer,
the Properties window shows high-level information on the EDM, such as the database
schema name, the entity container name (that is, the object context), or the model name-
space. Figure 27.8 provides an overview.

Similarly you can get information on the entities’ definition by clicking the desired entity
name in the designer. Figure 27.9 represents the Properties window showing information
about the Category entity.

Basically the window shows information about the class implementation, such as the class
name, the inheritance level, or the access level other than the related entity set container
name. If you instead try to click a navigation property, the Properties window provides
information on how relationships are handled. For example, the name of the foreign key,
the return type, and multiplicity type is shown in a human-readable fashion, as demon-
strated in Figure 27.10.

Useful information can also be retrieved on relationships. If you click the association line
that conjuncts entities in the designer, the Properties window not only shows how the

FIGURE 27.7 The Model Browser tool window.

From the Library of Wow! eBook

ptg

619Understanding Entity Data Models
2

7

FIGURE 27.8 Getting model information via the Properties window.

relationship is defined but also enables you to choose custom behavior when deleting
entities (for example, Cascade). Of course, this must be supported (or just enabled) in the
underlying database. In the case of SQL Server databases, you can modify associations’
behaviors using SQL Server Management Studio. Figure 27.11 shows such a scenario.

The last use of the Properties window is getting and setting values for scalar properties. For
example, click the QuantityPerUnit property in the Product entity. Figure 27.12 shows
how the Properties window displays.

Properties are self-explanatory, and you can get more information simply by clicking the
property you are interested in, and the tool window will be updated with information.
Consider two properties: Entity Key, which establishes if the scalar property represents a
primary key, and StoreGeneratedPattern, which provides the ability to auto-generate the
column in the database during insert and update operations. This tooling is particularly
useful because here you can manually change the entities’ behavior without the need to
edit the auto-generated Visual Basic code; this job belongs to Visual Studio and you should
always let it do this for you.

From the Library of Wow! eBook

ptg

620 CHAPTER 27 Introducing ADO.NET Entity Framework

FIGURE 27.9 Getting entity information with the Properties window.

Insert/Update/Delete Operations for Entities
The ADO.NET Entity Framework offers a complete infrastructure for manipulating data,
meaning that it offers the ability to add, update and remove data to and from the object
model and subsequently from the database. Let’s discover these features.

Instantiating the ObjectContext

The first task you need to accomplish when working with the ADO.NET Entity Framework
in code to get an instance of the ObjectContext class. At the beginning of this chapter I
told you to create a new Visual Basic project for the Console, so let’s continue on this
path. At module level (or class level, in most common scenarios) declare a variable of type
NorthwindEntities that represents our object context as follows:

Private northwindContext As NorthwindEntities

Within the Sub Main (or in the constructor if you work with classes), create the actual
instance:

Sub Main()

Try

northwindContext = New NorthwindEntities

From the Library of Wow! eBook

ptg

621Insert/Update/Delete Operations for Entities
2

7

FIGURE 27.10 Getting information on navigation properties with the Properties window.

Catch ex As SqlClient.SqlException

Catch ex As Exception

End Try

End Sub

Notice how a System.Data.SqlClient.SqlException general exception is handled in case
of problems.

CODING TIPS ON THE OBJECT CONTEXT

The ObjectContext class’s constructor provides two overloads that accept the connec-
tion string if you want it to be hard-coded instead of storing within the configuration file.
You just need to pass the string as an argument to the constructor. The second tip is
about declaring a variable and creating the instance. I usually prefer to provide a class-
level declaration so that the variable can be reached by all code in my class (or class-
es if the variable is Friend) but also for another reason: I can handle exceptions when
creating the actual instance within the code block that performs this action. I do not
like code examples in which the instance is generated at the class level, but this is
obviously just a suggestion.

From the Library of Wow! eBook

ptg

622 CHAPTER 27 Introducing ADO.NET Entity Framework

FIGURE 27.11 Getting associations information via the Properties window.

FIGURE 27.12 Getting information on scalar properties.

From the Library of Wow! eBook

ptg

623Insert/Update/Delete Operations for Entities
2

7

When you have the object context instance, you can read and write data on your object
model.

Adding Entities

Adding entities against an entity data model requires you to pass the instance of the entity
to the Add method exposed by the entity set. For example, in our demonstration scenario
we have a Products entity set exposing an Add method. The following code shows how
you can programmatically create a new product and add it to the object model:

Sub AddProduct(ByVal categoryReference As Category)

Try

Dim check = northwindContext.Products.

Single(Function(p) p.

ProductName = “Italian spaghetti”)

Catch ex As InvalidOperationException

Try

Dim prod As New Product

With prod

.ProductName = “Italian spaghetti”

.QuantityPerUnit = “10 packs”

.Discontinued = True

.SupplierID = 4

.UnitPrice = 0.5D

.UnitsInStock = 100

.UnitsOnOrder = 50

.Category = categoryReference

End With

northwindContext.Products.AddObject(prod)

northwindContext.SaveChanges()

Catch e As Exception

‘Exception handling when saving changes

End Try

Catch ex As Exception

‘Handle general exceptions here

End Try

End Sub

From the Library of Wow! eBook

ptg

624 CHAPTER 27 Introducing ADO.NET Entity Framework

First, the code checks if the product already exists based on the specified condition. This is
accomplished invoking the Single extension method, whose support is new in .NET
Framework 4.0. It is something that you already saw in LINQ to SQL and not discussed
thoroughly here. Notice how you simply set properties for the new product. The custom
method receives a Category instance as an argument. This is necessary for setting a one-
to-many relationship between the new product and the desired category. Setting the rela-
tionship just requires you to assign the .Category property with the category instance.
When done, you simply invoke the northwindContext.Products.AddObject method
passing the new product and then invoke the SaveChanges method for sending changes to
the database.

TRACKING CHANGES

Remember that the ObjectContext instance can keep track of changes during the
application lifetime, so you might invoke its SaveChanges method just once to persist
all changes. The object context takes advantage of the System.Data.Objects.
ObjectManager class that is responsible for handling the entity state which is how an
entity lives within the object model: attached or detached. Generally entities are
attached by default unless you detach them explicitly. Remember that detaching an
entity prevents the object context from keeping track of changes onto such an
entity.

In Chapter 25 I explained how you can use Visual Studio to inspect the database for
checking if changes were correctly submitted to the database. The good news is that the
same technique can be also used when working with EDMs.

Deleting Entities

Deleting entities is also a simple task. You first need to get the instance of the entity you
want to remove and then invoke the ObjectSet(Of T).DeleteObject method. The follow-
ing code shows how to get the instance of the specified product and then to remove it
first from the model and then from the database:

Sub DeleteProduct()

Try

Dim check = northwindContext.Products.

Single(Function(p) p.

ProductName = “Italian spaghetti”)

northwindContext.Products.DeleteObject(check)

northwindContext.SaveChanges()

‘Does not exist

From the Library of Wow! eBook

ptg

625Insert/Update/Delete Operations for Entities
2

7

Catch ex As InvalidOperationException

End Try

End Sub

Same as in previous code, we take advantage of the Single method that throws an
InvalidOperationException if the object does not exist.

DELETING ENTITIES WITH RELATIONSHIPS

In this chapter you see simplified examples focusing on the technology. In some situa-
tions you need to delete entities with relationships; for example, imagine you have an
Order class with associated OrderDetails. When you delete the order, probably you
want to remove associated details. To accomplish this, you need to work at the data-
base level and enable it to cascade the deletion. For SQL Server databases you can
accomplish this within SQL Server Management Studio, changing properties for the for-
eign key related to the relationship.

Updating Entities

Updating entities is a little bit different from adding and deleting in that there is no
Update method in the ObjectContext. You simply get the instance of the object you want
to update, change its properties, and then invoke SaveChanges. The following code
demonstrates this:

Sub UpdateProduct()

Try

Dim check = northwindContext.Products.

Single(Function(p) p.

ProductName = “Italian spaghetti”)

check.Discontinued = True

check.UnitsInStock = 30

northwindContext.SaveChanges()

‘Product does not exist

Catch ex As InvalidOperationException

Catch ex As UpdateException

End Try

End Sub

Just remember to check if the product exists before trying an update. Notice also how an
UpdateException is caught; this is thrown when there is some problem in sending updates
to the data source.

From the Library of Wow! eBook

ptg

626 CHAPTER 27 Introducing ADO.NET Entity Framework

Handling Optimistic Concurrency

Of course, the ADO.NET Entity Framework provides the ability to handle optimistic
concurrency exceptions. Basically you need to intercept eventual
System.Data.OptimisticConcurrencyException instances. When intercepted, you need to
invoke the ObjectContext.Refresh method that allows solving the concurrency problem.
The following code revisits the AddProduct custom method described in the “Adding
Entities” subsection:

Sub AddProduct(ByVal categoryReference As Category)

Try

Dim check = northwindContext.Products.

Single(Function(p) p.

ProductName = “Italian spaghetti”)

Catch ex As InvalidOperationException

Dim prod As New Product

With prod

.ProductName = “Italian spaghetti”

.QuantityPerUnit = “10 packs”

.SupplierID = 4

.UnitPrice = 0.5D

.UnitsInStock = 100

.UnitsOnOrder = 50

End With

northwindContext.AddToProducts(prod)

Try

northwindContext.SaveChanges()

Catch e As OptimisticConcurrencyException

northwindContext.Refresh(Objects.RefreshMode.ClientWins,

northwindContext.Products)

northwindContext.SaveChanges()

Catch e As Exception

End Try

Catch ex As Exception

‘Handle general exceptions here

End Try

End Sub

From the Library of Wow! eBook

ptg

627Insert/Update/Delete Operations for Entities
2

7

If an OptmisticConcurrencyException is thrown, first you need to invoke the
ObjectContext.Refresh mode that is responsible for solving concurrency problems. It
receives two arguments: The first one is one value from the System.Data.Objects.
RefreshMode enumeration: ClientWins that establishes that changes made to the object
model are not replaced with original values from the database, and StoreWins that
establishes that changes made to the object model are replaced with original values
from the database. These establishments make sense only when you invoke
ObjectContext.SaveChanges again. Of course, in this book it is not possible to reproduce
a real concurrency scenario, but now you know what the main objects are for handling
this situation.

Validating Data

As in LINQ to SQL, you can take advantage of partial methods to accomplish custom data
validations; however, there is an important difference. Entity Data Model generation takes
care of providing a better mapping between SQL Server types and .NET types. Chapter 25
provides an example of the custom validation rule for ensuring that a string is not greater
than 20 characters. In the Entity Framework this is not necessary. For example, take a look
at the Properties window showing properties for the Product.QuantityPerUnit property as
previously shown in Figure 27.12.

Notice how there is a Max Length property that limits the size of the string to 20 charac-
ters. To understand what happens, try to run the AddProduct method previously described
to set the QuantityPerUnit property with a value longer than 20 characters. When you
run the code and encounter ObjectContext.SaveChanges, an UpdateException will be
thrown. So, if bad values are entered, intercepting these exceptions is a good idea. You
can still implement your custom validation rules. To accomplish this, add a new class to
your project and name it Product (just note that the Product class generated from the IDE
is partial).

Inside the class definition you can implement a partial method that performs validations.
For example, you might want to prevent users from adding discontinued products. This
can be accomplished as follows:

Partial Public Class Product

Private Sub OnDiscontinuedChanging(ByVal value As Boolean)

If value = True Then

Throw New ArgumentException _

(“Although supported, please avoid adding “ & _

“discontinued products if they are new additions”)

End If

End Sub

End Class

From the Library of Wow! eBook

ptg

628 CHAPTER 27 Introducing ADO.NET Entity Framework

Similar to LINQ to SQL, there are methods related to each property in the entity and
whose names finish with Changing and Changed. You provide validation rules on Changing
methods, which map to an event occurring just before changes are sent to the model. If a
Product with the Discontinued property set to True is added to the EDM, an
ArgumentException is thrown.

Querying EDMs with LINQ to Entities
LINQ to Entities is the standard LINQ provider for querying entities within an Entity Data
Model. Generally you use the same LINQ syntax for querying Entities, too, so you will not
encounter particular difficulties.

USING STANDARD QUERY OPERATORS

LINQ to Entities supports standard query operators described in Chapter 24, “LINQ to
Objects,” to perform complex query expressions.

The one big difference is about eager loading that is explained after showing the code. As
in LINQ to SQL, LINQ to Entities queries return an IQueryable(Of T), unless you convert
the result into a different type using extension methods at the end of the query. The
following code returns the list of products for the specified category, taking only those
products that are not discontinued and sorting the result by unit price:

Sub LINQtoEntitiesDemo(ByVal CategoryName As String)

Dim query = From prod In northwindContext.Products.

Include(“Category”)

Where prod.Category.CategoryName = CategoryName _

And prod.Discontinued = False

Order By prod.UnitPrice

Select prod

Console.WriteLine(“Category: {0}”,

CategoryName)

For Each prod In query

Console.WriteLine(“Product name: {0}, Unit price: {1:c}”,

prod.ProductName, prod.UnitPrice)

Next

End Sub

From the Library of Wow! eBook

ptg

629Querying EDMs with Entity SQL
2

7

As you can see, the LINQ syntax works similarly to other LINQ providers except that here
the Include method has been invoked on the entity set instance. This method requires an
argument of type String, which is the name of the navigation property mapped to the
entity being queried; that is, the name of the entity set that the queried entity has a rela-
tionship with. Include performs that technique known as eager loading that allows
loading related entities. This is necessary if you want to perform comparisons as in the
preceding example, where an evaluation must be done on the category name that the
current product belongs to. In other words, if you do not invoke Include, you will only
have available Products information but not Categories information while you need this
to perform the comparison. You can take advantage of standard query operators described
in Chapter 24 to accomplish complex LINQ queries against entities as well.

Querying EDMs with Entity SQL
LINQ to Entities is not the only way to query data exposed by EDMs. An important alter-
native named Entity SQL allows querying entity data models providing both the ability to
send SQL instructions to the data source and to treat query results as managed entities. To
accomplish this, the ObjectContext class exposes a method named CreateQuery(Of T)
that queries the EDM via the specified set of SQL instructions. The following example
shows how you can retrieve a list of products for the Grains/Cereals category in
Northwind, sorting the result by the product name:

Sub EntitySQLDemo()

Try

Dim grainProducts = northwindContext.

CreateQuery(Of Product)(“SELECT * FROM PRODUCTS WHERE “ & _

“CATEGORYID=’5’ ORDER BY PRODUCTNAME”).

Execute(Objects.MergeOption.AppendOnly)

Catch ex As EntitySqlException

Console.WriteLine(“An error occurred in column: {0}”,

ex.Column.ToString)

Catch ex As Exception

Console.WriteLine(ex.ToString)

End Try

End Sub

CreateQuery(Of T) returns an ObjectQuery(Of T) that represents a strongly typed query
against entities. As with any other LINQ query, Entity SQL queries are executed when they
are effectively used, for example in For..Each loops, when converting to collections, or
when explicitly invoking the Execute method as previously done. The method receives an
argument of type System.Data.Objects.MergeOption that allows specifying how data
retrieved from the database must be merged into the object model with existing data.
Table 27.2 summarizes available values.

From the Library of Wow! eBook

ptg

630 CHAPTER 27 Introducing ADO.NET Entity Framework

The .NET Framework 4.0 also introduces new features to Entity SQL, such as the ability of
querying the database directly. This can be accomplished invoking the ObjectContext.
ExecuteStoreQuery(Of T) method, which still returns an ObjectResult(Of T), but it
differs from CreateQuery(Of T) in that this last mentioned method queries the model,
whereas ExecuteStoreQuery queries the database. You can invoke it as follows:

Dim grainProducts = northwindContext.

ExecuteStoreQuery(Of Product)(“SELECT * FROM PRODUCTS WHERE “ & _

“CATEGORYID=’5’ ORDER BY PRODUCTNAME”)

This method is basically the EF equivalent of the DbCommand.ExecuteReader class that you
should already know from previous data access programming models. It works in the
current transaction context within an opened connection. The last example is about
executing arbitrary SQL instructions against the database. For example, imagine you want
to delete products. This is not a query but a simple invocation of SQL instructions. For
this purpose you can take advantage of the ObjectContext.ExecuteStoreCommand, which
can be used as follows:

Dim numberOfRows As Integer = _

northwindContext.ExecuteStoreCommand(“DELETE FROM PRODUCTS”)

The method does not return a type result because it does not actually execute a query,
just an arbitrary command, and returns the number of rows affected by the command you
passed as an argument. Entity SQL is a complex query engine and there is much more to
say than what is presented in this introductory chapter. The best place for finding more
information on such a query possibility in Entity Framework is the official page on
the MSDN library, which is available at http://msdn.microsoft.com/en-us/library/
bb399560(VS.100).aspx.

TABLE 27.2 System.Data.Object.MergeOption Enumeration Values

Value Description

AppendOnly Objects existing in the object context are also not loaded from the data
source

NoTracking Entity Framework does not keep track of changes on entities.

OverwriteChanges Data is always loaded from the data source and changes to the object
model are replaced.

PreserveChanges Data is always loaded from the data source but changes to the object
model are preserved.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/bb399560(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb399560(VS.100).aspx

ptg

631Mapping Stored Procedures
2

7

Mapping Stored Procedures
The Entity Framework 4 makes importing stored procedures into the object model easier,
as opposed to the first version of the technology that required a manual operation on the
model files. In this section you learn to add stored procedure mappings to the entity data
model. To accomplish this, first open the Visual Studio designer by double-clicking the
Northwind.edmx file in Solution Explorer. When ready, right-click the designer and select
the Update Model from Database command. This launches again the wizard that allows
selecting database objects not included yet in the entity data model. At this point expand
the Stored Procedures item and select the Ten Most Expensive Products stored procedure,
as shown in Figure 27.13.

Generally you can follow these steps to add database objects to the EDM if you did not do
it before. This operation provides mappings for the stored procedure. Basically the
mapping lets the stored procedure to be mapped into a .NET method that returns a value;
therefore, you need to know what kind of value such methods must return. To accomplish
this, open the Server Explorer tool window, expand the Northwind database structure, and
then expand the Stored Procedures folder; finally double-click the Ten Most Expensive
Products stored procedure. Now the Visual Studio 2010 IDE shows the SQL instructions
for the previously selected stored procedure, as shown in Figure 27.14.

FIGURE 27.13 Adding a stored procedure to the EDM.

From the Library of Wow! eBook

ptg

632 CHAPTER 27 Introducing ADO.NET Entity Framework

Examining the SQL code, it is quite simple to understand that the stored procedure
returns a list of product names. Now switch back to the EDM designer so that the Model
Browser tool window becomes active. Inside the window expand the EntityContainer:
NorthwindEntities item and then right-click the Function Import command, as shown in
Figure 27.15, or simply right-click the designer and then select Add, Function Import.
This finalizes importing the stored procedure as a .NET method.

After a few seconds the Add Function Import dialog appears. In the Function Import
Name field you need to specify the identifier for the new .NET method; type
TenMostExpensiveProducts. Now click the Get Column Information button so that
Visual Studio can retrieve information on database objects and corresponding .NET types
used by the stored procedure. This is useful because the TenMostExpensiveProducts choice
in the grid shows a String mapping in the EDM. Therefore it confirms what we saw when
examining the SQL instructions, which is returning a series of strings. Because of this,
select the String type in the Scalars combo box. In the Returns a Collection Of group box,
specify what the new method must return. Figure 27.16 shows how the dialog should look
after you’ve completed the preceding operations.

You can specify entities, complex types, or scalar properties as well. When you’ve done
this, you are ready to invoke your stored procedure as a .NET method being part of the
entity data model, exposed by the NorthwindEntities class. For example, if you want to
retrieve the list of the ten most-expensive products, you can write something like this:

For Each prod In northwindContext.TenMostExpensiveProducts

Console.WriteLine(prod)

Next

FIGURE 27.14 Examining SQL instructions for the stored procedure.

From the Library of Wow! eBook

ptg

633Summary
2

7

FIGURE 27.15 Adding a Function Import for mapping the stored procedure.

Behind the scenes, mapping a stored procedure is something that Visual Basic accom-
plishes by adding the following invocation to the ExecuteFunction(Of T) method to the
NorthwindEntities class definition:

Function TenMostExpensiveProducts() As ObjectResult(Of Global.System.String)

Return MyBase.ExecuteFunction(Of Global.System.String) _

(“TenMostExpensiveProducts”)

End Function

By completing this, you have the basic knowledge for working with the ADO.NET Entity
Framework; you can learn more from the MSDN documentation.

Summary
In this chapter you got a high-level overview of ADO.NET Entity Framework 2.0, also
known as EF 4. Entity Framework is a modern data platform providing a high abstraction
layer from the database that allows working with a conceptual model instead of working
directly with the data source. Database objects are mapped to the .NET equivalent into an
Entity Data Model object model. Entities are a key concept in the EF and are classes repre-
senting database tables, as much as scalar properties represent tables’ columns and

From the Library of Wow! eBook

ptg

634 CHAPTER 27 Introducing ADO.NET Entity Framework

FIGURE 27.16 The Add Function Import dialog box allows mapping stored procedures.

navigation properties represent relationship. The ObjectContext class is responsible for
managing the EDM lifetime, including the execution of Insert/Update/Delete operations
that can be performed by invoking specific methods from entities. Querying data is
instead accomplished via LINQ to Entities, a specific LINQ provider for the EF, and Entity
SQL. Finally, you saw how mapping stored procedures to the object model takes advantage
of features that are new in Visual Studio 2010.

From the Library of Wow! eBook

ptg

CHAPTER 28

Manipulating Xml
Documents with LINQ

and Xml Literals

IN THIS CHAPTER

. Introducing LINQ to Xml

. Xml Schema Inference

With the growing diffusion of the Internet during the
years, one of the most common needs has been establishing
standards for information exchange across computers in
different parts of the world. For such an exchange, the Xml
file format was introduced to provide a unified standard
that was specific to structured data. Because of its flexibility,
the Xml file format became popular among developers, and
the .NET Framework has always offered a built-in way for
manipulating Xml documents: the System.Xml namespace.
With the advent of LINQ in Visual Basic 2008, things have
been improved. Although the System.Xml namespace still
exists for several reasons, a more efficient way for manipu-
lating Xml documents is now available in Visual Basic due
to important features such as LINQ to Xml and Xml literals
that are also integrated into the language syntax. In this
chapter you learn about manipulating Xml documents
using LINQ to Xml and Xml literals, and you discover how
much more powerful this opportunity is when compared to
the System.Xml namespace.

KNOWLEDGE OF XML

The goal of this chapter is not explaining Xml syntax
and documents structure, so you are required to be
familiar with Xml syntax and implementation.

Introducing LINQ to Xml
LINQ to Xml is the standard LINQ provider for reading,
creating, and manipulating Xml documents with the .NET

From the Library of Wow! eBook

ptg

636 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

languages starting from Visual Basic 2008 and Visual C# 3.0. Such a provider is imple-
mented in the System.Xml.Linq.dll assembly and generally supports all operators available
in LINQ to Objects with a few differences due to the Xml document structure and to other
specific language features. The good news is that you can take advantage of the unified
programming model offered by LINQ to perform Xml manipulations via the classical
LINQ syntax that you already know. Visual Basic 2010, like its predecessor, offers particu-
lar syntax paradigms for LINQ to Xml that is also described in this chapter. You first learn
how to create and manipulate Xml documents using managed objects, whereas in the
second part of this chapter, you become skillful with Xml literals that can allow you to
write code more quickly and cleanly.

The System.Xml.Linq Namespace

The System.Xml.Linq namespace exposes objects for creating, reading, and manipulating
Xml documents. All objects inherit from System.Xml.Linq.XObject. Table 28.1 summa-
rizes and describes available objects.

You create an Xml document declaring an instance of the XDocument class:

Dim myDocument As New XDocument

TABLE 28.1 Objects Available in the System.Xml.Linq Namespace

Object Description

XDocument Represents an entire Xml document

XElement Represents an Xml element with attributes

XAttribute Represents an Xml attribute

XComment Represents a comment within an Xml document

XDeclaration Represents the Xml declaration, including version number and encoding

XNode Represents an Xml node which is made of an Xml element and children
elements

XName Provides a name to an Xml element or attribute

XCData Represents a CData section

XText Represents a text node

XContainer Represents a container for nodes

XNamespace Declares an Xml namespace

XDocumentType Represents a Document Type Definition (DTD) typically for Xml schemas

From the Library of Wow! eBook

ptg

637Introducing LINQ to Xml
2

8

When you have the instance you can add all acceptable objects mentioned in Table 28.1.
The first required element is the Xml declaration that can be added as follows and that
is mandatory:

myDocument.Declaration = New XDeclaration(“1.0”, “utf-8”, “no”)

If you want to add comments to your Xml documents, you can create as many instances
of the XComment class for as many comments as you need to add:

myDocument.Add(New XComment(“My first Xml document with LINQ”))

The next step is creating a first-level XElement that stores nested XElement objects:

Dim mainElement As New XElement(“Contacts”)

Now you can create nested elements and specify some attributes, as demonstrated in the
following code:

’An Xml element with attributes

Dim firstNestedElement As New XElement(“Contact”)

Dim attribute1 As New XAttribute(“LastName”, “Del Sole”)

Dim attribute2 As New XAttribute(“FirstName”, “Alessandro”)

Dim attribute3 As New XAttribute(“Age”, “32”)

firstNestedElement.Add(attribute1)

firstNestedElement.Add(attribute2)

firstNestedElement.Add(attribute3)

Dim secondNestedElement As New XElement(“Contact”)

Dim attribute4 As New XAttribute(“LastName”, “White”)

Dim attribute5 As New XAttribute(“FirstName”, “Robert”)

Dim attribute6 As New XAttribute(“Age”, “40”)

secondNestedElement.Add(attribute4)

secondNestedElement.Add(attribute5)

secondNestedElement.Add(attribute6)

‘In-line initialization with an array of XAttribute

Dim thirdNestedElement As New XElement(“Contact”, New XAttribute() {

New XAttribute(“LastName”, “Red”),

New XAttribute(“FirstName”, “Stephen”),

New XAttribute(“Age”, “41”)})

When you create an XAttribute you then need to invoke the XElement.Add instance
method to assign the new attribute. Basically creating elements and assigning attributes is
a simple task because classes are self-explanatory, and IntelliSense helps you understand
what arguments the constructors need. But if you take a look at the last instance, you can
see that things may become difficult, especially if you think that you could create an array
of XElement with nested XElement definitions, with nested XAttribute definitions. We see

From the Library of Wow! eBook

ptg

638

later in this chapter how Xml literals make things easier; for now let’s focus on fundamen-
tals. The next step is to add all nested XElement objects to the main XElement as follows:

With mainElement

.Add(firstNestedElement)

.Add(secondNestedElement)

.Add(thirdNestedElement)

End With

mainElement now stores a sequence of Xml elements that must be added to the document
as follows:

myDocument.Add(mainElement)

In the end you can simply save your Xml document to disk by invoking the Save method:

myDocument.Save(“C:\Contacts.xml”)

This method has several overloads that also allow specifying a stream instead of a string of
file options for controlling formatting. If you just want to check your result, simply
invoke XDocument.ToString as follows:

Console.WriteLine(myDocument.ToString)

This line of code allows you to see how your document is formed. The output follows:

<!—My first Xml document with LINQ—>

<Contacts>

<Contact LastName=”Del Sole” FirstName=”Alessandro” Age=”32” />

<Contact LastName=”White” FirstName=”Robert” Age=”40” />

<Contact LastName=”Red” FirstName=”Stephen” Age=”41” />

</Contacts>

Creating an Xml document with the System.Xml.Linq namespace is more intuitive than
the older System.Xml namespace, but things can go better as you see later. At the moment
you need to know how to load and parse existing documents.

Loading and Parsing Existing Xml Documents
To load an existing Xml document you simply invoke the shared XDocument.Load method
as follows:

Dim myDocument = XDocument.Load(“C:\Contacts.xml”)

You can get a new instance of XDocument and get access to its members via numerous
methods and properties that the class offers. Table 28.2 summarizes the most important
members.

CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

From the Library of Wow! eBook

ptg

639Introducing LINQ to Xml
2

8

Notice that both XDocument and XElement classes expose methods in Table 28.2, and
XElement can also load and save Xml content as much as XDocument. Both XDocument and
XElement classes also allow parsing strings containing Xml representation to get an appro-
priate object. This is accomplished invoking the Parse method as in the following example:

Dim document As String = “<?xml version=””1.0””?>” & Environment.NewLine & _

“ <Contacts>” & Environment.NewLine & _

“ <Contact FirstName=””Alessandro”” Last

Name=””Del Sole”” Age=””32””/>” & _

Environment.NewLine & _

TABLE 28.2 Most Important Members of the XDocument Class

Member Type Description

AddAfterSelf Method Adds the specified content just
after the node whose instance is
invoking the method itself

AddBeforeSelf Method Adds the specified content just
before the node whose instance is
invoking the method itself

AddFirst Method Adds the specified content as the
first node in the document

ReplaceWith Method Replace the node whose instance
is invoking the method with the
specified content

Root Property Returns the root XElement

Remove Method Removes the node from its
parents

RemoveNodes Method Removes children nodes from the
object instance that is invoking the
method

Element Method Retrieves an XElement instance of
the specified Xml element

Descendants Method Returns an IEnumerable(Of
XElement) collection of descen-
dant XElement objects

FirstNode/LastNode/NextNode/PreviousNode Properties Return the instance of the node
which position is indicated by the
property name

From the Library of Wow! eBook

ptg

640

“ <Contact FirstName=””Robert”” Last

Name=””White”” Age=””40””/>” & _

Environment.NewLine & _

“ </Contacts>”

Dim resultingDocument As XDocument = XDocument.Parse(document)

resultingDocument.Save(“C:\Contacts.xml”)

This can be useful if you need to get a real Xml document from a simple string.

Querying Xml Documents with LINQ
You can take advantage of the LINQ syntax for querying Xml documents. Consider the
following Xml file:

<Contacts>

<Contact LastName=”Del Sole” FirstName=”Alessandro” Age=”32” />

<Contact LastName=”White” FirstName=”Robert” Age=”40” />

<Contact LastName=”Red” FirstName=”Stephen” Age=”41” />

</Contacts>

Now imagine you want to get a list of last names for people with an age greater than 40.
This can be accomplished by the following query:

Dim query = From element In myDocument.Descendants(“Contact”)

Where Integer.Parse(element.Attribute(“Age”).Value) >= 40

Select element.Attribute(“LastName”).Value

The Descendants method returns an IEnumerable(Of XElement) storing all XElement
objects whose XName is the one specified as the argument. To get the value of an attribute,
for example about comparisons as in our situation, you invoke the
XElement.Attribute().Value property that contains the actual value of the XAttribute
instance whose name is specified within Attribute(““). Notice how an explicit conver-
sion is required from String to Integer to perform an evaluation on numbers. The
preceding query returns an IEnumerable(Of String). If you need to generate custom
results, you can take advantage of anonymous types as in the following query that get
only the LastName and Age values:

Dim query = From element In myDocument.Descendants(“Contact”)

Let age = Integer.Parse(element.Attribute(“Age”).Value)

Where age >= 40

Select New With {.LastName = element.

Attribute(“LastName”).Value,

.Age = age}

The preceding query returns IEnumerable(Of anonymous type). Notice how the Let
keyword is used to provide a temporary identifier that can be both used for performing a
comparison and for assignment to the anonymous type’s Age property. With the exception
of anonymous types, as you remember from the LINQ to Objects discussion, generally

CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

From the Library of Wow! eBook

ptg

641Xml Literals
2

8

LINQ to Xml query results are directly bindable to user interface controls, such as the
BindingSource in Windows Forms or the CollectionViewSource in WPF. By the way,
remember that, if you do not select just one attribute per element (which would return an
IEnumerable(Of String)), this would work as collections of XElement, and therefore it is
not the best approach because you need to work against your business objects and not
against XElement instances. Just to provide a simple example, if you need an iteration over
your query, iterating an IEnumerable(Of XElement) would not probably make much sense
while it instead would with a List(Of Contact). The appropriate approach is creating a
class that maps each element within the Xml document. For example, consider the follow-
ing simplified implementation of the Contact class:

Class Contact

Property FirstName As String

Property LastName As String

Property Age As Integer

End Class

At this point you can write a LINQ query that generates a collection of Contact and that
can be both mapped to a user interface control and that can be edited:

’Returns a List(Of Contact)

Dim contactCollection = (From element In myDocument.Descendants(“Contact”)

Let age = Integer.Parse(element.

Attribute(“Age”).Value)

Select New Contact With {.FirstName = element.

Attribute(“FirstName”).Value,

.LastName = element.

Attribute(“LastName”).Value,

.Age = age}).ToList

Now you have a List(Of Contact) that can be both used for presenting data or for
editing. On the contrary, you could create an Xml document starting from a collection of
objects, but this is something you see in a more efficient way in the discussion of Xml
literals in next section.

Xml Literals
The System.Xml.Linq namespace is powerful. By the way, manipulating complex Xml
documents that store lots of data can lead to writing less elegant and more complex code.
Luckily the Visual Basic language provides a powerful feature for manipulating Xml docu-
ments, known as Xml literals. In other words, you can write Xml markup together with
the Visual Basic code. The following code provides an example:

’The compiler infers XDocument

From the Library of Wow! eBook

ptg

642

Dim Contacts = <?xml version=”1.0”?>

<Contacts>

<Contact LastName=”Del Sole”

FirstName=”Alessandro”

Age=”32”

email=”alessandro.delsole@visual-basic.it”/>

<!— Fantasy name—>

<Contact LastName=”White”

FirstName=”Robert”

Age=”45”

email=”address1@something.com”/>

</Contacts>

This means that you can write entire Xml documents integrating Xml markup and Visual
Basic code. Here IntelliSense features are less powerful than in the classic Visual Studio
Xml editor, but they are good enough to provide syntax colorization and code indenta-
tion. Figure 28.1 shows what the preceding code looks like in the Visual Basic code editor.

CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

Just think that you can paste from the clipboard the content of long and complex Xml
documents, such as Microsoft Excel workbooks or Open Xml documents, and take advan-
tage of Xml literals. The Visual Basic compiler can then map Xml nodes to the appropriate
.NET type. In the previous example, Contacts and Contact are mapped to XElement

FIGURE 28.1 Xml literals in the Visual Basic code editor.

From the Library of Wow! eBook

ptg

643Xml Literals
2

8

objects, whereas properties of each Contact element are mapped to XAttribute objects.
The previous example also takes advantage of local type inference. In such a scenario the
Visual Basic compiler infers the XDocument type for the Contacts variable. This is because
the Xml markup contains the Xml declaration. If you do not specify such a declaration,
the Xml markup is mapped to an XElement, as in the following code:

’The compiler infers XElement

Dim Contacts = <Contacts>

<Contact LastName=”Del Sole”

FirstName=”Alessandro”

Age=”32”

email=”alessandro.delsole@visual-basic.it”/>

</Contacts>

If you do not want to take advantage of local type inference, you need to pay attention to
what type the Xml markup is mapped to. For example, both the following code snippets
throw an InvalidCastException:

’Throws an InvalidCastException
‘Cannot assign to XElement markup that
‘ships with the Xml declaration
Dim Contacts As XElement = <?xml version=”1.0”?>

<Contacts>
<Contact LastName=”Del Sole”
FirstName=”Alessandro”
Age=”32”
email=”alessandro.delsole@visual-basic.it”/>

<!-- Fantasy name-->
<Contact LastName=”White”
FirstName=”Robert”
Age=”45”
email=”address1@something.com”/>

</Contacts>
‘Throws an InvalidCastException
‘Cannot assign to XDocument markup that
‘does not have the Xml declaration
Dim Contacts As XDocument = <Contacts>

<Contact LastName=”Del Sole”
FirstName=”Alessandro”
Age=”32”
email=”alessandro.delsole@visual-basic.it”/>

<!-- Fantasy name-->
<Contact LastName=”White”
FirstName=”Robert”
Age=”45”
email=”address1@something.com”/>

</Contacts>

From the Library of Wow! eBook

ptg

644 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

Xml literals are powerful because they allow you to write more elegant code and provide a
view of your Xml documents as you would within an Xml editor that is better than gener-
ating nodes, elements, and attributes the old-fashioned way. The preceding code has one
limitation: It is hard-coded, meaning that values have been added manually. This would
be a big limitation because you often need to dynamically generate Xml documents (for
example generating elements for each member within a data source). Luckily Xml literals
makes this easier, providing the ability to embed local variables’ values and LINQ queries
within the Xml markup, as shown in next section.

BEHIND THE SCENES

The Visual Basic compiler parses Xml documents, elements, and attributes written with
Xml literals into the appropriate .NET types, such as XDocument, XElement, and
XAttribute. Comments are included in such a mapping and converted into XComment
objects and so on. Please refer to Table 28.1 to recall available objects.

LINQ Queries with Xml Literals

Xml literals provide an alternative syntax for LINQ to Xml queries in Visual Basic code.
Let’s retake the first Xml document used in the “System.Xml.Linq Namespace” section,
which looks like the following but with a slight modification:

<?xml version=”1.0” encoding=”utf-8”?>

<Contacts>

<Contact FirstName=”Alessandro”

LastName=”Del Sole”

Age=”32”

Email=”alessandro.delsole@visual-basic.it”>

</Contact>

<!--The following are fantasy names-->

<Contact FirstName=”Stephen”

LastName=”Red”

Age=”40”

Email=”address1@something.com”>

</Contact>

<Contact FirstName=”Robert”

LastName=”White”

Age=”41”

Email=”address2@something.com”>

</Contact>

<Contact FirstName=”Luke”

LastName=”Green”

Age=”42”

Email=”address3@something.com”>

</Contact>

<Person FirstName=”Alessandro”

From the Library of Wow! eBook

ptg

645Xml Literals
2

8

LastName=”Del Sole”>

</Person>

</Contacts>

There is a Person element that we want to be excluded. The goal is querying all Contact
elements whose age is greater than 40. Instead of recurring to the classical syntax, you can
write the following code:

Dim doc = XDocument.Load(“Contacts.xml”)

Dim query = From cont In doc.<Contacts>.<Contact>

Where Integer.Parse(cont.@Age) >= 40

Select cont

The preceding code uses new symbols for querying documents known as Xml Axis
Properties. Table 28.3 summarizes Xml axis.

In other words, the preceding query can be described by this sentence: “Process all
Contacts’ children Contact elements.” The difference with the Xml Axis Descendants
Properties can be explained with another example. Consider the following document that
is just a revalidation of the previous one:

<?xml version=”1.0” encoding=”utf-8”?>

<Contacts>

<Contact>

<FirstName>Alessandro</FirstName>

<LastName>Del Sole</LastName>

<Age>32</Age>

<Email>alessandro.delsole@visual-basic.it</Email>

</Contact>

<Contact>

<FirstName>Stephen</FirstName>

<LastName>Red</LastName>

<Age>40</Age>

<Email>address1@something.com</Email>

TABLE 28.3 Xml Axis

Symbol Description

...<> Xml Axis Descendants Property. Returns all descendant elements of the Xml document
named as the identifier enclosed within the symbols.

.<> Xml Axis Child Property. Returns children of an XElement or XDocument.

.@ Xml Axis Attribute Property. Returns the value of an attribute within an Xml element.

From the Library of Wow! eBook

ptg

646 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

</Contact>

<Person>

<FirstName>Robert</FirstName>

<LastName>White</LastName>

</Person>

</Contacts>

Now each Contact element has subelements. If you wanted to get a collection of all
LastName elements for all elements, you could use the Xml Axis Descendants property
as follows:

’Returns a collection of all <LastName></LastName>

‘elements within the document

Dim onlyLastNames = From cont In doc...<LastName>

It’s worth mentioning that such a query also includes results from the Person element,
because it exposes a LastName attribute. So if you need to filter results depending on the
root element, you should invoke the Axis Descendants property. Notice also how in both
the previous code examples an explicit conversion is required when you need a compari-
son against non-String data. In this particular case the comparison is done against an
integer number (40); therefore, you can invoke the Integer.Parse method—because you
expect that the Age attribute contains the string representation of a number. Xml Axis
properties provide therefore a simplified and cleaner way for querying Xml documents. Just
remember that, as discussed in the previous section, you will need helper classes for mapping
each XElement content into a .NET type to provide data-binding features to your code.

WHY OPTION STRICT ON IS IMPORTANT

One of the last code snippets had an explicit conversion using Integer.Parse. If you
set Option Strict On and you forget to perform such a conversion, the compiler
throws an exception requiring you to perform an appropriate conversion, which is
always good. If you instead set Option Strict Off, no conversion is required at com-
pile time, but in all cases you encounter errors at runtime except if you assign the
value of an attribute to a String variable. You should always keep Option Strict On.

Understanding Embedded Expressions

With embedded expressions you can include local variables or perform dynamic queries
within Xml literals. For example, let’s look again at the first example about Xml literals,
where an Xml document contains a couple of contacts. Imagine you want to generate a
contact starting from some variables (that you could populate at runtime with different
values) instead of hard-coding the last name, first name, and age. This can be accom-
plished as follows:

’All with type inference

Dim FirstName = “Alessandro”

Dim LastName = “Del Sole”

From the Library of Wow! eBook

ptg

647Xml Literals
2

8

Dim Age = 32

Dim Contacts = <?xml version=”1.0”?>

<Contacts>

<Contact LastName=<%= LastName %>

FirstName=<%= FirstName %>

Age=<%= Age %>

email=”alessandro.delsole@visual-basic.it”/>

<!-- Fantasy name-->

<Contact LastName=”White”

FirstName=”Robert”

Age=”45”

email=”address1@something.com”/>

</Contacts>

Although the second contact in the list is equal to the first example, the first contact is
generated with embedded expressions. You create an embedded expression including an
expression within <%= and => symbols. While you write the expression after the opening
tag, IntelliSense works as usual to improve your coding experience. In this way you can
create elements dynamically. But this code works just for one element. What if you need
to dynamically generate as many elements for as many items stored within a collection or
within a database table? Imagine you have a Contact class that is implemented as follows:

Class Contact

Property FirstName As String

Property LastName As String

Property Age As Integer

Property EmailAddress As String

End Class

Now imagine that within a method body you create a collection of Contact. For demo
purposes, four instances of the Contact class are created and then pushed into a new
collection:

Dim firstContact As New Contact With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.EmailAddress = “alessandro.delsole@visual-basic.it”,

.Age = 32}

‘Now fantasy names

Dim secondContact As New Contact With {.FirstName = “Stephen”,

.LastName = “Red”,

.EmailAddress = “address1@something.com”,

.Age = 40}

Dim thirdContact As New Contact With {.FirstName = “Robert”,

.LastName = “White”,

.EmailAddress = “address2@something.com”,

From the Library of Wow! eBook

ptg

648 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

.Age = 41}

Dim fourthContact As New Contact With {.FirstName = “Luke”,

.LastName = “Green”,

.EmailAddress = “address3@something.com”,

.Age = 42}

Dim people As New List(Of Contact) From {

firstContact,

secondContact,

thirdContact,

fourthContact}

Our goal is to generate an Xml document that contains all the preceding created contacts
as Xml nodes. This is accomplished by the following code:

Dim newDocument = <?xml version=”1.0”?>

<Contacts>

<%= From cont In people

Where cont.Age > 32

Select <Contact

FirstName=<%= cont.FirstName %>

LastName=<%= cont.LastName %>

Age=<%= cont.Age %>

Email=<%= cont.EmailAddress %>>

</Contact>

%>

</Contacts>

newDocument.Save(“C:\Contacts.xml”)

Embedding an expression means that you can also embed a LINQ query. Notice how the
query is part of the first embedded expression and how the Select clause allows the
creation of a new XElement object using Xml literals where nested embedded expressions
can provide advantage of local variables. The previous code can produce the following
result (remember that only people with an age greater than 32 have been included):

<Contacts>

<Contact FirstName=”Stephen” LastName=”Red” Age=”40”

Email=”address1@something.com”></Contact>

<Contact FirstName=”Robert” LastName=”White” Age=”41”

Email=”address2@something.com”></Contact>

<Contact FirstName=”Luke” LastName=”Green” Age=”42”

Email=”address3@something.com”></Contact>

</Contacts>

From the Library of Wow! eBook

ptg

649Xml Schema Inference
2

8

Taking advantage of Xml literals and embedded expressions, you dynamically created an
Xml document that can contain an infinite number of elements. This example was related
to a simple generic collection, but you can easily understand what kinds of results you can
reach if you need to generate Xml documents from database tables. If you work with
LINQ to SQL or with ADO.NET Entity Framework, the code remains the same; the only
exception is that the data source in the From clause is the DataContext instance or the
ObjectContext one.

NOTE

Xml literals can map any kind of Xml markup. For example, you can dynamically gener-
ate WPF controls writing XAML code that Visual Basic recognizes as Xml and that can
be assigned to XElement objects. Another useful example is a Microsoft Excel work-
book saved as Xml format that can be entirely pasted into the Visual Basic editor.
Other than writing cleaner code, the ability to wrap any Xml content is probably the best
feature of Xml literals.

Xml Schema Inference
LINQ to Xml and Xml literals are both powerful features but they have a limitation:
Within embedded expressions or when using the literals symbols in queries, IntelliSense
support is not as good as usual, especially when you need to invoke Xml attributes. This
means that in most situations you need to remember and manually write code that maps
attributes with no IntelliSense support. This can lead to errors, because elements and
attributes within Xml documents are case-sensitive, so typing age instead of Age results in
a runtime error. To solve this issue, Visual Basic offers a nice feature known as the Xml
Schema Inference Wizard that is a tool integrated in the IDE and that is specific for Visual
Basic. The tool allows generating an Xml schema from the Xml document you query and
allows enabling IntelliSense support. First, you need an Xml document. The following is a
simplified list of customers that is the base document:

<?xml version=”1.0” encoding=”utf-8” ?>

<Customers xmlns=”DelSole.Customers”>

<Customer CustomerID=”DELSO” CompanyName=”Del Sole Ltd.”

Country=”Italy” Address=”Unspecified”

Email=”alessandro.delsole@visual-basic.it”/>

<!— Not real names —>

<Customer CustomerID=”GREEN” CompanyName=”Green Corp.”

Country=”Italy” Address=”Unspecified”

Email=”address1@something.com”/>

<Customer CustomerID=”WHITE” CompanyName=”White Corp.”

From the Library of Wow! eBook

ptg

650 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

Country=”Italy” Address=”Unspecified”

Email=”address2@something.com”/>

</Customers>

Notice how an Xml namespace declaration has been added to the Customers node. This is
important and is explained later. Save the file as Customers.xml. When you get the docu-
ment, right-click the project name in Solution Explorer and select Add New Item. When
the Add New Item dialog box appears, select the XML to Schema template and name it
CustomersSchema.xsd, as shown in Figure 28.2.

After you click Add, a dialog named Infer Xml Schema Set from Xml Documents appears,
requiring you to specify the Xml document as the base. You are not limited to specifying
existing Xml documents; you can manually write the document (or paste it from the clip-
board) or specify an Xml document that is available on a network. This can be useful if
you want to generate schemas for RSS feeds. Click the Add from File button and select
the Customers.xml document. (You can notice that Visual Studio automatically points to
the project folder making the selection easier.) Figure 28.3 shows how the dialog looks.

The good news is that you are not limited to just one document; you can add multiple
documents to generate multiple schemas at one time. When you finish and click OK,
Visual Studio generates an .Xsd document whose content is the following:

<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified”

elementFormDefault=”qualified”

FIGURE 28.2 The XML to Schema item template.

From the Library of Wow! eBook

ptg

651Xml Schema Inference
2

8

FIGURE 28.3 Selecting the Xml document for generating Xml schemas from.

targetNamespace=”DelSole.Customers”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Customers”>

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs=”unbounded” name=”Customer”>

<xs:complexType>

<xs:attribute name=”CustomerID” type=”xs:string”

use=”required” />

<xs:attribute name=”CompanyName” type=”xs:string”

use=”required” />

<xs:attribute name=”Country” type=”xs:string”

use=”required” />

<xs:attribute name=”Address” type=”xs:string”

use=”required” />

<xs:attribute name=”Email” type=”xs:string”

use=”required” />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

The schema is simple because the structure of our starting document is simple. Notice
how the schema declaration contains a targetNamespace attribute that maps the Xml

From the Library of Wow! eBook

ptg

652 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

namespace we provided within the original document. You can also get a visual represen-
tation of the new schema via the Xml Schema Explorer tool window that is available by
clicking View, Xml Schema Explorer. The tool window is shown in Figure 28.4.

This window is helpful to understand the hierarchical structure of an Xml schema. For the
newly created schema, notice the custom namespace at the root level and then the root
document node, named Customers. Within the child node, Customer, you can see nested
attributes and mappings to data types. Also notice how Visual Studio tell us that Customer
is part of a one-to-many relationship (1..*).

XML SCHEMA DESIGNER

Visual Studio 2010 introduces a new designer for Xml schemas that is also enabled
each time you work with such documents. The editor is now based on WPF and allows
generating or editing schema with a powerful designer. This tool is not described here
but you can easily understand how to take advantage of its instrumentation to edit
schemas at the first time you see it.

At this point you are ready to write Visual Basic code. The first thing to do is to add an
Imports directive pointing to the Xml namespace. Starting from Visual Basic 2008, the
Imports keyword can import Xml namespaces, too, as follows:

Imports <xmlns:ds=”DelSole.Customers”>

FIGURE 28.4 The Xml Schema Explorer tool window.

From the Library of Wow! eBook

ptg

653Xml Schema Inference
2

8

IMPORTING XML NAMESPACES

Each time you need to work with Xml documents or schemas that define an Xml name-
space, you need to import that namespace. This is because otherwise you should
rewrite the Xml namespace declaration every time you write an Xml element within
your document. By importing the namespace, you do not need to worry anymore about
Xml namespaces. Microsoft Excel’s workbooks or XAML markup code are good exam-
ples of this.

This is the point where IntelliSense can provide support for your schemas. Now you can
understand why the addition of an Xml namespace within the original document was
necessary. At this point you could write whatever query you need. The following query is
simple but its purpose is not to show how you can query data; instead its purpose is to
demonstrate IntelliSense capabilities in Xml literals after the addition of an Xml schema:

Dim custDoc = XDocument.Load(“Customers.xml”)

Dim customers = From cust In custDoc...<ds:Customer>

Select cust.@CompanyName

At the point at which you type the ...< symbols, IntelliSense shows all the available
options for the schema allowing the selection of available nodes. Figure 28.5 shows
IntelliSense in action.

As you can imagine, this is helpful because now you are not required to remember every
element in the Xml document and to type it manually. And of course this works not only

FIGURE 28.5 Xml Schema Inference enables IntelliSense in LINQ queries with Xml literals.

From the Library of Wow! eBook

ptg

654 CHAPTER 28 Manipulating Xml Documents with LINQ and Xml Literals

with Xml elements but also with Xml attributes, which is what you get when beginning
to write the .@ symbols. Figure 28.6 represents such a situation.

If you have multiple schemas or multiple namespaces, IntelliSense can provide support for
all of them making your coding experience straightforward.

Summary
The .NET Framework offers a special LINQ provider named LINQ to Xml that enables
working with Xml documents. Via the System.Xml.Linq namespace, this provider allows
creating and manipulating Xml documents in an efficient way. Classes such as XDocument,
XElement, XAttribute, XComment, and XDeclaration are self-explanatory and allow easy
generation of Xml documents. To query Xml documents you just write LINQ queries
using the unified syntax that you already know, with a few additions such as the
Descendants or Attribute properties. Although efficient, System.Xml.Linq can be confus-
ing when Xml documents become larger. Luckily Visual Basic provides the Xml literals
feature that allows writing Xml markup code directly into the VB code editor. To make
things real, with embedded expressions you can generate documents putting local vari-
ables, expressions, and LINQ queries within Xml literals so that you can generate Xml
documents dynamically. Visual Basic also takes care of your coding experience and
provides the Xml Schema Inference Wizard that generates an Xml schema starting from
the Xml document you want to query with LINQ to Xml and allows enabling IntelliSense
for that particular document, avoiding the risk of typos.

FIGURE 28.6 IntelliSense also allows you to select attributes.

From the Library of Wow! eBook

ptg

CHAPTER 29

Overview of Parallel
LINQ

IN THIS CHAPTER

. Introducing PLINQ

. Handling Exceptions

Modern computers have multiple processors or multicore
processors. The benefit of having such hardware is that it
provides, among other things, the ability for scaling data
processing over all the available processors via multiple
threads, instead of using one processor and possibly one
thread. Until .NET Framework 3.5, no native library was
offered to take advantage of multicore architectures, so you
could only unleash your processors as if they were one.
Luckily, .NET Framework 4.0 introduces a new fundamental
framework known as Task Parallel Library that is all about
parallel computing and multicore architectures. The frame-
work is discussed in detail in Chapter 45, “Parallel
Programming,” but now you learn how to take advantage
of parallelism in performing LINQ queries using Parallel
LINQ to improve your code performances.

Introducing PLINQ
Parallel LINQ, also known as PLINQ, is a new LINQ imple-
mentation provided by.NET Framework 4.0 that enables
developers to query data using the LINQ syntax but takes
advantage of multicore and multiprocessor architectures that
have support by the Task Parallel Library (discussed in
Chapter 45). Creating “parallel” queries is an easy task,
although there are some architectural differences with classic
LINQ (or more generally with classic programming) that is
discussed during this chapter. Basically to create a parallel
query you just need to invoke the AsParallel extension

From the Library of Wow! eBook

ptg

656 CHAPTER 29 Overview of Parallel LINQ

method onto the data source you are querying. The following code provides an example:

Dim range = Enumerable.Range(0, 1000)

‘Just add “AsParallel”

Dim query = From num In range.AsParallel

Where (IsOdd(num))

Select num

Generally you can take advantage of Parallel LINQ and the Task Parallel Library only in
particular scenarios, such as intensive calculations or large amounts of data. Because of
this, to give you an idea of how PLINQ can improve performance, the code presented in
this chapter simulates intensive work on easier code so that you can focus on PLINQ
instead of other code.

Simulating an Intensive Work

Parallel LINQ provides benefits when you work in extreme situations such as intensive
works or large amounts of data. In different situations PLINQ is not necessarily better than
classic LINQ. To understand how PLINQ works, first we need to write code that simulates
an intensive work. After creating a new Console project, write the following method that
simply determines if a number is odd but suspending the current thread for a big number
of milliseconds invoking the System.Threading.Thread.SpinWait shared method:

’Checks if a number is odd

Private Function IsOdd(ByVal number As Integer) As Boolean

‘Simulate an intensive work

System.Threading.Thread.SpinWait(1000000)

Return (number Mod 2) <> 0

End Function

Now that we have an intensive work, we can compare both classic and parallel LINQ queries.

Measuring Performances of a Classic LINQ Query

The goal of this paragraph is to explain how you can execute a classic LINQ query over
intensive processing and measure its performance in milliseconds. Consider the following
code:

Private Sub ClassicLinqQuery()

Dim range = Enumerable.Range(0, 1000)

Dim query = From num In range

Where (IsOdd(num))

Select num

‘Measuring performance

From the Library of Wow! eBook

ptg

657Introducing PLINQ

Dim sw As Stopwatch = Stopwatch.StartNew

‘Linq query is executed when invoking Count

Console.WriteLine(“Total odd numbers: “ + query.Count.ToString)

sw.Stop()

Console.WriteLine(sw.ElapsedMilliseconds.ToString)

Console.ReadLine()

End Sub

Given a range of predefined numbers (Enumerable.Range), the code looks for odd numbers
and collects them into an IEnumerable(Of Integer). To measure performance, we can
take advantage of the Stopwatch class that basically starts a counter (Stopwatch.StartNew).
Because, as you already know, LINQ queries are effectively executed when you use them,
such a query is executed when the code invokes the Count property to show how many
odd numbers are stored within the query variable. When done, the counter is stopped so
that we can get the number of milliseconds needed to perform the query itself. By the
way, measuring time is not enough. The real goal is to understand how CPU is used and
how a LINQ query impacts performance. To accomplish this, right-click the Windows
Task Bar and start the Task Manager. Then click the Performance tab, and in the end
click the Always on Top command in the Options menu. This provides a way for looking
at the CPU usage while running your code. The previous code, which can be run by
invoking the ClassicLinqQuery from the Main method, produces the following result on
my dual-core machine:

Total odd numbers: 500

7664

This means that executing a query versus the intensive processing took about 7 1/2
seconds. The other interesting thing is about the CPU usage. Figure 29.1 shows that
during the processing the CPU was used for a medium percentage of resources. Obviously
this percentage can vary depending on the machine and on the running processes and
applications.

That CPU usage was not full is not necessarily good, because it means that all the work
relies on a single thread and is considered as running on a single processor. Therefore
there is an overload of work only for such resources while other resources are free. To scale
the work over multiple threads and multiple processors, a Parallel LINQ query is, of
course, more efficient.

Measuring Performances of a PLINQ Query

To create a parallel query, you simply need to invoke the AsParallel extension method
for the data source you want to query. Copy the method shown in the previous paragraph
and rename it as PLinqQuery; then simply change the first line of the query as follows:

Dim query = From num In range.AsParallel

2
9

From the Library of Wow! eBook

ptg

658 CHAPTER 29 Overview of Parallel LINQ

FIGURE 29.1 CPU usage during a classic LINQ query.

Different from a LINQ query, AsParallel returns a ParallelQuery(Of T) that is exposed
by the System.Linq namespace and that is specific for PLINQ, although it works as an
IEnumerable(Of T) but it allows scaling data over multicore processors. Now edit Sub
Main so that it invokes the PLinqQuery method and runs the code again. Figure 29.2 shows
what you should see when the application is processing data.

FIGURE 29.2 CPU usage during a Parallel LINQ query.

From the Library of Wow! eBook

ptg

659Introducing PLINQ

It is worth noticing that now all processors are being used, and this is demonstrated by
the 100% percent CPU usage. Processing was scaled along all available processors. On my
dual core machine, the previous code produces the following result:

Total odd numbers: 500

3451

The PLINQ query took only 3 1/2 seconds, which is less than half of the classic LINQ
query result. So you can understand how PLINQ can dramatically improve your code
performance, although there are some other considerations to do as discussed in the next
paragraphs.

CONVERTING TO SEQUENTIAL QUERIES

PLINQ queries are evaluated in parallel, meaning that they take advantage of multi-
core architectures, also thanks to the ParallelQuery(Of T) class. If you want to
convert such a result into an IEnumerable(Of T) and provide sequential evaluation
of the query, you can invoke the AsSequential extension method from the query
result variable.

Ordering Sequences

One of the most important consequences of Parallel LINQ (and, more generally, of parallel
computing) is that processing is not done sequentially as it would happen on single-
threaded code. This is because multiple threads run concurrently. To understand this, the
following is an excerpt from the iteration on the result of the parallel query:

295

315

297

317

299

319

You would probably instead expect something like the following, which is produced by
the classic LINQ query:

295

296

297

298

299

300

2
9

From the Library of Wow! eBook

ptg

660 CHAPTER 29 Overview of Parallel LINQ

If you need to work in sequential order but you do not want to lose the capabilities of
PLINQ query, you can invoke the AsOrdered extension method that preserves the sequen-
tial order of the result, as demonstrated by the following code snippet:

Dim query = From num In range.AsParallel.AsOrdered

If you now run the code again, you get an ordered set of odd numbers.

AsParallel and Binary Operators

There are situations in which you use operators that take two data sources; among such
operators, there are the following binary operators: Join, GroupJoin, Except, Concat,
Intersect, Union, Zip, and SequenceEqual. To take advantage of parallelism with binary
operators on two data sources, you need to invoke AsParallel on both collections, as
demonstrated by the following code:

Dim result = firstSource.AsParallel.Except(secondSource.AsParallel)

The following code still works but it won’t take advantage of parallelism:

Dim result = firstSource.AsParallel.Except(secondSource)

Using ParallelEnumerable

The System.Linq namespace for .NET 4.0 introduces a new ParallelEnumerable class,
which is the parallel counterpart of Enumerable and provides extension methods specific
to parallelism, such as AsParallel. You can use ParallelEnumerable members instead of
invoking AsParallel because both return a ParallelQuery(Of T). For example the PLINQ
query in the first example could be rewritten as follows:

Dim range = ParallelEnumerable.Range(0, 1000)

‘Just add “AsParallel”

Dim query = From num In range

Where (IsOdd(num))

Select num

In this case the range variable is of type ParallelEnumerable(Of Integer), and therefore
you do not need to invoke AsParallel. By the way, there are some differences in how data
is handled, and this may often lead AsParallel to be faster. Explaining in detail the
ParallelEnumerable architecture is out of the scope in this introductory chapter, but if
you are curious you can take a look at this blog post from the Task Parallel Library Team:
http://blogs.msdn.com/pfxteam/archive/2007/12/02/6558579.aspx.

From the Library of Wow! eBook

http://blogs.msdn.com/pfxteam/archive/2007/12/02/6558579.aspx

ptg

661Introducing PLINQ

Controlling PLINQ Queries

PLINQ offers additional extension methods and features to provide more control over
tasks that effectively run queries, all exposed by the System.Linq.ParallelEnumerable
class. In this section you get an overview of extension methods and learn how you can
control your PLINQ queries.

Setting the Maximum Tasks Number
As explained in Chapter 45, the Task Parallel Library relies on tasks instead of threads,
although working with tasks basically means scaling processing over multiple threads. You
can specify the maximum number of tasks that can execute a thread invoking the
WithDegreeOfParallelism extension method, passing the number as an argument. The
following code demonstrates how you can get the list of running processes with a PLINQ
query that runs a maximum of three concurrent tasks:

Dim processes = Process.GetProcesses.

AsParallel.WithDegreeOfParallelism(3)

Forcing Parallelism in Every Query
Not all code can benefit from parallelism and PLINQ. Such technology is intelligent
enough to determine if a query can benefit from PLINQ according to its shape. The shape
of a query consists of the operator it requires and algorithm or delegates that are involved.
PLINQ analyzes the shape and can determine where to apply a parallel algorithm. You can
force a query to be completely parallelized, regardless of its shape, by simply invoking the
WithExecutionMode extension methods that receive an argument of type
ParallelExecutionMode that is an enumeration exposing two self-explanatory members:
ForceParallelism and Default. The following code demonstrates how you can force a
query to be completely parallelized:

Dim processes = Process.GetProcesses.

AsParallel.WithExecutionMode(_

ParallelExecutionMode.ForceParallelism)

Merge Options
PLINQ automatically partitions query sources so that it can take advantage of multiple
threads that can work on each part concurrently. You can control how parts are handled
by invoking the WithMergeOptions method that receives an argument of type
ParallelMergeOptions. Such enumeration provides the following specifications:

. NotBuffered, which returns elements composing the result as soon as they are avail-
able

2
9

From the Library of Wow! eBook

ptg

662 CHAPTER 29 Overview of Parallel LINQ

. FullyBuffered, which returns the complete result, meaning that query operations
are buffered until every one has been completed

. AutoBuffered, which leaves to the compiler to choose the best buffering method in
that particular situation

You invoke WithMergeOptions as follows:

Dim processes = Process.GetProcesses.

AsParallel.WithMergeOptions(_

ParallelMergeOptions.FullyBuffered)

With the exception of the ForAll method that is always NotBuffered and OrderBy that is
always FullyBuffered, generally other extension methods/operators can support all merge
options. The full list of operators is described in the following page of the MSDN Library:
http://msdn.microsoft.com/en-us/library/dd547137(VS.100).aspx.

Canceling PLINQ Queries
If you need to provide a way for canceling a PLINQ query, you can invoke the
WithCancellation method. You first need to implement a method to be invoked when
you need to cancel the query. The method receives a CancellationTokenSource argument
(which sends notices that a query must be canceled) and can be implemented as follows:

Dim cs As New CancellationTokenSource

Private Sub DoCancel(ByVal cs As CancellationTokenSource)

‘Ensures that query is cancelled when executing

Thread.Sleep(500)

cs.Cancel()

End Sub

When you have a method of this kind, you need to start a new task by pointing to this
method as follows:

Tasks.Task.Factory.StartNew(Sub()

DoCancel(cs)

End Sub)

When a PLINQ query is canceled, an OperationCanceledException is thrown so that you
can handle cancellation, as demonstrated in the following code snippet:

Private Sub CancellationDemo()

Try

Dim processes = Process.GetProcesses.

AsParallel.WithCancellation(cs.Token)

Catch ex As OperationCanceledException

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/dd547137(VS.100).aspx

ptg

663Handling Exceptions

Console.WriteLine(ex.Message)

Catch ex As Exception

End Try

End Sub

To cancel a query, simply invoke the DoCancel method.

Handling Exceptions
In single-core scenarios, LINQ queries are executed sequentially. This means that if your
code encounters an exception, the exception is at a specific point, and the code can
handle it normally. In multicore scenarios multiple exceptions could occur, because more
threads are running on multiple processors concurrently. Because of this, PLINQ provides
a special way for intercepting and handling exceptions. Such a way is constituted by the
AggregateException class that is specific for exceptions within parallelism. Such a class
exposes a couple of interesting members, such as Flatten that is a method that turns it
into a single exception and InnerExceptions that is a property storing a collection of
InnerException objects, each representing one of the occurred exceptions.

DISABLE JUST MY CODE

In order to correctly catch an AggregateException you need to disable the Just My
Code debugging in the debug options, otherwise the code execution will break on the
query and will not allow you to investigate the exception.

Consider the following code, in which an array of strings stores some null values and that
causes NullReferenceException at runtime:

Private Sub HandlingExceptions()

Dim strings() As String = New String() {“Test”,

Nothing,

Nothing,

“Test”}

‘Just add “AsParallel”

Try

Dim query = strings.AsParallel.

Where(Function(s) s.StartsWith(“T”)).

Select(Function(s) s)

For Each item In query

Console.WriteLine(item)

Next

Catch ex As AggregateException

2
9

From the Library of Wow! eBook

ptg

664 CHAPTER 29 Overview of Parallel LINQ

For Each problem In ex.InnerExceptions

Console.WriteLine(problem.ToString)

Next

Catch ex As Exception

Finally

Console.ReadLine()

End Try

End Sub

In a single-core scenario a single NullReferenceException is caught and handled the first
time the code encounters the error. In multicore scenarios an AggregateException could
happen due to multiple threads running on multiple processors; therefore, you cannot
control where and how many exceptions can be thrown. Consequently, the
AggregateException stores information on such exceptions. The previous code shows how
you can iterate the InnerExceptions property.

Summary
Multicore and multiprocessor architectures are part of the real world today. Because of
this, .NET Framework 4.0 provides a specific LINQ implementation known as Parallel
LINQ that allows scaling query executions over multiple threads and processors so that
you can get benefits in improving performances of your code. In this chapter you learned
how to invoke the AsParallel method for creating parallelized queries and comparing
them to classic LINQ queries. You also saw how to control queries forcing parallelism,
implementing cancellation, setting the maximum number of tasks, and handling the
AggregateException exception. In Chapter 45 you get more granular information on the
Task Parallel Library so that you can have a complete overview of parallel computing with
.NET Framework 4.0 and Visual Basic 2010.

From the Library of Wow! eBook

ptg

CHAPTER 30

Creating Windows
Forms 4.0 Applications

IN THIS CHAPTER

. What Windows Forms Is Today

. Creating Windows Forms
Applications

. Building Windows Forms
Applications with ADO.NET Entity
Framework and Chart Control

Client applications need to offer a graphical user interface
to make applications easier to use and more intuitive. For
the past years Windows Forms has been the unique way to
provide user interfaces in client .NET applications. It is a
straightforward infrastructure that is popular among devel-
opers. But technology goes on and new additions have been
introduced to the .NET Framework since version 3.0. This
chapter provides an overview about what Win Forms is
today and about what’s new in Win Forms 4.0, providing a
sample application that shows how you can take advantage
of the few additions. Windows Forms is considered obsolete.
Being part of the .NET Framework, this book must provide
an overview. But you see something more interesting in
Chapter 31, “Creating WPF Applications,” and subsequent
chapters. For now, enjoy what’s new in Win Forms 4.0.

What Windows Forms Is Today
The goal of this chapter is to provide an overview of the
Windows Forms technology summarizing how Windows
Forms works and how you can take advantage of recent
.NET features. This is because Windows Forms has been for
many years the one and only user interface platform,
whereas with the growth of Windows Presentation
Foundation, it becomes necessary to provide information
on this quite new technology. Windows Forms is quite
obsolete when compared to the power and flexibility of
WPF, but.NET Framework necessarily needs to provide
support for Windows Forms because it is settled in applica-
tion development, but you have to know that Microsoft
will no longer invest in Win Forms. This means that you

From the Library of Wow! eBook

ptg

666 CHAPTER 30 Creating Windows Forms 4.0 Applications

can, of course, use it in your applications, but the strong suggestion is that you begin
taking a serious look at WPF because tomorrow’s user interfaces will be based on it. This
chapter assumes that you have at least one year of experience in developing Windows
applications with Windows Forms. If not, or if you are not interested in getting informa-
tion on what’s new, you can skip this chapter and get friendly with WPF in Chapter 31.

Creating Windows Forms Applications
Visual Studio 2010 allows creating Windows Forms applications the same way as in previ-
ous versions, so you should be familiar with the steps described in this section. To create a
Windows Forms application, follow these steps:

1. Click the New Project command in the File menu.

2. In the New project dialog select the Windows Forms Application template in the
Windows folder. Figure 30.1 shows how you can accomplish this.

3. Click OK to create the new project and then design your application with user con-
trols.

When Visual Studio completes creating the new project, you notice that nothing changes
from the previous versions of the IDE. You still see the designer and the Toolbox on the
left showing available controls. Figure 30.2 shows what you get at this point.

There are no particular new features in this area, so let’s discover what is new.

FIGURE 30.1 Creating a Windows Forms application.

From the Library of Wow! eBook

ptg

667Creating Windows Forms Applications
3

0

FIGURE 30.2 The Windows Forms designer is ready.

What’s New in Windows Forms 4.0

As mentioned at the beginning of this chapter, Microsoft no longer invests in Windows
Forms. Because of this, only one new feature is constituted by the Microsoft Chart control
that allows adding chart graphics capabilities to your applications. This user control is
available in the Data tab in the Toolbox. Later in this chapter you see an example about
this addition.

THE TRUE STORY OF CHART

Chart control was originally provided as a separate download for Microsoft .NET
Framework 3.5 with Service Pack 1. That was the first time that this control appeared.
In .NET Framework 4.0 the Chart control is part of the platform as a new addition. This
is the reason why we consider the control as one new thing in Win Forms 4.0.

You still find the WPF Interoperability tab containing the ElementHost control that allows
utilizing WPF contents and the Visual Basic PowerPacks 3.0 controls.

Available Windows Forms Controls

Windows Forms offer lots of user controls, but they will not be summarized here. You can
find a full list on the official MSDN portal, which is available at the following address:
http://msdn.microsoft.com/en-us/library/3xdhey7w(VS.100).aspx.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/3xdhey7w(VS.100).aspx

ptg

668

Building Windows Forms Applications with
ADO.NET Entity Framework and Chart Control
The goal of this chapter is to show how you can take advantage of the new features
in.NET Framework 4.0 with Windows Forms. In this section you learn how to create an
application that queries and manipulates master-detail data from the Northwind database
via the ADO.NET Entity Framework, also showing data results as a chart. When you create
a new Win Form project, add a new Entity Data Model to the project pointing to the
Northwind database as you learned in Chapter 27, “Introducing the ADO.NET Entity
Framework.” The EDM needs to get the Customers, Orders, and Order_Details tables.
Ensure that your result looks like Figure 30.3.

CHAPTER 30 Creating Windows Forms 4.0 Applications

We want to provide a detailed view for customers, a data grid for associated orders, and a
chart representation for order details. To keep in mind what you accomplish, Figure 30.4
shows the final application running.

Now you need to add data sources so that you can drag them from the Data Sources
window. Opposite to WPF applications, in Windows Forms you need to manually add
entities at this point. Follow these steps:

1. Select the Add New Data Source command from the Data menu.

FIGURE 30.3 The new Entity data model.

From the Library of Wow! eBook

ptg

669Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control
3

0

FIGURE 30.4 The sample application of this chapter while running.

2. In the first dialog, choose Object and then click Next. This allows you to choose
entities as data sources.

3. Flag the Customer, Order, and Order_Detail object, as shown in Figure 30.5.

FIGURE 30.5 Choosing objects as data sources.

From the Library of Wow! eBook

ptg

670 CHAPTER 30 Creating Windows Forms 4.0 Applications

When you click Finish, your data sources will be available in the Data Sources window, as
shown in Figure 30.6, which is enabled when you are back on the form. Notice that Visual
Studio previously added the NorthwindEntities object, but you cannot directly drag its
children onto the form, opposite to WPF.

Now you are ready to drag your controls. In Data Sources, select the Details view for the
Customer object using the combo box that appears when you click Customer. Now drag
Customer onto the form’s surface and wait until the appropriate BindingNavigator and
BindingSource controls are generated. Right-click the Save button and click Enable so
that you can use it to save changes. When ready, drag the Orders object (nested in
Customer) onto the form and wait until Visual Studio creates a BindingSource for orders
and a DataGridView. When ready, select the Chart control from the Data tab in the
Toolbox and drag it onto the form. Because the Chart control can also export graphics to
images, add a SaveFileDialog control. Finally, add a new button on the
CustomersBindingNavigator toolbar and name it ExportChartToolStripButton, ensuring
that the DisplayStyle property is set to Text and that the Text property is assigned with
Export Chart as Image. Figure 30.7 shows how the designer looks after this sequence of
operations, but of course you can change the controls’ position as you like.

Now it is time to write Visual Basic code, so switch to the code editor. The first step is to
declare the object context and populate data sources. At class level, write the following code:

Private northwind As NorthwindEntities

Private Sub PopulateDataSources()

‘Populates the CustomersBindingSource

‘with Customers from the model using

FIGURE 30.6 The Data Sources window shows entities.

From the Library of Wow! eBook

ptg

671Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control
3

0

FIGURE 30.7 The form after the design operations.

‘eager loading

Me.CustomerBindingSource.DataSource = northwind.

Customers.Include(“Orders”)

‘Populates the OrderBindingSource

‘establishing a relationships with Customers

Me.OrdersBindingSource.DataSource = CustomerBindingSource

Me.OrdersBindingSource.DataMember = “Orders”

‘To be set explicitly in EF

Me.OrdersBindingSource.AllowNew = True

End Sub

ADDING LINQ QUERIES

In the preceding example the full lists of customers and orders are retrieved, but you
could also replace the code with a LINQ query getting only the needed information. For
example, you could filter only customers living outside the United States.

From the Library of Wow! eBook

ptg

672 CHAPTER 30 Creating Windows Forms 4.0 Applications

Notice how the OrdersBindingSource is populated assigning the CustomersBindingSource
and then assigning the DataMember property with only the effectively needed collection.
This establishes a relationship between the two entity sets. Also notice how you need to
explicitly set the AllowNew property to True if you want to provide the ability of adding
data. This is specific to Entity Framework where the operation is not automated. Now
provide a constructor whose body will instantiate the object context and a Form.Load
event handler that will populate the data sources:

Public Sub New()

‘ This call is required by the designer.

InitializeComponent()

‘ Add any initialization after the InitializeComponent() call.

Me.northwind = New NorthwindEntities

End Sub

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

PopulateDataSources()

End Sub

HANDLING EVENTS

In Windows Forms you do not need to explicitly set event handlers via the AddHandler
keyword because this is accomplished behind the scenes by Visual Studio. When you
add a control, the IDE provides a WithEvents declaration so that providing event han-
dlers is reduced to writing a Sub that respects the appropriate delegate signature and
that refers to a particular event via the Handles keyword. It is also important to men-
tion that you do not need to manually write the event handler stub. You can simply
select from the Visual Studio Class Name and Method Name combo boxes both the
object and the event you need to handle, as shown in Figure 30.8. Selecting an event
generates the event handler stub for you.

Now let’s write an event handler for saving changes. You can still use the Visual Studio
Class Name and Method Name combo boxes, or if in design mode, double-click the Save
button to let Visual Studio generate an event handler stub. The code for the event handler
can take advantage of techniques discussed in Chapter 27 about updates and optimistic
concurrency, so it will be the following:

Private Sub CustomerBindingNavigatorSaveItem_Click(ByVal sender As Object,

ByVal e As EventArgs) _

From the Library of Wow! eBook

ptg

673Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control
3

0

FIGURE 30.8 Using Visual Studio’s Class Name and Method Name combo boxes to automate
event handler stubs generation.

Handles _

CustomerBindingNavigatorSaveItem.Click

Try

northwind.SaveChanges()

Catch ex As OptimisticConcurrencyException

northwind.Refresh(Objects.RefreshMode.ClientWins,

northwind.Orders)

northwind.SaveChanges()

Catch ex As UpdateException

MessageBox.Show(ex.Message)

Catch ex As Exception

MessageBox.Show(ex.ToString)

End Try

End Sub

At the moment you have all the code necessary for manipulating data. Remember from
Chapter 27 that the object context in the Entity Framework can keep track of changes
during the application lifetime. According to this, the instance of the NorthwindEntities
class can manage insert/update/delete operations and changes as well.

From the Library of Wow! eBook

ptg

674 CHAPTER 30 Creating Windows Forms 4.0 Applications

WHAT ABOUT LINQ TO SQL?

There are situations where you might want to use a LINQ to SQL object model instead
of an Entity Data Model. To accomplish this, you first establish the database connec-
tion and add a LINQ to SQL class to your project, dragging database objects to the
designer’s surface. Next you simply need to add new data sources as you did previous-
ly for EDMs, choosing object data sources and then selecting the desired entities from
the available one. When done, you can practice what you learned in Chapter 25, “LINQ
to SQL,” including validation.

Providing Custom Validation

Following what you learned in Chapter 27, you can provide custom data validation on
entities. For example, imagine you want to validate the user input on the ShippedDate
order’s property ensuring that its value is not greater than today’s date. To accomplish
this, add a new partial class named Order and manage the OnShippedDateChanging partial
method as follows:

Partial Public Class Order

Private Sub OnShippedDateChanging(ByVal value As Date?)

If value > Date.Today Then

Throw New _

ArgumentException(“The shipped date cannot be greater than today”,

“value”)

End If

End Sub

End Class

Now switch back to the code for the main form and add the following event handler asso-
ciated to the OrdersBindingSourceControl that allows handling exceptions in a user inter-
face-oriented fashion:

Private Sub OrdersBindingSource_DataError(ByVal sender As Object,

ByVal e As System.Windows.Forms.

BindingManagerDataErrorEventArgs)_

Handles OrdersBindingSource.

DataError

MessageBox.Show(e.Exception.Message, ““, MessageBoxButtons.OK,

MessageBoxIcon.Error)

End Sub

You can then eventually add custom validation for any other entity you need following
the same steps. When running the application, if the user tries to enter an invalid date, an
ArgumentException is thrown providing the specified error message.

From the Library of Wow! eBook

ptg

675Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control
3

0

Understanding Chart Control

The Microsoft Chart Control is defined within the
System.Windows.Forms.DataVisualization.dll assembly and is exposed by the
System.Windows.Forms.DataVisualization.Charting namespace. It allows creating chart
graphics from different data sources that can be bound manually or take advantage of
automated data-binding features. In this section you learn about the most important
features of the chart control so that you can easily get started.

FINDING DOCUMENTATION

Microsoft offers extensive documentation on the Chart control. The first document is
the MSDN official page that is available at the following address:
http://msdn.microsoft.com/en-us/library/system.windows.forms.
datavisualization.charting.chart(VS.100).aspx. Next check out Alex Gorev’s blog that
contains a lot of practical examples and that is reachable at http://blogs.msdn.com/
alexgor/.

The good news is that you can take advantage of the Visual Studio Designer to completely
manage the Chart control with the mouse. Now refer to Figure 30.4 and watch how the
graphic is drawn. When you create a new chart, the chart offers a drawing area. This area
is represented by a collection named ChartAreas. Each item in the collection, therefore a
single ChartArea, represents the place where the chart will be drawn. Generally a single
ChartArea is required for simple charts but you can edit the behavior of each item. Chart
areas support 3D graphics. For example, select the Chart control in the designer and open
the Properties window. Click the Browse button for the ChartAreas property, which
brings up the ChartArea Collection Editor dialog. Here you can add new areas or edit
existing ones. By default a single area is provided. Expand the Area3DStyle item and set
the following properties to enable 3D charts:

. Enable3D as True

. Rotation as 15; this provides better visibility in our scenario

. LightStyle as Realistic; this improves lightening on the chart

Figure 30.9 shows the result of these operations.

You notice that changes are automatically reflected to the control at design time. The
second most important property is another collection, named Series. The collection
stores Series objects, representing items in the chart. You access single Series via the
indexer. To edit the series at design time, open the Series Collection Editor dialog by click-
ing the Browse button related to the Series property in the Properties window. By default,
every time you create a Chart control a default Series named Series1 is added. Figure
30.10 shows the dialog pointing to the default Series, which provides a lot of properties,
but now you see the most important.

Series are divided into points. X points represent each item on the X-axis, while Y points
represent each item on the Y-axis. Each series is bound to a specific ChartArea via the

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.windows.forms
http://blogs.msdn.com/alexgor/
http://blogs.msdn.com/alexgor/

ptg

676 CHAPTER 30 Creating Windows Forms 4.0 Applications

FIGURE 30.9 Designing chart areas.

FIGURE 30.10 Designing chart series.

ChartArea property. You can change the appearance of style by setting the ChartType
property that is set to Column by default. For example, you might want a pie chart or other
kinds of graphics. Pyramid, Pie, or Funnel are just examples of available layouts that you
can examine by simply expanding the combo box. Series can be data bound, either manu-
ally or in code, for example assigning LINQ queries results or DataSets. The DataSource
property allows assigning data sources, and you can also specify what objects must be
bound to the X-axis (XValueMember) and to the Y-axis (YValueMembers). You can pick up

From the Library of Wow! eBook

ptg

677Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control
3

0

existing objects by simply opening the combo boxes. (Later in this chapter you see how to
data bind in code.) The X-axis and Y-axis can show only primitive types; generally you
leave the job of binding the most appropriate type to the .NET Framework, but you can
change the setting of the XValueType and YValueType property that are set to Auto by
default. Chart supports data binding from different data sources, summarized in the
following list:

. IEnumerable, IList and IListSource objects; this means also LINQ query results

. DataSets, DataView, and DataReader objects

. Arrays

. OleDbDataAdapter, OleDbCommand, SqlDataAdapter, and SqlCommand objects

You can perform data binding in code invoking several different methods. DataBindTable
automatically creates series starting from a table-like object (such as entity sets from Entity
Framework or DataTables) and performs simple binding for X and Y values where X has
the same name and no multiple Y values are allowed. DataBindCrossTable works similarly
but provides grouping functionalities allowing multiple Y values (as used in the code
example). The DataSource property and the DataBind method provide support for multi-
ple Y values and perform simple bindings, being also used by the Visual Studio Designer.
You can also perform data binding on specific points, invoking the Points.DataBind
method that provides the ability to provide different data sources for X and Y values and
multiple Y values. It is powerful and flexible but requires more work. For each series you
can specify a Label that contains text to be shown onto each item in the chart, a Tooltip
that contains text to be shown just when you pass with the mouse pointer over items in
the chart, and Legend that provides a description about the series. Another interesting
property for the Chart control is the Palette that provides different colors for the graph-
ics. At this point it is time to write code to populate your chart. You can also discover
some other interesting features while writing code.

Populating the Chart Control

Now we have to write code to show data in the Chart control. Imagine you want to get
the total cost that customers paid to your company for orders, divided by year. To accom-
plish this, we first need a custom class for storing the year and the total amount per year.
Add a new class to the project and name it CustomerData. The code for the new class is
the following:

Public Class CustomerData

Public Property TotalAmount As Decimal

Public Property Year As Integer

End Class

Then we can write the following LINQ query, which creates an IEnumerable(Of
CustomerData) (the custom class that was defined at the beginning of this section) and
that can be bound to the chart:

Function Query(ByVal CustomerID As String) As _

From the Library of Wow! eBook

ptg

678 CHAPTER 30 Creating Windows Forms 4.0 Applications

IEnumerable(Of CustomerData)

Dim result = From cust In northwind.Customers.Include(“Orders”)

Where cust.CustomerID = CustomerID

Join ordr In northwind.Orders.Include(“Order_Details”)

On ordr.CustomerID Equals cust.CustomerID

Let totalAmount =

Aggregate ord_det In ordr.Order_Details

Into Sum(ord_det.UnitPrice)

Select New CustomerData With {.TotalAmount = totalAmount,

.Year =

ordr.OrderDate.Value.Year}

Return result.AsEnumerable

End Function

Notice how the Let keyword allows declaring a temporary variable that is assigned with
another LINQ query, which returns the amount of price. The method receives a
CustomerID argument that filters orders depending on the specified customer. This method
needs to be invoked each time you select a different customer. To accomplish this, you
can handle the CurrentChanged event from the CustomersBindingSource object that is
raised every time you move between customers. In the event handler you need to get the
instance of the current customer that is provided by the CurrentItem property and then
invoke the Query method passing the CustomerID. The following code demonstrates this:

Private Sub CustomersBindingSource_CurrentChanged(ByVal sender As Object,

ByVal e As EventArgs) _

Handles CustomerBindingSource.

CurrentChanged

‘Get the instance of the current customer

Dim currentItem As Customer = CType(Me.CustomerBindingSource.Current,

Customer)

Dim source = Query(currentItem.CustomerID)

Try

‘Required to refresh the chart

Chart1.Series.Clear()

‘Groups by Year, shows the year on the X axis,

‘shows the total price on the Y axis, formats

‘the tooltip as currency

Chart1.DataBindCrossTable(source, “Year”,

“Year”,

“TotalAmount”,

From the Library of Wow! eBook

ptg

679Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control
3

0

“Tooltip=TotalAmount{C2}”)

Catch ex As Exception

End Try

End Sub

Notice how you need to clear the series before binding again; otherwise the chart will not
be correctly updated. The DataBindCrossTable method takes different arguments. The first
one is the data source, which is the query result. The second one is the member that the
result must be grouped by (Year). The third argument is the member that provides text for
items on the X-axis. In this case, each value of the Year property will be the X-axis text
for items in the chart. The fourth argument gives values to the Y-axis while the last
argument allows specifying additional properties at runtime. In this particular case the
Tooltip property for each series shows the total amount formatted as currency. You
specify formatting options between brackets. Basically with just this line of code you can
provide full data binding from your query result (or another data source) to the Chart
control. To complete the sample application, let’s provide code for exporting the graphic
to an image file. This is another great capability of the Chart control. Just add the follow-
ing event handler:

Imports System.Windows.Forms.DataVisualization.Charting

....
Private Sub ExportChartToolStripButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) _
Handles ExportChartToolStripButton.Click

With SaveFileDialog1

.Filter = “Jpeg files|*.jpg|Png files|*.png|” & _

“Bmp files|*.bmp|Tiff files|*.tiff|Gif files|*.gif”

.ShowDialog()

If String.IsNullOrEmpty(.FileName) = False Then
Me.Chart1.SaveImage(.FileName,

CType(.FilterIndex - 1, ChartImageFormat))
End If

End With

End Sub

The Chart control provides a SaveImage method that takes the target filename as the first
argument and a ChartImageFormat as the second argument. This is an enumeration that
summarizes available file formats and that are .NET supported formats. To simplify the
code, in this case the SaveFileDialog1.Filter string has been structured so that the re-
lated FilterIndex corresponds to the appropriate value in the ChartImageFormat. In this
way you can simply work on the FilterIndex instead to provide a conditional block to
understand what file format the user selected.

From the Library of Wow! eBook

ptg

680 CHAPTER 30 Creating Windows Forms 4.0 Applications

Running the Sample Application

You are ready to run the application. When you run it, you get a result similar to Figure
30.4. You can try to move between customers to see how the chart graphic will be
updated. You can also try to add and edit orders to complete CRUD operations. Finally
you can test exporting graphic to images.

Summary
This chapter presented information on Windows Forms in Visual Basic 2010 and .NET
Framework 4.0. Basically you saw how there are no differences in the Win Forms architec-
ture compared to the previous .NET versions, but you got an overview of how to imple-
ment Entity Data Models and the new Chart control. For this component you also got a
high-level overview. The sample application allows creating a master-details form that can
access data from the Northwind database and that shows a chart with data results.
Although still very used, Windows Forms is an obsolete technology for creating user inter-
faces. Subsequently you learn about the new fashion: Windows Presentation Foundation.

From the Library of Wow! eBook

ptg

CHAPTER 31

Creating WPF
Applications

IN THIS CHAPTER

. What Is WPF?

. WPF Architecture

. Building WPF Application with
Visual Studio 2010

. Understanding the eXtensible
Application Markup Language
(XAML)

. Understanding Visual Tree and
Logical Tree

. Handling Events in WPF

. Arranging Controls with Panels

. Managing Windows

. Introducing the Application
Object

. Brief Overview of WPF Browser
Applications

Over the years, the requirement for high-quality applica-
tions dramatically increased. Modern technologies enable
users to perform even more complex tasks; technology and
computers are a significant part of users’ lives. Computer
applications need to respond to such requests. The user
experience is something that cannot be disregarded
anymore, even if an application works perfectly on data
access. The more complex the task an application can
perform, the more important is the need of an interactive
user interface that enables the user to easily perform tasks
through the application. And this is something that is
strictly related to different kinds of applications: business
applications, home applications, and multimedia and enter-
tainment applications. For many years developers could
build user interfaces based on the Windows Forms, which
has been a good and important framework for creating user
experiences with the .NET technology. Windows Forms has
big limitations, especially if you need to create dynamic
interfaces or complex data-bindings. With the purpose of
providing a unified programming model for building
advanced user interfaces, being suitable for combining data
access, dynamic interfaces, multimedia, and documents
capabilities, Microsoft created the Windows Presentation
Foundation technology (WPF), which dramatically increases
developer productivity and also offers a great environment
for styling the application layout by a professional designer.
WPF combines in one framework all you need to build new
generation applications. If you are an experienced WPF
developer, maybe this chapter is just a quick recap for you.
If you are new to WPF, this and the following chapters give
you the basics for beginning to build modern applications
with Visual Basic 2010.

From the Library of Wow! eBook

ptg

682 CHAPTER 31 Creating WPF Applications

What Is WPF?
Windows Presentation Foundation, also referred to as WPF, is the most recent framework
from Microsoft for building user interfaces in desktop applications. WPF is not intended to
be a replacement for Windows Forms, whereas it can be considered as a revolutionary
alternative for building rich client applications. As explained in Chapter 30, “Creating
Windows Forms 4.0 Applications,” Windows Forms’ development will no longer be
continued in favor of WPF. Windows Presentation Foundation offers several advantages
that make user interface development straightforward. First, it is built on the top of the
Microsoft DirectX® graphic libraries, meaning that WPF applications can embed audio,
videos, pictures, animations, and 3D graphics, all in a .NET-oriented fashion, with few
lines of code. You can create rich client applications continuing to write Visual Basic code
as you are already used to doing. WPF takes advantage of the GPU support of a graphics
card, but it is also fully compatible with software rendering and can fall back on that
when a GPU is not available (although it is actually expensive in terms of performance).
Second, WPF has a powerful data-binding engine that makes it easier to build data-
oriented applications. Third, it provides a separation layer between the developer and the
designer so that professional designers can completely restyle the application’s layout with
specific tools, improving what the developer built. In my personal experience, many
developers are afraid of WPF because it completely changes the way developers built the
presentation layer of their applications. WPF completely changes the way you think of
your user interfaces but does not change the way you write Visual Basic code. Of course,
WPF has some big differences with Windows Forms in its architecture; therefore, you
necessarily need a different approach to some problems. As an example, WPF handles
events via the routed events that are completely different from the event infrastructure in
Windows Forms. You can handle events in WPF the same way you do in Windows Forms.
The way you write code is basically the same, on the top of different technologies. This is
the most important feature of the .NET Framework. WPF was first introduced in 2006 with
.NET Framework 3.0 and special extensions for Visual Studio 2005 extensions.

Improvements in WPF 4

Several improvements were introduced to WPF with .NET Framework 3.5 and Visual
Studio 2008; but with .NET Framework 4.0 and Visual Studio 2010, WPF reaches a high
level of productivity. You can now build applications with full Windows 7 support and
with multitouch features. The Visual Studio 2010 designer has been highly improved to
make your WPF experience even more straightforward (including the visual data-binding
new user controls such as the DataGrid). If you played with previous editions of WPF, you
may remember how the designer lacked some important features that were instead avail-
able in the Windows Forms Designer. Now lots of things have been fixed and improved so
that existing Windows Forms developers can move to WPF with more simplicity.

From the Library of Wow! eBook

ptg

683WPF Architecture

PERSONAL SUGGESTIONS ON APPROACHING WPF

I delivered several technical speeches on Windows Presentation Foundation, and one
thing I noticed is that lots of developers do not approach WPF correctly. This is
because the Internet is full of impressive demo applications with enhanced user inter-
faces and graphical experience and there are lots of presentation demos that are built
to show advanced WPF topics. Seeing a 3D application with animations is surely
impressive but can be quite frustrating if you try to reproduce it after a few days’ expe-
rience with WPF. Because of this, often developers do not continue studying WPF. The
best approach is instead to understand what one needs to work with WPF even if the
UI is not so impressive. When you know how user controls work and how they are built,
you can easily search within the MSDN library to make them nicer.

In the next sections you learn the foundations of WPF and learn about specific features of
this interesting technology.

NOTE

You may have noticed that this book dedicates just one chapter to Windows Forms
whereas five chapters are about WPF. This is not strange; this is why WPF is becoming
very popular among .NET developers and Microsoft is heavily investing in WPF for their
own applications. The same Visual Studio 2010’s code editor is built with WPF, and
most of the new IDE extensibility features take advantage of WPF. You need to learn
how WPF works so that you can be ready to move your existing WinForms applications
to WPF if your customer requires this or so that you can present innovative applications
to customers. This is a language-oriented book; therefore, covering every aspect of the
WPF technology is not possible. If you wish to learn more about the WPF technology,
consider windows Presentation Foundation Unleashed from Sams Publishing.

WPF Architecture
WPF relies on a layered architecture that is represented in Figure 31.1. The first layer is the
Windows operating system. The second layer is constituted by the combination of two
communicating layers: User32, which is the part of the operating system responsible for
exchanging messages with applications, and the DirectX libraries, which are the real
power of WPF. The next layer is named Milcore and is written in unmanaged code. It is
responsible for integrating the unmanaged area of the architecture with the managed
architecture that starts from the next layer, the Common Language Runtime, which is
basically the root of every managed activity or layer. The PresentationCore is the first WPF
layer that is responsible for implementing several important features such as the XAML
language (covered later) or the integration with media contents. The next layer is the
PresentationFramework, which is fundamental because it exposes all namespaces and
classes that developers can take advantage of for building applications (and that are also
utilized by Visual Studio when generating new projects).

3
1

From the Library of Wow! eBook

ptg

684 CHAPTER 31 Creating WPF Applications

PresentationFramework exposes namespaces and classes through a complex hierarchy of
inheritance, in which the root class is System.Object. The hierarchy provides the infra-
structure for the user interface elements. This hierarchy is composed of the following list
of classes, where each class inherits from the previous one:

. System.Object

. System.Threading.DispatcherObject

. System.Windows.DependencyObject

. System.Windows.Media.Visual

. System.Windows.UIElement

. System.Windows.FrameworkElement

. System.Windows.Controls.Control

The System.Threading.DispatcherObject is responsible for threading and messages that
WPF relies on. The dispatcher takes advantage of the User32 messages for performing cross
thread calls. The WPF architecture is also based on a complex properties infrastructure
that in most cases replaces methods and events. This is because a property-based architec-
ture is preferable for showing contents of UI controls and because they better integrate
with other development models. To provide this infrastructure, the WPF architecture
exposes the System.Windows.DependencyObject class that implements a common set of
properties for derived objects. The main capability of this class is keeping track of proper-
ties changes so that bound objects can automatically update their status according to
those changes. System.Windows.Media.Visual is responsible for the graphic rendering of
all elements belonging to the user interface, under the form of a tree (known as Visual
Tree that is covered later). System.Windows.UIElement adds other functionalities to the

FIGURE 31.1 Windows Presentation Foundation architecture.

From the Library of Wow! eBook

ptg

685Building WPF Applications with Visual Studio 2010

infrastructure, such as the ability to receive input from the user and other overridable
members. System.Windows.FrameworkElement is important, exposing special features of
WPF such as objects lifetime, styles, animations, and the data-binding engine. The last
class is System.Windows.Controls.Control that is basically the base class for WPF user
controls and that adds further functionalities that empower base controls and custom user
controls. Now that you have a basic knowledge of the WPF architecture, it is time to
create the first application.

Building WPF Applications with Visual Studio 2010
You create WPF applications in Visual Studio 2010 by selecting one of the available project
templates. WPF project templates are available in the Windows section of the New Project
window, as shown in Figure 31.2, and are summarized in Table 31.1.

3
1

FIGURE 31.2 Available project templates for WPF applications.

TABLE 31.1 WPF Project Templates

Template Description

WPF application Allows creating a WPF desktop application for Windows

WPF browser application Allows creating a WPF application that can be run within a Web
browser

WPF User Control Library Allows creating WPF user controls

WPF Custom Control
Library

Allows redefining WPF controls at code level

From the Library of Wow! eBook

ptg

686 CHAPTER 31 Creating WPF Applications

This chapter shows you WPF in action with a desktop Windows application. Select the
WPF application template and name the new project WPFDemo_Chapter31. After a few
seconds, the IDE displays, as shown in Figure 31.3.

As you can see, things are a little different from a Windows Forms project. In the upper
side of the IDE you can see the designer showing the main window of the new applica-
tion. On the left side there is the Toolbox; this is a tool that you already understand and
that contains specific WPF controls. In the lower side of the IDE, there is a special code
editor for the eXtensible Application Markup Code (simply known as XAML, pronounced
as ZAMEL) that you must know as a WPF developer. The next section describes XAML and
explains how it works. In Solution Explorer you can see a new kind of files, with the .xaml
extension. Each .Xaml file can represent a window, control (or set of controls), or set of
resources. For each .Xaml file there is a Visual Basic code-behind file (with a .xaml.vb
extension) that you can access by simply expanding the filename. The reason for this
separation between the .Xaml file and the .Xaml.vb file is part of a key concept in the
WPF development, which is the separation of roles between developers and designers that
is described better in the next section.

FIGURE 31.3 The IDE is ready on a new WPF project.

From the Library of Wow! eBook

ptg

687Understanding the eXtensible Application Markup Language (XAML)
3

1

MY PROJECT

WPF applications enable you to take advantage of the My Project designer similarly to
other kinds of client applications. If you examine the window, you see these similari-
ties, and you also see how different options are self-explanatory.

Understanding the eXtensible Application Markup
Language (XAML)
In Windows Presentation Foundation applications, the user interface is defined via the
eXtensible Application Markup Language, also referred to as XAML, which is a markup
language that allows defining the interface in a declarative mode and that derives from
the XML language. This markup language is revolutionary because it allows separating the
roles of designers and developers. Professional designers can style the application’s layout
by using specific tools that allow generating and editing XAML without the need of
knowing the programming fundamentals, leaving unchanged the code that empowers the
application.

NOTE ON DESIGNER TOOLS

Designers typically use professional tools such as Microsoft Expression Blend for
styling WPF and Silverlight applications. Because this book’s focus is developer-orient-
ed, the usage of Expression Blend for manipulating XAML is covered, whereas the
focus is on what you do need to know as a developer from within Visual Studio 2010.

This discussion provides an explanation that for each .Xaml file there is a VB code-behind
file. The .Xaml file contains XAML code that defines the user interface, whereas the
.Xaml.vb code-behind file contains Visual Basic code that makes the user interface alive
with the rest of the application. XAML logic is simple: Each Xml element represents a user
control, whereas each Xml attribute represents a property to a control. Because of the
special Xml syntax, XAML refers to a specific Xml schema for WPF controls.

XAML AND SILVERLIGHT

You need to learn how XAML works if you are also interested in developing rich Internet
applications with Microsoft Silverlight. As explained in Chapter 39, “Building Rich
Internet Applications with Silverlight,” Silverlight is also based on XAML for the UI side.

Now take a look at Listing 31.1 that simply contains the code generated by Visual Studio
2010 when a new project is created.

From the Library of Wow! eBook

ptg

688

LISTING 31.1 XAML Default Code for a WPF project

<Window x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”MainWindow” Height=”240” Width=”500”>

<Grid>

</Grid>

</Window>

In WPF applications every window is wrapped by a System.Windows.Window control. The
root element in the XAML code is a Window element. The x:Class attribute (which is actu-
ally a property) points to the Visual Basic class that handles the Window on the runtime
side. The Title property simply contains text shown on the window’s title bar. Width and
Height are self-explanatory properties that define the window’s size. Also notice how Xml
schemas are imported via xmlns tags; such schemas have two purposes: enabling
IntelliSense in the XAML code editor and ensuring that only valid elements are used in
the XAML code. Grid is one of the WPF panels. Different from Windows Forms, user
controls in WPF are arranged within panels; the last part of this introduces them better. By
the way, now you understand better what was explained at the beginning of this section:
In XAML every element (except for resources) represents a control with properties (attrib-
utes). XAML offers a hierarchical organization of controls. For example a Window can
contain one or more panel that can contain other panels that can contain controls, and so
on. This hierarchical logic is straightforward because it enables great customizations of the
interface, as you see in this chapter and subsequent ones. As previously stated, the XAML
editor fully supports IntelliSense. You can check this out by simply writing code, as
demonstrated in Figure 31.4.

CHAPTER 31 Creating WPF Applications

FIGURE 31.4 The XAML code editor fully supports IntelliSense.

From the Library of Wow! eBook

ptg

689Understanding the eXtensible Application Markup Language (XAML)
3

1

You are not obliged to manually type XAML code to design your user interface. Every time
you drag a control from the Toolbox onto the designer, Visual Studio generates the related
XAML code for you. In some circumstances manually editing the XAML code is a good
task to fix a controls’ position. Moreover, although initially writing XAML can seem
annoying, when you understand its hierarchical logic, it becomes straightforward, also due
to IntelliSense. Generally what you perform manually writing XAML can be accomplished
with the design tools.

Declaring and Using Controls with the Designer and XAML

To add controls to the user interface, you have two possibilities: dragging controls from
the Toolbox onto the designer surface and manually writing XAML. For a better under-
standing, we first show how to drag from the Toolbox. With the Toolbox open, click the
Button control and drag it onto the designer. When you release it, the IDE should look
like Figure 31.5.

As you can see from Figure 31.5, Visual Studio also generates the XAML code for the
controls you add to the UI. For the new button, this is the XAML code generated:

<Button Content=”Button” Height=”23”

HorizontalAlignment=”Left”

FIGURE 31.5 Dragging controls and generating XAML.

From the Library of Wow! eBook

ptg

690 CHAPTER 31 Creating WPF Applications

Margin=”90,84,0,0” Name=”Button1”

VerticalAlignment=”Top” Width=”75” />

Confirming that each control is represented as an Xml element, the most interesting prop-
erties here are Name, which assigns an identifier to the control, and Content, which stores
the control’s content. To manage your controls you now have two choices: editing its
XAML code or using the Properties window, which is represented in Figure 31.6.

If you are not familiar with WPF, probably you can find lots of properties that you do not
know yet. You can learn most of these properties in this book and in your further studies;
what it is important here is to understand how the designer allows taking control of the
UI members. The Properties window for WPF controls also offers a special tab that you can
enable by clicking the Events button (in the upper side of the tool window) and that
enables associating event handlers to each event exposed by that specific control (see
Figure 31.7). Obviously event handlers are written in Visual Basic code; the next section
explains how you handle events.

Declarative and Imperative Modes
Writing (or letting Visual Studio to generate) XAML code is known as declarative mode.
This is because XAML simply allows declaring elements required by the user interface but
does not allow them taking actions. By the way, an important statement is that with

FIGURE 31.6 Managing controls with the Properties window.

From the Library of Wow! eBook

ptg

691Understanding the eXtensible Application Markup Language (XAML)
3

1

FIGURE 31.7 The Properties window allows selecting event handlers. Simply click on the
combo near the desired event and pick an event handler.

Visual Basic (or Visual C# as well) you can do anything you do in XAML, meaning that
you can declare user interface elements in Visual Basic code and add them to the user
interface at runtime. Moreover, managing controls with Visual Basic allows them taking
actions. This is the imperative mode. For a better explanation, consider the following XAML
code that declares a simple button:

<Button Content=”Button” Height=”30”

Name=”Button1”

Width=”100”/>

The same thing can be also accomplished in Visual Basic. The following code demon-
strates this:

Dim Button1 As New Button

With Button1

.Width = 100

.Height = 30

.Content = “Button1”

End With

Me.Grid1.Children.Add(Button1)

From the Library of Wow! eBook

ptg

692 CHAPTER 31 Creating WPF Applications

The difference is that in Visual Basic you need to explicitly add your control to a panel in
the user interface.

Understanding Visual Tree and Logical Tree
When talking about WPF applications, you will often hear about the Logical Tree and the
Visual Tree. The Logical Tree is basically a tree representation of the .NET classes for user
interface controls. Consider the following XAML code:

<Window>

<StackPanel Orientation=”Horizontal” Margin=”5”>

<TextBlock Text=”Sample controls” Margin=”5”/>

<Button Content=”Test button” Margin=”5”/>

</StackPanel>

</Window>

This code makes use of .NET objects within a hierarchical structure that can be refigured
in a Logical Tree, as shown in Figure 31.8.

FIGURE 31.8 The Logical Tree provides a hierarchical view of the UI elements.

From the Library of Wow! eBook

ptg

693Understanding Visual Tree and Logical Tree
3

1

Starting from Visual Studio 2008 SP 1, you can investigate the Logical Tree in a more
convenient way, with the Document Outline tool window (you find it in View, Other
Windows) that provides a hierarchical view of the interface with previews (see Figure 31.9).

The Visual Tree is a little bit more complex concept that is important. As explained in the
next chapters, WPF controls are the result of the aggregation of primitive elements, and
they can be completely redefined with control templates. For example, a default Button is
made of Chrome, ContentPresenter, and TextBlock controls. The combination of these
elements creates a Visual, which represents a visual element in the user interface. The
Visual Tree is thus the representation of all the visual elements in the UI that are rendered
to the screen, plus their components. Consider the following simple XAML:

<StackPanel Orientation=”Horizontal” Margin=”5”>

<Button Content=”Test button” Margin=”5”/>

</StackPanel>

The visual tree representation is reported in Figure 31.10.

FIGURE 31.9 Investigating the Logical Tree with the Document Outline tool.

From the Library of Wow! eBook

ptg

694 CHAPTER 31 Creating WPF Applications

Understanding the Visual Tree is important for understanding another key concept in the
WPF development, routed events, which are described just after introducing how you
handle events in WPF.

Handling Events in WPF
You handle events in WPF the same way you do in other kinds of applications: You code a
Visual Basic event handler and associate the handler to a control event. What actually
changes is the way you assign the handler to the event. For example you can assign an
event handler to a control event directly within the XAML code editor. To accomplish this
you simply type the name of the event you want to handle (events are recognizable
within IntelliSense with the Lightning icon) and then press Tab when IntelliSense shows
the <New Event Handler> pop-up command (see Figure 31.11 for details).

This generates an event handler stub in your code-behind file. Continuing the example of
the previous button, Visual Studio first assigns a new identifier to the Click event in
XAML, which looks like this:

Click=”Button1_Click”

As you can see, the IDE generates the event handler’s identifier considering the control’s
name. Now right-click the event handler’s name and select the Navigate to Event

FIGURE 31.10 The Visual Tree representation for UI elements.

From the Library of Wow! eBook

ptg

695Handling Events in WPF
3

1

FIGURE 31.11 Generating a new event handler with IntelliSense.

Handler command from the pop-up menu. This redirects to the Visual Basic event
handler generated for you, which looks like this:

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

End Sub

It is worth mentioning two aspects. The first one is that the event handler signature
requires an e argument of type RoutedEventArgs. WPF introduces the concept of routed
events that is covered in the next section. The second one is that in this case there is no
Handles clause. This is because the IDE added an AddHandler instruction behind the
scenes in the Window1.g.vb file (which is generated at compile time). Notice that such a
file name depends on the current Window name, in this case Window1. As an alternative
you can specify the Handles clause the same way you would do in other kinds of applica-
tions, but in this case you must not specify the event handler in XAML, to avoid an event
being caught twice. You can also double-click a control in the designer to generate an
event handler for the default event. For example, a button’s default event is Click, so
double-clicking a button in the designer generates an event handler stub for handling the
Click event. The default event for a TextBox control is TextChanged, so double-clicking a
text box generates an event handler stub for the TextChanged event, and so on. When you
add event handlers by double-clicking controls, such handlers use the Handles clause on
the method name. As previously mentioned, the last alternative is to assign an existing
event handler to a control’s event with the Properties window.

A More Thorough Discussion: Introducing the Routed Events

WPF introduces a revolutionary way to generate and handle events, known as routed
events. When a user’s interface element generates an event, the event passes along through
the entire Visual Tree, rethrowing the event for each element in the tree. The WPF
runtime can then understand what element first generated the event that is the actual
handled event. Event handlers whose job is managing a routed event must include an
object of type System.Windows.RoutedEventArgs in their signature. For a better under-
standing, consider the following basic XAML code that simply implements three buttons:

<StackPanel Button.Click=”OnClick”>

<Button Width=”100” Height=”30”

Content=”Button One” Name=”Button1” />

From the Library of Wow! eBook

ptg

696 CHAPTER 31 Creating WPF Applications

<Button Width=”100” Height=”30”

Content=”Button Two” Name=”Button2” />

<Button Width=”100” Height=”30”

Content=”Button Three” Name=”Button3” />

</StackPanel>

Notice how no event handler is specified for buttons, whereas a unique handler is speci-
fied within the StackPanel definition taking advantage of the Button.Click attached
event. This allows establishing one event handler for each button in the StackPanel’s chil-
dren. In the code-behind file, write the following handler:

Private Sub OnClick(ByVal sender As Object, ByVal e As RoutedEventArgs)

Dim element As FrameworkElement = CType(e.Source,

FrameworkElement)

Select Case element.Name

Case Is = “Button1”

MessageBox.Show(“You clicked Button1”)

Case Is = “Button2”

MessageBox.Show(“You clicked Button2”)

Case Is = “Button3”

MessageBox.Show(“You clicked Button3”)

End Select

End Sub

Thanks to routed events, we can write just one common handler. To get the instance of
the element that actually generated the event, you need to convert the e.Source property
(which is of type Object) into the appropriate type. In this case the conversion could be
with a Button type, but FrameworkElement is utilized to include different kinds of
elements or controls. This is because with routed events you can intercept events from
each element in the Visual Tree (such as the ContentPresenter for buttons), thus not only
user controls.

Introducing Routing Strategies: Direct, Tunneling, and Bubbling
Routed events are implemented according to three modes, known as routing strategies.
Strategies are implemented by the System.Windows.RoutingStrategy enumeration and
can be summarized as follows:

. Direct: The event is generated directly against the target object. This is what usually
happens in other kinds of .NET applications, such as Windows Forms, and is the
most uncommon strategy in WPF.

. Tunnel: In the tunneling strategy, an event is generated from the root object and
passes through the entire Visual Tree until getting to the target object.

. Bubble: The bubbling strategy is opposite to the tunneling one, meaning that an
event starts from the target object and passes back through the Visual Tree.

From the Library of Wow! eBook

ptg

697Arranging Controls with Panels
3

1

In most cases, such as the preceding code example, you face tunneling routed events or
bubbling ones. Offering a thorough discussion on routed events is beyond the scope of
this chapter; you can refer to the MSDN official page that you can find at
http://msdn.microsoft.com/en-us/library/ms742806(VS.100).aspx.

Arranging Controls with Panels
WPF changes the way you arrange controls on the user interface. This is because one goal
of WPF is to provide the ability to create dynamic interfaces that can be rearranged
according to the user’s preferences or when the user resizes the interface. Because of this,
WPF controls are arranged within special containers, known as panels. WPF provides
several panels, each allowing different arrangement possibilities. This is different from
Windows Forms where you simply place controls on the user interface, but the controls
are not flexible. Although there is the availability of some kinds of panels, Windows
Forms panels are not as versatile as WPF panels. In this section you learn about WPF
panels and how you use them to arrange controls. The most important thing that you
have to keep in mind is that WPF controls have a hierarchical logic; therefore, you can
nest multiple panels to create complex user experiences. Panels are all exposed by the
System.Windows.Controls namespace from the PresentationFramework.dll assembly.

The Grid Panel

The Grid is one of the easiest panels to understand in WPF. It basically allows creating
tables, with rows and columns. In this way you can define cells and each cell can contain
a control or another panel storing nested controls. The Grid is versatile in that you can
just divide it into rows or into columns or both. The following code defines a Grid that is
divided into two rows and two columns:

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

</Grid.ColumnDefinitions>

</Grid>

RowDefinitions is basically a collection of RowDefinition objects, and the same is for
ColumnDefinitions and ColumnDefinition. Each item respectively represents a row or a
column within the Grid. You can also specify a Width or a Height property to delimit row
and column dimensions; if you do not specify anything, both rows and columns are
dimensioned at the maximum size available, and when resizing the parent container, rows
and columns are automatically rearranged. The preceding code simply creates a table with

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms742806(VS.100).aspx

ptg

698 CHAPTER 31 Creating WPF Applications

four cells. The Visual Studio 2010 Designer offers a convenient way for designing rows and
columns. When the cursor is within the Grid definition in the XAML code editor or when
the Grid has the focus in the designer, you simply use the Rows and Columns properties in
the Properties window. Figure 31.12 shows how you add columns to the Grid and how
you can set properties for each column. Adding rows works exactly the same.

To place controls in the Grid, you specify the row and column position. The following
code places two buttons, the first one in the upper-left cell and the second one in the
upper-right cell:

<Button Width=”100” Height=”50” Grid.Column=”0”

Grid.Row=”0” Name=”Button1” Content=”First button”/>

<Button Width=”100” Height=”50” Grid.Column=”1”

Grid.Row=”0” Name=”Button2” Content=”Second button”/>

To place controls, you select the column via the Grid.Column property, whose index is
zero-based, meaning that 0 is the first column from the left. This kind of property is
known as attached property and allows setting a property of a parent container from within
the current object. Specifying the row works similarly, in that you assign the row via the
Grid.Row attached property. The property’s index is also zero-based, meaning that 0 repre-
sents the first row from the top. You can also place nested containers within a cell or a
single row or column. The following code shows how to nest a grid with children control
into a single cell:

<Grid Grid.Row=”1” Grid.Column=”0”>

<Grid.ColumnDefinitions>

<ColumnDefinition />

FIGURE 31.12 Adding columns with design tools.

From the Library of Wow! eBook

ptg

699Arranging Controls with Panels
3

1

<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Button Width=”50” Height=”50” Grid.Column=”0”

Grid.Row=”0” Name=”Button3” Content=”Button3”/>

<Button Width=”50” Height=”50” Grid.Column=”1”

Grid.Row=”0” Name=”Button4” Content=”Button4”/>

</Grid>

If you run the code shown in this section, you get the result shown in Figure 31.13 that
gives you an idea on how controls are can be placed within a Grid.

SHOWING GRID LINES

Grid lines are not shown by default. To make them visible, add a ShowGridLines prop-
erty to the Grid element and set its value to True.

PERSONAL SUGGESTION

Each time you study a WPF container, try to resize the application windows or controls
so that you can get a good idea of how panels work.

FIGURE 31.13 Arranging controls within a Grid.

From the Library of Wow! eBook

ptg

700 CHAPTER 31 Creating WPF Applications

The StackPanel Panel

The StackPanel panel allows placing controls near each other, as in a stack that can be
arranged both horizontally and vertically. As with other containers, the StackPanel can
contain nested panels. The following code shows how you can arrange controls horizon-
tally and vertically. The root StackPanel contains two nested panels:

<StackPanel Orientation=”Vertical”>

<StackPanel Orientation=”Horizontal” Margin=”5”>

<TextBlock Text=”Sample controls” Margin=”5”/>

<Button Content=”Test button” Margin=”5”/>

</StackPanel>

<StackPanel Orientation=”Vertical” Margin=”5”>

<TextBlock Text=”Sample controls” Margin=”5”/>

<Button Content=”Test button” Margin=”5”/>

</StackPanel>

</StackPanel>

The Orientation property can be set as Horizontal or Vertical, and this influences the
final layout. One of the main benefits of XAML code is that element names and properties
are self-explanatory, and this is the case of StackPanel’s properties, too. Remember that
controls within a StackPanel are automatically resized according to the orientation. If you
do not like this behavior, you need to specify Width and Height properties. If you run this
code, you get the result shown in Figure 31.14.

If you want to provide a dynamic user interface, you need to take care of some considera-
tions. If you do not provide static Width and Height values, your controls will be resized

FIGURE 31.14 Arranging controls within StackPanels.

From the Library of Wow! eBook

ptg

701Arranging Controls with Panels
3

1

along with the StackPanel, which also automatically adapts to its parent container.
Alternatively, controls arranged within a StackPanel are not resized, but they have the
limitation of being hidden when decreasing the parent’s container size, as better repre-
sented in Figure 31.15.

If you predict that your application may encounter such a situation, you should imple-
ment a WrapPanel panel, which is covered in the next subsection.

The WrapPanel Panel

The WrapPanel container basically works like StackPanel, but it differs in that it can
rearrange controls on multiple lines in the interface so that they are never hidden. Figures
31.16 and 31.17 show how the WrapPanel allows rearranging controls when resizing the
parent container (a Window, in our examples).

FIGURE 31.15 Resizing fixed controls within a StackPanel causes them to be hidden.

FIGURE 31.16 WrapPanel arranges controls similarly to the StackPanel.

From the Library of Wow! eBook

ptg

702 CHAPTER 31 Creating WPF Applications

In code terms, the panel is represented by a WrapPanel element in XAML. The following
code reproduces what you saw in the previous figures:

<WrapPanel>

<TextBlock Text=”WrapPanel test” Margin=”5”/>

<Button Width=”140” Height=”30” Content=”Test Button”

Margin=”5”/>

<TextBlock Text=”Second test” Margin=”5”/>

</WrapPanel>

The VirtualizingStackPanel Control
There are situations in which you need to show a big number of elements in your user
interface. This is the case of the DataGrid or ListBox controls, which can display
hundreds of elements within a single control. This would of course heavily affect the
application performances if you were using a classic StackPanel, which would simply
show all the available items. The VirtualizingStackPanel control offers a valid alterna-
tive that can calculate how many items can appear in a particular moment and then
arranges controls according to the calculation result. Generally you do not need to imple-
ment the VirtualizingStackPanel manually (it is the default item template of data
controls) but, if you need to, you simply write the following definition:

<VirtualizingStackPanel>

<!—Nest controls here...—>

</VirtualizingStackPanel>

This kind of panel works like the StackPanel, with the previously described difference.

FIGURE 31.17 WrapPanel rearranges controls dynamically making them
always visible, as if they were implemented line by line.

From the Library of Wow! eBook

ptg

703Arranging Controls with Panels
3

1

The Canvas Panel

Most WPF containers allow the dynamic rearrangement of controls within the user inter-
face. This is useful when you want your user to adjust interface settings, but it can
complicate things when you need to place controls in a fixed, unchangeable place (as
basically happens in Windows Forms). To accomplish this you use the Canvas container,
which allows absolute placement, meaning that it allows specifying the position of
nested controls. When you place controls into a Canvas container, you specify the
absolute position with some attached properties: Canvas.Left, Canvas.Top, Canvas.Right,
and Canvas.Bottom. The following code shows how you place a button that never
changes its position in the user interface, thanks to the Canvas.Left and Canvas.Top
attached properties:

<Canvas>

<Button Width=”100” Height=”50” Content=”Test Button”

Canvas.Left=”30” Canvas.Top=”50”/>

</Canvas>

The DockPanel Panel

The DockPanel container has some similarities with the StackPanel in that it allows
arranging child controls near each other. The main difference in DockPanel is that child
controls are docked to the panel sides according to the direction you specify, and also they
are docked to each other and you can establish the position and size for each child
control. The most common usage of the DockPanel panel is creating interfaces for placing
menus and toolbars. The following example shows how you can dock multiple toolbars
and their buttons within a DockPanel:

<DockPanel VerticalAlignment=”Top”

LastChildFill=”True”>

<ToolBar DockPanel.Dock=”Top”

Name=”MainToolbar” >

<Button Content=”First Button”/>

<Button Content=”Second Button”/>

</ToolBar>

<ToolBar DockPanel.Dock=”Top”

Name=”NextToolbar” >

<Button Content=”First Button”/>

<Button Content=”Second Button”/>

</ToolBar>

</DockPanel>

From the Library of Wow! eBook

ptg

704 CHAPTER 31 Creating WPF Applications

You set the DockPanel orientation by specifying either the VerticalAlignment property or
HorizontalAlignment. The LastChildFill is a property that indicates whether child
controls must completely fill the available blank space in the container. Notice how
within child controls (such as the Toolbars) you specify the docking position by taking
advantage of an attached property named DockPanel.Dock, whose value indicates where
the control must be docked within the DockPanel. This is because child controls are not
limited to being docked into one side of the panel but can be docked into any of the four
sides. The preceding code produces the result shown in Figure 31.18.

The ViewBox Panel

The ViewBox panel allows adapting nested controls to its size, including the content of
controls. For example, consider the following code:

<Viewbox>

<Button Width=”150” Height=”75”>

ViewBoxed button

</Button>

</Viewbox>

You immediately notice how the button’s text is expanded to best fit the button size. This
also happens if you decrease or increase the window size, as demonstrated in Figure 31.19.

In a few words, the ViewBox allows resizing controls and their content.

Managing Windows
WPF allows managing windows similarly to Windows Forms, although there are some
obvious differences, such as the fact that WPF windows can be considered as the root
container for all other child panels when arranging UI elements. Whatever way you

FIGURE 31.18 Docking controls within a DockPanel.

From the Library of Wow! eBook

ptg

705Managing Windows
3

1

FIGURE 31.19 The ViewBox panel in action.

decide to apply windows properties, at design time such properties are addressed in XAML
code, but you are also allowed to set them at runtime in Visual Basic code. Available prop-
erties allow establishing the window startup position, its resize mode, its appearance on
the task bar, and so on. Table 31.2 summarizes the most important available properties.

TABLE 31.2 Window’s Properties

Name Description

Title Specifies text for the window title bar

WindowStartupLocation Specifies the position for the window when it is first loaded (can be
Manual, CenterScreen, or CenterOwner)

WindowState Specifies the window state when loaded (can be Normal, Maximized,
or Minimized)

WindowStyle Specifies the window layout style (None, SingleBorderWindow,
ThreeDBorderWindow, or ToolWindow)

TopMost Makes the window always visible on top

ShowInTaskBar Makes the window title visible in the operating system task bar

Background Allows specifying a brush for the background color (see Chapter 33.,
“Brushes, Styles, Templates, and Animations in WPF”)

BorderBrush Specifies a color or brush for the Window border

BorderThickness Specifies how huge the border is

From the Library of Wow! eBook

ptg

706 CHAPTER 31 Creating WPF Applications

You can take advantage of the Properties tool window for setting the previously
mentioned properties at design time. The following XAML code snippet shows how you
can set some window properties:

<!— The following code sets the Window as Maximized,

its startup position at the center of the screen,

its style as a Window with 3D borders and keeps it

always on top. It also replaces the default title—>

<Window x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”Chapter 31 demonstration” Height=”240” Width=”500”

WindowStartupLocation=”CenterScreen”

WindowState=”Maximized” WindowStyle=”ThreeDBorderWindow”

Topmost=”True”>

</Window>

This is what you do at design time. The same result can be accomplished in managed code
as follows:

’Me is the current Window

With Me

.Title = “Chapter 31 demonstration”

.WindowStartupLocation = Windows.WindowStartupLocation.

CenterScreen

.WindowState = Windows.WindowState.

Maximized

.WindowStyle = Windows.WindowStyle.

ThreeDBorderWindow

.Topmost = True

End With

To add additional Window objects to your project you simply select the Project, Add
Window command and assign the filename in the New Item dialog. Remember that every
Window in the project inherits from System.Windows.Window. When you have multiple
windows in your project, you can also establish which of them must be the startup object.
To accomplish this, go to My Project and select the new window in the Startup URI
combo box. Figure 31.20 shows how to accomplish this.

The window is specified via the related XAML file address (Uri).

Instantiating Windows at Runtime

Creating and displaying windows at runtime is a common task in every client application.
To accomplish this you simply create an instance of a System.Windows.Window and then
invoke the Show or ShowDialog methods, depending if the Window must be considered a

From the Library of Wow! eBook

ptg

707Introducing the Application Object
3

1

FIGURE 31.20 Selecting a different Window as the startup object.

modal dialog or not. The following Visual Basic code demonstrates how you create and
show a new Window:

Dim aWindow As New Window

‘Set your Window properties here...

aWindow.ShowDialog()

‘....

aWindow.Close()

In the preceding code a new Window is generated from scratch, so this requires specifying
all properties. In most cases you can instead create and show instances of existing
windows that you implemented at design time; for this, in the above code you just replace
Window with the name of your custom window. Basically this works the same as Windows
Forms, although all the backend technology is completely different. This approach helps
you when moving your Windows Forms applications to WPF.

Introducing the Application Object
As for Windows Forms, WPF also provides an Application class that allows interacting
with your application instance. The class exposes several methods and properties that
generally allow getting or assigning settings available within My Project. First, you need to

From the Library of Wow! eBook

ptg

708 CHAPTER 31 Creating WPF Applications

get the instance of the running application. You accomplish this by assigning the
Application.Current property to a variable as follows:

Dim myApp As Application = CType(Application.Current, Application)

When you get the instance of the application, you can get or set required information.
The following code shows how you can retrieve the startup Uri (which corresponds to
the startup object referred to a XAML file), the main application window, and assembly
information:

’Gets the startup object under the form of a XAML file

Dim startupObject As Uri = myApp.StartupUri

‘Gets (but also allows setting) the application main window

Dim mainWindow As Window = myApp.MainWindow

‘Get assembly information

With myApp.Info

Dim companyName As String = .CompanyName

Dim appName As String = .ProductName

‘get other info here...

End With

The Application class does not directly expose a Close method as instead happens in
Windows Forms. If you want to programmatically shut down your application, you invoke
the Current.Close shared method as follows:

Application.Current.Shutdown()

Table 31.3 summarizes the most important members of the Application class.

TABLE 31.3 Application Class’s Most Important Members

Member Type Description

Current Property Returns the instance of the running application.

Dispatcher Property Returns the instance of the Dispacther for the current application.
The Dispatcher is responsible for managing threads.

FindResource Method Searches for the specified resource (which is generally at XAML
level).

Info Property Returns a collection of assembly information.

LoadComponent Method Loads a XAML file from the specified Uri and then converts the
resulting object into an instance that is added to the application.

Main Method The application entry point.

From the Library of Wow! eBook

ptg

709Introducing the Application Object
3

1

TIP

Chapter 20, “The My Namespace,” discussed the My namespace. WPF applications pro-
vide a special extension of My that allows interacting with the application simply by
invoking the My.Application property.

The Application class is also important for another reason: It contains the entry point
(that is, the Sub Main) that effectively runs your application and is the place where you
control application events, such as the startup or the shutdown. This class is implemented
as a partial class. In Solution Explorer you can find the Application.Xaml file that can
store application-level resources; the file has a code-behind counterpart named
Application.Xaml.vb where you can write code that influences the entire application
instead of single elements of the user interface. The following code shows how you can
handle the Startup and Exit events that represent the initial and final moments of the
application lifetime:

Class Application

‘ Application-level events, such as Startup, Exit,

‘ and DispatcherUnhandledException

‘ can be handled in this file.

Private Sub Application_Startup(ByVal sender As Object,

ByVal e As System.Windows.

StartupEventArgs) _

Handles Me.Startup

MessageBox.Show(“Application is starting up”)

End Sub

MainWindow Property Returns the instance of the Window object that is first run at startup.

Resources Property Returns a collection of resources.

Run Method Runs a WPF application.

Shutdown Method Shuts down the application.

ShutdownMode Property Gets or sets how an application must shut down.

StartupUri Property Returns the Uri of the XAML file that is loaded at startup.

Windows Property Returns a collection of Window objects that have been instantiated in
the application.

TABLE 31.3 Continued

Member Type Description

From the Library of Wow! eBook

ptg

710 CHAPTER 31 Creating WPF Applications

Private Sub Application_Exit(ByVal sender As Object,

ByVal e As System.Windows.ExitEventArgs) _

Handles Me.Exit

MessageBox.Show(“Application is closing”)

End Sub

End Class

Generally you use the Application class for controlling specific moments in the lifetime;
when you instead need to set application properties, the best choice is opening the My
Project designer.

Brief Overview of WPF Browser Applications
Since the first version of WPF, developers have been allowed to build applications that can
run within a web browser, such as Microsoft Internet Explorer or Mozilla Firefox. This
kind of applications is named WPF Browser Applications (formerly known as Xaml
Browser Applications) or simply XBAP. There are several differences between a client appli-
cation and an XBAP; first, Browser Applications can be only executed online (from the
Internet or an intranet). Second, they are executed with the limitations of the Internet
Zone of the .NET Framework’s Code Access Security rules. Because of this, Browser
Applications cannot perform several tasks. The main advantage is instead that, keeping in
mind the previously mentioned limitations), you can use the same programming model.

CHOOSE SILVERLIGHT

WPF Browser Applications were first introduced when the real Web counterpart of WPF,
Silverlight, was not at today’s levels. Silverlight is the real .NET offering for creating rich
Internet applications, with both multimedia and business capabilities. You should
absolutely prefer Silverlight applications to Browser Applications. Browser Applications
are kept for compatibility reasons, but situations where you should use them are limit-
ed. If your company needs an online application with WPF capabilities but with a small
number of functionalities, Browser Applications could do well, but Silverlight provides a
full-featured environment for each kind of rich web application.

You create an application of this kind by selecting the WPF Browser Application project
template from the New Project window. Then, create a new Browser Application naming
the project WpfBrowserApplication_Chapter31. When the project is ready, you soon
notice another difference from classic WPF applications. In the XAML code editor, you
can see how the root object is now a Page instead of a Window. This is required for applica-
tions to work within a web browser. The second difference you can notice is the presence
of a strong name file (with .pfx extension) in Solution Explorer. This is required because of
the CAS rules. At this point we can implement some features to see the application in
action. The goal of the example is to create an application that can validate an email
address showing the validation result. Listing 31.2 shows the user interface implementa-
tion, which is simple.

From the Library of Wow! eBook

ptg

711Brief Overview of WPF Browser Applications
3

1

LISTING 31.2 Defining the XBAP’s Interface

<Page x:Class=”Page1”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

mc:Ignorable=”d”

d:DesignHeight=”300” d:DesignWidth=”300”

Title=”Page1”>

<StackPanel>

<Label Content=”Enter the e-mail address to validate:” Margin=”5”/>

<TextBox Name=”MailTextBox” Margin=”5”/>

<Button Width=”100” Height=”30” Content=”Validate” Margin=”5”

Name=”Button1” />

</StackPanel>

</Page>

On the Visual Basic side, we need to implement a method that validates the user input
and an event handler for the button’s Click event. Code in Listing 31.3 shows how to
accomplish this.

LISTING 31.3 Providing Actions for the XAML Browser Application

Imports System.Text.RegularExpressions

Class Page1

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles Button1.Click

If String.IsNullOrEmpty(Me.MailTextBox.Text) = True Then Exit Sub

MessageBox.Show(“Is a valid address: “ & IsValidEMail(Me.MailTextBox.Text))

End Sub

Function IsValidEMail(ByVal EMailAddress As String) _

As Boolean

Dim validateMail As String = _

“^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.)” & _

“|(([\w-]+\.)+))([a-zA-z]{2,4}|[0-9]{1,3})(\]?)$”

Return Regex.IsMatch(EMailAddress, _

From the Library of Wow! eBook

ptg

712 CHAPTER 31 Creating WPF Applications

validateMail)

End Function

End Class

Simply notice how you handle a routed event the same way you would in a Windows
application. The IsValidEmail method is something already explained in this book that
makes use of regular expressions for validation. If you run the application, you get the
result shown in Figure 31.21.

When the application is launched from the Visual Studio debugger, the default web
browser is launched pointing to the application.

XBAP DEPLOYMENT

Deploying an XBAP is a task that you should perform through ClickOnce. This technolo-
gy, that will be covered in Chapter 55, “Deploying Applications with ClickOnce,” is per-
fect for this purpose for some reasons: It can deploy the application to a Web server; it
can manage CAS settings; and it can deploy an application as “online,” a required sce-
nario for XBAPs. Finally, ClickOnce cannot install assemblies to the GAC, and thus you
can be sure that the target machine will not be affected.

FIGURE 31.21 The WPF Browser Application running in the default web browser.

From the Library of Wow! eBook

ptg

713Summary
3

1

Summary
In this chapter you took a first look at the Windows Presentation Foundation technology.
You saw what WPF is and how it is architected. You then saw how to create your first WPF
application with Visual Studio 2010, getting a high-level introduction of the XAML
markup language and the interaction with managed code. For the architecture, you
learned about some concepts such as the Logical Tree and the Visual Tree. For the Visual
Tree, understanding this led you to another key concept: routed events, which allow
generating cascade events through the hierarchic structure of the user interface. After this
you made a contact with WPF, understanding how you arrange controls within panels,
getting also a first overview of all available panels. Last, you saw in action another kind of
client application with WPF: Browser Applications, seeing how this kind of applications
can run within a Web browser, although with some limitations due to their nature. With
these basics, you are now ready to take some more control over WPF. This is the goal of
next chapters.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 32

WPF Common Controls

IN THIS CHAPTER

. Introducing WPF Controls
Features

. Understanding the
ContentControl

. Understanding Common
Controls

. Using Common Dialogs

Being a technology for Windows client applications,
Windows Presentation Foundations offers built-in controls
that you can immediately use in your applications to build
rich user interfaces. Obviously you can also build your own
custom controls. WPF 4 offers a good standard toolbox
ready to be consumed, provided by the
System.Windows.Controls namespace. If you are new to
WPF and you come from the Windows Forms experience,
you can certainly find differences in controls implementa-
tion between the two technologies, but, fortunately, you
will feel at home because of names; look for WPF controls
that are counterparts of Windows Forms interface elements.
In this chapter you first learn some important features in
WPF controls; next you take a tour through the most
common user controls so that you can start building your
user interface.

Introducing WPF Controls Features
Before using WPF controls, you need to understand some
behaviors. In Chapter 31, “Creating WPF Applications,” you
learned that UI elements, including controls, are generally
declared in XAML code. You also saw how to assign a name
to controls to interact with them in Visual Basic code.
XAML allows declaring and implementing controls even if
you do not assign a name. For example, the following
Button declaration is legal:

<Button Width=”100” Height=”50” Click=”OnClick”/>

The control declared in this way works normally as you
would expect, also raising click events that you can handle

From the Library of Wow! eBook

ptg

716 CHAPTER 32 WPF Common Controls

in managed code. This is possible because of the particular WPF architecture part that
implements routed events discussed in Chapter 31. When an unnamed control raises an
event, the event passes through the entire Visual Tree, and the WPF runtime can intercept
the event independently from the control name. Providing a name therefore is useful
when you need to assign properties in managed code or when you want to assign an
event handler to a specific visual element. Another interesting feature is that WPF controls
are generally defined as lookless. This means that WPF controls are classes that expose a
series of properties defining the behavior of controls while the look is assigned via a
template. Basically when you drag a WPF control from the toolbox to the designer, the
control takes advantage of a standard template that defines its layout, but templates can
be completely customized or overridden with the so called control templates. Chapter 33,
“Brushes, Styles, Templates, and Animations in WPF,” provides more examples and expla-
nations, but you need to understand the concept before examining common controls.
Basing controls’ layout on templates allows roles separation between developers and
designers and is the reason why Microsoft created a tool such as Expression Blend.
Another fundamental feature in WPF control is that it can contain almost any visual
elements. This is possible with the ContentControl item that is the subject of next section.

WPF CONTROLS AND SILVERLIGHT CONTROLS

Understanding WPF controls is useful for Silverlight development, too. In most cases
you notice that controls described here have a counterpart in Silverlight, and this is the
reason why a similar discussion is not done for Silverlight.

Understanding the ContentControl
One of the biggest presentation benefits in WPF is the capability for controls to show
more than simple text. Particularly, all controls exposing a Content property can nest
complex visual elements to offer special effects with or without text. For example,
consider the following button whose content is just text:

<Button Name=”Button1” Width=”100” Height=”100” Content=”Click me!”/>

The Content property can be declared in a hierarchical fashion so that you can take
advantage of the XAML logic for nesting complex elements. The following example shows
how you can replace the button text with a movie:

<Button Name=”Button1” Width=”100” Height=”100”>

<Button.Content>

<MediaElement Source=”MyVideo.wmv” LoadedBehavior=”Play”/>

</Button.Content>

</Button>

From the Library of Wow! eBook

ptg

717Understanding Common Controls

At this point your button plays a video instead of showing the Click me! text. This is possi-
ble because of a special element named ContentControl that provides the ability to embed
complex visual elements within controls offering the Content property. Basically it is an
invisible element, but its presence is noticeable when you can get these results. Another
example is nesting multiple elements within a panel as the child element of the
ContentControl. The following example shows how you can embed text and video together:

<Button Name=”Button1” Width=”100” Height=”100”>

<Button.Content>

<StackPanel>

<MediaElement LoadedBehavior=”Play”

Source=”MyVideo.wmv”/>

<TextBlock Text=”Click me!”/>

</StackPanel>

</Button.Content>

</Button>

It is fundamental to understand the existence of the ContentControl because even the most
classic controls can be enriched with complex visual elements with a couple lines of code.

Understanding Common Controls
In this section you learn about the most common controls in Windows Presentation
Foundation. In most cases we provide XAML implementation, because this is the place
where you define your user interface; remember that everything you do in XAML is repro-
ducible in Visual Basic code for runtime handling (see Chapter 31).

Border

Consider the Border control as a special container that draws a border around the child
control, with the specified color, thickness, and corner radius. The following XAML code
draws a red border with a depth of 3 around a rectangle:

<Border BorderBrush=”Red” BorderThickness=”3”

CornerRadius=”8”>

<Rectangle Height=”100”/>

</Border>

Changes are immediately visible in the Visual Studio designer. Notice that the Border can
nest just one child element, so if you want to add multiple visual elements, you need to
encapsulate them within a container such the Grid or StackPanel. Figure 32.1 shows the
result of the preceding code.

3
2

From the Library of Wow! eBook

ptg

718 CHAPTER 32 WPF Common Controls

SPECIFYING DIFFERENT BRUSHES

In the preceding code the BorderBrush is assigned with a SolidColorBrush (Red), but
according to the hierarchical logic of XAML, you could set it with a different brush such
as LinearGradientBrush.

Button

In Chapter 31 you saw some Button examples in action, so we do not cover this again here.

Calendar

The Calendar control is new in .NET 4 and shows a calendar where you can select a
particular day in the specified month and year. The following XAML code defines a calen-
dar with a custom border and a TextBox that contains the selected date to be assigned
programmatically:

<StackPanel Orientation=”Horizontal”>

<Calendar Name=”Calendar1” Margin=”5”

BorderBrush=”Blue” BorderThickness=”3”

SelectedDatesChanged=”Calendar1_SelectedDatesChanged”>

</Calendar>

<TextBox Name=”TextBox1” Margin=”5” Height=”30” Width=”200”/>

</StackPanel>

The SelectedDatesChanged event is raised when the user clicks a different date. The
following is instead the event handler that gets the instance of the calendar and sends the
selected date to the text box:

Private Sub Calendar1_SelectedDatesChanged(ByVal sender As Object,

ByVal e As Windows.Controls.

SelectionChangedEventArgs)

Dim currentCalendar = CType(sender, Calendar)

Me.TextBox1.Text = currentCalendar.SelectedDate.Value.ToString

End Sub

FIGURE 32.1 Drawing a border.

From the Library of Wow! eBook

ptg

719Understanding Common Controls

Figure 32.2 shows the result of our work.

3
2

You can also programmatically assign the SelectedDate property with an object of type
Date to change the date shown in the Calendar control with a different one.

CheckBox

The WPF CheckBox controls works like any other same-named controls in other technolo-
gies. Take a look at the following XAML code:

<CheckBox Name=”Check1” Content=”I will do this”

Margin=”5” Checked=”Check1_Checked”

Unchecked=”Check1_Unchecked”/>

The CheckBox’s text is set via the Content property. Setting Content also means that you
can fill the control with visual elements other than text. It exposes two events, Checked
and Unchecked, that are raised when you place or remove the flag from the control and
that can be handled as follows:

Private Sub Check1_Checked(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

MessageBox.Show(“Checked”)

End Sub

Private Sub Check1_Unchecked(ByVal sender As Object,

ByVal e As System.Windows.RoutedEventArgs)

MessageBox.Show(“Unchecked”)

End Sub

FIGURE 32.2 Implementing a Calendar control.

From the Library of Wow! eBook

ptg

720

Finally you invoke the IsChecked Boolean property for verifying whether the control is
checked. Figure 32.3 shows how the control appears.

CHAPTER 32 WPF Common Controls

ComboBox

The WPF ComboBox also works the same as in other technologies. The following XAML
snippet shows how you implement a sample ComboBox showing a list of hypothetical
customers:

<ComboBox Name=”CustomerNamesCombo”

Width=”200” Height=”30”

SelectionChanged=”CustomerNamesCombo_SelectionChanged”>

<ComboBox.Items>

<ComboBoxItem Content=”Alessandro”/>

<ComboBoxItem Content=”Brook”/>

</ComboBox.Items>

</ComboBox>

Each item in the control is represented by a ComboBoxItem object whose Content property
sets the item’s content that can be also something different from text. (For example, you
might embed a video through a MediaElement control). The SelectionChanged event is
raised when the user selects an item.

DESIGNER TOOLS FOR ADDING ITEMS

You can add items to a ComboBox by clicking the button on the Items property in the
Properties window. This shows a dialog where you can take advantage of the Visual
Studio designer tools.

This control is powerful because it also supports data-binding. The next example renames
the ComboBox into ProcessNamesCombo, setting the ItemsSource property as follows:

<ComboBox Name=”ProcessNamesCombo”

Width=”200” Height=”30” ItemsSource=”{Binding}”

SelectionChanged=”CustomerNamesCombo_SelectionChanged”>

FIGURE 32.3 Implementing a CheckBox.

From the Library of Wow! eBook

ptg

721Understanding Common Controls
3

2

This ensures that items will be populated at runtime via data-binding. The following
Visual Basic code shows how you populate the ComboBox via a LINQ query with the list of
running processes’ names:

Private Sub MainWindow_Loaded(ByVal sender As Object,

ByVal e As RoutedEventArgs) _

Handles Me.Loaded

Dim procList = From proc In Process.GetProcesses.

AsEnumerable

Select proc.ProcessName

‘Assuming the Combo’s name is now ProcessNamesCombo

Me.ProcessNamesCombo.ItemsSource = procList

End Sub

If you want to handle items selection, you write an event handler such as the following:

Private Sub CustomerNamesCombo_SelectionChanged(ByVal sender As Object,

ByVal e As SelectionChangedEventArgs)

Dim selectedProcess = CType(CType(sender, ComboBox).SelectedItem,

String)

MessageBox.Show(“You selected “ & selectedProcess)

End Sub

Basically you need to get the instance of the selected item (ComboBox.SelectedItem) and
then convert it into the appropriate type, which in this case is String. If you bounded a
list of Process objects, instead of their name, conversion would return Process, and you
need to add a DisplayMemberPath attribute on the XAML side pointing to the property
you want to show (for example, ProcessName). Figure 32.4 shows the result of the data-
bound ComboBox.

DataGrid

The DataGrid control is new in the .NET Framework 4.0 and enables presenting and editing
tabular data. A complete example is available in Chapter 35, “Introducing Data-binding.”

DatePicker

The DatePicker control is also new in the .NET Framework 4.0 and shows a pop-up calen-
dar where you can pick a date; the date is then bound to a text box placed near the
control. The DatePicker is used in data-binding techniques (see Chapter 35). The follow-
ing XAML code shows how you can implement a DatePicker; the selection, which is
mapped by the SelectedDate property of type Date, is then bound to a second, external
text box to demonstrate how the value can be consumed by other user controls:

<StackPanel Orientation=”Horizontal”>

From the Library of Wow! eBook

ptg

722 CHAPTER 32 WPF Common Controls

FIGURE 32.4 Binding a ComboBox to a list of objects.

<DatePicker Name=”DatePicker1” Margin=”5”

SelectedDateChanged=”DatePicker1_SelectedDateChanged” />

<TextBox Name=”TextBox2” Margin=”5”

Text=”{Binding ElementName=DatePicker1,

Path=SelectedDate}”

Height=”30” Width=”200”/>

</StackPanel>

Figure 32.5 shows how the DatePicker appears.

FIGURE 32.5 Implementing a DatePicker.

From the Library of Wow! eBook

ptg

723Understanding Common Controls
3

2

The DatePicker exposes an event called SelectedDateChanged that is raised when the user
selects another date. The following event handler shows an example of handling the event:

Private Sub DatePicker1_SelectedDateChanged(ByVal sender As Object,

ByVal e As _

SelectionChangedEventArgs)

‘Use the “e” object to access the DatePicker control

‘(Source represents

‘the instance)

MessageBox.Show(“The new date is “ & CType(e.Source,

DatePicker).SelectedDate.

Value.ToLongDateString)

End Sub

DocumentViewer

The DocumentViewer control enables viewing flow documents. A complete example is
available in Chapter 34, “Manipulating Documents and Media.”

Ellipse

The Ellipse element is not properly a user control because it is actually a geometric
shape. It is useful to understand how the element works because you can use it when
creating your custom control templates. The following XAML code declares an Ellipse:

<Ellipse Width=”150” Height=”80” Stroke=”Red”

StrokeThickness=”3” Fill=”Orange”/>

The most important properties are Width and Height that define dimensions. Stroke
defines the color that surrounds the ellipse, and StrokeThickness is a value indicating the
stroke depth. As with other geometric shapes, Ellipse background can be assigned via the
Fill property. Figure 32.6 shows the drawn ellipse.

Expander

The Expander control is a special kind of control container that can be expanded or
collapsed and that is useful for organizing your controls. The following is an example of
Expander with nested controls:

<Expander Name=”Expander1” Header=”Expand to view controls”

Background=”LightBlue”>

<StackPanel>

<ComboBox Name=”Combo1” Margin=”10”>

<!— Add your items here...—>

</ComboBox>

<ListBox Name=”List1” Margin=”10”>

From the Library of Wow! eBook

ptg

724 CHAPTER 32 WPF Common Controls

FIGURE 32.6 Drawing and filling an ellipse.

<!— Add your items here...—>

</ListBox>

</StackPanel>

</Expander>

You must use a panel, as in the preceding example, if you want to add multiple visual
elements because the Expander’s Content property supports just one element. You access
members by simply invoking their names as if they were not nested inside the Expander.
Figure 32.7 shows the Expander in action.

Frame

The Frame control enables showing Html contents, including web pages. The most basic
usage is assigning its Source property with an Uri, as in the following example:

<Frame Source=”http://www.visual-basic.it” />

Figure 32.8 shows how the website appears in the Frame control.

FIGURE 32.7 Implementing the Expander and nesting controls.

From the Library of Wow! eBook

ptg

725Understanding Common Controls
3

2

This control exposes a Navigate method that enables programmatically browsing html
contents and/or web pages as in the following snippet:

Frame1.Navigate(New Uri(“Http://www.visual-basic.it”))

You can also point to an html file on disk; just remember that each content name must be
converted into Uri.

USING WEBBROWSER

Later this chapter discusses the WebBrowser control that provides better functionalities
for browsing web pages. Frame should be considered as an Html document viewer
more than a real browsing control.

GroupBox

The WPF GroupBox control has the same purpose for same named controls in other tech-
nologies, offering a container with a header and a border for grouping nested controls.
The following code shows how you can implement a GroupBox, assigning its headers and
nesting controls:

<GroupBox Name=”Group1” Margin=”5”>

<GroupBox.Header>

<TextBlock Text=”Set your options”/>

</GroupBox.Header>

FIGURE 32.8 Opening a website with a Frame control.

From the Library of Wow! eBook

ptg

726 CHAPTER 32 WPF Common Controls

<StackPanel Margin=”10”>

<CheckBox Name=”Check3” Content=”Set a single option”/>

<RadioButton Name=”Radio3” Content=”Use this”/>

<RadioButton Name=”Radio4” Content=”Use that”/>

</StackPanel>

</GroupBox>

Figure 32.9 shows the output of this code.

Notice that in this example the Header property is defined in the hierarchical fashion,
meaning that you can add to the header complex visual elements other than simple text.
For example you can add a StackPanel nesting an image with text.

Image

The Image control enables presenting images. A complete example is available in
Chapter 34.

Label

The Label control shows a text message, as in the following code example:

<Label Name=”Label1” Content=”A sample value”/>

WPF offers the TextBlock control that provides deeper customizations features for text, so
you should prefer the one covered in more detail later in this chapter.

FIGURE 32.9 Grouping controls with a GroupBox.

From the Library of Wow! eBook

ptg

727Understanding Common Controls
3

2

ListBox

The ListBox control enables listing a series of items. The good news is that you are not
limited to text items but you can also add complex items. Each item is represented by a
ListBoxItem object, nested in the ListBox. The following example shows how you can
declare a ListBox in XAML code:

<ListBox Name=”ListBox1”>

<ListBoxItem Content=”Item 1”/>

<ListBoxItem Content=”Item 2”/>

<!— Creating a complex item,

with text and picture —>

<ListBoxItem>

<ListBoxItem.Content>

<StackPanel>

<TextBlock Text=”Item 3 with image”/>

<Image Source=”MyImage.jpg” />

</StackPanel>

</ListBoxItem.Content>

</ListBoxItem>

</ListBox>

Typically a ListBox is populated at runtime via data-binding. Basically concepts are the
same as illustrated for the ComboBox control, so take a look there for a recap. To accom-
plish data-binding, simply specify the ItemsSource markup extension as follows:

<ListBox Name=”ListBox1” ItemsSource=”{Binding}”/>

Then in Visual Basic code you assign the ItemsSource property with a data-source as demon-
strated in the following LINQ query that returns a list of names about running processes:

Dim procList = From proc In Process.GetProcesses.

AsEnumerable

Select proc.ProcessName

Me.ListBox1.ItemsSource = procList

You access items in the ListBox via some properties such as the following:

. SelectedItem, of type Object, which returns the instance of the selected item in the
ListBox. The returned object must be converted into the appropriate type.

. Items, which returns a read-only collection of items in the control.

In Chapter 35 you see a more extensive example of data-binding using the ListBox. Figure
32.10 shows the result for the data-bound implementation.

From the Library of Wow! eBook

ptg

728 CHAPTER 32 WPF Common Controls

DATA-BINDING

The ListBox control is generally intended for presenting data, even if you can cus-
tomize items’ template with TextBox controls. For two-way data-binding, prefer the
DataGrid control described in Chapter 35.

ListView

The ListView control offers a higher customization level if compared to the ListBox and
can also be used for receiving the user input other than just presenting data. Same as for
the ListBox, you might want to consider the DataGrid control for advanced data-binding
techniques. To present a series of items, the ListView can be declared the same way as the
ListBox. Things are better when you instead want to use such control with columns, such
as in a grid. Consider the following XAML code that declares a ListView data-bound to
the list of running processes:

<ListView Name=”ListView1” ItemsSource=”{Binding}”>

<ListView.View>

<GridView>

<GridViewColumn Header=”Process ID”>

<GridViewColumn.CellTemplate>

<DataTemplate>

<TextBlock Text=”{Binding Path=Id}”/>

</DataTemplate>

</GridViewColumn.CellTemplate>

</GridViewColumn>

<GridViewColumn Header=”Process name”>

<GridViewColumn.CellTemplate>

<DataTemplate>

<TextBlock

Text=”{Binding Path=ProcessName}”/>

FIGURE 32.10 A data-bound ListBox.

From the Library of Wow! eBook

ptg

729Understanding Common Controls
3

2

</DataTemplate>

</GridViewColumn.CellTemplate>

</GridViewColumn>

</GridView>

</ListView.View>

</ListView>

The View property establishes how the control will look. The GridView creates a nested
grid with column definitions. Each GridViewColumn represents a single column where you
can customize cells by defining the CellTemplate item. A DataTemplate item is nested
that actually stores one or more visual elements that show how each object in the
ListView appears. See Chapter 35 for more details on data-binding; at the moment
consider that the Binding Path extension points to the specified property of the associ-
ated data source. Then you simply assign the ItemsSource property, as in the following
Visual Basic code that retrieves the list of running processes:

Me.ListView1.ItemsSource = Process.GetProcesses.AsEnumerable

This populates the ListView that just shows two properties from the data source. Figure
32.11 shows the result of the code.

MediaElement

The MediaElement control enables playing multimedia files. A complete example is avail-
able in Chapter 34.

Menu

WPF still enables creating user interfaces based on menus via the Menu control. You nest
inside the Menu control many MenuItem objects and as many commands as you need; you
can also nest MenuItem objects into other MenuItem to create submenus. Menus in WPF are
highly customizable, because you can specify background and foreground colors, add

FIGURE 32.11 The result for the data-bound ListView.

From the Library of Wow! eBook

ptg

730 CHAPTER 32 WPF Common Controls

images and other visual elements, and set different fonts for specific menu items. The
following example shows how to accomplish this:

<DockPanel LastChildFill=”True” VerticalAlignment=”Top”>

<Menu DockPanel.Dock=”Top”>

<MenuItem Header=”First menu” IsEnabled=”True”

DockPanel.Dock=”Top”>

<MenuItem Header=”_TestMenu”/>

<Separator/>

<MenuItem IsEnabled=”True” Name=”Copy”

Click=”Copy_Click”>

<MenuItem.Header>_Copy</MenuItem.Header>

</MenuItem>

<MenuItem IsEnabled=”True” Name=”Paste”

Click=”Paste_Click”

ToolTip=”Paste your text”>

<MenuItem.Header>_Paste</MenuItem.Header>

</MenuItem>

<Separator />

<MenuItem Name=”FontMenuItem” Header=”Item with another font”

FontFamily=”Tahoma” FontSize=”16” FontStyle=”Italic”

FontWeight=”Bold”

/>

</MenuItem>

<MenuItem Header=”Second menu” DockPanel.Dock=”Top”

Background=”Blue” Foreground=”White”>

<!—<MenuItem Header=”Item with bitmap image”>

<MenuItem.Icon>

<Image Source=”Immages/MyImage.png” />

</MenuItem.Icon>

</MenuItem>—>

<MenuItem Header=”Checkable item” IsCheckable=”True”

IsChecked=”True” />

<MenuItem Header=”Disabled item” IsEnabled=”False”

Name=”DisabledMenuItem”/>

</MenuItem>

</Menu>

</DockPanel>

From the Library of Wow! eBook

ptg

731Understanding Common Controls
3

2

There are a lot of properties that you can set within menus. Table 32.1 summarizes the
most important ones that were used in the preceding code.

By assigning the Click property for each MenuItem, you can handle the click event, as in
the following code snippet:

Private Sub Copy_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

MessageBox.Show(“You clicked Copy”)

End Sub

Private Sub Paste_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

MessageBox.Show(“You clicked Paste”)

End Sub

Notice that the main Menu item is placed inside a DockPanel container that provides
better arrangement for this kind of control. Figure 32.12 shows the result of the menu
implementation.

TABLE 32.1 Most common properties in Menu and MenuItems

Property Description

Header Sets the content of the item

IsEnabled Sets the item enabled or disabled (True or False)

Name Assigns an identifier so that you can interact in VB code

Tooltip Provides a description over the item when the mouse passes over

IsCheckable Sets the item to be flagged via a check box

Icon Sets the menu item’s icon

FIGURE 32.12 Implementing menus and submenus.

From the Library of Wow! eBook

ptg

732 CHAPTER 32 WPF Common Controls

PasswordBox

The PasswordBox control is a special text box intended for entering passwords and that
automatically hides characters. The following code snippet shows an example:

<StackPanel Orientation=”Horizontal”>

<PasswordBox Name=”PasswordBox1” Margin=”5”

Width=”150” MaxLength=”20”

PasswordChar=”*”/>

<Button Name=”PasswordButton” Width=”100” Height=”30”

Margin=”5” Content=”Check password”

Click=”PasswordButton_Click”/>

</StackPanel>

By default characters are hidden with a dot, but you can replace it via the PasswordChar
property (optional). The MaxLength property limits the password length (optional). Such
control exposes the Password property of type String that is the entered password, as
demonstrated by the following code:

Private Sub PasswordButton_Click(ByVal sender As Object,

ByVal e As RoutedEventArgs)

Dim myPassword = “TestPassword”

If PasswordBox1.Password = myPassword Then

MessageBox.Show(“Password matches”)

Else

MessageBox.Show(“Password does not match”)

End If

End Sub

Figure 32.13 shows the result of the code.

The main event in the PasswordBox is PasswordChanged that is raised when the control’s
content changes.

ProgressBar

The ProgressBar control requires you to set some start properties, such as Minimum,
Maximum, and Value. Then you can increase the value at runtime. The following XAML
code declares a ProgressBar:

<ProgressBar Name=”ProgressBar1” Height=”30”

FIGURE 32.13 Implementing a PasswordBox.

From the Library of Wow! eBook

ptg

733Understanding Common Controls
3

2

Value=”0”

Minimum=”0” Maximum=”10000”/>

To update the progress value, a good approach is making this asynchronously. This can be
accomplished by invoking the Dispatcher, which is the WPF object responsible for
managing threads. This points to the ProgressBar.SetValue to update the progress value.
So the first step is to create a custom delegate that matches SetValue’s signature:

Private Delegate Sub updateDelegate(ByVal depProperty As _

System.Windows.DependencyProperty, _

ByVal value As Object)

The next step is to provide code that updates the progress value. This is just a demonstra-
tion loop that invokes the dispatcher while increasing the progress value:

Private Sub HandleProgressBar()

Dim value As Double = ProgressBar1.Value

Dim updateProgressBar As New _

updateDelegate(AddressOf _

ProgressBar1.SetValue)

Do Until ProgressBar1.Value = ProgressBar1.Maximum

value += 1

Dispatcher.Invoke(updateProgressBar, _

System.Windows.Threading.DispatcherPriority.Background, _

New Object() {ProgressBar.ValueProperty, value})

Loop

End Sub

The Dispatcher.Invoke method invokes the delegate, which does nothing but invoking
ProgressBar.SetValue. The other interesting argument is an array of Object storing the
dependency property to be updated (ProgressBar.ValueProperty), which will be reflected
onto Value, and its value. Figure 32.14 shows the result of the code.

FIGURE 32.14 The ProgressBar value increasing.

From the Library of Wow! eBook

ptg

734 CHAPTER 32 WPF Common Controls

RadioButton

The RadioButton control works similarly to the CheckBox, differing in that this enables
one choice among several alternatives, but basically it exposes the same properties. The
following XAML code declares two RadioButton controls:

<StackPanel>

<RadioButton Name=”Radio1” Content=”First option”/>

<RadioButton Name=”Radio2” Content=”Second option”/>

</StackPanel>

Each instance exposes the IsChecked property and the Checked and Unchecked events. For
this, take a look back at the CheckBox discussion. Figure 32.15 shows how the controls look.

Rectangle

The Rectangle element is another common geometric shape that you can utilize in
custom control templates. Drawing a rectangle is easy, as demonstrated in the following
code example:

<Rectangle Width=”150” Height=”50”

Fill=”Orange” Stroke=”Red”

StrokeThickness=”3”/>

You simply define its dimensions, specifying Stroke and StrokeThickness as for the
ellipse (optional). Figure 32.16 shows how the object is drawn.

Rectangle also has the RadiusX and RadiusY properties that you can assign to round corners.

RichTextBox

WPF 4 offers a RichTextBox control that works differently from Windows Forms and
requires you to understand flow documents. This topic will be discussed in Chapter 34.

FIGURE 32.15 Adding RadioButton selection.

FIGURE 32.16 Drawing a rectangle.

From the Library of Wow! eBook

ptg

735Understanding Common Controls
3

2

ScrollBar

You can implement scrollbars with the ScrollBar control. The following code provides
an example:

<ScrollBar Name=”Scroll1” Maximum=”100” Minimum=”0”

Value=”50” Scroll=”Scroll1_Scroll”/>

The implementation is simple, because you just have to provide the Minimum, Maximum, and
current Value. The Scroll event is instead raised when the selector position changes. The
event handler is then implemented as follows:

Private Sub Scroll1_Scroll(ByVal sender As System.Object,

ByVal e As Primitives.

ScrollEventArgs)

End Sub

WPF offers a more versatile control, named ScrollViewer, as described in the next section.

ScrollViewer

The ScrollViewer element enables scrolling its entire content with both horizontal and
vertical scrollbars. This can be easily understood directly at design time. Type the follow-
ing XAML code:

<ScrollViewer VerticalScrollBarVisibility=”Auto”

HorizontalScrollBarVisibility=”Auto”>

<StackPanel>

<TextBlock Width=”1000”/>

<TextBlock Height=”2000”/>

</StackPanel>

</ScrollViewer>

You notice that, because of the big width and height values, the ScrollViewer provides
both scrollbars, as demonstrated in Figure 32.17.

FIGURE 32.17 Implementing a ScrollViewer.

From the Library of Wow! eBook

ptg

736 CHAPTER 32 WPF Common Controls

This control is useful when you need to arrange multiple elements in a fixed fashion, but
you still want to provide the ability of scrolling them within the window.

Separator

The Separator control is used for drawing a separation line between visual elements. I
provided an example above when discussing the Menu control.

Slider

The Slider control provides a selector that you can use to set a particular value that is
generally bound to another control. Chapter 34 provides an example binding a Slider
to a MediaElement for controlling the volume; however, at the moment consider the
following code:

<Slider Name=”Slider1”

Maximum=”10” Minimum=”0” Value=”5”

AutoToolTipPlacement=”BottomRight”

TickPlacement=”TopLeft” TickFrequency=”1”

/>

<TextBlock Text=”{Binding ElementName=Slider1,

Path=Value}”/>

A Slider requires a Minimum and Maximum value, whereas Value is the current selected
value. You can place tool tips reporting the value (AutoToolTipPlacement) specifying the
position (TopLeft or BottomRight). Moreover you can place ticks so that visualization is
clearer and decide how many ticks to place (TickFrequency). For example, the preceding
code can produce 10 ticks (one per possible value). The TextBlock simply shows the value
of the slider via data-binding, which is generally the preferred way for binding a Slider
value to another control. This object raises a ValueChanged event when the user moves the
selector to another value. Figure 32.18 shows the result of the preceding code.

FIGURE 32.18 Setting values with a Slider.

From the Library of Wow! eBook

ptg

737Understanding Common Controls
3

2

StatusBar

WPF enables placing status bars at the bottom of a Window. This is accomplished by declar-
ing a StatusBar object that nests StatusBarItems elements. The good news is that you are
not limited to adding text to a StatusBar, because you can add several kinds of visual
elements. The following example shows adding text and a ProgressBar into a StatusBar:

<StatusBar>

<StatusBarItem Name=”Item1” Content=”Ready”/>

<StatusBarItem Name=”Item2”>

<ProgressBar Name=”Progress1”

Minimum=”0” Maximum=”200” Value=”50”

Width=”50” Height=”15” />

</StatusBarItem>

</StatusBar>

Figure 32.19 shows the result of the preceding code. You access members in the bar at the
Visual Basic level via their identifiers.

TabControl

The TabControl enables splitting an area into tabs. Each tab is represented by a TabItem
object, and tabs are enclosed within a TabControl.TabItems collection. The following
code demonstrates how you can implement a TabControl with both standard and
customized tabs:

<TabControl>

<TabControl.Items>

<TabItem Header=”Tab1”>

<!— Nest your controls here.. —>

FIGURE 32.19 A StatusBar with nested controls.

From the Library of Wow! eBook

ptg

738 CHAPTER 32 WPF Common Controls

</TabItem>

<TabItem Foreground=”Blue”

Background=”Orange”>

<TabItem.Header>

<StackPanel Orientation=”Horizontal”>

<TextBlock Text=”Tab2”/>

<!— Replace with a valid image

<Image Source=”MyImage.jpg”/>—>

</StackPanel>

</TabItem.Header>

</TabItem>

</TabControl.Items>

</TabControl>

You set the tab header content assigning the Header property for each TabItem and then
nest controls within the element. Notice how you can customize tabs by setting
Foreground and Background and declaring the Header in a hierarchical fashion to place
multiple elements. Figure 32.20 shows the TabControl implementation.

You can also customize the header with text and an image, as you can check in the
comment placed in the code. Then you access nested controls simply via their name as
you would do in any other situation.

TextBlock

The TextBlock control enables showing text messages. Its purpose is similar to the
Label’s purpose, but it differs in that TextBlock offers deeper control over text customiza-
tion. The following example demonstrates how you can present customized text using
the TextBlock:

<TextBlock Name=”TextBlock1” FontFamily=”Tahoma”

FontSize=”20” FontStyle=”Italic”

FontWeight=”Bold”

Text=”Sample text with TextBlock”>

FIGURE 32.20 Implementing a TabControl.

From the Library of Wow! eBook

ptg

739Understanding Common Controls
3

2

<TextBlock.Foreground>

<LinearGradientBrush>

<GradientStop Offset=”0” Color=”Blue”/>

<GradientStop Offset=”0.5” Color=”Violet”/>

<GradientStop Offset=”1” Color=”Green”/>

</LinearGradientBrush>

</TextBlock.Foreground>

</TextBlock>

Font properties are of particular interest. FontFamily indicates the font name, FontStyle
indicates if the font is normal or oblique, whereas FontWeight sets the font depth.
IntelliSense enhancements in WPF 4 enable easy selections for available members on each
of the previously mentioned properties. Figure 32.21 shows the result of the preceding code.

Because of its flexibility, the TextBlock control is often used in custom control templates
that require customizing text. You can also set the TextBlock text at runtime by assigning
the Text property.

TextBox

Another typical control that is also provided by WPF is the TextBox. You declare one as
follows:

<TextBox Name=”TextBox1”

TextChanged=”TextBox1_TextChanged”/>

The most common event is TextChanged that is raised when the text is modified and that
can be handled as follows:

Private Sub TextBox1_TextChanged(ByVal sender As System.Object,

ByVal e As System.Windows.Controls.

TextChangedEventArgs)

FIGURE 32.21 Drawing a TextBlock.

From the Library of Wow! eBook

ptg

740 CHAPTER 32 WPF Common Controls

End Sub

The e object of type TextChangedEventArgs offers a Changes collection property that can
be iterated to get a list of changes that affect the control’s content. The TextBox control
provides support for undo actions (that is, Ctrl+Z) and a SelectedText property that
enables you to easily retrieve in VB code the currently selected text in the control.

ToolBar

The ToolBar control enables creating toolbars for your WPF applications. You can add
multiple ToolBar objects within a ToolBarTray object. The following XAML code shows
how you can define a simple toolbar; you have to replace image files with valid ones:

<ToolBarTray>

<ToolBar>

<Button Name=”NewButton”

Click=”NewButton_Click”>

<Image Source=NewDocument.png” />

</Button>

<Button Name=”OpenButton”

Click=”OpenButton_Click”>

<Image Source=”OpenFolder.png” />

</Button>

<Button Name=”SaveButton”

Click=”SaveButton_Click”>

<Image Source=”Save.png” />

</Button>

</ToolBar>

</ToolBarTray>

Notice how the code implements primitive Button controls that you can manage in Visual
Basic code with classic event handlers for the Click event. Following this logic you can
place additional ToolBar objects inside the ToolBarTray. Figure 32.22 shows how the
ToolBar looks.

FIGURE 32.22 Implementing a ToolBar.

From the Library of Wow! eBook

ptg

741Understanding Common Controls
3

2

TreeView

The TreeView is another important control, and WPF provides its own implementation
that exposes a TreeView.Items collection where you nest nodes. Each node is represented
by a TreeViewItem object. You can build complex items as in the following example:

<TreeView Name=”TreeView1”>

<TreeView.Items>

<TreeViewItem Header=”Root Node” Name=”RootNode”

Tag=”Information for this node”>

<TreeViewItem Header=”Node0” Name=”Node0”/>

<TreeViewItem Header=”Node1” Name=”Node1”>

<TreeViewItem Header=”SubNode”

Name=”SubNode”/>

</TreeViewItem>

</TreeViewItem>

</TreeView.Items>

</TreeView>

The text in the node is specified with the Header property while additional information
can be assigned with the Tag property. Assigning the Name property is also useful because
you can interact with nodes in managed code. To add nodes at runtime you simply create
an instance of the TreeViewItem class and then add it to the specified node as demon-
strated here:

Dim nt As New TreeViewItem

With nt

.Header = “New sub node”

.Tag = “Runtime added”

End With

Node0.Items.Add(nt)

Figure 32.23 shows the result for all the preceding code.

The TreeView can also be populated via data-binding with the ItemsSource property and
exposes the SelectedItem property, exactly as it happens for the ComboBox and ListBox
controls, so you can apply the same techniques.

FIGURE 32.23 Implementing and populating a TreeView.

From the Library of Wow! eBook

ptg

742 CHAPTER 32 WPF Common Controls

WebBrowser

Because the .NET Framework 3.5 SP 1 WebBrowser control is available for WPF developers,
the control provides specific functionalities for browsing websites. You add it to the user
interface by simply declaring a WebBrowser element as follows:

<WebBrowser Name=”Browser1”/>

Then you can control the WebBrowser behavior from Visual Basic code; the following are
methods exposed by the WebBrowser allowing navigation:

’Open the specified web-site

Browser1.Navigate(New Uri(“Http://www.visual-basic.it”))

‘Back to the previous page

Browser1.GoBack()

‘Forward to the next page

Browser1.GoForward()

‘Refresh the page

Browser1.Refresh()

The WebBrowser also exposes some events, and the most important is LoadCompleted that
is raised when the control completes loading a web page. This can be handled to get
useful information on the visited website, as in the following code snippet:

Private Sub Browser1_LoadCompleted(ByVal sender As Object,

ByVal e As NavigationEventArgs) _

Handles Browser1.Navigated

MessageBox.Show(e.Uri.ToString)

End Sub

The e object of type NavigationEventArgs provides properties that retrieve information
such as the website Uri or the WebResponse instance.

WindowsFormsHost

The WindowsFormsHost control enables interoperability with the Windows Forms technol-
ogy and provides a way for hosting Win Forms user controls within a WPF application.

INTEROPERABILITY TIPS

I often answer questions in online forums about WPF, and one of the most common
questions is about interoperability between Windows Forms and WPF, especially for
developers that are moving their applications to WPF. There are so many architectural
differences between the two technologies that interoperability is not a task that I sug-
gest. You should recur to interoperability only when there is no other way of rewriting a
WPF version of a Windows Form control, which is improbable.

From the Library of Wow! eBook

ptg

743Using Common Dialogs
3

2

To host a Windows Forms control, you drag the WindowsFormsHost element from the
Toolbox onto the Window surface. The next step is adding a reference to the
System.Windows.Forms.dll assembly. If you want to host Windows Forms controls built-in
the .NET Framework, you need to add an Xml namespace declaration at the Window
level; the following line of XAML code demonstrates this:

xmlns:wf=”clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms”

At this point you can simply nest the desired control inside the WindowsFormsHost declara-
tion, as in the following example that adds a System.Windows.Forms.PictureBox:

<WindowsFormsHost Height=”100”

Name=”WindowsFormsHost1”

Width=”200”>

<wf:PictureBox x:Name=”Picture1”/>

</WindowsFormsHost>

Notice that you need to provide the x:Name attribute to make the control reachable from
the Visual Basic code. At this point you can interact with the PictureBox like you would
in any other Windows Forms application by simply invoking its identifier, as demon-
strated in the following code snippets where the code loads an image file and assigns it to
the PictureBox; this particular example also requires a reference to the
System.Drawing.dll assembly:

’This is Windows Forms code inside a WPF application

Me.Picture1.Image = System.Drawing.Image.

FromFile(“C:\Picture.jpg”)

Of course this technique works with custom user controls as well; you just need to add an
Xml namespace reference pointing to the appropriate assembly exposing the custom user
control (including the current project), and then you can consume the control itself.

Using Common Dialogs
In WPF 4 common dialogs are wrappers of Win32 dialogs. They are exposed by the
Microsoft.Win32 namespace and are OpenFileDialog and SaveFileDialog. (WPF also
provides a PrintDialog control exposed by the System.Windows.Controls namespace.)
The following code demonstrates how you instantiate both dialogs:

’Instantiating an OpenFileDialog

Dim od As New Microsoft.Win32.OpenFileDialog

With od

.Title = “Your title here...”

.Filter = “All files|*.*”

From the Library of Wow! eBook

ptg

744 CHAPTER 32 WPF Common Controls

.ShowReadOnly = True

If .ShowDialog = True Then

Dim fileName As String = .FileName

End If

End With

‘Instantiating a SaveFileDialog

Dim sd As New Microsoft.Win32.SaveFileDialog

With sd

.Title = “Your title here...”

.InitialDirectory = “.”

.Filter = “All files|*.*”

If .ShowDialog = True Then

Dim fileName As String = .FileName

End If

End With

Notice that the ShowDialog method returns a Nullable(Of Boolean) where True means that
the user clicks OK, False when she clicks Cancel, and Nothing when she closes the dialog.

Summary
In this chapter you took an overview of WPF’s most common used controls that you can
use in your client applications, understanding how they can be both implemented in
XAML or VB code. Also we covered some particular aspects about them, such as their so-
called lookless implementation, understanding why they can also be nameless because of
routed events.

From the Library of Wow! eBook

ptg

CHAPTER 33

Brushes, Styles,
Templates, and

Animations in WPF

IN THIS CHAPTER

. Introducing Brushes

. Introducing Styles

. Introducing Control Templates

. Introducing Transformations

. Introducing Animations

Building rich user experiences has become an important
business. Functionalities are no more the only requirement,
even in business applications, because an attractive user
interface also plays a fundamental role. WPF offers the ideal
platform for enriching the user interface with interactive
content, such as animations, media files, dynamic docu-
ments, and graphical effects. WPF is also the ideal platform
for building graphics manipulation applications, where
geometry or 3D graphic have a great place for running.
Before you learn such important features, it is important for
you to get knowledge about some graphics fundamentals so
that you can enrich visual elements. It is worth mentioning
that one of the biggest benefits of WPF is that you can take
complete control over UI elements’ customization. You can
fill them with impressive gradients, you can completely
rewrite their layout while keeping their behavior safe, and
you can animate them along the user interface ensuring
that they will still work as you effectively expect. The goal
of this chapter is to illustrate customization so that you can
make your user interface more and more attractive.

Introducing Brushes
Probably lots of times you wanted to fill your UI controls
with interesting background textures or with gradients or
simply set a particular color, maybe as the background or
the foreground. In Windows Presentation Foundation you
fill visual elements with brushes. WPF defines several kinds

From the Library of Wow! eBook

ptg

746 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

of brushes, all deriving from System.Windows.Media.Brush. The following list summarizes
available brushes:

. SolidColorBrush, which allows filling a graphical object with a single color. Colors
are exposed as static properties from the System.Windows.Media.Colors class.

. LinearGradientBrush, which enables filling a graphical object with a linear gradient
composed of multiple colors.

. RadialGradientBrush, which is similar to the previous one, but the gradient is circular.

. ImageBrush, which enables filling a graphical object with a picture.

. DrawingBrush, which enables filling a graphical object with geometrical shapes or
pen drawings.

. SelectionBrush, which enables defining the highlighting color when selecting text
in specific controls.

. CaretBrush, which enables defining the mouse pointer color in particular controls.
Actually CaretBrush is a property exposed by controls such as TextBox and
RichTextBox, which accept Brush objects.

. VisualBrush, which enables filling a graphical object with the content of another
element in the user interface.

. BitmapCacheBrush, which provides the ability of caching a visual element instead of
rendering it again and is useful when you need to recall the same visual elements
multiple times.

You can apply brushes to properties in visual elements exposing a Background,
Foreground, or Fill property, such as user controls and geometrical shapes. In the next
sections you learn to fill your UI elements with the previously listed brushes. Before
providing examples, create a new WPF project with Visual Basic 2010. Divide the default
Grid into eight rows and adjust Window’s size as follows:

<Window x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”MainWindow” Height=”550” Width=”550”>

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

<RowDefinition />

<RowDefinition />

<RowDefinition />

<RowDefinition />

<RowDefinition />

From the Library of Wow! eBook

ptg

747Introducing Brushes

<RowDefinition />

</Grid.RowDefinitions>

</Grid>

</Window>

ABBREVIATING LINES OF CODE

To make lines of code shorter, add an Imports System.Windows.Media directive in
the Visual Basic code behind the file.

Applying a SolidColorBrush

The System.Windows.Media.SolidColorBrush object enables filling an object with a single
color. Generally the color is applied to the Fill property of geometric shapes and to the
Background or Foreground properties in UI controls. The following code demonstrates how
to apply a SolidColorBrush:

<Rectangle Grid.Row=”0” Width=”200” Margin=”5”>

<Rectangle.Fill>

<SolidColorBrush Color=”Red”/>

</Rectangle.Fill>

</Rectangle>

The Color property receives a value of type System.Windows.Media.Color. Colors are
exposed by the System.Windows.Media.Colors class as shared properties. The result of this
color brush is shown in Figure 33.1.

3
3

FIGURE 33.1 Applying a SolidColorBrush.

From the Library of Wow! eBook

ptg

748 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

Applying a color at runtime in Visual Basic code is also a simple task. The following
snippet shows how you can set it within the code-behind file:

Dim rect As New Rectangle

Dim scb As New SolidColorBrush(Colors.Red)

rect.Fill = scb

Applying a LinearGradientBrush

A LinearGradientBrush enables applying a gradient color to fill a visual element. Valid
targets are the Fill property for geometric shapes—Background and Foreground properties
for user controls. The following code draws a Rectangle and demonstrates that the gradi-
ent is applied both as background color (Fill property) and as foreground (Stroke):

<Rectangle Grid.Row=”1” Width=”200” Margin=”5” Name=”GradientRectangle”

StrokeThickness=”3”>

<Rectangle.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>

<GradientStop Offset=”0” Color=”Orange”/>

<GradientStop Offset=”0.5” Color=”Red”/>

<GradientStop Offset=”0.9” Color=”Yellow”/>

</LinearGradientBrush>

</Rectangle.Fill>

<Rectangle.Stroke>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>

<GradientStop Offset=”0” Color=”Blue”/>

<GradientStop Offset=”0.5” Color=”Green”/>

<GradientStop Offset=”0.9” Color=”Violet”/>

</LinearGradientBrush>

</Rectangle.Stroke>

</Rectangle>

First, it is worth mentioning that the StrokeThickness property of Rectangle specifies the
shape’s border size. Each color in the gradient is represented by a GradientStop element.
Its Offset property requires a value from 0 to 1 and specifies the color position in the
gradient, whereas the color property accepts the color name or the color hexadecimal
representation. Also notice how StartPoint and EndPoint properties in the
LinearGradientBrush enable influencing the gradient direction. Figure 33.2 shows the
result of the preceding code.

You can define a LinearGradientBrush in Visual Basic code for runtime appliance. This is
accomplished by the following code:

Dim lgb As New LinearGradientBrush

From the Library of Wow! eBook

ptg

749Introducing Brushes

FIGURE 33.2 Applying a LinearGradientBrush.

lgb.GradientStops.Add(New GradientStop With {.Offset = 0,

.Color = Colors.Red})

lgb.GradientStops.Add(New GradientStop With {.Offset = 0,

.Color = Colors.Yellow})

lgb.GradientStops.Add(New GradientStop With {.Offset = 0,

.Color = Colors.Orange})

‘rect is a Rectangle instance

rect.Fill = lgb

Notice how you add instances of the GradientStop class to the GradientStops collection.
Each GradientStop requires both Offset (of type Double) and Color (of type
System.Windows.Media.Color) properties to be set. Colors are exposed by the
System.Windows.Media.Colors class as shared properties.

Applying a RadialGradientBrush

The RadialGradientBrush brush works exactly like the LinearGradientBrush, except that
it creates a circular gradient. The following code shows how it is possible to apply such a
brush to an Ellipse:

<Ellipse Width=”100” Margin=”5” Grid.Row=”2” Stroke=”Black”

StrokeThickness=”2” >

<Ellipse.Fill>

3
3

From the Library of Wow! eBook

ptg

750 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

<RadialGradientBrush>

<GradientStop Offset=”0” Color=”Blue”/>

<GradientStop Offset=”0.5” Color=”Green”/>

<GradientStop Offset=”0.9” Color=”Violet”/>

</RadialGradientBrush>

</Ellipse.Fill>

</Ellipse>

You are not limited to the Ellipse shape, but for demo purposes it is the one that best fits
the example. Figure 33.3 shows the result of the brush applied.

The Visual Basic code for applying the brush at runtime is similar to the one for the linear
gradient. The following code snippet provides an example:

Dim ragb As New RadialGradientBrush

ragb.GradientStops.Add(New GradientStop With {.Offset = 0,

.Color = Colors.Red})

ragb.GradientStops.Add(New GradientStop With {.Offset = 0,

.Color = Colors.Yellow})

ragb.GradientStops.Add(New GradientStop With {.Offset = 0,

.Color = Colors.Orange})

rect.Fill = ragb

FIGURE 33.3 The result of the RadialGradientBrush.

From the Library of Wow! eBook

ptg

751Introducing Brushes
3

3

Applying an ImageBrush

You can fill a visual element with an image file taking advantage of the ImageBrush brush.
This object is useful even if you want to fill text with image textures. The following code
snippet shows how to apply an ImageBrush as a button background and as the text fore-
ground color:

<StackPanel Grid.Row=”3” Orientation=”Horizontal”>

<Button Width=”100” Margin=”5” Content=”Hello!”

Foreground=”Yellow”>

<Button.Background>

<ImageBrush Opacity=”0.5”

ImageSource=

“/StylesBrushesTemplatesAnimations;component/Images/Avatar.jpg” />

</Button.Background>

</Button>

<TextBlock Margin=”5”

FontFamily=”Segoe UI” FontSize=”40” Text=”Hello!”

FontWeight=”Bold” >

<TextBlock.Foreground>

<ImageBrush ImageSource=

“/StylesBrushesTemplatesAnimations;component/Images/Avatar.jpg”/>

</TextBlock.Foreground>

</TextBlock>

</StackPanel>

NOTE

In the previous code, the Avatar.jpg file is just a sample picture of me. I suppose you
might prefer to replace my face with one of your favorite pictures!

The image is specified by assigning the ImageSource property with the image’s Uri. The
previous code produces the result shown in Figure 33.4 (see the last row).

If you want to add your images to the application resources so that you can easily refer to
them when applying the ImageBrush, follow these steps:

1. Write the ImageBrush element in the XAML code editor.

2. Open the Properties window pointing to the brush.

3. Select the ImageSource property and click the available button. The Choose Image
dialog displays, as shown in Figure 33.5, where you can browse for your image.
When added, its address will be assigned to the ImageProperty in the XAML code
under the form of a packed Uri.

From the Library of Wow! eBook

ptg

752

FIGURE 33.4 Applying an ImageBrush as background and foreground color.

Applying an ImageBrush in Visual Basic code is also a simple task, demonstrated by the
following code snippet:

Dim myButton As New Button

Dim imgb As New ImageBrush

CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

FIGURE 33.5 Selecting an image with the designer tools.

From the Library of Wow! eBook

ptg

753Introducing Brushes
3

3

imgb.ImageSource = New BitmapImage _

(New _

Uri(“/StylesBrushesTemplatesAnimations;component/Images/Avatar.jpg”,

UriKind.Relative))

myButton.Background = imgb

Notice how, in Visual Basic code, you specify the image by creating first an instance of the
BitmapImage class whose constructor receives an argument of type Uri pointing to the
actual image file.

Applying SelectionBrush and CaretBrush

WPF 4 introduces two new objects, SelectionBrush and CaretBrush, which are properties
of type System.Windows.Media.Brush and that accept brushes to be assigned to them. The
first one enables you to apply a brush to the highlighting color when selecting text,
whereas the second one applies a brush to the mouse caret within the control. Controls
that can receive application of these brushes are TextBox and PasswordBox.
SelectionBrush can be also applied to FlowDocumentPageViewer, FlowDocumentReader,
and FlowDocumentScrollViewer. You apply both brushes as child nodes of the desired
control. The following code demonstrates how to apply a linear gradient color for both
the highlighting selection color and the caret color:

<TextBox Grid.Row=”4” Margin=”5”

FontSize=”20” FontWeight=”Bold”

Name=”TextBox1”>

<TextBox.SelectionBrush>

<LinearGradientBrush>

<GradientStop Offset=”0” Color=”Chartreuse”/>

<GradientStop Offset=”0.5” Color=”Violet”/>

<GradientStop Offset=”1” Color=”Blue”/>

</LinearGradientBrush>

</TextBox.SelectionBrush>

<TextBox.CaretBrush>

<LinearGradientBrush>

<GradientStop Offset=”0” Color=”Red”/>

<GradientStop Offset=”0.5” Color=”Yellow”/>

<GradientStop Offset=”1” Color=”Orange”/>

</LinearGradientBrush>

</TextBox.CaretBrush>

</TextBox>

Figure 33.6 shows the result of this code, although the caret gradient is not visible at this
point, but you will see there are no problems on your screen.

From the Library of Wow! eBook

ptg

754

You can apply different kinds of brushes, such as ImageBrush or VisualBrush, as described
in the next section.

Applying a VisualBrush

The VisualBrush enables filling an object with the content of another visual element in
the user interface. For example, you could set a button’s background with the content of a
MediaElement that is playing a video. Applying a VisualBrush is simple, in that you just
need to assign its Visual property with the name of the visual element you want to bind.
The following code example shows how you can assign another visual element currently
in the user interface as the background of a button:

<Button Width=”100” Margin=”5” Grid.Row=”5”>

<Button.Background>

<VisualBrush Visual=”{Binding ElementName=GradientRectangle}”/>

</Button.Background>

</Button>

The requirement is that the source visual element has a Name property set. You assign
the visual element with the Binding markup extension, whose ElementName property
points to the actual visual element. You learn more about the Binding extension in
Chapter 35, “Introducing Data-Binding.” The previous example produces the result
shown in Figure 33.7.

Basically the button’s background is not a color but is a rectangle with all its properties. It
is worth mentioning that if you make modifications to the binding source, the changes

CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

FIGURE 33.6 Applying SelectionBrush and CaretBrush.

From the Library of Wow! eBook

ptg

755Introducing Brushes
3

3

FIGURE 33.7 Applying a VisualBrush.

will be reflected into the VisualBrush. This is the real power of this brush. For example,
try to use a TextBox as the source element; when you write in the TextBox, your text will
be reflected into the VisualBrush.

Applying a DrawingBrush

The DrawingBrush brush enables painting an area with a so called drawing. A drawing,
according to the MSDN documentation, can be a shape, an image, a video, text, or other
and is an instance of the System.Windows.Media.Drawing class. The following code
sample fills a rectangle with a DrawingBrush defining a drawing where two ellipses inter-
sect each other:

<Rectangle Width=”100”

Grid.Row=”6”>

<Rectangle.Fill>

<DrawingBrush>

<DrawingBrush.Drawing>

<GeometryDrawing>

<GeometryDrawing.Brush>

<LinearGradientBrush>

<GradientStop Offset=”0” Color=”Blue”/>

<GradientStop Offset=”0.7” Color=”LightBlue”/>

</LinearGradientBrush>

</GeometryDrawing.Brush>

<GeometryDrawing.Geometry>

From the Library of Wow! eBook

ptg

756

<GeometryGroup>

<EllipseGeometry RadiusX=”0.1” RadiusY=”0.5”

Center=”0.5,0.5” />

<EllipseGeometry RadiusX=”0.5” RadiusY=”0.1”

Center=”0.5,0.5” />

</GeometryGroup>

</GeometryDrawing.Geometry>

</GeometryDrawing>

</DrawingBrush.Drawing>

</DrawingBrush>

</Rectangle.Fill>

</Rectangle>

Other than the brush, it is interesting here how ellipses are declared via EllipseGeometry
objects that are the geometric representation of ellipses and are enclosed within a
GeometryGroup that basically can group different kinds of geometric representations, such
as LineGeometry or RectangleGeometry. (These classes derive from
System.Windows.Media.Geometry, for your further studies.) Figure 33.8 shows the result of
the above snippet.

Now that you know about WPF brushes, you are ready to get an overview of another great
feature: styles.

CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

FIGURE 33.8 Applying a DrawingBrush.

From the Library of Wow! eBook

ptg

757Introducing Brushes
3

3

Applying a BitmapCacheBrush

WPF 4 introduces the concept of cached composition, which provides the ability of storing a
visual element to a cache so that redrawing an element is faster and provides better perfor-
mance instead of rendering the graphic element each time it needs to be used. Among the
others, with cached composition you can cache images to apply as a brush. This is accom-
plished by first declaring a BitmapCache object that establishes the rules for caching the
desired object and then by applying a BitmapCacheBrush to the visual element. The
following code demonstrates how to apply a BitmapCacheBrush as the background of two
TextBlock controls, by using cached composition (comments in the code will help you
understand better):

<StackPanel Grid.Row=”7”>

<StackPanel.Resources>

<!— an image pointing to the previously added

resource —>

<Image x:Key=”cachedImage”

Source=”/StylesBrushesTemplatesAnimations;component/Images/Avatar.jpg”>

<!— supposing we’ll use the same image multiple

times, we can cache it instead of

rendering each time —>

<Image.CacheMode>

<!— RenderAtScale = 1 means that it is cached

at its actual size (no zoom) —>

<BitmapCache RenderAtScale=”1”

EnableClearType=”False”

SnapsToDevicePixels=”False”/>

</Image.CacheMode>

</Image>

<!— Applying the cached image as a brush —>

<BitmapCacheBrush x:Key=”cachedBrush”

Target=”{StaticResource cachedImage}”/>

</StackPanel.Resources>

<TextBlock Text=”Text one...” FontSize=”24”

Height=”60” Foreground=”Blue”

FontWeight=”Bold”

Background=”{StaticResource cachedBrush}”/>

<TextBlock Text=”Text two...” FontSize=”24”

Height=”60” Foreground=”Green”

FontWeight=”Bold”

Background=”{StaticResource cachedBrush}”/>

</StackPanel>

The BitmapCache.RenderAtScale property establishes when the visual element has to be
cached. If assigned with 1, as in the preceding example, the visual element is cached at its
natural size. For example, you could assign such a property with 2 in case you want to

From the Library of Wow! eBook

ptg

758

cache the visual element only when it is zoomed at the double of its size. The
BitmapCache.EnableClearType property lets you decide if you want to apply Clear Type
precision to the visual elements but it is useful only with text. The
BitmapCache.SnapsToDevicePixels property should be assigned with True when you need
precise pixel-alignment and generally takes the same value of the EnableClearType prop-
erty. Finally notice how the BitmapCacheBrush object points to the image via the Target
property and how it is applied to TextBlock controls via the Background property pointing
to the new resource. The preceding code produces the result shown in Figure 33.9.

CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

FIGURE 33.9 Applying BitmapCachedBrush objects.

From the Library of Wow! eBook

ptg

759Introducing Styles
3

3

Introducing Styles
One of the biggest benefits of WPF user controls is that their layout is completely
customizable. As explained further in the “Introducing Control Templates” section, you
can completely redefine their layout and behavior using templates. There are situations in
which you have multiple controls of the same type and you want them to have the same
properties. For example, you might want to implement three buttons and each button
should have the same width, height, and font as the other ones. To avoid the need of
applying the same properties for each control, which can be annoying if you have dozens
of controls, you can define a Style. A style is an instance of the System.Windows.Style
class and enables you to define a set of common properties for the specified type of
control. Styles are defined within the Resources section of a Window, of panels, or at appli-
cation level (Application.xaml file). Each style must have an identifier assigned via the
x:Key attribute and is applied to controls assigning their Style property. Code in Listing
33.1 defines a style for buttons and applies the style to three buttons in the interface.

LISTING 33.1 Defining and Assigning a Style for Buttons

<Window x:Class=”Styles”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”Styles” Height=”300” Width=”300”>

<StackPanel>

<StackPanel.Resources>

<Style x:Key=”ButtonStyle” TargetType=”Button”>

<Setter Property=”Width” Value=”100”/>

<Setter Property=”Height” Value=”40”/>

<Setter Property=”Foreground” Value=”Blue”/>

<Setter Property=”FontFamily” Value=”Verdana”/>

<Setter Property=”Margin” Value=”5”/>

<Setter Property=”Background”>

<Setter.Value>

<LinearGradientBrush>

<GradientStop Offset=”0.2” Color=”Orange”/>

<GradientStop Offset=”0.8” Color=”Red”/>

</LinearGradientBrush>

</Setter.Value>

</Setter>

</Style>

</StackPanel.Resources>

<Button Style=”{StaticResource ButtonStyle}” Content=”Hello!”/>

<Button Style=”{StaticResource ButtonStyle}” Content=”Another styled”/>

<Button Style=”{StaticResource ButtonStyle}” Content=”Button three”/>

</StackPanel>

</Window>

From the Library of Wow! eBook

ptg

760 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

Understanding the scope of styles is important. In the code example the style is defined at
the panel level, meaning that buttons outside the panel cannot get the style applied.
Notice how the TargetType property enables specifying the target control type. If not
specified, WPF assumes FrameworkElement as the target. Properties are specified via Setter
elements. Each setter requires the target Property specification and its value. You can also
define a complex value splitting its definition creating a Setter.Value node, which can
store multiple lines of XAML code, as in Listing 33.1 where the technique is used to define
a LinearGradientBrush gradient. Finally notice how the new style is assigned to buttons
setting the Style property, pointing to the style identifier via a XAML markup extension
named StaticResource.

STATICRESOURCE AND DYNAMICRESOURCE

In different situations you can often find controls pointing to resources via
StaticResource or DynamicResource markup extensions. The difference is that a
StaticResource is something defined in the XAML that will not change during the
application lifetime. It will be assigned only once even before its actual point of use. A
DynamicResource instead is assigned when its value is effectively required and if its
content changes during the application lifetime, its changes are reflected to the caller.

Running the code can produce the interesting result shown in Figure 33.10.

FIGURE 33.10 Styling multiple controls of the same type with Styles.

On the Visual Basic side, you create and apply a style as in the following code snippet:

Dim buttonStyle As New Style

‘Need to specify the System.Type

buttonStyle.TargetType = GetType(Button)

‘The Setter.Property member is assigned with a dependency property exposed

‘by the System.Type

buttonStyle.Setters.Add(New Setter With {.Property = Button.WidthProperty,

.Value = “100”})

Button1.Style = buttonStyle

From the Library of Wow! eBook

ptg

761Introducing Styles
3

3

This can be particularly useful if you need to generate a style at runtime, although you
generally define styles at design time; therefore, declaring and applying them via XAML is
the most preferable way (so that designers can eventually take advantage of XAML for
their work).

Styles Inheritance

You can define a style that inherits from another one to extend it with new settings. This
is accomplished by specifying the BasedOn property as follows:

<Style x:Key=”InheritedStyle” TargetType=”Button”

BasedOn=”{StaticResource ButtonStyle}”>

<Setter Property=”FontWeight” Value=”ExtraBold”/>

</Style>

If you now assign this new style to a button, it can take all the style properties of the base
style plus the FontWeight value.

Understanding Triggers

Until now you saw how styles can be applied to controls without condition. This is useful,
but it is more useful for deciding when to apply a style. The easiest example is to consider
a button; you apply a background color that you might want to change when the mouse
pointer passes over the button, and this behavior should be replicated for each button in
the UI via styles. To conditionally apply styles, you use triggers. A trigger essentially repre-
sents a condition that enables applying a particular style when the condition is evaluated
as True. Triggers are defined within a Style.Triggers collection, and each of them
requires specifying the property affected by the condition and a Boolean value (True or
False) that determines when the trigger has to be executed. Code in Listing 33.2 retakes
the first style example, adding a trigger condition in the final part of the code.

LISTING 33.2 Applying a Single Trigger Condition

<Style x:Key=”ButtonStyle” TargetType=”Button”>

<Setter Property=”Width” Value=”100”/>

<Setter Property=”Height” Value=”40”/>

<Setter Property=”Foreground” Value=”Blue”/>

<Setter Property=”FontFamily” Value=”Verdana”/>

<Setter Property=”Margin” Value=”5”/>

<Setter Property=”Background”>

<Setter.Value>

<LinearGradientBrush>

<GradientStop Offset=”0.2” Color=”Orange”/>

<GradientStop Offset=”0.8” Color=”Red”/>

</LinearGradientBrush>

From the Library of Wow! eBook

ptg

762 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

</Setter.Value>

</Setter>

<Style.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”Background”>

<Setter.Value>

<LinearGradientBrush>

<GradientStop Offset=”0.2” Color=”Red”/>

<GradientStop Offset=”0.8” Color=”Yellow”/>

</LinearGradientBrush>

</Setter.Value>

</Setter>

</Trigger>

</Style.Triggers>

</Style>

Applying the trigger described in code can cause buttons to have a different background
color when the mouse pointer passes over them. In this way we applied a style according
to just one condition, but there are situations in which multiple conditions have to be
evaluated. For example, continuing the Button control discussion, we could decide to
apply a style when the mouse pointer passes over the control and also if the button is
enabled. This can be accomplished using a MultiTrigger object. A MultiTrigger can
contain multiple condition specifications and as many setters for as many properties aswe
want to apply in the style. The following code snippet demonstrates how to declare a
MultiTrigger for the preceding implemented style:

<Style.Triggers>

<MultiTrigger>

<MultiTrigger.Conditions>

<Condition Property=”IsMouseOver” Value=”True”/>

<Condition Property=”IsEnabled” Value=”True”/>

</MultiTrigger.Conditions>

<Setter Property=”Background”>

<Setter.Value>

<LinearGradientBrush>

<GradientStop Offset=”0.2” Color=”Red”/>

<GradientStop Offset=”0.8” Color=”Yellow”/>

</LinearGradientBrush>

</Setter.Value>

</Setter>

</MultiTrigger>

</Style.Triggers>

In this case the new background is applied only when both conditions are evaluated as True.

From the Library of Wow! eBook

ptg

763Introducing Control Templates
3

3

Introducing Control Templates
WPF controls have a particular structure, in which the layout system is separated from the
behavior. When searching resources about WPF controls, you often find a definition
stating that they are lookless. This means that WPF controls simply have no default aspect,
whereas they expose a common set of properties that can be assigned for defining the
layout and the behavior. This common set is referred to as control template. The WPF
system provides a default control template for each available control in the Base Class
Library. You can then override the existing template or create a custom one. Control
templates are so versatile because you can completely redesign the control look while
keeping its original behavior, but you can also improve the behavior. For example, you
can use an Ellipse as a control template for a Button. The new Button will look like an
Ellipse, but your user can still click it and you can still handle button events.

USE EXPRESSION BLEND

Creating custom control templates can be a hard task to accomplish with Visual
Studio. This is a developer tool and therefore cannot offer advanced design features as
Expression Blend does. If you plan to make intensive use of custom control templates,
use Blend. Use just Visual Studio if your custom templates are basic implementations.
In the next examples you see something easy to implement with Visual Studio,
although the logic of control templates is fully implemented.

Basically control templates are implemented as styles, but actually they are not simple
styles. The difference between styles and templates is that styles affect existing properties
within an existing template, whereas a control template can completely override or
replace properties and layout of a control. Talking in code terms, a control template is
defined within a Style definition, setting the Template property and assigning the Value
of this property. Code in Listing 33.3 shows how to utilize an Ellipse as the control
template for buttons, where the background gradient color changes when the button is
pressed or when the mouse pointer flies over it.

LISTING 33.3 Building a Control Template

<Window.Resources>

<Style x:Key=”ButtonStyle1” TargetType=”{x:Type Button}”>

<Setter Property=”Template”>

<Setter.Value>

<ControlTemplate TargetType=”{x:Type Button}”>

<Grid>

<Ellipse x:Name=”ellipse” Stroke=”Black”>

<Ellipse.Fill>

<LinearGradientBrush EndPoint=”0.5,1”

StartPoint=”0.5,0”>

<GradientStop Color=”Black” Offset=”0”/>

<GradientStop Color=”White” Offset=”1”/>

From the Library of Wow! eBook

ptg

764 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

</LinearGradientBrush>

</Ellipse.Fill>

</Ellipse>

<ContentPresenter HorizontalAlignment=

“{TemplateBinding HorizontalContentAlignment}”

VerticalAlignment=

“{TemplateBinding VerticalContentAlignment}”

SnapsToDevicePixels=

“{TemplateBinding SnapsToDevicePixels}”

RecognizesAccessKey=”True”/>

</Grid>

<ControlTemplate.Triggers>

<Trigger Property=”IsFocused” Value=”True”/>

<Trigger Property=”IsDefaulted” Value=”True”/>

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”Fill” TargetName=”ellipse”>

<Setter.Value>

<LinearGradientBrush EndPoint=”0.5,1”

StartPoint=”0.5,0”>

<GradientStop Color=”White” Offset=”0”/>

<GradientStop Color=”Black” Offset=”1”/>

</LinearGradientBrush>

</Setter.Value>

</Setter>

</Trigger>

<Trigger Property=”IsPressed” Value=”True”>

<Setter Property=”Fill” TargetName=”ellipse”>

<Setter.Value>

<LinearGradientBrush EndPoint=”0.5,1”

StartPoint=”0.5,0”>

<GradientStop Color=”#FF4F4F4F”

Offset=”0”/>

<GradientStop Color=”#FF515050”

Offset=”1”/>

<GradientStop Color=”White”

Offset=”0.483”/>

</LinearGradientBrush>

</Setter.Value>

</Setter>

</Trigger>

<Trigger Property=”IsEnabled” Value=”False”/>

</ControlTemplate.Triggers>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</Window.Resources>

From the Library of Wow! eBook

ptg

765Introducing Control Templates
3

3

TIP: RESTYLING WINDOWS

Control templates are not limited to user controls but they can be successfully imple-
mented for completely restyling Window objects layout so that you can create custom
windows while still taking advantage of their behavior. The template’s TargetType is
therefore Window.

If you look at the code, you can notice how the button default aspect is replaced by an
Ellipse within the ControlTemplate value of the Template property. Probably some
concepts you learned about styles help you understand what is happening. Triggers enable
changing the background color according to specific mouse actions. Don’t forget to add
the ContentPresenter element in your custom templates because it enables showing text
or other UI elements within your control. Generally control templates are assigned to
controls using the DynamicResource markup extension. The following XAML line assigns
the above custom control template to a button:

<Button Click=”Button_Click” Name=”Button1”

Style=”{DynamicResource ButtonStyle1}”

Width=”100” Height=”80” Content=”Button”/>

Changes will be also automatically reflected at design time. You can also assign an event
handler for the Click event to ensure that everything is working fine:

Private Sub Button_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

MessageBox.Show(“You clicked!”)

End Sub

Figure 33.11 shows how the button looks within the running application when the mouse
pointer passes over it.

FIGURE 33.11 The custom control template designs a button as an ellipse.

From the Library of Wow! eBook

ptg

766 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

RECOMMENDATION

Control templates enable creating amazing control layouts but this is not necessarily a
good choice. Remember that users prefer to easily associate a simple control shape
to a particular action more than having colored and funny controls that they cannot
easily recognize.

Introducing Transformations
Transformations are special objects that modify the appearance of visual elements of type
FrameworkElement, applying interesting effects such as rotation or translation, keeping
unchanged the visual element’s functional behavior. For example, with transformations
you can rotate a ListBox 180 degrees, but it will still work as usual; only the layout
changes. Transformations are important to understand if you intend to apply animations
to visual elements. I cover animations in the next section. Keep in mind that when you
apply animations, basically you animate transformation objects that affect visual
elements. You apply transformations by adding a RenderTransform node for your visual
element at the XAML level. I explain this by dividing a Grid into four cells where each cell
must contain a ListBox. To accomplish this, write the following XAML code that divides
the grid and provides a common set of properties for ListBox instances via a style:

<Grid Name=”Grid1”>

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<Grid.Resources>

<Style x:Key=”ListStyle” TargetType=”ListBox”>

<Setter Property=”Margin” Value=”5”/>

<Setter Property=”Width” Value=”160”/>

<Setter Property=”Height” Value=”160”/>

<Setter Property=”ItemsSource” Value=”{Binding}”/>

</Style>

</Grid.Resources>

</Grid>

At this point, each cell contains a ListBox, as in the next sections. Before going into that,
switch to the code behind file and handle the Window.Loaded event as follows:

Private Sub Transforms_Loaded(ByVal sender As Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles Me.Loaded

From the Library of Wow! eBook

ptg

767Introducing Transformations
3

3

‘Gets a list of names for running processes

‘and populates the Grid.DataContext so that children

‘elements will pick up data from it

Me.Grid1.DataContext = From proc In Process.GetProcesses

Select proc.ProcessName

End Sub

The DataContext property is basically the data-source for a given container, and all chil-
dren controls pick up data from it. In this case, assigning the Grid1.DataContext property
populates all children ListBoxes.

CHECKING THE SAMPLES RESULT

For the sake of simplicity, and because the design actions are reflected to the design-
er, only one figure will be provided about the transformations result. Figure 33.11
shows the complete results. The interesting thing is that ListBox controls continue
working independently of their skew or position on the screen.

Applying RotateTransform

RotateTransform is a transformation that enables rotating a visual element for the speci-
fied number of degrees and at the specified position. The following code adds a ListBox in
the upper-left cell, and it is rotated 180 degrees:

<ListBox Name=”RotateListBox” Grid.Row=”0” Grid.Column=”0”

Style=”{StaticResource ListStyle}”>

<ListBox.RenderTransform>

<RotateTransform Angle=”180” CenterX=”80” CenterY=”80”/>

</ListBox.RenderTransform>

</ListBox>

Notice how the Angle property specifies the degrees, whereas CenterX and CenterY repre-
sent the position of rotation. In the preceding example the rotation comes in at the center
of the ListBox (both values are the half of Width and Height). Generally transformations
are automatically reflected to the designer, so you should see the result of what you are
doing. Figure 33.11 shows the result of this transformation (see the upper-left cell). Notice
also how the control is working normally even if it is in an unusual position.

Applying ScaleTransform

ScaleTransform enables dynamically resizing a control. The following code demonstrates
how a ListBox can be scaled to different dimensions:

<ListBox Name=”ScaleListBox” Grid.Row=”0” Grid.Column=”1”

Style=”{StaticResource ListStyle}”>

<ListBox.RenderTransform>

From the Library of Wow! eBook

ptg

768 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

<ScaleTransform CenterX=”0” CenterY=”0” ScaleX=”0.6” ScaleY=”0.6”/>

</ListBox.RenderTransform>

</ListBox>

Notice how scaling is expressed in percentage with the ScaleX and ScaleY properties. A
value of 0.6 means that the control is scaled to 60% of its original dimensions. A value of
1 means 100% (that is, the original size), whereas a value bigger than 1 enlarges the visual
element. Take a look at the upper-right cell in Figure 33.11 to get an idea about the result.
With animations, ScaleTransform enables animating visual elements by making them
larger or smaller.

Applying SkewTransform

SkewTransform enables skewing a visual element for the specified angles on both the X-
axis and Y-axis, simulating 3D depth for 2D objects. The following code demonstrates how
to apply to a ListBox a horizontal skew of 15 degrees and a vertical skew of 30 degrees,
where the center point is established by CenterX and CenterY properties:

<ListBox Name=”SkewListBox” Grid.Row=”1” Grid.Column=”0”

Style=”{StaticResource ListStyle}”>

<ListBox.RenderTransform>

<SkewTransform AngleX=”15” AngleY=”30” CenterX=”50” CenterY=”50” />

</ListBox.RenderTransform>

</ListBox>

Skewing is probably the most impressive transform if you then try to use visual elements
and controls, discovering that they work exactly as if they were not transformed. Figure
33.11 shows the result of skewing (see the bottom-left cell).

Applying TranslateTransform

TranslateTransform simply enables moving a visual element from a position to another
one in the layout system. This is useful if you want to build animations capable of moving
visual elements. The following example shows how you can translate a ListBox of 50
points on the X-axis and of 100 points on the Y-axis:

<ListBox Name=”TranslateListBox” Grid.Row=”1” Grid.Column=”1”

Style=”{StaticResource ListStyle}”>

<ListBox.RenderTransform>

<TranslateTransform X=”50” Y=”100” />

</ListBox.RenderTransform>

</ListBox>

The result of this translation is shown in Figure 33.12 (see the bottom-right cell).

From the Library of Wow! eBook

ptg

769Introducing Transformations
3

3

Applying Multiple Transforms

You can apply multiple transformations by contextually implementing a TransformGroup
as a nested node of RenderTransform. The following code demonstrates how you can both
rotate and skew a visual element:

<ListBox Name=”SkewListBox” Grid.Row=”1” Grid.Column=”0”

Style=”{StaticResource ListStyle}”>

<ListBox.RenderTransform>

<TransformGroup>

<SkewTransform AngleX=”15” AngleY=”30” CenterX=”50”

CenterY=”50” />

<RotateTransform Angle=”180” CenterX=”80” CenterY=”80”/>

</TransformGroup>

</ListBox.RenderTransform>

</ListBox>

A COUPLE OF IMPORTANT NOTES

Another transformation named MatrixTransform is also available and enables building
custom transformations. This is quite a complex object and is beyond of the scope of
this book. Visit the official MSDN page at http://msdn.microsoft.com/en-
us/library/system.windows.media.matrixtransform(VS.100).aspx.

FIGURE 33.12 The result of applying transformations.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.windows.media.matrixtransform(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.matrixtransform(VS.100).aspx

ptg

770 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

Next, RenderTransform is not the only place for putting transformations. There is
another node named LayoutTransform that requires a transformation to be applied
before the WPF layout system comes in. This can be useful only when you effectively
need the parent of the affected element to adjust the transformed size, but in all other
cases use RenderTransform that offers better performance, especially with animations.

Introducing Animations
WPF offers lots of interesting features about graphics and multimedia to provide a great
user experience with rich client applications; animations are one of these features. They
enable visual elements (or just some portions of them) to move along the UI or to dynam-
ically change their aspect during the specified interval. Subsequent sections explain how
you can apply animations to WPF visual elements. There are different kinds of animations
in WPF; and we cover the most common of them, DoubleAnimation and ColorAnimation.

NOTE

There is a special type of animation based on timelines that is not easy to implement
with Visual Studio, whereas it is the easiest animation that you can realize with
Expression Blend. With that said, from a developer perspective, this chapter covers ani-
mations based on storyboards.

Animations are cool in that they can also be eventually controlled by pausing, removing,
stopping, and manually playing and are represented by
System.Windows.Media.Animation.Storyboard objects. Each Storyboard can define one or
more DoubleAnimation or ColorAnimation that applies to transformations (see previous
section for details). To decide the time when animations need to come in, you define
them within the control’s triggers specifying an EventTrigger that basically requires you
to specify the event representing the moment for the animation to run, For example, if
you want an animation to start when a window is loaded, the EventTrigger points to
Window.Loaded. Before providing any code example, add a new window to your current
WPF project or create a new project from scratch. When the new window is ready, divide
the default Grid into four cells by typing the following XAML:

<Grid Name=”Grid1”>

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

</Grid>

From the Library of Wow! eBook

ptg

771Introducing Animations
3

3

Applying DoubleAnimation

A DoubleAnimation object enables animating the specified transform property; it allows
reverting the motion and specifying the duration and if the animation needs to be
repeated unlimitedly. The first example animates an image, applying the animation to a
SkewTransform and to a ScaleTransform contextually. Code in Listing 33.4 shows how to
accomplish this.

LISTING 33.4 Applying a DoubleAnimation to an Image

<Image Grid.Row=”0” Grid.Column=”0” Name=”Image1”

Source=”/StylesBrushesTemplatesAnimations;component/Images/Avatar.jpg”>

<Image.RenderTransform>

<TransformGroup>

<SkewTransform x:Name=”SkewImage”/>

<ScaleTransform x:Name=”ScaleImage”/>

</TransformGroup>

</Image.RenderTransform>

<Image.Triggers>

<EventTrigger RoutedEvent=”Image.Loaded”>

<EventTrigger.Actions>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetName=”SkewImage”

Storyboard.TargetProperty=”AngleY”

From=”0” To=”15” Duration=”0:0:3”

AutoReverse=”True”

RepeatBehavior=”Forever” />

<DoubleAnimation Storyboard.TargetName=”ScaleImage”

Storyboard.TargetProperty=”ScaleX”

From=”1” To=”0.3” Duration=”0:0:3”

AutoReverse=”True”

RepeatBehavior=”Forever” />

<DoubleAnimation Storyboard.TargetName=”ScaleImage”

Storyboard.TargetProperty=”ScaleY”

From=”1” To=”0.3” Duration=”0:0:3”

AutoReverse=”True”

RepeatBehavior=”Forever” />

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions>

</EventTrigger>

</Image.Triggers>

</Image>

From the Library of Wow! eBook

ptg

772 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

The code first applies to transformations. They are empty, with no properties set, therefore
with no changes to the Image. But they have a name so that they can be referred to from
the storyboard. The EventTrigger within triggers specifies the Image.Loaded routed event,
which establishes that the animation will run when the image is loaded. The
BeginStoryboard object is basically a container for children Storyboard objects. In the
code example there is just one Storyboard that contains multiple DoubleAnimation
objects. Notice how each DoubleAnimation refers to a transformation via the
Storyboard.TargetName attached property and to the particular transformation’s property
via the Storyboard.TargetProperty attached property. From and To respectively specify
the starting and finish points of the animation. In the case of the SkewTransform, they
specify the angle degrees, whereas in the case of the ScaleTransform they specify the
scaling percentage. Duration is a property for specifying how many hours:minutes:seconds
the animation will last; AutoReverse specifies if the animation has to be repeated back,
and RepeatBehavior specifies how long the animation will last (Forever is self-explana-
tory). At this point run the application to have your image skewed and scaled via the
animation. Refer to Figure 33.12 to see an approximate result. (Figures cannot show
animations running!) Next, the code example about DoubleAnimation is applied to a
TextBlock object for animating text. In this case you see the conjunction of a
RotateTransform and SkewTransform. Code in Listing 33.5 provides the previously
mentioned example.

LISTING 33.5 Applying DoubleAnimation to a TextBlock

<TextBlock Grid.Row=”0” Grid.Column=”1” Text=”Animated Text” FontSize=”24”

FontFamily=”Verdana” FontWeight=”Bold”

HorizontalAlignment=”Center”

VerticalAlignment=”Center” RenderTransformOrigin=”0.5 0.5”>

<TextBlock.Foreground>

<LinearGradientBrush>

<GradientStop Offset=”0” Color=”Red” />

<GradientStop Offset=”0.5” Color=”Yellow” />

<GradientStop Offset=”1” Color=”Orange”/>

</LinearGradientBrush>

</TextBlock.Foreground>

<TextBlock.RenderTransform>

<TransformGroup>

<RotateTransform x:Name=”RotateText” />

<SkewTransform x:Name=”SkewText”/>

</TransformGroup>

</TextBlock.RenderTransform>

<TextBlock.Triggers>

<EventTrigger RoutedEvent=”TextBlock.Loaded”>

<BeginStoryboard>

From the Library of Wow! eBook

ptg

773Introducing Animations
3

3

<Storyboard Name=”TextAnimation”>

<DoubleAnimation Storyboard.TargetName=”RotateText”

Storyboard.TargetProperty=”Angle”

From=”0” To=”360” Duration=”0:0:5”

RepeatBehavior=”Forever” />

<DoubleAnimation Storyboard.TargetName=”SkewText”

AutoReverse=”True”

Storyboard.TargetProperty=”AngleX”

From=”0” To=”45” Duration=”0:0:5”

RepeatBehavior=”Forever” />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</TextBlock.Triggers>

</TextBlock>

The logic is the same, with the EventTrigger and transformations. The first
DoubleAnimation is applied to a RotateTransform that affects rotation degrees. Run the
code to get an idea of the result and refer to Figure 33.12 for a graphical representation.

Applying ColorAnimation

A ColorAnimation enables animating colors within a brush, such as LinearGradientBrush
and RadialGradientBrush. Basically a color is replaced with another one passing through
a gradient. The next example is a little bit particular because it will be applied to a
DataGrid control to demonstrate that also business controls can receive animations. The
DataGrid exposes an AlternatingRowBackground property that enables specifying a differ-
ent color for alternating rows. The goal of the example is animating colors in the back-
ground of such rows. For this, code in Listing 33.6 shows how to apply the described
color animation.

LISTING 33.6 Applying a ColorAnimation

<DataGrid Name=”CustomerDataGrid” AutoGenerateColumns=”True”

Grid.Row=”1” Grid.Column=”1” Margin=”5”>

<DataGrid.AlternatingRowBackground>

<LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>

<GradientStop Color=”Black” Offset=”0” />

<GradientStop Color=”Black” Offset=”1” />

<GradientStop Color=”White” Offset=”0.4” />

<GradientStop Color=”White” Offset=”0.6” />

</LinearGradientBrush>

</DataGrid.AlternatingRowBackground>

<DataGrid.Triggers>

From the Library of Wow! eBook

ptg

774 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

<EventTrigger RoutedEvent=”DataGrid.Loaded”>

<EventTrigger.Actions>

<BeginStoryboard>

<Storyboard>

<ColorAnimation From=”Black” To=”Violet”

Duration=”0:0:2”

Storyboard.TargetProperty=

“AlternatingRowBackground.GradientStops[0].Color”

AutoReverse=”True”

RepeatBehavior=”Forever”/>

<ColorAnimation From=”Black” To=”Chartreuse”

Duration=”0:0:2”

AutoReverse=”True”

RepeatBehavior=”Forever”

Storyboard.TargetProperty=

“AlternatingRowBackground.GradientStops[3].Color”/>

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions>

</EventTrigger>

</DataGrid.Triggers>

</DataGrid>

As you can see, this kind of animation basically works like DoubleAnimation except that
From and To require you to specify the source and target colors. When referring to a
GradientStop, you enclose its index within square parentheses. (Remember that the index
is zero-based). To complete the example, it is necessary to populate the DataGrid with
some data. Switch to the code behind file and write the code in Listing 33.7, which
defines a Customer class, creates some instances of the class, and a List(Of Customer)
collection that is the data source.

LISTING 33.7 Populating the DataGrid

Public Class Animations

Private Sub Animations_Loaded(ByVal sender As Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles Me.Loaded

Dim cust1 As New Customer With {.Address = “7Th street”,

.CompanyName = “Del Sole”, .ContactName = “Alessandro Del Sole”}

Dim cust2 As New Customer With {.Address = “5Th street”,

.CompanyName = “Fictitious Red & White”,

.ContactName = “Robert White”}

From the Library of Wow! eBook

ptg

775Introducing Animations
3

3

Dim custList As New List(Of Customer) From {cust1, cust2}

Me.CustomerDataGrid.ItemsSource = custList

End Sub

End Class

Public Class Customer

Public Property CompanyName As String

Public Property Address As String

Public Property ContactName As String

End Class

Run the application. You get the result represented in Figure 33.13.

FIGURE 33.13 The result of applied animations.

Working with Animation Events

Storyboard objects expose events that can help you get control over the animations. The
first step is assigning a name to the desired storyboard, as in the following example:

<Storyboard Name=”ImageStoryBoard”>

From the Library of Wow! eBook

ptg

776 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

After you assign a name to the Storyboard, you can handle events summarized in Table
33.1.

TABLE 33.1 Storyboard Events

Event Occurs When

Completed The animation completes.

Changed An object is modified.

CurrentGlobalSpeedInvalidated The time progress rate changes.

CurrentStateInvalidated The CurrentState property of the animation clock
changes.

CurrentTimeInvalidated The CurrentTime property of the animation clock changes.

RemoveRequested The animation clock is removed.

Generally you handle the Completed event to make an action when an animation
completes, as in the following code snippet:

Private Sub ImageStoryBoard_Completed(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles ImageStoryBoard.Completed

‘Write code for the animation completion

End Sub

Notice how animations do not throw routed events, whereas they raise standard events.
Storyboard objects also expose some methods that enable controlling the animation in
code, such as Begin, Stop, Pause, Seek, and Resume, which are all self-explanatory.
Moreover, you can set in Visual Basic code also some animation properties that I
explained through XAML code, as in the following code snippet:

With ImageStoryBoard

.AutoReverse = True

.RepeatBehavior = System.Windows.Media.Animation.

RepeatBehavior.Forever

.Duration = New TimeSpan(0, 0, 5)

End With

Animations can be also applied to 3D graphics that are beyond the scope of this book but
that you can explore through the MSDN documentation.

Creating Animations with Visual Basic

Maybe you understood that XAML is the best way for creating, customizing, and manag-
ing visual elements. Generally writing VB code is something that you should practice only

From the Library of Wow! eBook

ptg

777Introducing Animations
3

3

when there is an effective need of applying effects at runtime. This can also be the case of
animations. Code in Listing 33.8 shows how to create at runtime a new button and how
to apply an animation that increases and decreases the button’s height. The code is not
difficult to understand when you have a clear idea of the sequence of elements required
within an animation.

LISTING 33.8 Creating an Animation in VB code

Public Class Animations

Private myAnimation As Animation.DoubleAnimation

Private WithEvents aButton As Button

Private heightAnimationStoryboard As Animation.Storyboard

Private Sub CreateRuntimeAnimation()

‘An instance of a new Button

aButton = New Button With {.Width = 150, .Height = 50,

.Content = “Runtime button”,

.Name = “RuntimeButton”}

‘Associates the button’s name to the Window names collection

‘(required at runtime)

Me.RegisterName(aButton.Name, aButton)

‘Adds the Button to the Grid at the given row/column

Grid.SetColumn(aButton, 0)

Grid.SetRow(aButton, 1)

Grid1.Children.Add(aButton)

‘Creates a new DoubleAnimation, with properties

myAnimation = New Animation.DoubleAnimation

With myAnimation

.AutoReverse = True

‘From and To are Nullable(Of Double)

.From = 50

.To = 15

.RepeatBehavior = Animation.RepeatBehavior.Forever

.Duration = New TimeSpan(0, 0, 3)

End With

‘Sets the target control via its name

Animation.Storyboard.SetTargetName(myAnimation, aButton.Name)

‘Sets the target property

Animation.Storyboard.SetTargetProperty(myAnimation,

New PropertyPath(Button.

HeightProperty))

From the Library of Wow! eBook

ptg

778 CHAPTER 33 Brushes, Styles, Templates, and Animations in WPF

‘Create a new storyboard instance and adds the animation

‘to the storyboard’s collection of animations

heightAnimationStoryboard = New Animation.Storyboard

heightAnimationStoryboard.Children.Add(myAnimation)

End Sub

‘Starts the animation when the button is loaded

Private Sub aButton_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs) _

Handles aButton.Loaded

heightAnimationStoryboard.Begin(aButton)

End Sub

End Class

The one thing you have to pay attention to is registering the button name because other-
wise it will not be accessible at runtime by the animation. Another thing that is worth
mentioning regards how you set the storyboard target property. This is accomplished via
the StoryBoard.SetTargetProperty shared method that requires the animation instance
and a PropertyPath instance that receives a dependency property as an argument. Figure
33.14 represents a particular moment of the animation running.

FIGURE 33.14 The application runs the Visual Basic-generated animation.

From the Library of Wow! eBook

ptg

779Summary
3

3

Summary
Windows Presentation Foundation offers great benefits about customizing user interface
elements. In this chapter you got a high-level overview of modes allowed for customizing
elements and for making them more interesting to the final user. First, you got informa-
tion about brushes; you saw how many brushes are offered by WPF and how you can
apply them for coloring or filling visual elements. Next you learned about styles, under-
standing how you can take advantage of them for setting a common set of properties for
the specified control type. Subsequently, you got an overview of control templates, learn-
ing how you can completely redefine the graphical aspect of a user control while keeping
safe its behavior. Next you got information on transformations, understanding how they
can dynamically change controls’ appearance. Finally you took a tour of animations,
seeing how you can enrich your user interface with cool animations that take advantage
of transformations. In the next chapter I discuss other important features of WPF, such as
the ability to create dynamic documents and manage media contents.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 34

Manipulating
Documents and Media

IN THIS CHAPTER

. Viewing Images

. Playing Media

. Manipulating Documents

. Viewing XPS Documents

Windows Presentation Foundation offers native controls
for working with media contents and for manipulating
documents. This last topic is also important because docu-
ments are one of the most common requirements in
modern applications, and WPF provides a way for creating
and managing documents that can be dynamically arranged
to offer a better user experience. In this chapter you learn
how to take advantage of media contents to enrich your
applications and to manipulate dynamic documents
through built-in controls exposed by the .NET Framework.

Viewing Images
You use the System.Windows.Controls.Image control to
show images. The Visual Studio 2010 designer provides
some improvements to help you manage more images than
in the past editions. To see how the control works, create a
new WPF project that will be used for all examples in this
chapter and name it as DocumentsAndMedia. When
ready, drag an Image control from the toolbox onto the new
Window; then set its dimensions as you like. To view an
image, you need to set the Source property that basically
points to an Uri. Open the Properties window by pressing
F4 and then click the button for the Source property. At
this point you can select one or more images to add as
resources to your project, as shown in Figure 34.1. When
you add your images at this point, simply select the one
you want to be shown inside the Image control. When you
click OK, Visual Studio generates a subfolder in the project
main folder, naming the new folder as Images and setting
the build action for added images as Resource.

From the Library of Wow! eBook

ptg

782 CHAPTER 34 Manipulating Documents and Media

FIGURE 34.1 Adding images to the project.

Visual Studio also automatically sets the Source property for you, taking advantage of the
packed Uri, as demonstrated by the following line of XAML code:

<Image Source=”/DocumentsAndMedia;component/Images/IMG006.jpg”

Stretch=”Fill” Name=”Image1” />

The Stretch property enables establishing how pictures will be tiled inside the Image
control. Fill, which is the default value, dynamically adapts the picture to fill the entire
Image control, but when you resize the control you may lose the original aspect ratio. If
you instead use Uniform you can keep the aspect ratio and dynamically adapt the picture;
while setting UniformToFill the picture will work like Uniform except that it will clip the
source image so that the layout will be based on the Image control size. If you instead
assign the Stretch property with None, the source image will be shown in its original size.
Figure34.2 shows how the image looks with Stretch set as Fill.

You can also assign the Source property at runtime from Visual Basic code so that you can
provide users the ability of selecting different pictures. Differently from the XAML code, in
VB you need to create first an instance of the BitmapImage class and assign some of its
properties as follows:

Private Sub LoadPicture(ByVal fileName As String)

Dim img As New BitmapImage

With img

.BeginInit()

.BaseUri = New Uri(“MyPicture.jpg”)

.EndInit()

End With

Image1.Source = img

End Sub

From the Library of Wow! eBook

ptg

783Playing Media

FIGURE 34.2 Showing images with the Image control.

Basically you invoke BeginInit to start editing; then you set BaseUri pointing to the
desired file and finally invoke EndInit to finish editing. When you perform these steps,
you can assign the new instance to the Image.Source property.

Playing Media
Windows Presentation Foundation enables easily reproducing media files, such as audio
and videos, through the System.Windows.Controls.MediaElement control. This basically
enables reproducing, among others, all media contents supported by the Windows Media
Player application, thus .Wmv, .Wma, .Avi, and .Mp3 files. This section shows you how to
build a simple media player using MediaElement and Visual Basic 2010. Now add a new
Window to an existing project setting this as the main window. The goal of the next
example is to implement a media player and buttons for controlling media reproduction.
Code in Listing 34.1 declares the user interface.

LISTING 34.1 Defining the User Interface for a Simple Media Player

<Window x:Class=”PlayingMedia”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”PlayingMedia” Height=”300” Width=”600”>

<Grid>

3
4

From the Library of Wow! eBook

ptg

784 CHAPTER 34 Manipulating Documents and Media

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition Height=”50” />

</Grid.RowDefinitions>

<MediaElement Name=”Media1” Grid.Row=”0” LoadedBehavior=”Manual”

Volume=”{Binding ElementName=VolumeSlider, Path=Value}”

MediaFailed=”Media1_MediaFailed”

MediaEnded=”Media1_MediaEnded”/>

<StackPanel Orientation=”Horizontal” Grid.Row=”1”>

<Button Name=”PlayButton” Width=”70” Height=”40”

Margin=”5” Click=”PlayButton_Click”

Content=”Play”/>

<Button Name=”PauseButton” Width=”70” Height=”40”

Margin=”5” Click=”PauseButton_Click”

Content=”Pause”/>

<Button Name=”StopButton” Width=”70” Height=”40”

Margin=”5” Click=”StopButton_Click”

Content=”Stop”/>

<Button Name=”BrowseButton” Width=”40” Height=”40”

Margin=”5” Content=”...”

Click=”BrowseButton_Click”/>

<Slider Name=”VolumeSlider” Width=”80” Margin=”5”

Minimum=”0” Maximum=”1” Value=”0.5”

TickFrequency=”0.1”

AutoToolTipPlacement=”TopLeft”

TickPlacement=”BottomRight”

ToolTip=”Adjust volume”/>

</StackPanel>

</Grid>

</Window>

The MediaElement control has basically no look, so when you place it onto the user inter-
face, it has a transparent background and border, although you can replace this with your
custom background and border. The LoadedBehavior property enables establishing how
the media file needs to be reproduced; for example, Play means that the associated video
will be automatically played when the control is loaded, whereas Manual means that
playing will be started via Visual Basic code at the specified moment. (IntelliSense can
help you to choose the most appropriate self-explanatory option.) You associate a media
file to the MediaElement assigning the Source property, but this is not mandatory because
you can accomplish this later in code. The Volume property enables adjusting reproduction

From the Library of Wow! eBook

ptg

785Playing Media

volume, and its range is between 0 and 1. In this example the Volume value is bound to
the VolumeSlider.Value property. The control also offers some events such as
MediaFailed and MediaEnded that respectively are raised when an error occurs when
attempting to open the media file and when the reproduction completes. The
MediaElement control also provides some methods for controlling reproduction in code,
such as Play, Pause, and Stop. Code in Listing 34.2 shows how to implement the features
and how to allow media selection from disk.

LISTING 34.2 Controlling the MediaElement in Code

Public Class PlayingMedia

Dim sourceMedia As String = String.Empty

Private Sub Media1_MediaEnded(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs)

‘Playing completed

End Sub

Private Sub Media1_MediaFailed(ByVal sender As System.Object,

ByVal e As System.Windows.

ExceptionRoutedEventArgs)

MessageBox.Show(e.ErrorException.Message)

End Sub

Private Sub PlayButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

If String.IsNullOrEmpty(Me.sourceMedia) = False Then

Me.Media1.Play()

End If

End Sub

Private Sub PauseButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

If String.IsNullOrEmpty(Me.sourceMedia) = False Then

Me.Media1.Pause()

End If

End Sub

Private Sub StopButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

If String.IsNullOrEmpty(Me.sourceMedia) = False Then

Me.Media1.Stop()

3
4

From the Library of Wow! eBook

ptg

786 CHAPTER 34 Manipulating Documents and Media

End If

End Sub

Private Sub BrowseButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

Dim dialog As New Microsoft.Win32.OpenFileDialog

With dialog

.Title = “Select a media file”

.Filter = “Avi & Wmv|*.avi;*.wmv|Audio|*.wma;*.mp3|All files|*.*”

If .ShowDialog = True Then

Me.sourceMedia = .FileName

Me.Media1.Source = New Uri(sourceMedia,

UriKind.RelativeOrAbsolute)

End If

End With

End Sub

End Class

Notice how the MediaFailed event handler shows an error message in case an exception is
thrown and how the media file is assigned under the form of an Uri to the
MediaElement.Source property. This also means that you can assign an Uri such as a Web
address to play a media content stored on a website. At this point you can run the applica-
tion, click the Browse button to select your media content and click Play. Figure 34.3
shows the application playing a video.

The MediaElement control also offers a Position property (of type TimeSpan) that provides
the ability to seek the desired position within the media content.

Manipulating Documents
One of the most important requirements in modern applications is the ability to manage
documents. WPF offers the System.Windows.Documents namespace that exposes objects
that enable creating flexible and dynamic documents that can adapt their layout dynami-
cally to the user interface. These kinds of documents take advantage of the Clear Type™
technology and are hosted inside FlowDocument objects. A FlowDocument is composed of
Paragraph objects where you can place and format your text. Paragraphs are powerful
because they enable adding figures, bulleted lists, fully functional hyperlinks, and text
formatting. To present and browse a flow document, you need to add a
FlowDocumentReader control to the user interface. Flexibility and dynamicity are just two
benefits of a larger number. Another cool feature in flow documents is that users can
interact with documents as if they were reading a book, so they can add annotations and
highlights that can be stored to disk for later reuse. Annotations are provided by the
System.Windows.Annotations namespace that needs to be imported at the XAML level.
The goals of next code example are

From the Library of Wow! eBook

ptg

787Manipulating Documents

FIGURE 34.3 The sample application playing a video.

Add a new Window to the current one, setting it as the startup page. When ready, write the
XAML code shown in Listing 34.3 that implements the UI side of the application. The
code is explained at the end of the listing.

NOTE

The content of the sample flow document is just an excerpt of the content of Chapter
31, “Creating WPF Applications,” which is provided as an example, but that you can
replace with a more complete text of yours.

LISTING 34.3 Implementing Flow Documents

<Window x:Class=”ManipulatingDocuments”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:ann=”clr-namespace:System.Windows.Annotations;assembly=PresentationFrame-

work”

Title=”ManipulatingDocuments” Height=”480” Width=”600”>

<Grid>

3
4

. Illustrating how you can create flow documents

. Illustrating how you can add and format text within flow documents

. Implementing features for adding annotations to documents and saving them to disk

From the Library of Wow! eBook

ptg

788 CHAPTER 34 Manipulating Documents and Media

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition Height=”40”/>

</Grid.RowDefinitions>

<StackPanel Grid.Row=”1” Orientation=”Horizontal”>

<StackPanel.Resources>

<Style x:Key=”ButtonStyle” TargetType=”Button”>

<Setter Property=”Width” Value=”100”/>

<Setter Property=”Height” Value=”30”/>

<Setter Property=”Margin” Value=”5”/>

</Style>

</StackPanel.Resources>

<Button Command=”ann:AnnotationService.CreateTextStickyNoteCommand”

CommandTarget=”{Binding ElementName=FlowReader1}”

Style=”{StaticResource ButtonStyle}”>

Add note</Button>

<Separator/>

<Button Command=”ann:AnnotationService.CreateInkStickyNoteCommand”

CommandTarget=”{Binding ElementName=FlowReader1}”

Style=”{StaticResource ButtonStyle}”>

Add Ink

</Button>

<Separator/>

<Button Command=”ann:AnnotationService.DeleteStickyNotesCommand”

CommandTarget=”{Binding ElementName=FlowReader1}”

Style=”{StaticResource ButtonStyle}”>

Remove note

</Button>

<Separator/>

<Button Command=”ann:AnnotationService.CreateHighlightCommand”

CommandTarget=”{Binding ElementName=FlowReader1}”

Style=”{StaticResource ButtonStyle}”>

Highlight

</Button>

<Separator/>

<Button Command=”ann:AnnotationService.ClearHighlightsCommand”

CommandTarget=”{Binding ElementName=FlowReader1}”

Style=”{StaticResource ButtonStyle}”>

Remove highlight

</Button>

</StackPanel>

<FlowDocumentReader Grid.Row=”0” BorderThickness=”2” Name=”FlowReader1”>

<FlowDocument Name=”myDocument”

From the Library of Wow! eBook

ptg

789Manipulating Documents

TextAlignment=”Justify”

IsOptimalParagraphEnabled=”True”

IsHyphenationEnabled=”True”

IsColumnWidthFlexible=”True”

ColumnWidth=”300”

ColumnGap=”20”>

<Paragraph FontSize=”36” FontWeight=”Bold”

FontStyle=”Oblique”>Chapter 31</Paragraph>

<Paragraph FontSize=”24” FontWeight=”Bold”>Introducing

WPF</Paragraph>

<Paragraph>

Windows Presentation Foundation relies on a layered architecture

that is represented in Figure 31.1. The first layer is the

Windows operating system. The second layer is constituted by the

combination of two communicating layers:

User32, which is the part of the operating system responsible

for exchanging messages with applications, and the DirectX

libraries which are the real power of WPF.

<!— Add other text here.... —>

<Figure Width=”300”>

<BlockUIContainer>

<StackPanel>

<!—Replace the image file with a valid one—>

<Image

Source=”/DocumentsAndMedia;component/Images/31fig01.tif”

Width=”200”

Height=”300”

Stretch=”Fill” />

<Separator></Separator>

<TextBlock VerticalAlignment=”Center”

Width=”220” TextWrapping=”Wrap”

FontSize=”10” FontStyle=”Italic”>

Figure 31.1 – WPF architecture

</TextBlock>

</StackPanel>

</BlockUIContainer>

</Figure>

<Bold>PresentationFramework</Bold> exposes namespaces

and classes

through a complex hierarchy of inheritance,

where the root class is of course System.Object.

Such hierarchy provides the infrastructure for the user

interface elements.

This hierarchy is composed by the following list of classes,

3
4

From the Library of Wow! eBook

ptg

790 CHAPTER 34 Manipulating Documents and Media

where each class inherits from the previous one:

</Paragraph>

<List>

<ListItem>

<Paragraph

FontFamily=”Courier New”>System.Object</Paragraph>

</ListItem>

<ListItem>

<Paragraph

FontFamily=”Courier New”>

System.Threading.DispatcherObject</Paragraph>

</ListItem>

<ListItem>

<Paragraph FontFamily=”Courier New”>

System.Windows.DependencyObject</Paragraph>

</ListItem>

<ListItem>

<Paragraph

FontFamily=”Courier New”>

System.Windows.Media.Visual</Paragraph>

</ListItem>

</List>

<Paragraph>

The

<Hyperlink

NavigateUri=”http://msdn.microsoft.com/en-

us/library/ms750441(VS.100).aspx

#System_Threading_DispatcherObject”>

System.Threading.DispatcherObject</Hyperlink>

is responsible for threading and messages which

WPF relies on. The dispatcher takes advantage

of the User32 messages for performing

cross thread calls.

</Paragraph>

</FlowDocument>

</FlowDocumentReader>

</Grid>

</Window>

Let’s begin by illustrating the FlowDocumentReader control. It basically provides a
container for flow documents and automatically implements buttons for browsing multi-
ple page documents and controlling documents’ layout, as you see later in Figure 34.4.
The FlowDocument object instead contains the document and exposes some interesting
properties. The previous code uses the most important ones. TextAlignment enables speci-
fying how the text must be aligned within the document and can have one of the following

From the Library of Wow! eBook

ptg

791Manipulating Documents

values: Center, Right, Left, or Justify. IsOptimalParagraph set as True enables paragraph
layout optimization. IsHyphenationEnable set as True enables word hyphenation in the
document. IsColumnWidthFlexible set as True means that the value of the ColumnWidth
property is not fixed. This last property takes place when you enable the document view
by columns. The ColumnGap property indicates the spacing between columns. A complete
list of properties is available in the MSDN Library: http://msdn.microsoft.com/en-us/
library/system.windows.documents.flowdocument_members(VS.100).aspx. For the
document content, notice the following techniques:

. You divide the content into multiple Paragraph objects to provide different para-
graph formatting.

. You can add inline formatting. For example, the following line contains bold format-
ting within a paragraph:

<Bold>PresentationFramework</Bold> exposes namespaces and classes

. You can also add fully functional hyperlinks as in the following sample line:

<Hyperlink

NavigateUri=”http://msdn.microsoft.com/en-

us/library/ms750441(VS.100).aspx#System_Threading_DispatcherObject”>

System.Threading.DispatcherObject</Hyperlink>

3
4

FIGURE 34.4 Viewing and annotating a flow document.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.windows.documents.flowdocument_members(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.windows.documents.flowdocument_members(VS.100).aspx

ptg

792 CHAPTER 34 Manipulating Documents and Media

The sample document also shows how to implement bulleted lists via a List object that
contains ListItem elements. It is interesting how flow documents also support figures
insertion via a Figure element that contains a BlockUIContainer object nesting an Image
control storing the figure and a TextBlock control describing the figure. Notice how each
paragraph and subparagraph can be customized by setting font properties different from
other paragraphs. Switching the discussion to buttons implementation, instead of
handling Click events the code makes use of a technique known as commanding that takes
advantage of built-in commands associated to specific actions; basically each button is
associated to one of the built-in actions for the annotation service via the Command prop-
erty and points to the flow document as the target of the action (CommandTarget). At this
point there is the need of writing code that enables the annotation service at the applica-
tion startup so that the user can annotate or highlight text and then save annotations to
disk for later reuse. The annotation service relies on the System.Windows.Annotations
namespace that provides an AnnotationService class whose instance allows editing the
document. Next, the System.Windows.Annotations.Storage namespace provides objects
for storing annotations to Xml files for later reuse. Code in Listing 34.4 shows how to
implement the annotation service with Visual Basic. The code must be written to the
code-behind file for the current window and contains comments for better reading.

LISTING 34.4 Implementing the Annotation Service

Imports System.Windows.Annotations

Imports System.Windows.Annotations.Storage

Imports System.IO

Public Class ManipulatingDocuments

Dim annotationStream As FileStream

Private Sub ManipulatingDocuments_Initialized(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles Me.Initialized

‘Gets the instance of the AnnotationService pointing to the FlowDocument

Dim annotationServ As AnnotationService = _

AnnotationService.GetService(FlowReader1)

‘Declares a store for annotations

Dim annotationArchive As AnnotationStore

‘If no annotation service already exists for

‘the current flow document...

If annotationServ Is Nothing Then

From the Library of Wow! eBook

ptg

793Manipulating Documents

‘...creates a new service

‘ and a new store to an Xml file

annotationStream = New FileStream(“annotations.xml”,

FileMode.OpenOrCreate)

annotationServ = New AnnotationService(FlowReader1)

‘Gets the instance of the stream

annotationArchive = New XmlStreamStore(annotationStream)

‘Enables the document

annotationServ.Enable(annotationArchive)

End If

End Sub

Private Sub ManipulatingDocuments_Closed(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles Me.Closed

Dim annotationServ As AnnotationService = _

AnnotationService.GetService(FlowReader1)

‘If an instance of the annotation

‘service is available

If annotationServ IsNot Nothing And _

annotationServ.IsEnabled Then

‘shuts down the service

‘and releases resources

annotationServ.Store.Flush()

annotationServ.Disable()

annotationStream.Close()

End If

End Sub

End Class

Notice how the annotation service startup is placed inside the Window.Initialized event
handler, whereas the annotation service shutdown is placed inside the Windows.Closed
event handler. Now run the demo application by pressing F5. As you can see on the
screen, if you resize the window, the flow document content is automatically and dynami-
cally adapted to the window’s layout. Moreover you can decide, using the appropriate
controls on the FlowDocumentReader, how the document has to be viewed (for example if
one or two pages appear on the window or with zoom enabled). The best way for getting a
feeling about how this works is to resize the window. Figure 34.4 shows how the applica-
tion looks, showing also an example of annotation.

3
4

From the Library of Wow! eBook

ptg

794 CHAPTER 34 Manipulating Documents and Media

APPLYING ANNOTATIONS AND HIGHLIGHT

You apply annotations or highlights by just selecting the desired text and then pressing
one of the related buttons. You write the annotation text just after clicking the green
box. Annotations are editable also when reloaded.

You can also add ink annotations to your documents. Figure 34.5 shows how ink annota-
tions look and how text is exposed with fonts different than the standard one. Also
notice how the hyperlink is correctly highlighted and functional so that if you click it
you will be redirected to the related web page associated via the NavigateUri property in
the XAML code.

Annotations are automatically stored into an Xml file, as implemented in code. Remember
to resize the window to understand the flexibility of flow documents and of the
FlowDocumentReader control.

FIGURE 34.5 Adding ink notes and viewing formatted text.

From the Library of Wow! eBook

ptg

795Manipulating Documents
3

4

Understanding the RichTextBox Control

WPF offers a RichTextBox control that works as you would expect for some aspects, thus
allowing advance formatting and image support, but it differs from other technologies in
that such control stores its content as a flow document. This is the reason for discussing
this control in the current chapter. In XAML code the control definition looks like this:

<RichTextBox Name=”RichTextBox1”>

<!— add your flow document here —>

</RichTextBox>

You could nest within the control the flow document shown in the previous section to
get a fully editable document or simply write your text into the control, where such text
takes standard formatting settings. You can also load an existing file into the
RichTextBox, which requires some lines of code. The following method shows how to
load a document as text:

Private Sub LoadDocument(ByVal fileName As String)

Dim range As TextRange

If File.Exists(fileName) Then

range = New TextRange(RichTextBox1.Document.ContentStart,

RichTextBox1.Document.ContentEnd)

Using documentStream As New FileStream(fileName,

FileMode.

OpenOrCreate)

range.Load(documentStream,

System.Windows.DataFormats.Text)

End Using

End If

End Sub

The TextRange class basically represents the text area, and the code takes the entire area
from start to end. Then the code invokes the TextRange.Load method to open the speci-
fied stream and converts the file content into a System.Windows.DataFormats.Text format
that is acceptable for the RichTextBox. Notice that the previous example loads a text docu-
ment that is then converted into XAML by the runtime. You can also load contents from
XAML files using the DataFormats.Xaml option. To save the document content you need
to invoke the TextRange.Save method. The following method shows an example:

Private Sub SaveDocument(ByVal fileName As String)

Dim range As New TextRange(Me.RichTextBox1.Document.ContentStart,

From the Library of Wow! eBook

ptg

796 CHAPTER 34 Manipulating Documents and Media

Me.RichTextBox1.Document.ContentEnd)

Using documentStream As New FileStream(fileName,

FileMode.Create)

range.Save(documentStream, DataFormats.Xaml)

End Using

End Sub

In this case the document content is saved under the form of XAML content but you can
still use the Text option to save such content as text, although this can cause a loss of
formatting settings due to the restrictive conversion.

Implementing Spell Check
The RichTextBox control provides built-in spell check support. This can be enabled by
setting the SpellCheck.IsEnabled property as follows:

<RichTextBox Name=”RichTextBox1” SpellCheck.IsEnabled=”True”>

When enabled, when the user types unrecognized words in the English grammar the words
are highlighted in red, and by right-clicking the highlighted word a list of valid alternatives
is suggested, similar to what happens in applications such as Microsoft Word. Figure 34.6
shows how the spell check feature can help users to fix typos in their documents.

Viewing XPS Documents
Starting from Windows Vista, Microsoft introduced a new file format known as XPS that is
a portable file format for documents and is useful because you can share documents
without the of having installed the application that generated that kind of document
because you simply need a viewer. WPF offers full support for XPS documents, also offer-
ing a DocumentViewer control that enables developers to embed XPS viewing functionali-
ties in their applications. Support for XPS documents is provided by the

FIGURE 34.6 The built-in spell check feature helps users fix typos.

From the Library of Wow! eBook

ptg

797Viewing XPS Documents
3

4

ReachFramework.dll assembly (so you need to add a reference) that exposes the
System.Windows.Xps.Packaging namespace. For code, you simply drag the
DocumentViewer control from the toolbox onto the Window surface so that the generated
XAML looks like the following:

<DocumentViewer Name=”DocumentViewer1” />

At design time you can notice how such control offers a number of buttons for adjusting
the document layout, for zooming and printing. XPS documents are fixed documents
differently from flow documents, so you need to create an instance of the XpsDocument
class and get a fixed sequence of sheets to be assigned to the Document property of the
viewer, as demonstrated in the following code snippet that enables loading and presenting
an XPS document:

Dim documentName As String = “C:\MyDoc.xps”

Dim xpsDoc As XpsDocument

xpsDoc = New XpsDocument(documentName, IO.FileAccess.ReadWrite)

DocumentViewer1.Document = xpsDoc.GetFixedDocumentSequence

Figure 34.7 shows a sample XPS document opened in the DocumentViewer control.

FIGURE 34.7 Viewing XPS documents through the DocumentViewer control.

From the Library of Wow! eBook

ptg

798 CHAPTER 34 Manipulating Documents and Media

So with a few steps you can embed XPS functionalities in your applications.

Summary
This chapter was an overview about manipulating media and documents in WPF 4. You
saw how you can present pictures with the Image control and how to reproduce media
contents, such as videos and audio, through the MediaElement control, which also exposes
events that you can intercept to understand the state of reproduction. Then flow docu-
ments and the FlowDocumentReader and RichTextBox controls were covered, understand-
ing how documents can be produced for dynamic arrangement within the user interface.
Finally we discussed about WPF support for XPS documents through the DocumentViewer
control and the XpsDocument class.

From the Library of Wow! eBook

ptg

CHAPTER 35

Introducing
Data-Binding

IN THIS CHAPTER

. Introducing the Data-Binding

. Discussing the New
Drag’n’Drop Data-Binding

Many developers erroneously think of WPF as just a
multimedia platform. WPF is instead a complete framework
for rich client applications development, including data-
centric applications. This technology offers a powerful data-
binding engine, and the new version included in .NET
Framework 4.0 also provides some improvements that make
the data-binding experience easier, especially if you are new
to WPF. This chapter provides a high-level introduction to
the data-binding in WPF 4 with Visual Basic 2010,
discussing the most important .NET objects that you can
explore in further studies by applying WPF-specific patterns
such as Model-View-ViewModel.

SYSTEM REQUIREMENTS

Code examples are provided that require the
Northwind database to be installed and made avail-
able on SQL Server 2008 Express or higher. You
should already have done this if you read the chapters
about LINQ.

In this case, this note is just a quick reminder.

Introducing the Data-Binding
Windows Presentation Foundation offers a powerful data-
binding engine, held by the System.Windows.Data name-
space, which makes even simpler binding data to the user
interface and receiving input from the user as well. At a
higher level you perform data-binding between a user

From the Library of Wow! eBook

ptg

800 CHAPTER 35 Introducing Data-Binding

control and a data source making use of the Binding markup extension, that lots of
controls enable. It is worth mentioning that in WPF a data source can be a collection of
.NET objects but also a property from another user control. The following examples show
you both scenarios. Particularly you receive an explanation of the new DataGrid control
for tabular data representations and the ObservableCollection(Of T) in action for
binding to a collection. Before going on, create a new WPF project with Visual Basic and
name it IntroducingDataBinding. When the code editor is ready, write the following
XAML code that divides the root Grid into two columns and adds some controls that will
be necessary for next examples:

<Grid Name=”Grid1”>

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”200” />

<ColumnDefinition />

</Grid.ColumnDefinitions>

<StackPanel Grid.Column=”0”>

<TextBox Name=”ValueTextBox”

Margin=”5”/>

<Slider Name=”ValueSlider” Margin=”5”

Minimum=”0” Maximum=”10”/>

</StackPanel>

<StackPanel Grid.Column=”1”>

<DataGrid Name=”DataGrid1”

Height=”150”/>

<TextBox Margin=”5” Foreground=”Red”

Name=”LogBox”

Height=”100”/>

</StackPanel>

</Grid>

Utilized user controls now have no other properties than the one necessary for defining
their layout, which are set in code in the next sections.

Binding UI Elements with the Binding Markup Extension

You perform data-binding between a user control and a data source via the Binding XAML
markup extension. Such an extension requires specifying two properties: ElementName,
which is the source item name and Path that is the property containing the actual data to
bind, whose name must be exposed by the object assigned to ElementName. The following
example, in which you have to substitute to the first TextBox in the earlier example,
shows how to bind the context of a TextBox to the value of a Slider control so that when
the user moves the selector, the slider value is reflected into the TextBox:

<TextBox Text=”{Binding ElementName=ValueSlider,

From the Library of Wow! eBook

ptg

801Introducing the Data-Binding

Path=Value}”

Name=”ValueTextBox”

Margin=”5”/>

Binding has to be applied to the property that will present bound data, in this case Text.
If you now run the application and move the selector on the slider, you see how its value
is reflected as the TextBox.Text content, as demonstrated in Figure 35.1.

3
5

This is the most basic data-binding example and can be considered as the one-way mode,
because the binding is performed only from the data-source (the Slider.Value property)
to the UI control (the TextBox). In fact, the data-binding does not return a value from the
TextBox to the Slider. To accomplish this, which means updating the Slider value
according to the TextBox content, we need the two-way data-binding that enables binding
from and to the data source. You apply for two-way data-binding by adding the
Mode=TwoWay assignment within the Binding markup extension. The following code
demonstrates this:

<TextBox Text=”{Binding ElementName=ValueSlider,

Path=Value, Mode=TwoWay}”

Name=”ValueTextBox”

Margin=”5”/>

<Slider Name=”ValueSlider” Margin=”5”

Minimum=”0” Maximum=”10”

Value=”{Binding ElementName=ValueTextBox,

Path=Text, Mode=TwoWay}”/>

Notice how both controls need to set binding on the two-way mode so that they can
reflect each other’s value. If you run the application you can see how the slider’s selector
value is updated according to the text box content. One-way and two-way are not the

FIGURE 35.1 Binding a control’s property to another control’s content.

From the Library of Wow! eBook

ptg

802

only allowed modes. Table 35.1 summarizes available data-binding modes in WPF, exposed
by the System.Windows.Data.BindingMode enumeration.

CHAPTER 35 Introducing Data-Binding

Creating Bindings with Visual Basic
In case you need to create data-binding expressions at runtime, you need to write some
Visual Basic code. Basically you need an instance of the System.Windows.Data.Binding
class setting some of its property and then pass such instance to the target control. The
following snippet reproduces the data-binding expression described in the previous
section, this time utilizing Visual Basic code:

Dim bind As New Binding

‘Instead of ElementName, use Source assigning the control

bind.Source = ValueSlider

bind.Path = New PropertyPath(“Value”)

bind.Mode = BindingMode.TwoWay

‘You set the binding considering a dependency property

Me.ValueTextBox.SetBinding(TextBox.TextProperty, bind)

Until now you saw the most basic data-binding technique that can be useful when you
need to make controls depend on other controls’ properties. In the next section you will
see data-binding techniques against data sources based on .NET collections.

Understanding the DataGrid and the ObservableCollection

In most cases you perform data-binding operations against .NET collections, even when
fetching data from databases. WPF offers a different binding mechanism, such as user
controls like the new DataGrid, the ListView, or the ListBox; moreover you can bind

TABLE 35.1 Available Data-Binding Modes

Mode Description

OneWay The data-binding is performed only from the data source to the UI. Changes
on the data source are reflected to the UI but not vice versa.

TwoWay The data-binding is performed from the data source to the UI and vice versa.
Changes on the data source are reflected to the UI and changes via the UI
are reflected to the data source.

OneWayToSource Changes on the UI are reflected to the data source but not vice versa. This is
basically the opposite of OneWay.

OneTime The data-binding is performed from the data source to the UI only once. When
performed, changes are ignored and the UI is not updated. This is useful for
presenting data, where you are sure that you will not update the data source.

Default Applies the most convenient mode according to the user control. For example,
the TextBox supports the two-way mode and thus this is the default mode.
When you do not specify a different mode, this is the default.

From the Library of Wow! eBook

ptg

803Introducing the Data-Binding
3

5

specific data to single controls like TextBox (for example when building master-details
representations). In this book, which targets Visual Basic 2010 and .NET 4.0, you get an
example of how to take advantage of the new DataGrid control, which offers a convenient
and fast way for tabular data. The goal of next example is binding a collection of objects
to a DataGrid allowing insert/update/delete operations onto the collection. First, add a
new implementation of the Person class to the project as follows:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Property Age As Integer

End Class

Now add a new People class, which inherits from ObservableCollection(Of Person) as
follows:

Imports System.Collections.ObjectModel

Public Class People

Inherits ObservableCollection(Of Person)

End Class

This new collection is the data source for binding to the DataGrid. Now go the VB code
behind the file for the main window. Basically we need to declare a variable of type
People and handle the Window_Loaded event to instantiate some Person objects to popu-
late the collection. The following code accomplishes this:

Private WithEvents source As People

Private Sub MainWindow_Loaded(ByVal sender As Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles Me.Loaded

Dim personA As New Person With {.FirstName = “Alessandro”,

.LastName = “Del Sole”,

.Age = 32}

‘fantasy name

Dim personB As New Person With {.FirstName = “Robert”,

.LastName = “White”,

.Age = 35}

source = New People From {personA, personB}

From the Library of Wow! eBook

ptg

804 CHAPTER 35 Introducing Data-Binding

Me.Grid1.DataContext = source

‘If you plan to data-bind only the DataGrid:

‘Me.DataGrid1.ItemsSource = source

End Sub

Notice how easy it is to create an instance of the People collection with collection initial-
izers. The most important thing here is the assignment of the Grid.DataContext property.
As a general rule, DataContext is a property that points to a data source, and all children
controls within the panel that exposes the DataContext property will populate picking up
data from this property. This also means that DataContext has scope; for example, the
Window.DataContext property can share data to all controls in the user interface, whereas
the DataContext from a particular panel can share data only with controls nested in that
particular panel, as in the previous code example where only controls nested in the Grid
(including thus the DataGrid) can populate picking data from the DataContext. This is not
mandatory. If you have a single control that you want to bind, you do not need to assign
the DataContext, whereas you can simply assign the specific control data property. For
instance, the DataGrid control exposes an ItemsSource property (like ListView and
ListBox) that populates the control. Data-binding to user interface controls in WPF is
generally possible thanks to the implementation of the INotifyPropertyChanged interface.
Substantially controls can reflect changes from data sources that implement that interface.
The ObservableCollection(Of T) generic collection also implements behind the scenes
and therefore can notify the user interface of changes so that it can be refreshed automati-
cally. This is the reason why we use such a collection in the example. This specialized
collection is also interesting because it enables getting information on what changed on
data. It exposes a CollectionChanged event that offers an e argument of type
NotifyCollectionEventArgs that offers some useful information. For example it enables
intercepting when an item is added or removed or retrieving a collection of added items.
Continuing with the example, suppose you want to create a sort of log to write a message
each time an item is added or removed from the source collection. This is useful for
demonstrating that the collection is effectively updated with changes performed through
the user interface. The second TextBox in the user interface of the sample application is
the place where log messages will be put. According to this consideration, consider the
following code snippet that provides an event handler for the CollectionChanged event:

’Requires an Imports System.Collections.Specialized directive Private Sub

source_CollectionChanged(ByVal sender As Object,

ByVal e As _

NotifyCollectionChangedEventArgs) _

Handles source.CollectionChanged

Me.LogBox.Text += e.Action.ToString & Environment.NewLine

End Sub

The code simply sends to the text box the current value of the
System.Collection.Specialized.NotifyCollectionChangedAction enumeration, which

From the Library of Wow! eBook

ptg

805Introducing the Data-Binding
3

5

can be one of the following: Add, Remove, Move, Replace, or Reset. If you perform multiple
CRUD operations on an ObservableCollection instance, you might also be interested in
the NewItems and OldItems properties in e. They respectively represent a collection of
items added to the data source and a collection of items affected by a remove, replace, or
move operation. Before running the application, it is necessary to perform a couple of
operations on the DataGrid at the XAML level; therefore switch back to the XAML code
editor. Extend the DataGrid declaration as follows:

<DataGrid Name=”DataGrid1”

AutoGenerateColumns=”True”

AlternatingRowBackground=”LightGreen”

ItemsSource=”{Binding}”

Height=”150”/>

First, the DataGrid automatically generates columns for you according to each property
exposed by a single item (Person) in the bound collection (People). Second, the
ItemsSource, which populates the control, is set to Binding with no arguments meaning
that the data-binding will be performed at runtime. Notice how the
AlternatingRowBackground property enables specifying a color (which you can eventually
replace with a brush) for the background in alternating rows. Now run the application.
You get the result shown in Figure 35.2.

DATAGRID BINDING TIPS

Different from controls such as the ListView and the ListBox, the DataGrid allows
binding any collection implementing IList or IBindingList. This is because such con-
trol requires a place for editing, other than presenting. So remember this requirement
when you try to bind to a DataGrid the result of LINQ queries, which requires conver-
sion into a generic collection. For LINQ, if you try to bind LINQ to Xml, query results
also remember to create a class for holding objects, just like the Person class and
People collection instead of directly binding the query result.

FIGURE 35.2 The data-bound DataGrid allows presenting and manipulating data.

From the Library of Wow! eBook

ptg

806 CHAPTER 35 Introducing Data-Binding

If you play with the DataGrid you can easily understand how it enables adding, removing,
and editing items. The log text box stores messages each time you perform an operation,
confirming that the underlying collection is actually affected by changes performed
through the user interface. You can then plan to implement some code for saving your
data. The DataGrid exposes other interesting properties:

. SelectedItem, which returns the instance of the selected object in the control

. CurrentCell, which returns the content of the selected cell

. CanUserAddRows and CanUserRemoveRows, which respectively provide (or not) the
user the ability of adding and deleting rows

. CanUserReorderColumns, CanUserResizeColumns, CanUserSortColumns which
respectively provide (or not) the ability of changing the order of resizing and
sorting columns

. CanUserResizeRows, which provides (or not) the ability of resizing rows

. RowStyle, which allows overriding the style for rows

Until now you saw simple data-binding tasks, although the last code example provides a
good way for understanding the mechanism. WPF data-binding is even more complex and
the .NET Framework offers specific objects that are important in more articulate scenarios.
The next section describes such objects taking advantage of new Visual Studio features.

Discussing the New Drag’n’Drop Data-Binding
Visual Studio 2010 introduces to the WPF development a new interesting feature at the
IDE level. The feature is known as drag’n’drop data-binding and is something that was
already available in Windows Forms for many years. Now you can simply build data forms
in WPF too with such new tooling. The base idea is that you can build a data form by
simply dragging items from the Data Sources window, and Visual Studio will generate all
the code for you, including master-details scenarios. There is also other good news in
Visual Studio 2010, which is the Data Sources window support for entities from an Entity
Data Model based on the ADO.NET Entity Framework. This section explains how you can
take advantage of the new WPF drag’n’drop data-binding to easily build data forms,
explaining the meaning and behavior of the auto-generated code.

TIP

The drag’n’drop data-binding has obviously some limitations, and in many cases you
need to put your hands over the auto-generated code or, differently, write your own data-
binding code from scratch. This new technique offers several advantages: The result is
completely customizable, as in the style of WPF applications; second, if you are new to
data-binding in WPF, it allows you to simply understand how things work against a more
complex data-source (such as an EDM or a DataSet). Finally, it also provides the ability
of separating the data-source from the user interface, although this is something that
you will probably need to edit according to your application logic.

From the Library of Wow! eBook

ptg

807Discussing the New Drag’n’Drop Data-Binding
3

5

To complete the next code examples, follow these steps after creating a new WPF project
in Visual Basic:

1. Create a new WPF project for Visual Basic.

2. Add a new Entity Data Model based on the Northwind sample database, ensuring
that you include the Customers and Orders tables. If you need a recap, take a look at
Chapter 27, “Introducing the ADO.NET Entity Framework.”

After this brief introduction, it is time to understand how easy building data forms is
with WPF 4.

Creating Tabular Data Forms

The goal of the next example is to show how simple it is to create tabular data representa-
tions, also taking a look at necessary objects for performing data-binding in code. To
accomplish this, first divide the default Grid into two columns as follows:

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”200”/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

</Grid>

Next, add a ListBox control either by dragging it from the Toolbox or by writing the
following code (for better layout purposes, ensure that you place it in the left column):

<ListBox Name=”CustomersListBox”

Grid.Column=”0”/>

This ListBox stores a list of customers’ names that will be added shortly. Now open the
Data Sources window by clicking Shift+Alt+D. The result looks similar to Figure 35.3,
depending on how many entities you added to the Entity Data Model.

As you can see, the Data Sources window now also lists entities coming from Entity Data
Models, and this is a new feature in Visual Studio 2010. The default icon near each entity
name indicates that data will be represented as tabular, but you can replace this represen-
tation with a list view or with a details view simply by selecting the appropriate value
from the combo box on the right side of each entity name. (At the moment leave
unchanged the default selection.) Now, expand the Customers entity (as shown in Figure
35.3) and select the CompanyName item; then drag it onto the ListBox and release the
mouse. When you release the mouse, you will not notice anything new on the designer
surface, but look at what happened in the XAML code editor:

<Window.Resources>

<CollectionViewSource x:Key=”CustomersViewSource”

d:DesignSource=

“{d:DesignInstance my:Customer,

CreateList=True}” />

From the Library of Wow! eBook

ptg

808 CHAPTER 35 Introducing Data-Binding

FIGURE 35.3 The Data Sources window now lists entities from EDMs, too.

</Window.Resources>

<Grid DataContext=”{StaticResource CustomersViewSource}”>

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”200”/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<ListBox Name=”CustomersListBox”

Grid.Column=”0” DisplayMemberPath=”CompanyName”

ItemsSource=”{Binding}” />

</Grid>

Visual Studio generates some code, both XAML and Visual Basic, each time you perform
some drag’n’drop action. For now it generated a CollectionViewSource object within the
window’s resources. You may compare the WPF CollectionViewSource to the Windows
Forms’ BindingSource control, which basically acts like a bridge between the underlying
data collection and the user interface. The code states that such CollectionViewSource is
populated via a list (CreateList=True) of Customer instances. This statement is accom-
plished via the d:DesignInstance custom markup extension, exposed by the d Xml name-
space that points to Microsoft Expression Blend schema for WPF. This is useful because it
provides resources for design-time data-binding. Notice also how Visual Studio added a
DataContext property for the default Grid, whose source is the above described
CollectionViewSource. In this way, all child controls will populate picking data from the
CollectionViewSource. You can get an example of this by taking a look at the ListBox

From the Library of Wow! eBook

ptg

809Discussing the New Drag’n’Drop Data-Binding
3

5

overridden definition: It is populated with data-binding (ItemsSource property) and shows
just the value of the CompanyName property (DisplayMemberPath) for each item in the
bound collection. Now drag onto the form the Orders item from the Data Sources
window, ensuring that you drag the one nested within Customers. When dragged and
dropped, the result should look like in Figure 35.4.

First, notice how the new DataGrid control simply enables building tabular data represen-
tations. By simply dragging the data source, Visual Studio generated all the necessary
items for you. If you now take a look at the XAML code editor, you will first notice a
second CollectionViewSource referring to the Orders data:

<CollectionViewSource x:Key=”CustomersOrdersViewSource”

Source=”{Binding Path=Orders,

Source={StaticResource CustomersViewSource}}” />

Notice how the source for the data-binding is the Orders collection from the previously
generated CustomersViewSource object of type CollectionViewSource. Next, Visual Studio
also generated markup code for the DataGrid. For this, it did not take advantage of
columns auto-generation, whereas it instead created specific columns for each property in
the bound collection. This enables the IDE to also generate custom cell templates that can
show data with the appropriate control. The following is the XAML code for the DataGrid:

<DataGrid AutoGenerateColumns=”False”

EnableRowVirtualization=”True”

Grid.Column=”1”

ItemsSource=”{Binding

Source={StaticResource CustomersOrdersViewSource}}”

Name=”OrdersDataGrid”

RowDetailsVisibilityMode=”VisibleWhenSelected”>

<DataGrid.Columns>

<DataGridTextColumn x:Name=”OrderIDColumn”

FIGURE 35.4 The result of the drag’n’drop operations in the Visual Studio designer.

From the Library of Wow! eBook

ptg

810 CHAPTER 35 Introducing Data-Binding

Binding=”{Binding Path=OrderID}”

Header=”Order ID”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”CustomerIDColumn”

Binding=”{Binding Path=CustomerID}”

Header=”Customer ID”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”EmployeeIDColumn”

Binding=”{Binding Path=EmployeeID}”

Header=”Employee ID”

Width=”SizeToHeader” />

<DataGridTemplateColumn x:Name=”OrderDateColumn”

Header=”Order Date”

Width=”SizeToHeader”>

<DataGridTemplateColumn.CellTemplate>

<DataTemplate>

<DatePicker

SelectedDate=”{Binding Path=OrderDate}” />

</DataTemplate>

</DataGridTemplateColumn.CellTemplate>

</DataGridTemplateColumn>

<DataGridTemplateColumn x:Name=”RequiredDateColumn”

Header=”Required Date”

Width=”SizeToHeader”>

<DataGridTemplateColumn.CellTemplate>

<DataTemplate>

<DatePicker

SelectedDate=”{Binding Path=RequiredDate}” />

</DataTemplate>

</DataGridTemplateColumn.CellTemplate>

</DataGridTemplateColumn>

<DataGridTemplateColumn x:Name=”ShippedDateColumn”

Header=”Shipped Date”

Width=”SizeToHeader”>

<DataGridTemplateColumn.CellTemplate>

<DataTemplate>

<DatePicker

SelectedDate=”{Binding Path=ShippedDate}” />

</DataTemplate>

</DataGridTemplateColumn.CellTemplate>

</DataGridTemplateColumn>

<DataGridTextColumn x:Name=”ShipViaColumn”

Binding=”{Binding Path=ShipVia}”

Header=”Ship Via”

From the Library of Wow! eBook

ptg

811Discussing the New Drag’n’Drop Data-Binding
3

5

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”FreightColumn”

Binding=”{Binding Path=Freight}”

Header=”Freight”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”ShipNameColumn”

Binding=”{Binding Path=ShipName}”

Header=”Ship Name”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”ShipAddressColumn”

Binding=”{Binding Path=ShipAddress}”

Header=”Ship Address”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”ShipCityColumn”

Binding=”{Binding Path=ShipCity}”

Header=”Ship City”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”ShipRegionColumn”

Binding=”{Binding Path=ShipRegion}”

Header=”Ship Region”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”ShipPostalCodeColumn”

Binding=”{Binding Path=ShipPostalCode}”

Header=”Ship Postal Code”

Width=”SizeToHeader” />

<DataGridTextColumn x:Name=”ShipCountryColumn”

Binding=”{Binding Path=ShipCountry}”

Header=”Ship Country”

Width=”SizeToHeader” />

</DataGrid.Columns>

</DataGrid>

The DataGrid data source is set via the ItemsSource property pointing to the
CustomersOrdersViewSource object, which includes information from both Customers and
related Orders. The rest of the code is quite simple to understand. Each column has a cell
template, which is of type DataGridTextColumn for text fields. Other built-in types are
DataGridHyperLinkColumn for displaying hyperlinks, DataGridCheckBoxColumn for display-
ing Boolean values with a check box control, and DataGridComboBoxColumn that allows
selecting items from within a combo box. It is worth mentioning that for data types that
the DataGrid has no default counterpart for, Visual Studio generates a custom cell
template with DataGridTemplateColumn objects. In this case the custom template has been
generated for embedding DatePicker controls for setting and displaying dates within cells.

From the Library of Wow! eBook

ptg

812 CHAPTER 35 Introducing Data-Binding

DESIGNING COLUMNS

The IDE provides a convenient way for designing columns with the designer instrumen-
tation. Simply select the DataGrid and in the Properties window, click Columns. Figure
35.5 shows how you can edit existing columns or add new ones, also setting data-bind-
ing at design time.

This is not enough, of course, in that some Visual Basic code is also required for fetching
data and assigning such data to the user interface for presenting. If you now open the
Visual Basic code behind the file for the current Window, you get the result shown in
Listing 35.1.

LISTING 35.1 The VB Auto-Generated Code for the Drag’n’Drop Data-Binding

’Add an Imports directive followed by the project namespace

Imports IntroducingDataBinding

Class MainWindow

Private Function GetCustomersQuery(ByVal NorthwindEntities As NorthwindEntities)_

As System.Data.Objects.ObjectQuery(Of Customer)

Dim CustomersQuery As System.Data.Objects.ObjectQuery(Of Customer) = _

NorthwindEntities.Customers

‘Update the query to include Orders data in Customers.

‘You can modify this code as needed.

CustomersQuery = CustomersQuery.Include(“Orders”)

‘Returns an ObjectQuery.

FIGURE 35.5 Designing columns with Visual Studio.

From the Library of Wow! eBook

ptg

813Discussing the New Drag’n’Drop Data-Binding
3

5

Return CustomersQuery

End Function

Private Sub Window_Loaded(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles MyBase.Loaded

Dim NorthwindEntities As NorthwindEntities = New NorthwindEntities()

‘Load data into Customers. You can modify this code as needed.

Dim CustomersViewSource As System.Windows.Data.CollectionViewSource = _

CType(Me.FindResource(“CustomersViewSource”),

System.Windows.Data.CollectionViewSource)

Dim CustomersQuery As System.Data.Objects.ObjectQuery(Of Customer) = _

Me.GetCustomersQuery(NorthwindEntities)

CustomersViewSource.Source = CustomersQuery.Execute(System.Data.Objects.

MergeOption.AppendOnly)

End Sub

End Class

The GetCustomersQuery method returns the full list of customers and related orders,
returning a new Entity Framework object, ObjectQuery(Of T). Such an object type repre-
sents a typed query and is also capable of receiving data back. Of course such a query is a
default one; therefore, you may customize it according to your needs. When the window
is loaded, other than the ObjectContext instance, notice how the code retrieves the
instance of the CustomersViewSource (of type CollectionViewSource) via the
FindResource method, which enables searching for a resource declared in XAML. This
instance will finally receive the executed query so that its result will be reflected to the
user interface. Basically the process is the following: The query fetches data; data is
assigned to a CollectionViewSource instance; because this instance is bound to a UI
control (such as the DataGrid), fetched data is reflected to the UI and vice versa. This is
also because the DataGrid control provides support for the two-way data-binding, and this
is also allowed by the ObjectQuery(Of T) class. At this point you can run the application
to see the result shown in Figure 35.6.

With a few mouse clicks you can build an application that can present tabular data. You
can click inside the DataGrid for editing existing data or for adding new rows. If you want
to save data to the underlying database, you should simply implement a control, such as a
Button, whose Click event handler invokes the ObjectContext.SaveChanges method, and
you are done. But you see this example in the next section, which is interesting but that
requires a little bit of manual work.

Creating Master-Details Forms

Similarly to what already happened in Windows Forms, creating master-details forms in
WPF 4 is also straightforward. This also enables you to understand other important
concepts for the data-binding. Add a new window to the current project and name it

From the Library of Wow! eBook

ptg

814 CHAPTER 35 Introducing Data-Binding

FIGURE 35.6 The tabular data application running.

MasterDetails. Divide the default Grid into four cells, so that you can also add special
buttons, as follows:

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”200”/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition Height=”50”/>

</Grid.RowDefinitions>

</Grid>

Repeat the step of adding a ListBox and binding the customer’s CompanyName property,
same as in the first part of the previous subsection, ensuring that the ListBox is placed in
the upper-left column. Visual Studio 2010 generates for you exactly the same XAML code of
the previous example. Now go to the Data Sources window, select the Orders item nested
within Customers, and from the combo box, select Details. At this point drag Orders onto
the upper-right cell of the window. Figure 35.7 shows the result of this operation.

Notice how Visual Studio generated a series of controls, basically couples of
Label/TextBlock. Also notice how the IDE can recognize the bound data type and of
adding the appropriate controls. For example, for dates, it adds to the form some
DatePicker controls. Instead of a DataGrid, the auto-generated XAML code contains a
new Grid with a series of children controls. Listing 35.2 shows an excerpt of the content
of the new Grid.

LISTING 35.2 Excerpt of the Auto-Generated XAML Code for Details

<Grid DataContext=”{StaticResource CustomersOrdersViewSource}”

Grid.Column=”1”

Grid.Row=”0” Name=”Grid1” >

From the Library of Wow! eBook

ptg

815Discussing the New Drag’n’Drop Data-Binding
3

5

FIGURE 35.7 The result of the master-details drag’n’drop.

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”Auto” />

<ColumnDefinition Width=”Auto” />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

<RowDefinition Height=”Auto” />

</Grid.RowDefinitions>

<Label Content=”Order ID:” Grid.Column=”0” Grid.Row=”0”

HorizontalAlignment=”Left” Margin=”3”

VerticalAlignment=”Center” />

<TextBox Grid.Column=”1” Grid.Row=”0” Height=”23”

HorizontalAlignment=”Left” Margin=”3” Name=”OrderIDTextBox”

From the Library of Wow! eBook

ptg

816 CHAPTER 35 Introducing Data-Binding

Text=”{Binding Path=OrderID}”

VerticalAlignment=”Center” Width=”120” />

<Label Content=”Customer ID:” Grid.Column=”0” Grid.Row=”1”

HorizontalAlignment=”Left” Margin=”3”

VerticalAlignment=”Center” />

<TextBox Grid.Column=”1” Grid.Row=”1” Height=”23”

HorizontalAlignment=”Left” Margin=”3” Name=”CustomerIDTextBox”

Text=”{Binding Path=CustomerID}”

VerticalAlignment=”Center” Width=”120” />

<Label Content=”Employee ID:” Grid.Column=”0” Grid.Row=”2”

HorizontalAlignment=”Left” Margin=”3”

VerticalAlignment=”Center” />

<TextBox Grid.Column=”1” Grid.Row=”2” Height=”23”

HorizontalAlignment=”Left”

Margin=”3” Name=”EmployeeIDTextBox”

Text=”{Binding Path=EmployeeID}”

VerticalAlignment=”Center” Width=”120” />

<Label Content=”Order Date:” Grid.Column=”0” Grid.Row=”3”

HorizontalAlignment=”Left” Margin=”3”

VerticalAlignment=”Center” />

<DatePicker Grid.Column=”1” Grid.Row=”3” Height=”25”

HorizontalAlignment=”Left” Margin=”3”

Name=”OrderDateDatePicker”

SelectedDate=”{Binding Path=OrderDate}”

VerticalAlignment=”Center” Width=”115” />

<!--Following other controls... -->

</Grid>

Basically the code implements pairs of labels/text. For dates, you can notice the presence
of DatePicker controls whose SelectedDate property is bound to the date property from
the data source. If you take a look at the Visual Basic auto-generated code, you see no
differences with the one shown in the first example. Now there is some other work to do.
Building a master-details form requires providing controls for navigating, adding, deleting,
and saving items. At this point add the following XAML code, which implements some
buttons whose meaning is self explanatory:

<StackPanel Grid.Row=”1” Grid.Column=”1” Orientation=”Horizontal”>

<StackPanel.Resources>

<Style TargetType=”Button” x:Key=”ButtonStyle”>

<Setter Property=”Width” Value=”80”/>

<Setter Property=”Height” Value=”40”/>

<Setter Property=”Margin” Value=”5”/>

</Style>

</StackPanel.Resources>

<Button Style=”{StaticResource ButtonStyle}” Content=”Save”

From the Library of Wow! eBook

ptg

817Discussing the New Drag’n’Drop Data-Binding
3

5

Name=”SaveButton” Click=”SaveButton_Click”/>

<Button Style=”{StaticResource ButtonStyle}” Content=”Add”

Name=”AddButton” Click=”AddButton_Click”/>

<Button Style=”{StaticResource ButtonStyle}” Content=”Delete”

Name=”DeleteButton” Click=”DeleteButton_Click”/>

<Button Style=”{StaticResource ButtonStyle}” Content=”Next”

Name=”NextButton” Click=”NextButton_Click”/>

<Button Style=”{StaticResource ButtonStyle}” Content=”Back”

Name=”BackButton” Click=”BackButton_Click”/>

</StackPanel>

Now switch to the Visual Basic code. The first task is moving the ObjectContext declaration
at class level, to make it reachable from within other methods. Replace the
NorthwindEntities variable declaration with the northwindContext name to avoid
conflicts, move it to class level, and edit the first line of the Window_Loaded event as follows:

Private northwindContext As NorthwindEntities

Private Sub Window_Loaded(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles MyBase.Loaded

Me.northwindContext = New NorthwindEntities

The first button that can be handled is the SaveButton. The Click event handler is the
following:

Private Sub SaveButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs)

‘Handle your logic here, such as exceptions

‘and optmistic concurrency

Try

Me.northwindContext.SaveChanges()

Catch ex As Exception

End Try

End Sub

The second task is moving to class level the CollectionViewSource objects declarations so
that we can invoke them within event handlers. They actually are enclosed in the
Window_Loaded event handler and thus have no external visibility. Moreover, we also need
to manually declare and get the instance of the CustomersOrdersCollectionViewSource
object because the application needs to provide the ability of adding and removing items
only to the Orders collection. (Performing this on CustomersViewSource would affect
Customers, too.) Code in Listing 35.3 summarizes the edits that you need to do manually
at this point.

From the Library of Wow! eBook

ptg

818 CHAPTER 35 Introducing Data-Binding

LISTING 35.3 Moving CollectionViewSource Declarations at Class Level

Private CustomersViewSource As CollectionViewSource

Private CustomersOrdersViewSource As CollectionViewSource

Private Sub Window_Loaded(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles MyBase.Loaded

Me.northwindContext = New NorthwindEntities

‘Load data into Customers. You can modify this code as needed.

Me.CustomersViewSource = CType(Me.FindResource(“CustomersViewSource”),

CollectionViewSource)

Me.CustomersOrdersViewSource =

CType(Me.FindResource(“CustomersOrdersViewSource”),

CollectionViewSource)

Dim CustomersQuery As System.Data.Objects.

ObjectQuery(Of IntroducingDataBinding.Customer) = _

Me.GetCustomersQuery(northwindContext)

CustomersViewSource.Source = CustomersQuery.

Execute(System.Data.Objects.

MergeOption.AppendOnly)

End Sub

The next buttons require explaining other concepts, which the next sections cover.

Understanding Views and Binding Lists

CollectionViewSource objects expose an interesting property named View. It basically
provides the ability of filtering, sorting, and navigating through a bound collection of
items. To understand how a view works, the best example in our scenario is handling the
Next and Back buttons. The following code snippet shows how easy it is to navigate back
and forward through items:

Private Sub NextButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

If Me.CustomersOrdersViewSource.View.CurrentPosition < _

CType(Me.CustomersOrdersViewSource.View, CollectionView).

Count - 1 Then

Me.CustomersOrdersViewSource.View.MoveCurrentToNext()

End If

End Sub

Private Sub BackButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

From the Library of Wow! eBook

ptg

819Discussing the New Drag’n’Drop Data-Binding
3

5

If Me.CustomersOrdersViewSource.View.CurrentPosition > 0 Then

Me.CustomersOrdersViewSource.View.MoveCurrentToPrevious()

End If

End Sub

The code simply calculates the position and enables moving back or forward only if there
are any other items that can be navigated. Notice how the
CustomersOrdersViewSource.View property exposes the Count property, representing the
current position being examined in the collection. Also notice methods such as
MoveCurrentToNext and MoveCurrentToPrevious that enable moving back and forward to
another item. Other interesting members from views are self-explanatory and are summa-
rized in Table 35.2.

Also notice how, to retrieve the items count, a CType operator converts from
CollectionViewSource.View into a CollectionView object. This last one represents a
single view, and the conversion is required because Option Strict is On and the View
property is of type ICollectionView. Views from CollectionViewSource objects are
straightforward, because they also support data-binding but they have several limitations.

TABLE 35.2 Views’ Most Common Members

Member Type Description

CanSort Property Returns a Boolean value indicating whether the collection
can be sorted.

CanFilter Property Returns a Boolean value indicating whether the collection
can be filtered.

CanGroup Property Returns a Boolean value indicating whether the collection
can be grouped.

MoveCurrentTo Method Sets the specified item as the current item in the collec-
tion.

MoveCurrentToFirst Method Sets the first item in the collection as the current item.

MoveCurrentToLast Method Sets the last item in the collection as the current item.

MoveCurrentToNext Method Sets next item in the collection as the current item.

MoveCurrentToPrevious Method Sets the previous item in the collection as the current item.

CurrentItem Property Returns the instance of the current item in the collection.
Because it is of type Object, it must be converted into the
appropriate type.

CurrentPosition Property Returns an index corresponding to the current item in the
collection.

From the Library of Wow! eBook

ptg

820 CHAPTER 35 Introducing Data-Binding

As you can recap from Table 35.2, no member is exposed for adding, editing, or removing
items in the underlying data collection. To provide the ability of CRUD operations, the
best approach is utilizing a System.Window.Data.Binding ListCollectionView, which also
offers a reference to data collections but provides more capabilities. With that said, at class
level, declare the following variables:

Private WithEvents CustomerView As BindingListCollectionView

Private CustomersOrdersView As BindingListCollectionView

Now, in the Window_Loaded event handler, add the following lines as the last lines of code
in the method:

Me.CustomerView = CType(Me.CustomersViewSource.View,

BindingListCollectionView)

Me.CustomersOrdersView = CType(Me.CustomersOrdersViewSource.View,

BindingListCollectionView)

This converts views references to two BindingListCollectionView objects. Now with
these you can perform insert/update/delete operations to the underlying collection, which
is picked up from the CollectionViewSource associations and that is data-bound to the
BindingListCollectionView, too. To understand how this works, write the following
handler for the Click event about the Add button so that we can provide the ability of
adding a new order:

Private Sub AddButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs)

‘A new order

Dim newOrder As Order

‘Adds a new order to the view and assigns the instance

‘to the newly declared order

newOrder = CType(Me.CustomersOrdersView.AddNew(), Order)

‘If I need to assign properties to newOrder before

‘it is sent to the collection, then this is the place

‘Sends the new order to the view

Me.CustomersOrdersView.CommitNew()

End Sub

The AddNew method adds an instance of the specified object type to the view, and the
addition is automatically reflected to the bound user interface controls. The CType conver-
sion is required because the method returns Object; therefore, converting to the appropri-
ate type returns the effective instance of the order. This is not actually required, but it is
useful if you want to set some default properties before the object is sent to the underlying

From the Library of Wow! eBook

ptg

821Discussing the New Drag’n’Drop Data-Binding
3

5

collection. Notice that this code submits the new item to the underlying collection, but
the new object will not persist to the underlying database until you invoke the
ObjectContext.SaveChanges method. Removing items works similarly, in that you simply
retrieve the current object instance and invoke one of the allowed methods. The following
event handler for the Delete button demonstrates this:

Private Sub DeleteButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs)

If Me.CustomersOrdersView.CurrentPosition > -1 Then

Dim result = MessageBox.Show(“Are you sure?”,

““, MessageBoxButton.YesNo)

If result = MessageBoxResult.Yes Then

Me.CustomersOrdersView.

RemoveAt(Me.CustomersOrdersView.CurrentPosition)

Else

Exit Sub

End If

End If

End Sub

In this case I’m using RemoveAt to remove the item at the current position, but you can
also invoke Remove that requires the instance of the current object. Basically RemoveAt
requires fewer lines of code. Before running the application, there is one thing that you
need to take care of and that is the fact that the a BindingListCollectionView content
needs to be refreshed each time you move to another item in the master part of the
master-details relationships. Considering our code example, you need to remember the
BindingListCollectionView referred to orders each time you select a different customer.
To accomplish this you handle the CurrentChanged event in the master part of the rela-
tionship, as demonstrated by the following code:

Private Sub CustomerView_CurrentChanged(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles CustomerView.CurrentChanged

Me.CustomersOrdersView = CType(Me.CustomersOrdersViewSource.View,

BindingListCollectionView)

End Sub

The preceding event handler is invoked when you click a different customer in the user
interface and refreshes the CustomersOrdersView (of type BindingListCollectionView)
object pointing to the actual orders collection referred by the underlying
CollectionViewSource, which effectively keeps the data-binding alive. At this point you
can run the application and get the result summarized in Figure 35.8.

From the Library of Wow! eBook

ptg

822 CHAPTER 35 Introducing Data-Binding

BINDING TO DATASETS

The drag’n’drop data-binding works the same with DataSets and you can still take
advantage of CollectionViewSource and BindingListCollectionView objects. The
code remains the same as the previously shown examples, whereas the difference is
where you need to persist data to the database or fetch data, where you can respec-
tively use DataSet methods and LINQ to DataSets.

You can now play with additional controls such as Add, Delete, Next, and Back. When you
are done, try and save changes to ensure that new or edited data is correctly persisted to
the database. This sample application can be enhanced in several other ways. For example
you can implement entities validation or showing details for a single order using LINQ.
These topics are beyond the scope of an introductory chapter about data-binding, but you
can further explore them with the help of the MSDN documentation. Particularly I
suggest you read this blog post by Beth Massi from Microsoft, where she discusses WPF
validation on entities: http://blogs.msdn.com/bethmassi/archive/2009/07/07/implement-
ing-validation-in-wpf-on-entity-framework-entities.aspx. Although the blog post targets
the .NET Framework 3.5 SP 1, this technique is convenient on .NET 4.0, too.

Implementing String Formatters and Value Converters

The need to represent strings in a more appropriate format when binding data to the user
interface is not uncommon. For example, you might want to present money values or
percentages. In WPF you can accomplish this in two modes: string formatters and the

FIGURE 35.8 The master-details application running.

From the Library of Wow! eBook

http://blogs.msdn.com/bethmassi/archive/2009/07/07/implementing-validation-in-wpf-on-entity-framework-entities.aspx
http://blogs.msdn.com/bethmassi/archive/2009/07/07/implementing-validation-in-wpf-on-entity-framework-entities.aspx

ptg

823Discussing the New Drag’n’Drop Data-Binding
3

5

IValueConverter interface. This section describes both, showing how they can be used for
better presentation purposes.

Implementing String Formatters
Starting from .NET 3.5 SP 1, you can apply string formats directly in the XAML Binding
markup extension that performs data-binding. This allows expressing a particular value
type in a more convenient string format. For a better understanding, consider Figure 35.8
Notice now the Freight field is shown as a decimal number but probably you might
want to display it with your currency symbol. Locate the XAML code that implements
the Freight textbox and apply the StringFormat property as shown in the following
code snippet:

<TextBox Grid.Column=”1” Grid.Row=”7” Height=”23”

HorizontalAlignment=”Left” Margin=”3”

Name=”FreightTextBox”

Text=”{Binding Path=Freight, StringFormat=c}”

VerticalAlignment=”Center” Width=”120” />

The BindingBase.StringFormat property is applied within the Binding markup extension
and requires the specification of the formatter. Figure 35.9 shows how the Freight field is
now represented with a currency symbol.

Table 35.3 summarizes the most common StringFormat values.

FIGURE 35.9 Representing strings with StringFormat.

From the Library of Wow! eBook

ptg

824 CHAPTER 35 Introducing Data-Binding

The good news is that string formatters also provide converting back the user input. For
the Freight example, if you type a value into the field, it is represented as a currency in
the user interface, but it is correctly saved to the data source according to the required
type. StringFormat also enables string formatting as it happens in Visual Basic code.
Consider the following code:

<TextBox Name=”FreightTextBox”

Text=”{Binding Path=Freight, StringFormat=Amount: {0:c}}”/>

In the preceding code the Amount word takes the place of 0 at runtime. So the result will
be Amount: $ 1.21. There is another useful technique known as MultiBinding. The
following code demonstrates how it is possible to apply multiple formatters with
MultiBinding:

<!—Applies date and currency formatting—>

<TextBlock>

<TextBlock.Text>

<MultiBinding StringFormat=”Order date: {0:D}, Cost: {1:C}”>

<Binding Path=”OrderDate”/>

<Binding Path=”OrderPrice”/>

</MultiBinding>

</TextBlock.Text>

</TextBlock>

TABLE 35.3 Most Common Formatters Values

Value Description

c or C Represents a value as a string with currency symbol.

p or P Formats a value as a string with percentage representation.

D Formats a date value as an extended string representation (for example, Monday, 21
October 2009).

D Formats a date value as a short string representation (for example, 10/21/2009).

F Provides a string representation of a decimal number with floating point. It is followed by
a number that establishes how many numbers follow the floating point (for example,
3.14 can be represented by F2).

E Scientific formatting.

X Hexadecimal formatting.

G General.

From the Library of Wow! eBook

ptg

825Discussing the New Drag’n’Drop Data-Binding
3

5

Several user controls, such as Button and Label, also offer a ContentStringFormat prop-
erty that enables applying formatting to the control’s content the same way as
StringFormat works. The following is an example:

<Label ContentStringFormat=”C” Content=”200”/>

Similarly, controls such as ListView, ListBox, and DataGrid offer the HeaderStringFormat
and ItemStringFormat properties that enable, respectively, formatting the header content
for columns and items in the list. String formatters are straightforward, but there are situa-
tions in which you need more extensive control over value representation, especially
when you need to actually convert from one data type to another. This is where
IValueConverter comes in.

Implementing the IValueConverter Interface
There are situations in which default conversions provided by string formatters are not
enough, especially if you have to implement your custom logic when converting from the
user input into another type. With IValueConverter you can implement your custom
logic getting control over the conversion process from and to the data source. To follow
the next steps, create a new class and name it CustomConverter. When the new class is
ready, implement the IValueConverter interface. The resulting code will be the following:

Public Class CustomConverter

Implements IValueConverter

Public Function Convert(ByVal value As Object,

ByVal targetType As System.Type,

ByVal parameter As Object,

ByVal culture As

System.Globalization.CultureInfo) _

As Object Implements _

System.Windows.Data.IValueConverter.Convert

End Function

Public Function ConvertBack(ByVal value As Object,

ByVal targetType As System.Type,

ByVal parameter As Object,

ByVal culture As System.Globalization.

CultureInfo) As Object _

Implements _

System.Windows.Data.IValueConverter.

ConvertBack

From the Library of Wow! eBook

ptg

826 CHAPTER 35 Introducing Data-Binding

End Function

End Class

The interface implementation requires two methods, Convert and ConvertBack. The first
one manages data when applying from the data source to the user interface, whereas the
second one manages the conversion when getting back from the user interface to the data
source. The most important argument in the Convert method is parameter, which repre-
sents how data must be converted. Such data is stored by the value argument.
Implementing Convert is quite easy, in that generally you simply need to format value as
a string according to parameter’s establishment, and this can be accomplished taking
advantage of the current culture. The following is the standard Convert implementation:

Public Function Convert(ByVal value As Object,

ByVal targetType As System.Type,

ByVal parameter As Object,

ByVal culture As _

System.Globalization.CultureInfo) _

As Object Implements System.Windows.Data.

IValueConverter.Convert

If parameter IsNot Nothing Then

Return String.Format(culture, parameter.ToString, value)

End If

Return value

End Function

Basically it ensures that on the XAML side a valid converter property (reflected by
parameter), which is described later, has been provided and that it is not null. In this case
the method returns the string representation of the value according to the system culture.
If no converter is specified, the method simply returns the value. ConvertBack is a little bit
more complex, because it has to convert strings (that is, the user input) into a more appro-
priate type. The goal of this example is providing conversion from String to Decimal, for
money fields. The following code snippet implements the method (see comments for
explanations):

Public Function ConvertBack(ByVal value As Object,

ByVal targetType As System.Type,

ByVal parameter As Object,

ByVal culture As System.Globalization.

CultureInfo) As Object _

Implements System.Windows.Data.

IValueConverter.ConvertBack

‘If the type to send back to the source is Decimal or Decimal?

If targetType Is GetType(Decimal) OrElse targetType _

From the Library of Wow! eBook

ptg

827Discussing the New Drag’n’Drop Data-Binding
3

5

Is GetType(Nullable(Of Decimal)) Then

Dim resultMoney As Decimal = Nothing

‘Checks if the input is not null

If Decimal.TryParse(CStr(value), resultMoney) = True Then

‘in such case, it is returned

Return CDec(value)

‘if it is empty, returns Nothing

ElseIf value.ToString = String.Empty Then

Return Nothing

Else

‘If it is not empty but invalid,

‘returns a default value

Return 0D

End If

End If

Return value

End Function

It is worth mentioning that you need to provide conversion for nullable types, as in the
preceding code, if you work against an Entity Data Model. If your user interface simply
presents data, but does not receive input from the user, you can implement ConvertBack
by simply putting a Throw New NotImplementedException as the method body. The MSDN
official documentation suggests an interesting best practice when implementing custom
converters. This requires applying the ValueConversion attributes to the class; this
attribute enables specifying data types involved in the conversion, as in the following line
that has to be applied to the CustomConverter class:

<ValueConversion(GetType(String), GetType(Decimal))>

The first attribute’s argument is the type that you need to convert from, whereas the
second one is the type that you need to convert to. Custom converters must be applied at
XAML level. This requires first adding an xml namespace pointing to the current assembly
that defines the class. For the previous example, add the following namespace declaration
within the Window element definition, taking care to replace the IntroducingDataBinding
name with the name of your assembly (IntelliSense will help you choose):

xmlns:local=”clr-namespace:IntroducingDataBinding”

When you have a reference to the assembly, which can be useful for utilizing other classes
at the XAML level, you need to declare a new resource that points to the custom
converter. Within the Window.Resources element, add the following line:

<local:CustomConverter x:Key=”customConverter”/>

From the Library of Wow! eBook

ptg

828 CHAPTER 35 Introducing Data-Binding

Now that the converter has an identifier and can be used at the XAML level, you simply
pass it to the bound property you want to convert. For example, suppose you want to
format and convert the Freight property from the Order class. The following code
demonstrates how to apply the converter:

<TextBox Grid.Column=”1” Grid.Row=”7” Height=”23”

HorizontalAlignment=”Left” Margin=”3”

Name=”FreightTextBox”

Text=”{Binding Path=Freight,

Converter={StaticResource customConverter},

ConverterParameter=’\{0:c\}’}”

VerticalAlignment=”Center” Width=”120” />

You pass the converter identifier to the Converter property of the Binding markup exten-
sion. The ConverterParameter receives the conversion value, which are the same in Table
35.3. If you run the application you get the result shown in Figure 35.9, the difference is
that with custom converters you can control how the conversion and formatting
processes behave.

Summary
The data-binding is a key concept in every kind of application, and this is true for WPF,
too. In the first part of this chapter, you learned how you apply data-binding to simple
controls with the Binding markup extension in XAML code, to bind some properties to
the value of other controls or to a .NET data source. For this, you got an overview of the
new DataGrid control and of the ObservableCollection(Of T) generic class (which you
already studied) this time applied to WPF. You saw how the DataGrid supports the two-
way data-binding also due to the underlying support for the technique offered by the
ObservableCollection. In the second part of the chapter we covered a new feature in
Visual Studio 2010, the drag’n’drop data-binding that is now available in WPF like it was
in Windows Forms. After this discussion the StringFormat and IValueConverter objects
were presented for formatting and converting objects to and from String. There is much
more to say about data access in WPF, but it is beyond the scope here. An interesting
resource that you should keep within your bookmarks is the Visual Studio Data Team
Blog, where you can find blog posts about data access and data-binding in WPF and that
is managed by the guys that created the drag’n’drop data-binding. You can find it here:
http://blogs.msdn.com/vsdata. The next chapter is the last one on WPF and is related to
another important topic: localization.

From the Library of Wow! eBook

http://blogs.msdn.com/vsdata

ptg

CHAPTER 36

Localizing Applications

IN THIS CHAPTER

. Introducing .NET Localization

. Windows Forms Localization

. WPF Localization

Limiting applications’ user interfaces to just one language
means limiting your business. If you want to increase the
possibilities of your applications being sold worldwide, you
need to consider creating user interfaces that support multi-
ple languages and culture specifications of your users. Of
course, you can give users the option to select the desired
language or provide localized interfaces for a particular
country, but the main concept is that localization is a
common requirement in modern applications. The .NET
Framework helps developers in localizing applications with
several kinds of resources. In this chapter you consider how
to localize smart client applications and explore Windows
Forms and WPF applications to understand the fundamen-
tals of localization in both technologies.

AVAILABLE TECHNIQUES

Localizing applications is something that you can
accomplish in several ways in both Windows Forms
and WPF. This chapter discusses the most commonly
used techniques—just remember that they are not
the only ones.

Introducing .NET Localization
The .NET Framework provides the infrastructure for applica-
tion localization via the System.Globalization namespace.
The most important class in this namespace is the
CultureInfo class that allows getting or setting information
on the current application culture or on new custom

From the Library of Wow! eBook

ptg

830 CHAPTER 36 Localizing Applications

settings. Generally this class works with the System.Threading.Thread.CurrentThread
class that provides access to the thread representing your executable and that exposes the
CurrentCulture and CurrentUICulture properties that you can assign with a CultureInfo
object. The following code demonstrates how to get information on the current thread
culture and how to set a new CultureInfo:

’Requires an Imports System.Globalization directive

‘Gets the current culture and shows information

Dim culture As CultureInfo = System.Threading.Thread.

CurrentThread.CurrentCulture

Console.WriteLine(culture.DisplayName)

‘Creates an instance of the CUltureInfo class

‘based on the Italian culture and sets it as

‘the current culture

Dim customCulture As New CultureInfo(“it-IT”)

System.Threading.Thread.CurrentThread.

CurrentCulture = customCulture

The CultureInfo class provides lots of properties that enable applications to adhere to the
required culture specifications. For example, DisplayName shows the name of the culture
as it appears on the system, DateTimeFormat specifies the appropriate format for date and
time in the specified culture, and NumberFormat provides specifications on how numbers
and percentage need to be formatted in the specified culture. In this chapter you learn
how to localize smart client applications, thus Windows Forms and WPF.

Windows Forms Localization
If you are an experienced Windows Forms developer, maybe you already faced the local-
ization problem with this technology. There are different ways for localizing a Windows
Forms application, but basically all of them rely on managed resources. The easiest way for
localizing a Windows Forms application is to take advantage of the Visual Studio Designer
so that the IDE generates the appropriate resources files for you. An example is of course
the best way for providing explanations; the goal of this an example is to localize a
Windows Forms application in both English and Italian. Run Visual Studio 2010, create a
new Windows Forms project with Visual Basic 2010, and name it
WindowsFormsLocalization. Follow these steps:

1. Drag a Button from the toolbox onto the new form surface, and set its Text property
as Localized button.

2. Drag a Label from the toolbox onto the new form surface, and set its Text property
as Localized label.

3. Select the form, and in the Properties window set its Localizable property as True;
then set its Language property as Italian.

From the Library of Wow! eBook

ptg

831Windows Forms Localization

4. Select the Button and set its Text property as Pulsante localizzato (in Italian).

5. Select the Label and set its Text property as Etichetta localizzata.

6. Build the project and enable the Show All Files view in Solution Explorer.

You notice that Visual Studio has generated a new it-IT subfolder under Bin\Debug (or
Bin\Release) containing a satellite assembly where localized resources are stored.
Moreover, Visual Studio generated a new localized resources file for the current form
named Form1.it-IT.resx storing the localized information for design time. If you try to run
the application, you notice that it is still localized in English. This is because you need to
explicitly assign in code the new localized culture. This can be accomplished by adding
the following code (which requires an Imports System.Globalization directive) at the
beginning of the application startup, which is typically the constructor, before the
InitializeMethod is invoked:

Public Sub New()

With Threading.Thread.CurrentThread

.CurrentUICulture = New CultureInfo(“it-IT”)

.CurrentCulture = New CultureInfo(“it-IT”)

End With

‘ This call is required by the designer.

InitializeComponent()

‘ Add any initialization after the InitializeComponent() call.

End Sub

The code simply assigns to the current thread the new culture information that will be
retrieved from the related subfolder and satellite assembly. Figure 36.1 shows how the
application looks with localized controls.

3
6

FIGURE 36.1 The localized Windows Forms application in action.

From the Library of Wow! eBook

ptg

832 CHAPTER 36 Localizing Applications

Windows Forms localization is straightforward because you can take advantage of the
Visual Studio Designer. Unfortunately this is not the same in WPF applications, where a
number of manual steps are required, as explained in the next section.

WPF Localization
In WPF the localization process is also based on resources but with different steps. Also,
there are some alternative techniques for accomplishing localization but we cover the
most common.

NOTE ON INSTALLED CULTURE

Code examples shown in this section assume that your system’s regional settings are
based on the en-US (English-United States) culture. If your system is based on different
regional settings, replace en-US with the culture information that suits your system.

When you compile a WPF project, the XAML code is parsed into a more efficient file
format known as BAML (Binary Application Markup Language). Generally each Baml file
represents a resource that is then linked into the executable storing all resources. To local-
ize a WPF application you need to localize Baml objects and put the result into a satellite
assembly. This is accomplished using a command-line tool named LocBaml.exe, which is
available for free from the MSDN. It is distributed as C# source code so you need to open
it inside Visual Studio and compile it. At the moment this chapter is being written,
LocBaml source code is available for .NET Framework versions prior than 4.0 so in order to
make it work with next examples you need to perform some steps that are described in
the next subsection.

LOCBAML FOR .NET 4.0

You can check for the availability of a new version of LocBaml targeting .NET 4.0 at the
following address: http://msdn.microsoft.com/en-us/library/ms771568(VS.100).aspx.
When Microsoft makes it available, you can skip the next section and go to the
“Localizing a WPF Application” section.

Preparing the LocBaml tool

Until a new version of LocBaml is available for .NET 4.0, you can download the previous
version and upgrade it manually. To accomplish this follow these steps:

1. If not installed, install Visual C# on your machine (the Express Edition is also
supported).

2. Download the LocBaml source code from this address: http://download.microsoft.
com/download/f/6/e/f6e32974-726e-4054-96af-9c747bf89a6e/LocBaml.exe.

3. Uncompress the downloaded archive into any folder you like.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms771568(VS.100).aspx
http://download.microsoft.com/download/f/6/e/f6e32974-726e-4054-96af-9c747bf89a6e/LocBaml.exe
http://download.microsoft.com/download/f/6/e/f6e32974-726e-4054-96af-9c747bf89a6e/LocBaml.exe

ptg

833WPF Localization

4. Start Visual Studio 2010 and create a new Console Application with Visual C#,
naming the project as LocBaml.

5. Save the new project into a different folder than the downloaded source code.

6. Remove the Program.cs and AssemblyInfo.cs code file from the project. Notice that
the second file is just a duplicate of the one generated by the IDE and so can be
safely removed.

7. Using the Project, Add Existing Item command, add all the code files (with .cs
extension) from the downloaded source code folder to the current project folder.

8. Add a reference to the following assemblies: WindowsBase.dll, PresentationCore.dll,
PresentationFramework.dll

9. In the new project, add a folder named Resources and add to this new folder the
StringTable.resText file which you can pick from the same-named folder of the origi-
nal LocBaml code.

10. After you’ve added the file, open the Properties window and set the Build Action
property as Embedded Resource.

11. Open the LocBaml.csproj project file with the Windows Notepad and add the
following lines (if not already available) within an ItemGroup node:

<EmbeddedResource Include=”Resources\StringTable.resText”>

<LogicalName>Resources.StringTable.resources</LogicalName>

</EmbeddedResource>

12. In Solution Explorer click Properties and ensure that the BamlLocalizaion.LocBaml is
set as the startup object in the Application tab.

Now build the project. At this point you have a new version of LocBaml.exe which targets
the .NET Framework 4.0.

Localizing a WPF Application

When you have completed the steps required to prepare LocBaml, imagine you want to
create a localized version for the Italian culture of a WPF application based on English as
the primary culture. Create a new WPF project with Visual Basic and name it as
WpfLocalization, and simply add the code shown in Listing 36.1 on the XAML side. The
goal is to provide a WPF counterpart of the Windows Forms example shown in the previ-
ous section.

LISTING 36.1 Preparing the User Interface Before Localization

<Window x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”MainWindow” Height=”350” Width=”525”>

<StackPanel>

<Button Name=”Button1” Width=”100” Margin=”5”

Height=”40” Content=”Localized button”/>

3
6

From the Library of Wow! eBook

ptg

834 CHAPTER 36 Localizing Applications

<TextBlock Text=”Localized text”

Margin=”5”

Name=”TextBlock1”/>

</StackPanel>

</Window>

The first step required to localize a WPF application is to specify the neutral-language
specification at assembly level. Click the Show All Files button in Solution Explorer,
expand My Project, and double-click AssemblyInfo.vb; finally uncomment the following
line of code:

<Assembly: NeutralResourcesLanguage(“en-US”,

UltimateResourceFallbackLocation.Satellite)>

This is required because the application looks for localization resources inside external
satellite assemblies, and at least one culture must be provided as neutral. This is simply
the culture you are writing code with. The next step is to open the project file, thus click
the File, Open, File command and browse the project folder; then open the
WpfLocalization.vbproj file. At this point you need to add the following line of Xml
markup inside one of the PropertyGroup items:

<UICulture>en-US</UICulture>

This works with the neutral language specification and ensures that a satellite assembly for
current culture resources will be generated. The successive step is marking UI elements in
XAML as localizable. This is accomplished by adding an x:Uid attribute to each localizable
member, assigning an identifier equal or similar to the element name. This task can be
accomplished manually but can be difficult if you have a lot of elements to mark as localiz-
able, so the most common option is running the MSBuild compiler that automates this for
you. Save the project, and then open a command prompt pointing to the project folder. At
this point write the following command lines following the exact sequence shown:

msbuild /t:updateuid WpfLocalization.vbproj

msbuild /t:checkuid WpfLocalization.vbproj

The first command line adds an x:Uid attribute to each UI element possible (updateuid),
whereas the second one performs a check to verify that all localizable members have an
x:Uid. When MSBuild completes, you notice how visual elements have been marked as
localizable, as shown in Listing 36.2.

LISTING 36.2 The XAML Code Marked as Localizable by MsBuild

<Window x:Uid=”Window_1” x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”MainWindow” Height=”350” Width=”525”>

<StackPanel x:Uid=”StackPanel_1”>

From the Library of Wow! eBook

ptg

835WPF Localization

<Button x:Uid=”LocalizedButton” Name=”LocalizedButton” Margin=”5”

Width=”140” Height=”40”

Content=”Localized button”/>

<TextBlock x:Uid=”LocalizedTextBlock” Name=”LocalizedTextBlock” Margin=”5”

Text=”Localized text”/>

</StackPanel>

</Window>

Now build the project again in Visual Studio. You now notice that in the project output
folder (Bin\Debug or Bin\Release) there is a new subfolder named en-US, which contains
a WpfLocalization.Resources.dll satellite assembly containing localized resources for the
en-US culture. So the goal now is to create a similar folder/assembly structure per culture.
In this case you see how to create a localized satellite assembly for the Italian culture, but
you can replace it with a different one. A subsequent step requires invoking LocBaml. The
need is to extract resources information and edit the information with localized ones. The
following command line parses the neutral language resources and creates an editable
.CSV file where you can place custom information:

LocBaml.exe /parse en-US\WpfLocalization.resources.dll

/out:WpfLocalization.csv

When ready, open the generated WpfLocalization.csv file with an appropriate editor, such
as Microsoft Excel or Visual Studio. Figure 36.2 shows how the content of the file appears
in Microsoft Excel.

3
6

FIGURE 36.2 The extracted resources information opened in Excel.

From the Library of Wow! eBook

ptg

836 CHAPTER 36 Localizing Applications

If you inspect the content of the file, among other things you notice the content of UI
elements. For example, row 2 contains the Window title, row 9 contains the Button text as
the last word, whereas row 12 contains the TextBlock text. At this point you simply need
to replace original values with new ones. Continuing the example of the Italian localiza-
tion, perform the following replacements:

. In row 2 replace MainWindow with Finestra principale.

. In row 9 replace Localized button with Pulsante localizzato.

. In row 12 replace Localized text with Testo localizzato.

Figure 36.3 represents how the file will look like after edits.

Now save the file with a different name, for example WpfLocalization_it-IT.csv. When
done, you need to manually create a new directory where the new localized resources will
be published; create a folder named it-IT inside the same folder of en-US. At this point
you still need to invoke LocBaml to build the localized satellite assembly; write the follow-
ing command line:

LocBaml.exe /generate en-US\WpfLocalization.resources.dll /trans: WpfLocalization

_it-IT.csv /out:c:\ /cul:it-IT

The /generate option tells LocBaml to generate a new satellite assembly, translating
(/trans) the specified .csv file into the desired culture (/cul). The /out option allows spec-
ifying the target directory that in this example is the hard drive root folder. When ready,
move the newly generated WpfLocalization.resources.dll assembly from C:\ into the it-IT

FIGURE 36.3 Resources information are edited for localization.

From the Library of Wow! eBook

ptg

837Summary
3

6

subfolder you created before. The last step is to initialize the desired culture information at
the application startup. In Application.xaml.vb provide a constructor as follows:

Imports System.Globalization

Imports System.Threading

Class Application

Public Sub New()

Thread.CurrentThread.CurrentUICulture = _

New CultureInfo(“it-IT”)

Thread.CurrentThread.CurrentCulture = _

New CultureInfo(“it-IT”)

End Sub

End Class

This is different from Windows Forms, because in WPF the Application class is the actual
application entry point. If you now run the application, you get the result shown in
Figure 36.4 where you can see how UI elements have been localized.

Summary
In this chapter we covered localization; first we discussed information on how the .NET
Framework provides objects for application localization at a general level. Next the discus-
sion focused on Windows Forms applications localization, taking advantage of the Visual
Studio Designer and of managed resources files. Finally you saw how localization works in
WPF applications, understanding how a number of manual steps are required, such as
adding the neutral language resource and culture information to the project file, running
MsBuild to mark visual elements as localizable, and running LocBaml to generate satellite
resources assemblies.

FIGURE 36.4 Localized UI elements in the WPF sample application.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 37

Building ASP.NET Web
Applications

IN THIS CHAPTER

. Introducing the ASP.NET Model

. Web Forms and Master Pages

. ASP.NET Controls

. Handling Events

. Understanding State
Management

. Creating a Web Application with
VB 2010 with Navigation and
Data-Binding

. Configuring a Web Application
for Security

Many of the most common activities in everyday life are
often performed via the Internet and websites. You book a
flight via air companies’ websites; you book tickets for the
theater via the Internet; and you can make payments via
the Internet. Also, most companies (and probably yours,
too) have local networks running internal Web applications
for several kinds of purposes, such as office automation,
storing data, and so on. Being a complete technology, the
.NET Framework offers its own Web platform for developing
websites based on .NET, which is named ASP.NET. This is an
engine for websites running on the server side, which
enables building robust Web applications taking advantage
of managed code. In this chapter you start with the
ASP.NET programming model and with building Web appli-
cations with Visual Basic 2010, also leveraging some of the
new features typical of ASP.NET 4.0.

Introducing the ASP.NET Model
Until now different kinds of client applications, such as
Console, Windows Forms, and WPF were discussed. For this
last technology, the discussion was deeper because of the
innovations brought into the desktop applications develop-
ment. Developing Web applications for ASP.NET with Visual
Basic 2010 is different. If you are an existing Web developer,
this chapter will probably just be an overview of some new
features introduced by .NET 4.0. However, if you are new to
ASP.NET, although you can find lots of similarities with the
client world in writing managed code and in creating appli-
cations, the code in the Web environment runs differently.
So you need to understand where the code is running and

From the Library of Wow! eBook

ptg

840 CHAPTER 37 Building ASP.NET Web Applications

why scaling applications is fundamental therefore, you also need to understand the
concept of the stateless nature of the Web so that you can handle it in your applications,
which is discussed next.

Understanding Page Requests

When you create a Web application, the application will be hosted on a web server. This is
the place where your Visual Basic compiled code actually resides. When the code is
executed, the ASP.NET engine renders it as HTML so that it can be consumed on the client
side by a web browser such as Internet Explorer and Fireox, which can interpret HTML
and display web pages. When you type a website address into your browser, it sends a web
page request. This is then translated into an address that searches for the server hosting
the requested page. When the server receives the request, the installed web server software
catches the request and, if this is about an ASP.NET web page, passes the request to the
ASP.NET engine so that this can render the result as HTML and return it to the calling
browser. Samples of web server software are Internet Information Services (IIS) and the
Cassini Web Server. Visual Studio 2010 ships with its own web server, named ASP.NET
Development Server, which enables simulating a web server environment on the develop-
ment machine for testing applications. But you do not write HTML, whereas you write
Visual Basic code that is compiled into an assembly residing on the server; so the ASP.NET
engine sends requests to your code for processing and then it returns the processing result
as HTML that can be consumed by client browsers. All these operations are fine, but there
is a problem: In a desktop environment you have one user running one instance of the
application that works against its set of data and information; even if you have hundreds
of database records to load, the application will be responsive in most cases. The same is
not true for web applications if you think that one Web application hosted on a server
could potentially receive hundreds of concurrent requests; therefore, elaborating hundreds
of data requests concurrently can cause a bottleneck with hard performances problems.
Fortunately ASP.NET provides a mechanism for scalability that lets the application solve
performance problems the best way possible.

Scalability and Performances

Scalability is basically the capability of an application to well serve requests without
getting too slow or crashing when the amount of work increases. As described before, in a
single user environment such as desktop applications, scalability is a plus but not a
requirement whereas it is in a web environment, where multiple requests can come to a
web page. Because you do not want your application to get too slow or to crash when a
big number of simultaneous requests come, whereas you instead want requests to be
served in a small amount of time, you need to be aware of scalability and performances.
Luckily ASP.NET has its own mechanism that serves for applications scalability and that
we now describe. Think of desktop applications for a moment; in such environment all
the work is in memory, when you load data into variables; variables are instances of
managed objects that you release when no more are needed so that the garbage collection
process frees up unused resources. In a web environment this is not possible because the
application resides on one server and serving a big number of requests would lead soon to
out-of-memory errors, so the mechanism of state management must be necessarily differ-

From the Library of Wow! eBook

ptg

841Introducing the ASP.NET Model

ent. The following is the list of operations that occur against the code when ASP.NET
receives a request:

1. ASP.NET creates an instance of the Page object, which is the Web counterpart of
Form and Window.

2. Because Page is a managed object, when ASP.NET processes the request it releases the
reference of the page instance.

3. The Garbage Collection process clears from the managed heap all objects that no
longer have any reference, including released Page objects.

This is cool because when an object completes its work, it is soon removed from memory,
and this improves scalability. The problem is that if the object is no longer available, also
data exposed by that object is no longer available; this means that if the same user sends
another request to the same page (that is, creating a new instance of the Page object),
such page will result empty. This is frequent, if you think of web pages that require filling
some fields before making available other controls that require the page to be reloaded. So
this is the reason why ASP.NET needs a different state management, which is provided by
the Application and Session state objects that will be discussed later. Another problem
that travels hand in hand with scalability is performance. Each time you send a page
request, you have to wait a few seconds. This is normal because sending the request takes
time and waiting for the server to respond takes other time. Also, elaborating complex
data requires additional time because the number of bytes to transfer is increased. With
complex web applications, performance can become a problem, so a better approach is
designing pages differently. ASP.NET Ajax and Silverlight (discussed in Chapter 39,
“Building Rich Internet Applications with Silverlight”) are better choices, but first you
need to get some skills on ASP.NET before trying those technologies. The first step for
acquiring such skills is starting to create your first Web project with VB 2010.

Available Project Templates

Basically there are two kinds of project templates for building ASP.NET web applications
with VB 2010: Web Site and Web Application. There are several differences between the two
templates, but the major differences follow:

. The website template has no project file, whereas Web Application has one. Choosing
this second template brings more familiarity for other Visual Studio projects.

. The website template produces no compiled assemblies and requires the source code
to be deployed, whereas the Web Application template allows building a compiled
assembly and no source code is required.

. A website is simpler in its structure than the Web Application project template.

Due to their natures, this chapter shows examples based on the Web Application template.
There are multiple Web Application templates, specific to particular scenarios. They are all
reachable in the Web folder of the New Project dialog, as shown in Figure 37.1.

3
7

From the Library of Wow! eBook

ptg

842 CHAPTER 37 Building ASP.NET Web Applications

The most basic project template is the ASP.NET Web Application one. There are project
templates dedicated to ASP.NET MVC and ASP.NET Dynamic Data applications, other
than templates for building user controls. When building a complete working example
later in this chapter, we use the ASP.NET Web Application template that provides a skele-
ton of a Web application with preconfigured pages. For the first experiments, create a
new project based on the ASP.NET Empty Web Application. This generates a new empty
project, where the first thing you have to do is add some pages. Pages in ASP.NET are
represented by Web forms.

Web Forms and Master Pages
ASP.NET Web applications are made of pages. These can be standalone pages or ones
providing common elements for each page. Standalone pages are generally known as Web
forms, while the other kind is known as master page.

Web Forms

A Web form represents a page in ASP.NET (a file with an .Aspx extension) and is composed
of markup code known as XHTML and of a code-behind part made of Visual Basic code.
The concept is similar to the WPF development where the XAML code is for the user
interface and the Visual Basic code makes the UI alive. The same is for Web forms, but the
difference is that the UI is provided via XHTML code. This acronym stands for Extensible
Hypertext Markup Language and is intended as an enhancement of classic HTML. The
XHTML code in a Web form contains markup for page layout, user controls, and eventu-

FIGURE 37.1 Web Application project templates available with VB 2010.

From the Library of Wow! eBook

ptg

843Web Forms and Master Pages

ally scripts. Each Web application needs at least a Default.aspx page, so right-click the
project name in Solution Explorer and select Add New Item. In the Add New Item dialog,
select the Web Form template, name it Default.Aspx and then click OK. When ready, the
new page is made of some XHTML code. The following is the basic code of a Web form,
including a Label control for demonstrating some concepts:

<%@ Page Language=”vb” AutoEventWireup=”false”

CodeBehind=”Default.aspx.vb”

Inherits=”WebApplication1.WebForm1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

<title></title>

</head>

<body>

<form id=”form1” runat=”server”>

<div>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>

</div>

</form>

</body>

</html>

The most important thing you need to remember is that code is executed on the server, so
it is fundamentally adding a runat=”server” attribute for each control; otherwise, it will
not be correctly consumed by client browsers.

STYLING TIPS

ASP.NET enables styling and applying themes to Web forms via Cascade Style Sheets
(Css) files. A simpler way for styling controls is choosing the AutoFormat option that’s
available when you click the smart tag.

Notice how the markup code contains classic HTML items that will be correctly rendered
to client browsers. Each Web form has a code behind a file, which you can find in
Solution Explorer by enabling the Show All Files view and then expanding the desired
web page file. When you double-click the Visual Basic code-behind file on a new Web
form, you can notice that it is nothing but a class providing an event handler for the
Page.Load event. As explained in next subsection, a Web form has a lifetime that is estab-
lished by events.

Page Lifetime and Page Events
Each page has a lifetime that you need to understand so that you can ensure changes you
made through a postback are not ignored or overwritten. Page lifetime is articulated in

3
7

From the Library of Wow! eBook

ptg

844 CHAPTER 37 Building ASP.NET Web Applications

events, each of them representing a particular moment. Although starting from ASP.NET
2.0 the Page class offers a bigger number of events, the most important are the following:

. Init, which is where the page initializes controls

. Load, which is when the page is loaded and you can play with controls

. PreRender, which occurs just before the page is rendered as HTML

Cached and Postback Events
Earlier in this chapter you learned that the biggest difference between the ASP.NET
programming model and the client one is that in the ASP.NET development you cannot
keep objects in memory and that, for scalability purposes, a page is reloaded each time
you need to process some data. Reloading a page happens when you interact with controls
on the page. Such controls raise events depending on the action you took onto them,
which are divided into two categories: cached events and postback events. Cached events
occur on controls that do not require an immediate page reload. The typical example is
the TextBox control where a TextChanged event is raised every time you edit the text, but
the page is not reloaded at each edit. Postback events instead occur on controls that will
cause an immediate page reload, such as Button and ComboBox. This is convenient because
you expect immediate data processing when you click the Button or select a combo box
item. At this point cached events will also be elaborated at the page reload. Reloading a
page means destroying the instance of the current page and then creating a new instance
of the current page. This is good because you avoid overhead when working with big
amounts of data, but the problem is that all objects and values held by the previous
instance are lost, so you need a mechanism for restoring the original object values. Such
mechanism is typically the ViewState object that is covered later in more details; at the
moment look at how you store an object value (such as the text stored in a TextBox)
inside the ViewState before the page is reloaded at the Button click:

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles Me.Load

If Not Page.IsPostBack Then

Me.TextBox1.Text = CStr(Me.ViewState(“MyText”))

End If

End Sub

Protected Sub Button1_Click(ByVal sender As Object,

ByVal e As EventArgs) _

Handles Button1.Click

Me.ViewState(“MyText”) = Me.TextBox1.Text

End Sub

Basically the only situation when a postback event does not occur is when you open the
website, meaning that the page is loaded for the first time. You can check if the page is
being loaded for the first time in the Page_Load event handler, where you read the value

From the Library of Wow! eBook

ptg

845ASP.NET Controls

of the Page.IsPostBack property. If true, you can retrieve the content of the ViewState
property to restore the original values.

TIP

If you use the ComboBox control, remember to set its AutoPostBack property as
True so that it will cause a postback each time you select an item, when such behav-
ior is desired

Considering cached and postback events, the following is the updated list for the page
lifetime:

1. Init

2. Load

3. Cached events

4. Postback events

5. PreRender

ASP.NET Controls
ASP.NET offers both server and HTML controls. Server controls run on the server side and
emulate or are built upon existing HTML tags, but provide more advanced features and
usability. They also are object-oriented controls and support events, whereas HTML
controls don’t. Generally, HTML controls are more and more limited if compared to
ASP.NET controls; although, they can be still processed on the server by adding the usual
runat=”server” tag. The next sections list the most common controls from both types.

Server Controls

Server controls are typically user interface objects that users can take advantage of when
running a Web application on clients. You can notice that in most cases ASP.NET server
controls are counterparts of HTML controls, but provide a fully object-oriented develop-
ment environment and full support for managed code. Table 37.1 summarizes the most
common server controls.

3
7

TABLE 37.1 Most Common Server Controls

Control Description

AdRotator Shows a series of advertisements

BulletedList Shows a bulleted list of items

Button A button that can be clicked

Calendar Provides a monthly calendar

CheckBox A check box control for Boolean check state

From the Library of Wow! eBook

ptg

846 CHAPTER 37 Building ASP.NET Web Applications

CheckBoxList A group of multiselection check boxes

DataList A drop-down list with database data

DetailsView Can show a single record of data

DropDownList A drop-down list enabling single selection

FileUpload Provides the capability of uploading files

GridView Enables tabular data representations

HiddenField Keeps data that will be hidden in the UI

HyperLink A hyperlink to open other websites

Image Shows a picture

ImageButton A button containing a picture instead of text

ImageMap Enables creating image regions that can be clicked

Label Enables presenting static text

LinkButton A button with hyperlink functionalities

ListBox Enables scrolling a list of items

MultiView Provides the capability of creating tabbed user interfaces

Panel A container for other controls

RadioButton A button with single option choice

RadioButtonList A group of radio button controls

RangeValidator Checks if the specified entry is between upper and lower bounds

RequiredFieldValidator Checks for the existence of an entry

Substitution A control that does not enable storing its content in cache

Table Enables presenting data within tables

TextBox A control that accepts text

View One item in a Multiview control

Wizard Enables creating wizards

Xml Provides combination between Xml and XSLT objects

TABLE 37.1 Continued

Control Description

From the Library of Wow! eBook

ptg

847ASP.NET Controls

All controls in Table 37.1 are then rendered as their HTML equivalent so that they can be
consumed by Web browsers.

NOTE

Server controls are not the only ones available. If you take a look at the Visual Studio
toolbox, you notice the presence of different tabs. Remaining controls are typically data
controls used for data-binding or navigation, validation, and login controls that will not
necessarily be placed on the user interface.

HTML Controls

HTML controls in ASP.NET are representations of their classic HTML. Table 37.2 summa-
rizes the most common among available HTML controls.

The main difference between HTML controls and their ASP.NET counterparts is that
ASP.NET versions can be accessed on the server side with managed code by adding an ID
attribute and the runat=”server” attribute, although HTML controls actually work on the
server side.

3
7

TABLE 37.2 HTML Controls

Control Description

HtmlAnchor Allows accessing the <a> HTML element on the server

HtmlButton A button that can be clicked

HtmlForm A form control

HtmlGenericControl An element that cannot be mapped to any specific HTML control

Image A control showing a picture

HtmlInputButton Expects input via a button

HtmlInputCheckBox Expects input via a Checkbox

HtmlInputFile Expects input from a file

HtmlInputHidden Hides its content

HtmlInputImage Expects an image as the input

HtmlInputRadioButton Expects input via a RadioButton

HtmlInputText Expects input via some text

HtmlTable Represents a table

HtmlTableCell Represents a cell within a table

HtmlTableRow Represents a row within a table

HtmlTextArea Represents an area of text

From the Library of Wow! eBook

ptg

848 CHAPTER 37 Building ASP.NET Web Applications

Handling Events
Due to the code-behind logic, handling events in ASP.NET applications looks similar to
what you saw about WPF. This means that you have a user control implemented on the
XHTML side and an event handler in the Visual Basic side.

HANDLING EVENTS TIP

If you need to catch events from objects that are not user controls, such as business
objects or collections, you just write the event handler in Visual Basic code the usual way.

For example, consider the following XHTML code that provides a Button and a Label:

<form id=”form1” runat=”server”>

<div>

<asp:Button ID=”Button1” runat=”server” Text=”Button”/>

<asp:Label ID=”Label1” runat=”server”></asp:Label>

</div>

</form>

You can handle the Button.Click as usual, for example with the following code that
writes a message to the Label:

Protected Sub Button1_Click(ByVal sender As Object,

ByVal e As EventArgs) Handles Button1.Click

Me.Label1.Text = “You clicked!”

End Sub

Notice that you can also specify the event handler in the XHTML code, avoiding the
Handles clause on the VB side, exactly as in WPF. The Click event handler is specified
with the OnClick attribute:

<asp:Button ID=”Button1” runat=”server” Text=”Button”

OnClick=”Button1_Click” />

And then you write the event handler without Handles:

Protected Sub Button1_Click(ByVal sender As Object,

ByVal e As EventArgs)

Me.Label1.Text = “You clicked!”

End Sub

Understanding State Management
As I told you at the beginning of this chapter, ASP.NET applications have to manage their
state in a different way than client applications. State is managed via some special objects:
Application, Cache, Context, Session, and ViewState. All of them work with the Object

From the Library of Wow! eBook

ptg

849Understanding State Management

type, and you use them like dictionaries, so they accept key/value pairs. The next subsec-
tions give you explanation and examples.

The Application State

One of the most common situations with websites is that you have many people using the
website concurrently. If you want to hold shared information across all the application
instances, you use the Application state. The following is an example:

Application(“SharedKey”) = “Shared value”

Dim sharedString As String = CStr(Application(“SharedKey”))

Notice the key/value semantics and how you need to perform an explicit conversion from
Object to String. You will not use Application often because each application instance
runs on a separate thread that could modify the information and therefore could corrupt
the values, too.

The Cache State

The ASP.NET Cache has the same scope of Application, meaning that both can be
accessed by all page requests. The primary difference is that Cache enables holding infor-
mation in memory, which avoids the need of re-creating and retrieving objects. This is
good if you want to maintain updatable objects but could cause overhead (always consid-
ering that the bigger the amount of data to transfer is, the lower is the performance)
because it requires memory, so it should be used when actually needed or when you
ensure that performance is acceptable. The following is an example of storing and retriev-
ing information with Cache:

Cache(“MyUpdatableDataKey”) = “My updatable data”

Dim myUpdatableData As String = CStr(Cache(“MyUpdatableDataKey”))

There is also an alternative way for adding objects to the cache, which is the Cache.Add
method that provides the ability of setting advanced settings for the object, as demon-
strated in this code:

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles Me.Load

Dim callBack As New CacheItemRemovedCallback(_

AddressOf Cache_ItemRemoved)

‘Sets the key, adds the data, sets the CacheDependency,

‘sets the expiration mode, expiration time, priority

‘and delegate to invoke when the item is removed

Cache.Add(“MyUpdatableDataKey”, “My updatable data”, Nothing,

3
7

From the Library of Wow! eBook

ptg

850 CHAPTER 37 Building ASP.NET Web Applications

Cache.NoAbsoluteExpiration, New TimeSpan(0, 0, 45),

CacheItemPriority.High, callBack)

‘Removes the item

Cache.Remove(“MyUpdatableDataKey”)

End Sub

Private Sub Cache_ItemRemoved(ByVal key As String,

ByVal item As Object,

ByVal reason As CacheItemRemovedReason)

‘The item has been removed

End Sub

The most interesting settings are the expiration mode and the priority. The first one can
be Cache.NoAbsoluteExpiration (like in the preceding code), which means that the data
will always be available during the page lifetime, whereas Cache.SlidingExpiration
means that the data will be removed after it is not accessed for the specified amount of
time. Priority is also important in case you have lots of objects in memory and ASP.NET is
about to encounter out-of-memory problems. At this point ASP.NET begins evicting items
according to its priority. (An object with lower priority is evicted before another one with
high priority.)

The Context State

You use the Context state when you want to hold state only for the lifetime of a single
request. This is useful when you need to have information in memory for a long period of
time, and you do need to ensure that keeping such information does not affect scalability.
This is an example:

Context.Items(“MyStringKey”) = “My string value”

Dim contextString As String = CStr(Context.Items(“MyStringKey”))

The context information is accessed at the page level and will not be available again on
the next request.

Using Cookies for Saving Information

Cookies are pieces of information that user’s browser can hold and that can have a max
size of 4 Kbytes. Each time the browser opens your web application, it recalls all cookies
provided by the website. The following are examples of writing and reading cookies:

’Write a cookie

Dim aCookie As New HttpCookie(“MyCookie”)

aCookie.Value = “Information to store”

aCookie.Expires = New DateTime(10, 10, 2010)

Response.Cookies.Add(aCookie)

‘Read a cookie

From the Library of Wow! eBook

ptg

851Creating a Web Application with VB 2010 with Navigation and Data-Binding

Dim getCookie As HttpCookie = Request.Cookies(“MyCookie”)

Dim cookieVale As String = getCookie.Value

Notice that the Expires property of type Date is required to specify that the cookie infor-
mation will no longer be valid after that date, whereas the Value property is of type
String so that you can store information without conversions.

The Session State

ASP.NET provides the ability of holding per-user information via the Session object.
When a user opens the website, ASP.NET creates a cookie with a session identifier and
then manages the session for that user based on the ID. The only issue is that you have no
way for understanding when the user leaves the website, so a Session state expires after
20 minutes as a default. The following is an example:

Session(“MyKey”) = “User level information”

Dim userInfo As String = CStr(Session(“MyKey”))

The ViewState State

To provide support for the work that a page needs to do in its lifetime, ASP.NET provides a
mechanism known as ViewState. Basically it provides the infrastructure that serializes
values for each control in the page. For example, when a page is rendered, a control has a
particular value. When this value changes, and such change raises an event, ASP.NET
makes a comparison between the ViewState and form variables so that it can update the
control value. (The TextBox control with its TextChanged event is the most common exam-
ples.) Such a mechanism is available behind the scenes, but you can also use the ViewState
by yourself. The following is an example that makes an object available at page level:

ViewState(“MyPageDataKey”) = “Page-level information”

Dim myPageData As String = CStr(ViewState(“MyPageDataKey”))

Making this information at the page level means making it available also when the page is
posted back, but that decreases performance because the size of bytes to transfer is bigger.
Excluding the user controls necessary to your Web form, you should use ViewState for
your needs with care.

Creating a Web Application with VB 2010 with
Navigation and Data-Binding
Visual Basic 2010 makes it easier to create Web applications with navigation capabilities,
because the Web Application project template provides a master page implementation
with default pages and designer tools for adding further elements. If you want to create a

3
7

From the Library of Wow! eBook

ptg

852 CHAPTER 37 Building ASP.NET Web Applications

data-centric Web application, the .NET Framework 4.0 offers specific controls (some of
them new in .NET 4.0) that enable supplying a data source and data-binding capabilities
with a few mouse clicks. This section shows you how to reach this objective. Select File,
New Project and from the Web projects folder, select the ASP.NET Web Application
template; name the new project as NorthwindOrders, and then click OK. When the
project is available in Solution Explorer, notice the presence of some web pages
(Default.aspx and About.aspx) and of the master page (the Site.Master file). Now click on
the Site.Master file. At this point you see the simplest example of a master page, as shown
in Figure 37.2.

Master Pages

A master page is a special page with .master extension, which provides a template contain-
ing a set of common elements for each page in the application. A master page typically
contains elements such as headers, footers, and navigation elements so that you can
implement one time a number of elements that each page can contain. Visual Studio
provides a specific item template for creating a master page, but the simplest way for

FIGURE 37.2 The default master page for the new web application.

From the Library of Wow! eBook

ptg

853Creating a Web Application with VB 2010 with Navigation and Data-Binding
3

7

understanding how it works is examining a basic one. When you create a new project
using the ASP.NET Web Application template, such as in the current example, the IDE
adds a master page for you. As you can see Visual Studio implements by default a couple
of links for navigating between pages, such as Home and About. Both links have related
Web pages in the project, which are Default.aspx and About.aspx. Also notice how there is
a Login link that points to a Login.aspx page stored in the Account folder, which also
contains other auto-generated pages for registering to the Web application and for pass-
word management. The most basic code for designing a master page is the following:

<%@ Master Language=”VB” AutoEventWireup=”false”

CodeBehind=”Site1.master.vb”

Inherits=”WebApplication3.Site1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

<title></title>

<asp:ContentPlaceHolder ID=”head” runat=”server”>

</asp:ContentPlaceHolder>

</head>

<body>

<form id=”form1” runat=”server”>

<div>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” runat=”server”>

</asp:ContentPlaceHolder>

</div>

</form>

</body>

</html>

The most important element is the ContentPlaceHolder that defines a region for contents
in the seb page. You can simply compare this basic code with one of the auto-generated
master page, where you notice the presence of a navigation menu and the login view:

<%@ Master Language=”VB” AutoEventWireup=”false” CodeBehind=”Site.master.vb”

Inherits=”NorthwindOrders.Site” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head runat=”server”>

From the Library of Wow! eBook

ptg

854

<title></title>

<link href=”~/Styles/Site.css” rel=”stylesheet” type=”text/css” />

<asp:ContentPlaceHolder ID=”HeadContent” runat=”server”>

</asp:ContentPlaceHolder>

</head>

<body>

<form runat=”server”>

<div class=”page”>

<div class=”header”>

<div class=”title”>

<h1>

My ASP.NET Application

</h1>

</div>

<div class=”loginDisplay”>

<asp:LoginView ID=”HeadLoginView” runat=”server”

EnableViewState=”false”>

<AnonymousTemplate>

[<a href=”~/Account/Login.aspx”

ID=”HeadLoginStatus”

runat=”server”>Log In]

</AnonymousTemplate>

<LoggedInTemplate>

Welcome <asp:LoginName

ID=”HeadLoginName”

runat=”server” />!

[<asp:LoginStatus ID=”HeadLoginStatus”

runat=”server”

LogoutAction=”Redirect” LogoutText=”Log Out”

LogoutPageUrl=”~/”/>]

</LoggedInTemplate>

</asp:LoginView>

</div>

<div class=”clear hideSkiplink”>

<asp:Menu ID=”NavigationMenu” runat=”server” CssClass=”menu”

EnableViewState=”false” IncludeStyleBlock=”false”

Orientation=”Horizontal”>

<Items>

<asp:MenuItem NavigateUrl=”~/Default.aspx”

Text=”Home”/>

<asp:MenuItem NavigateUrl=”~/About.aspx”

Text=”About”/>

<asp:MenuItem NavigateUrl=”~/Orders.aspx”

Text=”Orders” Value=”Orders”>

CHAPTER 37 Building ASP.NET Web Applications

From the Library of Wow! eBook

ptg

855Creating a Web Application with VB 2010 with Navigation and Data-Binding
3

7

</asp:MenuItem>

</Items>

</asp:Menu>

</div>

</div>

<div class=”main”>

<asp:ContentPlaceHolder ID=”MainContent” runat=”server”/>

</div>

<div class=”clear”>

</div>

</div>

<div class=”footer”>

</div>

</form>

</body>

</html>

The goal of the sample application is fetching the list of orders from the Northwind data-
base, showing the list in a GridView control (with editing capabilities) and adding naviga-
tion features to the master page, so in next section you see how to add the data source
and how to add data-bound controls.

Adding the Data Model

The first thing to add in the Web project is the data source. This can be of different kinds,
for example both LINQ to SQL classes and Entity Data Models are supported. The example
will be based on the Entity Framework so you also see a new control in ASP.NET 4.0, thus
add a new entity data model named Northwind.edmx and add to the model the Orders
table from the database. Such steps have been described a lot of times in this book, (see
Chapter 27, “Introducing the ADO.NET Entity Framework” for a full discussion) so we will
not show them again in detail. When you have the data, you need a place for presenting
and editing the data, so you need a new Web Form.

Adding a New Web Form

To add a new Web Form to the project, right-click the project name in Solution Explorer
and select Add New Item. When the same-named dialog appears, click the Web folder.
Among all available items, you see how you can add a Web Form (which is just a Web
page) or a Web Form Using Master Page. This second template is useful if you want to
show the new page within a master page, differently from the first template which is
instead for free pages. Select the second template so that we can link the new page to the
master page, and name the new page as Orders.aspx (see Figure 37.3); then click OK.

From the Library of Wow! eBook

ptg

856

At this point Visual Studio asks you to indicate a master page from the project to link the
new Web Form. In our case only one master page is available, so select it on the right side
of the dialog, as shown in Figure 37.4.

CHAPTER 37 Building ASP.NET Web Applications

If you now double-click the Orders.Aspx page, you get a new empty page linked to the
master page, thus having navigation features. Now that we have a page, we can bind it to
the data source.

FIGURE 37.3 Adding a new Web Form using a master page.

FIGURE 37.4 Specifying the master page to be associated to the new Web Form.

From the Library of Wow! eBook

ptg

857Creating a Web Application with VB 2010 with Navigation and Data-Binding
3

7

Adding Data Controls

ASP.NET 4.0 offers a number of data controls that can be used to bind a data source to
user controls and that act like a bridge. One of the controls new in ASP.NET 4.0 is the
EntityDataSource, which enables binding an entity data model to a graphic control.

ENABLING THE DESIGNER

By default Visual Studio shows the HTML code for the pages. In order to enable the
Visual Studio designer, click the Design button for switching to the full designer view or
the Split button in order to get both the designer and the html code on the same view.

In the toolbox expand the Data tab and drag the EntityDataSource control onto the
Orders page until you get the result shown in Figure 37.5.

The good news is that you can configure the control and bind it to a data source without
writing a single line of code. Build the project so that all data references are updated and
then click the right arrow on the EntityDataSource and then click the Configure data-
source item. This launches the Configure Data Source Wizard, whose first dialog is shown
in Figure 37.6. Basically you simply need to specify the source entity data model in the
first combo box and then the container name you want to associate to the data control in
the lower combo box; then click Next to access the second dialog of the wizard.

In the second dialog you have the opportunity of choosing the entity you want to be
mapped into the EntityDataSource. There you can select only a desired number of
columns or all columns, as represented in Figure 37.7.

This is all you need to configure the data source. Now a control for viewing and editing
data is necessary. In the toolbox double-click a GridView control so that it will be added to
the page under the EntityDataSource. When ready, click the right arrow to access config-
uration properties. This shows up the GridView Tasks pop-up window; here you specify
the EntityDataSource1 control in the Choose Data Source field to enable data-binding.
Also select the Enable Paging, Enable Sorting, and Enable Selection check boxes. Figure
37.8 provides a graphical representation of this series of operations.

FIGURE 37.5 Adding an EntityDataSource control to the page.

From the Library of Wow! eBook

ptg

858 CHAPTER 37 Building ASP.NET Web Applications

FIGURE 37.6 Associating the entity data model to the EntityDataSource control.

FIGURE 37.7 Choosing entity and entity columns for mapping into the EntityDataSource.

From the Library of Wow! eBook

ptg

859Creating a Web Application with VB 2010 with Navigation and Data-Binding
3

7

FIGURE 37.8 Applying data-binding and data options in the GridView Tasks pop-up.

With a few mouse clicks you configured your new Web Form to present and edit data
without writing a single line of Visual Basic code. There is only a bunch of XHTML code
required to set properties for each added control, which in our case is the following:

<asp:EntityDataSource ID=”EntityDataSource1” runat=”server”

ConnectionString=”name=NorthwindEntities”

DefaultContainerName=”NorthwindEntities” EnableFlattening=”False”

EntitySetName=”Orders”>

</asp:EntityDataSource>

<asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”

AllowSorting=”True” DataSourceID=”EntityDataSource1”>

<Columns>

<asp:CommandField ShowSelectButton=”True” />

</Columns>

</asp:GridView>

This is possible because the ASP.NET data controls implement all functionalities required
to access and edit data by simply assigning some properties. Our page is absolutely ready
for showing and editing orders from the database. I want to show you another couple of
features for filtering data that can also let you understand how powerful ASP.NET is.

RUNTIME DATA-BINDING TIP

Most of ASP.NET data controls expose a DataSource property that can be assigned at
runtime with a custom data source, such as a List(Of T). When assigned this prop-
erty, you invoke the control’s DataBind method to perform the binding.

From the Library of Wow! eBook

ptg

860 CHAPTER 37 Building ASP.NET Web Applications

Adding Filtering Capabilities

It would be interesting having filtering capabilities; for example we could implement a
filter that enables fetching all orders with the ShipCity property value that starts with the
specified text. Thus in the toolbox double-click a TextBox and a Button. These controls
will be automatically placed onto the page (they will be placed at the top if that is where
the cursor is in the designer). Now replace the Name property value of the TextBox with
FilterTextBox; while in the Button properties change the Name value with FilterButton
and the Text property with Filter. To provide filtering capabilities over the data source,
ASP.NET offers the QueryExtender control that you can find within data controls in the
toolbox. Add it to the page and then simply assign its TargetControlID property with
EntityDataSource1, which is the name of the data control to be queried or filtered. Now
you need to specify an expression for filtering; these kind of expressions are known as
search expressions. ASP.NET offers more than one search expression, but the simplest and
appropriate for our purposes is SearchExpression. This object requires the specification of
the search type and of the columns to be interrogated but this is not sufficient; a
ControlParameter element needs to be nested so that you can specify the control where
the search criteria are inserted (in our case the textbox) and the .NET type involved in the
expression. Talking in code terms, you need to manually write the following code inside
the QueryExtender:

<asp:QueryExtender ID=”QueryExtender1” runat=”server”

TargetControlID=”EntityDataSource1”>

<asp:SearchExpression DataFields=”ShipCity” SearchType=”StartsWith”>

<asp:ControlParameter ControlID=”FilterTextBox” Type=”String” />

</asp:SearchExpression>

</asp:QueryExtender>

The only Visual Basic code we need to write is the event handler for the Page.Loaded
event to check the PostBack state. This is accomplished by writing the following code in
the Orders.aspx.vb code file:

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles Me.Load

If Not Page.IsPostBack Then

FilterTextBox.Text = ““

End If

End Sub

This is all we need, no other code. Before running the sample Web application, let’s make
the new Web Form reachable from the master page.

From the Library of Wow! eBook

ptg

861Creating a Web Application with VB 2010 with Navigation and Data-Binding
3

7

Adding Navigation Controls

Open the master page in the designer. You see the availability of two buttons named
Home and About. These are menu items inside a Menu control that simply point to the
associated Web Form. You can add menu items to the menu by first clicking the smart tag
(that is, the right arrow) and then clicking the Edit Menu Items link in the Menu Tasks
pop-up dialog. This launches the Menu Item Editor, where you can add new menu items.
Click the Add a Root Item button that is the first on the left. When the new item is
added, set the Text property as Orders. (This also automatically sets the Value property.)
Then click the NavigateUrl property and click the available button to associate a Web
page. In the Select URL dialog, choose the Orders.aspx web page, as shown in Figure 37.9.

At this point the Menu Item Editor dialog looks like Figure 37.10, which you can take as a
reference when setting properties.

Now you can see a new Orders button associated to the same-named Web page.

Running the Application

At this point you can run the demo application by pressing F5. Figure 37.11 shows the
Orders page, showing a list of orders filtered according to the given search criteria.

Also notice how paging features have been correctly implemented. Finally try clicking the
page buttons that provide navigation capabilities.

FIGURE 37.9 Associating a web page to the new menu item.

From the Library of Wow! eBook

ptg

862 CHAPTER 37 Building ASP.NET Web Applications

FIGURE 37.10 The Menu Item Editor dialog enables adding menu items to the master page.

FIGURE 37.11 The sample web application running.

From the Library of Wow! eBook

ptg

863Configuring a Web Application for Security
3

7

Configuring a Web Application for Security
The sample web application that was illustrated in the previous section has one important
limitation: It can be accessed by anonymous users that can access important data. If your
application just presents information, in most cases anonymous access is a good idea. But
if instead your application has the purpose of managing data or restricted information,
you want to force users to login with their own credentials, such as username and pass-
word. ASP.NET provides a convenient and easy way for configuring web applications to
require login credentials (by storing user information inside a SQL Server database) but
also roles and registration; another interesting new feature is that in the past you had to
implement your own login page while in Visual Studio 2010; this is generated for you
when creating the project. To start configuring security for your Web application, click the
ASP.NET Configuration button in Solution Explorer (the one with the icon representing a
hammer). This runs the ASP.NET Web Site Administration Tool, a web application
executed in your web browser. Such tool allows configuring different parts in the web
application, but for the current example just click the Security tab. When you click this
tab, you can access different security options, including setting users and roles. There is
also a guided procedure that you can utilize to configure the application security; thus
click the Use the Security Setup Wizard to Configure Security Step by Step hyperlink.
There are seven steps to complete, but the first one is just a welcome message, so you can
click Next. Starting from the second step, execute the following tasks:

1. Specify the access method by selecting between From the Internet and From a
Local Area Network. The first option is more restrictive and requires users to regis-
ter with their credentials, such as username and password. This is particularly useful
when you do not know who will access the website and you want a user to log in
with credentials. Moreover, if a website is available on the Internet it can be reached
by non-Windows environments and therefore Windows authentication is not appro-
priate. Instead the local intranet option should be used only when the web applica-
tion runs only inside of your company, because it relies on Windows and domain
authentication only, although this simplifies your work because you will not have to
configure users. For the current example, where user administration is also covered,
select the Internet security and then click Next.

2. Simply click Next at step 3, because we do not need to change storage information
(such as the database provider);

3. Click the Enable Roles for This Website check box and then click Next. This is
important because securing the web application requires at least one role. Typically a
website includes at least an administration role, so in the New Role Name textbox,
type Administrator and then click Add Role. The new role will be added to the
roles list, so click Next.

4. Sign up for a new account by providing required information. This is important
because the web application requires at least one user that later will be associated to

From the Library of Wow! eBook

ptg

864 CHAPTER 37 Building ASP.NET Web Applications

the role. When ready, click Create User. You will be told that adding the new user
was successful, so click Next.

5. Specify access rules to the web application by allowing or denying access permissions
to specific roles or users. The default rule is that all registered users and roles can
access the application, but you can delete the existing rule and create new rules
granting permissions to selected users/roles. For example you can select a folder of
the application, by first expanding the root folder on the left and then selecting the
permission (Allow or Deny) for the users or roles in the Rules Applies To item.
When set this, click Next.

6. In the last step simply click Finish.

SQL SERVER DATABASE

When you configure users or when users register to claim access to the Web applica-
tion, the user information is stored inside a default SQL Server database that Visual
Studio generates for you. If you want to use a SQL Server database different from the
default one, use the Aspnet_regsql.exe command-line tool that creates the appropri-
ate tables.

With a few steps you quickly configured your application for requesting registration and
login. The last step before running the application is associating the main user to the
Administrator role. To accomplish this, click Manage Users and then Edit User. When the
user administration page appears, click the check box for Administrator. Finally, click
Save. Now close the configuration tool, run the application, and try to open the Orders
page. As you see, you cannot view the requested page until you do not log in with the
previously created user’s credentials. When you log in you can browse the application. The
really cool thing is that the Login page generated for you by Visual Studio 2010 is bound
to the SQL Server database where user information is stored, so you do not need to write
code to check if a user has permissions to access. This is performed for you behind the
scenes by the application that takes advantage of auto-generated elements.

Summary
In this chapter we made an overview of the ASP.NET technology and of how you can
build websites based on the technology. You read about important concepts on the
ASP.NET model and how it maintains the application state; then you learned how to
create a seb application with Visual Basic 2010. For this, you first saw what Web Forms are
and how the logic is divided into XHTML code for the user interface side and into Visual
Basic code for performing executive tasks. You took a look at available user controls, both
server and HTML controls; then you put your hands on a sample web application to
manage data exposed from an Entity Data Model. Finally, you saw the steps necessary to
configure security for websites implementing login credentials.

From the Library of Wow! eBook

ptg

CHAPTER 38

Publishing ASP.NET Web
Applications

IN THIS CHAPTER

. Deployment Overview

. Classic Publishing

. MSDeploy Publish

To make your Web application reachable by other users,
you need to deploy it to a host Web server, either on the
Internet or on a local area network, such as your
company’s network. ASP.NET 4.0 and Visual Studio 2010
enhance the deployment experience for Web applications
introducing a new tool named MSDeploy. In this chapter
you both recap how to publish a Web application using the
old-fashioned ways and how to publish an application
using the new MSDeploy.

Deployment Overview
Deploying a Web application is something that can be
accomplished directly from within Visual Studio 2010, as it
was for its predecessors. You can publish a Web application
to the following destinations:

. A Web server with Internet Information Services
installed

. A website with the FrontPage extensions installed

. An FTP site

. The local file system

. The local Internet Information Services

What actually changes from previous versions of Visual
Studio is how you deploy Web applications.

From the Library of Wow! eBook

ptg

866 CHAPTER 38 Publishing ASP.NET Web Applications

The 1-Click Deployment

Visual Studio 2010 introduces the logic of deployment simplification with 1-Click deploy-
ment. What does it mean?

It simply means that you supply the required information such as Web address and
credentials, and then you make just click once on the button that will do the rest of the
work for you, independently from the destination type. The reason for this important new
way to deploy Web applications is the introduction of a new tool named MSDeploy,
which is described later and that can deploy articulated Web applications. For now let’s
begin to see how you can deploy Web applications to FTP sites and IIS servers with the 1-
Click deployment.

Classic Publishing
Visual Studio 2010 still provides the ability of publishing Web applications the usual way,
so it supports direct deployment to FTP sites, websites with FrontPage extensions enabled,
the file system, and the local Internet Information Services, although you notice some
innovations in the graphical user interface of the deployment window. For example, you
might want to deploy the NorthwindOrders Web application, created in Chapter 37,
“Building ASP.NET Web Applications,” to an FTP site. In Solution Explorer right-click the
project name and then click Publish. This launches the Publish Web dialog; here expand
the Publish Method combo box and then select FTP. At this point the dialog looks like
Figure 38.1.

FIGURE 38.1 Publishing a Web application to an FTP site.

From the Library of Wow! eBook

ptg

867Classic Publishing

CREATING PROFILES

You can create a reusable profile for maintaining the specified deployment settings.
When provided the specified deployment information, click the Publish Profile combo
box and select New. Then simply type the name of the new profile, enter the required
information for the specified Web destination, and then click Save.

Simply click Publish so that Visual Studio 2010 publishes your Web application to the
specified FTP.

PROVIDERS’ FIREWALL

Several Internet service providers or hosts enable firewalls to avoid unrecognized
incoming connections. If you want to publish web applications to a Web or FTP site, you
need to ensure that the host’s firewall accepts connections from Visual Studio 2010.

Another example is publishing the application to IIS, which can be also particularly useful
for testing purposes. You accomplish this by setting the File System option in the Publish
Method combo box; then type the IIS instance address as demonstrated in Figure 38.2.
Notice that publishing to the local IIS requires Visual Studio 2010 to be launched with
administrative privileges.

3
8

You can eventually click the Browse button to select an existing Web folder or create a
new one inside IIS.

FIGURE 38.2 Publishing the Web application to Internet Information Services.

From the Library of Wow! eBook

ptg

868 CHAPTER 38 Publishing ASP.NET Web Applications

MSDeploy Publish
One of the new features in deploying Web applications is the Microsoft Web Deployment
Tool, also known as MSDeploy that is a command-line tool included in the .NET
Framework 4 and which can build advanced deployment scripts. MSDeploy is an
advanced tool in that it can

. Publish Web applications and their settings.

. Deploy SQL Server databases.

. Direct advanced deployment to Internet Information Services web servers.

. Publish GAC, COM, and Registry settings.

MSDeploy is a complex tool, and writing the appropriate command lines can be annoy-
ing. Fortunately Visual Studio 2010 allows publishing Web applications via MSDeploy
through the Publish Web dialog as demonstrated later. Before getting into that, you need
to know how Web applications are packaged before deployment.

Understanding Packages

When you deploy a Web application via MSDeploy, the application is first packaged into
one archive that makes deployment easier. The package contains all the required infor-
mation about the host Web server and files and settings required by the application. You
set package information in the Package/Publish Web tab of My Project, as shown in
Figure 38.3.

Here you can find default settings for the local IIS, but you can place settings provided by
the system administrator of the target machine. To build the package, simply right-click
the project name in Solution Explorer and click Build Deployment Package. Basically the
package contains the following elements:

. The package containing the application and settings

. The destination manifest, which contains information on how to reach the target
server

. The command line script that will be passed to MSDeploy

When you have your package, you are ready to deploy it with MSDeploy.

Deploy with MSDeploy

Visual Studio 2010 provides the opportunity to deploy Web applications with MSDeploy
through its instrumentation. Simply right-click the project name in Solution Explorer and
then click Publish. When the Publish Web dialog appears, select the MSDeploy Publish
option from the Publish Method combo box. Figure 38.4 shows how the dialog appears.

You need to provide some settings to deploy the Web application with MSDeploy, and
most of them are given to you by the Administrator of the target server. Table 38.1
summarizes required settings.

From the Library of Wow! eBook

ptg

869MSDeploy Publish
3

8

FIGURE 38.3 Setting options for packaging Web applications for deployment.

TABLE 38.1 Required Settings for MSDeploy Publish

Option Description

Service URL The URL of the MSDeploy service provided by the host or adminis-
trator.

Site/Application The name of the site and application on the target IIS. Here you
can include subfolders.

Mark as IIS application on
destination

Will mark the application as a root if you specify a subfolder in the
Site/Application option. The target server must support this.

Do not delete extra files on
destination

When unchecked, MSDeploy deletes all files from the target folder
before publishing new files. The suggestion is keeping it unchecked
only at the first publishing.

Allow Untrusted Certificate Allows host and administrator to use self-signed certificates,
according to the administrator instructions.

Username/Password Credentials required to access the target IIS, provided by the server
administrator.

From the Library of Wow! eBook

ptg

870 CHAPTER 38 Publishing ASP.NET Web Applications

FIGURE 38.4 Setting options for the MSDeploy publish.

When you provide all required settings, simply click Publish to get your application
deployed to the Web server with MSDeploy, remembering that this tool provides the oppor-
tunity to deploy additional requirements such as SQL Server databases and GAC settings.

Summary
In this chapter, we discussed how to deploy ASP.NET Web applications in both the classic
fashion and a new one based on the Microsoft Web Deployment tool so that you can now
know how to take advantage of the 1-Click publish deployment system for quickly
deploying your Web applications directly from Visual Studio 2010.

From the Library of Wow! eBook

ptg

CHAPTER 39

Building Rich Internet
Applications with

Silverlight

IN THIS CHAPTER

. Introducing Silverlight

. Creating Silverlight Projects
with Visual Basic 2010

. Adding Controls and Handling
Events

. Playing Media

. Animating UI Elements

. Introducing Navigation
Applications

. Introducing WCF RIA Services

. “Out of Browser” Applications

The evolution of Internet during the years had the conse-
quence of requiring web applications to be even more
powerful and interactive, with the addition of multimedia,
animations, high-quality graphics, and even business capa-
bilities. Although powerful for its business productivity,
ASP.NET has lacked in terms of interactivity and media
features. If you think of the Adobe Flash plug-in for a web
browser, you can have a good idea of how multimedia and
interactivity can improve the success of web applications. A
few years ago, Microsoft realized that it should create a
plug-in for a web browser with media, interactivity, and
business features for the .NET platform integrating the
coolest WPF graphic characteristics into web applications
produced on the robust ASP.NET. This is where Microsoft
Silverlight comes in. In this chapter you learn about build-
ing RIA (Rich Internet Applications) with Silverlight and
Visual Basic 2010, taking a tour of the most important
features of this technology.

NOTE

The requirement of this chapter is that you first read
discussions about WPF, starting from Chapter 31,
“Creating WPF Applications,” until Chapter 35,
“Introducing Data-Binding.”

Introducing Silverlight
Microsoft Silverlight is a cross-browser, cross-platform, and
cross-device plug-in for building rich Internet applications,

From the Library of Wow! eBook

ptg

872 CHAPTER 39 Building Rich Internet Applications with Silverlight

which offers the best from WPF and ASP.NET. Basically Silverlight is a plug-in for web
browsers that needs to be installed on the client side to run new generation web applica-
tions, and its size is about 4 megabytes. By installing Silverlight you allow your web
browser to run cool applications where data access, multimedia, and rich contents can be
linked together. As you see later in this chapter, developing Silverlight applications can be
easier to you if you are already familiar with WPF; Silverlight can be considered as a WPF
subset for the web, meaning that you can create the user interface with XAML and write
Visual Basic code to execute the application tasks. Before continuing to read this chapter,
you need to install the Silverlight plug-in and the latest updates of the Visual Studio tools.
Basically you need the following components:

. Silverlight tools for Visual Studio, which install the Silverlight runtime and enables
the IDE to the Silverlight development

. Silverlight Toolkit, which contains additional user controls to improve your develop-
ment experience

Considering the development state of Silverlight, all the discussions and code examples
provided in this chapter will be on Silverlight 4; although, it will probably still be a beta
version when this book is published. This is because the final version should be available
in a reasonable time, and it will provide so many new functionalities that discussing
Silverlight 3 would be ineffective at this point. All the required components and tools are
available from the official Silverlight website from Microsoft at the following address:
http://silverlight.net. After installing the preceding components, you are ready to start
your first Silverlight application with Visual Basic 2010. What makes Silverlight so power-
ful is that you can still write code the way you know, thus taking advantage of you exist-
ing .NET Framework and Visual Basic skills without the need to change your mind by
writing in different languages and on different technologies.

Creating Silverlight Projects with Visual Basic 2010
One of the greatest benefits of Microsoft Silverlight is that you can create applications
with Visual Basic 2010 the same way you create .NET applications. When you select File,
New Project, in the New Project dialog, you have a project templates folder named
Silverlight and a number of available project templates, as shown in Figure 39.1.

The project template for general purposes is the Silverlight Application. Ensure this is
selected and then follow these steps:

1. Leave the project name unchanged, and then click OK

2. You will be asked to specify how the new Silverlight application will be hosted.
Basically Silverlight applications are based on user controls that need to be hosted by
an ASP.NET web application, such as a website or an MVC application. Also you can
host your Silverlight applications inside existing web applications instead of specify-
ing a new one. When the dialog appears, leave unchanged the default selection on a
new web application (see Figure 39.2 for details) and then click OK. Also notice how

From the Library of Wow! eBook

http://silverlight.net

ptg

873Creating Silverlight Projects with Visual Basic 2010

FIGURE 39.1 Selecting a Silverlight project template.

you can select the Silverlight runtime version and how to enable the application for
RIA Services, which is introduced later in this chapter.

3
9

After a few seconds the new project is ready. You notice how Visual Studio looks, which is
similar to WPF projects, as demonstrated in Figure 39.3.

FIGURE 39.2 Selecting a host project type.

From the Library of Wow! eBook

ptg

874

There are obviously several differences from WPF; first, in the XAML code editor, you can
notice how the root element is a UserControl. This is because you essentially develop
Silverlight controls to be hosted by an ASP.NET application. Next, notice the presence of
two projects in Solution Explorer. The first one is the actual Silverlight application, which
will be executed on the client side. The structure of the project is similar to WPF projects,
thus with XAML files and Visual Basic code behind files.

TIP ON WPF AND SILVERLIGHT

Silverlight applications work within a web context, although the most recent version has
more privileges than in the past. Considering web limitations imposed by the Silverlight
base class library, you can notice several similarities with the WPF programming model
(such as UI elements and user controls); this is the reason why multiple chapters were
offered about WPF.

The second project is the web application that hosts the Silverlight user control. Notice
the presence of a .js file that contains the JavaScript code that makes the control reachable
from the ASP.NET application. Also you can notice the availability of an .aspx web page
that shows the Silverlight control and of an HTML page for hosting the Silverlight applica-
tion for testing. When you have your project, you are ready to add and manage user inter-
face elements.

CHAPTER 39 Building Rich Internet Applications with Silverlight

FIGURE 39.3 The IDE is ready on the new Silverlight project.

From the Library of Wow! eBook

ptg

875Adding Controls and Handling Events
3

9

Adding Controls and Handling Events
Adding controls and UI elements to a Silverlight user control is an easy task and looks like
what was already described about WPF. While you go through adding controls, you can
also notice how Silverlight properties are in most cases the same as WPF properties.
Replace the Background property value in the main Grid from White to SteelBlue. This
provides better visibility of the user control in the web browser. Notice that you can still
apply brushes as in WPF. Next, add a TextBlock control and place it at the top of the user
control. Set its properties so that the foreground color is white and the font size is 24.
Finally drag a Button control from the toolbox onto the user control surface. Also notice
how Visual Studio also generated the appropriate XAML code for each of the operations
accomplished. To handle events, you still write event handlers as you are used to doing in
other .NET applications. In this case, double-click the Button and write the following
simple handler:

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles Button1.Click

MessageBox.Show(“You clicked a Silverlight button!”)

End Sub

It is important that Silverlight still offers the routed events infrastructure as in WPF, so
basically handling events in both technologies is identical. Now press F5 to start the appli-
cation with an instance of the Visual Studio debugger attached. Figure 39.4 shows how the
application runs inside the web browser.

FIGURE 39.4 The Silverlight application running.

From the Library of Wow! eBook

ptg

876

Now that you have built and run your first rich Internet application, you need to learn
how Silverlight applications are packaged and deployed.

How Silverlight Applications Are Packaged

When you create a Silverlight application, in the web host project you can notice the pres-
ence of a folder named ClientBin. When you compile the project, this folder contains the
build output of the Silverlight client project (not the web project). For this you need to
know that Silverlight applications are packaged into .xap files, which contain the actual
application and its resources. Thus when the build process is complete, the ClientBin
folder contains the generated .xap file. When you run the application by pressing F5, it
will be packaged and deployed on the local file system and will be hosted by the ASP.NET
development server so that you can run it in your web browser. Because of all these opera-
tions, you can deploy the application with existing web deploying techniques.

Playing Media
As in WPF, Silverlight provides its implementation of the MediaElement control that
enables media reproduction and streaming from networks. This means that you can inter-
act with the control the same way as in WPF, but you cannot play media files from a local
file system for security reasons. Right-click the Silverlight project in Solution Explorer and
then select Add New Item. (You could also create a new project from scratch but you
need to know how to change the default page.) In the dialog select the Silverlight User
Control item template, as shown in Figure 39.5.

CHAPTER 39 Building Rich Internet Applications with Silverlight

FIGURE 39.5 Adding a new user control.

From the Library of Wow! eBook

ptg

877Playing Media
3

9

The goal of the example is implementing a basic media player. When ready, write the
XAML code shown in Listing 39.1 and notice how basically the implementation is identi-
cal to WPF.

LISTING 39.1 Implementing a Basic Media Player with Silverlight

<UserControl x:Class=”SilverlightApplication1.MediaPlayerControl”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

mc:Ignorable=”d”

d:DesignHeight=”300” d:DesignWidth=”400”>

<Grid x:Name=”LayoutRoot” Background=”White”>

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition Height=”40”/>

</Grid.RowDefinitions>

<!-- Set the MediaElement.Source property

pointing to a video on a web server-->

<MediaElement Grid.Row=”0” Name=”Media1”

Source=”http://www.mywebsite.com/MyVideo.wmv”/>

<StackPanel Grid.Row=”1” Orientation=”Horizontal”>

<StackPanel.Resources>

<!—Using a style for buttons—>

<Style x:Key=”ButtonStyle” TargetType=”Button”>

<Setter Property=”Width” Value=”80”/>

<Setter Property=”Height” Value=”30”/>

<Setter Property=”Margin” Value=”5”/>

</Style>

</StackPanel.Resources>

<Button Name=”PlayButton” Style=”{StaticResource ButtonStyle}”

Content=”Play”/>

<Button Name=”PauseButton” Style=”{StaticResource ButtonStyle}”

Content=”Pause”/>

<Button Name=”StopButton” Style=”{StaticResource ButtonStyle}”

Content=”Stop”/>

</StackPanel>

</Grid>

</UserControl>

From the Library of Wow! eBook

ptg

878

Just remember to assign the MediaElement.Source property with a valid media content
address from a web server. Now switch to the code-behind file and write the Visual Basic
code shown in Listing 39.2 that can provide reproduction capabilities.

LISTING 39.2 Enabling the Media Player to Content Reproduction

Partial Public Class MediaPlayerControl

Inherits UserControl

Public Sub New()

InitializeComponent()

End Sub

‘If you plan to set the MediaElement.Source property

‘in code, ensure its value is not Nothing

Private Sub PlayButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles PlayButton.Click

Me.Media1.Play()

End Sub

Private Sub PauseButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles PauseButton.Click

Me.Media1.Pause()

End Sub

Private Sub StopButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles StopButton.Click

Me.Media1.Stop()

End Sub

Private Sub Media1_MediaFailed(ByVal sender As Object,

ByVal e As System.Windows.

ExceptionRoutedEventArgs) Handles Media1.

MediaFailed

MessageBox.Show(e.ErrorException.Message)

End Sub

End Class

Figure 39.6 shows how the new user control looks after implementing the user interface.

CHAPTER 39 Building Rich Internet Applications with Silverlight

From the Library of Wow! eBook

ptg

879Playing Media
3

9

FIGURE 39.6 The new media player control within the Visual Studio Designer.

Before running the application, you need to replace the startup object with the new user
control. This is accomplished by replacing the code in the Application.Startup event
handler available in the App.xaml.vb code file. The original event handler looks like this:

Private Sub Application_Startup(ByVal o As Object,

ByVal e As StartupEventArgs) _

Handles Me.Startup

Me.RootVisual = New MainPage()

End Sub

The RootVisual property (of type UIElement) represents the root element in the user inter-
face and is assigned with an instance of the desired page. According to this, replace the
RootVisual assignment as follows:

Me.RootVisual = New MediaPlayerControl

Finally ensure that you have supplied a valid media URL for the MediaElement.Source
property and then run the application by pressing F5 to play/pause/stop the media file.

From the Library of Wow! eBook

ptg

880

SUPPORTED MEDIA FORMATS

Unlike the WPF MediaElement, Silverlight’s version cannot play all media directly. It
supports only some specific encoding formats, which are described in detail at the fol-
lowing MSDN page: http://msdn.microsoft.com/en-us/library/cc189080(VS.95).aspx.

CAPTURING CAMERA

Silverlight 4 introduces new interesting graphic APIs that enable accessing the webcam
installed on your machine and microphone so that you can capture the cam output.
Check out the MSDN documentation about the
System.Windows.Media.VideoCaptureDevice class.

Animating UI Elements
Silverlight enables animating elements in the user interface similarly to what happens in
WPF, so this section provides a brief and fast description of animations. Read Chapter 33,
“Brushes, Styles, Templates, and Animations in WPF,” for further details. There are several
kinds of available animations, such as DoubleAnimation, PointAnimation, and
ColorAnimation, all coming from the System.Windows.Media.Animations namespace. To
understand how animations work in Silverlight, look at the code shown in Listing 39.3.

LISTING 39.3 Implementing Double Animations

<UserControl x:Class=”SilverlightApplication1.AnimatingUIElements”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

mc:Ignorable=”d”

d:DesignHeight=”300” d:DesignWidth=”400”>

<Grid x:Name=”LayoutRoot” Background=”White”>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<!-- Replace with a valid image file -->

<Image Grid.Column=”0” Name=”Image1”

Source=”/SilverlightApplication1;component/Images/AnImageFile.jpg”>

<Image.RenderTransform>

<TransformGroup>

<SkewTransform x:Name=”SkewImage”/>

CHAPTER 39 Building Rich Internet Applications with Silverlight

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/cc189080(VS.95).aspx

ptg

881Animating UI Elements
3

9

<ScaleTransform x:Name=”ScaleImage”/>

</TransformGroup>

</Image.RenderTransform>

<Image.Triggers>

<EventTrigger RoutedEvent=”Image.Loaded”>

<EventTrigger.Actions>

<BeginStoryboard>

<Storyboard x:Name=”ImageStoryBoard”>

<DoubleAnimation Storyboard.TargetName=”SkewImage”

Storyboard.TargetProperty=”AngleY”

From=”0” To=”15” Duration=”0:0:3”

AutoReverse=”True”

RepeatBehavior=”Forever” />

<DoubleAnimation Storyboard.TargetName=”ScaleImage”

Storyboard.TargetProperty=”ScaleX”

From=”1” To=”0.3” Duration=”0:0:3”

AutoReverse=”True”

RepeatBehavior=”Forever” />

<DoubleAnimation Storyboard.TargetName=”ScaleImage”

Storyboard.TargetProperty=”ScaleY”

From=”1” To=”0.3” Duration=”0:0:3”

AutoReverse=”True”

RepeatBehavior=”Forever” />

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions>

</EventTrigger>

</Image.Triggers>

</Image>

<TextBlock Grid.Column=”1” Text=”Animated Text” FontSize=”24”

FontFamily=”Verdana” FontWeight=”Bold”

HorizontalAlignment=”Center”

VerticalAlignment=”Center” RenderTransformOrigin=”0.5 0.5”>

<TextBlock.Foreground>

<LinearGradientBrush>

<GradientStop Offset=”0” Color=”Red” />

<GradientStop Offset=”0.5” Color=”Yellow” />

<GradientStop Offset=”1” Color=”Orange”/>

</LinearGradientBrush>

</TextBlock.Foreground>

<TextBlock.RenderTransform>

From the Library of Wow! eBook

ptg

882

<TransformGroup>

<RotateTransform x:Name=”RotateText” />

<SkewTransform x:Name=”SkewText”/>

</TransformGroup>

</TextBlock.RenderTransform>

<TextBlock.Triggers>

<EventTrigger RoutedEvent=”TextBlock.Loaded”>

<BeginStoryboard>

<Storyboard x:Name=”TextAnimation”>

<DoubleAnimation Storyboard.TargetName=”RotateText”

Storyboard.TargetProperty=”Angle”

From=”0” To=”360” Duration=”0:0:5”

RepeatBehavior=”Forever” />

<DoubleAnimation Storyboard.TargetName=”SkewText”

AutoReverse=”True”

Storyboard.TargetProperty=”AngleX”

From=”0” To=”45” Duration=”0:0:5”

RepeatBehavior=”Forever” />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</TextBlock.Triggers>

</TextBlock>

</Grid>

</UserControl>

Basically you can specify some transformations for user interface elements you want to
animate, and then you can establish the event that will launch the animation with an
EventTrigger element within a Control.Triggers property node. The actual animation is
provided by a StoryBoard object that contains one or more DoubleAnimation objects to
animate the desired transformations. Figure 39.7 shows the result of the animation running.

Introducing Navigation Applications
If you have experience with Silverlight versions prior to 3.0, you probably know how diffi-
cult it was to create multipage applications. Silverlight did not have a “master page”
approach like in ASP.NET, and programming for user control complicated things.
Fortunately, starting from Silverlight 3.0, a new interesting object named Navigation
Framework was introduced. This offers the ability of having a master page and then navi-
gating different pages with different user controls. To create a navigation application,
select File, New Project and then the Silverlight Navigation Application project
template in the Silverlight templates folder, as shown in Figure 39.8.

CHAPTER 39 Building Rich Internet Applications with Silverlight

From the Library of Wow! eBook

ptg

883Introducing Navigation Applications
3

9

FIGURE 39.7 Animations in action.

When the project is ready, you can notice that the main page offers a page skeleton with
borders and buttons. This can be considered as the master page. If you take a look at the
XAML code, you notice the presence of the following lines, among others:

<navigation:Frame x:Name=”ContentFrame”

FIGURE 39.8 Creating a new navigation application.

From the Library of Wow! eBook

ptg

884

Style=”{StaticResource ContentFrameStyle}”

Source=”/Home”

Navigated=”ContentFrame_Navigated”

NavigationFailed=”ContentFrame_NavigationFailed”>

<navigation:Frame.UriMapper>

<uriMapper:UriMapper>

<uriMapper:UriMapping Uri=”” MappedUri=”/Views/Home.xaml”/>

<uriMapper:UriMapping Uri=”/{pageName}”

MappedUri=”/Views/{pageName}.xaml”/>

</uriMapper:UriMapper>

</navigation:Frame.UriMapper>

</navigation:Frame>

The System.Windows.Controls namespace provides a Frame control that has an infra-
structure for navigating between pages via a relative Uri that basically contains the folder
and filename for the page to be browsed. This is accomplished by setting properties in
the Frame.UriMapper property. Among the big number of files in the project, pages are
stored in the Views subfolder. A couple of predefined pages are available, such as
Home.xaml and About.xaml. The goal is now showing how you can add and browse a
new page. Right-click the Views subfolder and select Add New Item. When the dialog
appears, choose the Silverlight Page item template in the Silverlight folder and leave
unchanged the Page1.xaml filename. When the new page is ready, add a simple text
message to the main grid:

<Grid x:Name=”LayoutRoot”>

<TextBlock Text=”This is a secondary page”

FontSize=”32”/>

</Grid>

This is just a simple sample, but obviously this is the place where you can provide your
complex user interface. Now go back to the MainPage.xaml file and add the following
button just above the other ones:

<HyperlinkButton x:Name=”CustomLink” Style=”{StaticResource LinkStyle}”

NavigateUri=”/Page1” TargetName=”ContentFrame”

Content=”page1”/>

This can take advantage of an existing style for hyper-linked buttons and launch the new
page specified via the NavigateUri property. What happens behind the scenes when you
require browsing a new page is determined by the ContentFrame_Navigated event handler
that appears as follows in the code-behind file:

Private Sub ContentFrame_Navigated(ByVal sender As Object,

ByVal e As NavigationEventArgs) Handles ContentFrame.Navigated

For Each child As UIElement In LinksStackPanel.Children

Dim hb As HyperlinkButton = TryCast(child, HyperlinkButton)

CHAPTER 39 Building Rich Internet Applications with Silverlight

From the Library of Wow! eBook

ptg

885Introducing Navigation Applications
3

9

If hb IsNot Nothing AndAlso hb.NavigateUri IsNot Nothing Then

If hb.NavigateUri = e.Uri Then

VisualStateManager.GoToState(hb, “ActiveLink”, True)

Else

VisualStateManager.GoToState(hb, “InactiveLink”, True)

End If

End If

Next

End Sub

The code gets the instance of HyperlinkButton controls and invokes the GoToState
method to browse the specified page inside the Frame control. Now run the application by
pressing F5. When ready, click the page1 hyperlink at the top of the page. This redirects to
the new custom page, as shown in Figure 39.9.

Take a look at the Uri in the address bar of your web browser and look how it is formed
by the relative path of the loaded page separated by a # symbol. Simply click Home or
About to show predefined pages or go back to Visual Studio for editing your code and
adding new custom pages. Finally notice how you can press back and forward buttons in
your browser to navigate pages. This is possible thanks to the
System.Windows.Navigation.NavigationService object that provides, behind the scenes,
support for browsing and loading pages into the Frame and for maintaining the URL
history. Another important class in navigation applications is
System.Windows.Navigation.NavigationContext, which is responsible for keeping track
of the page context such as the URL and parameters passed in query string.

FIGURE 39.9 The custom page being browsed via the navigation framework.

From the Library of Wow! eBook

ptg

886 CHAPTER 39 Building Rich Internet Applications with Silverlight

Introducing WCF RIA Services
WCF RIA Services (formerly known as .NET RIA Services) are a recent framework, offered
by the System.Windows.Controls.Ria.dll assembly, for exposing data through networks
that can then be consumed by Silverlight applications and that typically are implemented
as a middle-tier for business applications. In this section you learn how to create a
Silverlight business application consuming data from an Entity Data Model exposed
through RIA Services.

DATA ACCESS AND SILVERLIGHT

WCF RIA Services provide a well structured and fast way for building a line of business
applications, but they are not the only way you can access data from a Silverlight appli-
cation. Generally speaking, you can implement your logic within a WCF service and
expose data that a Silverlight application can consume, such as Entity Data Models or
LINQ to SQL models.

To create a business application based on WCF RIA Services, create a new project by select-
ing the Silverlight Business Application project template, as shown in Figure 39.10.

FIGURE 39.10 The WCF RIA Services project template.

From the Library of Wow! eBook

ptg

887Introducing WCF RIA Services
3

9

Name the new project as NorthwindBusinessApplication and click OK. When the project
is ready, in Solution Explorer you notice a plethora of files and folders. This is because RIA
Services projects have an interesting structure based on models and views, other than
providing login and authentication infrastructure. Also you can notice when opening the
designer that the new project is based on the navigation application template as described
in the previous section, so this can help you build complex user interfaces. The first thing
is now adding a data source containing data you want to expose through the network.

Adding the Data Source

To add a data source based on the Northwind database (used in several other code exam-
ples in this book), follow these steps:

1. Right-click the NorthwindBusinessApplication.Web project and select Add New
Item; in the dialog select the ADO.NET Entity Data Model template, name it
Northwind.edmx, and click OK.

2. When the wizard starts, choose to generate the model from an existing database,
and next select the Northwind database available on SQL Server as the data source.

3. When the list of database objects is available, select at least the Orders table and
then click Finish.

TIP

The web application project represents the server-side application that exposes data
through services. Remember that Silverlight applications act on the client side and will
consume data from services, so this is the reason why you just added the data model
(and will add domain services) to the server-side application.

At this point you have a data source that you can expose. Remember to build the project,
so that it will be updated with references to the new EDM.

Adding the Domain Service Class

To make the data model consumable from clients, you need to implement your business
logic. In WCF RIA Services-based applications, this is accomplished by implementing a
Domain Service Class. Such kinds of classes inherit from
LinqToEntitiesDomainService(Of T) and expose queries and methods for performing
CRUD (Create/Read/Update/Delete) operations and can contain other custom logic. To
add one, right-click the Services folder and select Add New Item. In the Add New Item
dialog, select the Domain Service Class template and name it OrdersDomainService.vb.
The goal is to provide logic for accessing the Orders entity set (see Figure 39.11).

From the Library of Wow! eBook

ptg

888 CHAPTER 39 Building Rich Internet Applications with Silverlight

At this point Visual Studio requires you to specify entities you want to be mapped into the
domain service class and what access level. Figure 39.12 shows the dialog that Visual
Studio 2010 shows to provide such specifications.

Ensure that the Enable Client Access check box is flagged so that Silverlight applications
can consume data. Select the entity data model from the combo box and then choose one
or more entities you want to be exposed by the domain service class. Also check the corre-
sponding Enable Editing check box if you want to provide the ability of data editing. After
you click OK, Visual Studio generates a domain service class that looks like the code
shown in Listing 39.4.

LISTING 39.4 The Domain Service Class

Imports System

Imports System.Collections.Generic

Imports System.ComponentModel

Imports System.ComponentModel.DataAnnotations

Imports System.Data

Imports System.Linq

Imports System.Web.DomainServices

Imports System.Web.DomainServices.Providers

Imports System.Web.Ria

Imports System.Web.Ria.Services

FIGURE 39.11 The item template for adding a domain service class.

From the Library of Wow! eBook

ptg

889Introducing WCF RIA Services
3

9

FIGURE 39.12 Specifying settings for the new domain service class.

‘Implements application logic using the NorthwindEntities context.

‘ TODO: Add your application logic to these methods or in additional methods.

‘ TODO: Wire up authentication (Windows/ASP.NET Forms) and uncomment the following

to disable anonymous access

‘ Also consider adding roles to restrict access as appropriate.

‘<RequiresAuthentication> _

<EnableClientAccess()> _

Public Class OrdersDomainService

Inherits LinqToEntitiesDomainService(Of NorthwindEntities)

‘TODO: Consider

‘ 1. Adding parameters to this method and constraining returned results, and/or

‘ 2. Adding query methods taking different parameters.

Public Function GetOrders() As IQueryable(Of Order)

Return Me.ObjectContext.Orders

End Function

Public Sub InsertOrder(ByVal order As Order)

If ((order.EntityState = EntityState.Added) _

= false) Then

From the Library of Wow! eBook

ptg

890 CHAPTER 39 Building Rich Internet Applications with Silverlight

If ((order.EntityState = EntityState.Detached) _

= false) Then

Me.ObjectContext.ObjectStateManager.

ChangeObjectState(order, EntityState.Added)

Else

Me.ObjectContext.AddToOrders(order)

End If

End If

End Sub

Public Sub UpdateOrder(ByVal currentOrder As Order)

If (currentOrder.EntityState = EntityState.Detached) Then

Me.ObjectContext.AttachAsModified(currentOrder,

Me.ChangeSet.GetOriginal(currentOrder))

End If

End Sub

Public Sub DeleteOrder(ByVal order As Order)

If (order.EntityState = EntityState.Detached) Then

Me.ObjectContext.Attach(order)

End If

Me.ObjectContext.DeleteObject(order)

End Sub

End Class

You can see how Visual Studio 2010 automatically implements logic for querying, adding,
updating, and removing orders in the Orders entity set, working against an instance of
the ObjectContext class from the Entity Framework. You can eventually add your own
logic or edit the default one. For example, replace the GetOrders default method with the
following that simply sorts orders by customer ID:

Public Function GetOrders() As IQueryable(Of Order)

Return Me.ObjectContext.Orders.OrderBy(Function(ord) ord.CustomerID)

End Function

Then add the following simple method for saving changes, remembering that you can
take advantage of your existing Entity Framework skills:

Public Sub SaveChanges()

Me.ObjectContext.SaveChanges()

End Sub

Comments added by the IDE give you some suggestions to improve the class logic, for
example by providing authentication applying the RequiresAuthentication attribute.
When you have the domain service class, which actually returns data, you first need to

From the Library of Wow! eBook

ptg

891Introducing WCF RIA Services
3

9

build again the project; then you are ready to bind such data to appropriate controls in
the user interface.

Data-Binding to Controls

Silverlight 4 introduces the drag’n’drop data-binding, which works like the same tech-
nique in WPF. This is useful in WCF RIA Services applications, because it enables easily
generating data-oriented web pages. At this point you need to add user controls for
showing data within the desired page. In the Silverlight project, expand the Views folder
and double-click the Home.xaml page. You could consider adding a dedicated page but
for the sake of simplicity, an existing one can do the work the same. When the page is
opened inside the Visual Studio designer, build the project and then open the Data
Sources window by selecting the Data, Show Data Sources command. In the Data Sources
window you find some business objects produced by the generation of the RIA Services
application, including the Order entity. Drag this onto the DataGrid and when you release
the mouse, you notice that Visual Studio 2010 has generated the following XAML code:

<riaControls:DomainDataSource AutoLoad=”True”

d:DataContext=”{d:DesignInstance my:Order,

CreateList=true}” Height=”0”

Name=”OrderDomainDataSource”

QueryName=”GetOrdersQuery” Width=”0”>

<riaControls:DomainDataSource.DomainContext>

<my:OrdersDomainContext />

</riaControls:DomainDataSource.DomainContext>

</riaControls:DomainDataSource>

<sdk:DataGrid AutoGenerateColumns=”False” Height=”200”

ItemsSource=

“{Binding ElementName=OrderDomainDataSource,

Path=Data}” Name=”OrderDataGrid”

RowDetailsVisibilityMode=”VisibleWhenSelected”

Width=”400”>

<sdk:DataGrid.Columns>

<sdk:DataGridTextColumn x:Name=”CustomerIDColumn”

Binding=”{Binding Path=CustomerID}”

Header=”Customer ID”

Width=”SizeToHeader” />

<sdk:DataGridTextColumn x:Name=”EmployeeIDColumn”

Binding=”{Binding Path=EmployeeID}”

Header=”Employee ID” Width=”SizeToHeader” />

<sdk:DataGridTextColumn x:Name=”FreightColumn”

Binding=”{Binding Path=Freight}”

Header=”Freight” Width=”SizeToHeader” />

From the Library of Wow! eBook

ptg

892 CHAPTER 39 Building Rich Internet Applications with Silverlight

<sdk:DataGridTemplateColumn x:Name=”OrderDateColumn”

Header=”Order Date” Width=”SizeToHeader”>

<sdk:DataGridTemplateColumn.CellTemplate>

<DataTemplate>

<sdk:DatePicker

SelectedDate=

“{Binding Path=OrderDate,

Mode=TwoWay,

NotifyOnValidationError=true,

TargetNullValue=’’}” />

</DataTemplate>

</sdk:DataGridTemplateColumn.CellTemplate>

</sdk:DataGridTemplateColumn>

<sdk:DataGridTextColumn x:Name=”OrderIDColumn”

Binding=”{Binding Path=OrderID}”

Header=”Order ID” Width=”SizeToHeader” />

<sdk:DataGridTemplateColumn

x:Name=”RequiredDateColumn”

Header=”Required Date” Width=”SizeToHeader”>

<sdk:DataGridTemplateColumn.CellTemplate>

<DataTemplate>

<sdk:DatePicker

SelectedDate=

“{Binding Path=RequiredDate,

Mode=TwoWay,

NotifyOnValidationError=true,

TargetNullValue=’’}” />

</DataTemplate>

</sdk:DataGridTemplateColumn.CellTemplate>

</sdk:DataGridTemplateColumn>

<sdk:DataGridTextColumn x:Name=”ShipAddressColumn”

Binding=”{Binding Path=ShipAddress}”

Header=”Ship Address” Width=”SizeToHeader” />

<sdk:DataGridTextColumn x:Name=”ShipCityColumn”

Binding=”{Binding Path=ShipCity}”

Header=”Ship City” Width=”SizeToHeader” />

<sdk:DataGridTextColumn x:Name=”ShipCountryColumn”

Binding=”{Binding Path=ShipCountry}”

Header=”Ship Country” Width=”SizeToHeader” />

<sdk:DataGridTextColumn x:Name=”ShipNameColumn”

Binding=”{Binding Path=ShipName}”

Header=”Ship Name” Width=”SizeToHeader” />

<sdk:DataGridTemplateColumn

x:Name=”ShippedDateColumn”

Header=”Shipped Date”

Width=”SizeToHeader”>

From the Library of Wow! eBook

ptg

893Introducing WCF RIA Services
3

9

<sdk:DataGridTemplateColumn.CellTemplate>

<DataTemplate>

<sdk:DatePicker

SelectedDate=

“{Binding Path=ShippedDate,

Mode=TwoWay,

NotifyOnValidationError=true,

TargetNullValue=’’}” />

</DataTemplate>

</sdk:DataGridTemplateColumn.CellTemplate>

</sdk:DataGridTemplateColumn>

<sdk:DataGridTextColumn

x:Name=”ShipPostalCodeColumn”

Binding=”{Binding Path=ShipPostalCode}”

Header=”Ship Postal Code”

Width=”SizeToHeader” />

<sdk:DataGridTextColumn

x:Name=”ShipRegionColumn”

Binding=”{Binding Path=ShipRegion}”

Header=”Ship Region”

Width=”SizeToHeader” />

<sdk:DataGridTextColumn

x:Name=”ShipViaColumn”

Binding=”{Binding Path=ShipVia}”

Header=”Ship Via”

Width=”SizeToHeader” />

</sdk:DataGrid.Columns>

</sdk:DataGrid>

The DataGrid is now data-bound to a DomainDataSource control, which is the design-time
representation of the domain service class, whereas the DomainDataSource.DomainContext
property represents the data context for querying, loading, and submitting data. Notice
how, similarly to what happens in Windows Presentation Foundation, the IDE generated
DataGrid columns specific for the bound data type. At this point build the project. Further
considerations on executing the application are discussed in the next subsection.

DATAPAGER CONTROL

Silverlight 4 introduces a DataPager control that you can use for paging data from RIA
Services. This control is not covered here, so check out the MSDN documentation.

Running the Application

After implementing business logic and providing data-binding for UI data controls, you
are ready to run the application, so press F5. After a few seconds you can see how the list
of orders is correctly shown within the DataGrid in the Home page, as demonstrated in
Figure 39.13.

From the Library of Wow! eBook

ptg

894 CHAPTER 39 Building Rich Internet Applications with Silverlight

You could of course create a different page for showing data and making it reachable via
the navigation framework, as described in the dedicated section of this chapter.

“Out of Browser” Applications
Starting from Silverlight 3, you have the possibility of locally installing Silverlight applica-
tions so that they can be run in a desktop environment. This kind of application is gener-
ally known as “Out of Browser.” Typically you use such a feature if you want to have a
local copy of the application that does not need to be connected to a network for most of
its requirements. To make a Silverlight application to be installable you simply need to
enable out-of-browser settings. To demonstrate how this works, create a new Silverlight
project with Visual Basic 2010. When the new project is ready, in the main page type the
following XAML:

<Grid x:Name=”LayoutRoot” Background=”White”>

<StackPanel>

<Button Content=”Get status” Height=”40”

HorizontalAlignment=”Left” Margin=”5”

Name=”Button1” VerticalAlignment=”Top”

Width=”150” />

<TextBlock Height=”30” HorizontalAlignment=”Left”

Margin=”5” Name=”TextBlock1”

VerticalAlignment=”Top” Width=”340”

FontSize=”16” />

FIGURE 39.13 The application based on WCF RIA Services shows requested data.

From the Library of Wow! eBook

ptg

895“Out of Browser” Applications
3

9

</StackPanel>

</Grid>

The goal is programmatically understanding if the application is running inside or outside
a web browser, so when the user clicks the button, a text message will be shown. Now in
the code-behind file, handle the Button.Click event as follows:

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles Button1.Click

Me.TextBlock1.Text = “Running out of browser: “ & _

App.Current.IsRunningOutOfBrowser.ToString

End Sub

The App.Current property, of type Application, provides access to several application-
level objects, including some for working with out-of-browser features. The
IsRunningOutOfBrowser property simply returns True or False according to the execution
context. Before running the demo application, you need to enable specific settings, so
click My Project in Solution Explorer; ensure the Silverlight tab is selected and check the
Enable Running Application out of the Browser check box. Then click the Out-of-
Browser Settings button that launches the same-named dialog where you can customize
settings for your offline application, as shown in Figure 39.14.

FIGURE 39.14 Customizing settings for out-of-browser applications.

From the Library of Wow! eBook

ptg

896 CHAPTER 39 Building Rich Internet Applications with Silverlight

Settings are self-explanatory; particularly notice that if you do not want a default icon to be
used, you can supply your own. Also notice how you can provide a shortcut name; this is
because you can choose adding a shortcut to the desktop or to the Start menu to the
offline application. Now you can run the application. When ready, click the button so that
you can verify that the code can determine that the application is running inside the
browser, as shown in Figure 39.15. To install the application locally, simply right-click in
the browser window and select the Install ApplicationName onto This Computer
command, as shown in the just-mentioned figure. At this point the Install Application
dialog will ask you to specify where you want to place shortcuts for running the applica-
tion locally, such as the Desktop, the Start menu, or both (see Figure 39.16 for an example).

After it’s installed, the application will be automatically launched out of the browser.
Figure 39.17 shows how the demo application looks. Notice that you can uninstall the
application by simply right-clicking inside the local window and then choosing the
Remove command.

FIGURE 39.15 Running the application and selecting the local installation option.

FIGURE 39.16 Installing the application locally.

From the Library of Wow! eBook

ptg

897Summary
3

9

ELEVATED PERMISSIONS

Silverlight 4 introduces elevated permissions for Out-of-Browser applications. This is
interesting because it enables access to local resources such as user-level folders
and to the COM model so that you can interact with other applications such as
Microsoft Outlook.

Summary
In this chapter you saw that Silverlight is a cross-browser, cross-platform, and cross-device
plug-in for building Rich Internet Applications based on the .NET Framework. You saw
how many similarities there are between Silverlight and WPF in both creating projects and
in writing code (XAML and Visual Basic). You saw how Silverlight programming is based
on the concept of user control and how you add user controls to the user interface and
handle events. Next you saw some common scenarios, such as playing media contents
and animations. You also took a tour inside some new features: navigation applications,
which provide a framework for browsing pages as if you had master page and subpages,
WCF RIA Services, a new data framework for building business applications, and the Out-
of-Browser applications that offer the possibility of locally installing a Silverlight applica-
tion to desktop environments.

FIGURE 39.17 The application running out of the browser, locally.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 40

Building and Deploying
Applications for
Windows Azure

IN THIS CHAPTER

. About Windows Azure Platform

. Registering for the Windows
Azure Developer Portal

. Downloading and Installing
Tools for Visual Studio

. Creating a Demo Project

. Deploying Applications to
Windows Azure

. Activating the Storage Account

Maintaining servers and data centers has costs and
requires a company to have people specifically working on
maintenance and administration. To reduce costs, a new
way of thinking about data and web applications working
on data is taking place: cloud computing. Basically the idea of
cloud computing is that you eliminate physical servers and
data centers from your company’s location and deploy your
web applications to servers that are elsewhere in the world
and that are maintained by another company, taking
advantage of network connections for accessing your data.
Microsoft is working hard on its own cloud computing plat-
form, known as Windows Azure Services Platform. This
platform is composed of several services, such as applica-
tions hosted on a 64-bit operating system, SQL Server data
access, and .NET services. A deep discussion on Azure would
probably require an entire book; in this chapter you learn
what Windows Azure is and how you can build and deploy
Visual Basic Web applications to Azure using Visual Studio
2010, while further discussions on the numerous offered
services are available in the MSDN official documentation.

About Windows Azure Platform
The Windows Azure Services Platform is the cloud comput-
ing platform from Microsoft. It offers an infrastructure for
scaling applications on the Internet where services and
applications are hosted on Microsoft data centers. This
means that with Windows Azure you do not need physical
servers in your company because data and applications will
be hosted by Microsoft servers. Windows Azure is instead
just a part of the Azure Services Platform and is a 64-bit

From the Library of Wow! eBook

ptg

900 CHAPTER 40 Building and Deploying Applications for Windows Azure

operating system providing the runtime and the environment for hosting your applica-
tions and the platform’s services and for managing the applications’ lifecycle as well.

One of the biggest benefits in developing for Windows Azure is that you can keep your
existing skills in developing ASP.NET and Silverlight Web applications with just slight
modifications due to the platform infrastructure, still utilizing Visual Studio 2010 as the
development environment. The goal of this chapter is introducing you to developing and
deploying your Visual Basic applications to the Azure platform. In-depth discussions are
not possible here; although it is important to understand how you use Visual Studio 2010
to build and deploy Visual Basic applications. The Azure Services Platform offers several
services, which can be summarized as follows:

. Windows Azure, which is the previously described operating system, whose devel-
opment fully integrates with Visual Studio and that is available for several program-
ming languages not only in the .NET family, such as PHP and Python. Windows
Azure offers a Service Hosting space that runs applications and a Storage Account
service where you place your data.

. Windows Azure AppFabric, formerly known as .NET Services, which brings identity
security and connectivity to applications. The idea of AppFabric is controlling Web
applications by integrating with identity and authorization providers, such as the
Windows Live ID (service known as Access Control) and of providing bridges for
easily connecting applications together (service known as Service Bus).

. SQL Azure, which is a Web-based relational database, providing well-known SQL
Server features to the cloud development and that can also be reached from SQL
Server Management Studio 2008 R2.

With particular regard to Windows Azure, the Storage Account, which is enabled when
you create your account, is composed by the following areas:

. Blob Storage, where you can place files and streams that you can reach via HTTP
and HTTPS addresses

. Tables Storage, where you can organize data within tables

. Queues Storage, a service for sending and receiving messages on the network

The Blob storage is particularly useful when you need to store some files, which can be of
any kind, to use in your applications. The Windows Azure Platform Developer Center
contains hundreds of learning resources about all the previously mentioned services. You
can find it here: http://msdn.microsoft.com/en-us/azure/default.aspx. This chapter
explains what tools are necessary for building and deploying Web applications to Azure;
and the last section gives you the basics for activating and managing the Storage account.
Before getting your hands dirty on writing code, it is important to mention how you can
register to the Windows Azure Services Platform.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/azure/default.aspx

ptg

901Downloading and Installing Tools for Visual Studio

NOTE ON THE VISUAL STUDIO TOOLS FOR WINDOWS AZURE

Because of the release timing of Azure, this chapter has been written on Visual Studio
2010 Beta 2 and the November 2009 CTP Windows Azure Services Platform. So, when
building your applications for Azure, check for changes introduced in new versions and
keep your development environment up to date. The Visual Studio 2010 Tools for
Windows Azure has an option (enabled by default) for automatically updating tools.

Registering for the Windows Azure Developer Portal
To deploy hosted applications to Windows Azure, you first need to register and get an
account. At the moment of writing this chapter, Windows Azure and related services in
the platform are in Community Technology Preview, which means free evaluation. When
this book is live, Azure will no longer be in CTP, meaning that you will have to pay to use
services because Microsoft will be already charging customers for using Azure. If you are
interested in Microsoft cloud computing and in purchasing services, ensure you read this
page about pricing first: http://www.microsoft.com/windowsazure/pricing/. Only if you
decide to pay for cloud computing services, go to the following link: http://www.
microsoft.com/windowsazure/account/ and click Get Your Account. At this point you need
to log in with a valid Windows Live ID. After you’ve logged in, follow the instructions
shown to get your tokens. You will also receive an email with instructions to follow to
activate your token on Windows Azure. Only when you are a registered user can you visit
the Windows Azure Developer portal that is located at the following address: http:/
/windows.azure.com. Your new account will give you access to two main features: the
Service Hosting, which is where you will publish your applications, and the Storage
Account where you will have access to the blog storage, queues, and tables. Later in this
chapter you see how to manage applications within the Windows Azure Developer Portal.
Before going into that, you need to enable Visual Studio 2010 for cloud development.

Downloading and Installing Tools for Visual Studio
Visual Studio 2010 is the ideal development environment for Windows Azure. To enable
the IDE, you need to download and install Windows Azure Tools for Visual Studio 2010.
You can find them at the following link: http://www.microsoft.com/windowsazure/. Click
the Get Tools & SDK button to download the installer. This will install tools for Visual
Studio so that you can create and manage projects the usual way, and the Windows Azure
SDK. If you have also installed Visual Studio 2008, tools will affect this version, too. The
Windows Azure SDK is composed by the Development Fabric, a tool that reproduces
locally the hosting services on the cloud and that is required for running your applica-
tions locally, the Development Storage, which reproduces locally the environment for
publishing blobs, queues and messages, and the documentation. The Windows Azure SDK
also contains sample applications with full source code for further studies. Also ensure to
periodically check out the official Cloud Computing tools team blog from Microsoft, avail-
able here: http://blogs.msdn.com/cloud/.

4
0

From the Library of Wow! eBook

http://www.microsoft.com/windowsazure/pricing/
http://www.microsoft.com/windowsazure/account/
http://www.microsoft.com/windowsazure/account/
http://www.microsoft.com/windowsazure/
http://windows.azure.com
http://windows.azure.com
http://blogs.msdn.com/cloud/

ptg

902 CHAPTER 40 Building and Deploying Applications for Windows Azure

Additional Tools

With the growing diffusion of Windows Azure, lots of tools are coming out. Particularly
there is the need for tools for managing the Storage Account, especially when you need to
manage files in the blog storage both locally and online. Two tools are free: The first one
is an add-on from Microsoft for the Windows Management Console, enabling managing
files in the blob storage and queues located in this space on the MSDN Code Gallery:
http://code.msdn.microsoft.com/windowsazuremmc. The last section in this chapter
shows an example of using this tool for managing files and using them. The second tool
was developed by me and published onto CodePlex, named WPF Client for the Windows
Azure Blog Storage, an open source WPF application written in Visual Basic located here:
http://azureblobclient.codeplex.com/.

Creating a Demo Project
Creating applications for Windows Azure is something that affects a big plethora of
scenarios, because you can generally build and deploy any kind of Web applications. This
chapter provides an example of a Silverlight Web application to show how different tech-
nologies (ASP.NET, Silverlight, and Azure) can coexist in the cloud development. With that
said, run Visual Studio 2010 and open the New Project dialog.

VISUAL STUDIO REQUIRES ELEVATED PRIVILEGES

To test your Windows Azure applications locally, Visual Studio needs to be run with ele-
vated privileges (Run as Administrator). This is required because Visual Studio needs
to launch the Development Fabric, which also needs to be run with elevated privileges.

Click the Cloud Service folder and select the Windows Azure Cloud Service project
template. Name the new project as AzureBookstore. See Figure 40.1 for details.

After you click OK, another dialog displays requesting you to specify the application type.
In this dialog select the ASP.NET Web Role option and press the right arrow so that every-
thing appears as in Figure 40.2.

It is possible to select different kinds of projects, such as ASP.NET MVC 2 or WCF projects.
The ASP.NET Web Role is the most common template for classic ASP.NET applications.
After this, Visual Studio generates a new solution storing two projects: The first project is
the Cloud service that stores information for the Windows Azure hosting service. The
second project is the ASP.NET Web application that you actually work on. Before putting
hands on the code, an explanation about both projects is required.

Understanding Web Roles and Web Configuration

A key concept in Windows Azure development is the role, which is typically a single
component running in the Azure environment and built in managed code. Roles can be of
two types: web roles and worker roles. A Web role is generally an ASP.NET Web applica-

From the Library of Wow! eBook

http://code.msdn.microsoft.com/windowsazuremmc
http://azureblobclient.codeplex.com/

ptg

903Creating a Demo Project

FIGURE 40.1 Creating the new project.

FIGURE 40.2 Selecting the project type.

tion, like the case of our sample scenario. As you may remember from Figure 40.2, addi-
tional Web roles are available for WCF and FastCGI applications. You may instead think of
worker roles as of services running behind the scenes, like in the case of Windows services,
in the cloud. An Azure project can have multiple roles and multiple instances of one role;
moreover, you can configure roles as required. When you create new Cloud projects, the
new solution will contain a Web role project (simply an ASP.NET Web project) and a
service project where you can configure role properties. To access roles configuration, in
Solution Explorer right-click the WebRole1 role and select Properties. At this point a

4
0

From the Library of Wow! eBook

ptg

904 CHAPTER 40 Building and Deploying Applications for Windows Azure

special implementation of the My Project designer will pop up. Figure 40.3 shows what
you will see on the screen.

The Configuration tab enables first setting the .NET trust level for roles. By default the
trust level is Full Trust. The Windows Azure partial trust level has instead some limitations
and denies your role access to some resources, such as the Registry, isolated storage, print-
ing, and OleDb connections. The full restrictions list is available here: http://msdn.
microsoft.com/en-us/library/dd573355.aspx. The Instance Count field enables setting
how many instances of the role are permitted, whereas VM Size enables specifying the
size of the virtual machine hosting your service. Small means one CPU core, 1.7 gigabytes
of memory, and 250 gigabytes of hard disk space. Medium means two CPU cores, 3.5 giga-
bytes of memory, and 500 gigabytes of hard disk space. Large means four CPU cores, 7
gigabytes of memory, and 1 terabyte of hard disk space; finally, ExtraLarge means eight
CPU cores, 15 gigabytes of memory, and 2 terabytes of hard disk space. The Startup action
group enables specifying if debugging should be launched via an HTTP or and HTTPS
endpoint (which must be defined in the Endpoints tab). In the Settings tab you can define
settings that you can access via the Windows Azure SDK Runtime API. By default each role
has a DiagnosticsConnectionString that defines whether you need access to the local
storage or the online services. In the Endpoints tab you can define endpoints for your
application. Deciding to apply for an HTTPS endpoint also requires a valid SSL certificate.
You add certificates to your deployment via the Certificates tab. Finally, the Local Storage
tab enables configuring the file system storage resources local for each instance. All the
preceding options and settings are reflected into the ServiceConfiguration.cscfg and
ServiceDefinition.csdef files that you can see in Solution Explorer and that are basically
XML representations of settings.

FIGURE 40.3 Accessing role configuration options.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/dd573355.aspx
http://msdn.microsoft.com/en-us/library/dd573355.aspx

ptg

905Creating a Demo Project
4

0

ADDING MULTIPLE ROLES AND 64-BIT CONSIDERATIONS

You can add multiple web roles and worker roles by right-clicking the Roles folder in
Solution Explorer. Another consideration that you need to keep in mind is that Windows
Azure is a 64-bit operating system, so take care of this if you plan to invoke unman-
aged code that might fail.

The default role for the new project is associated with the ASP.NET project that will actu-
ally run the application. You can therefore build your application directly within the Web
project or add a Silverlight project, as explained in next section.

Adding a Silverlight 3 Project

A web project can host Silverlight applications, as you may remember from previous
discussions about this technology. This also true in Windows Azure scenarios. The goal of
this chapter is building a Silverlight application capable of showing and editing a list of
books within a DataGrid control, also providing the ability of reading and saving data to
Xml taking advantage of the isolated storage. At this point right-click the web project
name in Solution Explorer and click Add New Item. Notice that we are not adding a new
project, but simply an item. When the Add New Item dialog appears, click the Silverlight
folder on the left and select the Silverlight Application item template, naming the new
item as BookStore.vbproj (see Figure 40.4 for details).

FIGURE 40.4 Adding a Silverlight project to the solution.

From the Library of Wow! eBook

ptg

906

When you add the new project, a dialog asks for specifying the Silverlight version, the
project path, and other information such as enabling debugging. Leave the default settings
unchanged, as shown in Figure 40.5, and continue.

CHAPTER 40 Building and Deploying Applications for Windows Azure

Because we use LINQ to Xml for listing and saving books, and because this will be accom-
plished using a DataGrid control, add references to the System.Xml.dll,
System.Xml.Linq.dll and System.Windows.Controls.Data.dll assemblies. Now there is the
need of implementing a Book class representing one book and a BooksCollection class
representing a typed collection of books, so add a new code file to the Silverlight project
named Book.vb. Code in Listing 40.1 demonstrates this.

LISTING 40.1 Implementing Classes for Representing Books

Imports System.Collections.ObjectModel

Public Class Book

Public Property Title As String

Public Property Author As String

Public Property DatePublished As Date

Public Property ISBN As String

End Class

FIGURE 40.5 Setting options for the new Silverlight project.

From the Library of Wow! eBook

ptg

907Creating a Demo Project
4

0

Public Class BooksCollection

Inherits ObservableCollection(Of Book)

Public Sub New(ByVal source As IEnumerable(Of Book))

For Each b As Book In source

Me.Add(b)

Next

End Sub

Public Sub New()

End Sub

End Class

For the sake of clarity, implement just a DataGrid and a Button for saving data. The
following XAML code must replace the Grid definition:

<Grid x:Name=”LayoutRoot” Background=”Green”>

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition Height=”50”/>

</Grid.RowDefinitions>

<data:DataGrid Name=”BooksGrid” Grid.Row=”0” ItemsSource=”{Binding}”

AutoGenerateColumns=”True” />

<StackPanel Grid.Row=”1” Orientation=”Horizontal”>

<Button Width=”100” Height=”40” Margin=”5”

Content=”Save” Name=”SaveButton”/>

</StackPanel>

</Grid>

The DataGrid is defined within the System.Windows.Controls.Data namespace; because of
this, you need to add the following Xml namespace declaration at page level to use it:

xmlns:data=”clr-namespace:System.Windows.Controls;assembly=System.Windows.Con-

trols.Data”

Now it is time to write Visual Basic code. Our goal is reading data from an Xml file
containing books’ definitions and that is stored in the Silverlight’s isolated storage. If the
file is not found, which is the case of the first run, an empty books collection is defined.
Finally the code provides the ability of saving data to the isolated storage. Listing 40.2
shows all these operations (read comments within code for explanations).

LISTING 40.2 Defining Code for Retrieving, Showing, and Saving Books Definitions

Imports System.Xml.Linq

Imports System.IO, System.Text

From the Library of Wow! eBook

ptg

908 CHAPTER 40 Building and Deploying Applications for Windows Azure

Imports System.IO.IsolatedStorage

Partial Public Class MainPage

Inherits UserControl

‘Declaring a books collection

Private MyBooks As BooksCollection

‘Required for understanding if the DataGrid

‘is in edit mode

Private isEditing As Boolean = False

Public Sub New()

InitializeComponent()

End Sub

‘Used to generate data if the data file is not

‘found

Private Function CreateData() As BooksCollection

Dim b As New Book With {.ISBN = “0000000”}

Dim bc As New BooksCollection

bc.Add(b)

Return bc

End Function

‘Attempts to read the data file from the isolated storage

‘If found, with a LINQ to Xml query a new books collection

‘is returned. If not found, a new empty collection is

‘generated and returned

Private Function GetBooks() As BooksCollection

Try

Dim doc As XDocument

Using store As IsolatedStorageFile = IsolatedStorageFile.

GetUserStoreForApplication

Dim st As IsolatedStorageFileStream = _

store.OpenFile(“Books.xml”, FileMode.Open)

doc = XDocument.Load(st)

st.Close()

End Using

Dim query = From pbook In doc...<Book>

Select New Book With {.Author = pbook.@Author,

.Title = pbook.@Title,

From the Library of Wow! eBook

ptg

909Creating a Demo Project
4

0

.DatePublished = Date.

Parse(pbook.@DatePublished),

.ISBN = pbook.@ISBN

}

Return New BooksCollection(query)

Catch ex As Exception

Return CreateData()

End Try

End Function

Private Sub MainPage_Loaded(ByVal sender As Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles Me.Loaded

‘Populates data

Me.MyBooks = GetBooks()

‘Sets data-binding

Me.DataContext = Me.MyBooks

End Sub

‘Saves data to the isolated storage. The Xml data is generated

‘with LINQ to Xml embedded-expressions

Private Sub SaveButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.

RoutedEventArgs) Handles SaveButton.Click

Dim data = <?xml version=”1.0” encoding=”utf-8”?>

<Books>

<%= From b In MyBooks

Select <Book Author=<%= b.Author %>

Title=<%= b.Title %>

ISBN=<%= b.ISBN %>

DatePublished=<%= b.DatePublished.

ToString %>/>

%>

</Books>

Using store As IsolatedStorageFile = IsolatedStorageFile.

GetUserStoreForApplication

Dim st As IsolatedStorageFileStream = _

store.OpenFile(“Books.xml”, FileMode.Create)

data.Save(st)

st.Close()

End Using

End Sub

From the Library of Wow! eBook

ptg

910 CHAPTER 40 Building and Deploying Applications for Windows Azure

Private Sub BooksGrid_BeginningEdit(ByVal sender As Object,

ByVal e As System.Windows.Controls.

DataGridBeginningEditEventArgs) _

Handles BooksGrid.BeginningEdit

isEditing = True

End Sub

‘Allows DataGrid editing

Private Sub BooksGrid_KeyDown(ByVal sender As Object,

ByVal e As System.Windows.Input.

KeyEventArgs) Handles BooksGrid.KeyDown

If isEditing = False Then

‘If the user press Delete, removes the selected item

If e.Key = Key.Delete Then

If Me.BooksGrid.SelectedItem IsNot Nothing Then

Me.MyBooks.Remove(CType(Me.BooksGrid.SelectedItem, Book))

End If

‘If the user press Insert, adds a new empty item to the collection

ElseIf e.Key = Key.Insert Then

Dim b As New Book With {.DatePublished = Today}

Dim index As Integer = MyBooks.IndexOf(CType(Me.BooksGrid.

SelectedItem, Book))

MyBooks.Insert(index + 1, b)

BooksGrid.SelectedIndex = index

BooksGrid.BeginEdit()

End If

End If

End Sub

Private Sub BooksGrid_RowEditEnding(ByVal sender As Object,

ByVal e As System.Windows.Controls.

DataGridRowEditEndingEventArgs) _

Handles BooksGrid.RowEditEnding

isEditing = False

End Sub

End Class

Now right-click the BookStoreTestPage.Aspx file in Solution Explorer and set it as the
start page. Our application is now ready to be started. One of the biggest benefits of the
Windows Azure SDK tools is that you can test your application locally before you deploy it
to the cloud. This is possible because of the Windows Azure Simulation Environment that
is a full-featured environment reproducing locally the cloud system.

From the Library of Wow! eBook

ptg

911Creating a Demo Project
4

0

Testing the Application Locally

When you run an Azure application locally for the first time, the environment needs to be
initialized. Fortunately Visual Studio and the Windows Azure SDK will do the work for
you. The first thing you notice is that the tools generate a new database on your machine;
this is required for storing blobs, tables, and queues. This step also reserves local ports for
reaching the previously mentioned contents locally. You can see this when you press F5.
The Windows Azure Simulation Environment is started, and a dialog shows the progress of
the database generation and IPs initialization, as represented in Figure 40.6.

This also creates a local developer account that replicates on your local machine what you
can activate on the online services. After you click OK, you can see the application
correctly running in your web browser. Figure 40.7 demonstrates this.

You can now try to add or delete other books and finally save changes. So we reached our
objective locally. The next step should be deploying the application to the cloud, but
doing making this, here’s some brief information about the Simulation Environment tools.
The Simulation Environment is essentially composed of two main tools: the Development
Storage, which is used for locally storing blobs, tables, and queues, and the Development
Fabric that is useful for monitoring running services. The Simulation Environment
provides a tray bar icon that you can right-click to access both tools. Figure 40.8 displays
how the Development Fabric gives information about the running application.

It is worth mentioning that the Development Fabric can show information about multiple
running Azure services. Figure 40.9 shows instead the Development Storage UI. Notice
that here you can just enable or disable endpoints for blobs, tables, and queues, but the
suggestion is to leave unchanged the default settings.

Because the application runs correctly, we can now deploy it to the cloud environment of
Windows Azure.

FIGURE 40.6 Completion of the Simulation Environment initialization.

From the Library of Wow! eBook

ptg

912 CHAPTER 40 Building and Deploying Applications for Windows Azure

FIGURE 40.7 The application running locally.

FIGURE 40.8 The Development Fabric shows services information.

From the Library of Wow! eBook

ptg

913Deploying Applications to Windows Azure
4

0

FIGURE 40.9 The Development Storage user interface.

Deploying Applications to Windows Azure
Deploying applications to Windows Azure is basically a publishing process similar to the
one that involves classic ASP.NET applications, but it differs in the target place (the cloud)
and in the application files. Right-click the Azure project in Solution Explorer (in our
example it is AzureBookstore) and click Publish in the pop-up menu. Visual Studio gener-
ates a Publish subfolder under the Bin\Debug or Bin\Release (depending on your output
configuration) where required files are stored; moreover, Visual Studio launches Windows
Explorer pointing to this new folder so that you can easily understand what files are
required. Also, Visual Studio launches your Web browser opening the Windows Azure
Developer Portal (http://windows.azure.com) on the Internet, which is the place where
you administer deployments. This requires you to log in with your Windows Live ID.
Figure 40.10 shows the login page.

FIGURE 40.10 The login page to the Windows Azure Developer Portal.

From the Library of Wow! eBook

http://windows.azure.com

ptg

914 CHAPTER 40 Building and Deploying Applications for Windows Azure

When logged in, you can choose what cloud services you want to administer (for example
Windows Azure, .NET Services, or SQL Azure) other than seeing available projects, if any.
Figure 40.11 shows this Welcome page.

Ensure that Windows Azure is selected on the left. Now click the New Service link. This
opens a new page where you can decide to create a new Hosted Service (that enables
deploying a Web application) or a new Storage Account (which enables creating storages
for blobs, tables, and queues), as shown in Figure 40.12.

Click Hosted Services to publish the sample application. In next page you need to type a
label and a description for the service. See Figure 40.13 for an example.

Click Next. The subsequent step is really important because it is the place where you can
customize your application’s address on the Internet. Windows Azure’s domain is http:/
/CustomName.cloudapp.net, where CustomName is the name you provide for your appli-
cation. In this example I’m using my name, so the complete application address will be
alessandrodelsole.cloudapp.net. Replace my name with yours and check if the address is
available with the Check Availability button. You can then choose the data center loca-
tion, such as northern and southern regions in the United States. By the way, for this
example select Anywhere US, as shown in Figure 40.14.

FIGURE 40.11 The Welcome page in the Windows Azure Developer Portal.

From the Library of Wow! eBook

http://CustomName.cloudapp.net
http://CustomName.cloudapp.net

ptg

915Deploying Applications to Windows Azure
4

0

FIGURE 40.12 Choosing between a storage account and a hosted service.

FIGURE 40.13 Providing service label and description.

From the Library of Wow! eBook

ptg

916 CHAPTER 40 Building and Deploying Applications for Windows Azure

FIGURE 40.14 Specifying the application address.

NOTE

Due to recent changes to the Windows Azure Service Platforms, the list of available
locations may vary including countries other than the United States. Visit the Windows
Azure official website (http://www.windowsazure.com) for detailed information.

When you click Create, the new service is created and ready to receive the application
deployment. The deployment can be of two types: staging and production, as also repre-
sented in Figure 40.15.

The Staging deployment is intended for configuration and testing purposes. After ensuring
all works correctly, you can move the application to the Production state. You could also
directly deploy your application to the Production state, but this is not always the best
choice. Now click the Deploy button for the Staging deployment. On the next page you
have to specify the Application Package and the Configuration Settings. Both files are
stored in the Publish folder previously described. As an alternative you can indicate files
from an online Azure storage. The application package is a file with .cspkg extension and
contains all the required application files in one package. The configuration file has .cscfg
extension and contains information on the web roles involved in your application. Figure
40.16 shows how you indicate both files with regard to the current example.

From the Library of Wow! eBook

http://www.windowsazure.com

ptg

917Deploying Applications to Windows Azure
4

0

FIGURE 40.15 Deployment types in Azure.

FIGURE 40.16 Providing deployment information.

From the Library of Wow! eBook

ptg

918 CHAPTER 40 Building and Deploying Applications for Windows Azure

FIGURE 40.17 The staging deployment is completed.

Also specify a label for the current deployment. This is free text. At this point you can
click the Deploy button and wait until the deployment process is completed; this process
can last several minutes, so be patient. When the process is finished, the application is not
running yet. Click Run to make your application run in the Staging deployment and wait
until the WebRole1 shows a green circle and the Ready word (see Figure 40.17).

There is a new link named Web Site URL. This is a temporary address for your application
that you can use for your testing purposes. If you click it, the Web browser will attempt to
run the application in its staging state, but in this particular example, you will see
nothing. The reason is that, obviously, the Web browser searches for the Default.aspx page
that is empty in our example because we created a new page for hosting a Silverlight page.
Append /BookStoreTestPage.Aspx to the web address. After a few seconds, the sample
application is correctly shown in the Web browser, as demonstrated in Figure 40.18.

REPLACING THE DEFAULT.ASPX PAGE

If you want to make your Silverlight application start automatically, in Solution Explorer
remove the Default.aspx page and rename the test page for Silverlight (in our example
it is named BookStoreTestPage.Aspx) into Default.Aspx and set it as the start page.

From the Library of Wow! eBook

ptg

919Deploying Applications to Windows Azure
4

0

Close the Web browser to return to the Azure administration page. If you want to edit the
application configuration file, click Configure. This opens a new page showing the config-
uration file content within an editable text box. Click Suspend if you want to stop
running the application keeping it in the cloud; instead click Upgrade if you want to
upload a new version of the application. At this point, supposing all works correctly, we
can move the application to the production state, by simply clicking the rounded button
at the center of the page. After a few seconds the application is available on the cloud, and
it is reachable on the Internet (see Figure 40.19 for details).

Now you can finally run the application on the cloud. The sample application is, in this
case, http://alessandrodelsole.cloudapp.net. To ensure the correct page is shown, the full
address is http://alessandrodelsole.cloudapp.net/BookStoreTestPage.Aspx. Figure 40.20
shows the application running from the Windows Azure location.

With a few steps you successfully published a Web application to Windows Azure making
it reachable from the Internet. If you plan on building data-centric applications requiring
SQL Server database, the suggestion is that you visit the SQL Azure Developer Portal where
you can find lots of information about creating and consuming databases on the cloud.
You can find the portal here: http://msdn.microsoft.com/en-us/sqlserver/dataservices/
default.aspx.

FIGURE 40.18 The sample application running in the staging context.

From the Library of Wow! eBook

http://alessandrodelsole.cloudapp.net
http://alessandrodelsole.cloudapp.net/BookStoreTestPage.Aspx
http://msdn.microsoft.com/en-us/sqlserver/dataservices/default.aspx
http://msdn.microsoft.com/en-us/sqlserver/dataservices/default.aspx

ptg

920 CHAPTER 40 Building and Deploying Applications for Windows Azure

FIGURE 40.19 The application has been moved to the production deployment.

FIGURE 40.20 The application running from Windows Azure in the production deployment.

From the Library of Wow! eBook

ptg

921Activating the Storage Account
4

0

Activating the Storage Account
The second service available when you register to the Windows Azure Services Platform is
the Storage Account. It provides a web space for uploading files (blob storage), for organiz-
ing simple data (tables storage), and for sending/receiving simple messages (queue
storage). To enable your Storage Account, follow these steps:

1. Log into the Windows Azure Developer Portal and go to the services page shown in
Figure 40.11;

2. Click New Service; when the Create New Service page is loaded, click Storage
Account.

3. Provide a label and a description for your account; then click Next.

4. Type the public name that will be part of your account’s URL and check for its avail-
ability, leaving unchanged the location options. Figure 40.21 shows an example.

Now click Create so that the Storage Account creation is finalized. When you create the
Storage Account, a Shared Key is also generated. This is a unique identifier that you need

FIGURE 40.21 Specifying the public name for the Storage Account.

From the Library of Wow! eBook

ptg

922 CHAPTER 40 Building and Deploying Applications for Windows Azure

for accessing the storage from client applications and that is for login purposes. You can
check this out by clicking the new account name on the left of the page, under the
Windows Azure title. As mentioned when discussing local tests, a local developer account
is also created and replicates locally what you can do with the online services. The local
developer account has a built-in storage account with a prefixed user name (devstoreac-
count1) and shared key, so for this you need to do nothing. About the online services, the
Storage Account has the following endpoints:

. http://publicname.blob.core.windows.net for the blob storage

. http://publicname.queue.core.windows.net for the queue storage

. http://publicname.table.core.windows.net for the table storage

In the preceding bulleted list, publicname stands for the account public name you
provided a few steps ago. Such endpoints are the way you access contents in the Storage
Account via Http (or Https if available). For the local developer account, the endpoints
will be the following (requires the Windows Azure Simulation Environment running):

. http://127.0.0.1:10000 for the blob storage

. http://127.0.0.1:10001 for the queue storage

. http://127.0.0.1:10002 for the tables storage

Because both the online and local services do not offer tools for managing contents on
the Storage Account, you need to recur to external client tools or to build your own tool
utilizing the Windows Azure SDK API. Fortunately there are several free tools, such as the
Windows Azure Management Console Snap-in that is related to blobs and queues.

LEARNING VIDEOS

Microsoft produced several free “How-do-I” videos about learning to manage the
Storage Account features. You can find them here: http://msdn.microsoft.com/en-us/
azure/dd439432.aspx.

Using the Windows Azure Management Console Snap-In

Often you need to store files for your applications when deployed to Windows Azure. This
can be accomplished in two ways, both as an administration task and programmatically. If
you need to store files programmatically, look at the additional Windows Azure examples
located on MSDN Code Gallery here: http://code.msdn.microsoft.com/windowsazuresam-
ples and search for the StorageClient sample application, which implements code taking
advantage of the REST APIs for managing the blob storage programmatically. If you
instead need to upload files to the Blob storage as a simple repository for your applica-
tions, an easy way is installing the Windows Azure Management Console Snap-In. This
can be found on Code Gallery and as well here: http://code.msdn.microsoft.com/
windowsazuremmc. Download the compressed archive and extract it to a folder. Now run
the StartHere.cmd file, which contains scripts for building the application and for
installing the snap-in to the Microsoft Management Console in Windows.

From the Library of Wow! eBook

http://publicname.blob.core.windows.net
http://publicname.queue.core.windows.net
http://publicname.table.core.windows.net
http://msdn.microsoft.com/en-us/azure/dd439432.aspx
http://msdn.microsoft.com/en-us/azure/dd439432.aspx
http://code.msdn.microsoft.com/windowsazuresamples
http://code.msdn.microsoft.com/windowsazuresamples
http://code.msdn.microsoft.com/windowsazuremmc
http://code.msdn.microsoft.com/windowsazuremmc

ptg

923Activating the Storage Account
4

0

FIGURE 40.23 Adding a new online connection.

FIGURE 40.22 The Windows Azure MMC running.

IMPORTANT NOTE

The installation process requires the .NET Framework 3.5 SP 1 be installed on your
machine. This is because the component is distributed in source code and the setup
procedure will build the binary library for you. If you are running Windows 7 you do not
need to install the framework.

When you run the utility, it looks like Figure 40.22.

The first step is establishing a connection to the local developer account or to the online
services. For example, right-click on Azure Account and select the New Connection
command. Now fill the text boxes in the dialog with your account name and key, as
shown in Figure 40.23.

From the Library of Wow! eBook

ptg

924 CHAPTER 40 Building and Deploying Applications for Windows Azure

You notice that Service URLs will be automatically populated for you when writing the
account name. When you click OK the connection is established, in this case to the
online Storage Account. If you need a connection to the local developer account, simply
select the Local Connection command. (You will not be prompted for credentials.) When
ready, click on the BLOB Containers item in the left tree view control. This shows exist-
ing containers and enables you to add new containers. Basically a container is just a folder
where you can upload files. In the Windows Azure terminology, files are called blobs.
Figure 40.24 shows what I have on my Storage Account, which is a container named
videos and where there is one file stored, as you can see at the bottom of the application.

On the right side of the application, you can find a pane offering common commands.
You can add a new container, upload an existing one, remove containers, or just upload
and delete blobs. It is worth mentioning that when you create a new container you can
make it public or private. If you mark it as private, you need your shared key to access it
every time. If your container will store files that must be reached by all users, it will be
marked as public. You can check this out by clicking the Add Container command from
the right pane. Also notice that container names must be lowercase. If you try to type
uppercase characters, they will be automatically converted into lowercase. After you
have uploaded blobs to the Storage Account, you can access them simply via Http URLs.
Continuing the example of my account, represented in Figure 40.24, to access the
VideoForAzure.Wmv file, you simply need the following URL: http://alessandrodel-
sole.blob.core.windows.net/videos/VideoForAzure.wmv. If it is a media or browsable
content, you can type the address in your Web browser address bar or just use the URL

FIGURE 40.24 Showing containers and blobs in the Storage Account.

From the Library of Wow! eBook

ptg

925Summary

in your applications according to your needs. In case your blobs are stored within the
local developer account, you simply invoke them with the local URL, keeping in mind
that the Windows Azure Simulation Environment must be running:
http://127.0.0.1:10000/VideoForAzure.Wmv.

Summary
The Windows Azure Services Platform is the new cloud computing platform by Microsoft
and includes several services such as Windows Azure, SQL Azure, and Windows Azure
AppFabric. Windows Azure is a 64-bit operating system enabling Web applications to be
hosted and running in a cloud environment. To develop applications for the cloud, you
use Visual Studio 2010 that must be enabled installing the appropriate tools. After you
install such tools and register for the Windows Azure services, you can begin developing
and deploying applications. Basically you create ASP.NET Web applications or Silverlight
applications that can be deployed to Azure. You can test your applications locally before
deployment, due to the presence of the Windows Azure Simulation Environment that
includes tools for locally running applications with the same environment that is on the
cloud. This tooling is installed together with the Azure SDK and tools for Visual Studio. To
publish a Web application to the Azure Services Platform you simply use Visual Studio
instrumentation that redirects you to the appropriate page in the Windows Azure
Developer Portal. When you get an account on Windows Azure, you obtain two services:
the hosting service on Windows Azure, which allows publishing applications to the cloud,
and the storage account. This is an additional service providing web space for storing
online files (blob storage), simple data structures (tables storage), and messages (queue
storage). You activate the storage account in the Azure Developer Portal, but you actually
manage contents through external tools, such as the Windows Azure Management
Console Snap-In that enables publishing blobs to the blob storage both locally and online.

4
0

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 41

Creating and Consuming
WCF Services

IN THIS CHAPTER

. Introducing Windows
Communication Foundation

. Implementing WCF Services

. Consuming WCF Services

. Handling Exceptions in WCF

. Hosting WCF Services in
Internet Information Services

. Configuring Services with the
Configuration Editor

During the years several technologies were developed for
distributed applications that communicate over networks.
The idea is that client applications can exchange informa-
tion with a service via a network protocol such as the Http
or TCP, just to mention some. Among these technologies
there are SOAP (an Xml-based information exchange
system), Microsoft Messaging Queue (a message-based
system), the well-known Web services, and the .NET
Remoting (which connects applications based on the .NET
Framework). Although powerful, all these technologies have
one limitation: Two or more applications can connect only
if all of them rely on the same technology. Just for clarifica-
tion, an application based on MSMQ cannot communicate
with another one based on SOAP. To avoid this limitation,
Microsoft created the Windows Communication
Foundation (also known as WCF for brevity) technology
that was first introduced with the .NET Framework 3.0 and
that is basically a unified programming model for distrib-
uted applications. With WCF developers can write code for
exchanging data and information between services and
clients without worrying about how data is transmitted
because this is the job of the .NET Framework. WCF is
another big technology and covering every single aspect
would require an entire book; therefore, in this chapter you
learn about implementing, configuring, hosting, and
consuming WCF services with Visual Basic 2010.

From the Library of Wow! eBook

ptg

928 CHAPTER 41 Creating and Consuming WCF Services

Introducing Windows Communication Foundation
WCF is a technology that enables data and information exchange between services and
clients through messages. Basically the service exposes information through the network
and is nothing but a .NET assembly. Then the client receives that information and can
send back other information or data. In this section you learn how data exchange between
the service and clients works before creating your first WCF service.

WCF 4

Windows Communication Foundation in .NET Framework 4 is also known as WCF 4,
although this is actually the third version. There are some improvements in the new
version of WCF, but we focus on them only when required, preferring to illustrate how
you implement and consume services to make migration from previous versions easier.

This is important because you need to know some fundamentals about WCF infrastructure
before putting your hands on the code. If you ever developed .NET Web Services (.asmx),
you notice several similarities with WCF, at least in the implementation, but lots of things
more under the hood make WCF more powerful. Moreover, although Web services are
obviously still allowed and supported in .NET Framework 4.0, WCF is the main technol-
ogy for data exchange through networks and is intended to be a replacement of Web
services, even because WCF provides fully integrated support with client and Web applica-
tions, such as WPF and Silverlight.

Understanding Endpoints

A WCF service is a .NET assembly (in the form of dll) relying on the System.ServiceModel
namespace and exposing objects and members like any other class library. Thus client
applications can invoke members and use objects exposed by services. Behind the scenes
this happens through message exchanges. Client and services exchange messages through
endpoints. An endpoint is the place where client and service meet and is where both appli-
cations exchange their information, so it can be considered like a communication port.
Each WCF service offers at least one endpoint; multiple endpoints serve as communica-
tion ports for different data types (for example .NET objects and messages). But every
endpoint needs to be configured with some other information to be a functional place for
meeting the needs of service and clients. The configuration is provided by the Address,
Binding, and Contract as explained in the next section.

Address, Binding, Contract: The ABC of WCF

When a client application attempts to reach a service, it needs to know some information
for finding the service and for data exchange. The service exposes such information via
the ABC, which represents the Address, Binding and Contract properties in the service. The
Address is the physical URI where the service is running. For example, on the local
machine the Address could be http://localhost/MyService.svc or
http://www.something.com/MyService.svc if the service is running on the Internet. The
Binding property is a complex object and basically is responsible for

From the Library of Wow! eBook

http://www.something.com/MyService.svc
http://localhost/MyService.svc

ptg

929Implementing WCF Services

. Establishing how service and clients communicate (with a Behavior object)

. Establishing what protocol and credentials must be used within the communication

. Handling data transmission to the target (via a Channel object), converting data into
an acceptable format, and transmitting data via the specified protocol (such as Http,
Https, and so on)

The Contract is probably the most significant item in the ABC. It establishes what data can
be exchanged and what .NET objects/members are exposed by the service and that the
client must accept; this is defined as platform-independent because clients will just accept
the contract without worrying about the code that implemented objects on the server
side. If you think of classic managed class libraries, when you add a reference to a class
library, you just want to use its members, but in most cases you will not worry about the
code that implemented those members. With WCF it is basically the same thing. For code,
a contract is a .NET interface that defines public members available from the service to
clients. Such an interface is then implemented by a class that actually makes members
available to the external world. All these concepts will be explained in code. There are
different contract types in WCF, but the most important are summarized in Table 41.1.

4
1

As you see in the next section, contracts are applied with special .NET attributes. The good
news about the ABC is that all information is typically stored inside the configuration file
and therefore can be edited with any text editor by system and network administrators
too, without the need of recompiling the source code, which make services administration
simpler. At this point you are ready to create your first WCF service with Visual Basic 2010.

Implementing WCF Services
Visual Studio 2010 offers some project templates for creating WCF projects. Table 41.2
lists them all.

TABLE 41.1 WCF Contracts

Contract Description

ServiceContract Provides the service skeleton and defines methods that will be available to
the public

DataContract Defines classes that will be available to the public as data objects

MessageContract Used to exchange data with SOAP-based applications and serializes data
into SOAP messages.

TABLE 41.2 WCF Project Templates

Template Description

WCF Service
Application

Used for creating a self-hosted WCF service

From the Library of Wow! eBook

ptg

930

This book covers the WCF Service Application template that is useful because it provides
service self-hosting. Basically a WCF service cannot be run or consumed as a standalone
and must be hosted inside a .NET application. Host applications can be of several types:
Console applications, Internet Information Services, and ASP.NET Development Server are
all valid host applications. The WCF Service Application template provides hosting inside
the ASP.NET Development Server that ships with Visual Studio and is appropriate for local
testing purposes. Select the File, New Project command, and in the New Project dialog
select the WCF Service Application template, as shown in Figure 41.1. Name the new
project as BookService and then click OK.

CHAPTER 41 Creating and Consuming WCF Services

The goal of the example is to offer a way for validating books’ information, such as ISBN
code, title, and author. The service exposes a Book class representing a single book and a

WCF Service Library Used for creating a WCF service to be manually hosted and configured

WCF Workflow Service Allows creating a WCF service with integration with Workflow Foundation

WCF Syndication
Library

Generates a WCF service enabled for RSS syndication

WCF RIA Services
Class Library

Only available within Silverlight projects, allows adding a WCF service
with Silverlight integration

FIGURE 41.1 Creating a new WCF project.

TABLE 41.2 Continued

Template Description

From the Library of Wow! eBook

ptg

931Implementing WCF Services
4

1

method named ValidateBook that provides the validation logic. Before writing custom
code, taking a look at the auto-generated code is a good idea for understanding what WCF
needs. Visual Studio 2010 generated a Web project visible in Solution Explorer. The new
project contains the following files:

. IService1.vb, which defines the contract interface

. Service1.svc.vb (nested into Service1.svc as a code-behind file), which defines the
class that implements the contract

. Service1.svc, which is the actual service that exposes data and that is be consumed
by clients

. Web.config, which provides definitions for the ABC

NOTE ON THE WEB.CONFIG FILE

With the .NET Framework 4.0 and Visual Studio 2010, the Web.config file does not
contain a WCF metadata definition in case you use the default settings because they
are considered as implicit. This is important with regard to the current example. If you
decide instead to implement custom settings, the Web.config stores the metadata defi-
nition. Because configuration files in client applications reflect Web.config files from
services, later in this chapter you see the client-side metadata definition mapping the
implicit metadata of the current sample service.

Let’s take a look at the IService1.vb file, which is reported in Listing 41.1 and that defines
a couple of contracts.

LISTING 41.1 Auto-Generated Contracts

’ NOTE: You can use the “Rename” command on the “Refactor” menu

‘ to change the interface name “IService1” in both code and

‘ config file together.

<ServiceContract()>

Public Interface IService1

<OperationContract()>

Function GetData(ByVal value As Integer) As String

<OperationContract()>

Function GetDataUsingDataContract(ByVal composite As _

CompositeType) As CompositeType

‘ TODO: Add your service operations here

End Interface

From the Library of Wow! eBook

ptg

932 CHAPTER 41 Creating and Consuming WCF Services

‘ Use a data contract as illustrated in the sample below

‘ to add composite types to service operations.

<DataContract()>

Public Class CompositeType

<DataMember()>

Public Property BoolValue() As Boolean

<DataMember()>

Public Property StringValue() As String

End Class

The IService1 interface is decorated with the ServiceContract attribute, meaning that it
establishes what members the service defines and makes available to the public. The inter-
face defines two methods, both decorated with the OperationContract attribute. Such
attribute makes methods visible to the external world and consumable by clients. You
need to remember that in WCF marking a method as Public is not sufficient to make it
available to clients; it needs to be marked as OperationContract to be visible. Methods
exposed by WCF services are also known as service operations, and this definition will be
recalled in the next chapter with regard to WCF Data Services. Notice how the
GetDataUsingDataContract method receives an argument of type CompositeType. This
type is a custom class declared as DataContract, meaning that the WCF service can
exchange data of this type. Members from this class also need to be marked as DataMember
to be visible to the external world. As for service operations, marking a member as Public
is not sufficient; you need to decorate members with the DataMember attribute. The
Service1 class shows an example of implementing the contract and the logic for service
operations. Listing 41.2 shows the auto-generated sample code.

LISTING 41.2 Auto-Generated Contracts Implementation

’ NOTE: You can use the “Rename” command on the “Refactor” menu to

‘ change the class name “Service1” in code, svc and config file together.

Public Class Service1

Implements IService1

Public Sub New()

End Sub

Public Function GetData(ByVal value As Integer) As String _

Implements IService1.GetData

Return String.Format(“You entered: {0}”, value)

End Function

Public Function GetDataUsingDataContract(ByVal composite As CompositeType) As _

CompositeType Implements IService1.GetDataUsingDataContract

From the Library of Wow! eBook

ptg

933Implementing WCF Services
4

1

If composite Is Nothing Then

Throw New ArgumentNullException(“composite”)

End If

If composite.BoolValue Then

composite.StringValue &= “Suffix”

End If

Return composite

End Function

End Class

The class just implements the contract interface and provides logic for service operations
working like any other .NET class. The content of the .svc file is discussed later; for now let’s
make some edits to the code replacing the auto-generated one with custom implementation.

Implementing Custom Logic for the WCF Service

Rename the IService1.vb file to IBookService.vb and then switch to the code editor.
Right-click the IService1 identifier and select Rename; finally provide the new
IBookService identifier and click OK. Visual Studio will prompt for confirmation and will
rename the instances in code as well. This is important to update all references inside the
project to the interface, including references inside the .Svc file. Now delete the code for
the CompositeType class and replace the entire code with the one shown in Listing 41.3.

LISTING 41.3 Implementing Custom Contracts

<ServiceContract()>

Public Interface IBookService

<OperationContract()>

Function ValidateBook(ByVal bookToValidate As Book) As String

End Interface

<DataContract()>

Public Class Book

<DataMember()>

Public Property Title As String

<DataMember()>

Public Property ISBN As String

<DataMember()>

Public Property Author As String

<DataMember()>

From the Library of Wow! eBook

ptg

934 CHAPTER 41 Creating and Consuming WCF Services

Public Property DatePublished As Date?

End Class

The IBookService contract simply defines a ValidateBook method that will be invoked
for validating a book. A single book is represented by the Book class, which exposes four
self-explanatory properties. Now switch to the Service1 class and, following the steps
described before, rename the Service1 identifier into BookService. Then replace the auto-
generated code with the one shown in Listing 41.4.

LISTING 41.4 Implementing the Service Logic

Imports System.Text.RegularExpressions

Public Class BookService

Implements IBookService

Private Const isbnPattern As String = _

“ISBN(?:-13)?:?\x20*(?=.{17}$)97(?:8|9)([-])\d{1,5}\1\d{1,7}\1\d{1,6}\1\d$”

Public Function ValidateBook(ByVal bookToValidate As Book) As _

String Implements IBookService.ValidateBook

Dim isValidIsbn As Boolean = Regex.IsMatch(String.Concat(“ISBN-13: “,

bookToValidate.ISBN),

isbnPattern)

If isValidIsbn = False Then

Return “Invalid ISBN”

End If

Dim isValidAuthor As Boolean = String.IsNullOrEmpty(bookToValidate.Author)

If isValidAuthor = True Then

Return “Author not specified”

End If

Dim isValidTitle As Boolean = String.IsNullOrEmpty(bookToValidate.Title)

If isValidTitle = True Then

Return “Title not specified”

End If

If bookToValidate.DatePublished Is Nothing Then

Return “Book data is valid but date published was not specified”

End If

Return “Valid book”

End Function

From the Library of Wow! eBook

ptg

935Implementing WCF Services
4

1

End Class

The code for the ValidateBook method is quite simple. It makes use of a regular expres-
sion for checking if the ISBN code is valid and then goes ahead checking for valid proper-
ties in the Book class instance that must be validated.

NOTE ON THE REGULAR EXPRESSION PATTERN

The regular expression pattern for checking ISBNs is from the RegExLibrary website at
the following address: http://regexlib.com/REDetails.aspx?regexp_id=1748. There are
a lot of patterns for validating ISBNs; the one used in this book is just an example and
you can replace it with a different one.

Now right-click the BookService.svc file in Solution Explorer; select View in Browser. In
a few seconds the WCF service will be hosted by the ASP.NET Development Server and will
run inside the Web browser, as demonstrated in Figure 41.2.

This test is required to ensure that the service works correctly. Notice how information is
provided on how consuming the service is. The web page shows information explaining

FIGURE 41.2 The WCF service has been hosted by the ASP.NET Development Server and is
now running.

From the Library of Wow! eBook

http://regexlib.com/REDetails.aspx?regexp_id=1748

ptg

936 CHAPTER 41 Creating and Consuming WCF Services

that you should invoke the SvcUtil.exe command-line tool pointing to the wdsl metadata
of the service.

WHAT IS WDSL?

WDSL is a standard format and stands for Web-service Definition Language and is an
Xml representation of how a web service works (including WCF services), describing
document information and procedure information, including endpoints and messages.
Generally WSDL explains how a service must work, for example how information has to
be transmitted, what protocol must be used, and how it interacts in scenarios such as
REST and SOAP. Such information is known as service metadata and in WCF plays an
important role.

SvcUtil is described in next section; for the moment click the link available near
SvcUtil.exe. By doing so you access metadata offered by the WCF service, including
contracts and members, as reported in Figure 41.3.

METADATA ENABLED BY DEFAULT

If you had experiences with WCF in previous versions of the .NET Framework, you
remember how you had to enable metadata manually on WCF services. In Visual Studio
2010 this is not necessary, because the IDE does the work for you.

FIGURE 41.3 Exploring the service’s metadata.

From the Library of Wow! eBook

ptg

937Consuming WCF Services
4

1

Basically client applications invoke service members passing through the service metadata.
The next section explains how you invoke service members through a proxy class, but
before going into that let’s take a look at the BookService.svc file.

EXPOSING GENERICS IN WCF

Since WCF services metadata are exposed via WSDL, there are some issues with
generics that are not supported by this. I suggest you read this blog post by MVP Jeff
Barnes that provides explanations and workarounds: http://bit.ly/4CzGv3. Another sug-
gestion is to investigate how WCF Data Services work for exposing entities (see
Chapter 42, “Implementing and Consuming SCF Data Services,” for in formation about
Data Services).

Right-click this file and select View Markup. The XHTML code for this file is the following:

<%@ ServiceHost Language=”VB” Debug=”true”

Service=”BookService.BookService” CodeBehind=”BookService.svc.vb” %>

This file defines the service entry point. Particularly it states that the BookService class is
the service entry point because it defines the real logic that implements the contract.
There is some other information such as the programming language used and the code-
behind the file, but the Service tag is absolutely the most important. After this overview
of the service implementation, it’s time to consume the service from a client application.

EXPOSING ENTITY DATA MODELS AND LINQ TO SQL CLASSES

WCF services are also used to expose Entity Data Models and LINQ to SQL classes via
serialization. Entities and their members in EDMs are marked by default respectively
with the DataContract and DataMember attributes, whereas LINQ to SQL classes have
to be enabled for serialization by setting the Serialization Mode property of the
DataContext class as Unidirectional and then marking entities with DataContract.
In Chapter 42 you learn about WCF Data Services that provide an easy implementation
of WCF services by exposing data models without the need of making such customiza-
tions manually. Thus you should create custom WCF services for exposing data models
only when you need to handle special scenarios that require implementing different
business logic than the one offered by Data Services.

Consuming WCF Services
Clients can easily consume WCF services by adding a service reference directly from
Visual Studio 2010. In the next example you create a simple Console client application
for validating ISBNs by invoking objects from the WCF service implemented in the previ-
ous section.

From the Library of Wow! eBook

http://bit.ly/4CzGv3

ptg

938 CHAPTER 41 Creating and Consuming WCF Services

Creating the Client and Adding a Service Reference

Add a new Console project to the current solution and name it BookClient. The first step
you have to accomplish is adding a service reference to the WCF service. Right-click the
new project name in Solution Explorer and select Add Service Reference. This brings up
the Add Service Reference dialog where you need to enter the full Web address of your
service. If the service you want to add a reference to is available in the current solution, as
in the current example, simply click Discover. The service appears in the dialog, as shown
in Figure 41.4.

Click the service name on the left to allow the development server to correctly host the
service and discover its members. At this point the dialog lists available contracts
(IBookService in this case) and their members. Replace the Namespace identifier with
BookServiceReference.

Understanding the Proxy Class

The WCF service is exposed through the network via a WSDL. To consume objects and
data exposed by the WSDL, the client needs a proxy class that is responsible for translat-
ing WSDL information into managed code that you can reuse. This is accomplished via a
command-line tool named SvcUtil.exe that is part of the .NET Framework. Fortunately
you do not need to run SvcUtil manually because Visual Studio will do the work for you.
When you click OK from the Add Service Reference dialog, Visual Studio invokes SvcUtil
and generates a proxy class. You notice, in Solution Explorer, a new folder named Service

FIGURE 41.4 The Add Service Reference dialog enables
adding a reference to a WCF service.

From the Library of Wow! eBook

ptg

939Consuming WCF Services
4

1

references. This folder contains all service references and, for the current example, it stores
a new item named BookServiceReference. This new item provides all metadata informa-
tion required to consume the service and especially the proxy class. Click the Show All
Files button in Solution Explorer and expand the Reference.svcmap file; then double-
click the Reference.vb file. This code file exposes the BookServiceReference namespace to
provide client-side code for accessing members exposed from the service. Particularly this
namespace exposed client-side implementations of the Book class and the IBookService
interface. The most important class exposed by the namespace is named
BookServiceClient and is the actual proxy class, which inherits from
System.ServiceModel.ClientBase, and which is responsible for connecting to the service
and for closing the connection other than exposing service members such as the
ValidateBook that was implemented on the service side. The namespace also exposes the
IBookServiceChannel interface that inherits from IClientChannel, which provides
members for the request/reply infrastructure required by WCF services. You instantiate the
proxy class to establish a connection with the WCF service, and you interact with the
proxy class for accessing members from the service, as explained in next section.

Invoking Members from the Service

To invoke service members, you need to create an instance of the proxy class, which in
our example is named BookClient.BookServiceReference.BookServiceClient. Creating
an instance of the class can establish a connection to the WCF service and give you access
to public members. Continuing with the previous example, the client application could
have an instance of the Book class and invoking the ValidateBook method for checking if
the Book instance is correct according to our needs. Code in Listing 41.5 shows how to
accomplish this.

LISTING 41.5 Instantiating the Proxy Class and Invoking Service Members

Imports BookClient.BookServiceReference

Module Module1

Sub Main()

‘Creates an instance of the proxy class

‘and automatically establishes a connection

‘to the service

Dim client As New BookServiceClient

‘A new book

‘Note that the RegEx pattern requires to write the ISBN in the form

‘provided below, so like: 000-0-0000-0000-0 including the minus

‘character

Dim myBook As New Book

With myBook

.Author = “Alessandro Del Sole”

From the Library of Wow! eBook

ptg

940 CHAPTER 41 Creating and Consuming WCF Services

.Title = “VB 2010 Unleashed”

.ISBN = “978-0-6723-3100-8

“

.DatePublished = Date.Today

End With

‘Invokes the ValidateBook method from

‘the service

Console.WriteLine(client.ValidateBook(myBook))

Console.WriteLine(“Done”)

Console.ReadLine()

client.Close()

End Sub

End Module

Therefore in the client you can invoke all public members from the service, where public
means functions decorated with the OperationContract attribute and data classes deco-
rated with the DataContract attribute. Running the code in Listing 41.5 produces the
result shown in Figure 41.5, but you can try to change the ISBN code to check how the
application works with different values.

Remember to close the connection to the service invoking the Close method on the proxy
class. This ensures that the service will be shut down.

Understanding the Configuration File
When you add a proxy class to your WCF service, Visual Studio also updates the configu-
ration file to provide information on how to reach and interact with the service. The most
important information is stored in the System.ServiceModel section of the app.config
file. Listing 41.6 shows the most interesting excerpt.

FIGURE 41.5 The client application validated a book.

From the Library of Wow! eBook

ptg

941Consuming WCF Services
4

1

LISTING 41.6 Configuration Settings for the Client

<system.serviceModel>

<bindings>

<basicHttpBinding>

<binding name=”BasicHttpBinding_IBookService”

closeTimeout=”00:01:00”

openTimeout=”00:01:00” receiveTimeout=”00:10:00”

sendTimeout=”00:01:00”

allowCookies=”false” bypassProxyOnLocal=”false”

hostNameComparisonMode=”StrongWildcard”

maxBufferSize=”65536” maxBufferPoolSize=”524288”

maxReceivedMessageSize=”65536”

messageEncoding=”Text” textEncoding=”utf-8”

transferMode=”Buffered”

useDefaultWebProxy=”true”>

<readerQuotas maxDepth=”32” maxStringContentLength=”8192”

maxArrayLength=”16384”

maxBytesPerRead=”4096” maxNameTableCharCount=”16384” />

<security mode=”None”>

<transport clientCredentialType=”None”

proxyCredentialType=”None”

realm=”” />

<message clientCredentialType=”UserName”

algorithmSuite=”Default” />

</security>

</binding>

</basicHttpBinding>

</bindings>

<client>

<endpoint address=”http://localhost:5529/BookService.svc”

binding=”basicHttpBinding”

bindingConfiguration=”BasicHttpBinding_IBookService”

contract=”BookServiceReference.IBookService”

name=”BasicHttpBinding_IBookService” />

</client>

</system.serviceModel>

Substantially the app.config file maps the related nodes in the Web.config file from the
service. This is important to remember in case you want to implement a custom configu-
ration different from the default one. The bindings node defines how data and informa-
tion are transferred. The basicHttpBinding binding is the simplest way and uses Http
protocol and Text or Xml as the encoding format. WCF offers lots of other bindings
specific for particular needs, such as secured communications or peer-to-peer applications.
Table 41.3 summarizes built-in bindings.

From the Library of Wow! eBook

ptg

942 CHAPTER 41 Creating and Consuming WCF Services

In addition to built-in bindings, WCF enables defining custom bindings, but this is
beyond of the scope of this chapter.

IMPLEMENTING SECURE BINDINGS ON BOTH SERVICE AND CLIENTS

The current code example makes use, on both the service and client side, of the
basicHttpBinding, which is the simplest binding available. Using a different binding
strictly depends on the particular scenario you need to work on. Because of this, look at
the official MSDN documentation related to built-in bindings, which also provides exam-
ples and explanations on when each binding should be used. The documentation is locat-
ed at the following address:
http://msdn.microsoft.com/en-us/library/ms730879(VS.100).aspx.

TABLE 41.3 WCF Built-In Bindings

Binding Description

BasicHttpBinding
Used for ASP.NET-based Web services. It uses the HTTP protocol
and text or XML for messages encoding.

WSHttpBinding Used for secured communications in nonduplex service contracts.

WSDualHttpBinding
Used for secured communications in duplex service contracts
including SOAP.

WSFederationHttpBinding
Used for secured communications according to the WS-Federation
protocol that provides an easy authentication and authorization
system within a federation.

NetTcpBinding
Used for secured communications between WCF applications
distributed across multiple machines.

NetNamedPipeBinding
Used for secured communications between WCF applications on a
same machine.

NetMsmqBinding Used for messaging communications between WCF applications.

NetPeerTcpBinding Used for peer-to-peer applications.

MsmqIntegrationBinding
Used for communications between WCF applications and MSMQ
applications across multiple machines.

BasicHttpContextBinding
Similar to BasicHttpBinding but with the capability of enabling
cookies.

NetTcpContextBinding
Used for communications between WCF applications that need to
use SOAP headers for data exchange across multiple machines.

WebHttpBinding
Used for WCF services exposed via endpoints requiring HTTP
requests instead of SOAP endpoints.

WSHttpContextBinding
Similar to WsHttpBinding with the ability of enabling SOAP
headers for information exchange.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms730879(VS.100).aspx

ptg

943Handling Exceptions in WCF
4

1

Notice how you can customize timeouts (closeTimeout, openTimeout, sendTimeout, and
receiveTimeOut) and other interesting options such as maxBufferSize and
maxReceivedMessageSize. These two are important because you might be required to
increase the default size in case your application transfers big amounts of data. Now take a
look at the client node. This defines the endpoint’s ABC, such as the address pointing to
the physical URI of the service, the contract interface
(BookServiceReference.IBookService), and the binding transport protocol. Notice that
when moving the service to production, the address URI must be replaced with the
Internet/intranet address of your service. This can be accomplished by simply replacing
the address item in the configuration file without the need of rebuilding the application.

Handling Exceptions in WCF
WCF applications can throw communication exceptions that both services and clients
need to handle. Typically the most common exception in the WCF development is the
System.ServiceModel.FaultException that offers a generic, strongly typed flavor and a
nongeneric one. The exception needs to be first handled in the WCF service but the
nongeneric implementation is less useful than the generic one because it provides less
detailed information. Because of this we now consider how to handle the
FaultException(Of T). Replace the ValidateBook method definition in the IBookService
interface as follows:

<OperationContract()> <FaultContract(GetType(Book))>

Function ValidateBook(ByVal bookToValidate As Book) As String

The FaultContract attribute receives the type that may encounter processing errors
during the invocation of the service operation. This can allow the FaultException to
throw detailed SOAP information for that type. To accomplish this, replace the
ValidateBook method implementation in the BookService class with the following:

Public Function ValidateBook(ByVal bookToValidate As Book) As _

String Implements IBookService.ValidateBook

Try

Dim isValidIsbn As Boolean = Regex.IsMatch(String.

Concat(“ISBN-13: “,

bookToValidate.ISBN), isbnPattern)

If isValidIsbn = False Then

Return “Invalid ISBN”

End If

Dim isValidAuthor As Boolean = _

String.IsNullOrEmpty(bookToValidate.Author)

If isValidAuthor = True Then

Return “Author not specified”

From the Library of Wow! eBook

ptg

944 CHAPTER 41 Creating and Consuming WCF Services

End If

Dim isValidTitle As Boolean = _

String.IsNullOrEmpty(bookToValidate.Title)

If isValidTitle = True Then

Return “Title not specified”

End If

If bookToValidate.DatePublished Is Nothing Then

Return _

“Book data is valid but date published was not specified”

End If

Return “Valid book”

Catch ex As FaultException(Of Book)

Throw New FaultException(Of Book)(bookToValidate,

ex.Reason, ex.Code)

Catch ex As Exception

Throw

End Try

End Function

The intercepted FaultException is rethrown to the caller specifying the instance of the
Book class that caused the error, a Reason property that contains a SOAP description of the
problem, and a Code property that returns a machine-readable identifier used for under-
standing the problem. With these pieces of information, client applications can under-
stand what the problem was during the communication.

Hosting WCF Services in Internet Information Services
Host applications for WCF services can be of different kinds. Other than the ASP.NET
Development Server, you can host services inside managed applications, Windows
services, and Internet Information Services as well. In most cases the need will be to
deploy to IIS so we will cover this scenario. To host your WCF service in IIS on your devel-
opment machine, follow these steps:

1. Restart Visual Studio 2010 under administrator privileges.

2. Go to the My Project designer for the WCF service project and select the Web tab.

3. Check the Use Local IIS Web Server option and specify, if required, a different
directory; then rerun the WCF service (see Figure 41.6).

Visual Studio will request your permission for creating and configuring a virtual directory
on IIS so you just need to accept. When this is done, remember to replace the endpoint

From the Library of Wow! eBook

ptg

945Configuring Services with the Configuration Editor
4

1

FIGURE 41.6 Setting IIS as the deployment Web server.

address in the client application configuration file with the new service URI. To host a
WCF service on a nondevelopment machine, you need to create a directory under the
Default Website and link the physical folder to the folder where the .svc file is placed
together with the compiled dll service. This is accomplished via the Internet Information
Services Manager administrative tools available in the Windows operating system.

Configuring Services with the Configuration Editor
WCF services enable high-level customizations over their configuration. This task can be
complex if you consider that there are hundreds of options that you should translate into
Xml markup. Fortunately the .NET Framework offers a graphical tool called WCF Service
Configuration Editor that you can also launch from the Tools menu in Visual Studio. In
this section you see how this tool can be used for enabling tracing for WCF services.
Tracing is useful because it enables recording into log file (with .svclog extension) events
occurring during the WCF service running time. When launched, open the Web.config file

From the Library of Wow! eBook

ptg

946 CHAPTER 41 Creating and Consuming WCF Services

for your service. When ready click the Diagnostics folder on the left and then click the
Enable Tracing command under the Tracing title on the right (see Figure 41.7).

By default tracing records messages classified at least as warnings. To modify this behavior
simply click the Trace Level link. If you click the ServiceModelTraceListener link you
can also specify additional information to be tracked, such as the process ID, the call
stack, and the Thread ID. To view the log of recorded information you need to run the
Service Trace Viewer tool that is available in the shortcuts folder for Visual Studio in the
Windows’ All Programs menu. When the tool is running, open the .svclog file, which
usually resides in the service folder. Figure 41.8 shows an example of log analysis.

The tool provides tons of information about every event occurring at the service level and
is helpful if you encounter any problems.

FIGURE 41.7 Enabling tracing for WCF services.

From the Library of Wow! eBook

ptg

947Summary
4

1

FIGURE 41.8 The Service Trace Viewer tool in action.

Summary
Windows Communication Foundation is a unified programming model for distributed
applications that share information across networks. In this chapter you got started with
WCF, getting an introductive overview and then learning the basics about metadata.
Particularly you learned that WCF services expose endpoints to be accessible from clients
and that each endpoint exposes the so-called ABC, which stands for Address-Binding-
Contract. The contract is a .NET interface (marked with the ServiceContract attribute)
that establishes service operations that can be consumed by clients. Services expose infor-
mation and data through a class that implements the contract, and that is the main entry
point in the service. WCF services can expose also objects marked with the DataContract
attribute and that represent data that service and clients can exchange. Next you under-
stood how to consume WCF services from clients by adding service references and creat-
ing proxy classes to access service members. The last part of this chapter provided an
overview of exceptions handling and particular configurations with specific tools such as
the Configuration Editor and the Service Trace Viewer.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 42

Implementing and
Consuming WCF Data

Services

IN THIS CHAPTER

. What Are Data Services?

. Implementing WCF Data
Services

. Consuming WCF Data Services

. Implementing Service
Operations

. Implementing Query
Interceptors

. Understanding Server-Driven
Paging

The growth of networks such as the Internet or local
Intranets raised even more the need of implementing infra-
structures for data exchange between companies or among
users. Windows Communication Foundation introduced an
important unified programming model for information
exchange over networks, but implementing a custom logic
is not always an easy task. For this, Microsoft created an
extraordinary platform named WCF Data Services, formerly
named WCF Data Services, which takes advantage of the
WCF technology for specifically exposing and consuming
data over networks with a unified programming model that
can propagate different kinds of data sources based on the
.NET Framework and that can offer such infrastructure to
the most common client applications types. In this chapter
you start to build REST-enabled, data-oriented applications
with WCF Data Services.

What Are Data Services?
WCF Data Services are one of the latest data access tech-
nologies created by Microsoft and was first introduced with
.NET Framework 3.5 Service Pack 1, whereas the .NET
Framework 4 introduces some new features to the platform.
Data Services are also known as Project Astoria, which is the
code name for the data platform, and the development
team is also known as Astoria Team. WCF Data Services are
basically a framework for exposing data through networks
such as the Internet or a local intranet and are based on the
Windows Communication Foundation technology. At a
higher level, Data Services are REST-enabled WCF services in
that they support the Representational State Transfer

From the Library of Wow! eBook

ptg

950 CHAPTER 42 Implementing and Consuming WCF Data Services

programming model that enables querying data via http requests. WCF Data Services can
propagate through networks several kinds of data sources, such as entity data models or
in-memory collections that can be consumed by several kinds of client applications, both
Windows and Web, such as WPF, Windows Forms, Silverlight, and ASP.NET Ajax. This data
access technology is particularly useful when you need an easy and fast way for imple-
menting data exchange between a server and several clients, which can reach the service
just with a web reference, through a unified programming model that can simplify your
life—especially when you do not need deep customizations on the business logic. Clients
can access data in two ways: via Uri, with http requests, or via a specific LINQ provider
known as LINQ to WCF Data Services. Clients can perform CRUD operations using LINQ
as well. In this chapter you learn to implement WCF Data Services exposing data from
entity data models and consuming them from client applications using both Uri and LINQ
approaches. As I said before, WCF Data Services can expose several kinds of data sources,
but the most common scenario (and the most modern) is exposing data from entity data
models based on the Entity Framework, as shown with examples in this chapter.

Querying Data via Http Requests

WCF Data Services can be queried via http requests. This is possible because of the REST
approach offered by this particular kind of WCF services and that is basically a special
XML serialization format for data exchange; XML is perfect at this point because it allows
standardizing how data is exchanged in both directions. Querying a Data Service is
substantially performed by writing an Uri (Uniform Resource Identifier) in your web
browser addresses bar or in managed code. For example, suppose you have a Data Service
exposing data from the Northwind database. When deployed, the service has the follow-
ing address:

http://localhost:4444/Northwind.svc

Http requests sent to a Data Service are represented by the http verbs: GET, (read), POST
(update), PUT (insert), and DELETE. The following Uri sends a GET request and demonstrates
how you can query the Customers collection and get all the Customer objects:

http://localhost:4444/Northwind.svc/Customers

As you see later when discussing service implementations, this Http request can show the
full customers list. You can then filter your query results. For example, you can retrieve all
orders from the ANATR customer as follows:

http://localhost:4444/Northwind.svc/Customers(‘ANATR’)/Orders

Finally you could also perform other operations such as ordering via the query string. For
example, the following Uri contains a query string that retrieves the same orders as previ-
ously mentioned but is ordered according to the OrderDate property:

http://localhost:4444/Northwind.svc/Customers(‘ANATR’)/Orders?orderby=OrderDate

From the Library of Wow! eBook

ptg

951Implementing WCF Data Services

For entity data models, an Uri can be summarized as follows:

http://website/ServiceName.svc/EntitySetName/NavigationProperty(PrimaryKey)

The best way to understand is always by getting your hands on code, so the next section
explains how to implement an ADO.NET Data Service, whereas in the second part of the
chapter, you see how to consume the service itself.

Implementing WCF Data Services
To implement an ADO.NET Data Service, you first create a Web application, add your data
source, and finally add a service to your project. The goal of the next example is to
expose data within a master-detail relationship from the Northwind database via an entity
data model. Run Visual Studio 2010 and create a new Web application, naming the new
project NorthwindDataService. Figure 42.1 shows the New project window to explain
the selection.

4
2

When the new project is ready, add a new entity data model to the project pointing to the
Northwind database, ensuring that Customers, Orders, and Order_Details tables are
selected and correctly mapped into the new EDM. If you need a recap on building EDMs,
read Chapter 27, “Introducing the ADO.NET Entity Framework.” When ready, in Solution
Explorer right-click the project name and select Add New Item. In the Add new item
dialog, search for the ADO.NET Data Service template and name the new service as
NorthwindService.svc, as shown in Figure 42.2.

FIGURE 42.1 Creating a new Web application for hosting a Data Service.

From the Library of Wow! eBook

ptg

952

After a few seconds the WCF service is added to the project. If you double-click the
NorthwindService.svc file, the code editor lists the auto-generated code expressed in
Listing 42.1.

LISTING 42.1 Starting Code for a Data Service

Imports System.Data.Services

Imports System.Data.Services.Common

Imports System.Linq

Imports System.ServiceModel.Web

Public Class NorthwindService

‘ TODO: replace [[class name]] with your data class name

Inherits DataService(Of [[class name]])

‘ This method is called only once to initialize service-wide policies.

Public Shared Sub InitializeService(ByVal config As DataServiceConfiguration)

‘ TODO: set rules to indicate which entity sets and service operations are

‘visible, updatable, etc.

‘ Examples:

‘config.SetEntitySetAccessRule(“MyEntitySet”, EntitySetRights.All)

‘config.SetServiceOperationAccessRule(“MyServiceOperation”,

ServiceOperationRights.AllRead)

config.DataServiceBehavior.MaxProtocolVersion = _

CHAPTER 42 Implementing and Consuming WCF Data Services

FIGURE 42.2 Adding a Data Service to the project.

From the Library of Wow! eBook

ptg

953Implementing WCF Data Services
4

2

DataServiceProtocolVersion.V2

End Sub

End Class

This is the point where we need to make some considerations. First, WCF Data Services are
implemented by both the System.Data.Services.dll and System.Data.Services.Client.dll
assemblies. The most important namespaces exposed by such assemblies are
System.Data.Services, System.Data.Services.Common, and
System.Data.Services.Client. On the server side, they need to work with the
System.ServiceModel namespace that provides support for WCF. The entry point of a
Data Service is the System.Data.Services.DataService(Of T) class that is the base class
for each service. If you take a look at the code, you see that the NorthwindService class
inherits from DataService(Of T). Comments suggest replacing the standard [[class
name]] identifier with the appropriate one, which is NorthwindEntities in our case. With
that said, the inheritance declaration becomes the following:

Inherits DataService(Of NorthwindEntities)

Notice how the InitializeService method (invoked to start the service) receives a config
argument of type DataServiceConfiguration; with this class you can configure the service
behavior, for example access authorizations for your data source. The
SetEntitySetAccessRule enables establishing access authorizations on entities from the
EDM. For example, if you want clients to gain full access on the Customers entity, you
write the following line:

config.SetEntitySetAccessRule(“Customers”, EntitySetRights.All)

You need to provide an access rule for each entity. As an alternative, you can use an * char-
acter for providing the same access level to all entities. This is not the best approach, but it
can be useful for demonstration purposes. With that said uncomment the line of code for
the previously mentioned method and replace the default line with the following one:

’Allows clients performing complete C.R.U.D. operations on all entities

config.SetEntitySetAccessRule(“*”, EntitySetRights.All)

The access rule is set via one of the EntitySetRights enumeration’s values, which are
summarized in Table 42.1

TABLE 42.1 EntitySetRights Enumeration’s Values

Value Description

All Provides full access to entities.

AllRead Provides reading access to both multiple and single entities.

AllWrite Provides writing access to both multiple and single entities.

None No authorization offered.

From the Library of Wow! eBook

ptg

954

Just remember that if you want to perform classic insert/update/delete operations, you
need to provide All access level. Basically you just completed the most basic steps for
getting a Data Service up and running. If you now press F5 to start the application, your
web browser shows the result of the XML serialization of your data, according to the REST
model. This result is shown in Figure 42.3.

CHAPTER 42 Implementing and Consuming WCF Data Services

OverrideEntitySetRights If entities have explicit access rules, these are overridden with the
ones specified here.

ReadMultiple Provides reading access to multiple entities.

ReadSingle Provides reading access to a single entity.

WriteAppend Allows adding new entities.

WriteDelete Allows deleting entities.

WriteMerge Allows merging entities with existing data.

WriteReplace Allows replacing entities.

FIGURE 42.3 The Data Service running shows serialized data in the Web browser.

TABLE 42.1 Continued

Value Description

From the Library of Wow! eBook

ptg

955Implementing WCF Data Services
4

2

TURN OFF RSS READING VIEW

If you do not get the result shown in Figure 42.3 and instead see an RSS feeds read-
ing view, you need to turn off such view in your browser. If you run Internet Explorer, you
can select Tools, Internet Options, Content and then click the Settings button, finally
you unflag the Turn On Feed Reading View check box. You will need to restart Internet
Explorer for the change to take effect.

Notice how the service tag stores the service address. This is important because you use
such an address later when instantiating the service. Also notice how the three entitysets
(Customers, Orders, and Order_Details) are serialized. Now type the following Uri in the
browser address bar, replacing the port number with the one you see on your machine:

http://localhost:1443/NorthwindService.svc/Customers

This line fetches the full customers list, as shown in Figure 42.4.

FIGURE 42.4 Fetching the customers list via Uri.

From the Library of Wow! eBook

ptg

956

You can simply scroll the page to see how each customer is serialized in the query result.
If you look at Figure 42.4, you can easily understand how each customer property is
represented. You can also perform some more complex queries. For example, you might
want to retrieve master-details data such as all orders from a specific customer, as in the
following Uri:

http://localhost:1443/NorthwindService.svc/Customers(‘ANATR’)/Orders?orderby=OrderD

ate

This Uri will retrieve the result shown in Figure 42.5.

CHAPTER 42 Implementing and Consuming WCF Data Services

You can perform complex queries via Uri, and this is one of the allowed modes for query-
ing data from client applications, so you need to understand how query strings are
composed. For this, read the following document from the MSDN Library for a full list of
supported operators: http://msdn.microsoft.com/en-us/library/cc668784(VS.100).aspx.
Generally you cannot query your service this way, whereas you will instead do it from a
client application. This is what the next section begins to show. Of course what has been
described until now is not all about the server side; other interesting features are described
later in this chapter, but first you need to know how to reference a data service from the
client side.

FIGURE 42.5 Retrieving master-details data via Uri.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/cc668784(VS.100).aspx

ptg

957Consuming WCF Data Services
4

2

Deploying WCF Data Services to Internet Information Services

In real-world applications you will probably host your Data Services on web servers such
as Internet Information Services. Because they are WCF services, you will deploy them
with related techniques described in this page on the MSDN Library:
http://msdn.microsoft.com/en-us/library/ms730158(VS.100).aspx. For demonstration
purposes and for a better focusing on services implementation, in this book we simply
deploy Data Services to the ASP.NET development server so that we can take advantage of
the Visual Studio environment features.

Consuming WCF Data Services
You essentially consume WCF Data Services the same way you consume pure WCF
services. Basically you need to add a service reference from the client and then instantiate
the proxy class. Such a class will be generated for you by Visual Studio 2010 and will
expose members for accessing data on the server. As mentioned at the beginning of this
chapter, WCF Data Services can be consumed by different kinds of clients such as
Windows (Console, Windows Forms, WPF) and Web (Silverlight, ASP.NET Ajax) applica-
tions. The next example shows you how to consume Data Services from a Console client
application. Such a project template is useful for focusing on concepts that you can apply
to other kinds of applications.

NOTE FOR SILVERLIGHT DEVELOPERS

Basically WCF Data Services can be consumed from Silverlight applications with the
same programming techniques described in this chapter, except that they work asyn-
chronously. If you are interested in this kind of development, I suggest you to read this
blog post from the Microsoft Visual Studio Data Team Blog: http://blogs.msdn.com/
vsdata/archive/2009/10/22/accessing-master-detail-data-through-ado-net-data-service-
in-a-silverlight-application-part-1.aspx.

Creating a Client Application

The goal of the next example is to show how you can perform read/insert/update/delete
operations against a Data Service from a client. Follow these steps:

1. Add to the current solution a new Console project and name it NorthwindClient.

2. Right-click the project name and select Add Service Reference. This adds a reference
to the Data Service similar to what happens for WCF services. Because in our
example the service is available in the current solution, just click Discover. In real

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms730158(VS.100).aspx
http://blogs.msdn.com/vsdata/archive/2009/10/22/accessing-master-detail-data-through-ado-net-data-service-in-a-silver-light-application-part-1.aspx
http://blogs.msdn.com/vsdata/archive/2009/10/22/accessing-master-detail-data-through-ado-net-data-service-in-a-silver-light-application-part-1.aspx
http://blogs.msdn.com/vsdata/archive/2009/10/22/accessing-master-detail-data-through-ado-net-data-service-in-a-silver-light-application-part-1.aspx

ptg

958 CHAPTER 42 Implementing and Consuming WCF Data Services

applications you will instead type the Uri of your service. Figure 42.6 shows how the
Add Service Reference dialog appears now.

3. Replace the default identifier in the Namespace textbox with a more appropriate
one, such as NorthwindServiceReference; then click OK.

TIP

If the Data Service also exposes service operations (see the next section for details),
these will be listed in the right side of the dialog.

At this point Visual Studio 2010 generates what in WCF is defined as a proxy class, which
is client code. Basically it generates a number of classes: one class that inherits from
System.Data.Services.Client.DataServiceContext and that can be considered as the
Astoria counterpart for the Entity Framework’s ObjectContext and a series of counterpart
classes for entities in the EDM. This means that, for our example, you have Customer,
Order, and Order_Detail classes implemented on the client side. All these classes imple-
ment the INotifyPropertyChanged interface so that they can notify the UI of changes on
the original data source. Instead the DataServiceContext class also exposes properties of
type System.Data.Services.Client.DataServiceQuery(Of T) that are collections of the
previously mentioned classes and that represent strongly typed queries against entity sets
exposed by a Data Service. For example, the DataServiceContext class in our example
(automatically named NorthwindEntities for consistency with the related context in the
service) exposes the Customers, Orders, and Order_Details properties, respectively, of type

FIGURE 42.6 Adding a reference to the ADO.NET Data Service.

From the Library of Wow! eBook

ptg

959Consuming WCF Data Services
4

2

DataServiceQuery(Of Customer), DataServiceQuery(Of Order), and
DataServiceQuery(Of Order_Detail). Although you should never manually edit auto-
generated code, if you are curious, you can inspect previously mentioned classes by
expanding the NorthwindServiceReference item in Solution Explorer and clicking the
Reference.vb file. This is the place where all the client code is implemented. You notice
lots of similarities with an entity data model implementation, but do not become
confused because WCF Data Services are a different thing. By the way, such similarities can
help you understand how to perform data operations. For example, there are methods for
adding objects (AddToCustomers, AddToOrders) and for removing objects (DeleteObject).
For now, add the following Imports directives that allow shortening lines of code:

Imports NorthwindClient.NorthwindServiceReference

Imports System.Data.Services.Client

The next step is instantiating the proxy client class. At module level, add the following
declaration:

Private northwind As New _

NorthwindEntities(New _

Uri(“http://localhost:1443/NorthwindService.svc”))

Notice how the instance requires you to specify the service Uri. This is the same that is
specified when adding the service reference. The northwind variable represents the
instance of the DataServiceContext class that exposes members for working against enti-
ties exposed by the Data Service and that allows performing CRUD operations. The first
operation I am going to explain is insertion. Consider the following function:

Private Function AddNewOrder(ByVal relatedCustomer As Customer) As Order

Dim newOrder As New Order

With newOrder

.Customer = relatedCustomer

.OrderDate = Date.Today

.ShipCountry = “Italy”

.ShipCity = “Milan”

.ShipName = “First”

End With

northwind.AddToOrders(newOrder)

northwind.SetLink(newOrder, “Customer”, relatedCustomer)

northwind.SaveChanges()

Return newOrder

End Function

The code first creates an instance of a new order and populates the desired properties.
Notice how a relationship to the specified customer is also set. This relationship is just set
in-memory, but it needs to be explicitly set when sending changes to the actual database.

From the Library of Wow! eBook

ptg

960 CHAPTER 42 Implementing and Consuming WCF Data Services

The new order is added to the model via the AddToOrders method, whereas SetLink explic-
itly sets the relationship. The method requires the new object as the first argument, the
navigation property in the model as the second argument, and the master object in the
master-details relationship. Finally the code saves the new data to the database invoking
SaveChanges. Later you see how to send to the data source changes in a batch. Performing
an update operation is an easy task. You simply get the instance of the desired object and
edit properties. The following snippet demonstrates how to update an existing order:

Private Sub UpdateOrder(ByVal OrderID As Integer)

‘Retrieving the one instance of the specified Order with

‘a lambda.

Dim ord = northwind.Orders.Where(Function(o) o.OrderID = _

OrderID).First

ord.ShipName = “Second”

ord.ShipCity = “Cremona”

ord.ShipCountry = “Italy”

End Sub

The code shows how you simply get the instance of your object and replace properties. If
you want to save changes at this point, invoke SaveChanges. We are not doing this now
because we will save changes in the batch later.

EXTENSION METHODS

WCF Data Services do not support First and Single extension methods directly on
the data source. This is the reason why in the previous code snippet we had to pass
through a Where method.

The next step is implementing a deletion method. This is also a simple task, as demon-
strated by the following code:

Private Sub DeleteOrder(ByVal OrderID As Integer)

Dim ord = northwind.Orders.Where(Function(o) o.OrderID = _

OrderID).First

northwind.DeleteObject(ord)

End Sub

Also in this case you simply get the instance of the object you want to remove and then
invoke the DeleteObject method. The last step is showing how you can save multiple
changes to entities in one shot. The following code demonstrates this:

Private Sub SaveAllChanges()

northwind.SaveChanges(Services.Client.SaveChangesOptions.Batch)

End Sub

From the Library of Wow! eBook

ptg

961Consuming WCF Data Services
4

2

SaveChanges receives an argument of type System.Data.Services.Client.
aveChangesOptions, which is an enumeration whose most important value is Batch,
which enables saving all pending changes with a single http request; thus it is efficient
with regard to performances. Now we just need to invoke the various methods from
within the Sub Main. The following code first creates a new order, updates it, and finally
deletes it:

Sub Main()

Dim cust = northwind.Customers.Where(Function(c) c.CustomerID = _

“ALFKI”).First

Try

Dim anOrder = AddNewOrder(cust)

Console.WriteLine(“Added new order: {0}”, anOrder.OrderID)

UpdateOrder(anOrder.OrderID)

Console.WriteLine(“Updated order {0}. ShipCity now is {1},

ShipName now is {2}”,

anOrder.OrderID, anOrder.ShipCity,

anOrder.ShipName)

‘Replace the order ID with a valid one

DeleteOrder(anOrder.OrderID)

Console.WriteLine(“Order deleted”)

SaveAllChanges()

Console.ReadLine()

northwind = Nothing

Catch ex As DataServiceQueryException

Console.WriteLine(“The server returned the following error:”)

Console.WriteLine(ex.Response.Error.Message)

Console.ReadLine()

Catch ex As Exception

End Try

End Sub

The code also is ready for intercepting a DataServiceQueryException, a particular object
that provides client information from DataServiceException objects thrown on the server

From the Library of Wow! eBook

ptg

962 CHAPTER 42 Implementing and Consuming WCF Data Services

side. If you now run the application, you get messages informing you about the data oper-
ations progress, as shown in Figure 42.7.

Querying Data

One of the most common requirements of any data framework is the ability to perform
queries. WCF Data Services allow two modes on the client side. The first one is utilizing
query strings similarly to what it is possible to do with Uris. To accomplish this you
invoke the Execute(Of T) method from the DataServiceContext class, where T is the
type you want to retrieve a collection of. For example, the following code returns a collec-
tion of orders for the specified customer, sorted by order date:

Dim myOrders = Northwind.Execute(Of Order)(New _

Uri(“/Customers(‘ANATR’)/Orders?orderby=OrderDate”, _

UriKind.Relative))

This way is efficient but avoids the strongly typed approach provided by LINQ.
Fortunately the .NET Framework also enables using a special LINQ provider known as
LINQ to Data Services. The following code snippet demonstrates how you can obtain the
same result as previously by writing a LINQ query:

Dim myOrders = From ord In northwind.Orders

Where ord.Customer.CustomerID = “ANATR”

Select ord

Of course this is powerful but not necessarily the best choice. For example, you might
want to prevent indiscriminate data access from clients, or you might simply want better
performances implementing queries on the server side and exposing methods returning
query results. This is where service operations take place.

FIGURE 42.7 The sample application performs all operations.

From the Library of Wow! eBook

ptg

963Implementing Service Operations
4

2

Implementing Service Operations
Service operations are .NET methods that can perform data operations on the server side.
With service operations developers can preventively establish access rules and customize
the business logic, such as data validation or access restrictions. They are basically WCF
extensions for Data Services and perform operations via Http requests, meaning that you
can execute service operations within a web browser or from a client application. Service
operations can return the following types:

. IQueryable(Of T) in data-centric scenarios with EDMs or LINQ-to-SQL models

. IEnumerable(Of T)

. .NET primitive types, because Data Services can also expose in-memory collections

. No type (Sub methods)

Service operations can be used for both reading and writing data to the service. In a
reading situation, service operations are Function methods marked with the WebGet
attribute, whereas in writing situations they are decorated with the WebInvoke attribute.
The next example explains how to read order details for the specified order and return
fetched data to the client. First, add the following method to the NorthwindService class:

<WebGet()> Public Function GetOrderDetails(ByVal OrderID As Integer) _

As IQueryable(Of Order_Detail)

If OrderID > 0 Then

Dim query = From det In Me.CurrentDataSource.Order_Details

Where det.OrderID = OrderID

Select det

Return query

Else

Throw New DataServiceException(400,

“OrderID is not valid”)

End If

End Function

The method explanation is quite simple. It performs a simple validation on the OrderID
argument; if valid, it executes a LINQ to Data Services query for getting related order
details returning an IQueryable(Of Order_Detail) type. Notice the CurrentDataSource
object, which represents the instance of the NorthwindEntities class on the server side. If
the OrderID is considered invalid, the method throws a DataServiceException, which is
specific for throwing errors from the service. You can specify an Http error code and an
error message. To make a service operation recognizable and executable, you need to set
permissions for it. This is accomplished by invoking the

From the Library of Wow! eBook

ptg

964 CHAPTER 42 Implementing and Consuming WCF Data Services

DataServiceConfiguration.SetServiceOperationAccessRule method; therefore, uncom-
ment the following line of code in the InitializeService method:

’config.SetServiceOperationAccessRule _

(“MyServiceOperation”, ServiceOperationRights.AllRead)

Then you need to replace the operation name as follows:

config.SetServiceOperationAccessRule(“GetOrderDetails”,

ServiceOperationRights.AllRead)

In our scenario we just need to read data from the service, so the AllRead permission is
appropriate. If you now run the service, you can type the following line in the browser
address bar to invoke the service operation, making sure to type the appropriate port
number of the development server on your machine:

http://localhost:1443/NorthwindService.svc/GetOrderDetails?OrderID=10250

Basically you invoke the operation writing its name after the service address. Notice that
operations’ names and parameters are case-sensitive. At this point you are ready for
calling the service operation from the client application. Return to the NorthwindClient
project, and add the following method that invokes the service operations for fetching
order details:

Private Sub ViewDetails(ByVal OrderID As Integer)

Console.WriteLine(“Showing details for Order ID: “ _

& OrderID.ToString)

Dim details = northwind.Execute(Of Order_Detail) _

(New Uri(“GetOrderDetails?OrderID=” & _

OrderID.ToString,

UriKind.Relative))

For Each detail In details

Console.WriteLine(“ID: {0}, Unit price: {1}, Quantity: {2}”,

detail.OrderID,

detail.UnitPrice,

detail.Quantity)

Next

Console.ReadLine()

End Sub

The code is still quite simple. It invokes the service operation building a query string
concatenating the supplied order ID. Notice how the Execute(Of Order_Detail) method
is invoked because the service operations return a collection of the same type. The method
requires you to specify the Uri of the service operation, which in this case is its name
followed by the order Id. Before you run the application, you need to update the service
reference. This step can be performed later in this case, because you do not invoke a

From the Library of Wow! eBook

ptg

965Implementing Query Interceptors
4

2

managed method, whereas you invoke a service operation via a query string. To update
the service reference, in Solution Explorer, just right-click the
NorthwindServiceReference item and select Update Service Reference. Updating the
service reference is something that you must do each time you perform changes on the
service after a reference has been already added in the client application. If you now run
the application, you get details for the specified order, as shown in Figure 42.8.

If you want to perform insertions, updates, or deletions, you can implement web invokes
on the server side. This is accomplished by decorating methods with the WebInvoke
attribute. The MSDN documentation provides examples on WebInvoke at this address:
http://msdn.microsoft.com/en-
us/library/system.servicemodel.web.webinvokeattribute(VS.100).aspx.

Implementing Query Interceptors
In the previous section I covered service operations, which act on the server side. But they
are not the only server-side feature in Data Services. Another interesting feature is known
as query interceptors. Basically interceptors are .NET methods exposed by the service class
enabling developers to intercept Http requests and to establish how such requests must be
handled, both in reading (query interceptors) and in writing (change interceptors) operations.
This section describes both query interceptors and change interceptors.

Understanding Query Interceptors

Query interceptors are public methods for intercepting HTTP GET requests and allow
developers to handle the reading request. Such methods are decorated with the
QueryInterceptor attribute that simply requires specifying the entity set name. For a
better understanding, consider the following interceptor (to be implemented within the
NorthwindService class) that returns only orders from the specified culture:

<QueryInterceptor(“Orders”)> Public Function OnQueryOrders() As _

FIGURE 42.8 Getting order details via a service operation.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.servicemodel.web.webinvokeattribute(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.web.webinvokeattribute(VS.100).aspx

ptg

966 CHAPTER 42 Implementing and Consuming WCF Data Services

Expression(Of Func(Of Order, Boolean))

‘Determines the caller’s culture

Dim LocalCulture = WebOperationContext.Current.

IncomingRequest.Headers(“Accept-Language”)

If LocalCulture = “it-IT” Then

Return Function(ord) ord.ShipCountry = “Italy”

Else

Throw New DataServiceException(“You are not authorized”)

End If

End Function

OnQueryOrders will be invoked on the service each time an HTTP GET requests is sent to
the service. The code just returns only orders where the ShipCountry property’s value is
Italy, if the client culture (the caller) is it-IT. Differently, the code throws a
DataServiceException. The most important thing to notice in the code is the returned
type, which is an Expression(Of Func(Of T, Boolean)). This is an expression tree gener-
ated starting from the lambda expression actually returned. You may remember from
Chapter 21, “Advanced Language Features,” how the Func object enables generating
anonymous methods on-the-fly, receiving two arguments: The first one is the real argu-
ment, whereas the second one is the returned type. The lambda expression is the equiva-
lent of the following LINQ query:

Dim query = From ord In Me.CurrentDataSource.Orders

Where ord.ShipCountry = “Italy”

Select ord

The big difference is that this kind of query returns an IQueryable(Of Order), whereas we
need to evaluate the result of an expression tree, and this is only possible with lambdas.
You can easily test this interceptor by running the service and typing the following Uri in
the browser address bar, replacing the port number:

http://localhost:1443/NorthwindService.svc/Orders

This Uri automatically fetches only orders targeting Italy, if your local culture is it-IT. If it
is not, the Visual Studio debugger shows an exception. By the way, it is important to
provide sufficient information about exceptions from the server side, because clients need
detailed information for understanding what happened. This is a general rule explained
here together with a practical example. WCF Data Services provide a simple way for
providing descriptive error messages other than throwing exceptions. This requires the
following line of code in the InitializeService method:

config.UseVerboseErrors = True

On the client side, failures from query interceptors are handled by
DataServiceQueryException objects. This is the reason why I already implemented such
an object in the Try..Catch block in the client application’s main window. According to

From the Library of Wow! eBook

ptg

967Implementing Query Interceptors
4

2

the previous example, if your culture is different from it-IT, when you run the client
application, you should get the error message shown in Figure 42.9.

Notice how, other than the error message you provided via the DataServiceException,
there is a lot of information that can be useful to understand what happened. You thus
could implement a log system for redirecting to you, as a developer, all collected informa-
tion. Until now we talked about query interceptors, which intercept GET requests. We
now cover change interceptors.

Understanding Change Interceptors

Change interceptors are conceptually similar to query interceptors, but they differ in that
they can intercept http requests of type POST, PUT, and DELETE (that is, CRUD operations
via Uri). They are public methods returning no type; therefore, they are always Sub deco-
rated with the ChangeInterceptor attribute pointing to the entity set name. Each inter-
ceptor receives two arguments: the data source (generally a single entity) and the
System.Data.Services.UpdateOperations enumeration, which allows understanding what
request was sent. Take a look at the following interceptor:

<ChangeInterceptor(“Orders”)> _

Public Sub OnOrdersChange(ByVal DataSource As Order,

ByVal Action As UpdateOperations)

FIGURE 42.9 The detailed information about the error.

From the Library of Wow! eBook

ptg

968 CHAPTER 42 Implementing and Consuming WCF Data Services

If Action = UpdateOperations.Add OrElse _

Action = UpdateOperations.Change Then

‘If data does not satisfy my condition, throws an exception

If DataSource.OrderDate Is Nothing Then

Throw New DataServiceException(400,

“Order date cannot be null”)

End If

ElseIf Action = UpdateOperations.Delete Then

If DataSource.ShippedDate IsNot Nothing Then

Throw New DataServiceException(500,

“You are not authorized to delete orders with full info”)

End If

End If

End Sub

You decide how to handle the request depending on the UpdateOperations current value.
Add corresponds to an insert operation, Delete to a delete operation, Change to an update
operation, and None means that no operations were requested for the data source. The
preceding code performs the same actions on both Add and Change operations and throws
an exception if the new or existing order has null value in the OrderDate property. A
different check is instead performed about Delete requests; in my example the code
prevents from deleting an order whenever it has value in the ShippedDate property. No
other code is required for handling situations in which supplied data are valid, because
the Data Services framework automatically persists valid data to the underlying source.
Change interceptors come in when a client application invokes the
DataServiceContext.SaveChanges method. On the server side, change interceptors are
raised just before sending data to the source and collecting information on the CRUD
operation that sent the request.

Understanding Server-Driven Paging
The new version of WCF Data Services introduced by .NET 4.0 presents a new feature
known as server-driven paging. This feature enables paging data directly on the server and
provides developers the ability of specifying how many items a page must return, also
offering an Uri for browsing the next page. To enable server-driven paging, you simply
invoke the DataServiceConfiguration.SetEntitySetPageSize method that requires speci-
fying the entity set name and the number of items per page. The following code demon-
strates this:

config.SetEntitySetPageSize(“Orders”, 4)

If you now start the service and try to fetch all orders, you get the result shown in
Figure 42.10.

From the Library of Wow! eBook

ptg

969Summary
4

2

FIGURE 42.10 Server-driven paging demonstration.

For the sake of clarity all entry items within the browser window are collapsed, but you
can easily see how each of them represents an order. Therefore the page shows exactly four
items for how it was specified within the service. Another thing that is worth mentioning
is the link rel tag that contains the Uri for moving to the next four items as follows:

http://localhost:1443/NorthwindService.svc/Orders?$skiptoken=10272

Server-driven paging is intended for use within the service; if you instead require to imple-
ment paging on client applications, you can still work with client paging that you accom-
plish specifying $skip and $take clauses within http requests.

Summary
WCF Data Services are REST-enabled WCF services supporting http requests such as GET,
POST, PUT, and DELETE and constitute a data platform for exposing data through
networks. In this chapter you got a high-level overview of Data Services; you first learned
implementing services seeing how they can be easily created within ASP.NET Web applica-
tions, by simply adding the WCF Data Service item. Services running within a Web
browser can then be easily queried via http requests (Uri). Next you saw how to consume
WCF Data Services from client applications and perform CRUD operations taking advan-
tage of the DataServiceContext class that exposes appropriate members for such kinds of
operations. After this you saw how to implement service operations and interceptors for
best results on the server side. Finally you took a tour into a new feature of Data Services
in .NET 4, the server-driven paging for best performances on the server side.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 43

Serialization

IN THIS CHAPTER

. Objects Serialization

. XML Serialization

. Custom Serialization

. Serialization with XAML

. Serialization in Windows
Communication Foundation

. Serialization in the ADO.NET
Entity Framework

Most real-world applications need to store, exchange, and
transfer data. Due to its special nature, the .NET Framework
stores data into objects and can exchange data via objects.
If you need to store data only for your application, you
have lots of alternatives. The problem is when you need to
exchange and transfer data with other applications. In
other words, you need to think of how your objects are
represented and decide if you need to convert them into a
different format. This is because another application cannot
understand objects in their pure state; therefore, how infor-
mation is persisted needs to be standardized. Serialization
enables you to save your object’s state to disk and then re-
create the object according to the specified format. With
serialization you simply store your data and transfer data to
other applications that can re-create the information. For
example, you have an application that needs to store and
transfer data to another application through a network.
With the .NET Framework, you serialize your data (that is,
save the result of the serialization process to a stream),
transfer your data to the target application, and wait for the
target application to deserialize (that is, re-creating the
object starting from the serialized information) your data
and use it. In this chapter you learn to implement serializa-
tion in your applications, understanding what decisions
you should make if you need to transfer data to non-.NET
and non-Windows applications, too. Moreover, you get
information on serialization techniques that have been
introduced in .NET Framework 3.5 and 4.0.

From the Library of Wow! eBook

ptg

972 CHAPTER 43 Serialization

Objects Serialization
Serializing .NET objects is the easiest serialization mode. In this particular scenario you
need a file stream where you have to place data and a formatter establishing the serializa-
tion mode. When you have the formatter instance, you simply invoke the Serialize
method. The System.Runtime.Serialization.Formatters namespace provides two sub
namespaces, Binary and Soap, exposing respectively the following formatters:
BinaryFormatter and SoapFormatter. The first one serializes objects in a binary way. It is
efficient but you should use it only if you are sure that your objects will be deserialized by
.NET applications, because such binary format is not universal. If you instead want to be
sure that your objects can be shared across different applications and platforms, you
should prefer the SoapFormatter that produces an Xml-based result useful when working
with Soap web services.

Binary Serialization

The following example shows how you can serialize a typed collection of strings into a file
on disk using the BinaryFormatter class:

Dim stringSeries As New List(Of String) From

{“Serialization”, “demo”,

“with VB”}

Dim targetFile As New _

FileStream(“C:\temp\SerializedData.dat”,

FileMode.Create)

Dim formatter As New BinaryFormatter

formatter.Serialize(targetFile, stringSeries)

targetFile.Close()

formatter = Nothing

NOTE

The above code example requires Imports System.IO and Imports
System.Runtime.Serialization.Formatters.Binary directives.

The code simply creates a new file named SerializedData.Dat and puts the result of the
binary serialization in the file. If you examine the content of the file with the Windows
Notepad, you can obtain a result similar to what is shown in Figure 43.1.

You don’t effectively need to know how your objects are serialized, but it is interesting to
understand what kind of information is placed into the target file, such as the serialized
type, assembly information, and the actual data. To deserialize a binary file you simply

From the Library of Wow! eBook

ptg

973Objects Serialization

FIGURE 43.1 Examining the result of the serialization process.

invoke the BinaryFormatter.Deserialize method, as shown in the following code which
you write right after the preceding example:

Dim sourceFile As New FileStream(“C:\temp\SerializedData.dat”,

FileMode.Open)

formatter = New BinaryFormatter

Dim data = CType(formatter.Deserialize(sourceFile),

List(Of String))

sourceFile.Close()

formatter = Nothing

‘Iterates the result

For Each item In data

Console.WriteLine(item)

Next

Notice that Deserialize returns Object; therefore, the result needs to be converted into
the appropriate type that you expect. If you run the preceding code you see on your
screen how the strings from the collection are correctly listed. This kind of serialization is
also straightforward because it enables serializing entire object graphs. Moreover, you can
use this technique against user interface controls in Windows Forms and WPF applications
to persist the state of your interface objects that can be later re-created.

HANDLING SERIALIZATION EXCEPTIONS

Remember to perform serialization and deserialization operations within a Try..Catch
block and implement code for handling the SerializationException exception that
provides information on serialization/deserialization errors.

Creating Objects Deep Copies with Serialization
In Chapter 4, “Data Types and Expressions,” I illustrated how to create objects’ copies
implementing the ICloneable interface and how you can clone an object with the

4
3

From the Library of Wow! eBook

ptg

974 CHAPTER 43 Serialization

MemberWiseClone method. Such scenarios have a big limitation: They cannot create copies
of an entire object graph. Luckily binary serialization can instead serialize entire object
graphs and thus can be used to create complete deep copies of objects. The code in Listing
43.1 shows how to accomplish this by implementing a generic method.

LISTING 43.1 Implementing Deep Copy with Serialization

Imports System.Runtime.Serialization

Imports System.Runtime.Serialization.Formatters.Binary

Imports System.IO

Public Class CreateDeepCopy

Public Shared Function Clone(Of T)(ByVal objectToClone As T) As T

‘If the source object is null, simply returns the current

‘object (as a default)

If Object.ReferenceEquals(objectToClone, Nothing) Then

Return objectToClone

End If

‘Creates a new formatter whose behavior is for cloning purposes

Dim formatter As New BinaryFormatter(Nothing,

New StreamingContext(

StreamingContextStates.Clone))

‘Serializes to a memory stream

Dim ms As New MemoryStream

Using ms

formatter.Serialize(ms, objectToClone)

‘Gets back to the first stream byte

ms.Seek(0, SeekOrigin.Begin)

‘Deserializes the object graph to a new T object

Return CType(formatter.Deserialize(ms), T)

End Using

End Function

End Class

Because you are not limited to file streams, taking advantage of a memory stream is good
in such a scenario. You invoke the preceding method as follows:

Dim result As Object = CreateDeepCopy.Clone(objectToClone)

You could also implement extension methods for providing deep copy to all types.

From the Library of Wow! eBook

ptg

975Objects Serialization

Soap Serialization

Soap serialization works similarly to binary serialization. First, you need to add a reference
to the System.Runtime.Serialization.Formatters.Soap.dll assembly. Then you add an
Imports System.Runtime.Serialization.Formatters.Soap directive. At this point you
can serialize and deserialize your objects. To continue the example of the typed collection
shown in the previous section, write the following code to accomplish serialization with
the Soap formatter:

’Requires an Imports System.Runtime.Serialization.Formatters.Soap directive

Dim stringToSerialize As String = “Serialization demo with VB”

Dim targetFile As New FileStream(“C:\temp\SerializedData.xml”,

FileMode.Create)

Dim formatter As New SoapFormatter

formatter.Serialize(targetFile, stringToSerialize)

targetFile.Close()

formatter = Nothing

Basically there is no difference in the syntax for the Soap formatter if compared to the
binary one.

TIP ON GENERIC COLLECTIONS

The SoapFormatter class does not allow serializing generic collections. This is the rea-
son why a simpler example against a single string is provided.

You can still examine the result of the serialization process with the Windows Notepad.
Figure 43.2 shows how the target file stores information in a XML fashion.

4
3

FIGURE 43.2 Examining the result of the Soap serialization process.

From the Library of Wow! eBook

ptg

976 CHAPTER 43 Serialization

Typically the Soap serialization is intended to be used when working with Soap web
services. If you want to serialize objects in a pure XML mode, you can take advantage of
Xml serialization, which is described in the “XML Serialization” section later in this chapter.

Providing Serialization for Custom Objects

You can make your custom objects serializable so that you can apply the previously
described techniques for persisting and re-creating objects’ state. To be serializable, a class
(or structure) must be decorated with the Serializable attribute. This is the most basic
scenario and is represented by the following implementation of the Person class:

Imports System.Runtime.Serialization

<Serializable()>

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Property Age As Integer

Public Property Address As String

End Class

If you do not need to get control over the serialization process, this is all you need. By the
way, there can be certain situations that you need to handle. For instance, you might
want to disable serialization for a member that could result obsolete if too much time is
taken between serialization and deserialization. Continuing the Person class example, we
decide to disable serialization for the Age member because between serialization and dese-
rialization the represented person might be older than the moment when serialization
occurred. To accomplish this you apply the NonSerialized attribute. The big problem here
is that this is a field-level attribute; therefore, it cannot be applied to properties. In such
situations using auto-implemented properties is not possible; therefore, you must write
them the old-fashioned way. The following code shows how you can prevent the Age
member from being serialized:

<NonSerialized()> Private _age As Integer

Public Property Age As Integer

Get

Return _age

End Get

Set(ByVal value As Integer)

_age = value

End Set

End Property

The subsequent problem is that you need a way for assigning a valid value to nonserial-
ized members when deserialization occurs. The most common technique is implementing
the IDeserializationCallBack interface that exposes an OnDeserialization method

From the Library of Wow! eBook

ptg

977Objects Serialization

where you can place your initialization code. The following is the revisited code for the
Person class according to the last edits:

Imports System.Runtime.Serialization

<Serializable()>

Public Class Person

Implements IDeserializationCallback

Public Property FirstName As String

Public Property LastName As String

<NonSerialized()> Private _age As Integer

Public Property Age As Integer

Get

Return _age

End Get

Set(ByVal value As Integer)

_age = value

End Set

End Property

Public Sub OnDeserialization(ByVal sender As Object) Implements _

System.Runtime.Serialization.IDeserializationCallback.

OnDeserialization

‘Specify the new age

Me.Age = 32

End Sub

End Class

When the deserialization process invokes the OnDeserialization method, members that
were not serialized can be correctly initialized anyway. Another consideration that you
need to take care of is versioning. When you upgrade your application to a new version,
you might also want to apply some changes to your classes, for example adding new
members. This is fine but can result in problems if the previous version of your applica-
tion attempts to deserialize an object produced by the new version. To solve this problem,
you can mark a member as OptionalField. In this way the deserialization process is not
affected by new members and both BinaryFormatter and SoapFormatter will not throw
exceptions if they encounter new members during the process. Because the OptionalField
attribute works at field level, this is another situation in which you cannot take advantage
of auto-implemented properties. The following code shows how you can mark the
Address member in the Person class as optional:

<OptionalField()> Private _address As String

4
3

From the Library of Wow! eBook

ptg

978 CHAPTER 43 Serialization

Public Property Address As String

Get

Return _address

End Get

Set(ByVal value As String)

_address = value

End Set

End Property

The member is still involved in the serialization process, but if a previous version of the
application attempts to perform deserialization, it will not throw exceptions when it
encounters this new member that was not expected.

NonSerialized events

Visual Basic 2010 introduces a new feature known as NonSerialized Events. Basically you
can now decorate an event with the NonSerialized attribute in custom serialization. A
common scenario for applying this technique is when you work on classes that imple-
ment the INotifyPropertyChanged interface because it is more important serializing data
and not an event that just notifies the user interface of changes on data. The following
code shows an example about NonSerialized events inside a class that implements
INotifyPropertyChanged:

<Serializable()>

Public Class Customer

Implements INotifyPropertyChanged

<NonSerialized()>

Public Event PropertyChanged(

ByVal sender As Object,

ByVal e As System.ComponentModel.PropertyChangedEventArgs) _

Implements System.ComponentModel.

INotifyPropertyChanged.PropertyChanged

Protected Sub OnPropertyChanged(ByVal strPropertyName As String)

If Me.PropertyChangedEvent IsNot Nothing Then

RaiseEvent PropertyChanged(Me,

New PropertyChangedEventArgs(strPropertyName))

End If

End Sub

From the Library of Wow! eBook

ptg

979XML Serialization

XML Serialization
NOTE

Code examples shown in this section require Imports System.IO and Imports
System.Xml.Serialization directives.

One of the main goals of serialization is to provide a way for exchanging data with other
applications so that such applications can re-create objects’ state. If you want to share
your objects with non-.NET applications or with applications running on different plat-
forms, a convenient way for serializing objects is provided by the Xml serialization. As you
know, Xml is a standard international file format for data exchange. Xml files are basically
text files organized according to a hierarchical structure and therefore can be manipulated
in whatever platforms and applications. Xml serialization thus provides two great benefits:
absolute interoperability and background compatibility. If you upgrade or modify your
applications, Xml format remains the same. Opposite to such benefits, Xml serialization
has two limitations: It cannot serialize object graphs (therefore single objects) and cannot
serialize private members. Xml serialization is performed by taking advantage of objects
exposed by the System.Xml.Serialization namespace. Particularly you can use the
XmlSerializer class that requires a System.IO.Stream object for outputting serialized data
and the data itself. The following code shows how you can serialize a typed collection of
strings using Xml serialization:

Dim stringSeries As New List(Of String) From

{“Serialization”, “demo”,

“with VB”}

Dim targetFile As New FileStream(“C:\temp\SerializedData.xml”,

FileMode.Create)

Dim formatter As New XmlSerializer(GetType(List(Of String)))

formatter.Serialize(targetFile, stringSeries)

targetFile.Close()

formatter = Nothing

The XmlSerializer constructor requires the specification of the data type you are going to
serialize, which is accomplished via the GetType operator. To serialize data you invoke the
XmlSerializer.Serialize method. As you can see, there are no big differences with other
serialization techniques shown in the previous section. To check how your data was serial-
ized, you can open the SerializedData.xml file. In this case you can accomplish this with
an Xml editor or with a web browser instead of Notepad. Figure 43.3 shows the serializa-
tion result within Internet Explorer.

Notice how the newly obtained file has a perfect Xml structure and therefore can be
shared with other applications having the ability of performing Xml deserialization. To

4
3

From the Library of Wow! eBook

ptg

980 CHAPTER 43 Serialization

FIGURE 43.3 The Xml serialization result shown in Internet Explorer.

deserialize your data you simply invoke the XmlSerializer.Deserialize method, as
shown in the following code:

Dim sourceFile As New FileStream(“C:\temp\SerializedData.xml”,

FileMode.Open)

formatter = New XmlSerializer(GetType(List(Of String)))

Dim data = CType(formatter.Deserialize(sourceFile),

List(Of String))

sourceFile.Close()

formatter = Nothing

‘Iterates the result

For Each item In data

Console.WriteLine(item)

Next

Customizing Xml Serialization

Consider the following implementation of the Person class:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

From the Library of Wow! eBook

ptg

981XML Serialization

Public Property Age As Integer

End Class

When you serialize an instance of that Person class, you would obtain an Xml representa-
tion similar to the following:

<?xml version=”1.0” ?>

<Person xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<FirstName>Alessandro</FirstName>

<LastName>Del Sole</LastName>

<Age>32</Age>

</Person>

The System.Xml.Serialization namespace offers attributes for controlling output of the
Xml serialization to affect the target file. For example, see the following code:

Imports System.Xml.Serialization

<XmlRoot(“Contact”)> Public Class Person

<XmlIgnore()> Public Property FirstName As String

Public Property LastName As String

<XmlAttribute()> Public Property Age As Integer

End Class

When an instance is serialized, the output looks like the following:

<?xml version=”1.0” ?>

<Contact xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

Age=”32”>

<LastName>Del Sole</LastName>

</Contact>

The XmlRoot attribute changed the name of the root element from Person to Contact. The
XmlIgnore attribute prevented a property from being serialized, whereas the XmlAttribute
attribute treated the specified member as an Xml attribute instead of an Xml element. You
can find the complete attributes list in the dedicated page of the MSDN Library at
http://msdn.microsoft.com/en-us/library/
system.xml.serialization.xmlattributes_ members(VS.100).aspx. The reason why you should
get a reference on the Internet is that Xml serialization is a settled concept for most devel-
opers, whereas .NET Framework 4.0 provides a new, more interesting way for Xml serial-
ization, known as XAML serialization, which is covered later in this chapter and that is
more important to learn.

4
3

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/

ptg

982 CHAPTER 43 Serialization

Custom Serialization
In most cases the .NET built-in serialization engine is good enough. But if it does not meet
your particular needs, you can override the serialization process with custom serialization.
Basically this means implementing the ISerializable interface that requires the imple-
mentation of the GetObjectData method. Such a method is important because it is
invoked during serialization. Moreover a custom implementation of the class constructor
must be provided. Basically you have to first reproduce at least what built-in formatters do
during serialization. Code in Listing 43.2 shows how to provide custom serialization for
the Person class.

LISTING 43.2 Providing Custom Serialization

Imports System.Runtime.Serialization

Imports System.Security.Permissions

<Serializable()>

Public Class Person

Implements ISerializable

Public Overridable Property FirstName As String

Public Overridable Property LastName As String

Public Overridable Property Age As Integer

<SecurityPermission(SecurityAction.Demand,

SerializationFormatter:=True)>

Protected Sub GetObjectData(ByVal info As System.Runtime.Serialization.

SerializationInfo,

ByVal context As System.Runtime.Serialization.

StreamingContext) _

Implements System.Runtime.Serialization.ISerializable.

GetObjectData

info.AddValue(“First name”, Me.FirstName)

info.AddValue(“Last name”, Me.LastName)

info.AddValue(“Age”, Me.Age)

End Sub

‘At deserialization time

Protected Sub New(ByVal info As SerializationInfo,

ByVal context As StreamingContext)

MyBase.New()

Me.FirstName = info.GetString(“First name”)

Me.LastName = info.GetString(“Last name”)

Me.Age = info.GetInt32(“Age”)

From the Library of Wow! eBook

ptg

983Custom Serialization

End Sub

End Class

The GetObjectData method is basically invoked when you pass an object to the Serialize
method of a formatter and require an info argument of type SerializationInfo. This
class stores all information needed for serialization. It exposes an AddValue method that
stores data and a value utilized for recognizing data. Notice that the information is
retrieved by the special constructor implementation that is invoked at deserialization time
via GetXXX methods where XXX corresponds to .NET types such as Int32, Boolean, Short,
and so on. Also notice how GetObjectData is decorated with the SecurityPermission
attribute demanding for permissions about the serialization formatter. This is necessary
because the permission is allowed only to full-trusted code, thus intranet and Internet
zones are not allowed. Both GetObjectData and the constructor are Protected so that
derived classes can still take advantage of them but are prevented from being public. If
you are sure that your class will not be inherited, GetObjectData can also be Private.

INHERITANCE TIP

When you create a class that inherits from another class where ISerializable is
implemented, if you add new members, you can also provide a new implementation of
both GetObjectData and the constructor.

Implementing ISerializable is not the only way for controlling serialization. You can
control serialization events, too.

Serialization Events

The serialization process raises four events, which are summarized in Table 43.1.

4
3

Serialization events are handled differently than classic events. There is an attribute for
each event that you can handle as follows:

’Invoke this method before

‘serialization begins

TABLE 43.1 Serialization Events

Event Description

OnSerializing Occurs just before serialization begins

OnSerialized Occurs just after serialization completes

OnDeserializing Occurs just before deserialization begins

OnDeserialized Occurs just after deserialization completes

From the Library of Wow! eBook

ptg

984

<OnSerializing()>

Private Sub FirstMethod()

End Sub

‘Invoke this method after

‘serialization completes

<OnSerialized()>

Private Sub SecondMethod()

End Sub

‘Invoke this method before

‘deserialization begins

<OnDeserializing()>

Private Sub ThirdMethod()

End Sub

‘Invoke this method after

‘deserialization completes

<OnDeserialized()>

Private Sub FourthMethod()

End Sub

The runtime takes care of invoking the specified method according to the moment repre-
sented by each attribute. In this way you can provide additional actions based on serializa-
tion events.

Serialization with XAML
This book has five chapters dedicated to the Windows Presentation Foundation technol-
ogy, due to its importance in modern application development. You learned what XAML
is and how you use it to define applications’ user interface. XAML offers other advantages
that can be taken in completely different scenarios; one of these is serialization. The
System.Xaml.dll assembly implements the System.Xaml namespace that offers the
XamlServices class whose purpose is providing members for reading and writing XAML in
serialization scenarios. Because XAML is substantially Xml code that adheres to specific
schemas, serialization output will be under Xml format. The good news is that you are not
limited in using XAML serialization only in WPF applications. You simply need to add a
reference to System.Xaml.dll. To understand how it works, create a new console project

CHAPTER 43 Serialization

From the Library of Wow! eBook

ptg

985Serialization with XAML
4

3

with Visual Basic and add the required reference. The goal of the code example is to
understand how entire objects’ graphs can be serialized with this technique. Consider the
following implementation of the Person class:

Public Class Person

Public Property FirstName As String

Public Property LastName As String

Public Property Age As Integer

Public Property Friends As List(Of Person)

End Class

Other than the usual properties, it exposes a Friends property of type List(Of Person).
This enables creating a simple object graph. Now consider the following code that creates
two instances of the Person class that populates the Friends property of the main Person
instance that we serialize:

Dim oneFriend As New Person With {.LastName = “White”,

.FirstName = “Robert”, .Age = 35}

Dim anotherFriend As New Person With {.LastName = “Red”,

.FirstName = “Stephen”, .Age = 42}

Dim p As New Person With {.LastName = “Del Sole”, .FirstName = “Alessandro”,

.Age = 32,

.Friends = New List(Of Person) _

From {oneFriend, anotherFriend}}

Using objects and collection initializers makes this operation straightforward. To serialize
an object graph, you simply invoke the XamlServices.Save shared method that requires
an output stream and the object to be serialized. The following code snippet demon-
strates this:

Imports System.IO, System.Xaml

‘...

Using target As New FileStream(“C:\Temp\Person.xaml”, FileMode.Create)

XamlServices.Save(target, p)

End Using

SERIALIZING GENERIC COLLECTIONS

When you serialize generic collections, especially custom ones, ensure that they
implement the IList or IDictionary interfaces or the serialization process might not
work correctly.

From the Library of Wow! eBook

ptg

986

The previously described serialization process produces the following output:

<Person Age=”32”

FirstName=”Alessandro”

LastName=”Del Sole”

xmlns=”clr-namespace:XamlSerialization;assembly=XamlSerialization”

xmlns:scg=”clr-namespace:System.Collections.Generic;

assembly=mscorlib”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Person.Friends>

<scg:List x:TypeArguments=”Person” Capacity=”4”>

<Person Friends=”{x:Null}” Age=”35” FirstName=”Robert”

LastName=”White” />

<Person Friends=”{x:Null}” Age=”42” FirstName=”Stephen”

LastName=”Red” />

</scg:List>

</Person.Friends>

</Person>

This technique is efficient and makes output readable. As usual in Xaml files, the Xaml
schema is pointed to via the x namespace. Notice how the scg namespace points to the
System.Collections.Generic .NET namespace, required for deserializing the content as a
generic collection. Also notice how the Person.Friends element defines subsequent Person
elements storing information on child Person classes being part of the Friends property.
Finally, notice how the Friends property for nested Person elements is null. (We did not
define child elements for the property.) Deserializing such content is also straightforward.
To accomplish this you simply invoke the XamlServices.Load shared method converting
its result into the appropriate type. The following code shows how deserialization works,
iterating the final result for demonstrating that deserialization was correctly performed:

Using source As New FileStream(“C:\temp\person.xaml”, FileMode.Open)

Dim result As Person = CType(XamlServices.Load(source), Person)

‘Shows:

‘White

‘Green

For Each p In result.Friends

Console.WriteLine(p.LastName)

Next

Console.ReadLine()

End Using

XAML serialization can be used in different situations, such as persisting the state of WPF
controls but also serializing entire .NET objects graphs.

CHAPTER 43 Serialization

From the Library of Wow! eBook

ptg

987Serialization in Windows Communication Foundation
4

3

Serialization in Windows Communication Foundation
There are situations in which serialization is required for persisting state of objects from
WCF services. Starting with .NET Framework 3.0, you can serialize objects exposed by
WCF services taking advantage of the DataContractSerializer class (which inherits from
XmlObjectSerializer). The usage of such a class is not so different from other serializa-
tion classes. The only need is that you must mark your serializable classes either with the
Serializable or with the DataContract attribute and, in this case, their members with the
DataMember attribute. To see how this works in code, create a new WCF service project
within Visual Studio 2010 (see Chapter 41, “Creating and Consuming WCF Services,” for a
recap) and name it WcfPersonService. Rename the default IService1 interface to
IPersonService; then rename the default Service1 class to PersonService. The new
service exposes a special implementation of the Person class. Listing 43.3 shows the
complete code for the WCF sample service.

LISTING 43.3 Exposing Serializable Objects from WCF Services

<ServiceContract()>

Public Interface IPersonService

<OperationContract()>

Function GetPersonFullName(ByVal onePerson As Person) As String

End Interface

<DataContract()>

Public Class Person

<DataMember()>

Public Property FirstName As String

<DataMember()>

Public Property LastName As String

End Class

Public Class PersonService

Implements IPersonService

Public Function GetPersonFullName(ByVal onePerson As Person) As String _

Implements IPersonService.GetPersonFullName

Dim fullName As New Text.StringBuilder

fullName.Append(onePerson.FirstName)

fullName.Append(“ “)

fullName.Append(onePerson.LastName)

From the Library of Wow! eBook

ptg

988

Return fullName.ToString

End Function

End Class

Notice how you simply decorate the Person class and its members respectively with the
DataContract and DataMember attributes. Now create a new console project for testing the
WCF service and serialization. Name the new project as TestWcfSerialization; then add
a service reference to the WcfPersonService project (see Chapter 41 for a recap). This adds
a reference to the WCF service creating a proxy class in Visual Basic. All you need to do
now is to get the instance of the service client and invoke the DataContractSerializer
class that requires a stream for putting serialized data to. Code in Listing 43.4 shows both
serialization and deserialization processes.

LISTING 43.4 Performing WCF Serialization

Imports TestWcfSerialization.PersonServiceReference

Imports System.IO

Imports System.Runtime.Serialization

Module Module1

Sub Main()

Dim client As New PersonServiceClient

Dim p As New Person With {.FirstName = “Alessandro”, .LastName = “Del Sole”}

Dim target As New FileStream(“C:\Temp\WcfSerialized.xml”, FileMode.Create)

Dim serializer As New DataContractSerializer(GetType(Person))

serializer.WriteObject(target, p)

target.Close()

serializer = Nothing

Console.ReadLine()

Dim source As New FileStream(“C:\Temp\WcfSerialized.xml”, FileMode.Open)

serializer = New DataContractSerializer(GetType(Person))

Dim result As Person = CType(serializer.ReadObject(source), Person)

Console.WriteLine(result.LastName)

Console.ReadLine()

End Sub

End Module

Notice how you invoke the WriteObject instance method for persisting data. The method
requires the file stream instance and the data instance as arguments. WriteObject can also

CHAPTER 43 Serialization

From the Library of Wow! eBook

ptg

989Serialization in Windows Communication Foundation
4

3

serialize an entire object graph, similarly to the binary standard serialization. Also notice
that data is serialized to Xml format. To deserialize objects you simply invoke the
ReadObject instance method converting the result into the appropriate type. Serialization
in WCF can cause special exceptions: InvalidDataContractException, which is thrown
when the data contract on the service side is badly implemented, and
System.ServiceModel.QuotaExceededException that is thrown when serialization
attempts to write a number of objects greater than the allowed number. Such a number is
represented by the DataContractSerializer.MaxItemsInObjectsGraph property and the
default value is Integer.MaxValue. The following snippet shows how you catch the previ-
ously mentioned exceptions:

Try

serializer.WriteObject(target, p)

Catch ex As InvalidDataContractException

‘Data contract on the service side is wrong

Catch ex As QuotaExceededException

‘Maximum number of serializable object exceeded

Finally

target.Close()

serializer = Nothing

End Try

If you wonder when you would need WCF serialization, there can be several answers to
your question. The most common scenarios are when you have WCF services exposing
LINQ to SQL models or Entity Data Models. Data exchange from and to clients is
performed via WCF serialization. This requires a little bit of work in LINQ to SQL whereas
Entity Data Models are serialization-enabled, which is covered in “Serialization in the
ADO.NET Entity Framework” section.

JSON Serialization

Starting from .NET Framework 3.5, managed languages support the JavaScript Object
Notation (JSON) serialization, offered by the System.Runtime.Serialization.Json name-
space, which is particularly useful when you need to serialize objects as javascript-compliant
and that you use in WCF and ASP.NET Ajax applications. Conceptually JSON serialization
works like the WCF serialization illustrated previously. The only difference is that you use a
DataContractJSonSerializer class that works as in the following code snippet:

Dim target As New FileStream(“C:\Temp\WcfSerialized.xml”, FileMode.Create)

Dim jsonSerializer As New DataContractJsonSerializer(GetType(Person))

jsonSerializer.WriteObject(target, p)

To deserialize objects you invoke the DataContractJsonSerializer.ReadObject method
converting the result into the appropriate type.

From the Library of Wow! eBook

ptg

990 CHAPTER 43 Serialization

Serialization in the ADO.NET Entity Framework
When you create Entity Data Models, entities are automatically decorated with
Serializable and DataContract attributes and their members as DataMember as you can
easily check by investigating the code-behind file for EDMs. This enables binary and Xml
serialization for entities also in WCF scenarios. To understand how this works, create a
new console project and add a new EDM wrapping the Northwind database (see Chapter
27, “Introducing the ADO.NET Entity Framework,” for a review), including only the
Customers and Orders tables. Basically you use formatters as you did in the objects serial-
ization with no differences. Code in Listing 43.5 shows how to accomplish this.

LISTING 43.5 Serializing Entities from an Entity Data Model

Imports System.Runtime.Serialization.Formatters.Binary

Imports System.IO

Module Module1

Sub Main()

Using northwind As New NorthwindEntities

‘Retrieves the first order, as an example

Dim anOrder As Order = northwind.Orders.Include(“Customer”).First

‘Same as classic objects serialization

Dim formatter As New BinaryFormatter

Using stream As New FileStream(“C:\temp\EFSerialization.dat”,

FileMode.Create)

formatter.Serialize(stream, anOrder)

End Using

Dim newOrder As Order

Using source As New FileStream(“C:\temp\EFSerialization.dat”,

FileMode.Open)

newOrder = CType(formatter.Deserialize(source), Order)

End Using

End Using

Console.ReadLine()

End Sub

End Module

If you need to retrieve data via a WCF service, you use a DataContractSerializer taking
advantage of serialization in WCF scenarios as described before in this chapter. Listing
43.5 shows an example of binary serialization, but you can also take advantage of other
techniques described in this chapter as well.

From the Library of Wow! eBook

ptg

991Summary
4

3

Summary
Serialization is the capability to save objects’ state to disk (or memory) and to re-create the
state later. The .NET Framework offers several serialization techniques, all provided by the
System.Runtime.Serialization namespace. You can perform binary serialization via the
BinaryFormatter class or soap serialization (Xml-based mode for Soap web services) via
the SoapFormatter class. In both cases you simply need an output stream and then you
invoke the Serialize method for performing serialization, whereas Deserialize is for
performing deserialization. Another common technique is the Xml serialization that
creates Xml documents starting from your objects and that is useful if you need to
exchange your data with non-.NET applications or with non-Windows applications, due
to the standard format of this kind of document. If you need deep control over the serial-
ization process, you implement the ISerializable interface that requires the implementa-
tion of the GetObjectData, where you can customize the behavior of the process other
than handling serialization events. The .NET Framework 4.0 also retakes techniques first
introduced with the .NET 3.5 version, such as WCF serialization, which take advantages of
the DataContractSerializer class or the XAML serialization that is performed via the
XamlServices class. Finally, you can serialize entities from an Entity Data Model using all
preceding techniques so that you can easily exchange (or save the state of) your data
without changing the programming model.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 44

Processes and
Multithreading

IN THIS CHAPTER

. Managing Processes

. Introducing Multithreading

. Understanding the .NET Thread
Pool

. Threads Synchronization

In our everyday life we all do a number of things such as
go to work, have appointments, stay with friends or with
the family; we are all very busy, of course. Sometimes we
can make two things simultaneously, such as speaking on
the phone while writing something on a piece of paper, but
in most cases we do just one thing at a time: after all, there
is only one of us. It would be great if we could share our
things to do with other people so that multiple people do
the same work concurrently. We would be less tired and we
would have more time for resting or staying with our
family. In the computers’ world, the problem is similar. You
can compare a person of the real world to an application. If
an application has to complete hard and long work totally
alone, it can cause overhead on the system and take more
time. Moreover, recent hardware architectures (such as
multi-core processors) would remain unexploited. So it
would be useful having the ability to split the work of an
application among multiple parts that could work concur-
rently. This is where threading comes in the .NET develop-
ment. With threading you can create multiple threads of
work to perform multiple tasks concurrently so that your
applications can take the best of performances and
resources. But threading is not the only way you request
actions. In many circumstances you need to launch exter-
nal executables and possibly hold a reference to them in
your code, so you also often work with processes. In this
chapter you take a look at how the .NET Framework enables
managing processes and how you can split operations
across multiple threads, both created manually and
provided by the .NET thread pool.

From the Library of Wow! eBook

ptg

994 CHAPTER 44 Processes and Multithreading

Managing Processes
You use the System.Diagnostics.Process class to manage processes on your machine.

This class offers both shared and instance members so that you can launch an external
process but also get a reference to one or more processes. The following code shows how
to launch an external process via the shared implementation of the Start method:

Process.Start(“Notepad.exe”)

Any call to the Process.Start method will return a Process object. You can also specify
arguments for the process by specifying the second parameter for the method as follows:

Process.Start(“Notepad.exe”, “C:\aFile.txt”)

One of the most important features of the Start method is that you can also supply the
username, password, and domain for launching a process:

Process.Start(“Notepad.exe”, “C:\aFile.txt”,

“Alessandro”, Password, “\\MYDOMAIN”)

Notice that the password is necessarily an instance of the System.Security.SecureString
class, so see the MSDN documentation about this. The Process class also has an instance
behavior that enables getting a reference to a process instance. This is useful when you
want to programmatically control a process. With regard to this, you first need an
instance of the ProcessStartInfo class that can store process execution information. The
class exposes lots of properties, but the most important are summarized in the following
code snippet:

Dim procInfo As New ProcessStartInfo

With procInfo

.FileName = “Notepad.exe”

.Arguments = “aFile.txt”

.WorkingDirectory = “C:\”

.WindowStyle = ProcessWindowStyle.Maximized

.ErrorDialog = True

End With

Particularly, the ErrorDialog property makes the Process instance show up an error
dialog if the process cannot be started regularly. When you have done this, you simply
create an instance of the Process class and assign its StartInfo property; finally you
invoke Start as demonstrated in the following code:

Dim proc As New Process

proc.StartInfo = procInfo

proc.Start()

From the Library of Wow! eBook

ptg

995Managing Processes

‘Alternative syntax:

‘Dim proc As Process = Process.Start(procInfo)

Approaching processes in this fashion is helpful if you need to programmatically control
processes. For example, you can wait until a process exits for the specified number of
milliseconds as follows:

’Waits for two seconds

proc.WaitForExit(2000)

To close a process you write the following code:

proc.Close()

Finally, you can kill unresponsive processes by invoking the Kill method as follows:

proc.Kill()

The Process class also exposes the EnableRaisingEvents boolean property which allows
setting if the runtime should raise the Exited event when the process terminates. Such an
event is raised if either the process terminates normally or because of an invocation to the
Kill method. Until now you saw how launching processes but the Process class is also useful
when you need to get information on running processes as discussed in next subsection.

Querying Existing Processes

You can easily get information on running processes through some methods from the
Process class that provide the ability of getting process instances. For example,
GetProcesses returns an array of Process objects, each one representing a running process
whereas GetProcessById and GetProcessByName return information on the specified
process given the identification number or name, whereas GetCurrentProcess returns an
instance of the Process class representing the current process. Then the Process class
exposes lots of useful properties for retrieving information, each of them self-explanatory
such as ProcessName, Id, ExitCode, Handle, or HasExited but also other advanced informa-
tion properties, such as PageMemorySize or VirtualMemorySize, which respectively return
the memory size associated with the process on the page memory or the virtual memory.
The Visual Studio’s Object Browser and IntelliSense can help you with the rest of available
properties. At the moment focus on how you can get information on running processes.
The coolest way for getting process information is using LINQ to Objects. The following
query, and subsequent For..Each loop, demonstrates how to retrieve a list of names of
running processes:

Dim processesList = (From p In Process.GetProcesses

Select p.ProcessName).AsEnumerable

For Each procName In processesList

Console.WriteLine(procName)

Next

4
4

From the Library of Wow! eBook

ptg

996 CHAPTER 44 Processes and Multithreading

Notice that the query result is converted into IEnumerable(Of String) so that you can
eventually bind the list to a user interface control supporting the type.

Introducing Multithreading
A thread is a unit of work. The logic of threading-based programming is performing multi-
ple operations concurrently so that a big operation can be split across multiple threads.
The .NET Framework 4.0 offers support for multithreading via the System.Threading
namespace. But .NET 4.0 also introduces a new important library, which is discussed in
Chapter 45, “Parallel Programming,” which provides support for the parallel computing.
For this reason this chapter provides summary information on the multithreading
approach so that in next chapter you get more detailed information on the task-based
programming.

IMPORTS DIRECTIVES

Code examples shown in this chapter require an Imports System.Threading directive.

Creating Threads

You create a new thread for performing an operation with an instance of the
System.Threading.Thread class. The constructor of this class requires you to also specify
an instance of the System.Threading.ThreadStart delegate that simply points to a
method that can actually do the work. Then you simply invoke the Thread.Start instance
method. The following code snippet demonstrates how you can create a new thread:

Private Sub simpleThread()

Dim newThread As New Thread(New ThreadStart(AddressOf _

executeSimpleThread))

newThread.Start()

End Sub

Private Sub executeSimpleThread()

Console.WriteLine(“Running a separate thread”)

End Sub

To actually start the new thread, you invoke the method that encapsulates the thread
instance, which in this case is simpleThread.

Creating Threads with Lambda Expressions
You might recall from Chapter 21, “Advanced Language Features,” that lambda expres-
sions can be used anywhere there is the need for a delegate. This is also true in threading-
based programming. The following code snippet demonstrates how you can take
advantage of statement lambdas instead of providing an explicit delegate:

Private Sub lambdaThread()

Dim newThread As New Thread(New _

From the Library of Wow! eBook

ptg

997Understanding the .NET Thread Pool

ThreadStart(Sub()

Console.WriteLine(“Thread with lambda”)

End Sub))

newThread.Start()

End Sub

Now you can simply invoke the lambdaThread method to run a secondary thread, and
with one method you reach the same objective of the previous code where two methods
were implemented.

Passing Parameters

In many cases you might have the need to pass data to new threads. This can be accom-
plished by creating an instance of the ParameterizedThreadStart delegate, which requires
an argument of type Object that you can use for sharing your data. The following code
demonstrates how you create a thread with parameters:

Private Sub threadWithParameters(ByVal parameter As Object)

Dim newThread As New Thread(New _

ParameterizedThreadStart(AddressOf _

executeThreadWithParameters))

newThread.Start(parameter)

End Sub

Notice how the Thread.Start method has an overload that takes the specified parameter
as the data. Because such data is of type Object, you need to convert it into the most
appropriate format. The following code demonstrates how to implement a method that
the delegate refers to and how to convert the data into a hypothetical string:

Private Sub executeThreadWithParameters(ByVal anArgument As Object)

Dim aString = CType(anArgument, String)

Console.WriteLine(aString)

End Sub

Of course you can take advantage of lambda expressions if you do not want to provide an
explicit delegate also in this kind of scenario.

Understanding the .NET Thread Pool
In the previous section you saw how simple it is to create and run a new thread. When
you have one or two threads, things are also easy for performance. But if you decide to
split a process or an application across lots of concurrent threads, the previous approach
can cause performance and resources overhead. So you should manually search for the
best configuration to fine-tune system resources consumption with your threads. Your
application can run on different configurations in terms of available memory, processors,
and general resources, so it is difficult to predict how many threads you can launch
concurrently on target machines without affecting performance and causing overhead.

4
4

From the Library of Wow! eBook

ptg

998 CHAPTER 44 Processes and Multithreading

Fortunately the .NET Framework maintains its own set of threads that you can also reuse
for your purposes instead of writing code for creating and running new threads, ensuring
that only the specified number of threads will be executed concurrently, all controlled by
the Framework. The set is named thread pool and you access it via the
System.Threading.ThreadPool class. This class offers static methods for assigning tasks to
threads in the box; because the thread pool has a predefined number of available threads
If they are all busy doing something else, the new task is put into a queue and is executed
when a thread completes its work. To take advantage of threads in the thread pool, you
invoke the System.Threading.ThreadPool.QueueUserWorkItem method, as demonstrated
in the following code:

Sub QueueWork()

ThreadPool.QueueUserWorkItem(New WaitCallback(AddressOf FirstWorkItem))

ThreadPool.QueueUserWorkItem(New WaitCallback(AddressOf SecondWorkItem))

ThreadPool.QueueUserWorkItem(New WaitCallback(Sub()

Console.

WriteLine _

(“Third work item”)

End Sub))

End Sub

Private Sub FirstWorkItem(ByVal state As Object)

Console.WriteLine(“First work item”)

End Sub

Private Sub SecondWorkItem(ByVal state As Object)

Console.WriteLine(“Second work item”)

End Sub

With QueueUserWorkItem you basically ask the runtime to put the specified task in the
execution queue so that it will be executed when a thread in the thread pool is available.
The WaitCallBack delegate simply allows passing state information and requires referred
methods to have an argument of type Object in their signatures. Notice how you can still
use lambdas to supply the desired action.

Getting and Setting Information in the Thread Pool

You can query information on the thread pool by invoking the
ThreadPool.GetMaxThreads, ThreadPool.GetMinThreads, and
ThreadPool.GetAvailableThreads methods. GetMaxThreads return the maximum number
of concurrent threads that are held by the thread pool; GetMinThreads return the number
of idle threads that are maintained waiting for the first new task being requested, whereas

From the Library of Wow! eBook

ptg

999Threads Synchronization

GetAvailableThreads return the number of available threads. Whichever you use, they all
return two values: the number of worker threads and of completion threads. Worker
threads are units of execution, whereas completion threads are asynchronous I/O opera-
tions. The following code demonstrates how you get information on available threads:

Sub PoolInfo()

Dim workerThreads As Integer

Dim completionPortThreads As Integer

ThreadPool.GetAvailableThreads(workerThreads,

completionPortThreads)

Console.WriteLine(“Available threads: {0}, async I/O: {1}”,

workerThreads, completionPortThreads)

Console.ReadLine()

End Sub

workerThreads and completionPortThreads arguments are passed by reference; this is the
reason why you need variables for storing values. Similarly you can use SetMaxThreads
and SetMinThreads to establish the maximum number of requests held by the thread pool
and the minimum number of idle threads. The following line is an example:

ThreadPool.SetMaxThreads(2000, 1500)

CHANGING DEFAULT VALUES

You should take care of editing the default values for the thread pool. You should do it
only when you have a deep knowledge of how many resources will be consumed on the
machine and of system resources so that edits will not be negative for the target sys-
tem. Generally default values in the thread pool are high enough, but you can check
this out by invoking GetMaxThreads.

Threads Synchronization
Until now you saw how to create and rung new threads of execution to split big opera-
tions across multiple threads. This is useful but there is a problem: Imagine you have
multiple threads accessing the same data source simultaneously; what happens to the data
source and how are threads handled to avoid errors? This is a problem that is solved with
the so-called thread synchronization. Basically the idea is that when a thread accesses a
resource, this resource is locked until required operations are completed to prevent other
threads from accessing that resource. Both Visual Basic and the .NET Framework respec-
tively provide keywords and objects to accomplish threads synchronization, as covered in
the next subsections.

4
4

From the Library of Wow! eBook

ptg

1000 CHAPTER 44 Processes and Multithreading

The SyncLock..End SyncLock Statement

The Visual Basic language offers the SyncLock..End SyncLock statement that is the place
where you can grant access to the specified resource to only one thread per time. For
example, imagine you have a class where you define a list of customers and a method for
adding a new customer to the list, as demonstrated by the following code snippet:

Private customers As New List(Of String)

Sub AddCustomer(ByVal customerName As String)

SyncLock Me

customers.Add(customerName)

End SyncLock

End Sub

Basically the preceding code locks the entire enclosing class, preventing other threads
from accessing the instance until the requested operation completes. By the way, locking
an entire class is not always the best idea, because it can be expensive in terms of
resources and performances, and other threads cannot also access other members.
Unfortunately you cannot directly lock the resource; the MSDN documentation in fact
states that you need to declare a lock object that you can use as follows:

Private customers As New List(Of String)

Private lockObject As New Object()

Sub AddCustomer(ByVal customerName As String)

SyncLock lockObject

customers.Add(customerName)

End SyncLock

End Sub

The lock object is typically a System.Object. Using an object like this can ensure that the
code block executed within SyncLock..End SyncLock will not be accessible by other threads.
Another approach is using GetType instead of the lock object, pointing to the current type
where the synchronization lock is defined. The following code demonstrates this:

Class Customers

Inherits List(Of String)

Public Sub AddCustomer(ByVal customerName As String)

SyncLock GetType(Customers)

Me.Add(customerName)

End SyncLock

End Sub

End Class

From the Library of Wow! eBook

ptg

1001Threads Synchronization

The SyncLock..End SyncLock statement is typical of Visual Basic language grammar. By
the way, the statement is translated behind the scenes into invocations to the
System.Threading.Monitor class as is described in next section.

Synchronization with the Monitor Class

The System.Threading.Monitor class is the support object for the SyncLock..End
SyncLock statement, and the compiler translates SyncLock blocks into invocations to the
Monitor class. You use it as follows:

Sub AddCustomer(ByVal customerName As String)

Dim result As Boolean

Try

Monitor.Enter(lockObject, result)

customers.Add(customerName)

Catch ex As Exception

Finally

Monitor.Exit(lockObject)

End Try

End Sub

TIP

Monitor.Enter now has an overload that takes a second argument of type Boolean,
passed by reference, indicating if the lock was taken. This is new in .NET Framework 4.0.

Basically Monitor.Enter locks the object whereas Monitor.Exit unlocks it. It is fundamen-
tal to place Monitor.Exit in the Finally part of the Try..Catch block so that resources
will be unlocked anyway. At this point you might wonder why use Monitor instead of
SyncLock..End SyncLock because they produce the same result. The difference is that
Monitor also exposes additional members, such as the TryEnter method that supports
timeout, as demonstrated here:

Monitor.TryEnter(lockObject, 3000, result)

This code attempts to obtain the lock on the specified object for three seconds before
terminating.

Read/Write Locks

A frequent scenario is when you have a shared resource that multiple reader threads need
to access. In a scenario like this, you probably want to grant writing permissions just to a
single thread to avoid concurrency problems. The .NET Framework provides the

4
4

From the Library of Wow! eBook

ptg

1002 CHAPTER 44 Processes and Multithreading

System.Threading.ReaderWriterLockSlim class, which provides a lock enabled for multi-
ple threads reading and exclusive access for writing.

READERWRITERLOCK CLASS

The .NET Framework still provides the ReaderWriterLock class, as in its previous ver-
sions, but it is complex and used to handle particular multithreading scenarios.
Instead, as its name implies, the ReaderWriterLockSlim class is a light-weight object
for reading and writing locks.

Generally an instance of this class is declared as a shared field and is used to invoke both
methods for reading and writing. The following code demonstrates how you enable a
writer lock:

Private Shared rw As New ReaderWriterLockSlim

Sub AddCustomer(ByVal customerName As String)

Try

rw.EnterWriteLock()

customers.Add(customerName)

Catch ex As Exception

Finally

rw.ExitWriteLock()

End TrThe

End Sub

This ensures that only one thread can write to the customers’ collection. The next code
snippet shows instead how you can enable a reader lock:

Sub GetInformation()

Try

rw.EnterReadLock()

Console.WriteLine(customers.Count.ToString)

Catch ex As Exception

Finally

rw.ExitReadLock()

End Try

End Sub

ReaderWriterLockSlim is an object you should use if you expect more readers than writers;
in other cases you should consider custom synchronization locks implementations.

From the Library of Wow! eBook

ptg

1003Summary

Summary
This chapter covered processes management and multithreading with Visual Basic 2010.
First you saw how to utilize the System.Diagnostics.Process class for launching and
managing external process from your applications, including programmatic access to
processes. Next you got an overview of threads and the System.Threading.Thread class,
understanding how a thread is a single unit of execution and seeing how you create and
run threads both programmatically and inside the .NET’s thread pool. In the final part of
this chapter you learned about synchronization locks, which are necessary so that multi-
ple threads access the same resources concurrently. For this, remember the SyncLock..End
SyncLock VB statement and the Monitor class.

4
4

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 45

Parallel Programming

IN THIS CHAPTER

. Introducing Parallel Computing

. Understanding and Using Tasks

. Parallel Loops

. Debugging Tools For Parallel
Tasks

. Concurrent Collections

Modern computers ship with multi-core architectures,
meaning that they have more than one processor. The
simplest home computer has at least dual-core architecture,
so we’re sure you have a machine with multiple processors,
too. Generally managed applications do their work using
only one processor. This makes things easier, but with this
approach you do not unleash all system resources. The
reason is that all elaborations rely on a single processor that
is overcharged and will take more time. Having instead the
possibility of scaling the application execution over all
available processors is a technique that would improve how
system resources are consumed and would speed up the
application execution. The reason is simple: Instead of
having only one processor doing the work, you have all
available processors doing the work concurrently. Scaling
applications across multiple processors is known as parallel
computing, which is not something new in the program-
ming world, in which the word “parallel” means that multi-
ple tasks are executed concurrently, in parallel. What is
actually new is the availability in.NET Framework 4.0 of a
new library dedicated to parallel computing for the
Microsoft platform. This library is called Task Parallel
Library and also includes Parallel LINQ, which is discussed
in Chapter 29, “Overview of Parallel LINQ.” In this chapter
you learn what the library is, how it is structured, and how
you can use it for writing parallel code in your applications,
starting from basic concepts going through concurrent
collections.

From the Library of Wow! eBook

ptg

1006 CHAPTER 45 Parallel Programming

Introducing Parallel Computing
The .NET Framework 4.0 provides support for parallel computing through the Task Parallel
Library (also referred to as TPL), which is a set of APIs offered by specific extensions of the
System.Threading.dll assembly. The reference to this assembly is included by default when
creating new projects, so you do not need to add one manually. The TPL is reachable via
the System.Threading and System.Threading.Tasks, namespaces that provide objects for
scaling work execution over multiple processors. Basically you write small units of work
known as tasks. Tasks are scheduled for execution by the TPL’s Task Scheduler, which is
responsible for executing tasks according to available threads. This is possible because the
Task Scheduler is integrated with the .NET Thread Pool. The good news is that the .NET
Framework can automatically take advantage of all available processors on the target
machines without the need to recompile code.

NOTE

Parallel computing makes it to easier to scale applications over multiple processors,
but it remains something complex in terms of concepts. This is because you will face
again some threading concepts, such as synchronization locks, deadlocks, and so on.
The suggestion is to have at least a basic knowledge of threading issues before writing
parallel code. Another important consideration is when should you use parallel comput-
ing? The answer is not easy because you are the only one who knows how your appli-
cations consume resources. The general rule is that parallel computing gives the best
results when you have intensive processing scenarios. In simpler elaborations, parallel
computing is not necessarily the best choice and can cause performance loss. Use it
when your applications require hard CPU loops.

Most of the parallel API are available through the System.Threading.Tasks.Task and
System.Threading.Tasks.Parallel classes. The first one is described in detail later,
whereas we now provide coverage of the most important classes for parallelism.

Introducing Parallel Classes

Parallelism in the .NET Framework 4.0 is possible due to a number of classes, some respon-
sible for maintaining the architecture of the TPL and some for performing operations in a
concurrent fashion. The following subsection provides a brief coverage of the most impor-
tant classes, describing their purpose.

The Parallel Class
The System.Threading.Tasks.Parallel class is one of the most important classes in paral-
lel computing, because it provides shared methods for running concurrent tasks and for
executing parallel loops. In this chapter you can find several examples of usage of this
class; for now you just need to know that it provides the Invoke, For, and ForEach shared
methods. The first one enables running multiple tasks concurrently, whereas the other
ones enable executing loops in parallel.

From the Library of Wow! eBook

ptg

1007Understanding and Using Tasks

The TaskScheduler Class
The System.Threading.Tasks.TaskScheduler class is responsible for the low-level work of
sending tasks to the thread queue. This means that when you start a new concurrent task,
the task is sent to the scheduler that checks for thread availability in the .NET thread
pool. If a thread is available, the task is pushed into the thread and executed. Generally
you do not interact with the task scheduler. (The class exposes some members that you
can use to understand the tasks state.) The first property is Current, which retrieves the
instance of the running task scheduler. This is required to access information. For
example, you can understand the concurrency level by reading the
MaximumConcurrencyLevel property as follows:

Console.WriteLine(“The maximum concurrency level is {0}”,

TaskScheduler.Current.MaximumConcurrencyLevel)

There are also some protected methods that can be used to force tasks’ execution (such as
QueueTask and TryDequeue) but these are accessible if you want to create your custom task
scheduler, which is beyond of the scope in this chapter.

The TaskFactory Class
The System.Threading.Tasks.TaskFactory class provides support for generating and
running new tasks and is generally exposed as a shared property of the Task class, as
explained in the next section about tasks. The most important member is the StartNew
method, which enables creating a new task and automatically starting it.

The ParallelOptions Class
The System.Threading.Tasks.ParallelOptions class provides a way for setting options on
tasks’ creation. Specifically it provides properties for setting tasks’ cancellation properties
(CancellationToken), the instance of the scheduler (TaskScheduler), and the maximum
number of threads that a task is split across (MaxDegreeOfParallelism).

Understanding and Using Tasks
Parallel computing in the .NET Framework development relies on the concept of tasks.
This section is therefore about the core of the parallel computing, and you learn to use
tasks for scaling unit of works across multiple threads and processors.

What Is a Task?

Chapter 44, “Processes and Multithreading,” discusses multithreading and illustrates how
a thread is a unit of work that you can use to split a big task across multiple units of work.
Different from the pure threading world, in parallel computing the most important
concept is the task, which is simply the basic unit of work, which can be scaled across all
available processors. A task is not a thread; a thread can run multiple tasks, but each task
can be also scaled across more than one thread, depending on available resources. The task
is therefore the most basic unit of work for operations executed in parallel. In terms of
code, a task is nothing but an instance of the System.Threading.Tasks.Task class that

4
5

From the Library of Wow! eBook

ptg

1008 CHAPTER 45 Parallel Programming

holds a reference to a delegate, pointing to a method that does some work. The imple-
mentation is similar to what you do with Thread objects but with the differences previ-
ously discussed. Basically you have two alternatives for executing operations with tasks:
The first one is calling the Parallel.Invoke method; the second one is manually creating
and managing instances of the Task class. The following subsections cover both scenarios.

Running Tasks with Parallel.Invoke

The first way for running tasks in parallel is calling the Parallel.Invoke shared method.
This method can receive an array of System.Action objects as parameter, so each Action is
translated by the runtime into a task. If possible, tasks are executed in parallel. The follow-
ing example demonstrates how to perform three calculations concurrently:

’Requires an Imports System.Threading.Tasks directive

Dim angle As Double = 150

Dim sineResult As Double

Dim cosineResult As Double

Dim tangentResult As Double

Parallel.Invoke(Sub()

Console.WriteLine(Thread.CurrentThread.

ManagedThreadId)

Dim radians As Double = angle * Math.PI / 180

sineResult = Math.Sin(radians)

End Sub,

Sub()

Console.WriteLine(Thread.CurrentThread.

ManagedThreadId)

Dim radians As Double = angle * Math.PI / 180

cosineResult = Math.Cos(radians)

End Sub,

Sub()

Console.WriteLine(Thread.CurrentThread.

ManagedThreadId)

Dim radians As Double = angle * Math.PI / 180

tangentResult = Math.Tan(radians)

End Sub)

In the example the code takes advantage of statement lambdas; each of them is translated
into a task by the runtime that is also responsible for creating and scheduling threads and
for scaling tasks across all available processors. If you run the code you can see how the
tasks run within separate threads, automatically created for you by the TPL. As an alterna-
tive you can supply AddressOf clauses pointing to methods performing the required oper-
ations, instead of using statement lambdas. Although this approach is useful when you
need to run tasks in parallel the fastest way, it does not enable you to take control over

From the Library of Wow! eBook

ptg

1009Understanding and Using Tasks

tasks themselves. This is instead something that requires explicit instances of the Task
class, as explained in the next section.

Creating, Running, and Managing Tasks: The Task Class

The System.Threading.Tasks.Task class represents the unit of work in the parallel
computing based on the .NET Framework. Differently from calling Parallel.Invoke,
when you create an instance of the Task class, you get deep control over the task itself,
such as starting, stopping, waiting for completion, and cancelation. The constructor of the
class requires you to supply a delegate or a lambda expression to provide a method
containing the code to be executed within the task. The following code demonstrates how
you create a new task and then start it:

Dim simpleTask As New Task(Sub()

‘Do your work here...

End Sub)

simpleTask.Start()

You supply the constructor with a lambda expression or with a delegate and then invoke
the Start instance method. The Task class also exposes a Factory property of type
TaskFactory that offers members for interacting with tasks. For example, you can use this
property for creating and starting a new task all in one as follows:

Dim factoryTask = Task.Factory.StartNew(Sub()

‘Do your work here

End Sub)

This has the same result as the first code snippet. The logic is that you can create instances
of the Task class, each with some code that will be executed in parallel.

GETTING THE THREAD ID

When you launch a new task, the task is executed within a managed thread. If you
want to get information on the thread, in the code for the task you can access it via
the System.Threading.Thread.CurrentThread shared property. For example, the
CurrentThread.ManagedThreadId property will return the thread id that is hosting the
task.

Creating Tasks That Return Values

The Task class also has a generic counterpart that you can use for creating tasks that return
a value. For example consider the following code snippet that creates a task returning a
value of type Double, which is the result of calculating the tangent of an angle:

Dim taskWithResult = Task(Of Double).

Factory.StartNew(Function()

4
5

From the Library of Wow! eBook

ptg

1010 CHAPTER 45 Parallel Programming

Dim radians As Double _

= 120 * Math.PI / 180

Dim tan As Double = _

Math.Tan(radians)

Return tan

End Function)

Console.WriteLine(taskWithResult.Result)

Basically you use a Function, which represents a System.Func(Of T) so that you can
return a value from your operation. The result is accessed via the Task.Result property. In
the preceding example, the Result property contains the result of the tangent calculation.
The problem is that the start value on which the calculation is performed is hard-coded. If
you want to pass a value as an argument, you need to approach the problem differently.
The following code demonstrates how to implement a method that receives an argument
that can be reached from within the new task:

Private Function CalcTan(ByVal angle As Double) As Double

Dim t = Task(Of Double).Factory.

StartNew(Function()

Dim radians As Double = angle * Math.PI / 180

tangentResult = Math.Tan(radians)

Return tangentResult

End Function)

Return t.Result

End Function

The result of the calculation is returned from the task. This result is wrapped by the
Task.Result instance property, which is then returned as the method result.

Waiting for Tasks to Complete
You can explicitly wait for a task to complete by invoking the Task.Wait method. The
following code waits until the task completes:

Dim simpleTask = Task.Factory.StartNew(Sub()

‘Do your work here

End Sub)

simpleTask.Wait()

You can alternatively pass a number of milliseconds to the Wait method so that you can
also check for a timeout. The following code demonstrates this:

simpleTask.Wait(1000)

If simpleTask.IsCompleted Then

‘completed

Else

From the Library of Wow! eBook

ptg

1011Understanding and Using Tasks

‘timeout

End If

Notice how the IsCompleted property enables checking if the task is marked as
completed by the runtime. Generally Wait has to be enclosed inside a Try..Catch block
because the method asks the runtime to complete a task that could raise any exceptions.
This is an example:

Try

simpleTask.Wait(1000)

If simpleTask.IsCompleted Then

‘completed

Else

‘timeout

End If

‘parallel exception

Catch ex As AggregateException

End Try

Exception Handling

Handling exceptions is a crucial topic in parallel programming. The problem is that multi-
ple tasks that run concurrently could raise more than one exception concurrently, and
you need to understand what the actual problem is. The .NET Framework 4.0 offers the
System.AggregateException class that wraps all exceptions occurred concurrently into
one instance. The class then exposes, over classic properties, an InnerExceptions collec-
tion that you can iterate for checking what exceptions occurred. The following code
demonstrates how you catch an AggregateException and how you iterate the instance:

Dim aTask = Task.Factory.StartNew(Sub() Console.

WriteLine(“A demo task”))

Try

aTask.Wait()

Catch ex As AggregateException

For Each fault In ex.InnerExceptions

If TypeOf (fault) Is InvalidOperationException Then

‘Handle the exception here..

ElseIf TypeOf (fault) Is NullReferenceException Then

‘Handle the exception here..

End If

Next

Catch ex As Exception

4
5

From the Library of Wow! eBook

ptg

1012 CHAPTER 45 Parallel Programming

End Try

Each item in InnerExceptions is an exception that you can verify with TypeOf. Another
problem is when you have tasks that run nested tasks that throw exceptions. In this case
you can take advantage of the AggregateException.Flatten method, which wraps excep-
tions thrown by nested tasks into the parent instance. The following code demonstrates
how to accomplish this:

Dim aTask = Task.Factory.StartNew(Sub() Console.

WriteLine(“A demo task”))

Try

aTask.Wait()

Catch ex As AggregateException

For Each fault In ex.Flatten.InnerExceptions

If TypeOf (fault) Is InvalidOperationException Then

‘Handle the exception here..

ElseIf TypeOf (fault) Is NullReferenceException Then

‘Handle the exception here..

End If

Next

Catch ex As Exception

End Try

Basically Flatten returns an instance of the AggregateException storing inner exceptions
that included errors coming from nested tasks.

Cancelling Tasks

There are situations in which you want to cancel task execution. To programmatically
cancel a task, you need to enable tasks for cancellation, which requires some lines of code.
You need an instance of the System.Threading.CancellationTokenSource class; this
instance tells to a System.Threading.CancellationToken that it should be canceled. The
CancellationToken class provides notifications for cancellation. The following lines
declare both objects:

Dim tokenSource As New CancellationTokenSource()

Dim token As CancellationToken = tokenSource.Token

Then you can start a new task using an overload of the TaskFactory.StartNew method
that takes the cancellation token as an argument. The following line accomplishes this:

Dim aTask = Task.Factory.StartNew(Sub() DoSomething(token), token)

You still pass a delegate as an argument; in the preceding example the delegate takes an
argument of type CancellationToken that is useful for checking the state of cancellation

From the Library of Wow! eBook

ptg

1013Understanding and Using Tasks

during the task execution. The following code snippet provides the implementation of the
DoSomething method, in a demonstrative way:

Sub DoSomething(ByVal cancelToken As CancellationToken)

‘Check if cancellation was requested before

‘the task starts

If cancelToken.IsCancellationRequested = True Then

cancelToken.ThrowIfCancellationRequested()

End If

For i As Integer = 0 To 1000

‘Simulates some work

Thread.SpinWait(10000)

If cancelToken.IsCancellationRequested Then

‘Cancellation was requested

cancelToken.ThrowIfCancellationRequested()

End If

Next

End Sub

The IsCancellationRequested property returns True if cancellation over the current task
was requested. The ThrowIfCancellationRequested method throws an
OperationCanceledException to communicate to the caller that the task was canceled. In
the preceding code snippet the Thread.SpinWait method simulates some work inside a
loop. Notice how checking for cancellation is performed at each iteration so that an
exception can be thrown if the task is actually canceled. The next step is to request cancel-
lation in the main code. This is accomplished by invoking the
CancellationTokenSource.Cancel method, as demonstrated in the following code:

tokenSource.Cancel()

Try

aTask.Wait()

Catch ex As AggregateException

‘Handle concurrent exceptions here...

Catch ex As Exception

End Try

4
5

From the Library of Wow! eBook

ptg

1014 CHAPTER 45 Parallel Programming

NOTE

The OperationCanceledException is correctly thrown if Just My Code is disabled (see
Chapter 5, “Debugging Visual Basic 2010 Applications,” for details on Just My Code). If
it is enabled, the compiler sends a message saying that an
OperationCanceledException was unhandled by user code. This is benign, so you
can simply go on running your code by pressing F5 again.

The Barrier Class

The System.Threading namespace in .NET 4.0 introduces a new class named Barrier. The
goal of this class is bringing a number of tasks that work concurrently to a common point
before taking further steps. Tasks work across multiple phases and they signal they arrived
at the barrier, waiting for all other tasks to arrive. The constructor of the class offers
several overloads but all have in common the number of tasks participating in the concur-
rent work. You can also specify the action to take once they arrive at the common point
(that is, they reach the barrier and complete the current phase). Notice that the same
instance of the Barrier class can be used multiple times, for representing multiple phases.
The following code demonstrates how three tasks reach the barrier after their work, signal-
ing the work completion and waiting for other tasks to finish:

Sub BarrierDemo()

‘ Create a barrier with three participants

‘ The Sub lambda provides an action that will be taken

‘ at the end of the phase

Dim myBarrier As New Barrier(3,

Sub(b)

Console.

WriteLine(“Barrier has been “ & _

“reached (phase number: {0})”,

b.CurrentPhaseNumber)

End Sub)

‘ This is the sample work made by all participant tasks

Dim myaction As Action =

Sub()

For i = 1 To 3

Dim threadId As Integer =

Thread.CurrentThread.ManagedThreadId

Console.WriteLine(“Thread {0} before wait.”, threadId)

‘Waits for other tasks to arrive at this same point:

myBarrier.SignalAndWait()

Console.WriteLine(“Thread {0} after wait.”, threadId)

Next

End Sub

From the Library of Wow! eBook

ptg

1015Parallel Loops

‘ Starts three tasks, representing the three participants

Parallel.Invoke(myAction, myAction, myAction)

‘ Once done, disposes the Barrier.

myBarrier.Dispose()

End Sub

Basically the code performs these steps:

1. Creates an instance of the Barrier class, adding three participants and specifying
the action to take when the barrier is reached.

2. Declares a common job for the three tasks (the myAction object) which simply
performs an iteration against running threads simulating some work. When each task
completes the work, the Barrier.SignalAndWait method is invoked. This tells the
runtime to wait for other tasks to complete their work before going to the next phase.

3. Launches the three concurrent tasks and disposes the myBarrier object at the appro-
priate time.

The code also reuses the same Barrier instance in order to work across multiple phases.
The class also exposes interesting members such as:

. AddParticipant and AddParticipants methods which respectively allow adding one
or the specified number of participant tasks to the barrier

. RemoveParticipant and RemoveParticipants methods which respectively allow
removing one or the specified number of participant tasks from the barrier

. CurrentPhaseNumber property of type Long, which returns the current phase number

. ParticipantCount property of type Integer, which returns the number of tasks
involved in the operation

. ParticipantsRemaining property of type Integer, which returns the number of tasks
that have not invoked the SignalAndWait method yet

A Barrier represents a single phase in the process while multiple instances of the same
Barrier class, like in the preceding code, represent multiple phases.

Parallel Loops
The Task Parallel Library offers the ability of scaling loops such as For and For Each.
This is possible due to the implementation of the shared Parallel.For and
Parallel.ForEach methods. Both methods can take advantage of a multicore architec-
ture for the parallel execution of loops, as explained in next sections. Now create a new
Console application with Visual Basic. The goal of the next example is to simulate an

4
5

From the Library of Wow! eBook

ptg

1016 CHAPTER 45 Parallel Programming

intensive processing for demonstrating the advantage of parallel loops and demonstrat-
ing how the Task Parallel Library is responsible for managing threads for you. With that
said, write the following code:

’Requires an Imports System.Threading directive

Private Sub SimulateProcessing()

Threading.Thread.SpinWait(80000000)

End Sub

Private Function GetThreadId() As String

Return “Thread ID: “ + Thread.CurrentThread.

ManagedThreadId.ToString

End Function

TIP

The Thread.SpinWait method simply tells a thread that it has to wait for the specified
number of iterations to be completed. You might often find this method in the code
samples about parallel computing with the .NET Framework.

The SimulateProcessing method just simulates an intensive processing against fictitious
data whereas GetThreadId can help demonstrate the TPL influence on threads manage-
ment. Now in the Sub Main of the main module, write the following code that takes a
StopWatch object for measuring elapsed time:

Dim sw As New Stopwatch

sw.Start()

‘This comment will be replaced by

‘the method executing the loop

sw.Stop()

Console.WriteLine(“Elapsed: {0}”, sw.Elapsed)

Console.ReadLine()

This code helps to measure time in both classic and parallel loops as explained soon.

NOTE

For Parallel LINQ, parallel loops give the most out in particular circumstances such as
intensive processing. If you simply need to iterate a collection without heavy CPU busi-
ness, probably parallel loops will not be so helpful, and you will still prefer classic
loops. Choose parallel loops only when your processing is intensive enough to require
the work of all processors on your machine.

From the Library of Wow! eBook

ptg

1017Parallel Loops

Parallel.For Loop

Writing a parallel For loop is an easy task, although it is important to remember that you
can generally take advantage of parallelism against intensive and time-consuming opera-
tions. Imagine you want to invoke the code defined at the beginning of this section for a
finite number of times to simulate an intensive processing. This is how you would do it
with a classic For loop:

Sub ClassicForTest()

For i = 0 To 15

Console.WriteLine(i.ToString + GetThreadId())

SimulateProcessing()

Next

End Sub

Nothing new here; the code simply writes the thread identifier at each step and simulates
an intensive processing. If you run the code, you get the result shown in Figure 45.1 where
you can see how all the work relies on a single thread and how the loop result is ordered.

4
5

The next code snippet is instead how you write a parallel loop that accomplishes the
same thing:

’Requires an Imports System.Threading.Tasks directive

Sub ParallelForTest()

Parallel.For(0, 16, Sub(i)

Console.WriteLine(i.ToString + _

GetThreadId())

SimulateProcessing()

End Sub)

End Sub

FIGURE 45.1 Running a classic For loop to demonstrate single threading.

From the Library of Wow! eBook

ptg

1018

Basically Parallel.For receives three arguments: The first one is the “from” part of the
For loop, the second one is the “to” part of the For loop (and it is exclusive to the loop),
and the third one is the action to take at each step. Such action is represented by a
System.Action(Of Integer) that you write under the form of a statement lambda that
takes a variable (i in the above example) representing the loop counter. To provide a
simpler explanation, the Sub..End Sub block in the statement lambda of the parallel loop
contains the same code of the For..Next block in the classic loop. If you run the code,
you can see how things change, as shown in Figure 45.2.

CHAPTER 45 Parallel Programming

You immediately notice two things: The first one is that Parallel.For automatically splits
the loop execution across multiple threads, differently from the classic loop in which the
execution relied on a single thread. Multiple threads are shared across the multicore archi-
tecture of your machine, thus speeding up the loop. The second thing you notice is the
speed of execution. Using a parallel loop running the previous example on my machine
took about 5 seconds less than the classic loop. Because the loop execution is split across
multiple threads, such threads run in parallel. This means that maintaining a sequential
execution order is not possible with Parallel.For loops. As you can see from Figure 45.2,
the iterations are not executed sequentially, and this is appropriate, because it means that
multiple operations are executed concurrently, which is the purpose of the TPL. Just be
aware of this when architecting your code.

Parallel.ForEach Loop

Similarly to For loops, the Parallel class offers an implementation of For..Each loops for
iterating items within a collection in parallel. Still taking advantage of methods shown at
the beginning of this section for retrieving thread information, simulate intensive process-
ing and measuring elapsed time; imagine you want to retrieve the list of image files in the
user level Pictures folder simulating an intensive processing over each filename. This task
can be accomplished via a classic For..Each loop as follows:

Sub ClassicForEachTest()

FIGURE 45.2 The parallel loop runs multiple threads and takes less time.

From the Library of Wow! eBook

ptg

1019Parallel Loops
4

5

Dim allFiles = IO.Directory.

EnumerateFiles(“C:\users\alessandro\pictures”)

For Each fileName In allFiles

Console.WriteLine(fileName + GetThreadId())

SimulateProcessing()

Next

End Sub

The intensive processing simulation still relies on a single thread and on a single proces-
sor, thus it will be expensive in terms of time and system resources. Figure 45.3 shows the
result of the loop.

Fortunately the Task Parallel Library enables iterating items in a collection concurrently.
This is accomplished with the Parallel.ForEach method, which is demonstrated in the
following code:

Sub ParallelForEachTest()

Dim allFiles = IO.Directory.

EnumerateFiles(“C:\users\alessandro\pictures”)

Parallel.ForEach(Of String)(allFiles, Sub(fileName)

Console.WriteLine(_

fileName + GetThreadId())

SimulateProcessing()

End Sub)

End Sub

Parallel.ForEach is generic and therefore requires specifying the type of items in the
collection. In this case the collection is an IEnumerable(Of String), so ForEach takes (Of

FIGURE 45.3 Iterating items in a collection under intensive processing is expensive with a
classic For..Each loop.

From the Library of Wow! eBook

ptg

1020 CHAPTER 45 Parallel Programming

String) as the generic parameter. Talking about arguments, the first one is the collection
to iterate, whereas the second one is an Action(Of T), therefore a reference to a delegate
or a statement lambda like in the preceding example, representing the action to take over
each item in the collection. If you run the code snippet, you get the result shown in
Figure 45.4.

The difference is evident. The parallel loop completes processing in almost half the time
of the classic loop; this is possible because the parallel loop automatically runs multiple
threads for splitting the operation across multiple units of work, but particularly it takes
full advantage of the multicore processors architecture of the running machine to take the
most from system resources.

The ParallelLoopState Class
The System.Threading.Tasks.ParallelLoopState enables getting information on the state
of parallel loops such as Parallel.For and Parallel.ForEach. For example, you can under-
stand if a loop has been stopped via the Boolean property IsStopped or if the loop threw
an exception via the IsExceptional property. Moreover you can stop a loop with Break
and Stop methods. The first one requests the runtime to stop the loop execution when
possible, but including the current iteration while Stop does the same but excluding the
current iteration. Basically you need to pass a variable of type ParallelLoopState to the
delegate invoked for the loop or let the compiler infer the type as in the following example:

’The compiler infers ParallelLoopState

‘for the loopState identifier

Parallel.For(0, 16, Sub(i, loopState)

Console.WriteLine(i.ToString + _

GetThreadId())

SimulateProcessing()

If loopState.IsExceptional Then

FIGURE 45.4 Performing a Parallel.ForEach loop speeds up intensive processing over
items in the collection.

From the Library of Wow! eBook

ptg

1021Debugging Tools For Parallel Tasks
4

5

‘an exception occurred

End If

‘Breaks the loop at the 10th iteration

If i = 10 Then

loopState.Break()

End If

End Sub)

Debugging Tools For Parallel Tasks
Visual Studio 2010 introduces two useful tool windows that you can use for debugging
purposes when working on both parallel tasks and loops. To understand how such tooling
works, consider the following code that creates and starts three tasks:

Sub CreateSomeTaks()

Dim taskA = Task.Factory.StartNew(Sub() Console.WriteLine(“Task A”))

Dim taskB = Task.Factory.StartNew(Sub() Console.WriteLine(“Task B”))

Dim taskC = Task.Factory.StartNew(Sub() Console.WriteLine(“Task C”))

End Sub

Place a breakpoint on the End Sub statement and run the code. Because the tasks work in
parallel, some of them maybe running at this point and other maybe not. To understand
what is happening, you can open the Parallel Tasks tool window (select Debug, Windows,
Parallel Tasks if not already visible). The window shows the state of each task, as repre-
sented in Figure 45.5.

Among the other information, the window shows the task ID, the status (that is, if it is
running, scheduled, waiting, dead-locked or completed), the delegate that is making the
actual job (in the Task column) and the actual thread that refers to the task. Next you can
take advantage of the Parallel Stacks tool window (which can be enabled via Debug,
Windows, Parallel Stacks) that shows the call stack for threads and their relationships.
Figure 45.6 shows an example.

FIGURE 45.5 The Parallel Tasks tool window.

From the Library of Wow! eBook

ptg

1022 CHAPTER 45 Parallel Programming

For each thread the window shows a information that you can investigate by right click-
ing on each row.

Concurrent Collections
Parallel computing basically relies on multithreading, although with some particular speci-
fications for taking advantage of multicore architectures. The real problem is when you
need to work with collections, because in a multithreaded environment, multiple threads
could access a collection attempting to make edits that need to be controlled. The .NET
Framework 4.0 introduces a number of thread-safe concurrent collections, exposed by the
System.Collections.Concurrent namespace, which is useful in parallel computing with
the .NET Framework because they grant concurrent access to their members from threads.

WHAT DOES THREAD-SAFE MEAN?

A collection is thread-safe when access to its members is allowed to only one thread
per time (or to a few threads in particular cases).

Table 45.1 summarizes concurrent collections in .NET 4.0.

FIGURE 45.6 The Parallel Stacks window.

TABLE 45.1 Available Concurrent Collections

Collection Description

ConcurrentBag(Of T) Represents an unordered collection of items

ConcurrentQueue(Of T) Represents a concurrent FIFO collection

ConcurrentStack(Of T) Represents a concurrent LIFO collection

From the Library of Wow! eBook

ptg

1023Concurrent Collections
4

5

The first four listed collections are essentially thread-safe implementations of generic
collections you already learned in Chapter 16, “Working with Collections,” whereas the
BlockingCollection is a little bit more complex but interesting.

ConcurrentBag(Of T)

The ConcurrentBag(Of T) is the most basic concurrent collection, in that it is just an
unordered collection of items. The following code demonstrates how you use it for
adding, iterating, counting, and removing items:

’Creating an instance

Dim cb As New ConcurrentBag(Of String)

‘Adding some items

cb.Add(“String one”)

cb.Add(“String two”)

cb.Add(“String three”)

‘Showing items count

Console.WriteLine(cb.Count)

‘Listing items in the collection

For Each item In cb

Console.WriteLine(item)

Next

‘Removing an item

Dim anItem As String = String.Empty

cb.TryTake(anItem)

Console.WriteLine(anItem)

You add items to the collection by invoking the Add method. The Count property gets the
number of items in the collection, whereas the IsEmpty property tells you if the collection
is empty. To remove an item, you invoke TryTake, which takes the first item, assigns it to
the result variable (in this case anItem), and then removes it from the collection. It returns
True if removing succeeds, otherwise False. Keep in mind that this collection offers no
order for items; therefore, iteration results are completely random.

TABLE 45.1 Continued

Collection Description

ConcurrentDictionary(Of
TKey, TValue)

Represents a concurrent Dictionary(Of TKey, TValue)

BlockingCollection(Of T) A thread-safe collection with bounding and blocking capabili-
ties against threads

From the Library of Wow! eBook

ptg

1024 CHAPTER 45 Parallel Programming

ConcurrentQueue(Of T)

The ConcurrentQueue(Of T) collection is just a thread-safe implementation of the Queue(Of
T) collection; therefore, it takes the logic of FIFO (First-In, First Out), where the first
element in the collection is the first to be removed. The following code shows an example:

’Creating an instance

Dim cq As New ConcurrentQueue(Of Integer)

‘Adding items

cq.Enqueue(1)

cq.Enqueue(2)

‘Removing an item from the queue

Dim item As Integer

cq.TryDequeue(item)

Console.WriteLine(item)

‘Returns “1”:

Console.WriteLine(cq.Count)

The main difference with Queue is how items are removed from the queue. In this concur-
rent implementation, you invoke TryDequeue, which passes the removed item to a result
variable by reference. The method returns True in cases of success, otherwise False. Still
the Count property returns the number of items in the queue.

ConcurrentStack(Of T)

ConcurrentStack(Of T) is the thread-safe implementation of the Stack(Of T) generic
collection and works according to the LIFO (Last-In, First-Out) logic. The following code
shows an example of using this collection:

’Creating an instance

Dim cs As New ConcurrentStack(Of Integer)

‘Adding an item

cs.Push(1)

‘Adding an array

cs.PushRange(New Integer() {10, 5, 10, 20})

Dim items() As Integer = New Integer(3) {}

‘Removing an array

cs.TryPopRange(items, 0, 4)

‘Iterating the array

From the Library of Wow! eBook

ptg

1025Concurrent Collections
4

5

Array.ForEach(Of Integer)(items, Sub(i)

Console.WriteLine(i)

End Sub)

‘Removing an item

Dim anItem As Integer

cs.TryPop(anItem)

Console.WriteLine(anItem)

The big difference between this collection and its thread-unsafe counterpart is that you
can also add an array of items invoking PushRange, whereas you still invoke Push to add a
single item. To remove an array from the stack, you invoke TryPopRange, which takes
three arguments: the target array that will store the removed items, the start index, and
the number of items to remove. Both PushRange and TryPopRange return a Boolean value
indicating if they succeeded. The Array.ForEach loop in the preceding code is just an
example for demonstrating how the array was actually removed from the collection.
Finally, you invoke TryPop for removing an item from the stack; such an item is then
assigned to a result variable, passed by reference.

ConcurrentDictionary(Of TKey, TValue)

The ConcurrentDictionary collection has the same purpose of its thread-unsafe counter-
part, but it differs in how methods work. All methods for adding, retrieving, and removing
items return a Boolean value indicating success or failure, and their names all start with
Try. The following code shows an example:

’Where String is for names and Integer for ages

Dim cd As New ConcurrentDictionary(Of String, Integer)

Dim result As Boolean

‘Adding some items

result = cd.TryAdd(“Alessandro”, 32)

result = cd.TryAdd(“Nadia”, 28)

result = cd.TryAdd(“Roberto”, 35)

‘Removing an item

result = cd.TryRemove(“Nadia”, 28)

‘Getting a value for the specified key

Dim value As Integer

result = cd.TryGetValue(“Alessandro”, value)

Console.WriteLine(value)

The logic of the collection is then the same of Dictionary, so refer to this one for details.

From the Library of Wow! eBook

ptg

1026 CHAPTER 45 Parallel Programming

BlockingCollection(Of T)

The BlockingCollection(Of T) is a special concurrent collection. At the highest level the
collection has two characteristics. The first is that if a thread attempts to retrieve items
from the collection while it is empty, the thread is blocked until some items are added to
the collection; the second one is that if a thread attempts to add items to the collection,
but this has reached the maximum number of items possible, the thread is blocked until
some space is freed in the collection. Another interesting feature is completion; you can
mark the collection as complete so that no other items can be added. This is accomplished
via the CompleteAdding instance method. After you invoke this method, if a thread
attempts to add items, an InvalidOperationException is thrown. The following code
shows how to create a BlockingCollection for strings:

Dim bc As New BlockingCollection(Of String)

bc.Add(“First”)

bc.Add(“Second”)

bc.Add(“Third”)

bc.Add(“Fourth”)

‘Marks the collection as complete

bc.CompleteAdding()

‘Returns an exception

‘bc.Add(“Fifth”)

‘Removes an item from the collection (FIFO)

Dim result = bc.Take()

Console.WriteLine(result)

You add items by invoking the Add method, and you mark the collection complete with
CompleteAdding. To remove an item, you invoke Take. This method removes the first item
added to the collection, according to the FIFO approach. This is because the
BlockingCollection is not actually a storage collection, whereas it creates a
ConcurrentQueue behind the scenes, adding blocking logic to this one. The class also
exposes some properties:

. BoundedCapacity, which returns the bounded capacity for the collection. You can
provide the capacity via the constructor. If not, the property returns -1 as the value
indicating that it’s a growing collection.

. IsCompleted, which indicates if the collection has been marked with
CompleteAdding and it is also empty.

. IsAddingCompleted, which indicates if the collection has been marked with
CompleteAdding.

From the Library of Wow! eBook

ptg

1027Summary
4

5

The class has other interesting characteristics. For example, the beginning of the discus-
sion explained why it is considered as “blocking.” By the way, it also offers methods
whose names all begin with Try, such as TryAdd and TryTake, which provides overloads
that enable doing their respective work without being blocked. The last feature of the
BlockingCollection is a number of static methods that you can use for adding and
removing items to and from multiple BlockingCollection instances simultaneously, both
blocking and nonblocking. Such methods are AddToAny, TakeFromAny, TryAddToAny, and
TryTakeFromAny. The following code shows an example of adding a string to multiple
instances of the collection:

Dim collection1 As New BlockingCollection(Of String)

Dim collection2 As New BlockingCollection(Of String)

Dim colls(1) As BlockingCollection(Of String)

colls(0) = collection1

colls(1) = collection2

BlockingCollection(Of String).AddToAny(colls, “anItem”)

All mentioned methods take an array of collections; this is the reason for the code imple-
mentation as previously illustrated.

Summary
Parallel computing enables taking advantage of multicore architectures for scaling opera-
tions execution across all available processors on the machine. In this chapter you learned
how parallel computing in .NET Framework 4.0 relies on the concept of tasks; for this you
learned how to create and run tasks via the System.Threading.Tasks.Task class to gener-
ate units of work for running tasks in parallel. You also learned how to handle concurrent
exceptions and request tasks’ cancellation. Another important topic in parallel computing
is loops. Here you learned how the Parallel.For and Parallel.ForEach loops enable
multithreaded iterations that are scaled across all available processors. Finally you took a
tour inside the new concurrent collections in .NET Framework 4.0, a new set of thread-
safe collections that you can use to share information across tasks.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 46

Working with Assemblies

IN THIS CHAPTER

. Assembly Overview

. Understanding Application
Domains

. Overview of Security Changes
in .NET 4.0

So many times in this book, and of course in many other
.NET resources, you find the word assembly associating it to
managed executable files such as .NET applications and
libraries. You need to know some key concepts about assem-
blies to understand how they actually work, what kind of
information they offer, and how you can avoid bad
surprises when executing them. In this chapter you first get
an overview of assemblies’ structure and base concepts;
then you pass through advanced concepts that can help
you understand their context of execution.

Assembly Overview
Assemblies can be discussed with two points of view: a
physical one and a logical one. For the physical point of
view, an assembly is an .exe or .dll file containing
executable modules and resources. From a logical point of
view, an assembly is the smallest unit for deploying .NET
applications that also provides version information and
enables code reuse. Chapter 47, “Reflection,” discusses how,
from the physical perspective, an assembly is a container of
Intermediate Language code, metadata, and resources. Now
we focus the discussion on the logical perspective so that
you can understand some other purposes of this unit of
work. In some cases details of some of the topics have been
previously discussed, but for your convenience they are
summarized in this chapter.

From the Library of Wow! eBook

ptg

1030 CHAPTER 46 Working with Assemblies

Information Stored Within Assemblies

An assembly doesn’t necessarily coincide with a standalone application. In many cases
assemblies are also compiled class libraries. Independently from what kind of assembly
you are working with, it exposes the following information:

. Types:Through the IL code necessary to the application execution, assemblies can
expose reusable types that can be consumed by other assemblies. This is the reason
why assemblies are considered the smallest unit for code reuse.

. Version:Assemblies contain version information, and all modules within the assem-
bly have the same version; this is important to the CLR that can distinguish
between assemblies with the same name but with different version numbers without
registration.

. Scope:Assemblies provide the scope of exposed types, establishing whether they can
be externally visible. This is accomplished in code by Visual Basic qualifiers such as
Public, Friend, and Private.

Assembly Location

To understand where assemblies are located, you must consider that they are generally
divided into private assemblies and shared assemblies. Private assemblies are standalone
assemblies or assemblies that reside exclusively in the same folder of the application that
holds a reference. This is a common scenario, because it makes the deployment easier
because you just need to distribute the content of the application folder (known as XCopy
mode). Every application holding a reference to a private assembly needs to have a copy
of the assembly inside its folder. This means that if you have ten applications referencing
the assembly, you will also have ten copies of the assembly. Shared assemblies are instead
files with a digital signature that can be installed to a particular location known as the
Global Assembly Cache that allows having a single shared copy of the assembly only if
this comes from a trusted publisher. The Global Assembly Cache is an important topic
that Chapter 53, “Understanding the Global Assembly Cache,” addresses, so read it for
further details.

BINDING, CODEBASE, PROBING

When one assembly is referenced by another one, the .NET runtime needs to link
them. This process is known as binding and is performed based on the assembly ver-
sion, culture information, and strong name if available. When the runtime resolves bind-
ing, it searches for the physical assembly. This search process is known as probing.
Because a signed assembly has also signature information that is kept when you add
a reference, search is first performed in the GAC. If the assembly is not found there,
the runtime searches for it looping through the application folder and subfolders until
it’s found. If you plan to place assemblies to locations different from the GAC and the
application folder, you can place a codeBase suggestion in the application configuration
file to tell the runtime where the required assembly will be found.

From the Library of Wow! eBook

ptg

1031Understanding Application Domains

Signing Assemblies

To mark your assemblies as trusted, you need to add a digital signature known as a strong
name. This becomes mandatory if you want to install an assembly to the GAC. Chapter 53
also provides a thorough discussion on signing assemblies with a strong name.

Assembly Information and Attributes

As you saw in different parts of the book, assemblies contain information that can make
them recognizable from the external world, such as name, version, author, and copyright
information. All these items are part of the assembly metadata and are injected to the
assembly by adding some attributes declaration to the AssemblyInfo.vb file through
instances of the Assembly attribute. Such attributes are covered in Chapter 3, “The
Anatomy of a Visual Basic Project,” particularly in Listing 3.3, which shows how to map
properties assigned via the My Project Designer, so have a look. Now that you know more
about assemblies’ contents and purposes, let’s see where the CLR executes these complex
units of work.

Understanding Application Domains
An application domain is a unit of isolation for executing managed code. For a better
understanding, let’s make a comparison with the Win32 world. In Win32 you have
processes. Each process is isolated from other processes by the system so that a process
cannot interfere with other processes and with resources required by such processes. This
prevents process corruption and unexpected crashes. In .NET Framework architecture the
idea of isolation is provided by application domains, so an application domain is the place
where an assembly runs isolated from other assemblies; when an application is started, the
CLR creates one application domain for it. Although a Win32 process can host multiple
application domains, when an assembly is executing within an application domain, it
cannot interfere with other assemblies within different application domains, although
application domains can communicate with each other. One assembly can create multiple
application domains (which are handled by the CLR) and run separate assemblies within
such domains, as I will explain in next section.

Creating Application Domains and Executing Assemblies

You have basically two ways for executing assemblies inside application domains: getting
the instance of the default application domain for the running assembly (that is, your
application) and creating a new application domain. The System.AppDomain class provides
a shared property named CurrentDomain, of type System.AppDomain, which represents the
instance of the current application domain. You get the instance and then execute the
assembly as follows:

Dim currentDomain As AppDomain = AppDomain.CurrentDomain

currentDomain.ExecuteAssembly(“AnotherApp.exe”)

The AppDomain class exposes an instance ExecuteAssembly method that enables executing
the specified assembly within an application domain. Generally executing an assembly

4
6

From the Library of Wow! eBook

ptg

1032 CHAPTER 46 Working with Assemblies

in the current application domain is not a good idea, because you cannot unload the
assembly when the execution has completed. Because of this, a better approach is to
create a new application domain. For now let’s see how you can get information on
application domains:

’Shows the AppDomain friendly name

Console.WriteLine(currentDomain.FriendlyName)

‘Shows the AppDomain id within the process

Console.WriteLine(currentDomain.Id)

‘Shows the working directory for the running

‘assembly within the AppDomain

Console.WriteLine(currentDomain.BaseDirectory)

‘Returns True if the code is classified as

‘fully-trusted

Console.WriteLine(currentDomain.IsFullyTrusted)

Notice how you can interrogate some properties for retrieving application domain infor-
mation. The AppDomain class offers a number of other advanced properties that are not
covered here. A useful resource for finding information related to AppDomain properties is
the MSDN Library: http://msdn.microsoft.com/en-
us/library/system.appdomain(VS.100).aspx. Now it’s time to understand how it is possible
to create new application domains and execute assemblies. Basically you invoke the
AppDomain.CreateDomain static method and then you invoke ExecuteAssembly.

APPDOMAIN.LOAD

The AppDomain class exposes a Load method that also enables loading an assembly.
According to the official MSDN documentation, usage of this method should be always
restricted to COM interoperability scenarios. So always prefer ExecuteAssembly instead.

Also remember to unload the application domain after loaded assemblies have completed
their work. The following code provides an example:

Dim secondDomain As AppDomain = AppDomain.

CreateDomain(“secondDomain”)

Try

secondDomain.ExecuteAssembly(“MyApp.exe”)

Catch ex As AppDomainUnloadedException

Console.WriteLine(“The AppDomain was already unloaded”)

Catch ex As Exception

Finally

Try

AppDomain.Unload(secondDomain)

Catch ex As CannotUnloadAppDomainException

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/system.appdomain(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.appdomain(VS.100).aspx

ptg

1033Understanding Application Domains

Console.Write(“Unable to unload the AppDomain”)

End Try

End Try

The CLR throws an AppDomainUnloadedException if the code attempts to access an already
unloaded application domain. As you can see from the code, you unload an application
domain by invoking the AppDomain.Unload shared method that takes the application
domain instance as an argument. It is worth mentioning that, if the application domain
cannot be unloaded, a CannotUnloadAppDomainException is thrown. The
AppDomain.CreateDomain method offers several overloads. One of them allows taking an
argument of type AppDomainSetup that is a special object that gives you the opportunity to
set some application domain properties. The following code provides an example:

Dim domainSetup As New AppDomainSetup

With domainSetup

‘Sets the current directory for the AppDomain

.ApplicationBase = Environment.CurrentDirectory

‘Sets the application name

.ApplicationName = “App domain demo”

‘Allows assembly binding redirection

.DisallowBindingRedirects = False

‘Disallows code download from assemblies

‘via http

.DisallowCodeDownload = True

‘Assigns a config file to the new app domain,

‘in this case the app.config of the current domain

.ConfigurationFile = AppDomain.CurrentDomain.

SetupInformation.ConfigurationFile

End With

Dim thirdDomain As AppDomain = AppDomain.

CreateDomain(“thirdDomain”, Nothing, domainSetup)

Notice that the second argument is of type System.Security.Policy.Evidence and is
useful if you want to assign specific security policies to the application domain. In this
demonstrative code this is not accomplished. For this particular topic, notice that applica-
tion domains are important for security policies that you apply to your code. In the next
section you learn about changes introduced in the .NET Framework 4 to the managed
security model.

CREATING AND EXECUTING DYNAMIC CODE AT RUNTIME

In next chapter you learn about Reflection, and you see how you can create assemblies
and code at runtime. When you have a dynamically created assembly with custom
code, you can execute the assembly within an application domain with the same tech-
niques shown in this section.

4
6

From the Library of Wow! eBook

ptg

1034 CHAPTER 46 Working with Assemblies

Overview of Security Changes in .NET 4.0
NOTE

Because of the topic complexity and of the recent changes introduced by .NET
Framework 4.0, this section requires you to have existing knowledge and skills on Code
Access Security in the .NET Framework. We focus on some of the most important addi-
tions to the security model remembering that this is a complex architecture that would
require an entire book for complete coverage;, keep in mind that here we provide an
overview of what the MSDN documentation discusses in detail.

Assemblies contain code that is executed when you run the application. As for the operat-
ing system and for any development environment, code is executed according to security
rules that prevent the code from unauthorized access to system resources. The .NET
Framework 4.0 introduces a new security model, highly simplified if compared to the
previous Code Access Security platform. The code will still be classified as fully trusted and
partially trusted, in which full trust means that the code has elevated permissions for
accessing resources, whereas partial trust means that the code is restricted by the permis-
sions it has. The security model provided by the CLR is now easier to understand and to
implement, differently from what Code Access Security was in the past.

NOTE ON SECURITY CHANGES

Extensive changes have been introduced to the security model for code access, where-
as the role-based security model basically offers the same features as in the past. For
this reason in this section we cover changes about the code access security model,
whereas for further details on the role-based model, you can check out the MSDN doc-
umentation here: http://msdn.microsoft.com/en-us/library/shz8h065(VS.100).aspx.

The following are the major changes in the security model offered by .NET 4.0:

. Code Access Security policies and machine-wide security policies are now turned off
by default.

The transparency model has been enforced and applied to the .NET Framework and
managed applications. Basically the transparency model can separate code that runs as
part of the application (transparent code) and code that runs as part of the .NET infra-
structure (critical code). As a result, critical code can access privileged resources, such as
native code, whereas transparent code can only access resources allowed by the specified
permissions set and cannot invoke or inherit from critical code; with the transparency
model groups of code isolated based on privileges. Such privileges are divided into full-
trust and partial-trust in the sandboxed model.

. The enforcement of the transparency model is also the reason why the .NET
Framework configuration tool is no longer available for setting CAS policies.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/shz8h065(VS.100).aspx

ptg

1035Overview of Security Changes in .NET 4.0

. The sandboxed model allows running code in a restricted environment that grants
code the only permissions it actually requires, and the natural place for the model is
the application domains described in the previous section.

. Desktop applications always run as fully trusted. This is also true for applications
started from Windows Explorer, a command prompt, and from a network share.

. Permissions are still a central part in security, but some security actions from the
System.Security.Permission.SecurityAction class have been deprecated. In detail
they are Deny, RequestMinimum, RequestOptional, and RequestRefuse.

. You can expose partially trusted assemblies via the AllowPartiallyTrustedCallers
attribute.

. To enable constraints on types that can be used as evidence objects, .NET Framework
4 introduces the System.Security.Policy.EvidenceBase base class that must be
inherited from all objects that want to be candidate as evidence.

TRANSPARENCY MODEL

The transparency model is not new in the .NET Framework; it was first introduced with
version 2.0 as a mechanism for validating code efficiency. In .NET 4 it has been revisit-
ed (this is the reason why it is also known as Level 2) and provides an enforcement
mechanism for code separation.

The next sections provide explanations and code examples about new security features in
.NET Framework 4 with Visual Basic 2010.

Permissions

With the exceptions described in the previous bulleted list for deprecated security actions,
applying permissions in the new security model is similar to the previous versions of the
.NET Framework. This means that you can leverage permissions from the
System.Security.Permissions namespace, such as FileIOPermission, UIPermission,
IsolatedStoragePermission, and EnvironmentPermission. The following code demon-
strates how you use the declarative syntax for implementing a class that requires the caller
code having the FileIOPermission to execute. Such a class simply implements a method
that returns an XDocument from a text file:

’The caller code will need the FileIOPermission permission

‘with unrestricted access otherwise it will fail

<FileIOPermission(Security.Permissions.SecurityAction.Demand,

Unrestricted:=True)>

Class XmlParse

Shared Function String2Xml(ByVal fileName As String) As XDocument

‘Expects an Xml-formatted string

4
6

From the Library of Wow! eBook

ptg

1036 CHAPTER 46 Working with Assemblies

Return XDocument.Parse(fileName)

End Function

End Class

You can also use the imperative syntax, which looks like this:

Dim fp As New FileIOPermission(PermissionState.Unrestricted)

Try

fp.Demand()

Catch ex As Security.SecurityException

End Try

You create an instance of the required permission and then invoke Demand for checking if
the application has that level of permissions. If not, a System.Security.Security
Exception is thrown.

The Transparency Level 2

By default, when you create a new application it relies on security rules provided by the
Transparency Level 2 of .NET Framework 4.0. The level name has this form to allow
distinction from the old transparency level of previous .NET versions (known as
Transparency Level 1). So the Transparency Level 2 security rules are applied implicitly, but
a better idea is applying them explicitly by applying the System.Security.SecurityRules
attribute that can be added at the assembly level as follows:

<Assembly: SecurityRules(Security.SecurityRuleSet.Level2)>

Applying the attribute explicitly is appropriate for code reading and future maintenance
and avoids confusions. This level of enforcement brings into the .NET Framework some
new ways of thinking about security policies. Most rely on the concept of host, where this
means an environment is responsible for executing applications; ClickOnce, ASP.NET, and
Internet Explorer are host examples. For code trust, applications that are not hosted, such
as programs launched from a command prompt, from Windows Explorer or from a shared
network path, now run as full-trust. Instead, hosted or sandboxed applications still run
according to host-based policies and run as partial-trust. For hosted and sandboxed applica-
tions, it is worth mentioning that they are considered as transparent because they run with
the limited permissions set granted by the sandbox. This means that you will no longer
need to check for permissions when running partially trusted code, because transparent
applications run with the permissions set granted by the sandbox, so your only preoccupa-
tion should be targeting the sandbox permissions set and to not write code requiring the
full-trust policy. Talking about transparency, it is important to mention that its mechanism
can separate code that is part of the .NET infrastructure (and that thus requires high privi-
leges such as invoking native code), which is called critical code, and code that is part of the
application, also known as transparent code. The idea behind the scenes is separating groups
of code based on privileges. When working with sandboxes, such privileges are of two

From the Library of Wow! eBook

ptg

1037Overview of Security Changes in .NET 4.0

types: fully trusted, which is the unrestricted level, and the partially trusted, which is the
level restricted to the permission set established in the sandbox.

DESKTOP APPLICATIONS

With the Transparency Level 2 enabled, desktop applications run as full-trust.

The System.Security.SecurityRules attribute is not the only one that you can apply
for establishing permissions rules. There are other attributes available, summarized in
Table 46.1.

4
6

If you do not specify any other attribute other than SecurityRules, for fully trusted
assemblies the runtime considers all code as security-critical, thus callable only from fully
trusted code, except where this could cause inheritance violations. If the assembly is
instead partially trusted, specifying no attribute other than SecurityRules will make the
runtime consider types and members as transparent by default but they can be security-
critical or security-safe-critical. For further detail on inheritance in the transparency model
and on attributes listed in Table 46.1, visit the following page in the MSDN Library:
http://msdn.microsoft.com/en-us/library/dd233102(VS.100).aspx. So this is the reason
why it is opportune to explicitly provide the most appropriate attribute. The following is
an example of applying both the SecurityRules and SecurityTransparent attributes:

<Assembly: SecurityRules(Security.SecurityRuleSet.Level2)>

<Assembly: SecurityTransparent()>

Class Foo

End Class

TABLE 46.1 Security Attributes

Attribute Description

SecurityTransparent Specifies that the code is transparent, meaning that it can be
accessed by partially trusted code, that it cannot allow access to
protected resources, and that it cannot cause an elevation of privi-
leges. All types and members are transparent.

SecurityCritical Code introduced by types exposed from the assembly is considered as
security-critical meaning that it can perform operations that require an
elevation of privileges, whereas all other code is transparent. Methods
overridden from abstract classes or implemented via an interface must
be also explicitly marked with the attribute.

SecuritySafeCritical Specifies that types expose critical code but allows access from
partially trusted assemblies.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/dd233102(VS.100).aspx

ptg

1038

TIPS ON SECURITYTRANSPARENT

Transparency enforcements are handled by the Just-in-Time compiler and not by the
CLR infrastructure. This means that if you apply the SecurityTransparent attribute to
an assembly, the assembly cannot call transparent and security-safe-critical types and
members independently from the permissions set (including full-trust). In such a sce-
nario, if the code attempts to access a security-critical type or member, a
MethodAccessException will be thrown.

Sandboxing

You can execute partially trusted code within a sandbox that runs with the specified
permissions set. Code, including assemblies, executed within the sandbox will be also
granted to just the specified permissions set. To create and run a sandbox, you need an
instance of the AppDomain class. The example here creates a sandbox for running an exter-
nal assembly given the LocalIntranet zone’s permissions. Before showing the sandbox
example, follow these steps:

1. Create a new Console application and name the new project as ExternalApp.

2. In the Main method simply add a Console.Writeline statement for showing what-
ever text message you like.

3. Build the project; then create a new folder named C:\MyApps and copy the newly
generated ExternalApp.exe into C:\MyApps.

Such steps are required to have a simple external assembly to run inside the security
sandbox. Now close the ExternalApp project and create a new Console project, naming it
SandBox. The goal is to create a sandbox with LocalIntranet permission and run an
external assembly inside the sandbox so that this external application will also be granted
the same permissions. When ready, first add the following Imports directives:

Imports System.Security

Imports System.Security.Policy

Imports System.Reflection

Now move inside the Main method. The first thing you need is an Evidence object that
you assign with the required permissions set, as demonstrated by the following code:

Dim ev As New Evidence()

ev.AddHostEvidence(New Zone(SecurityZone.Intranet))

When you have the Evidence instance, you can get a sandbox with the specified permis-
sions as demonstrated by the following line:

Dim permSet As PermissionSet = SecurityManager.GetStandardSandbox(ev)

The SecurityManager.GetStandardSandbox returns a sandbox limited to the specified
permissions. This sandbox will be used later when running the external assembly. As an

CHAPTER 46 Working with Assemblies

From the Library of Wow! eBook

ptg

1039Overview of Security Changes in .NET 4.0
4

6

alternative you can set your own permissions creating your custom permissions set using
the PermissionSet object as follows:

Dim permSet As New PermissionSet(Permissions.PermissionState.None)

permSet.AddPermission(_

New SecurityPermission(SecurityPermissionFlag.Execution))

permSet.AddPermission(New UIPermission(PermissionState.Unrestricted))

At this point we can put our hands on application domains. The first thing to do is create
an instance of the AppDomainSetup class for specifying the working directory of the exter-
nal assembly:

Dim ads As New AppDomainSetup()

ads.ApplicationBase = “C:\MyApps”

At this point we just need to set the host Evidence and then create the AppDomain, passing
the security information, finally invoking AppDomain.ExecuteAssembly to run the sand-
boxed assembly:

Dim hostEvidence As New Evidence()

Dim sandbox As AppDomain = AppDomain.

CreateDomain(“Sandboxed Domain”, hostEvidence, ads, permSet, Nothing)

sandbox.ExecuteAssemblyByName(“ExternalApp”)

The AppDomain.CreateDomain method has an overload that allows creating an application
domain with a permissions set. Because the application domain has security permissions,
an instance of the Evidence class is required to tell the runtime that the assembly will be
affected by such permissions. Other arguments are the AppDomainSetup instance and the
permissions set under which the external assembly is going to be run. The last null argu-
ment can be replaced with a reference to the strong name, in case you want to add it to
the full trust list. This would first require the current application to be signed with a
strong name (covered in Chapter 53) and then by getting a reference to the strong name
via the System.Security.Policy.StrongName class as shown in the following line:

Dim fullTrustAssembly As StrongName = Assembly.

GetExecutingAssembly.Evidence.GetHostEvidence(Of StrongName)()

The Assembly.Evidence.GetHostEvidence(Of StrongName) method returns the reference to
the strong name. (The System.Assembly class is discussed in the next chapter on Reflection).
Finally, you pass the strong name reference to AppDomain.CreateDomain as follows:

Dim sandbox As AppDomain = AppDomain.

CreateDomain(“Sandboxed Domain”, hostEvidence, ads,

permSet, fullTrustAssembly)

Listing 46.1 shows the complete code example for your convenience.

From the Library of Wow! eBook

ptg

1040

LISTING 46.1 Running a Sandboxed Assembly

Imports System.Security

Imports System.Security.Policy

Imports System.Reflection

Module Module1

Sub Main()

Dim ev As New Evidence()

ev.AddHostEvidence(New Zone(SecurityZone.Intranet))

Dim permSet As PermissionSet = SecurityManager.GetStandardSandbox(ev)

Dim ads As New AppDomainSetup()

ads.ApplicationBase = “C:\MyApps”

Dim hostEvidence As New Evidence()

Dim sandbox As AppDomain = AppDomain.

CreateDomain(“Sandboxed Domain”, hostEvidence, ads,

permSet, Nothing)

‘The assembly runs in a LocalIntranet sandboxed environment

sandbox.ExecuteAssemblyByName(“ExternalApp”)

End Sub

End Module

SANDBOXES COMPLEXITY

Working with sandboxes can include complex scenarios. Particularly, you might have
the need to execute not-trusted code from an external assembly with customized per-
missions sets. This also requires advanced application domains concepts. Fortunately
the MSDN Library provides an interesting walk-through covering these scenarios, avail-
able at http://msdn.microsoft.com/en-us/library/bb763046(VS.100).aspx. This is also
useful to get a practical example about implementing the MarshalByRefObject for
dynamic code execution within application domains.

CHAPTER 46 Working with Assemblies

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/bb763046(VS.100).aspx

ptg

1041Summary
4

6

Conditional APTCA

You can allow an assembly to be called by partially trusted code by applying the
System.Security.AllowPartiallyTrustedCallers attribute at the assembly level. This can
be accomplished as follows:

Imports System.Security

<Assembly: AllowPartiallyTrustedCallers()>

Without this attribute, only full-trusted code can call the assembly. Different from previ-
ous versions, in the .NET Framework 4.0 this attribute no longer requires an assembly to
be signed with a strong name, and its presence involves in the security checks all security
functions present in the code.

Migrating from Old CAS-Based Code

If you move your existing code to .NET Framework 4 and you made use of Code Access
Security policies, you might be advised with a message saying that CAS is obsolete. In
these particular situations you can add a specific section to the application configuration
file, which allows legacy policies that look like this:

<configuration>

<runtime>

<NetFx40_LegacySecurityPolicy enabled=”true”/>

</runtime>

</configuration>

Of course, you always need to check if legacy policies are appropriate in the particular
scenario you are facing. The suggestion is to read the MSDN documentation about CAS
migration, available at http://msdn.microsoft.com/en-us/library/ee191568(vs.100).aspx.

Summary
Understanding how assemblies work and how they can be managed is a key topic in .NET
development. In this chapter you first got an overview of assemblies, about their structure,
their locations, and what kind of information they share, such as code and metadata. Next
the discussion focused on Application Domains and the System.AppDomain class, which
provide units of isolation for executing assemblies. Finally you got an overview of the new
security model introduced by .NET Framework 4.0, starting from discussing the trans-
parency level and the sandboxed model until analyzing specific code examples.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ee191568(vs.100).aspx

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 47

Reflection

IN THIS CHAPTER

. Introducing Reflection

. Understanding Assemblies’
Metadata

. Getting Assembly Information

. Reflecting Types

. Invoking Code Dynamically

. Generating Code at Runtime
with Reflection.Emit

There are situations in which you need to implement logic
for performing some tasks depending on user choices. This
kind of a situation is not uncommon. The problem is when
you cannot predetermine the code required for executing
actions depending on user input. Think of code generators:
Such tools know how to generate code but cannot predeter-
mine what code has to be generated until the users specify
their requirements. Also think of assemblies external from
your application. In some cases you might want to use
types from an external assembly; in other cases you might
just want to get information on types provided by the
assembly; and in other cases you might want to reach
members with limited scope visibility that you could not
reach by simply adding a reference. Reflection is a key part
in the .NET Framework that enables accomplishing all these
mentioned scenarios. In this chapter you learn to use
Reflection to both inspect assemblies and types and to
generate and consume code on-the-fly.

Introducing Reflection
Reflection is an important part of the .NET Framework that
provides the ability for interrogating assemblies’ metadata
and collecting information on types exposed by assemblies.
Reflection also enables invoking code from external assem-
blies and generating code on-the-fly. You can take advan-
tage of Reflection by using objects exposed by the
System.Reflection namespace. It can be particularly useful
when you need to generate code according to some user
input or when you are in late bound scenarios where
making decisions on what code must be invoked (or gener-

From the Library of Wow! eBook

ptg

1044 CHAPTER 47 Reflection

ated) is something determined at runtime. Before putting your hands on code, it is neces-
sary to get an overview of how assemblies are structured so that you can have a better
understanding of what kind of information you can investigate with the Reflection.

Understanding Assemblies’ Metadata
As you know, when you build an executable with Visual Basic, you build a .NET assembly.
An assembly is basically a container of metadata and code. Metadata is information that
the CLR uses in correctly loading and running the assembly. Figure 47.1 represents how
an assembly is structured.

The Assembly Metadata, also known as assembly manifest, basically provides assembly
information such as the name, version, culture, copyright information, and signature. The
Type Metadata contains information on types defined within the assembly, such as class
names and names of class members, including their parameters. The Code part is the
actual Intermediate Language code that will be executed when the assembly is loaded. The
Resources block contains all resources required by the assembly, such as images, icons, and
strings. Also notice that types within an assembly can be grouped into multiple modules.
A module is a container of types whereas an assembly is a container of modules. With
Reflection you can inspect metadata and code from an assembly using Visual Basic code,
including assembly information.

FIGURE 47.1 How an assembly is structured.

From the Library of Wow! eBook

ptg

1045Understanding Assemblies’ Metadata
4

7

NOTE

When talking about assemblies, we usually refer to single file executables. Assemblies
can be composed of multiple linked files; keep in mind that assembly metadata needs
to reside only in the main assembly. This is a special case and cannot be accom-
plished with Visual Studio (you should use manually MSBuild), but it is something that
it is worth mentioning.

Preparing a Sample Assembly

Before showing Reflection capabilities, a good idea is to prepare an appropriate code
example. First, create a new class library project and name it People. The goal of the
library is to expose a special implementation of the Person class, with interfaces and
enumerations implementations for a better demonstration on Reflection. When ready,
write the code in Listing 47.1, which is quite simple.

LISTING 47.1 Preparing Code for Reflection

Imports System.Text

Public Enum Genders

Male = 0

Female = 1

End Enum

Public Interface IPerson

Property FirstName As String

Property LastName As String

Property Age As Integer

Property Gender As Genders

Event InstanceCreated()

Function BuildFullName() As String

End Interface

Public Class Person

Implements IPerson

Public Property FirstName As String Implements IPerson.FirstName

Public Property Gender As Genders Implements IPerson.Gender

Public Property LastName As String Implements IPerson.LastName

Public Property Age As Integer Implements IPerson.Age

Public Event InstanceCreated() Implements IPerson.InstanceCreated

Public Overridable Function BuildFullName() As String _

Implements IPerson.BuildFullName

From the Library of Wow! eBook

ptg

1046

Dim fullName As New StringBuilder

fullName.Append(LastName)

fullName.Append(“ “)

fullName.Append(FirstName)

fullName.Append(“, “)

fullName.Append(Gender.ToString)

fullName.Append(“, of age “)

fullName.Append(Age.ToString)

Return fullName.ToString

End Function

End Class

Build the project; then add a new Console project to the current solution. Finally add a
reference to the People class library so that, just for demo purposes, you can load the
assembly for Reflection without specifying the full path.

Getting Assembly Information
You get assembly metadata information creating an instance of the
System.Reflection.Assembly class. This class provides both static and instance members
for accessing assembly information. Typically you use one of the methods summarized in
Table 47.1 to load an assembly for getting information.

CHAPTER 47 Reflection

TABLE 47.1 Methods for Loading an Assembly

Method Description

GetAssembly Loads an assembly containing the specified type

GetCallingAssembly Gets the assembly that stores the code that invoked the current
method

GetExecutingAssembly Returns the instance of the current assembly

GetEntryAssembly Returns the instance of the assembly that ran the current process

Load Loads the specified assembly into the current application domain

LoadFile Loads the specified assembly from the specified path

LoadFrom Loads the specified assembly into the current application domain,
given the specified path

ReflectionOnlyLoad Like Load, but allows only Reflection inspection and not code execu-
tion

ReflectionOnlyLoadFrom Like LoadFrom, but allows only Reflection inspection and not code
execution

From the Library of Wow! eBook

ptg

1047Getting Assembly Information
4

7

When you get the instance of the assembly you want to inspect, you can access informa-
tion via some useful properties. The code in Listing 47.2 shows how to accomplish this.
(See comments for explanations.)

LISTING 47.2 Inspecting Assembly Information

Imports System.Reflection

Module GettingAsmInfo

Sub Main()

‘Infers System.Reflection.Assembly

Dim asm = Assembly.ReflectionOnlyLoadFrom(“People.dll”)

With asm

‘Gets the full assembly name with

‘version and culture

Console.WriteLine(“Assembly name:”)

Console.WriteLine(.FullName)

‘Gets whether the assembly is fully trusted

Console.WriteLine(“Is full-trust: {0}”, .IsFullyTrusted)

‘Gets the assembly entry point. If empty, the

‘constructor is the entry point

Console.WriteLine(“The entry point method is: {0}”, .EntryPoint)

‘Gets the .NET version that the

‘assembly was built upon

Console.WriteLine(“Image runtime version: {0}”, .ImageRuntimeVersion)

‘Gets whether the assembly was loaded from

‘the GAC

Console.WriteLine(“Loaded from the GAC: {0}”, .GlobalAssemblyCache)

‘Gets the assembly location

Console.WriteLine(“Assembly path: {0}”, .Location)

‘Gets an array of modules loaded

‘by the assembly

Console.WriteLine(“Loaded modules: “)

For Each item As System.Reflection.Module _

In .GetLoadedModules

Console.WriteLine(“ {0}”, item.Name)

Next

End With

Console.ReadLine()

End Sub

End Module

From the Library of Wow! eBook

ptg

1048

Notice how the code uses the ReflectionOnlyLoadFrom method to enable only inspec-
tion without code execution capabilities. If you run the preceding code, you get the
following result:

Assembly name:

People, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

Is full-trust: True

The entry point method is:

Image runtime version: v4.0.21006

Loaded from the GAC: False

Assembly path: C:\Users\Alessandro\documents\visual studio

2010\Projects\Reflection\Reflection\bin\Debug\People.dll

Loaded modules:

People.dll

Notice that the RTM version number of the .NET Framework 4 has a build number differ-
ent than the previous one. The Assembly.GetModules method returns an array of modules
loaded by the instance of the assembly. Other interesting methods are GetExportedTypes,
which return an array of publicly visible types, and GetFiles, which returns an array of
FileStream objects, each representing a file in the assembly’s resources. Inspecting assem-
bly information is just the first level of Reflection. The next step is inspecting types.

Reflecting Types
Reflection enables retrieving information on programs, including modules, types, and type
members defined within an assembly. For example you might want to enumerate all types
and type members defined in the People.dll assembly. Take a look at the following code:

Dim asm = Assembly.LoadFrom(“People.dll”)

Console.WriteLine(“Enumerating types:”)

For Each t In asm.GetTypes

Console.WriteLine(“Type name: {0}”, t.ToString)

Console.WriteLine(“ Constructors:”)

For Each constructor In t.GetConstructors

Console.WriteLine(“ “ + constructor.ToString)

Next

Console.WriteLine(“ Methods:”)

For Each method In t.GetMethods

Console.WriteLine(“ “ + method.ToString)

Next

Console.WriteLine(“ Properties:”)

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1049Reflecting Types
4

7

For Each [property] In t.GetProperties

Console.WriteLine(“ “ + [property].ToString)

Next

Console.WriteLine(“ Fields:”)

For Each field In t.GetFields

Console.WriteLine(“ “ + field.ToString)

Next

Console.WriteLine(“ Events:”)

For Each [event] In t.GetEvents

Console.WriteLine(“ “ + [event].ToString)

Next

Next

You still get the instance of the desired assembly; then you can iterate types (or modules if
preferred). The Assembly.GetTypes method returns an array of System.Type objects
defined in the assembly that you can iterate for detailed information. The System.Type
class exposes several GetX methods, in which X can stand for Constructors, Properties,
Methods, Fields, and Events. Each of these methods returns a XInfo class instance, such
as MethodInfo, PropertyInfo, FieldInfo, and so on. Each class exposes interesting prop-
erties about the inspected member for further information such as IsPrivate, IsPublic,
or IsStatic.

USING TOSTRING

Each XInfo class also exposes a Name property that returns the name of the member. In
this case ToString was used instead of the name to return the full member signature.

Also, the System.Type class offers some useful properties enabling you to understand what
kind of type you are inspecting such as IsClass, IsInterface, or IsEnum. The Namespace
property enables instead getting the namespace exposing the inspected type. Notice that
the preceding code inspects all types defined in the specified assembly, including the ones
that are usually part of My Project. Also notice that Reflection considers properties’ getters
and setters such as methods that thus will be listed within this category. For a better
understanding, the following is an excerpt of the output produced by the previously illus-
trated code:

Enumerating types:

Type name: People.My.MyApplication

Constructors:

Void .ctor()

Methods:

System.String GetEnvironmentVariable(System.String)

Microsoft.VisualBasic.Logging.Log get_Log()

From the Library of Wow! eBook

ptg

1050

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo get_Info()

System.Globalization.CultureInfo get_Culture()

System.Globalization.CultureInfo get_UICulture()

Void ChangeCulture(System.String)

Void ChangeUICulture(System.String)

System.String ToString()

Boolean Equals(System.Object)

Int32 GetHashCode()

System.Type GetType()

Properties:

Microsoft.VisualBasic.Logging.Log Log

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo Info

System.Globalization.CultureInfo Culture

System.Globalization.CultureInfo UICulture

Fields:

Events:

Type name: People.My.MyComputer

Constructors:

Void .ctor()

Methods:

Microsoft.VisualBasic.Devices.Audio get_Audio()

Microsoft.VisualBasic.MyServices.ClipboardProxy get_Clipboard()

Microsoft.VisualBasic.Devices.Ports get_Ports()

Microsoft.VisualBasic.Devices.Mouse get_Mouse()

Microsoft.VisualBasic.Devices.Keyboard get_Keyboard()

System.Windows.Forms.Screen get_Screen()

Microsoft.VisualBasic.Devices.Clock get_Clock()

Microsoft.VisualBasic.MyServices.FileSystemProxy get_FileSystem()

Microsoft.VisualBasic.Devices.ComputerInfo get_Info()

Microsoft.VisualBasic.Devices.Network get_Network()

System.String get_Name()

Microsoft.VisualBasic.MyServices.RegistryProxy get_Registry()

System.String ToString()

Boolean Equals(System.Object)

Int32 GetHashCode()

System.Type GetType()

Properties:

Microsoft.VisualBasic.Devices.Audio Audio

Microsoft.VisualBasic.MyServices.ClipboardProxy Clipboard

Microsoft.VisualBasic.Devices.Ports Ports

Microsoft.VisualBasic.Devices.Mouse Mouse

Microsoft.VisualBasic.Devices.Keyboard Keyboard

System.Windows.Forms.Screen Screen

Microsoft.VisualBasic.Devices.Clock Clock

Microsoft.VisualBasic.MyServices.FileSystemProxy FileSystem

Microsoft.VisualBasic.Devices.ComputerInfo Info

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1051Reflecting Types
4

7

Microsoft.VisualBasic.Devices.Network Network

System.String Name

Microsoft.VisualBasic.MyServices.RegistryProxy Registry

Fields:

Events:

Type name: People.My.MyProject

Constructors:

Methods:

System.String ToString()

Boolean Equals(System.Object)

Int32 GetHashCode()

System.Type GetType()

Properties:

Fields:

Events:

Type name: People.My.MyProject+MyWebServices

Constructors:

Void .ctor()

Methods:

Boolean Equals(System.Object)

Int32 GetHashCode()

System.String ToString()

System.Type GetType()

Properties:

Fields:

Events:

Type name: People.Genders

Constructors:

Methods:

Boolean Equals(System.Object)

Int32 GetHashCode()

System.String ToString()

System.String ToString(System.String, System.IFormatProvider)

Int32 CompareTo(System.Object)

System.String ToString(System.String)

System.String ToString(System.IFormatProvider)

Boolean HasFlag(System.Enum)

System.TypeCode GetTypeCode()

System.Type GetType()

Properties:

Fields:

Int32 value__

People.Genders Male

People.Genders Female

Events:

Type name: People.IPerson

From the Library of Wow! eBook

ptg

1052

Constructors:

Methods:

System.String get_FirstName()

Void set_FirstName(System.String)

System.String get_LastName()

Void set_LastName(System.String)

Int32 get_Age()

Void set_Age(Int32)

People.Genders get_Gender()

Void set_Gender(People.Genders)

System.String BuildFullName()

Void add_InstanceCreated(InstanceCreatedEventHandler)

Void remove_InstanceCreated(InstanceCreatedEventHandler)

Properties:

System.String FirstName

System.String LastName

Int32 Age

People.Genders Gender

Fields:

Events:

InstanceCreatedEventHandler InstanceCreated

Type name: People.Person

Constructors:

Void .ctor()

Methods:

System.String get_FirstName()

Void set_FirstName(System.String)

People.Genders get_Gender()

Void set_Gender(People.Genders)

System.String get_LastName()

Void set_LastName(System.String)

Int32 get_Age()

Void set_Age(Int32)

Void add_InstanceCreated(InstanceCreatedEventHandler)

Void remove_InstanceCreated(InstanceCreatedEventHandler)

System.String BuildFullName()

System.String ToString()

Boolean Equals(System.Object)

Int32 GetHashCode()

System.Type GetType()

Properties:

System.String FirstName

People.Genders Gender

System.String LastName

Int32 Age

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1053Reflecting Types
4

7

Fields:

Events:

InstanceCreatedEventHandler InstanceCreated

Type name: People.IPerson+InstanceCreatedEventHandler

Constructors:

Void .ctor(System.Object, IntPtr)

Methods:

System.IAsyncResult BeginInvoke(System.AsyncCallback, System.Object)

Void EndInvoke(System.IAsyncResult)

Void Invoke()

Void GetObjectData(System.Runtime.Serialization.SerializationInfo,

System.Runtime.Serialization.StreamingContext)

Boolean Equals(System.Object)

System.Delegate[] GetInvocationList()

Int32 GetHashCode()

System.Object DynamicInvoke(System.Object[])

System.Reflection.MethodInfo get_Method()

System.Object get_Target()

System.Object Clone()

System.String ToString()

System.Type GetType()

Properties:

System.Reflection.MethodInfo Method

System.Object Target

Fields:

Events:

Notice how also EventHandler types, generated behind the scenes when you implement a
simple event, are inspected and illustrated. Also notice how the members’ signature recalls
the Intermediate Language syntax.

Reflecting a Single Type

Reflecting all types within an assembly can be useful, but probably in most cases you will
be interested in reflecting a single type. To accomplish this you need the instance of a
System.Type; then invoke members described in the previous section. For example,
imagine you want to inspect members from the Person class. You first get the type
instance, and then you can perform reflection as demonstrated by the following code:

Dim myType As Type = (New People.Person).GetType

Console.WriteLine(“ Methods:”)

For Each method In myType.GetMethods

From the Library of Wow! eBook

ptg

1054

Console.WriteLine(“ “ + method.ToString)

Next

Console.WriteLine(“ Properties:”)

For Each [property] In myType.GetProperties

Console.WriteLine(“ “ + [property].ToString)

Next

Console.WriteLine(“ Fields:”)

For Each field In myType.GetFields

Console.WriteLine(“ “ + field.ToString)

Next

Console.WriteLine(“ Events:”)

For Each [event] In myType.GetEvents

Console.WriteLine(“ “ + [event].ToString)

Next

The preceding code produces the following result:

Methods:

System.String get_FirstName()

Void set_FirstName(System.String)

People.Genders get_Gender()

Void set_Gender(People.Genders)

System.String get_LastName()

Void set_LastName(System.String)

Int32 get_Age()

Void set_Age(Int32)

Void add_InstanceCreated(InstanceCreatedEventHandler)

Void remove_InstanceCreated(InstanceCreatedEventHandler)

System.String BuildFullName()

System.String ToString()

Boolean Equals(System.Object)

Int32 GetHashCode()

System.Type GetType()

Properties:

System.String FirstName

People.Genders Gender

System.String LastName

Int32 Age

Fields:

Events:

InstanceCreatedEventHandler InstanceCreated

For more details, the MSDN documentation on the System.Reflection namespace and
the System.Type class are a good source of information on available members.

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1055Invoking Code Dynamically
4

7

REFLECTION SECURITY CONSIDERATIONS

Reflection is both a key topic and a powerful tool in the .NET developer toolbox. By the
way, you had the opportunity to understand how fragile your code is in security terms
because with a few lines of code anyone can see types and members exposed by the
assembly. Because preventing Reflection is not possible, if you want to protect your
code, you need to use an obfuscation tool such as Dotfuscator (shipped with Visual
Studio 2010) that can add a more effective protection.

Invoking Code Dynamically
Reflection also enables executing dynamic code, meaning that you can pick up types
defined within an assembly, creating instances and invoking types from Visual Basic code
without having a reference to that assembly. For example, imagine you want to load the
People.dll assembly and create and populate an instance of the Person class, as shown in
Listing 47.3.

LISTING 47.3 Creating and Running Dynamic Code

Imports System.Reflection

Module DynamicCode

Sub DynCode()

Dim asm = Assembly.LoadFrom(“People.dll”)

‘Gets the type definition

Dim personType = asm.GetType(“People.Person”)

‘Gets the LastName property definition

Dim lastNameProperty As PropertyInfo = personType.

GetProperty(“LastName”)

‘Gets a reference to the property setter

Dim lastNamePropSet As MethodInfo = lastNameProperty.

GetSetMethod

Dim firstNameProperty As PropertyInfo = personType.

GetProperty(“FirstName”)

Dim firstNamePropSet As MethodInfo = firstNameProperty.

GetSetMethod

Dim ageProperty As PropertyInfo = personType.GetProperty(“Age”)

Dim agePropSet As MethodInfo = ageProperty.GetSetMethod

‘Creates an instance of the Person class

Dim newPerson As Object = _

From the Library of Wow! eBook

ptg

1056

Activator.CreateInstance(personType)

‘Each method is invoked upon the new type instance

lastNamePropSet.Invoke(newPerson, New Object() {“Del Sole”})

firstNamePropSet.Invoke(newPerson, New Object() {“Alessandro”})

agePropSet.Invoke(newPerson, New Object() {32})

‘Gets the BuildFullName method from the Person class

Dim buildFullNameMethod = personType.GetMethod(“BuildFullName”)

‘The method returns String but Invoke returns Object, so

‘a conversion is required

Dim result As String = CStr(buildFullNameMethod.

Invoke(newPerson, Nothing))

Console.WriteLine(result)

Console.ReadLine()

End Sub

End Module

When you have the type instance, you invoke the GetProperty method to get a reference
of the desired property. This returns a PropertyInfo object. To set the property value, you
need a reference to the setter method that is obtained via the GetSetMethod and that
returns a MethodInfo object. (If you also want the ability to get a property value, you need
to invoke instead GetGetMethod the same way.) When you have all properties, you need
an instance of the class. This can be obtained by calling the Activator.CreateInstance
method, which takes the type instance as the argument. The System.Activator class
contains members for creating code locally or retrieving code from a remote location.
Having an instance of the class is required before you set properties, because it is against
the instance that property setters will be invoked. To actually run the property setter, you
call the MethodInfo.Invoke instance method; the first argument is the type instance,
whereas the second argument is an array of items of type Object, each to be used as a
property value. In our case each property in the Person class accepts just one value, so
each array can store just one item. Similarly you can get reference to methods invoking
GetMethod on the type instance, as it happens in Listing 47.3, to get a reference to the
Person.BuildFullName method. When you call Invoke to run the method, you can pass
Nothing as the second argument if the original method does not require parameters. The
code simply produces the following result:

Del Sole Alessandro, Male of Age: 32

After seeing how you can call dynamic code provided by an existing assembly, let’s now
see how to create code at runtime.

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1057Generating Code at Runtime with Reflection.Emit
4

7

SECURITY NOTE

In many cases you notice that you can also invoke members marked as private or with
limited visibility. Although this can seem exciting, take care. If you invoke a private
member but you are not completely sure about its purpose, you expose your code to
potential uncontrollable dangers.

Generating Code at Runtime with
Reflection.Emit
The System.Reflection.Emit namespace provides objects for generating assemblies, types,
and type members at runtime. Basically you need to perform the following operations
sequentially:

1. Create an in-memory assembly within the current application domain with an
instance of the AssemblyBuilder class.

2. Create a module for containing types via an instance of the ModuleBuilder class.

3. Create types with instances of the TypeBuilder class.

4. Add members to the TypeBuilder via XBuilder objects, such as MethodBuilder,
FieldBuilder, and PropertyBuilder.

5. Save the assembly to disk if required.

The code in Listing 47.4 demonstrates how to create dynamically a simple implementa-
tion of the Person class with one property and one method.

LISTING 47.4 Generating Code at Runtime

Imports System.Reflection

Imports System.Reflection.Emit

Module CreatingCode

Sub CreateAssembly()

‘Creates assembly name and properties

Dim asmName As New AssemblyName(“People”)

asmName.Version = New Version(“1.0.0”)

asmName.CultureInfo = New Globalization.CultureInfo(“en-US”)

‘Gets the current application domain

From the Library of Wow! eBook

ptg

1058

Dim currentAppDomain As AppDomain = AppDomain.CurrentDomain

‘Creates a new in-memory assembly in the current application domain

‘providing execution and saving capabilities

Dim asmBuilder As AssemblyBuilder = currentAppDomain.

DefineDynamicAssembly(asmName,

AssemblyBuilderAccess.RunAndSave)

‘Creates a module for containing types

Dim modBuilder As ModuleBuilder = _

asmBuilder.DefineDynamicModule(“PersonModule”,

“People.dll”)

‘Creates a type, specifically a Public Class

Dim tyBuilder As TypeBuilder = _

modBuilder.DefineType(“Person”,

TypeAttributes.Public _

Or TypeAttributes.Class)

‘Defines a default empty constructor

Dim ctorBuilder As ConstructorBuilder = _

tyBuilder.DefineDefaultConstructor(MethodAttributes.Public)

‘Defines a field for storing a property value

Dim fldBuilder As FieldBuilder = _

tyBuilder.DefineField(“_lastName”,

GetType(String),

FieldAttributes.Private)

‘Defines a property of type String

Dim propBuilder As PropertyBuilder = _

tyBuilder.DefineProperty(“LastName”,

PropertyAttributes.None, GetType(String),

Type.EmptyTypes)

‘Defines a series of attributes for both getter and setter

Dim propMethodAttributes As MethodAttributes = _

MethodAttributes.Public Or

MethodAttributes.SpecialName Or

MethodAttributes.HideBySig

‘Defines the getter method for the property

Dim propGetMethod As MethodBuilder = _

tyBuilder.DefineMethod(“get_LastName”,

propMethodAttributes,

GetType(String),

Type.EmptyTypes)

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1059Generating Code at Runtime with Reflection.Emit
4

7

‘Generates IL code for returning the field value

Dim propGetMethodIL As ILGenerator = propGetMethod.GetILGenerator

propGetMethodIL.Emit(OpCodes.Ldarg_0)

propGetMethodIL.Emit(OpCodes.Ldfld, fldBuilder)

propGetMethodIL.Emit(OpCodes.Ret)

‘Defines the setter method for the property

Dim propSetMethod As MethodBuilder = _

tyBuilder.DefineMethod(“set_LastName”,

propMethodAttributes,

GetType(String),

Type.EmptyTypes)

‘Generates the IL code for setting the field value

Dim propSetMethodIL As ILGenerator = propSetMethod.GetILGenerator

propSetMethodIL.Emit(OpCodes.Ldarg_0)

propSetMethodIL.Emit(OpCodes.Ldarg_1)

propSetMethodIL.Emit(OpCodes.Stfld, fldBuilder)

propSetMethodIL.Emit(OpCodes.Ret)

‘Assigns getter and setter to the property

propBuilder.SetGetMethod(propGetMethod)

propBuilder.SetSetMethod(propSetMethod)

‘Defines a public method that returns String

Dim methBuilder As MethodBuilder = _

tyBuilder.DefineMethod(“BuildFullName”,

MethodAttributes.Public,

GetType(String),

Type.EmptyTypes)

‘Method body cannot be empty, so just return

Dim methodILGen As ILGenerator = methBuilder.GetILGenerator

methodILGen.EmitWriteLine(“Method implementation needed”)

methodILGen.Emit(OpCodes.Ret)

‘Creates an instance of the type

Dim pers As Type = tyBuilder.CreateType

‘Enumerates members for demo purposes

For Each member In pers.GetMembers

Console.WriteLine(“Member name: {0}”, member.Name)

Next

‘Saves the assembly to disk

From the Library of Wow! eBook

ptg

1060

asmBuilder.Save(“People.dll”)

Console.ReadLine()

End Sub

End Module

After you create an AssemblyName for assigning assembly properties and get the instance of
the current application domain, you use the AppDomain.DefineDynamicAssembly method
to generate an in-memory assembly. The method returns an instance of the
AssemblyBuilder class and receives the AssemblyName instance and a value from the
AssemblyBuilderAccess enumeration that establishes the access level for Reflection.
RunAndSave enables executing and saving the assembly, but you can also limit Reflection
with the ReflectionOnly value. The next step is creating an instance of the
ModuleBuilder class that can act as a container of types. This is accomplished by invoking
the AssemblyBuilder.DefineDynamicModule method that requires you to specify the
module name and the filename. (This one should be the same as for AssemblyName if you
want metadata to be merged into a single assembly.) When you have a module, you can
put your types into it. For each type you need to create an instance of the TypeBuilder
class, which you accomplish by invoking the ModuleBuilder.DefineType method that
receives the type name and qualifiers as arguments. Qualifiers are one or more values from
the TypeAttributes enumeration; in the current example, Public and Class values are
assigned to the new type to create a new class with public visibility. The TypeBuilder class
provides lots of methods for adding members, such as constructors, field, properties, and
methods. For constructors, the code demonstrates how to add a public, empty, and default
constructor invoking the TypeBuilder.DefineDefaultConstructor, but you can supply
constructor overloads via the DefineConstructor method. To implement properties, you
first need to supply fields. These are implemented via the TypeBuilder.DefineField
method that requires three arguments: the field name, the type (retrieved via GetType),
and qualifiers, determined with values from the FieldAttributes enumeration. Similarly
you implement properties invoking the TypeBuilder.DefineProperty method, but this is
not enough because you also need to explicitly generate the getter and setter methods for
each property. These are special methods that require providing some properties defined
within the propMethodAttributes variable that takes values from the MethodAttributes
enumeration. When you establish method attributes, you create two MethodBuilder
instances. Such a class generates each kind of method, including special ones. You just
supply the method name, attributes, the return type, and an array of type parameters. The
actual problem is how you implement method bodies. As a general rule, methods imple-
mented via Reflection cannot have an empty method body, so you must provide some
Intermediate Language code to populate the method body. This is accomplished by invok-
ing methods from the ILGenerator class that enable injecting IL code to the method.
Consider the following snippet, excerpted from Listing 47.4:

’Generates IL code for returning the field value

Dim propGetMethodIL As ILGenerator = propGetMethod.GetILGenerator

propGetMethodIL.Emit(OpCodes.Ldarg_0)

propGetMethodIL.Emit(OpCodes.Ldfld, fldBuilder)

CHAPTER 47 Reflection

From the Library of Wow! eBook

ptg

1061Generating Code at Runtime with Reflection.Emit
4

7

propGetMethodIL.Emit(OpCodes.Ret)

The MethodBuilder.GetILGenerator method returns an instance of the ILGenerator class.
Then you invoke the Emit method to execute IL code. In the preceding snippet, the IL
code simply returns the value of the fldBuilder variable and pushes the value onto the
stack and then returns. Actions to execute via the IL are taken via shared fields from the
OpCodes class, each related to an IL instruction.

NOTE ON OPCODES

Reflection is powerful, but because you need to know the MS Intermediate Language in
detail before implementing dynamic code, and because this would be beyond of scope
in this book, you should look at the appropriate MSDN documentation at
http://msdn.microsoft.com/en-us/library/8ffc3x75(VS.100).aspx.

When you provide the method body for getters and setters, you add them to the related
properties via the PropertyBuilder.SetGetMethod and PropertyBuilder.SetSetMethod
methods. Similarly you implement any other method, and the sample code demonstrates
this by providing a simple method body that invokes EmitWriteLine, a method that sends
to the assembly the appropriate IL code for writing a message to the Console window.
Finally you simply invoke AssemblyBuilder.Save to save the assembly to disk. More than
running the code, you can ensure if everything works by inspecting the assembly with a
Reflection tool such as Microsoft IL Disassembler. Figure 47.2 shows how the assembly
looks if opened with ILDasm, demonstrating the correct result of our work.

Typically you will prefer code generators instead of Reflection to generate code on-the-fly
because in that case you do not need to know about Intermediate Language. After you

FIGURE 47.2 The assembly created at runtime opened in IL Disassembler.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/8ffc3x75(VS.100).aspx

ptg

1062 CHAPTER 47 Reflection

define your types on-the-fly, you can then consume them using techniques described in
the “Invoking Code Dynamically” section.

Late Binding Concepts

Late binding is a particular programming technique that you use to resolve types at
runtime and for types dynamic loading that is accomplished by assigning objects to vari-
able of type Object. For a better understanding, consider its counterpart, the early
binding. This happens at compile time where the compiler checks that argument types
utilized to invoke methods match their signatures. An example is the background
compiler that provides real-time check for types used in code, thanks to early binding. On
the contrary, late binding requires you to specify the function signatures; moreover you
must ensure that the code uses the correct types. Basically this means that binding
requirements, such as binary files to load or methods to invoke, is long delayed, in many
cases until before the method is invoked. Reflection greatly uses late binding because in
many cases you work with objects of type Object, and this requires late resolution for
invoking appropriate members. The following example, although not related to Reflection,
demonstrates how to invoke members from objects declared as Object that are instead of
different types, but this is determined late at runtime:

’ This code creates an instance of Microsoft Excel and adds a new WorkBook.

‘ Requires Option Strict Off

Sub LateBindingDemo()

Dim xlsApp As Object

Dim xlsBook As Object

xlsApp = CreateObject(“Excel.Application”)

xlsBook = xlsApp.Workbooks.Add

End Sub

OPTION STRICT OFF BEST PRACTICES

Because in lots of situations turning Option Strict to Off can be very dangerous, if
you need to work with late-binding you should consider moving the code that requires
such a technique to a separate code file and just mark this code file with Option
Strict Off, instead of setting it Off at the project level.

As you can see, invoking members from Object in late binding is different because the
compiler cannot predetermine if members exist, and you don’t have IntelliSense support.
But if the actual type defines members that you are attempting to invoke, they will be
correctly bound at runtime. Just remember that late binding requires an Option Strict
Off directive and that should be used carefully.

From the Library of Wow! eBook

ptg

1063Summary
4

7

Summary
In this chapter we covered one of the most important topics in the .NET development,
Reflection. You saw what Reflection is and how assemblies are structured. Talking in code
terms, you then saw how to interrogate assembly information and how to reflect types to
inspect types and type members exposed by an entire assembly or by a single type. Next
dynamically invoking code from an external assembly without the need of having a refer-
ence to that assembly was also explained. Finally, you saw how to take advantage of the
System.Reflection.Emit namespace to create an assembly, types, and members at runtime.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 48

Coding Attributes

IN THIS CHAPTER

. Applying Attributes

. Coding Custom Attributes

. Reflecting Attributes

Executables produced by .NET languages are different
from classic (Win32) executables. Other than the
Intermediate Language, they store additional information
on types defined in the assembly, on members, on data.
The information is referred to as metadata. Assemblies’
metadata also contains information about attributes, which
are basically declarative programming elements that enable
annotating types with custom information and that can
condition types’ behavior according to the information
provided. They are pieces of information for types, and
therefore they are part of the application metadata. You can
find attributes in lots of different scenarios in.NET develop-
ment. For example, you saw attributes in Chapter 27,
“Introducing the ADO.NET Entity Framework,” when
discussing how the Entity Framework defines entities.
Chapter 43, “Serialization,” discussed serialization and the
Serializable attribute. In this chapter you reach two
objectives: First you take a tour for applying attributes,
which is a specific recap of information that you should
already know. The second objective is to learn to create
custom attributes and to provide additional information to
your applications by taking advantage of metadata.

Applying Attributes
Until now you have gotten a lot of examples about apply-
ing attributes, but for the sake of completeness we provide
information here. When applying attributes to your own

From the Library of Wow! eBook

ptg

1066 CHAPTER 48 Coding Attributes

types or members, you enclose the attribute name between angle brackets, as in the
following example:

<Serializable()>

Public Class Person

End Class

In this case the Serializable attribute is parameterless (and in this case you can omit
round parenthesis).

When you apply an attribute, your object is decorated with that attribute. Another common
description utilized when applying attributes is that an object is marked. Referring to the
previous example, you can say that the Person class is decorated with the Serializable
attribute or that it is marked as Serializable as well. Attributes can receive arguments.
The following example shows how to pass arguments to the CLSCompliant attribute:

<CLSCompliant(True)>

Public Class Person

End Class

Attributes arguments are separated by commas according to the number of arguments
required. As explained when discussing custom attributes, optional parameters are also
allowed. You apply multiple attributes separating them with commas or writing each
attribute after the other one. Both the following modes are perfectly legal:

<Serializable()>

<CLSCompliant(True)>

Public Class Person

End Class

<Serializable(), CLSCompliant(True)>

Public Class Person

End Class

IMPLICIT-LINE CONTINUATION

In the first code snippet notice how attributes no longer require the underscore charac-
ter when written on multiple lines. This is one of the allowed scenarios for the implicit-
line continuation features in Visual Basic 2010.

Attributes can be applied to the following programming elements:

. Classes

. Structures

From the Library of Wow! eBook

ptg

1067Applying Attributes

. Methods (including constructors)

. Fields

. Properties

. Interfaces

. Delegates and events

. Parameters and return values

. Enumerations

As mentioned at the beginning of this chapter, attributes are information that is stored in
the assembly metadata. Figure 48.1 represents how such information is stored within the
assembly, including type information and member information.

4
8

Considering the representation shown in Figure 48.1, you may notice the description
about assembly metadata. You can apply attributes at the assembly level, in the
AssemblyInformation.vb file. Generally assembly level attributes are set at design time
with the My Project window’s tabs (see Chapters 3, “The Anatomy of a Visual Basic
Project,” and 20, “The My Namespace,” for details). This means that each application
property has a related assembly-level attribute. There is just one attribute named Assembly
that requires the specification of nested attributes setting particular properties. For
example, the following attributes’ specifications set the title, description, and company
name properties for the application:

<Assembly: AssemblyTitle(“CodingAttribute”)>

<Assembly: AssemblyDescription(“Demo for Chapter 48”)>

<Assembly: AssemblyCompany(“Alessandro Del Sole”)>

FIGURE 48.1 Attribute information stored in the assembly metadata.

From the Library of Wow! eBook

ptg

1068

In the preceding code, Assembly is the main attribute, whereas AssemblyTitle,
AssemblyDescription, and AssemblyCompany are other attributes that are nested into the
Assembly declaration. Examining AssemblyInfo.vb you can see available assembly-level
attributes, and you discover how each attribute is related to an application property
settable in My Project. Until now you saw how to apply existing attributes, but these
special objects provide great flexibility over your object development and provide the
ability to deeply enhance your types, especially if you create custom attributes, as you will
better understand in next section.

Coding Custom Attributes
A custom attribute is a class that inherits, directly or indirectly, from System.Attribute.
When coding custom attributes, the class name should end with the Attribute word. This
is not mandatory but, other than being required by Microsoft’s Common Language
Specification, it provides a better way for identifying attributes in code. When applying
attributes you can shorten the attribute name excluding the Attribute word. For example,
imagine you have a Document class representing a simple text document. You might want
to provide further information on the document, such as the author, reviewer, or last edit
date. This information can be provided and stored in the assembly metadata taking advan-
tage of a custom attribute. Code in Listing 48.1 shows the implementation of a custom
attribute that exposes document properties that is explained next.

LISTING 48.1 Writing a Custom Attribute

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Property)>

Public Class DocumentPropertiesAttribute

Inherits Attribute

‘Attributes can be inherited

‘therefore private fields are Protected

Protected _author As String

Protected _reviewer As String

Public Overridable ReadOnly Property Author As String

Get

Return Me._author

End Get

End Property

Public Overridable ReadOnly Property Reviewer As String

Get

Return Me._reviewer

End Get

End Property

CHAPTER 48 Coding Attributes

From the Library of Wow! eBook

ptg

1069Coding Custom Attributes
4

8

Public Overridable Property LastEdit As String

Public Sub New(ByVal author As String, ByVal reviewer As String)

Me._author = author

Me._reviewer = reviewer

Me._lastEdit = CStr(Date.Today)

End Sub

End Class

In Visual Basic every custom attribute is a class with Public or Friend access level and
decorated with the AttributeUsage attribute that basically allows specifying what
programming elements can be targeted by the custom attribute. Programming elements
are specified via the System.AttributeTargets enumeration; the enumeration exposes a
number of elements, each of them self-explanatory about the targeted programming
element. For example, AttributeTargets.Class allows applying the attribute to reference
types, whereas AttributeTargets.Methods allows applying the attribute to methods.
IntelliSense shows the full list of the enumeration members, which is straightforward. You
notice that an available member for each element is described in the previous section for
targetable programming elements. AttributeTargets members support bitwise operators
so that you combine multiple targets using Or. Actual metadata is exposed to the external
world via properties that can be either read-only or read/write. Attributes can receive argu-
ments, although this is not mandatory. For arguments, it is important to understand how
you can ask for required parameters and optional ones. This is not something that you
define as you would usually do in other programming elements such as methods. Basically
required parameters are specified in the class constructor. Continuing with the example of
Listing 48.1, our custom attribute requires the specification of the author and the reviewer
of the document, whereas the last edit date is optional and is still available via a specific
property. Optional parameters initialization is not required; in the mentioned example a
default value for the LastEdit property is supplied. As explained in next subsection,
optional arguments are invoked with named parameters.

TYPES FOR ATTRIBUTES PARAMETERS

You should have noticed that the LastEdit property in the custom attribute is of type
String instead of type Date. There are some limitations in the applicable data types
for attributes parameters. For example, Decimal, Object, and Date are not supported
(like structured types as well). Supported types are instead numeric types (Bytes,
Short, Integer, Long, Single, and Double), string types (String and Char), enumera-
tions, and the Boolean type. Take care of these limitations that may result in excep-
tions when passing arguments.

There are several other ways for customizing attributes, but before discovering them here’s
how to apply custom attributes to complete the discussion over parameters.

From the Library of Wow! eBook

ptg

1070

Applying Custom Attributes

The previous subsection discussed the definition of a custom attribute for assigning meta-
data to a class representing a basic text document. Code in Listing 48.2 implements the
related Document class that is decorated with the DocumentPropertiesAttribute.

LISTING 48.2 Applying Custom Attributes

<DocumentProperties(“Alessandro Del Sole”,

“Robert White”,

LastEdit:=”10/06/2009”)>

Public Class Document

Public Property Text As String

Public ReadOnly Property Length As Integer

Get

Return Text.Length

End Get

End Property

<DocumentProperties(“Alessandro Del Sole”,

“Stephen Green”)>

Public Property DocumentName As String

Public Sub SaveDocument(ByVal fileName As String)

‘...

End Sub

Public Sub LoadDocument(ByVal filneName As String)

‘...

End Sub

End Class

When you apply an attribute, you can shorten its name by excluding the Attribute word
in the identifier. For example, DocumentPropertiesAttribute can be shortened as
DocumentProperties. The Visual Basic compiler correctly recognizes the identifier of an
attribute. Then you must provide required arguments, respecting the data type. Such argu-
ments are defined in the constructor of the attribute definition (see the previous subsec-
tion). If you want to also specify an optional argument, such as the LastEdit one in the
previous example, you need to perform it via a named parameter. Named parameters are
literals followed by the := symbols and by information of the required type. This is the
only way for providing optional arguments. Notice also how the custom attribute is
applied at both class and property level; this is allowed by the attribute definition.
Attributes are therefore useful for providing additional information that will be stored in

CHAPTER 48 Coding Attributes

From the Library of Wow! eBook

ptg

1071Coding Custom Attributes
4

8

the assembly metadata, to custom objects. Attributes are flexible for other reasons that are
covered in next sections.

Applying Attributes Multiple Times

According to the particular nature of your custom attributes, you can decide whether multi-
ple instances can be applied to programming elements. This is accomplished by setting the
AllowMultiple property as True in the AttributeUsage. The following is an example:

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Property,

AllowMultiple:=True)>

Public Class DocumentPropertiesAttribute

Inherits Attribute

Notice that AllowMultiple is optional and thus is invoked as a named parameter. The
following is an example on how you apply multiple instances of an attribute:

<DocumentProperties(“Alessandro Del Sole”,

“Stephen Green”)>

<DocumentProperties(“Alessandro”, “Stephen”,

LastEdit:=”10/07/2009”)>

Public Property DocumentName As String

In the particular example of the DocumentProperties attribute, multiple instances proba-
bly do not make much sense, but this is the way for applying them.

Defining Inheritance

There are situations where you create classes that inherit from other classes that are deco-
rated with attributes. Attribute inheritance is not automatic in that you can establish
whether your attributes are inheritable. You establish this behavior by setting the
Inherited property at AttributeUsage level. By default, if you do not explicitly set
Inherited, it is considered as True. The following example shows how you enable
attribute inheritance:

’Attribute is also inherited

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Property,

Inherited:=True)>

Public Class DocumentPropertiesAttribute

The following snippet shows instead how to make an attribute not inheritable:

’Attribute is not inherited

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Property,

Inherited:=False)>

Public Class DocumentPropertiesAttribute

Inheritance is enabled by default because if a base class is decorated with attributes, derived
classes probably also need them. Because of this, you should be careful when disabling

From the Library of Wow! eBook

ptg

1072

inheritance. Code in Listing 48.3 shows an example about declaring two attributes with
inheritance definitions and how a derived type is influenced by attribute inheritance.

LISTING 48.3 Conditioning Attribute Inheritance

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Method,

Inherited:=False)>

Public Class FirstAttribute

Inherits Attribute

‘Implement your code here..

End Class

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Method)>

Public Class SecondAttribute

Inherits Attribute

‘Implement your code here..

End Class

Public Class Person

Public Property LastName As String

Public Property FirstName As String

‘The base class takes both attributes

<First(), Second()> Public Overridable Function FullName() As String

Return String.Concat(LastName, “ “, FirstName)

End Function

End Class

Public Class Contact

Inherits Person

‘This derived class takes only the Second attribute

‘because First is marked as Inherited:=False

Public Overrides Function FullName() As String

Return MyBase.FullName()

End Function

End Class

Notice how the FullName method in the Contact class inherits just the Second attribute
appliance whereas the First attribute is not applied because of inheritance settings.

CHAPTER 48 Coding Attributes

From the Library of Wow! eBook

ptg

1073Reflecting Attributes
4

8

Reflecting Attributes
Attributes are about application’s metadata. Because of this, you can use Reflection (see
Chapter 47, “Reflection,” for details) for checking if a type recurs to custom attributes and
investigate metadata (that is, application information). To accomplish this you invoke the
System.Reflection.MemberInfo.GetCustomAttributes and
System.Reflection.Attributes.GetCustomAttributes shared methods. The first one
returns all attributes applied to the specified type whereas the second one returns an array
of custom attributes applied to an assembly, a type or its members, and method parame-
ters. The following is the most basic example for retrieving information about attributes
applied to members of the Document class:

’Requires an Imports System.Reflection directive

Public Sub GetMyAttributes()

‘About members in the Document class

Dim info As System.Reflection.MemberInfo = GetType(Document)

‘Retrieves an array of attributes

Dim attributesList() As Object = info.GetCustomAttributes(True)

‘Enumerates applied attributes

For i As Integer = 0 To attributesList.Length - 1

Console.WriteLine(attributesList(i))

Next (i)

End Sub

The following example is instead a little bit more complex and shows how you can
perform actions on each attribute instance through Attribute.GetCustomAttributes:

Public Sub GetMyAttributesComplex()

Dim typeToInvestigate As Type = GetType(Document)

‘ Get the type information for the DocumentName property.

Dim member_Info As PropertyInfo =

typeToInvestigate.GetProperty(“DocumentName”)

If Not (member_Info Is Nothing) Then

‘Iterate through all the attributes of the property.

Dim attr As Attribute

For Each attr In Attribute.GetCustomAttributes(member_Info)

‘ Check for the DocumentPropertiesAttribute attribute.

If attr.GetType().

Equals(GetType(DocumentPropertiesAttribute)) Then

From the Library of Wow! eBook

ptg

1074 CHAPTER 48 Coding Attributes

Console.WriteLine(“Author: {0}”, CType(attr,

DocumentPropertiesAttribute).Author)

‘Additional ElseIf conditions here for other attributes..

End If

Next attr

End If

End Sub

In this particular scenario the code is used to iterate applied attributes.

Summary
Attributes provide great flexibility in.NET development by giving you the ability to deco-
rate your types and members with custom additional information that is stored in the
assembly metadata. All custom attributes are public classes deriving from
System.Attribute and can be applied to different programming elements, such as assem-
blies, classes, modules, methods, properties, and so on. For this, the Visual Basic language
requires you to decorate your custom attributes with the AttributeUsage attribute that
provides specifications on targeted elements. When defining custom attributes you can
provide both required and optional parameters; the first ones are established in the
constructor. All parameters refer to attribute information that is exposed to the external
world via properties. Remember that you need to provide a named parameter when invok-
ing optional arguments. You can also decide to make your attributes inheritable
(Inherited property) and to make them applicable more than once (AllowMultiple).
Finally, you can investigate assemblies’ and types’ attributes via Reflection.

From the Library of Wow! eBook

ptg

CHAPTER 49

Platform Invokes and
Interoperability with the

COM Architecture

IN THIS CHAPTER

. Importing and Using COM
Objects

. Exposing .NET Objects to the
COM World

. P/Invokes and Unmanaged
Code

The .NET Framework 4.0 Base Class Libraries offer tons of
objects and methods for covering almost everything in
modern application development. In most cases objects and
methods are managed wrappers of the Windows
Application Programming Interface (API) so that you can
use them in the managed environment of the CLR. There
can be situations where you need to access some operating
system functionalities that have not been wrapped yet by
the .NET Framework or you have legacy code exposed by
COM objects, such as type libraries. Both the .NET
Framework and Visual Basic still enable interoperability
with the COM architecture, and in this chapter you see
how to reach these objectives.

Importing and Using COM Objects
The .NET Framework 4.0, like previous versions, offers
support for interoperability with the COM architecture via
an engine named Runtime Callable Wrapper, which is the
infrastructure that provides a communication bridge
between .NET and COM. It is also responsible for type
marshaling and handling events. Because of this engine,
you can import COM objects and use them in your
managed applications. Basically you can import two kinds
of COM components: type libraries and ActiveX compo-
nents. Importing COM components is basically accom-
plished via two command-line tools: TlbImp.exe, which is
required to import a type library, and AxImp.exe, which is
instead required for importing ActiveX controls. This
chapter does not discuss how to invoke such tools from the
command line, whereas you instead see how to import

From the Library of Wow! eBook

ptg

1076 CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

COM components from within Visual Studio so that the IDE can do the work for you. In
the next example you see how to import an ActiveX control into the Visual Studio
toolbox and use the control in code.

Importing COM Components into Visual Studio

Create a new Windows Forms project with Visual Basic and, when ready, open the Visual
Studio toolbox. When done, right-click the toolbox and select Choose Items. This
launches the same-named dialog that you already know because of adding .NET controls
to the toolbox. Select the COM tab and search for the Windows Media Player item, as
shown in Figure 49.1.

When you click OK, Visual Studio generates two files for you:

. Interop.WMPLib.dll, which is a CLR wrapper for using COM objects exposed by the
Windows Media Player type library in a .NET fashion

. AxInterop.WMPLib.dll, which is a Windows Forms proxy that provides the infra-
structure required for hosting the control in your forms

At this point notice that the Windows Media Player ActiveX control is available inside the
toolbox. Now drag the control over the current form and design the media player as you
like. At this point Visual Studio generates some code for you to declare the control and
enables you to use it. If you expand the Form1.designer.vb file, you find the following
initialization code for the ActiveX control:

Friend WithEvents AxWindowsMediaPlayer1 As AxWMPLib.AxWindowsMediaPlayer

FIGURE 49.1 Choosing a COM component to add to the toolbox.

From the Library of Wow! eBook

ptg

1077Importing and Using COM Objects
4

9

...

Me.AxWindowsMediaPlayer1.Enabled = True

Me.AxWindowsMediaPlayer1.Location = New System.Drawing.Point(24, 13)

Me.AxWindowsMediaPlayer1.Name = “AxWindowsMediaPlayer1”

Me.AxWindowsMediaPlayer1.OcxState = _

CType(resources.GetObject(“AxWindowsMediaPlayer1.OcxState”),

System.Windows.Forms.AxHost.State)

Me.AxWindowsMediaPlayer1.Size = New System.Drawing.Size(239, 196)

Me.AxWindowsMediaPlayer1.TabIndex = 0

AXHOST CLASS

ActiveX controls are wrapped by the System.Windows.Forms.AxHost class that enable
treating COM components as you would do with .NET objects.

Now you can work with the ActiveX control in a managed way, as illustrated in next
subsection.

Using COM Objects in Code

When you have an instance of the ActiveX control, or of a type library, you can access its
members like any other .NET object, thus invoking methods, assigning properties, or
handling events. For example the following code assigns the URL property of the media
player with a media file to start playing:

Private Sub Form1_Load(ByVal sender As Object,

ByVal e As System.EventArgs) Handles Me.Load

AxWindowsMediaPlayer1.URL = “C:\users\alessandro\music\MySong.mp3”

End Sub

You can also handle events if available, as demonstrated by the following code snippet:

Private Sub AxWindowsMediaPlayer1_MediaError(ByVal sender As Object,

ByVal e As AxWMPLib.

_WMPOCXEvents_MediaErrorEvent) _

Handles AxWindowsMediaPlayer1.

MediaError

MessageBox.Show(“An error occurred while opening media”)

End Sub

In this particular case the MediaError event is raised when an error occurs in playing the
media file. At a more general level, notice how wrapping an ActiveX control allows
importing different kinds of members, including events.

From the Library of Wow! eBook

ptg

1078

Catching Exceptions

When you implement Try..Catch..End Try blocks, you can intercept and handle only
CLS-compliant exceptions, that is, exceptions inheriting from System.Exception.
Exceptions wrapped by the COM import tools are not CLS-compliant, so a classic Try
block would fail. To intercept exceptions coming from wrapped objects, the .NET
Framework offers the System.Runtime.CompilerServices.RuntimeWrappedException that
can be used for error handling when working with wrappers. The following code shows
an example:

Try

AxWindowsMediaPlayer1.URL = “C:\users\alessandro\music\MySong.mp3”

Catch ex As RuntimeWrappedException

Catch ex As Exception

End Try

Other than usual exception properties, this class exposes a WrappedException property, of
type Object, which represents the occurred problem.

Releasing COM Objects

You should always explicitly release objects that wrap COM components so that associated
resources are also released. You accomplish this by invoking the
System.Runtime.InteropServices.Marshal.ReleaseCOMObject method. Continuing with
the previous example, you release the AxWindowsMediaPlayer1 object as follows:

Private Sub Form1_FormClosing(ByVal sender As Object,

ByVal e As System.Windows.Forms.

FormClosingEventArgs) Handles _

Me.FormClosing

System.Runtime.InteropServices.Marshal.

ReleaseComObject(AxWindowsMediaPlayer1)

End Sub

This is important because COM objects treat system resources differently from .NET
objects; therefore, an explicit release is required.

Exposing .NET Objects to the COM World
Although in modern world applications this practice is less frequent than in the past, you
can expose .NET objects to the COM world. For example, a VB 6 application can consume
an object like this. To demonstrate how you accomplish this export, create a new class
library and rename Class1.vb to Contact.vb. The first thing you need to do to make a class
consumable from COM is enable the COM interoperability support. Now open My Project

CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

From the Library of Wow! eBook

ptg

1079Exposing .NET Objects to the COM World
4

9

and then select the Compile tab. Flag the Register for COM Interop item at the bottom
of the page, as shown in Figure 49.2.

This operation tells Visual Studio that it needs to register the COM component on build
and adds the following line of code in AssemblyInfo.vb so that it makes it visible to COM:

<Assembly: ComVisible(True)>

CLASS REQUIREMENTS FOR COM EXPOSURE

Any class that you want to expose to COM has the following requirements: It must have
a public, empty, parameterless constructor, any member, including types, to be exposed
must be Public (no other modifiers are allowed), and it cannot include abstract class-
es. (This is just because they cannot be consumed.)

The ComVisible attribute establishes the visibility level and granularity not only at assem-
bly level, but also for classes and class members. At the moment implement the Contact
class as follows:

Public Class COMContact

FIGURE 49.2 Registering an assembly for COM Interoperability.

From the Library of Wow! eBook

ptg

1080 CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

Public Property FirstName As String

Public Property LastName As String

Public Property Email As String

Public Property BirthDay As Date

Public Sub New()

End Sub

End Class

Now you can decide the visibility level for each member in the class by decorating the
class and its members with the System.Runtime.InteropServices.ComVisible attribute.
The following code demonstrates how to make COM-visible only some members from the
Contact class:

Imports System.Runtime.InteropServices

<ComVisible(False)>

Public Class COMContact

<ComVisible(True)>

Public Property FirstName As String

<ComVisible(True)>

Public Property LastName As String

<ComVisible(True)>

Public Property Email As String

<ComVisible(False)>

Public Property BirthDay As Date

Public Sub New()

End Sub

End Class

The class is marked as ComVisible(False) simply because not all its members are COM-
visible. Notice that a public, empty constructor is required for COM-visible objects.

The next step should be to register the COM component after the build process.
Fortunately, on the development machine Visual Studio 2010 does the work for you. (This
requires the IDE to be launched with elevated privileges.) Therefore, simply compile the
project to have a class library that is consumable from the COM architecture.

From the Library of Wow! eBook

ptg

1081P/Invokes and Unmanaged Code
4

9

WHAT HAPPENS BEHIND THE SCENES?

When you build a class library exposed to COM, Visual Studio first invokes the Visual
Basic compiler (vbc.exe) with the /t switch pointing to the executable name; next it
launches the type library exporter utility (TlbExp.exe). The conjunction of both tools can
build a COM-enabled library.

P/Invokes and Unmanaged Code
One of the biggest benefits of the .NET Framework is that the technology is a bridge between
you and the Windows operating system and is responsible for managing a lot of system
features (such as memory management) highly reducing the risk of bad system resources
management that could lead the system to unwanted crashes or problems. This is the reason
why (as you may recall from Chapter 1, “Introducing the .NET Framework 4.0”) .NET
programming is also known as managed. The .NET Framework base class library exposes
managed wrappers for most of the Windows API system so that you do not need to manually
handle system resources, and you can take all advantages from the CLR. By the way, there are
situations in which you still need to access the Windows API (for example when there is not
a .NET counterpart of an API function), and thus you need to work with unmanaged code.
Basically unmanaged code is all code not controlled by the .NET Framework and that
requires you to manually handle system resources. When you work with unmanaged code,
you commonly invoke Windows API functions; such invocations are also known as Platform
Invokes or, simpler, P/Invokes. In this section I cover both situations, starting with P/Invokes.

NOTE ON UNMANAGED CODE

You should always avoid unmanaged code. The .NET Framework 4.0 offers an infinite
number of managed objects and methods for performing almost everything, and if
something from the Windows API has not been wrapped yet, you can find lots of open-
source or free third-party libraries to help you solve your problems without P/Invokes.
Using unmanaged code means working directly against the operating system and its
resources, and if your code does not perfectly handle resources, it can lead to hard
problems. Moreover, when performing unmanaged calls you need to be certain that
they work or exist on all versions of the Windows operating system you plan to support
for your application. In a few words, always search through the Base Class Library to
ensure that a .NET counterpart for the Windows API already exists. It probably does.

Understanding P/Invokes

Calls to Windows API functions are known as Platform Invokes or P/Invokes. The Visual
Basic programming language offers two ways for performing platform invokes:

. Declare keyword

. System.Runtime.InteropServices.DllImport attribute

From the Library of Wow! eBook

ptg

1082 CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

The Declare keyword has a behavior similar to what happened in Visual Basic 6, and it
has been kept for compatibility, but you should always prefer the DllImport attribute
because this is the one way recognized by the Common Language Specification. Now we
can see how to declare a P/Invoke. The next example considers the PathIsUrl function,
from the Shlwapi.dll system library, which checks if the specified is an URL and returns a
value according to the result. This is with the Declare keyword:

Declare Function PathIsUrl Lib “shlwapi.dll” Alias _

“PathIsURLA” (ByVal path As String) As Integer

MATCHING NUMERIC TYPES

Keep in mind the difference in numeric types between the Windows API system and the
.NET common types system, because generally Windows APIs return Long; however
when you perform P/Invokes you must use the .NET counterpart that is Integer. The
same is for Integer in the Windows API, which is mapped by Short in .NET. Similarly,
remember to use the IntPtr structure for declarations that require a handle (or a
pointer) of type Integer.

As you can see, the API declaration looks similar to what you used to write in VB 6. The
following is instead how you declare the API function via the DllImport attribute:

’Requires an

‘Imports System.Runtime.InteropServices directive

<DllImport(“shlwapi.dll”, entrypoint:=”PathIsURLA”)>

Shared Function PathIsURL(ByVal path As String) As System.Int32

End Function

Among its number of options, the most important in DllImport are the library name and
the entrypoint parameter that simply indicates the function name. It is important to
remember that P/Invokes must be declared as Shared, because they cannot be exposed as
instance methods; the only exception to this rule is when you declare a function within a
module. When declared, you can consume P/Invokes like any other method (always
remembering that you are not passing through the CLR) as demonstrated here:

Dim testUrl As String = “http://www.visual-basic.it”

Dim result As Integer = PathIsURL(testUrl)

Both Declare and DllImport lead to the same result, but from now we use only DllImport.

Encapsulating P/Invokes

Encapsulating P/Invokes in classes is a programming best practice and makes your code
clearer and more meaningful. Continuing the previous example, you could create a new
class and declare inside the class the PathIsUrl function, marking it as Shared so that it
can be consumed by other objects. By the way, there is another consideration to make. If

From the Library of Wow! eBook

ptg

1083P/Invokes and Unmanaged Code
4

9

you plan to wrap Windows API functions in reusable class libraries, the best approach is to
provide CLS-compliant libraries and API calls. For this reason we now discuss how you can
encapsulate P/Invokes following the rules of the Common Language Specification. The first
rule is to create a class that stores only P/Invokes declarations. Such a class must be visible
only within the assembly, must implement a private empty constructor, and will expose
only shared members. The following is an example related to the PathIsUri function:

Friend Class NativeMethods

<DllImport(“shlwapi.dll”, entrypoint:=”PathIsURLA”)>

Shared Function PathIsURL(ByVal path As String) As System.Int32

End Function

Private Sub New()

End Sub

End Class

The class is marked with Friend to make it visible only within the assembly. Notice that
a CLS-compliant class for exposing P/Invokes declarations can have only one of the
following names:

. NativeMethods, which is used on the development machine and indicates that the
class has no particular security and permissions requirements

. SafeNativeMethods, which is used outside the development machine and indicates
that the class and methods have no particular security and permissions requirements

. UnsafeNativeMethods, which is used to explain to other developers that the caller
needs to demand permissions to execute the code (demanding permissions for one
of the classes exposed by the System.Security.Permissions namespace)

To expose P/Invokes to the external call, you need a wrapper class. The following class
demonstrates how you can expose the NativeMethods.PathIsUrl function in a program-
matically correct approach:

Public Class UsefulMethods

Public Shared Function CheckIfPathIsUrl(ByVal path As String) _

As Integer

Return NativeMethods.PathIsURL(path)

End Function

End Class

From the Library of Wow! eBook

ptg

1084 CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

Finally, you can consume the preceding code as follows (for example adding a reference to
the class library):

Dim testUrl As String = “http://www.visual-basic.it”

Dim result As Integer = UsefulMethods.CheckIfPathIsUrl(testUrl)

Working with unmanaged code is not only performing P/Invokes. There are some other
important concepts about error handling and type marshaling, as explained in next sections.

Converting Types to Unmanaged

When you work with P/Invokes, you might have the need to pass custom types as func-
tion arguments. If such types are .NET types, the most important thing is converting
primitives into types that are acceptable by the COM/Win32 architecture. The
System.Runtime.InteropServices namespace exposes the MarshalAs attribute that can be
applied to fields and method arguments to convert the object into the most appropriate
COM counterpart. The following sample implementation of the Person class demonstrates
how to apply MarshalAs:

Imports System.Runtime.InteropServices

Public Class Person

<MarshalAs(UnmanagedType.LPStr)>

Private _firstName As String

<MarshalAs(UnmanagedType.SysInt)>

Private _age As Integer

Public Property FirstName As String

Get

Return _firstName

End Get

Set(ByVal value As String)

_firstName = value

End Set

End Property

Public Property Age As Integer

Get

Return _age

End Get

Set(ByVal value As Integer)

_age = value

End Set

End Property

From the Library of Wow! eBook

ptg

1085P/Invokes and Unmanaged Code
4

9

Sub ConvertParameter(<MarshalAs(UnmanagedType.LPStr)> _

ByVal name As String)

End Sub

End Class

The attribute receives a value from the UnmanagedType enumeration; IntelliSense offers
great help about members in this enumeration, showing the full members list and
explaining what each member is bound to convert. You can check this out as an exercise.

The StructLayout Attribute

An important aspect of unmanaged programming is how you handle types, especially
when such types are passed as P/Invoke arguments. Differently from P/Invokes, types
representing counterparts from the Windows API pass through the Common Language
Runtime and, as a general rule, you should provide the CLR the best way for handling
them to keep performance high. Basically when you write a class or a structure, you give
members a particular order that should have a meaning for you. In other words, if the
Person class exposes FirstName and Age as properties, keeping this order should have a
reason, which generally is dictated only by some kind of logic. With the
System.Runtime.InteropServices.StructLayout attribute, you can tell the CLR how it
can handle type members; it enables deciding if it has to respect a particular order or if it
can handle type members the best way it can according to performances. The
StructLayout attribute’s constructor offers three alternatives:

. StructLayout.Auto: The CLR handles type members in its preferred order.

. StructLayout.Sequential: The CLR handles type members preserving the order
provided by the developer in the type implementation.

. StructLayout.Explicit: The CLR handles type members according to the order
established by the developer, using memory offsets.

By default, if StructLayout is not specified, the CLR assumes Auto for reference types and
Sequential for structures. For example, consider the COMRECT structure from the Windows
API, which represents four points. This is how you write it in Visual Basic, making it avail-
able to unmanaged code:

<StructLayout(LayoutKind.Sequential)>

Public Structure COMRECT

Public Left As Integer

Public Top As Integer

Public Right As Integer

Public Bottom As Integer

Shared Sub New()

End Sub

From the Library of Wow! eBook

ptg

1086 CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

Public Sub New(ByVal left As Integer,

ByVal top As Integer,

ByVal right As Integer,

ByVal bottom As Integer)

Me.Left = left

Me.Top = top

Me.Right = right

Me.Bottom = bottom

End Sub

End Structure

TIPS ON DEFAULT OPTIONS

StructLayout must be applied explicitly if your assembly needs to be CLS-compliant.
This happens because you have two choices, Sequential and Explicit. Instead, for
classes this is not necessary, because they are always considered as Auto. Because
of this, in this section we describe only structures.

This is how instead you can apply StructLayout.Explicit, providing memory offsets:

<StructLayout(LayoutKind.Explicit)>

Public Structure COMRECT

<FieldOffset(0)> Public Left As Integer

<FieldOffset(4)> Public Top As Integer

<FieldOffset(8)> Public Right As Integer

<FieldOffset(12)> Public Bottom As Integer

Shared Sub New()

End Sub

Public Sub New(ByVal left As Integer,

ByVal top As Integer,

ByVal right As Integer,

ByVal bottom As Integer)

Me.Left = left

Me.Top = top

Me.Right = right

From the Library of Wow! eBook

ptg

1087P/Invokes and Unmanaged Code
4

9

Me.Bottom = bottom

End Sub

End Structure

The FieldOffset attribute specifies the memory offset for each field. In this case the struc-
ture provides fields of type Integer, so each offset is four bytes.

The VBFixedString attribute

The VBFixedString attribute can be applied to structure members of type String, in order
to delimit the string length, since by default string length is variable. Such delimitation is
established in bytes instead of characters. This attribute is required in some API calls. The
following is an example:

Public Structure Contact

‘Both fields are limited to 10 bytes size

<VBFixedString(10)> Public LastName As String

<VBFixedString(10)> Public Email As String

End Structure

Notice that the VBFixedString can be applied to fields but is not valid for properties.

Handling Exceptions

Functions from Windows API generally return a numeric value as their result (called
HRESULT), for communicating with the caller if the function succeeded or failed. Prior to
.NET 2.0, getting information on functions failures was a difficult task. Starting from .NET
2.0 you can handle exceptions coming from the P/Invokes world with a classic Try..Catch
block. The real improvement is that the .NET Framework can wrap unmanaged errors that
have a .NET counterpart into managed exceptions. For example, if a Windows API invoca-
tion causes an out-of-memory error, the .NET Framework maps such error as an
OutOfMemoryException that you can embrace within a normal Try..Catch block. By the
way, it is reasonable that not all unmanaged errors can have a managed counterpart, due
to differences in COM and .NET architectures. To solve this, .NET provides the
System.Runtime.InteropServices.SEHException, in which SEH stands for Structured
Exception Handling and that maps all unmanaged exceptions that .NET cannot map. The
exception is useful because it exposes an ErrorCode property that stores the HRESULT sent
from P/Invokes. You use it like this:

Try

‘Add your P/Invoke here..

Catch ex As SEHException

Console.WriteLine(ex.ErrorCode.ToString)

From the Library of Wow! eBook

ptg

1088 CHAPTER 49 Platform Invokes and Interoperability with the COM Architecture

Catch ex As Exception

End Try

TIP

The SEHException does not provide a good number of exception details, differently
from managed exceptions, but it is the most appropriate exception for error handling in
a Try..Catch block within unmanaged code.

There is also an alternative, which requires some explanation. P/Invokes raise Win32
errors calling themselves the SetLastError native method that is different from how
exceptions are thrown in the Common Language Runtime. In earlier days you could call
the GetLastError method to retrieve the error code, but this is not the best choice because
it can refer to managed exceptions, other than Win32 exceptions. A better, although not
the ultimate, approach can be provided by invoking the
System.Runtime.InteropServices.Marshal.GetLastWin32Error method, which can inter-
cept the last error coming from a Win32 call. To make this work, first you need to set the
SetLastError property in the DllImport attribute as True; then you can invoke the
method. The following code shows an example on the Beep function, which returns a
numeric value as the result:

<DllImport(“kernel32.dll”, entrypoint:=”Beep”, SetLastError:=True)>

Public Shared Function Beep(ByVal frequency As UInteger,

ByVal duration As UInteger) As Integer

End Function

Dim beepResult = NativeMethods.Beep(100, 100)

If beepResult = 0 Then

Console.WriteLine(Marshal.GetLastWin32Error())

End If

Here you need to know first what values can return a particular function. Beep returns
zero if it does not succeed. So after a check on the result value, the
Marshal.GetLastWin32Error method is invoked to understand the error code.

From the Library of Wow! eBook

ptg

1089Summary
4

9

References to the Win32 API calls
Developers can reference the MSDN documentation or the Windows SDK to get detailed
information on the Windows API functions and their signatures. The following are
resources available on the Internet for your reference:

. MSDN reference: http://msdn.microsoft.com/en-us/library/aa383749(VS.85).aspx

. Windows SDK:
http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-
a63e-1fd44e0e2505&displaylang=en

. PInvoke.net website: http://www.pinvoke.net

Summary
In this chapter you learned some concepts on how the .NET technology can interoperate
with the COM legacy architecture and components. In the first part of the chapter you
learned how to import COM components into managed applications, understanding how
Visual Studio generates .NET wrappers to interact with COM. Next you learned how to
create and expose .NET libraries to COM, utilizing the Visual Studio instrumentation and
applying the ComVisible attribute to classes and class members to grant visibility granular-
ity. In the last part of the chapter, you saw how to call and run unmanaged code, with
particular regard to Platform Invokes and types conversions for working directly against
the Windows operating system.

From the Library of Wow! eBook

http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-1fd44e0e2505&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-1fd44e0e2505&displaylang=en
http://www.pinvoke.net
http://msdn.microsoft.com/en-us/library/aa383749(VS.85).aspx

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 50

Documenting the
Source Code

IN THIS CHAPTER

. Understanding XML Documents

. Implementing XML Comments

. Generating Compiled Help Files

One of the most common programming rules states that
documenting the source code is fundamental. This is of
course the truth but you have to think about the way
source code is commented. Classical comments are useful to
explain what code does so that you can easily remember
how your code works if you need to retake it after a long
time, or they can help other developers to understand your
code. But this is not the only way of documenting code in
.NET development. A sophisticated environment such as
Visual Studio offers the IntelliSense technology that not
only speeds up the way you write code but is also shows
instructions on how you use objects and members. This is
possible because of special kinds of comments that you can
add to your code, known as XML comments. Such
comments allow writing the source code documentation,
explaining objects’ and members’ behavior, and also provid-
ing descriptions and examples that can be shown up by
IntelliSense. But that is not all. Documenting code with
XML comments is particularly important if you develop
reusable compiled libraries and allow automating the
process of building compiled documentation files (such as
.chm files) in a similar way to the MSDN documentation. In
this chapter you learn to use XML comments to provide
simple and complex source code documentation, also learn-
ing how to build compiled documentation.

Understanding XML Documents
XML documents are not new in Visual Basic 2010; they
were first natively introduced with Visual Basic 2005. (In
versions prior to 2005, XML comments were possible only

From the Library of Wow! eBook

ptg

1092 CHAPTER 50 Documenting the Source Code

via third-party add-ins.) To understand why XML documents are an essential topic, let’s
take a look at a method invocation within the code editor. Figure 50.1 shows how
IntelliSense appears on an uncommented method.

As you can see from Figure 50.1, IntelliSense will correctly show up, but it will just show
the method name in a tooltip, without providing information on the method usage. This
is because the method was not commented with XML comments. Now take a look at
Figure 50.2 that shows how IntelliSense can provide information if the method was
commented with XML comments.

The difference is evident. Objects and members decorated with XML comments can
provide full explanation on their usage. This works in the code editor when IntelliSense
shows up with both source files and with compiled executables. As mentioned at the
beginning of this chapter, providing XML comments is not only useful for IntelliSense but
also when you investigate objects in the Object Browser or for automating the process of
building compiled documentation for your libraries. Because of this, adding XML
comments to your code is something necessary in most cases, especially if you develop
reusable assemblies. In the next sections you learn practical techniques for commenting
the source code and getting the most out of XML comments with Visual Basic.

Enabling XML Comments

When Visual Studio builds the project output, it also creates an XML document storing all
XML comments. The XML document constitutes the actual code documentation. In
Visual Studio 2010 XML comments are enabled by default. Before reading this chapter,
ensure that XML comments are effectively enabled in your project. To accomplish this,

FIGURE 50.1 Uncommented members make IntelliSense unable to display useful information.

FIGURE 50.2 Commented members are well described when IntelliSense shows up in the
code editor.

From the Library of Wow! eBook

ptg

1093Implementing XML Comments
5

0

open My Project; select the Compile tab and, if it’s not checked, check the Generate
XML Documentation file box. See Figure 50.3 for details.

Behind the scenes this requires the Visual Basic compiler to be launched by Visual Studio
with the /doc option, which makes the compiler also generate the XML documentation.
At this point you are ready to implement XML comments in your Visual Basic code.

Implementing XML Comments
XML comments have a double purpose. The first one is enabling additional help within
IntelliSense when you write code. The second one is generating an XML file storing infor-
mation that can be built into a compiled documentation file, such as the .Chm format
that also allows navigation between documented items. In this section you learn to imple-
ment XML comments understanding the various tags and why they are important;
although in some cases it might not seem to be. Before implementing comments, create a
new Console application and implement a Person class as follows:

Public Class Person

FIGURE 50.3 Enabling Xml comments.

From the Library of Wow! eBook

ptg

1094 CHAPTER 50 Documenting the Source Code

Public Overridable Property FirstName As String

Public Overridable Property LastName As String

Public Overridable Property Age As Integer

Public Overridable Function GetFullName() As String

Dim fn As New Text.StringBuilder

fn.Append(Me.FirstName)

fn.Append(“ “)

fn.Append(Me.LastName)

Return fn.ToString

End Function

End Class

The Person class will be the base for our experiments. You implement an XML comment
by typing three apostrophes. The Visual Studio code editor adds a comment skeleton to
your code that first looks like the following example:

’’’ <summary>

‘’’

‘’’ </summary>

‘’’ <returns></returns>

‘’’ <remarks></remarks>

Public Overridable Function GetFullName() As String

Dim fn As New Text.StringBuilder

fn.Append(Me.FirstName)

fn.Append(“ “)

fn.Append(Me.LastName)

Return fn.ToString

End Function

As you can see, these comments have typical XML structure according to the <tag>
</tag> syntax. The summary XML tag enables describing what an object (or member) does.
The description will be also available within IntelliSense. The remarks tag enables provid-
ing additional information on what you already specified in the summary, and the infor-
mation will also be displayed within the Object Browser (but not within IntelliSense). The
returns tag specifies the type returned by the member (being a method or a property); in
case the member is a method that does not return a value, Visual Studio will not add the
returns tag. For a better understanding, populate comments as follows:

’’’ <summary>

‘’’ Gets the complete person’s name

‘’’ </summary>

‘’’ <returns>String</returns>

‘’’ <remarks>This method returns the complete person’s name</remarks>

Public Overridable Function GetFullName() As String

Dim fn As New Text.StringBuilder

From the Library of Wow! eBook

ptg

1095Implementing XML Comments
5

0

fn.Append(Me.FirstName)

fn.Append(“ “)

fn.Append(Me.LastName)

Return fn.ToString

End Function

Now go to the Main method in your Console application, and write the following code
that instantiates and populates the Person class:

Dim p As New Person With {.FirstName = “Alessandro”, .LastName = “Del Sole”,

.Age = 32}

Dim fullName As String = p.GetFullName

When typing code, you notice how IntelliSense provides information on the GetFullName
method according to the XML comment’s content. This is represented in Figure 50.4.

As you can see, IntelliSense basically shows the content of the summary tag whereas it does
not show the content of the returns and remarks tags. This makes sense in that
IntelliSense’s tooltips are the fastest way for getting help. If you instead open the Object
Browser on the Person class, you get a result that looks similar to Figure 50.5.

You obtain the same detailed information if you build a compiled documentation file, as
described later in this chapter. The one shown before is the most basic implementation of
XML comments. By the way, this great Visual Basic feature allows defining complex docu-
mentation over your code, which can be particularly useful also due to the integration
with the Visual Studio environment.

SCOPE

XML comments can be applied to both public and private objects and members.

Defining Complex Code Documentation

The MSDN documentation says that the Visual Basic compiler can parse any valid XML
tag. The MSDN also recommends a series of tags that are specific to the code documenta-
tion. Table 50.1 summarizes recommended tags.

FIGURE 50.4 IntelliSense shows the information provided by the XML comments.

From the Library of Wow! eBook

ptg

1096 CHAPTER 50 Documenting the Source Code

FIGURE 50.5 The Object Browser shows information provided by XML comments.

CASE-SENSITIVENESS

Tags within XML comments are case-sensitive and lowercase. Take care of this to
ensure that the Visual Basic compiler correctly recognizes tags.

NOTE ON COMPLEX DOCUMENTATION

You can generally appreciate complex documentation generated with XML comments
only when building compiled help files. This is because within IntelliSense or in the
Object Browser only a few tags’ contents will be shown. For example, XML comments
allow building bulleted lists or specifying links to other documentation regarding differ-
ent code; all this cannot be shown in IntelliSense but makes a lot of sense in a help
file or a help system built on html pages. If you are interested only in building docu-
mentation for Visual Studio internal usage, you can theoretically limit XML comments to
the basic implementations.

Let’s go back to the Person class and provide an XML comment for the FirstName prop-
erty. The XML comment must look like this:

’’’ <summary>

‘’’ Contains the person’s first name

From the Library of Wow! eBook

ptg

1097Implementing XML Comments
5

0

TABLE 50.1 Recommended Tags for XML Comments

Tag Description

c Identifies a code element

cref Creates a cross reference to another documented object

code Provides a code snippet about the code usage

example Provides a description about how code can be used

exception Allows specifying the exception that your member could throw

include Points to an external XML file containing documentation for the code

list Allows generating a bulleted, numbered, or tabled list

para Allows formatting its content as a paragraph

param Defines a parameter that can be referenced by paramref

paramref Allows formatting a word as a parameter defined via param

permission Specifies the Code Access Security permission required by the commented
member

remarks Provides additional notes on your code

returns Specifies the .NET type returned by your member

see Provides a link to another member

seealso Adds a member in the See Also section of the compiled documentation

summary Provides a description about a member; also shown within IntelliSense

typeparam Provides type parameter name and description when declaring generic types

value Describes the value of a member (for example, a property)

‘’’ </summary>

‘’’ <value>Person’s first name</value>

‘’’ <returns>String</returns>

‘’’ <remarks></remarks>

Public Overridable Property FirstName As String

Here there is a new tag, value. The summary tag describes a property whereas value
describes the property’s value. Do the same thing on the LastName property specifying
the appropriate description, similarly to FirstName. Other tags can be added in a straight-
forward way, thanks to the always present IntelliSense. Figure 50.6 shows how
IntelliSense provides available XML tags, according to the particular context where they
have to be added.

From the Library of Wow! eBook

ptg

1098 CHAPTER 50 Documenting the Source Code

Referring to Code Elements
XML comments enable references to other code elements with specific tags. The first one
is c that identifies the element within angle bracket as code. To show an example, rewrite
XML comments for the GetFullName method as follows:

’’’ <summary>

‘’’ Gets the complete person’s name

‘’’ </summary>

‘’’ <returns>String</returns>

‘’’ <remarks>This method concatenates <c>LastName</c> and

‘’’ <c>FirstName</c> properties</remarks>

Public Overridable Function GetFullName() As String

Dim fn As New Text.StringBuilder

fn.Append(Me.FirstName)

fn.Append(“ “)

fn.Append(Me.LastName)

Return fn.ToString

End Function

Notice how the c tag embraces both LastName and FirstName properties, communicating
to the compiler that both tags represent a code element. Also notice how it is enclosed
and nested within a remarks tag (IntelliSense can be helpful in choosing the allowed tags.)
This is not the only way for referring to code; you can provide an entire code example
that will be included in your documentation. To accomplish this you first declare an
example tag, which contains the example description and then a code tag that contains a
code snippet demonstrating the member purpose. With that said, edit the preceding XML
comment as follows:

’’’ <summary>

‘’’ Gets the complete person’s name

‘’’ </summary>

‘’’ <returns>String</returns>

‘’’ <remarks>This method concatenates <c>LastName</c> and

FIGURE 50.6 IntelliSense helps you select XML tags according to the particular context.

From the Library of Wow! eBook

ptg

1099Implementing XML Comments
5

0

‘’’ <c>FirstName</c> properties

‘’’ <example>This example shows how you can invoke

‘’’ the <c>GetFullName</c> method

‘’’ <code>

‘’’ Dim result As String = Person1.GetFullName()

‘’’ </code>

‘’’ </example>

‘’’ </remarks>

Public Overridable Function GetFullName() As String

This is useful because your documentation also shows examples on your libraries.

WHY DON’T I SEE THEM?

Code, c and example tags provide documentation that is not available within
IntelliSense whereas it is available within the generated XML file; thus you can appre-
ciate them when building an html-based or compiled documentation or within the
Object Browser.

XML comments easily allow referring to and documenting members’ arguments. For a
better understanding, write the following overload of the GetFullName method that
accepts a Title argument:

Public Overridable Function GetFullName(ByVal Title As String) As String

If String.IsNullOrEmpty(Title) = True Then Throw New _

ArgumentNullException

Dim fn As New Text.StringBuilder

fn.Append(Title)

fn.Append(“ “)

fn.Append(Me.FirstName)

fn.Append(“ “)

fn.Append(Me.LastName)

Return fn.ToString

End Function

Now add an XML comment. It look likes this:

’’’ <summary>

‘’’ Gets the complete person’s name

‘’’ </summary>

‘’’ <param name=”Title”></param>

‘’’ <returns>String</returns>

‘’’ <remarks></remarks>

From the Library of Wow! eBook

ptg

1100 CHAPTER 50 Documenting the Source Code

Public Overridable Function GetFullName(ByVal Title As String) As String

The param tag allows referring to a member’s argument, specified by the name attribute. If
you try to type name on your own, you notice how IntelliSense helps you choose the argu-
ment. XML comments also allow specifying an exception that your member could
encounter, according to the actions it takes. For example, the GetFullName method could
throw a NullReferenceException if the Title argument is an empty or null string. For
this, you use an exception tag to specify the exception. The tag is used with cref. This
one is straightforward in that it allows pointing a reference to a .NET object taking advan-
tage of IntelliSense. For example, the following tag (which must be added before the
method definition) specifies what exception can be thrown:

’’’ <exception cref=”ArgumentNullException”>

‘’’ The exception that is thrown when <paramref name=”Title”/> is Nothing

‘’’ </exception>

‘’’ <returns>String</returns>

‘’’ <remarks></remarks>

Public Overridable Function GetFullName(ByVal Title As String) As String

When typing cref, you notice the IntelliSense window showing all available objects. You
simply pick the exception you are interested in. This speeds up the way you write your
comment, also ensuring that you type a valid object name. You can also specify the
description for the exception. The good news about cref is that it creates a cross-reference
to the documentation related to the pointed object. For example, when you create a
compiled documentation file based on the XML comments, cref allows redirecting to
another page showing information on the pointed object. Also notice how you can refer
to the argument by specifying the paramref tag within a descriptive text, which requires a
name attribute pointing to the argument. paramref also takes advantages of IntelliSense.

Referring to an External Documentation File
The Visual Basic compiler can link documentation to your code from an external XML
document. To accomplish this, you use the include tag. The tag requires a file attribute
that points to the external document and a path attribute that points to the position in
the document providing documentation for the given member. The following code sets
external documentation for the Age property:

’’’ <include file=”ExternalDoc.xml” path=”Help/Property[@name=’Age’]”/>

Public Overridable Property Age As Integer

To understand how the path tag works, here is the XML representation of the external
document:

<?xml version=”1.0” encoding=”utf-8” ?>

<Help>

<Property name=”Age”>

<summary>Returns how old a person is</summary>

<returns>Integer</returns>

From the Library of Wow! eBook

ptg

1101Implementing XML Comments
5

0

</Property>

<!–– Other properties...––>

<Property>

</Property>

</Help>

Creating Lists
Documentation often requires bulleted and numbered lists or tables, as in any other kind
of document. Luckily XML comments allow easily building lists. This is accomplished
with the list tag that requires a type attribute specifying if the list is a bulleted or
numbered list or a two-column table. The following example shows how to build a
numbered list on the Person class documentation:

’’’ <summary>

‘’’ Represents a human being

‘’’ </summary>

‘’’ <remarks>

‘’’ <list type=”number”>

‘’’ <item><description>Instantiate the class</description></item>

‘’’ <item><description>Populate its properties</description></item>

‘’’ <item><description>Eventually retrieve the full

‘’’ name</description></item>

‘’’ </list>

‘’’ </remarks>

Public Class Person

....

End Class

The type attribute can have one of the following values: bullet (bulleted list), number
(numbered list), and table (two-column table). Notice how each item in the list is
represented by an item tag that requires a nested description tag providing the actual
description. In case you want to provide a table, each item must contain a term tag and a
description tag as in the following example:

’’’ <item><term>Action one</term></item>

‘’’ <item><description>Instantiate the class</description></item>

The items content will be also shown in IntelliSense and the Object Browser but it will be
actually formatted as a list only in the compiled documentation.

Documenting Permissions Requirements
There are situations where your objects expose members that require special permissions
to access system resources. You can provide documentation about required permissions by
adding a permission tag with cref, pointing to the desired .NET permission. The following

From the Library of Wow! eBook

ptg

1102 CHAPTER 50 Documenting the Source Code

example shows how to comment the GetFullName method with the UIPermission
requirement:

’’’ <permission cref=”System.Security.Permissions.UIPermission”/>

Public Overridable Function GetFullName() As String

Of course, you can specify multiple permissions by adding multiple permission tags.

Specifying Links to Other Resources
When documenting the code, it is not unusual to provide links to other members. XML
comments allow this by specifying see and seealso tags. The see tag allows specifying a
link to another member’s documentation from within the description text. The seealso
tag does the same, but it differs in that the link to the other member appears in the See
Also section of the compiled page. The following example demonstrates this on the
FirstName property providing a link to LastName:

’’’ <remarks>Use the <see cref=”LastName”/>

‘’’ property for the person’s last name</remarks>

Public Overridable Property FirstName As String

If you want the link to be shown in the See Also section, simply replace see with seealso.

Xml Comments and Generics
When you define your custom generics, you can take advantage of XML comments to
describe the type parameter. This is accomplished via the typeparam tag, as shown in the
following code snippet:

’’’ <summary>

‘’’ A test class

‘’’ </summary>

‘’’ <typeparam name=”T”>

‘’’ A type parameter that must implement IEnumerable

‘’’ </typeparam>

‘’’ <remarks></remarks>

Public Class TestGenerics(Of T As IEnumerable)

End Class

The Visual Basic compiler automatically recognizes the generic implementation and thus
adds for you the typeparam tag when adding the XML comment.

Generating Compiled Help Files
When you document your source code with XML comments, you might want to generate
compiled help files that you can distribute together with your libraries. Generally
compiled help files are .chm files that can be easily opened with the Windows integrated
Help Viewer. The .chm file format is the most appropriate in such situations because it is a

From the Library of Wow! eBook

ptg

1103Summary
5

0

standalone and does not require additional applications. There are several tools that can
generate .chm files starting from XML documents, but probably the most common is
Microsoft SandCastle, an open source tool from Microsoft that is also used to build docu-
mentation. SandCastle is a great tool with one limitation: It works from the command
line only, and command lines are often complex. To make things easier, several developers
have built their own GUIs for SandCastle so that you can build your documentation with
a few mouse clicks.

NOTE

SandCastle is still available in the Beta 1 of Visual Studio 2010. This is the reason
why the application is not covered in detail. Maybe when you are reading this book, an
updated version of SandCastle will be released or, if not, you can download the source
code and simply build it inside Visual Studio 2010.

With that said, follow these steps:

1. Download the SandCastle installer from the CodePlex community at http://www.
codeplex.com/sandcastle. When downloaded, install the application.

2. Download the SandCastle Help File Builder graphical tool from CodePlex at http:/
/www.codeplex.com/shfb. This open source application allows creating projects and
invokes SandCastle with the appropriate command lines for you.

3. Run the Help File Builder, specify an XML document and settings, and build your
documentation.

Pages on CodePlex for both tools provide advanced documentation that let you under-
stand how easy you can build compiled .chm files for your source code.

Summary
This chapter covered how to use XML comments instead of classic comments. With XML
comments you specify tags that identify an element in the code as a special formatted
element in the generated documentation file. Such a file is an XML document that
enables IntelliSense documentation for your own code and constitutes the source for
automating building compiled help files that accompany your libraries as the documenta-
tion. To automate this process you were informed about the existence of Microsoft
SandCastle, a free tool from Microsoft that is available on CodePlex as an open-source
application.

From the Library of Wow! eBook

http://www.codeplex.com/sandcastle
http://www.codeplex.com/sandcastle
http://www.codeplex.com/shfb
http://www.codeplex.com/shfb

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 51

Advanced Compilations
with MSBuild

IN THIS CHAPTER

. Introducing MSBuild

. Advanced MSBuild Features

In your developer life you have probably worked at least
once with mixed solutions, composed by both Visual Basic
and Visual C# projects because this is not an uncommon
situation in.NET development, or simply with solutions
made of application projects and deployment projects. But
while you know how the Visual Basic and C# compilers
work, did you ever wonder how Visual Studio builds
executables from mixed solutions? The answer is the
MSBuild.exe, the build engine from Microsoft that this
chapter discusses.

Introducing MSBuild
MSBuild.exe is a command-line tool that has been included
in the.NET Framework since the 2.0 version and that can
perform advanced and complex compilations. The Visual
Basic compiler (the Vbc.exe tool) enables building an
executable from multiple code files, but if you invoke it
from the command line manually, you need to specify
every single code file that must be compiled to produce the
assembly; moreover, you are required to specify references,
imports, and so on. The most important thing is that the
VB compiler cannot build assemblies starting from neither
project files nor from solution files. MSBuild goes beyond
such limitations, providing the ability to build solutions
(.sln files), including solutions composed by mixed projects,
project files produced by Visual Studio (such as Visual Basic
.vbproj files) and custom project files in one command line.
For example, the following command line can build a

From the Library of Wow! eBook

ptg

1106 CHAPTER 51 Advanced Compilations with MSBuild

solution without the need to invoke the compiler and specify all other requirements:

MSBuild MsBuildTest.sln

COMMAND PROMPT

To run MSBuild without specifying the .NET Framework path in the command line, start
the Visual Studio command prompt available in the Visual Studio’s shortcuts folder in
the Windows Start menu.

Figure 51.1 shows the build output in the Console window, where you can get details on
the build process.

MSBuild is based on Xml files known as projects. Project files are easy to create, under-
stand, and extend; projects are actually nothing new to you, because when you create
projects with Visual Basic, these are compliant with the MSBuild Xml schema (http://
schemas.microsoft.com/developer/msbuild/2003). This is the reason why you can build

FIGURE 51.1 Building a project with MsBuild from the command line.

From the Library of Wow! eBook

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

ptg

1107Introducing MSBuild
5

1

your projects with MSBuild. Basically a project contains all information required to build
the final executables including code files, configuration properties, target options, and so
on. Let’s see how a project is structured.

Introducing Projects

The best way for understanding how projects are structured is opening and analyzing an
existing one. Create a new Console application with Visual Basic 2010, save it, and close
it. Then open the project folder in Windows Explorer and open the
ConsoleApplication1.vbproj file with the Windows Notepad. Listing 51.1 shows the
content of the project file.

LISTING 51.1 A Basic Project File

<?xml version=”1.0” encoding=”utf-8”?>

<Project ToolsVersion=”4.0” DefaultTargets=”Build”

xmlns=”http://schemas.microsoft.com/developer/msbuild/2003”>

<PropertyGroup>

<Configuration Condition=” ‘$(Configuration)’ == ‘’ “>Debug</Configuration>

<Platform Condition=” ‘$(Platform)’ == ‘’ “>x86</Platform>

<ProductVersion>

</ProductVersion>

<SchemaVersion>

</SchemaVersion>

<ProjectGuid>{A30BC355-A5C8-4C56-97F0-C1A4F0A58222}</ProjectGuid>

<OutputType>Exe</OutputType>

<StartupObject>ConsoleApplication1.Module1</StartupObject>

<RootNamespace>ConsoleApplication1</RootNamespace>

<AssemblyName>ConsoleApplication1</AssemblyName>

<FileAlignment>512</FileAlignment>

<MyType>Console</MyType>

<TargetFrameworkVersion>v4.0</TargetFrameworkVersion>

<TargetFrameworkProfile>Client</TargetFrameworkProfile>

</PropertyGroup>

<PropertyGroup Condition=” ‘$(Configuration)|$(Platform)’ == ‘Debug|x86’ “>

<PlatformTarget>x86</PlatformTarget>

<DebugSymbols>true</DebugSymbols>

<DebugType>full</DebugType>

<DefineDebug>true</DefineDebug>

<DefineTrace>true</DefineTrace>

<OutputPath>bin\Debug\</OutputPath>

<DocumentationFile>ConsoleApplication1.xml</DocumentationFile>

<NoWarn>42016,41999,42017,42018,42019,42032,42036,42020,42021,42022</NoWarn>

</PropertyGroup>

<PropertyGroup Condition=” ‘$(Configuration)|$(Platform)’ == ‘Release|x86’ “>

<PlatformTarget>x86</PlatformTarget>

From the Library of Wow! eBook

ptg

1108

<DebugType>pdbonly</DebugType>

<DefineDebug>false</DefineDebug>

<DefineTrace>true</DefineTrace>

<Optimize>true</Optimize>

<OutputPath>bin\Release\</OutputPath>

<DocumentationFile>ConsoleApplication1.xml</DocumentationFile>

<NoWarn>42016,41999,42017,42018,42019,42032,42036,42020,42021,42022</NoWarn>

</PropertyGroup>

<PropertyGroup>

<OptionExplicit>On</OptionExplicit>

</PropertyGroup>

<PropertyGroup>

<OptionCompare>Binary</OptionCompare>

</PropertyGroup>

<PropertyGroup>

<OptionStrict>Off</OptionStrict>

</PropertyGroup>

<PropertyGroup>

<OptionInfer>On</OptionInfer>

</PropertyGroup>

<ItemGroup>

<Reference Include=”System” />

<Reference Include=”System.Data” />

<Reference Include=”System.Deployment” />

<Reference Include=”System.Xml” />

<Reference Include=”System.Core” />

<Reference Include=”System.Xml.Linq” />

<Reference Include=”System.Data.DataSetExtensions” />

</ItemGroup>

<ItemGroup>

<Import Include=”Microsoft.VisualBasic” />

<Import Include=”System” />

<Import Include=”System.Collections” />

<Import Include=”System.Collections.Generic” />

<Import Include=”System.Data” />

<Import Include=”System.Diagnostics” />

<Import Include=”System.Linq” />

<Import Include=”System.Xml.Linq” />

</ItemGroup>

<ItemGroup>

<Compile Include=”Module1.vb” />

<Compile Include=”My Project\AssemblyInfo.vb” />

<Compile Include=”My Project\Application.Designer.vb”>

<AutoGen>True</AutoGen>

<DependentUpon>Application.myapp</DependentUpon>

</Compile>

CHAPTER 51 Advanced Compilations with MSBuild

From the Library of Wow! eBook

ptg

1109Introducing MSBuild
5

1

<Compile Include=”My Project\Resources.Designer.vb”>

<AutoGen>True</AutoGen>

<DesignTime>True</DesignTime>

<DependentUpon>Resources.resx</DependentUpon>

</Compile>

<Compile Include=”My Project\Settings.Designer.vb”>

<AutoGen>True</AutoGen>

<DependentUpon>Settings.settings</DependentUpon>

<DesignTimeSharedInput>True</DesignTimeSharedInput>

</Compile>

</ItemGroup>

<ItemGroup>

<EmbeddedResource Include=”My Project\Resources.resx”>

<Generator>VbMyResourcesResXFileCodeGenerator</Generator>

<LastGenOutput>Resources.Designer.vb</LastGenOutput>

<CustomToolNamespace>My.Resources</CustomToolNamespace>

<SubType>Designer</SubType>

</EmbeddedResource>

</ItemGroup>

<ItemGroup>

<None Include=”My Project\Application.myapp”>

<Generator>MyApplicationCodeGenerator</Generator>

<LastGenOutput>Application.Designer.vb</LastGenOutput>

</None>

<None Include=”My Project\Settings.settings”>

<Generator>SettingsSingleFileGenerator</Generator>

<CustomToolNamespace>My</CustomToolNamespace>

<LastGenOutput>Settings.Designer.vb</LastGenOutput>

</None>

</ItemGroup>

<Import Project=”$(MSBuildToolsPath)\Microsoft.VisualBasic.targets” />

</Project>

TIPS FOR CREATING PROJECTS FILES FROM SCRATCH

When working with MSBuild, you often manually create project files. Visual Studio 2010
IDE offers a powerful Xml editor that is optimal for this purpose. To take advantage of
the Xml editor and IntelliSense feature, create a new Xml file from Visual Studio and
add a Project node like the one shown in Listing 51.1, ensuring that the Xml schema
for MSBuild is referred. This enables IntelliSense and you can better understand all
available members for each particular section and subsection in the project file.

Project files are composed of different Xml sections. The first you encounter are ItemGroup
and PropertyGroup, discussed in next sections.

From the Library of Wow! eBook

ptg

1110

Understanding ItemGroup Sections
You include files and contents in the build process within ItemGroup sections, each repre-
senting a particular action. For example, the following snippet shows how to include a
code file in the build process specifying that it must be compiled via the Compile element:

<ItemGroup>

<Compile Include=”Module1.vb” />

</ItemGroup>

The next snippet shows how to add a reference to an external assembly:

<ItemGroup>

<Reference Include=”System.Core” />

</ItemGroup>

The following snippet instead shows how to specify an Imports directive against the speci-
fied namespace:

<ItemGroup>

<Import Include=”Microsoft.VisualBasic” />

</ItemGroup>

Notice how you can also embed resource files, specifying the .resx file, the associated
code-behind file, and namespace:

<ItemGroup>

<EmbeddedResource Include=”My Project\Resources.resx”>

<Generator>VbMyResourcesResXFileCodeGenerator</Generator>

<LastGenOutput>Resources.Designer.vb</LastGenOutput>

<CustomToolNamespace>My.Resources</CustomToolNamespace>

<SubType>Designer</SubType>

</EmbeddedResource>

</ItemGroup>

Then you can also add files to the project without assigning build actions, using the None
element as follows:

<ItemGroup>

<None Include=”My Project\Application.myapp”>

<Generator>MyApplicationCodeGenerator</Generator>

<LastGenOutput>Application.Designer.vb</LastGenOutput>

</None>

</ItemGroup>

Understanding PropertyGroup Sections
When MSBuild builds project, it needs some properties such as the output configuration,
output type, target assembly name, and so on. All such properties are stored within

CHAPTER 51 Advanced Compilations with MSBuild

From the Library of Wow! eBook

ptg

1111Introducing MSBuild
5

1

PropertyGroup nodes inside the project file and are basically key/value pairs. If you take a
look at these elements in Listing 51.1, you notice how they are self-explanatory. For
example, the following excerpt specifies properties for the output assembly:

<PropertyGroup>

<Configuration Condition=” ‘$(Configuration)’ == ‘’ “>Debug</Configuration>

<Platform Condition=” ‘$(Platform)’ == ‘’ “>x86</Platform>

<ProductVersion>

</ProductVersion>

<SchemaVersion>

</SchemaVersion>

<ProjectGuid>{A30BC355-A5C8-4C56-97F0-C1A4F0A58222}</ProjectGuid>

<OutputType>Exe</OutputType>

<StartupObject>ConsoleApplication1.Module1</StartupObject>

<RootNamespace>ConsoleApplication1</RootNamespace>

<AssemblyName>ConsoleApplication1</AssemblyName>

<FileAlignment>512</FileAlignment>

<MyType>Console</MyType>

<TargetFrameworkVersion>v4.0</TargetFrameworkVersion>

<TargetFrameworkProfile>Client</TargetFrameworkProfile>

</PropertyGroup>

Also look at Listing 51.1 to understand how properties map application options that
generally you set in Visual Studio via My Project, for example the VB Defaults (Option
Strict, Option Explicit, and so on). Thus properties are fundamental items required to
tell MSBuild how it must build the executable. You can also provide custom properties. For
example, the following section defines an Xml element named DataFolder that declares a
property named MyDataDirectory, which is used later for demonstrating MSBuild targets
but that is an example of how you store custom information inside property groups:

<PropertyGroup>

<DataFolder>MyDataDirectory</DataFolder>

</PropertyGroup>

No matter where you place this PropertyGroup node in the Xml project file, just take care
to write it as a child node of Project.

Understanding Tasks and Creating Targets

MSBuild has the concept of a task, which is simply a unit of work that can be executed
during the build process. You can add both predefined and custom tasks to the build
process inside the project file. (Most built-in tasks are self-explanatory, and if you use
Visual Studio to create the project file, IntelliSense can be helpful as usual.) Tasks are speci-
fied within Target elements. A target is basically a container for tasks, and you can

From the Library of Wow! eBook

ptg

1112

execute tasks by referring the enclosing Target element. For example, the following task
sends a message to the specified output log (which is the Console window by default):

<Target Name=”SendMessage”>

<Message Importance=”high”

Text=”This is a custom message to demonstrate tasks”/>

</Target>

The important thing is assigning the Name property so that you can later refer to target. To
execute a task in the build process, you need to run MSBuild by supplying a /target:
switch (or simply /t:) and passing the target name as in the following example:

MsBuild MsBuildTest.vbproj /target:SendMessage

Figure 51.2 shows how the message appears in the log.

CHAPTER 51 Advanced Compilations with MSBuild

You can also execute multiple targets in a single command line by separating their names
with a semicolon. With tasks you can execute also external applications that can influence
the build process. The following code demonstrates how to accomplish this:

<Target Name=”ExecuteMyCustomTool”>

<Exec Command=”MyExternalFile.exe” ContinueOnError=”false”

WorkingDirectory=”C:\MyAppsFolder”/>

</Target>

The Exec built-in task enables running the external application to be executed specified
with the Command property and that resides in the WorkingDirectory path. You can also set
if the build process must break in case the external application returns an error code
(ContinueOnError).

FIGURE 51.2 Executing a message task.

From the Library of Wow! eBook

ptg

1113Introducing MSBuild
5

1

INTERACTING WITH MSBUILD IN CODE

MSBuild is a managed application taking advantage of Microsoft.Build.Framework.dll
assembly and of the Microsoft.Build.Framework namespace. They also expose
types for writing code against MSBuild, such as the ILogger and ITask interfaces.

FINDING AND USING THE FULL LIST OF BUILT-IN TASKS

In this chapter it is not possible to summarize all built-in tasks for MsBuild. The full list
is available in the MSDN documentation at http://msdn.microsoft.com/en-
us/library/7z253716(VS.100).aspx. Another interesting way for taking advantage of
built-in tasks is editing the project file within Visual Studio 2010 so that IntelliSense
pops up all available tasks within the Target element. Also notice that you can build
your custom tasks by writing types that implement the ITask interface.

Inside target definitions you can also refer to properties defined inside PropertyGroup
nodes. The following code demonstrates how you can create a directory during the build
process by assigning to the new directory the name of a folder previously defined within
properties:

<Target Name=”CreateDataDir”>

<MakeDir Directories=”$(MyDataDirectory)”/>

</Target>

To add a reference to a property value, you use the $ symbol followed by the name of the
property enclosed within parentheses. Now consider the following sample project that
invokes the Visual Basic compiler to build multiple code files into one executable:

<?xml version=”1.0” encoding=”utf-8”?>

<Project ToolsVersion=”4.0” DefaultTargets=”Compile”

xmlns=”http://schemas.microsoft.com/developer/msbuild/2003”>

<!–– Defines a series of custom items

pointing to VB code files ––>

<ItemGroup>

<VBFile Include=”File1.vb”/>

<VBFile Include=”File2.vb”/>

</ItemGroup>

<!–– Defines a property storing the

output exe name––>

<PropertyGroup>

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/7z253716(VS.100).aspx
http://msdn.microsoft.com/en-us/library/7z253716(VS.100).aspx

ptg

1114 CHAPTER 51 Advanced Compilations with MSBuild

<AssemblyName>MyApp.exe</AssemblyName>

</PropertyGroup>

<!–– Creates a new target––>

<Target Name = “Compile”>

<Vbc

Sources = “@(VBFile)”

OutputAssembly = “$(AssemblyName)”>

<Output

TaskParameter = “OutputAssembly”

ItemName = “EXEFile” />

</Vbc>

</Target>

</Project>

Vbc is a predefined tag that tells MSBuild to run the Visual Basic command-line compiler
against the specified set of files. By mixing the preceding code with concepts previously
discussed, it should be clearer how you could run an external tool instead of a .NET
compiler, such as a documentation compiler, against a set of desired files and to let
MSBuild pass all information to the external tool and build the final file.

Advanced MSBuild Features
MSBuild offers some advanced techniques that you can use to enhance building your
projects. At a higher level, such techniques enable performing operations over items and
establishing how to collect build information. The following sections discuss advanced
MSBuild techniques.

Batching

The batching feature in MSBuild simply enables you to perform a kind of For..Each loop
over items within an ItemGroup section. Imagine you have two collections of items within
an ItemGroup section, where for each item a value is specified. For a better understanding,
create a new Xml file named MSBuildDemo.proj and type the following code:

<?xml version=”1.0” encoding=”utf-8”?>

<Project ToolsVersion=”4.0” DefaultTargets=”Build”

xmlns=”http://schemas.microsoft.com/developer/msbuild/2003”>

<ItemGroup>

<SampleCollection Include=”Item1”>

<Number>1</Number>

</SampleCollection>

<SampleCollection Include=”Item2”>

<Number>2</Number>

</SampleCollection>

<SampleCollection Include=”Item3”>

From the Library of Wow! eBook

ptg

1115Advanced MSBuild Features
5

1

<Number>3</Number>

</SampleCollection>

<SampleCollection2 Include=”Item4”>

<Number>1</Number>

</SampleCollection2>

<SampleCollection2 Include=”Item5”>

<Number>2</Number>

</SampleCollection2>

<SampleCollection2 Include=”Item6”>

<Number>3</Number>

</SampleCollection2>

</ItemGroup>

<Target Name=”ShowIterations”>

<Message

Text = “Number: %(Number) –– Items in SampleCollection:

@(SampleCollection) SampleCollection2: @(SampleCollection2)”/>

</Target>

</Project>

The goal of the new target is iterating all items in both collections and associating each
number to the appropriate item; in other words, the goal is to display what items in both
collections the number 1 is associated to and so on for other numbers. Now type the
following command line:

MSBuild MsBuildDemo.proj /t:ShowIterations

As you can see, MSBuild correctly shows the list of numbers and collections they belong
to, as represented in Figure 51.3.

FIGURE 51.3 Demonstrating batching technique with MSBuild.

From the Library of Wow! eBook

ptg

1116 CHAPTER 51 Advanced Compilations with MSBuild

Thus with batching you can run the same target over all items within a group in a
simple way.

Logging

When you run MSBuild, the tool displays events and output information to the Console
window as the default log. You can choose different output targets and detail level for
logging by utilizing some specific command-line switches. For example, imagine you want
to redirect log information to a text file instead of showing messages in the Console
window, providing a high-level of verbosity about events details. This can be accom-
plished with the following command line:

MSBuild ConsoleApplication1.sln

/logger:FileLogger,Microsoft.Build.Engine;logfile=ExternalLog.log;append=tru

e;verbosity=detailed;encoding=utf-8 /noconsolelogger

The /noconsolelogger switch tells MSBuild to not send any message to the Console
window. The /logger switch enables specifying where the log needs to be sent; several
logs are available, such as XmlLogger or FileLogger that requires the output target file
(logfile property), the verbosity level (to choose among quiet, minimal, normal,
detailed, and diagnostics), the specification of appending the log if the output file
already exists (append property), and eventually the encoding format.

CUSTOM LOGGERS AND REFERENCE

You can build your custom loggers by creating a type that implements the ILogger
interface and then building the type into a dll class library. The MSDN reference about
logging and custom loggers is available at the following address:
http://msdn.microsoft.com/en-us/library/ms171470(VS.100).aspx.

Transformations

Transformations apply to a list of items and enable changing a piece of information for
each item in the list into a different format. Consider the following items group, which
refers to all text files within a directory:

<ItemGroup>

<MyFiles Include=”C:\MyDocs*.Txt”/>

</ItemGroup>

Then imagine you want to send the list of files to the logger. This is accomplished with
the following line, to be added into the item group:

<Message Text=”@(MyFiles)”/>

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms171470(VS.100).aspx

ptg

1117Summary
5

1

THE @ CHARACTER

The @ character is used for referring to a list of items, differently from $ that is used for
referring to a property value.

Now imagine you want to construct the list of items only with the filename and extension
without the full path. Transformations enable accomplishing this with a syntax that takes
the form of @(itemgroup->’%(itemmetadata)’) and where itemmetadata is the piece of
information we want to retrieve from the original item and that must be one of the forms
recognized by MSBuild, also known as well-known item metadata. So the transformation
can be written as follows:

<Message Text=”@(MyFiles->’%(FileName)%(Extension)’)”/>

FileName and Extension are two of the available well-known item metadata and are infor-
mation that MSBuild can distinguish within a list of items. The full list item metadata is
available at http://msdn.microsoft.com/en-us/library/ms164313.aspx. Suppose you have
the following pathnames:

C:\MyDocs\Doc1.txt

C:\MyDocs\Doc2.txt

C:\MyDocs\Doc3.txt

When you run MSBuild with the preceding specified transformation, the logger displays
the following output:

Doc1.txt

Doc2.txt

Doc3.txt

This is possible because of the well-known item metadata information.

Summary
This chapter covered the usage of MSBuild, the build engine for Microsoft platforms that
can perform simple and complex compilations from the command line. You first saw how
this tool is important because it can work even when Visual Studio is not installed; then
you saw the tool in action with some demonstrative command lines. Finally, you got
information on advanced features such as tasking, logging, and transformations.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms164313.aspx

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 52

Building Customizations
for Microsoft Office

IN THIS CHAPTER

. Introducing the Visual Studio
Tools for Office

. Creating an Application-Level
Add-In for Microsoft Word

. Creating a Document-Level Add-
In for Microsoft Excel

. Deploying VSTO Add-Ins

The Microsoft Office suite is with no doubt one of the
most popular software packages for office automation inside
companies. Applications such as Word, Excel, Outlook, and
PowerPoint help people make their work productive, and
they can be considered part of daily life. In many cases
Microsoft Office is also used at home. For example, this
book was written with Word 2007. The entire software suite
provides features that generally satisfy most people’s needs,
but there are situations in which you would need a particu-
lar feature that is not natively available. Fortunately the
Office applications are extensible and can be customized
with add-ins that can be developed with Visual Studio 2010
to provide additional capabilities. This opens important
business scenarios; you can increase your business by
producing Office add-ins by taking advantage of your exist-
ing .NET and VB skills, just using nothing but Visual Studio
2010. You can enhance Microsoft Word with a custom task
pane enabled for speech recognition; imagine how this
scenario can help people with disabilities. Writing
customizations for Microsoft Office is an important devel-
opment area and is another demonstration of how you can
use Visual Studio 2010 to develop almost everything. In this
chapter you learn how to build customizations for
Microsoft Word and Excel and to understand what compo-
nents are required to accomplish this.

From the Library of Wow! eBook

ptg

1120 CHAPTER 52 Building Customizations for Microsoft Office

NOTE

At the time of this writing, the most-recent official version is Microsoft Office 2007.
Although a beta version of Office 2010 is available, for the sake of stability this chap-
ter provides code examples for Office 2007. By the way, when Office 2010 is available
in RTM, you will use most techniques shown here for the new version, too.

Introducing the Visual Studio Tools for Office
Building custom add-ins for Microsoft Office is possible due to the Visual Studio Tools for
Office components (also called VSTO for brevity). VSTO are a set of tools integrated into
Visual Studio 2010 that provide project templates, assemblies, and instruments related to
the Office development. In Visual Studio 2010, VSTO provides support for building
customizations for the most recent versions of Microsoft Office, such as 2003, 2007, and
2010 (see note at the beginning of this chapter). VSTO relies on a special redistributable
runtime known as VSTO Runtime that is required to run your add-ins on target machines.
Later in this chapter you see how to include such runtime in distributions. VSTO are
helpful because they provide full integration between Visual Studio and Office applica-
tions, also offering the opportunity of adding Windows Forms controls to your solutions
so that you can deeply customize add-ins implementing interactive features.

USING WPF AGAINST VSTO

VSTO and Office applications natively support only Windows Forms user controls. If you
want to include a WPF control, you need to add an ElementHost Windows Forms con-
trol that can host the WPF user control.

An important concept that you need to remember in the Office development is about host
applications. When you build an Office add-in, the application that runs the add-in is also
called a host application. Basically a host application is an instance of the Office applica-
tion that hosts your add-ins. After a general overview of VSTO, it is time to consider
Visual Studio projects.

Understanding Application-Level Solutions and Document-Level Solutions

With the VSTO you can build essentially two types of solutions:

. Document-level solutions, where an add-in is loaded only in the context of a
specific document or workbook

. Dpplication-level solutions, where an add-in is loaded each time the host applica-
tion is loaded that can affect both the application and every document or workbook

Visual Studio 2010 provides project templates for creating both types of solutions, and in
this chapter you get examples for both scenarios.

From the Library of Wow! eBook

ptg

1121Creating an Application-Level Add-In for Microsoft Word

What Are Office Business Applications?

When talking about developing for Office, you often hear about Office Business
Applications (also known as OBAs). An OBA is basically a custom add-in for Microsoft
Outlook or Microsoft Excel that enables adding form regions or components to the host
application where you can add business features. (For example, you might want to add
functionalities for scheduling appointments with your customers or features strictly
related to your type of job.) Office Business Applications are beyond of the scope of this
chapter; you can visit the dedicated MSDN website at http://msdn.microsoft.com/en-us/
office/aa905528.aspx.

Creating an Application-Level Add-In for Microsoft
Word
In this section you learn how to build an application-level add-in for Microsoft Office,
which includes an example that targets Microsoft Word, but the idea behind the code
structure is almost the same for Excel and PowerPoint. The goal of the sample add-in is to
provide a custom task pane where you place user controls for retrieving revisions and
comments from the active Word document and saving information into an Xml file. The
first step is creating a new project. In the New Project dialog, select the Visual Basic,
Office, 2007 folder. Select the Word 2007 add-in template and then name the new project
as WordSummaryAddin. Figure 52.1 shows details about this.

5
2

FIGURE 52.1 Creating a new application-level add-in project for Word.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/office/aa905528.aspx
http://msdn.microsoft.com/en-us/office/aa905528.aspx

ptg

1122 CHAPTER 52 Building Customizations for Microsoft Office

When you click OK the new project is generated. You notice the presence of a file called
ThisAddIn.vb. This code file defines a class called ThisAddIn that represents the running
instance of the add-in and that is useful for interacting with the add-in at runtime. This
class exposes two events: Startup and ShutDown. The first event is raised when the add-in
is loaded, whereas the second one is raised when the add-in is shutting down; an add-in is
shut down when you disable it from the host application or when you shut down the
host application itself. Before writing code for the add-in, there is the need of a new user
control representing the custom task pane. Add a new User Control item to the project
(Windows Forms) and name it SummaryTaskPane, as shown in Figure 52.2.

On the user control’s surface add the following items:

. A Label whose Text property is Select items

. A CheckBox named CommentsCheckBox and whose Text property is Comments

. A CheckBox named RevisionsCheckBox and whose Text property is Revisions

. A Button named CreateSummaryButton and whose Text property is Create summary

At the end of these tasks, your user control must look like the one shown in Figure 52.3.

Now switch to the code editor to write Visual Basic code that gives life to the just-drawn
controls. The first consideration is that Visual Studio automatically added to the project
some assemblies for the Microsoft Office programmability. You can take a look by activat-
ing the All Files view and then expanding References in Solution Explorer. The assemblies

FIGURE 52.2 Adding a new WinForms user control to the project.

From the Library of Wow! eBook

ptg

1123Creating an Application-Level Add-In for Microsoft Word
5

2

FIGURE 52.3 The customizations added to the new user control.

expose several namespaces for working with Office, but the most important are
Microsoft.Office, Microsoft.Office.Tools, and Microsoft.Office.Interop. This last
one provides wrappers for interoperating between the COM Office architecture and the
managed .NET architecture. For example, it exposes a Word.Document object representing a
document in Word or other objects such as Word.Revision or Word.Comments that respec-
tively represent a single revision and a single comment in the active document. The code
takes advantage of LINQ for querying comments and revisions collection in the active
document and then saves the query results into an Xml document. Listing 52.1 shows the
complete code for that (see Chapter 28, “Manipulating Xml Documents with LINQ and
Xml Literals,” for information on LINQ to Xml).

LISTING 52.1 Implementing a Custom Task Pane

Imports Microsoft.Office.Interop.Word

Imports System.Windows.Forms

Public Class SummaryTaskPane

Private Function GetRevisions() As XElement

‘Queries for available revisions

‘The ActiveDocument properties represents the active

‘document in Word and the Revisions property is a

‘collection of Word revisions

Dim revisions = <Revisions>

<%= From rev In Globals.

ThisAddIn.Application.ActiveDocument.Revisions.

OfType(Of Revision)() _

Select _

From the Library of Wow! eBook

ptg

1124

<Revision Text=<%= rev.Range.Text %>

Author=<%= rev.Author %>

Timestamp=<%= rev.Date.ToString %>/> %>

</Revisions>

Return revisions

End Function

Private Function GetComments() As XElement

‘Same as the previous method, but with regard

‘to comments

Dim comments = <Comments>

<%= From comm In Globals.ThisAddIn.

Application.ActiveDocument.Comments.

OfType(Of Comment)

Select <Comment

Text=<%= comm.Range.Text %>

Author=<%= comm.Author %>

Date=<%= comm.Date.ToString %>

/>

%>

</Comments>

Return comments

End Function

‘Creates a new Xml document adding the content

‘of the XElement objects returned by the

‘above methods

Private Sub CreateSummary(ByVal fileName As String, ByVal comments As Boolean,

ByVal revisions As Boolean)

If comments = False And revisions = False Then

Throw New ArgumentException

End If

Dim doc As New XDocument

doc.Declaration = New XDeclaration(“1.0”, “utf-8”, “yes”)

Dim rootElement As New XElement(“Summary”)

If comments Then rootElement.Add(GetComments)

CHAPTER 52 Building Customizations for Microsoft Office

From the Library of Wow! eBook

ptg

1125Creating an Application-Level Add-In for Microsoft Word
5

2

If revisions Then rootElement.Add(GetRevisions)

doc.Add(rootElement)

Try

doc.Save(fileName)

doc = Nothing

Catch ex As Exception

Throw

End Try

End Sub

Private Sub CreateSummaryButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) _

Handles CreateSummaryButton.Click

Dim saveFile As New SaveFileDialog

With saveFile

.Title = “Select the target”

.Filter = “Xml files|*.xml|All files|*.*”

If .ShowDialog = DialogResult.OK Then

Try

Me.CreateSummary(.FileName, CommentsCheckBox.Checked,

RevisionsCheckBox.Checked)

Catch ex As Exception

MessageBox.Show(ex.Message)

End Try

End If

End With

End Sub

End Class

Now it’s time for some considerations. The ThisAddIn class offers an Application property
that represents the instance of the host application, Word in this particular example. The
property provides an ActiveDocument property that is a reference to the current document
opened inside Word. The GetRevisions and GetComments method query the active docu-
ment for desired properties and build XML elements that are returned under the form of
XElement objects to the calling CreateSummary method, which adds the two XElement
instances to a new XDocument object that is actually the final Xml document. Now go to
the ThisAddIn.vb code file, where you need to create an instance of the custom task pane
and add it to the Word’s task panes collection. Listing 52.2 demonstrates this.

From the Library of Wow! eBook

ptg

1126

LISTING 52.2 Adding the New Task Pane to Microsoft Word

Imports Microsoft.Office.Tools

Public Class ThisAddIn

Private summaryPane As CustomTaskPane

Private Sub ThisAddIn_Startup() Handles Me.Startup

summaryPane = Me.CustomTaskPanes.Add(New SummaryTaskPane,

“Summary task pane”)

summaryPane.Visible = True

End Sub

Private Sub ThisAddIn_Shutdown() Handles Me.Shutdown

End Sub

End Class

The CustomTaskPanes.Add method requires the instance of the new task pane and some
descriptive text. At this point you can simply press F5 to test your custom component.
Visual Studio 2010 launches Microsoft Word 2007 attaching an instance of its debugger
enabling you with the usual debugging techniques. When Word is running, type some
text into the new document and then add some comments and revisions. Figure 52.4
shows an example of both the sample document and the new task pane.

When ready, simply apply the flag on both the Comments and Revisions check boxes; then
click the Create Summary button. At this point a new Xml document storing the desired
information will be created, as illustrated in Figure 52.5, which shows the document
opened with Internet Explorer.

Remember that running your code is considered as the first add-in deployment on the
development machine. The last section of this chapter provides an overview of add-ins
deployment that clarifies the sentence.

Creating a Document-Level Add-In for Microsoft Excel
In the previous section you saw how you can create an application-level solution for
Office. In this section you learn how to build document-level solutions, which is the other
solution type available. In next example you create a document-level add-in for customiz-
ing a specific workbook in Microsoft Excel. Create a new Office project with Visual Basic,
ensuring that the Excel 2007 Workbook template is selected (see Figure 52.6 for details).
Name the new project CustomExcelWorkbook and then click OK.

CHAPTER 52 Building Customizations for Microsoft Office

From the Library of Wow! eBook

ptg

1127Creating a Document-Level Add-In for Microsoft Excel
5

2

FIGURE 52.4 The new custom task pane for Word in action.

FIGURE 52.5 The resulting Xml document is formed correctly and stores the desired informa-
tion.

From the Library of Wow! eBook

ptg

1128 CHAPTER 52 Building Customizations for Microsoft Office

This launches the Visual Studio Tools for Office Project Wizard. First you need to specify
the document you want to extend with your add-in. You can select an existing document
or a new one. Figure 52.7 shows how the selection dialog appears.

Leave unchanged the default selection about creating a new document and click OK.
Because in document-level solutions VSTO needs access to the VBA object model, the first

FIGURE 52.6 Creating a document-level solution for Excel 2007.

FIGURE 52.7 Choosing the document to customize.

From the Library of Wow! eBook

ptg

1129Creating a Document-Level Add-In for Microsoft Excel
5

2

time you create one you will be asked to grant permissions for this particular task. Figure
52.8 shows the question you will receive.

After a few seconds, the new Office project is ready within Visual Studio; notice the pres-
ence of a code file called ThisWorkbook.vb that implements a ThisWorkbook class repre-
senting the instance of the current workbook. Also you notice three more files, each
representing a spreadsheet in the workbook. By default a new Excel workbook contains
three sheets, so when you create a new document-level project you have three code files.
We can now start customizing the user interface for the new document.

Designing the Add-In

You notice how the IDE embeds a fully functional instance of Microsoft Excel in the
designer. This is useful because you can drag and drop Windows Forms controls from the
toolbox onto the document’s surface. The goal of the example is to provide controls for
filtering a list of orders. So in the first row add the following columns titles: Order ID,
Ship Country, and Shipped Date. Next, add the fictitious orders information listed in
Table 52.1 according to the column titles.

Now select the cell range from A2 to C5 and name the range as Orders. The next step is to
add a TextBox named FilterTextBox whose Text property is Type your filter here; the
last step is to add a Button named FilterButton and whose Text property is Go Filter!.
The result of the previous listed steps is shown in Figure 52.9.

FIGURE 52.8 Granting access to the VBA object model.

TABLE 52.1 Populating Orders Information

Order ID Ship Country Shipped Date

10001 USA 11/25/09

10002 Italy 11/25/09

10003 United Kingdom 11/26/09

10004 Brazil 11/27/09

From the Library of Wow! eBook

ptg

1130 CHAPTER 52 Building Customizations for Microsoft Office

When controls are available over the document’s surface, it’s time to start writing some
Visual Basic code to make it alive.

Interacting with Documents via Visual Basic 2010 Code

Imagine you want to provide your users the ability of filtering orders by the ship Country
name. The users can type the filter criteria in the TextBox, and then a LINQ query will be
executed when they click the Go Filter button. Basically the LINQ query filters a list of
orders, so you first need a class for handling each order. The class can be easily imple-
mented as follows:

Public Class Order

Public Property ShippedDate As Object

Public Property ShipCountry As Object

Public Property OrderID As Object

End Class

Then you need to write code that performs the query and then returns all the orders that
match the specified criteria. Code in Listing 52.3 shows how to accomplish this and must
be written in the Sheet1.vb code file.

FIGURE 52.9 Design-time customizations onto the Excel document within Visual Studio.

From the Library of Wow! eBook

ptg

1131Creating a Document-Level Add-In for Microsoft Excel
5

2

LISTING 52.3 Implementing LINQ Filtering in the Document-Level Excel Solution

Public Class Sheet1

Private Sub Sheet1_Startup() Handles Me.Startup

End Sub

Private Sub Sheet1_Shutdown() Handles Me.Shutdown

End Sub

Private Function GetOrders(ByVal criteria As String) As String

‘Creates a collection of Order objects

Dim result As New List(Of Order)

‘Declares a Range object, which represents

‘a set of Excel cells

Dim cellRange As Excel.Range

Dim oneOrder As Order

‘Gets the content of the specified cells range

‘resizing the array

cellRange = CustomExcelWorkbook.Globals.Sheet1.Range(“Orders”).Resize(1, 1)

‘Loops until a null value is found

Do Until IsNothing(cellRange.Value)

‘creates a new Order...

oneOrder = New Order With {.OrderID = cellRange.Value.ToString, _

.ShipCountry = cellRange.Offset(0, 1).Value.ToString, _

.ShippedDate = CDate(cellRange.Offset(0, 2).Value)}

‘...adding it to the collection..

result.Add(oneOrder)

‘...then moves to the next row

cellRange = cellRange.Offset(1, 0)

Loop

‘Queries for orders matching the specified criteria

Dim query = From ord As Order In result

Where ord.ShipCountry.ToString.StartsWith(criteria)

Select ord

From the Library of Wow! eBook

ptg

1132 CHAPTER 52 Building Customizations for Microsoft Office

Dim ordersList As New Text.StringBuilder

For Each item In query

ordersList.Append(item.OrderID.ToString)

ordersList.AppendLine()

Next

Return ordersList.ToString

End Function

Private Sub GoButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles GoButton.Click

MessageBox.Show(“The following orders match your search criteria: “ & _

Environment.NewLine & GetOrders(Me.FilterTextBox.Text))

End Sub

End Class

When you complete this step, you are ready to run and test the customization.

Running the Customized Document

To see the document-level add-in in action, you simply press F5. Visual Studio launches an
instance of Microsoft Excel opening the specified document, attaching an instance of the
debugger to the host application. You notice that the document shows required
customizations. Also notice that, for Excel workbooks, customizations affect only the
selected sheet. To check if everything works correctly, type U in the text box and then
press Go Filter!. Figure 52.10 shows the result of this filter.

Same as for application-level add-ins, running the customization on the development
machine is considered as the first deployment. The next section provides some informa-
tion on deploying VSTO add-ins using ClickOnce.

Deploying VSTO Add-Ins
You can deploy VSTO add-ins to customers in several ways including Windows Installer
and ClickOnce (See Chapter 54, “Setup & Deployment Projects for Windows Installer,”
and Chapter 55, “Deployingt Applications with ClickOnce”). The consideration you have
to do is that VSTO add-ins require the full trust level. Because of this, deploying via
Windows Installer can be a little bit more difficult than using ClickOnce because you
have to set manually different settings. ClickOnce is instead more appropriate for at least
three reasons:

. It is easy to configure and takes care of security settings for you; this is also the
reason why Visual Studio automatically adds a test certificate to your solution when

From the Library of Wow! eBook

ptg

1133Deploying VSTO Add-Ins
5

2

FIGURE 52.10 The document-level add-in correctly filters orders.

you first run it. Replacing the test certificate with a valid one contributes to granting
full trust security settings.

. It provides a simple way for releasing updates.

. Starting from .NET 3.5 Service Pack 1, it sends installation error messages to the
Windows Application log so that you can analyze the reason for eventual errors dur-
ing the setup process.

UNDERSTANDING CLICKONCE

If you have never deployed applications via ClickOnce before, I suggest you read
Chapter 55 first. In this particular situation we just mention the steps required to per-
form a ClickOnce publish but focus on more ClickOnce details in Chapter 55.

To deploy a VSTO add-in, select the Build, Publish command and then specify the target
location, where Visual Studio generates the Setup.exe bootstrapper and a .Vsto file that
installs your add-in on the target machine. It also generates an Application Files subfolder
where the IDE places required files.

VISUAL STUDIO REQUIRES ADMINISTRATIVE PRIVILEGES

Differently from Visual Studio 2008, Visual Studio 2010 requires elevated administra-
tive privileges to publish Office customizations via ClickOnce.

From the Library of Wow! eBook

ptg

1134 CHAPTER 52 Building Customizations for Microsoft Office

FIGURE 52.11 ClickOnce confirmation request.

When you double-click the .Vsto file (or run Setup.exe), the ClickOnce installer guides you
through the installation process. Figure 52.11 shows the step where ClickOnce asks for
your confirmation before installing the customization.

If there are any failures during the installation process, errors are sent to the Windows
Application log reachable from the Windows Event Viewer (All Programs, Administrative
Tools, Event Viewer). Figure 52.12 shows a sample message related to an error that
occurred during the installation of an add-in.

Logs are useful because you can check what happened in detail and focus on solving errors.

From the Library of Wow! eBook

ptg

1135Summary
5

2

FIGURE 52.12 The Windows Application log stores error messages from VSTO installations.

Summary
This chapter explained how to take advantage of the Visual Studio 2010 development
environment to create .NET-based additional components for the Microsoft Office System.
You saw how to distinguish between application-level solutions and document-level solu-
tions; then you saw how it is simple to create add-ins for Microsoft Word, with a sample
custom task pane, and Microsoft Excel writing Visual Basic 2010 code for the .NET
Framework. Finally you got some information on deploying your add-ins using ClickOnce.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 53

Understanding the
Global Assembly Cache

IN THIS CHAPTER

. The Dll Hell Problem

. The Global Assembly Cache

The Visual Studio IDE is a great place for creating applica-
tions, but in most cases you need to deploy them to your
customers. The .NET Framework offers a nice infrastructure
for accomplishing this, but you need to know some
concepts about the infrastructure before effectively deploy-
ing applications. Often you can also create libraries and
reference those libraries, or third-party libraries, other than
the .NET Framework base libraries in your projects. Such
libraries need to be deployed together with your applica-
tion, but the .NET deployment model for assemblies works
differently from the COM model. The goal of this chapter is
to illustrate how .NET base libraries are organized, why you
can be sure to find them on a target machine, and how you
deploy your own libraries or third-party libraries that your
applications work with. This information is important if
you consider that deploying an application is not only
deploying the executable, but also all libraries required by
the application. This is the reason why you need to read
this chapter before discovering the deploying modes offered
by the .NET Framework and Visual Studio 2010.

The Dll Hell Problem
One of the biggest problems of the COM programming
model is the Dll hell. Basically COM components (such as
ActiveX controls or type libraries) need to be registered so
that the system knows where to find them even if they are
not available in the application directory. The problem is
when you have different versions of the component
installed on the same machine. Registration can be painful,
and there are often a lot of problems in making an applica-

From the Library of Wow! eBook

ptg

1138 CHAPTER 53 Understanding the Global Assembly Cache

tion recognize the correct version of the component. In many cases an application will
not work correctly. This is the reason why the situation is called Dll hell. The .NET
Framework, since version 1.0, provides a brilliant way to solve this big problem by intro-
ducing assemblies and the Global Assembly Cache (GAC). Before discussing the GAC, it is
important to understand how assemblies can be deployed and recognized by applications
and why they solve the Dll hell problem. To accomplish this, we need to discuss the most
basic mode for deploying assemblies, which is the XCopy deployment.

XCopy Deployment

If you have been an MS-DOS person, you will surely remember the XCopy command. It
allowed copying entire directory trees, including files and subdirectories, from one loca-
tion to another. In honor of this command, the most basic deployment technique in the
.NET Framework is XCopy deployment. The reason for this name is that a .NET applica-
tion can work when the executable and the assemblies referenced by such executable all
reside in the same folder. According to this, you can deploy an application by simply
copying its folder. This approach has a huge implication: Because an application folder
contains a copy of required assemblies, these are isolated from one another and do not
require registration anymore. Because they are no longer required to be registered, multi-
ple versions of an assembly can reside on the same machine avoiding the big problem of
the Dll hell.

BASE CLASS LIBRARY ASSEMBLIES

Of course the preceding discussion is not valid when talking about the Base Class
Library assemblies, being part of the .NET Framework, and that thus cannot be includ-
ed in the application folder. They instead stay in the GAC as covered in next section.

When you compile your project, Visual Studio generates a Bin subfolder within the
project folder. Bin contains Debug and Release subfolders (referring to default build
configurations). Both folders contain the executable and referenced assemblies. Basically
you can perform an XCopy deployment simply by distributing the content of the Release
folder, and your application will work. XCopy deployment is something that you have to
know to understand how things work, but obviously in a business environment, you will
deploy your applications with professional installers, such as Windows Installer and
ClickOnce that are discussed in the next two chapters. Another consideration about
XCopy deployment is that in this way every application keeps its own copy of referenced
assemblies. This means that if you have ten applications referring to the same assembly,
you will have ten copies of the assembly. This is good in that assemblies will not interfere
with each other, especially in the case of different versions. But if you have ten copies of
the same version of your assembly, this can be annoying. A solution to this issue is
provided by the Global Assembly Cache that also solves other problems, which is the
subject of next section.

From the Library of Wow! eBook

ptg

1139The Global Assembly Cache

The Global Assembly Cache
The .NET Framework consists of hundreds of libraries and tools. Most libraries implement
the Base Class Library and BCL’s assemblies are located in GAC. This is the reason why
you can be sure that a .NET application requiring only base assemblies can correctly work
on a target machine having the .NET Framework installed. The GAC can be considered as
a repository of shared assemblies; shared means that an application can simply have a
reference to an assembly available in the GAC instead of bringing its own copy of the
assembly as happens in the XCopy deployment. The GAC is basically a folder in the
system and is generally located at C:\Windows\Assembly. Because of the particular nature
of this folder, its representation within Windows Explorer is a little bit different than other
folders. Figure 53.1 shows how the GAC is represented in Windows Explorer.

5
3

You may notice from Figure 53.1 how the GAC lists installed assemblies, their version
number, the public key token, and the target processor architecture. The public key token
is a unique identifier that identifies the assembly within the .NET infrastructure. If the
assembly targets a specific culture, this information is also shown. You can easily notice
how different versions of the same assembly can be available in the GAC. (For example,
check the System.Data.SqlServerCe.dll assembly.) This is important because it means
that the GAC is responsible for handling different versions of the same assembly, solving
the versioning problem (and the registration one).

FIGURE 53.1 The Global Assembly Cache shown in Windows Explorer.

From the Library of Wow! eBook

ptg

1140

Installing and Uninstalling Assemblies

A common way for referring to assemblies available in the GAC is saying that they are
installed into the GAC. By the way, installing an assembly to the GAC simply means
making the assembly recognizable by the GAC and by the .NET Framework while the
physical file stays in its original location. Suppose you have an assembly named
C:\MyAssemblies\MyLibrary.dll and you want to install this assembly into the GAC. The
installation procedure simply adds to the GAC metadata information for the assembly but
does not copy the file to the GAC; instead, MyLibrary.Dll remains in C:\MyAssemblies.
Installing and uninstalling assemblies to and from the GAC is a step that you have to
divide in two parts: development time and real deployment time. At development time,
you have two opportunities for installing assemblies to the GAC. The first way is invoking
the GacUtil.exe command-line tool passing the /i option and the assembly name. The
following is a command-line example for installing an assembly:

GacUtil.exe /i C:\MyAssemblies\MyLibrary.dll

You uninstall an assembly from the GAC by simply passing the /u option to GacUtil, as in
the following command line:

GacUtil.exe /u C:\MyAssemblies\MyLibrary.dll

The second way for installing assemblies is dragging them to Windows Explorer opened to
the GAC folder. To uninstall one or more assemblies, simply right-click the assembly name
and choose Uninstall.

INSTALLING AND UNINSTALLING REQUIRE ELEVATED PRIVILEGES

The Global Assembly Cache folder can be protected by administrators using an Access
Control List. If this is your scenario, remember that installing assemblies to the GAC
and uninstalling as well require elevated privileges. Moreover, if you are a Windows
Vista or a Windows 7 user, you will be required to run the command prompt or
Windows Explorer with administrator privileges before attempting to install or uninstall
assemblies.

Both ways can be useful at development time, but they cannot be absolutely indicated at
deployment time for several reasons. The most important of them is that both ways have
no reference counting but, as you can easily understand, it is not appropriate to require
your user to manually manipulate the GAC with Windows Explorer. Because of this, you
should always choose professional installation systems, such as Windows Installer, that
implement features for correctly installing and uninstalling assemblies without troubles.
The next chapter discusses setup and deployment projects for Windows Installer, covering
GAC situations. ClickOnce has instead some limitations from this point of view, because it
does not allow installing assemblies to the GAC; thus you must be aware of this when
deciding the deployment strategy. By the way, installing assemblies to the Global
Assembly Cache has a huge requirement: you can only install assemblies signed with a
strong name.

CHAPTER 53 Understanding the Global Assembly Cache

From the Library of Wow! eBook

ptg

1141The Global Assembly Cache
5

3

Signing Assemblies with Strong Names

A strong name is basically a signature that is added to assemblies to provide uniqueness
and represents the assembly’s identity. It is composed by the assembly name, version, and
culture plus a public key and a digital signature. The public key is generated starting from
the related private key, which is stored in the assembly manifest.

SECURITY ISSUES

To avoid security issues, strong-named assemblies can only use type from other strong-
named assemblies (such as the Base Class Library assemblies).

You have two modes for signing an assembly with a strong name; the first is invoking
command-line tools such as Sn.exe and Al.exe. But because most of your developer life is
spent within Visual Studio, the second mode is offered by the IDE. To add a strong name
to your assembly, you first open My Project and then select the Signing tab where you
flag the Sign the Assembly check box as shown in Figure 53.2.

You can either add a new strong name or import an existing one. To add a new strong
name, click the <New...> item in the combo box (see Figure 53.2). You will be prompted

FIGURE 53.2 Adding a strong name to the project.

From the Library of Wow! eBook

ptg

1142 CHAPTER 53 Understanding the Global Assembly Cache

for specifying the filename and a password. This generates a .pfx file that is added to the
project and that is visible in Solution Explorer. For example, in the Create Strong Name
Key dialog, type MyStrongName as the filename and MyStrongName as the password.
Figure 53.3 shows how to accomplish this.

Specifying a password is not mandatory. If you do not provide a password, Visual Studio
generates an .snk file instead of a .pfx one. By the way, I strongly recommend you provide
a password.

KEEP YOUR PASSWORD

Take note of the password you assign to strong names. It will be required every time
you open the project from another computer different from the one where you first
added the strong name.

Remember that strong names are not the equivalent of certificates (such as Authenticode)
that instead provide security trust, other than uniqueness, according to .NET security
requirements. Finally, strong names can be applied to assemblies with the delay signing
technique (see the Delay sign option in the MyProject Signing tab). In a few words, this
technique writes only the public key in the executable and requires the private key to be
passed at a later stage, preventing the project from being compiled, debugged and run
from within Visual Studio. Because of this, when you delay sign an assembly, you need to
skip the signature verification (e.g. running the Sn.exe tool passing the -Vr option). It is
also worth noting that you can disable signing enforcement on a machine even at the
specific assembly signature level, in the event you actually need to delay sign but still
want to debug. This topic is not covered because of its particular nature; you can get
further information in the official MSDN documentation at
http://msdn.microsoft.com/en-us/library/t07a3dye(VS.100).aspx.

FIGURE 53.3 Providing name and password for the new strong name.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/t07a3dye(VS.100).aspx

ptg

1143The Global Assembly Cache
5

3

CLS-COMPLIANT ASSEMBLIES

Signing assemblies with strong names is mandatory in case you want them to be
CLS-compliant.

Top Reasons for Installing (or Not) Assemblies to the GAC

As a general rule, installing assemblies to the GAC is something that should be restricted
only to particular scenarios. There are obviously situations when you instead want to take
advantage of the GAC that can be summarized as follows:

. Multiple applications referencing the same assemblies: In this case it can be
convenient to have a single copy of assemblies in the GAC instead of providing
several copies in the application folder.

. Versioning: The GAC can maintain different versions of the same assembly. This
problem is solved also by the XCopy deployment, but your company can have a
deployment strategy that prefers the GAC.

. Security: The GAC can be managed by system administrators for controlling
permissions using the Access Control List. If you need such granularity of control,
installing assemblies to the GAC is a good choice.

In all other cases you should refrain from installing assemblies to the GAC. Remember
that this procedure affects the .NET Framework and any mistake can be fatal.

Adding References from Visual Studio to Your Own Assemblies

By default, when you install your own assemblies to the GAC, they will not be visible in
the Add Reference dialog in Visual Studio. If you need to add a reference to a custom
assembly that was installed to the GAC, follow these steps:

1. Open the Windows Registry Editor (RegEdit.exe).

2. Locate the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders
key.

3. Add a subkey to the key from Step 2, specifying a descriptive name representing the
folder where your assemblies reside and a value pointing to that folder. This is an
example:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders\
MyAssemblies=“C:\\MyAssemblies”.

Now you can find your assemblies in the Add Reference dialog.

From the Library of Wow! eBook

ptg

1144 CHAPTER 53 Understanding the Global Assembly Cache

Summary
By reading this chapter you can understand important concepts that you need to know
before deploying .NET applications. You saw how the .NET Framework brilliantly solves
the Dll Hell problem by avoiding the need of component registration and allowing the
XCopy deployment. Then you saw what the Global Assembly Cache is and how you can
manage it for sharing assemblies among multiple applications. You got information on
strong names and on how to apply them to your assemblies so that these can be installed
to the GAC. Finally, you understood how to configure Windows Registry for making
custom assemblies in the GAC visible from the Add Reference dialog in Visual Studio. All
this information is important to understand how you deploy libraries, controls, and more
generally, assemblies together with your executables. Now that you know this, you are
ready to deploy your applications with Visual Studio tools.

From the Library of Wow! eBook

ptg

CHAPTER 54

Setup & Deployment
Projects for Windows

Installer

IN THIS CHAPTER

. Windows Installer Overview

. Creating a Setup Project

. Configuring the Setup Project

. Building and Deploying the
Windows Installer Package

When you deliver your application to your customers,
you do not tell them that it supports the XCopy deploy-
ment; neither do you provide technical explanations on
how .NET applications work. This is because modern appli-
cations require a convenient setup procedure that can
install them in a professional fashion, putting files in the
appropriate places, creating shortcuts in the Windows user
interface, checking for system requirements, and perform-
ing components registration. The users are generally just
required to select the target folder and what options in your
applications they want to be installed on their machine.
Creating a user-friendly setup procedure is something that
increases professionalism and gives customers the first good
impression of your work. The .NET-based applications, such
as the ones you create with Visual Basic 2010, can be
deployed in several modes. One of these is taking advan-
tage of the Windows Installer engine that provides great
flexibility over installation requirements and takes the
maximum from integration with the operating system. In
this chapter you learn how to create a setup project for
Windows Installer with Visual Studio 2010 so that you can
deploy your Visual Basic applications the most professional
way possible.

Windows Installer Overview
Windows Installer is the Microsoft technology for deploying
applications. This technology has been part of the Windows
operating system for many years and can be considered as
an engine for installing .Msi packages. An .Msi package, or
installer package, contains all files to be installed with your

From the Library of Wow! eBook

ptg

1146 CHAPTER 54 Setup & Deployment Projects for Windows Installer

application and other important information such as shortcuts, icons, license agreements,
other redistributable packages, and key/values to be written to the Windows Registry.

Windows Installer is the most powerful technology for deploying .NET applications with
Visual Studio 2010. This is because Windows Installer has few limitations, whereas it
brings lots of benefits. Windows Installer makes it difficult to provide updates, so if you
plan to release frequent updates for your applications, you should consider ClickOnce,
which is discussed in next chapter. You should choose Windows Installer as the deploy-
ment system for your application if you meet one or more of the following requirements:

. Adding values to the Windows Registry

. Customizing installation folders

. Installing assemblies to the Global Assembly Cache or installing and registering
COM components

. Installing Windows services and peripheral drivers

. Executing custom actions and specifying launch conditions

. Managing ODBC components

. Creating custom shortcuts in the Windows user interface

. Elevated permissions and deeper interaction with the user

In scenarios different from the ones listed, you might instead consider ClickOnce. Visual
Studio 2010 is the perfect environment for creating projects that can build Windows
Installer packages that install your applications on target machines the most appropriate
way. In next section you see how to accomplish this.

Creating a Setup Project
The goal of this chapter is to exemplify how you create a setup project for a Windows
client application. First, create a new WPF project with Visual Basic and name it
DeploymentDemo. This project just serves as the demo application to be deployed. When
the new project is ready, right-click the solution name in Solution Explorer and then
select Add, New Project. In the New Project dialog select the Other Project Types, Setup
and Deployment, Visual Studio Installer templates subfolder and then choose the Setup
Wizard project template, as shown in Figure 54.1. Name the new project SetupExample
and then click OK.

The Setup Wizard is the most common project template for generating setup procedures
for Windows Installer because it simplifies the process of packaging the output of other
projects in the current solution through a number of guided steps.

From the Library of Wow! eBook

ptg

1147Creating a Setup Project

FIGURE 54.1 Adding a new setup project to the solution.

NOTE

The Setup Project and the CAB Project templates enable, respectively, creating an
empty project for creating a Windows Installer package and creating an empty project
for packaging the application into CAB archives. The Merge Module Project is used to
create a merge module that is basically an additional component for Windows Installer
packages and that contains redistributable packages generally storing libraries and
components. Finally the Web Setup Project is useful for deploying web applications.

When you click OK, the Setup Wizard will be launched. The first dialog is just a welcome
one so click Next. The second dialog requires you to specify the project type. Leave
unchanged the default selection for a Windows application, as shown in Figure 54.2, and
then click Next.

The third dialog is important because it enables selecting the content of your package.
Although you can perform this later, this is the best place for adding contents. You must
select the Primary Output option, as demonstrated in Figure 54.3, to include the applica-
tion’s executable and its dependencies.

When you click Next you go ahead to the fourth dialog that enables specifying additional
files to be packaged. Because this is not our case, click Next again. The fifth and last dialog
contains a summary report for the new project, as shown in Figure 54.4.

If you missed something you can step back to the previous dialogs. Now click Finish so
that Visual Studio generates the setup project for you. The new project is now available in

5
4

From the Library of Wow! eBook

ptg

1148

FIGURE 54.2 Choosing the installer project type.

FIGURE 54.3 Adding the primary output to the setup project.

CHAPTER 54 Setup & Deployment Projects for Windows Installer

From the Library of Wow! eBook

ptg

1149

FIGURE 54.4 The summary report provided before the project generation.

Solution Explorer and is almost ready to be built for deployment. To make the deploy-
ment the most accurate possible, you can perform some customizations, which are
discussed in next section.

Configuring the Setup Project
There are different ways for configuring your Windows Installer package through the
setup project. The first way is setting the package’s properties, which you accomplish by
first clicking on the project name in Solution Explorer and then switching to the
Properties window. All the available properties affect layout, messages, and target folders
when launching the installer. Figure 54.5 shows an example of how you can set properties.

Properties are self-explanatory, but you can click on each of them to get a description at
the bottom of the window. Focus on the Manufacturer property that determines the desti-
nation folder for the application on the target machine, although the installer lets you
modify the destination.

SOLUTION EXPLORER TOOLBAR

When you create setup projects, Solution Explorer shows an extended toolbar that now
provides buttons for accessing editors for specific package properties, such as the
Registry editor and the file types’ editor. In the next sections we often refer to these
buttons, so take a look at Solution Explorer to locate them.

Configuring the Setup Project
5

4

From the Library of Wow! eBook

ptg

1150 CHAPTER 54 Setup & Deployment Projects for Windows Installer

FIGURE 54.5 Setting project properties that affect the installer package.

Editing the File System

You can manage files to be installed with your package in the File System editor, which
can be enabled with the appropriate button from Solution Explorer. Figure 54.6 shows
how it looks when the new project is created.

You can select a folder to add other files in the right side of the window or add shortcuts
to your executable as well. For example, you can add shortcuts for the user’s desktop and
Programs menu by selecting the appropriate folders in the left side of the window and
then right-clicking the right side of the window; then choose Create New Shortcut.
Finally you will be required to specify the executable to be linked via a dialog window.
You can specify additional folders and Windows special folders; for this, it is worth
mentioning that you can add assemblies to the Global Assembly Cache. This is one of the
reasons why you should choose Windows Installer for deploying your applications. To
specify assemblies that must be installed to the GAC, right-click File System on Target
Machine; then select Add Special Folder, Global Assembly Cache Folder. This creates a
reference to the GAC in the file system editor. Now right-click the Global Assembly
Cache Folder item and select Add, Assembly. Figure 54.7 shows an example, adding to
the project the WCF service library that we created in Chapter 41, “Creating and
Consuming WCF Services.”

You can select one or more assemblies via a dialog window. Notice that Visual Studio can
determine all assemblies’ dependencies and can automatically add related assemblies to
the project.

From the Library of Wow! eBook

ptg

1151Configuring the Setup Project

FIGURE 54.6 The file system editor.

5
4

FIGURE 54.7 Specifying assemblies to be installed to the GAC.

From the Library of Wow! eBook

ptg

1152 CHAPTER 54 Setup & Deployment Projects for Windows Installer

Customizing Dialogs

Windows Installer dialogs are customizable, meaning that you can replace default text
messages and title bitmaps, but you can also add your own dialogs. To edit dialogs, select
the Dialog Editor in Solution Explorer and then select the desired dialog. Changes are
performed via the Properties window. Figure 54.9 shows an example.

Each dialog offers a BannerBitmap property that you can replace with your own bitmap
image. Other properties depend exclusively on the specific dialog. For example the

FIGURE 54.8 Adding a new key in the Registry editor.

Editing Registry Values

One of the biggest benefits in deploying applications with Windows Installer is that you
can add keys and values to the Windows Registry on the target machine. You create keys,
subkeys, and values by selecting the Registry Editor in Solution Explorer and then right-
clicking the desired root key; finally add the required key or value. Figure 54.8 shows how
to accomplish this.

Values are then visible on the right side of the editor. You have complete control over the
Registry and that Visual Studio prepares a Registry key for your own application under
HKEY_LOCAL_MACHINE\Software.

From the Library of Wow! eBook

ptg

1153Configuring the Setup Project
5

4

Welcome dialog has CopyrightWarning and WelcomeText properties that contain text that
you can replace with your own.

Creating File Types

There are situations in which you need to associate a custom file extension to your
executable. Visual Studio enables putting this information into Windows Installer pack-
ages in a convenient way. You provide custom extensions to be associated to the
executable and actions to be executed over the extension via the File Types editor. You add
an extension by right-clicking the File Types on Target Machine item and then selecting
Add File Type. When the new file type is added to the editor, you customize its properties
via the Properties window. Figure 54.10 shows an example of this kind of customization.

FIGURE 54.9 Customizing the installer dialogs.

From the Library of Wow! eBook

ptg

1154 CHAPTER 54 Setup & Deployment Projects for Windows Installer

FIGURE 54.10 Adding and customizing a new file type.

Providing Custom Actions

A custom action enables specifying that an external file or that an instance of the
Installer class must be executed at the specified installation time. A typical example is
when you need to include in your installation package the redistributables of a particular
runtime or components (for example the MDAC components) used by your application
that need to be installed before the application itself. To add a custom action, select the
Custom Actions editor from Solution Explorer; then right-click the installation phase that
is appropriate for you and select Add Custom Action, as shown in Figure 54.11.

At this point you will be asked to specify the executable to be run at the established
moment, via a dialog window. You can pick up the executable from the list of files avail-
able in the current package; if the required executable is not part of the file system yet,
add it to the package, and then re-add the custom action.

MANAGED CUSTOM ACTIONS

It is worth mentioning that you could create a class library with Visual Basic and imple-
ment it as a custom action during the installation. This provides great granularity on cus-
tom functionalities, such as asking for a product key or downloading updates and so on.

From the Library of Wow! eBook

ptg

1155Configuring the Setup Project
5

4

Specifying Launch Conditions

Launch conditions enable specifying minimum system requirements needed for continu-
ing the installations. You add launch conditions via the Launch Conditions editor that
you can start with the appropriate button in Solution Explorer. There are two launch
conditions types; the first type enables searching for the specified file or component on
the target system, whereas the second type enables specifying custom conditions such as
hardware requirements. When the editor is ready, simply right-click the desired condition
type and then click Add Launch Condition. Figure 54.12 shows a sample launch condi-
tion that checks for the machine’s physical memory.

The Condition property contains the condition that must be True for the installation to
begin. The Message property contains a localizable text that will be shown whether the
condition is evaluated as False. The full list of available conditions can be found in the
MSDN Library at http://msdn.microsoft.com/en-us/library/cz6k1z02(VS.100).aspx.

FIGURE 54.11 Adding a custom action.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/cz6k1z02(VS.100).aspx

ptg

1156 CHAPTER 54 Setup & Deployment Projects for Windows Installer

FIGURE 54.12 Adding a custom launch condition.

Package Configuration and Prerequisites

You can configure additional properties for your setup package by right-clicking the
project name and selecting Properties. This shows the project Property Page represented
in Figure 54.13, where you can specify the output name, how the installer will be pack-
aged (for example, Msi or Cab format), or the compression type.

Notice that by clicking the Configuration Manager button you can edit existing configu-
rations (that is, Debug and Release) or add new ones to affect your output packages. This
is also the place where you can set up your package to target 64-bit machines. Another
important task is setting up prerequisites. Click the Prerequisites button to launch the
dialog shown in Figure 54.14.

Prerequisites are those packages or runtime components that must be installed together
with the application so that it can work correctly. After you set up all properties shown in
this section, you can build and distribute your package.

From the Library of Wow! eBook

ptg

1157Configuring the Setup Project
5

4

FIGURE 54.13 The project’s property page.

FIGURE 54.14 Checking and selecting prerequisites.

From the Library of Wow! eBook

ptg

1158 CHAPTER 54 Setup & Deployment Projects for Windows Installer

Building and Deploying the Windows Installer Package
To create your Windows Installer distributable package, right-click the setup project name
in Solution Explorer and select Build. As an alternative, you can choose the appropriate
Build command from the Build menu. This generates a bootstrapper named Setup.exe and
the Windows Installer package with an .Msi extension, which in our case is named
SetupExample.Msi. The output will be available in the project subfolder related to the
current configuration (Bin\Debug or Bin\Release). These are the files that you need to
distribute to your customers for installing your application. They simply run the Setup.exe
bootstrapper that correctly starts the Windows Installer package.

Summary
In this chapter we covered how to create setup projects for Windows Installer in Visual
Studio 2010. First you read about the reasons why you should choose such a technique;
then you saw how to generate a setup project with the Project Wizard. Next the discussion
focused on configuring and customizing your project with special integrated editors.
Finally, you saw how to build and deploy your Windows Installer package.

From the Library of Wow! eBook

ptg

CHAPTER 55

Deploying Applications
with ClickOnce

IN THIS CHAPTER

. Introducing ClickOnce

. Deploying Applications with
ClickOnce

. Configuring ClickOnce

. Security Considerations

. Programmatically Accessing
ClickOnceSometimes customers want simple installations for appli-

cations they purchase. They do not want to step through
complex guided procedures with several dialogs and lots of
options. They simply want to make just two or three mouse
clicks and nothing more. To accomplish this particular
scenario, Microsoft created ClickOnce: the one-click deploy-
ment technology for.NET Framework. ClickOnce is useful
for installations that are just a few steps but it is also the
easiest way for bringing automatic updating capabilities to
your applications. In this chapter you learn about deploy-
ing client applications with ClickOnce and discover some
new features.

Introducing ClickOnce
ClickOnce is the deployment technology offered by all
Visual Studio editions, including the Express versions,
which enables creating distribution procedures for Windows
client applications in a simple way, according to one-click
deployment logic. The idea behind ClickOnce is that the
final user will have the ability to install an application with
a minimum number of mouse clicks and interactions. This
technology was first introduced with.NET Framework 2.0
and Visual Studio 2005 and has been improved during the
years. Now in .NET 4.0 and Visual Studio 2010, ClickOnce
offers additional deployment options that are explained in
this chapter. ClickOnce enables publishing the deployment
package to file system folders, FTP servers, and Http servers
and can make applications available online, offline, or both.

From the Library of Wow! eBook

ptg

1160 CHAPTER 55 Deploying Applications with ClickOnce

Before illustrating how you publish deployment packages with ClickOnce, it is important
to understand how it works and when you should use it.

How ClickOnce Handles Applications

Different from Windows Installer, which is integrated in the operating system, ClickOnce
is integrated with the .NET Framework. Applications deployed via ClickOnce run in a
security sandbox that is fully managed by the .NET Framework. This provides great flexi-
bility, because the .NET Framework can apply managed trust rules to ClickOnce-deployed
applications and provide the infrastructure for automating application updates. For
example, thanks to the .NET integration, developers can write code to programmatically
check for updates or to access the deployment system. By the way, ClickOnce has some
limitations for Windows Installer. The next section explains limitations and provides
information on when you should use ClickOnce for your deployments.

When Should I Use ClickOnce?

ClickOnce is a powerful technology and is useful when you need to deploy applications
that require a minimum amount of interaction from the user. ClickOnce is appropriate in
the following scenarios:

. You want to provide your application with the capability of being frequently
updated without writing a single line of code.

. Your application makes use of third-party components that are not required to be
installed into the Global Assembly Cache.

. You want your application to be installed by nonadministrative users.

. You want to simply deploy add-ins for Microsoft Office.

. Your installation process does not require you to customize the target system other
than creating shortcuts.

Opposite to the preceding listed advantages, ClickOnce has limitations that you must
consider when choosing the most appropriate development system for you:

. You cannot install assemblies to the Global Assembly Cache.

. ClickOnce does not enable writing values to the Windows Registry.

. It does not enable deep installation customization.

. It does not enable choosing the target folder for the application on the target
machine. This is because, as ClickOnce is integrated with the .NET Framework, appli-
cations run inside a security sandbox managed by .NET which has its own folders.

If you need to perform just one of these customizations, ClickOnce is not appropriate, and
you need to recur to Windows Installer. At this point we take a look to the practical
ClickOnce deployment.

From the Library of Wow! eBook

ptg

1161Deploying Applications with ClickOnce

NOTE ON CLIENT APPLICATIONS

With the growth of WPF applications, ClickOnce has been erroneously considered as a
technology for deploying such kind of applications. This is true in part, meaning that
ClickOnce is not limited to WPF applications, whereas it can generally deploy all kinds
of Windows client applications, including Windows Forms and Console applications.

Deploying Applications with ClickOnce
To deploy an application with ClickOnce, you have three options: the Publish command
in the Build menu, right-clicking the project in Solution Explorer, and selecting Publish or
the Publish Now button in the ClickOnce configuration page within My Project. For now
we focus on the first option, whereas the second option is covered in the next section.
Now create a new WPF project with Visual Basic and name it ClickOnceDemo. There is
no need to write code for the application because we need only a base for our example. In
order to deploy an application with ClickOnce, follow these steps:

1. Click Build, Publish, Visual Studio launches the Publish Wizard. Figure 55.1 shows
the first dialog of the wizard, in which you need to specify the location where the
application will be published. Notice how the dialog also explains available possibili-
ties, such as disk path, network shared path, ftp server, or website. You can change
the target type and location by clicking Browse. In this case let’s publish the applica-
tion to the local Internet Information Services website, which requires Visual Studio
to be running with administrator privileges.

5
5

FIGURE 55.1 Choosing the target location for the ClickOnce deployment.

From the Library of Wow! eBook

ptg

1162 CHAPTER 55 Deploying Applications with ClickOnce

PUBLISHING TO FILE SYSTEM

Publish the application to a local folder on the file system if you want to deploy the
application on media supports such as CD-ROM or zipped archives. This option can
make the application available only offline.

2. Click Next. The second dialog of the wizard enables specifying if the application will
be available offline. In this case the .NET Framework creates a shortcut in the Start
menu for launching the application and another one in the Add/Remove Programs
tool for enabling uninstalling the application. Figure 55.2 shows how you set this
option. Basically, this is all the information that Visual Studio needs to create a
ClickOnce deployment.

3. Click Next. You will see the last dialog of the wizard showing the deployment infor-
mation summary (see Figure 55.3).

4. Click Finish, Visual Studio generates all the required files and folders. Because the
deployment is currently done for a web server, Visual Studio also generates a
Publish.htm web page that is the place from which users can install the application.
Figure 55.4 shows the page created for this sample application.

FIGURE 55.2 Specifying how the application will be available.

From the Library of Wow! eBook

ptg

1163Deploying Applications with ClickOnce
5

5FIGURE 55.3 Collecting summary information for the ClickOnce deployment.

FIGURE 55.4 The Web page from which the application will be downloaded.

From the Library of Wow! eBook

ptg

1164 CHAPTER 55 Deploying Applications with ClickOnce

TIPS ON THE PUBLISH.HTM WEB PAGE

Being a simple Html page, the default Publish.htm can be edited to accomplish your
particular needs or just to provide a different appearance. In this case the web page
address points to the local IIS, but if you publish the application onto a real server, you
probably do this via an FTP account, whereas the web page address, where users
install the application from, is something like this: http://www.something.com/
ClickOnceDemo/publish.htm.

Now click Install. At this point a security warning informs you that the application is
downloading from a website with other information about the publisher, as shown in
Figure 55.5.

Because you are the publisher and you trust yourself, click Install. This installs the appli-
cation on your system, and a shortcut will be added to the Start menu. To remove the
application simply open the Control Panel, Programs and Features tool, and then select
the application from the list.

Structure of a ClickOnce Deployment

The publish process, whatever target you select, generates a subfolder containing the
following elements:

. A bootstrapper file named Setup.exe, which launches the installation.

. The application manifest, which contains information on how the application has
to be run in the ClickOnce context.

. The Publish.htm file (only if the application has been published to a Web or FTP
space).

FIGURE 55.5 ClickOnce shows a security warning asking confirmation before installing the
application and providing information on the application’s publisher and source.

From the Library of Wow! eBook

http://www.something.com/ClickOnceDemo/publish.htm
http://www.something.com/ClickOnceDemo/publish.htm

ptg

1165Configuring ClickOnce
5

5

. A subfolder containing the actual application and related files. This subfolder has a
version number that is recognized by the .NET Framework when the application
finds updates.

If you publish the application to the file system for deploying to media supports such as a
CD-ROM, you just need to copy to the media the content of the publish folder.

TIP

Unless you specify a publish folder, the deployment package is published to
Bin\Debug\Publish or Bin\Release\Publish depending on the selected configuration.

Configuring ClickOnce
You can customize your ClickOnce deployment by setting its property page in My Project.
Click the Publish tab to activate the ClickOnce options designer represented in Figure 55.6.

Notice that the upper part of the designer shows properties that you already set with the
Publish Wizard. The Publish Version group enables specifying the deployment version that
is important for allowing automatic updates. Automatically incrementing the revision
number is a convenient way for allowing installed applications to check for updates. Just
remember that the publish version is just a ClickOnce-related version and does not affect
the application version. Now let’s take a look at the other available options.

FIGURE 55.6 The ClickOnce properties designer enables customizing the deployment.

From the Library of Wow! eBook

ptg

1166 CHAPTER 55 Deploying Applications with ClickOnce

Application Files

By clicking the Application Files button, you can view or specify files that need to be
included in the deployment package. If you want some required files included in the
deployment package (such as documents or databases), you need to set their Build Action
property as Content. Generally Visual Studio can automatically classify files according to
their role in the project, so this is something that you rarely need to perform manually.

Prerequisites

Prerequisites are those files that the application needs to work correctly, for example
runtime components such as the .NET Framework or third-party controls, which the
installer installs on the target machine before the application is installed. Generally Visual
Studio can detect the appropriate prerequisites and select them for you, but there are situ-
ations in which you need to perform this manually, for example when you need to install
third-party components. Figure 55.7 shows the Prerequisites dialog.

If you use third-party components, ensure that the producer made available a redistrib-
utable package that you can include in the deployment prerequisites. The .NET Framework
will always be included as a prerequisite, because ClickOnce cannot predict if on the target
machine the .NET Framework is already available.

Custom Prerequisites
Visual Studio 2010 does not provide a built-in functionality for packaging custom prereq-
uisites. To accomplish this particular need, follow the instructions described in this page
of the MSDN Library: http://msdn.microsoft.com/en-us/library/ms165429(VS.100).aspx.
An alternative is using a free tool called Boostrapper Manifest Generator, which is avail-

FIGURE 55.7 Selecting prerequisites for your applications.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms165429(VS.100).aspx

ptg

1167Configuring ClickOnce
5

5

able on the MSDN Code Gallery. At the time of this writing, the tool is only available for
Visual Studio 2008, so periodically check its workspace for updates at http://code.msdn.
microsoft.com/bmg.

Updates

One of the most important features in ClickOnce (and one of the reasons why you should
use it) is the capability of updating applications without writing code to accomplish this.
The idea is that you publish a new version of the application and when you run the old
version, this checks for updates and automatically upgrades to the new version. Notice
that automatic updates are not available for applications published to the file system. To
enable automatic updates, click the Updates button and then in the Application Updates
dialog, check The Application Should Check for Updates check box, as shown in
Figure 55.8.

For example, you can decide if the application will be updated before it starts (default
option) so that users always run the latest updates or if it will be updated after it starts,
but in this case changes will be applied only at the next start. You can also specify how
frequently the application has to check for updates. The default setting is that the applica-
tion checks for updates each time it runs; otherwise, you can specify a time interval
expressed in days or hours or minutes. (This option is available only if you decide to
update the application after it starts.)

FIGURE 55.8 Enabling automatic updates.

From the Library of Wow! eBook

http://code.msdn.microsoft.com/bmg
http://code.msdn.microsoft.com/bmg

ptg

1168 CHAPTER 55 Deploying Applications with ClickOnce

TESTING UPDATES

When you enable updates, if you want to ensure that this feature works correctly, per-
form any kind of modification to the application (for example, add a button); then pub-
lish it again. Finally run the application and check that the new version is actually
downloaded and installed.

Options

Additions introduced to ClickOnce by the .NET Framework 3.5 SP 1 have been reprised in
.NET Framework 4.0 to provide better installation customization. When you click the
Options button, you have access to additional features. For example, you can edit the
Description part in the deployment manifest so that you can set a full description for your
installation. Figure 55.9 shows an example of how you can specify information.

Consider that the Publisher name will be utilized to create a root shortcuts folder in the
Start menu, whereas the Suite name value will be utilized to create a shortcuts subfolder
for the current application. The Deployment option enables setting some aspects of the
publish process. Figure 55.10 shows an example for setting such options.

For example, you can decide if the Publish.htm web page has to be created and shown, if
the wizard generates an Autorun.inf file for automatic CD start, or if the deployment will
use the .deploy extension. Pay attention to this particular option. Unless you uncheck this
check box, the application files will be deployed with the addition of the .deploy exten-
sion, which may cause errors if your application attempts to access external files. If this is
your case, disable the extension and deploy the application again. The Manifest option
enables establishing how application URLs must be treated, but more particularly it enables
setting if a desktop shortcut needs to be created for your application (see Figure 55.11).

FIGURE 55.9 Setting description options for the deployment package.

From the Library of Wow! eBook

ptg

1169Security Considerations
5

5

FIGURE 55.10 Setting deployment options.

Another useful option is the File Associations that is basically the only Registry customiza-
tion allowed to ClickOnce and that enables assigning a file extension to your executable.

Security Considerations
Depending on how an application is deployed or what system resources it needs to have
access to, it will be considered under the Full Trust or the Partial Trust rules of .NET
Framework Code Access Security. For example, an application that needs to access the
Registry or other system resources needs to be full-trusted, but this is not a good idea if
your application will be deployed via the Internet, which should instead be partial-trusted.
You set the trust level for your ClickOnce deployments in the My Project, Security tab (see
Figure 55.12).

FIGURE 55.11 Setting manifest options.

From the Library of Wow! eBook

ptg

1170 CHAPTER 55 Deploying Applications with ClickOnce

The ClickOnce manifest can be signed with Full Trust or Partial Trust. This second option
is divided into the Internet and intranet zones. You can choose the most appropriate for
you or even create a custom configuration by editing the application manifest file (Edit
Permissions XML button).

Providing Certificates

To make ClickOnce deployments the most trustable possible, you should use a certificate.
If you take a look at Solution Explorer after you publish the application, you notice that
Visual Studio has signed the assembly with a .pfx strong name. This is good in local test
scenarios, but the most convenient way (although not mandatory) for providing security
information to customers is adding an Authenticode certificate, especially if your applica-
tion is deployed via the Internet. Visual Studio adds a test certificate, as demonstrated in
Figure 55.13, which shows the Signing tab in My Project.

The test certificate is intended for local testing purposes only and should never be used in
real-life deployment, in which you will instead prefer an Authenticode certificate that you
can purchase from the specific authorities. After you add a valid certificate, to sign the
ClickOnce manifest, full and trusted information will be shown to your customers when
they download and install the application.

FIGURE 55.12 Specifying security settings for the ClickOnce deployment.

From the Library of Wow! eBook

ptg

1171Programmatically Accessing ClickOnce
5

5

FIGURE 55.13 Signing the ClickOnce manifest.

Programmatically Accessing ClickOnce
As pointed out at the beginning of this chapter, ClickOnce is handled by the .NET
Framework, but more precisely it is part of the .NET Framework. This means that it can be
accessed via managed code. The .NET Framework exposes the System.Deployment name-
space that offers a managed way for interacting with ClickOnce; particularly the subname-
space System.Deployment.Application and the
System.Deployment.Application.ApplicationDeployment class are the most useful items
because they offer objects that enable developers to programmatically access ClickOnce
information from an application. The ApplicationDeployment class exposes a shared
CurrentDeployment property that enables access to interesting information on the current
application deployment. The following code demonstrates how you can use the property
to retrieve information on the current deployment:

Private Sub GetClickOnceInformation()

‘Checks if the application has been deployed with ClickOnce

If ApplicationDeployment.IsNetworkDeployed = True Then

‘Retrieves the data folder for this application

Dim dataFolder As String = ApplicationDeployment.

CurrentDeployment.DataDirectory

‘Retrieves the path where updates will be

From the Library of Wow! eBook

ptg

1172 CHAPTER 55 Deploying Applications with ClickOnce

‘downloaded from

Dim updatesPath As Uri = ApplicationDeployment.

CurrentDeployment.UpdateLocation

‘Gets the version number for updates

Dim updateVersion = ApplicationDeployment.

CurrentDeployment.UpdatedVersion

‘Determines the last time that updates where checked for

Dim lastUpdate As Date = ApplicationDeployment.

CurrentDeployment.TimeOfLastUpdateCheck

End If

End Sub

You can also programmatically check and download updates; this can be useful if you do
not want the application to be automatically updated but you still want to provide the user
the ability of updating the application manually. The following code demonstrates this:

Private Sub ApplicationUpdate()

Dim isUpdateAvailable As Boolean = _

ApplicationDeployment.CurrentDeployment.CheckForUpdate

If isUpdateAvailable = True Then

ApplicationDeployment.CurrentDeployment.Update()

End If

End Sub

Both methods offer an asynchronous counterpart (CheckForUpdateAsync and
UpdateAsync) that can be used as well.

Registration-Free COM
One of the biggest benefits from ClickOnce is that users that do not have administrator
permissions can install applications. By the way, there are situations in which an applica-
tion is deployed together with some COM libraries but this can be a problem because such
libraries need to be registered and a non-administrator user does not have the appropriate
permissions for this. Fortunately with ClickOnce you can take advantage of a technique
known as Registration-Free COM which basically makes a reference to a COM library
visible to the application only, without the need of registration. You simply need to right-
click the library name in Solution Explorer, References and then select Properties. Finally
set the Isolated property as True (see Figure 55.14).

When you build the project, Visual Studio also generates a manifest file that provides the
actual state of isolation of the library. Listing 55.1 shows a sample manifest file.

From the Library of Wow! eBook

ptg

1173Registration-Free COM
5

5

FIGURE 55.14 Isolating the library for Registration-Free COM.

LISTING 55.1 Sample Manifest for Registration-Free COM

<?xml version=”1.0” encoding=”utf-8”?>

<assembly xsi:schemaLocation=”urn:schemas-microsoft-com:asm.v1 assem-

bly.adaptive.xsd”

manifestVersion=”1.0” xmlns:asmv1=”urn:schemas-microsoft-com:asm.v1”

xmlns:asmv2=”urn:schemas-microsoft-com:asm.v2”

xmlns:asmv3=”urn:schemas-microsoft-com:asm.v3”

xmlns:dsig=”http://www.w3.org/2000/09/xmldsig#”

xmlns:co.v1=”urn:schemas-microsoft-com:clickonce.v1”

xmlns:co.v2=”urn:schemas-microsoft-com:clickonce.v2”

xmlns=”urn:schemas-microsoft-com:asm.v1”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<assemblyIdentity name=”Native.MyCOMLibrary” version=”1.0.0.0” type=”win32” />

<file name=”wmp.dll” asmv2:size=”11406336”>

<hash xmlns=”urn:schemas-microsoft-com:asm.v2”>

<dsig:Transforms>

<dsig:Transform

Algorithm=”urn:schemas-microsoft-com:HashTransforms.Identity” />

</dsig:Transforms>

<dsig:DigestMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1” />

<dsig:DigestValue>cCyT3Cw0dm68HkliYf3ncYjoCKU=</dsig:DigestValue>

</hash>

<typelib tlbid=”{6bf52a50-394a-11d3-b153-00c04f79faa6}”

version=”1.0” helpdir=”” resourceid=”0” flags=”HASDISKIMAGE” />

<comClass clsid=”{6bf52a52-394a-11d3-b153-00c04f79faa6}”

threadingModel=”Apartment”

tlbid=”{6bf52a50-394a-11d3-b153-00c04f79faa6}”

progid=”WMPlayer.OCX.7”

From the Library of Wow! eBook

ptg

1174 CHAPTER 55 Deploying Applications with ClickOnce

description=”Windows Media Player ActiveX Control” />

</file>

</assembly>

The manifest file is part of the setup process, so you need to include it in your ClickOnce
deployment (Visual Studio takes care for you). If you are interested in understanding how
the Registration-Free COM technique actually works, you can read a specific article in the
MSDN Magazine available at this address: http://msdn.microsoft.com/en-us/magazine/
cc188708.aspx.

Summary
This chapter described how to build deployment packages with ClickOnce, the one-click
deployment technology included in the .NET Framework. You saw how to use the Publish
Wizard to create a setup procedure in a few steps; then you saw how you can configure
the deployment options with the Visual Studio designer, including allowing automatic
updates and adding publisher information. You then stepped through security considera-
tions required so that you can understand what happens on the target machines. Finally
the discussion focused on how to programmatically interact with ClickOnce by writing
Visual Basic code taking advantage of the
System.Deployment.Application.ApplicationDeployment class.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/magazine/cc188708.aspx
http://msdn.microsoft.com/en-us/magazine/cc188708.aspx

ptg

CHAPTER 56

Advanced IDE Features

IN THIS CHAPTER

. Exporting Templates

. Customizing Visual Studio
2010

. Managing User Settings

. Customizing the Toolbox

. Using, Creating, and Managing
Reusable Code SnippetsThe Visual Studio 2010 integrated development environ-

ment is a powerful application and is not a simple code
editor. In previous chapters, especially in Chapter 2,
“Getting Started with the Visual Studio 2010 IDE,” you
already learned about some important features and tools
that make your development experience easier. In this
chapter you learn about other interesting features and
instrumentations that are not necessarily are related with
code writing but that provide advanced control over the
environment and that in most cases provide a way for
reusing existing work.

Exporting Templates
Visual Studio 2010, as its predecessors since 2005, enables
exporting projects and items templates. This feature is
useful because you can generate skeletons for applications
or single items that you can reuse in the future. This section
covers both options, starting from project templates.

Exporting Project Templates

Imagine you often create WPF applications that need imple-
menting menus. It would be interesting to have a project
template that automatically implements basic menus so
that you don’t need to rewrite a lot of code each time.
Create a new WPF project with Visual Basic and name it as
WpfMenuProject. When ready, type the following XAML

From the Library of Wow! eBook

ptg

1176 CHAPTER 56 Advanced IDE Features

code inside the Grid tags to implement basic menu functionalities:

<DockPanel LastChildFill=”True” VerticalAlignment=”Top”>

<Menu DockPanel.Dock=”Top”>

<MenuItem Header=”File” IsEnabled=”True”

DockPanel.Dock=”Top”>

<MenuItem Header=”_Open” Name=”Open”/>

<Separator/>

<MenuItem IsEnabled=”True” Name=”Save”>

<MenuItem.Header>_Save</MenuItem.Header>

</MenuItem>

<MenuItem IsEnabled=”True” Name=”Exit”>

<MenuItem.Header>_Exit</MenuItem.Header>

</MenuItem>

<Separator />

</MenuItem>

<MenuItem Header=”Edit”

DockPanel.Dock=”Top”>

</MenuItem>

</Menu>

</DockPanel>

Before going on, save the project. When saved, select the File, Export Template
command. The first choice is between the project and item template, as shown in Figure
56.1. Leave unchanged the selection on Project Template and then click Next.

Visual Studio now asks you to enter some information on the new template, such as the
name, the description, and optionally an icon image and a preview image. This informa-
tion will be shown in the New Project dialog. Assign the WpfMenuProject name as the
template name and provide a custom description; you can also add images but this is not
mandatory. (Visual Studio will provide a default image for you.) Figure 56.2 shows how
the dialog appears.

Projects templates are simply .zip packages containing the project skeleton and an infor-
mation file named MyTemplate.vstemplate. By default, custom templates are exported to
the %UserProfile%\Documents\Visual Studio 2010\My Exported Templates folder, and by
default they are automatically imported into the IDE (although you can decide to remove
this option). When you click Finish, the new template is available in Visual Studio. You
can check this out by selecting the File, New Project command. Figure 56.3 shows how
the new template is available in the New Project dialog.

Now you can create a new project based on the custom template without the need of
rewriting code that is already exposed by the template.

From the Library of Wow! eBook

ptg

1177Exporting Templates
5

6

FIGURE 56.1 Exporting a project template.

FIGURE 56.2 Setting information about the new template.

From the Library of Wow! eBook

ptg

1178 CHAPTER 56 Advanced IDE Features

FIGURE 56.3 The New Project dialog includes the new template.

Exporting Item Templates

You can export single items, such as classes or controls, to item templates that you can
later add to other projects. To provide an example, add a new class to the current project
and name it as DisposableClass.vb. The goal of the example is to provide a template for
classes implementing the IDisposable interface. When ready, simply implement the
IDisposable interface in the new class so that Visual Studio will add required members.
(You should write custom code for implementing the Disposable pattern, but this is not
the goal of the example; see Chapter 8, “Managing an Object’s Lifetime,” about this.) Now
select again File, Export Template. In the first dialog of the wizard, select the Item
Template option (as shown in Figure 56.4) and then click Next.

The next step is selecting the item you want to be exported as a reusable template. Notice
that you can choose multiple items. Select the DisposableClass.vb item, as shown in
Figure 56.5; then click Next.

The next step is selecting required references so that when you add an item based on the
new template Visual Studio will reference the necessary assemblies for you. Figure 56.6
shows how the dialog appears.

In this case the template requires nothing but default assemblies, so no references are
required. The final step is where you provide information to the custom item template.
Basically such information is the same as for project templates. Assign Template Name
with DisposableClass, provide a description (see Figure 56.7 for details), and eventually
provide icon and preview images. Finally click Finish.

When the export process has been completed, the new template is available in Visual
Studio. With a project open, right-click the project name and select Add New Item. When

From the Library of Wow! eBook

ptg

1179Exporting Templates
5

6

FIGURE 56.4 Setting the Item template option.

FIGURE 56.5 Adding an item to the new template.

From the Library of Wow! eBook

ptg

1180 CHAPTER 56 Advanced IDE Features

FIGURE 56.6 Specifying references for the new item template.

FIGURE 56.7 Providing custom information to the new item template.

From the Library of Wow! eBook

ptg

1181Customizing Visual Studio 2010

the export process has been completed, the new item template is available in Visual Studio
2010, as demonstrated by Figure 56.8, which represents the Add New Item dialog.

With a few steps you can produce your custom project and item templates, which can
help you by saving time when you repetitively create the same project types.

Customizing Visual Studio 2010
In Chapter 52, “Building Customizations for Microsoft Office,” you saw how Visual Studio
2010 is an extensible environment. Extensibility is not the only way of customizing the
IDE. You can personalize existing features such as the Tools menu, menu commands, and
toolbars. In this section you learn how to customize both the Tools built-in menu and
toolbars to add functionalities to the environment.

Customizing the Tools Menu

You can customize the Tools menu by providing additional commands pointing to exter-
nal executables. This is particularly useful if you need to run an external tool against an
element within the solution or project. You provide additional commands by selecting

5
6

FIGURE 56.8 The Add New Item dialog shows the new item template.

From the Library of Wow! eBook

ptg

1182 CHAPTER 56 Advanced IDE Features

Tools, External Tools. This launches the External tools dialog where you can specify the
executable name and parameters. For example, imagine you want to add a custom
command for launching the Microsoft IL Disassembler for the executable generated by the
current project. If you already have any tools in the list (such as the Dotfuscator tool), the
first step is clicking the Add button. Then follow these steps:

1. In the Title text box, write IL Disassambler.

2. In the Command text box, write the full path for ILDasm.exe. (Generally it is under
the Windows SDK tools directory,)

3. For the Arguments box click the arrow on the right and select Target Path (the relat-
ed variable is $(TargetPath)). This variable represents the executable generated by
the compilation process.

Figure 56.9 shows the result of this editing. Click OK so that the new command will be
added to the Tools menu.

Now try to open any existing project and build it; then select the new Tools, IL
Disassembler command. If no errors occur, you will see IL Disassembler run and analyze
the executable produced by the current project.

Customizing Commands and Toolbars

Visual Studio enables customizing other aspects of the IDE such as menus (including
context menus) and toolbars. The next subsections cover both scenarios with examples.

Customizing an Existing Toolbar
Imagine you want to add another button to the Standard toolbar, such as the Close
Solution command. Select Tools, Customize. When the Customize dialog displays, select

FIGURE 56.9 Setting command properties in the External Tool dialog.

From the Library of Wow! eBook

ptg

1183Customizing Visual Studio 2010
5

6

the Commands tab. Then select the Toolbar item and from the related combo box pick
up the Standard toolbar. Now the goal is adding a button, so click Add Command. This
launches the Add Command dialog; here you just select the menu where the command is
located (on the left) and the command itself (on the right). Select File on the left and
Close Solution on the right. Figure 56.10 shows the result of this step.

When you click OK, the command is added to the desired toolbar, as demonstrated in
Figure 56.11. In the Customize dialog simply click Move Up or Move Down to place the
command in the preferred position.

FIGURE 56.10 Selecting the command to be added to the standard toolbar.

FIGURE 56.11 Arranging the command position in the toolbar.

From the Library of Wow! eBook

ptg

1184 CHAPTER 56 Advanced IDE Features

Simply click Close to return to the IDE. You see the command appearing on the
Standard toolbar.

Creating a New Custom Toolbar
To create a new custom toolbar, follow these steps:

1. Select Tools, Customize and make sure that the Toolbars tab is selected.

2. Click the New button, so that the New Toolbar dialog appears. When ready, type the
CustomBar name into the dialog text box and click OK (see Figure 56.12).

3. Select the Commands tab and in the Toolbar combo box, select the CustomBar
toolbar; Figure 56.13 shows how the Customize dialog looks at this particular point.

FIGURE 56.12 Adding a new custom toolbar.

FIGURE 56.13 Preparing the new toolbar for customization.

From the Library of Wow! eBook

ptg

1185Managing User Settings
5

6

4. Click Add Command and follow the instruction explained in the previous section to
add as many commands you want in the new toolbar. Figure 56.14 shows an example.

At this point the new toolbar is available in the IDE. To remove it, simply right-click one
of the existing toolbars and unselect the new one from the pop-up list.

Managing User Settings
When you run Visual Studio for the first time, you are asked to specify a setting set that
best suits your needs. Then you can customize Visual Studio settings and options to make
the IDE the best environment for you. Starting from Visual Studio 2005 the IDE provides
the ability of exporting settings to disk into a .VsSettings file as a backup for later reuse,
meaning that you have also the ability of importing existing settings into the environ-
ment. This section explains how you manage Visual Studio settings.

Exporting Settings

You export Visual Studio settings by selecting the Tools, Import and Export Settings
command. This launches the Import and Export Settings Wizard, whose first dialog is
shown in Figure 56.15.

FIGURE 56.14 Configuring the new custom toolbar.

From the Library of Wow! eBook

ptg

1186 CHAPTER 56 Advanced IDE Features

From here you can decide what you want to do, in this case exporting settings, so leave
unchanged the default option and then click Next. The second dialog enables deep
selections over the available settings to export. Figure 56.16 shows the full list of avail-
able settings.

Basically you can export all settings available in the Options dialog and other settings
such as code analysis, database tools, and general development settings. After you select
the desired settings, click Next. In the next dialog you will be asked to specify a filename
and the target folder. By default Visual Studio 2010 proposes a filename based on the
current date/time and the user level settings folder as the target folder, as demonstrated in
Figure 56.17.

At this point just click Finish to save your settings to disk and return to the IDE. For
importing saved settings later, read the next section.

Importing Settings

To import existing settings, select again Tools, Import and Export Settings. When the
wizard appears, select Import Selected Environment Settings (refer to Figure 56.15). The
second dialog asks your agreement for backing up the current settings before proceeding
(see Figure 56.18). This is your choice. After you’ve decided, click Next.

In the final dialog the wizard asks you to select settings to import from the list of available
settings. Notice how the .vssettings file saved during the example of the preceding section
is in the list (see Figure 56.19).

FIGURE 56.15 Starting the Import and Export Settings Wizard.

From the Library of Wow! eBook

ptg

1187Managing User Settings
5

6

FIGURE 56.16 Selecting settings to export.

FIGURE 56.17 Providing the target filename and folder for exporting settings.

From the Library of Wow! eBook

ptg

1188 CHAPTER 56 Advanced IDE Features

FIGURE 56.18 The second dialog of the wizard enables backing up current settings.

FIGURE 56.19 Selecting settings to be imported into the IDE.

From the Library of Wow! eBook

ptg

1189Customizing the Toolbox
5

6

TIP

Notice that you can import only one settings file.

Select the desired settings file and then click Finish. At this point selected settings replace
existing ones.

Customizing the Toolbox
Like its predecessors, Visual Studio 2010 enables customizing the toolbox by adding
controls that are not listed by default and that are included in the .NET Framework or that
come from third-party assemblies. To customize the toolbox, you select Tools, Choose
Toolbox Items or right-click the Toolbox and select Choose Items. This launches the
Choose Toolbox Items dialog, which is represented in Figure 56.20.

There are some improvements in Visual Studio 2010, because now there are tabs for select-
ing WPF and Silverlight controls and components for Windows Workflow Foundation.
Simply select the items you want to add to the toolbox and then click OK.

FIGURE 56.20 Choosing additional items for the toolbox.

From the Library of Wow! eBook

ptg

1190 CHAPTER 56 Advanced IDE Features

Using, Creating, and Managing Reusable Code
Snippets
Like its predecessors, starting with Visual Studio 2005, Visual Studio 2010 also provides
support for reusable code snippets. The most important addition to the new version is the
support for HTML, ASP.NET, and SQL code snippets. The idea is that you can add into the
code editor existing code snippets stored in external files with the .Snippet extension,
which you can reach from within Visual Studio (and integrated with the IDE) without the
need of creating your custom archive. Another huge benefit of code snippets is that they
can be shared with other developers, so that you and other friends can increase the code
library. Code snippets support is offered in several ways, which is covered in this section.

VISUAL STUDIO CODE SNIPPETS

Visual Studio ships with a large number of code snippets ready to be used. To prevent
accidental deletions, the code snippets reside in the IDE’s own folder and cannot be
removed from the Code Snippets Manager. Later in this chapter you see how to extend
and manage (including removing) code snippets by taking advantage of the user level
snippets folder.

Consuming Code Snippets

Adding existing code snippets into your code is an easy task. Just for demo purposes,
create a new console project with Visual Basic and, when ready, place the cursor within
the Sub Main. Right-click and select the Insert Snippet command. At this point the IDE
shows a list of available snippets categories, as shown in Figure 56.21.

The first thing to mention is that code snippets files are organized in categories, such as
WPF, Code Patterns, Fundamentals, and so on. Basically a category is nothing but a folder
containing a number of .snippet files. Double-click the desired category, for example Code
Patterns. At this point the IDE shows a list of subcategories; click Error Handling
(Exceptions). Now Visual Studio offers the list of available code snippets within the given
category, as exemplified in Figure 56.22.

Double-click the Try..Catch..End Try Statement snippet so that code is added in the code
editor. At this point Visual Studio inserts a code snippet for intercepting an exception
within a Try..Catch block, as shown in Figure 56.23.

Notice how, in this specific example, the ApplicationException has been highlighted.
Highlights are also known as replacements because they indicate to the developers that
they should replace the highlighted code with a more appropriate code block according to
her needs. For example, you might want to catch a FileNotFoundException instead of an
ApplicationException; therefore, you should make this replacement, but the rest of the
code snippet is still valid.

From the Library of Wow! eBook

ptg

1191Using, Creating, and Managing Reusable Code Snippets
5

6

FIGURE 56.21 The IDE shows a list of available snippets categories.

FIGURE 56.22 A list of code snippets.

From the Library of Wow! eBook

ptg

1192 CHAPTER 56 Advanced IDE Features

FIGURE 56.23 The code snippet has been added to the current code.

REPLACEMENT INFORMATION

If you pass with the mouse pointer over replacements, you get information via a tooltip
about what the replacement is about.

Generally code snippets offer lots of information, too, such as the author name, support
website, and shortcut. This information is also available in the Code Snippet Manager
described in next section.

The Code Snippet Manager

The Code Snippet Manager is an integrated tool for adding, removing, and getting infor-
mation on code snippets. You invoke it by selecting Tools, Code Snippets Manager.
Figure 56.24 shows how this tool window looks.

You can first select one of the available programming or markup languages from the
Language combo box. The tool automatically shows a list of available code snippets
related to that specific language. You can browse the snippets tree and select one to get
information, such as the Description, the Shortcut, and the Author. As you can see, code
snippets can be organized into subfolders. To create a new subfolder simply click Add and
provide the folder name. If you want to import existing code snippets, simply click
Import and select the .snippet files you want to add to the current collection. Notice that
you can also remove code snippets from the collection, but this is not allowed for snippets
shipped with Visual Studio, whereas it is allowed on custom code snippets. Also notice
that the Shortcut property for snippets is useful because in the code editor you can simply

From the Library of Wow! eBook

ptg

1193Using, Creating, and Managing Reusable Code Snippets
5

6

FIGURE 56.24 The Code Snippet Manager tool.

add a code snippet typing its shortcut and then pressing Tab, without the need of
performing all steps described in the previous subsection. When you know how to
manage snippets, you are ready to learn to build custom snippets.

Creating and Consuming Custom Code Snippets

Code snippets .Snippet files are simply Xml files containing the code and information
about the snippet. Code snippets have their own Xml schema that Visual Studio then uses
to correctly identify them within the IDE. To understand how a code snippet is made,
consider the following code that is stored in the snippet named Calculate Cosine of an
Angle from the Visual Studio snippets library:

Dim radians As Double = 120 * Math.PI / 180

Dim cos As Double = Math.Cos(radians)

If you open the CalculateCosineOfAngle.snippet file with an Xml editor (or just with
Windows Notepad), the file content looks like the content of Listing 56.1.

LISTING 56.1 Examining an Existing Code Snippet

<?xml version=”1.0” encoding=”utf-8”?>

<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>

<CodeSnippet Format=”1.0.0”>

<Header>

<Title>Calculate the Cosine of a specified Angle</Title>

<Author>Microsoft Corporation</Author>

<Description>Converts an angle from degrees to radians and then calculates

cosine of the angle</Description>

<Shortcut>mathCos</Shortcut>

From the Library of Wow! eBook

ptg

1194 CHAPTER 56 Advanced IDE Features

</Header>

<Snippet>

<Imports>

<Import>

<Namespace>System</Namespace>

</Import>

<Import>

<Namespace>Microsoft.VisualBasic</Namespace>

</Import>

</Imports>

<Declarations>

<Literal>

<ID>Degrees</ID>

<Type>Double</Type>

<ToolTip>Replace with the measurement in degrees.</ToolTip>

<Default>120</Default>

</Literal>

</Declarations>

<Code Language=”VB” Kind=”method body”><![CDATA[Dim radians As Double =

$Degrees$ * Math.PI / 180

Dim cos As Double = Math.Cos(radians)]]></Code>

</Snippet>

</CodeSnippet>

</CodeSnippets>

Code snippets in Visual Studio 2010 still adhere to the first Xml schema introduced with
Visual Studio 2005, so there are no changes. Basically a snippet structure is divided into
some Xml nodes. The Header node provides information on the snippet, whereas the
Snippet node contains code, required Imports directives, and assembly references. Notice
how the real code is stored inside a CDATA section. As you may know, this kind of section
can store any kind of characters, and so it is the most appropriate for storing code. Finally
the Declarations node stores information on replacement. The ID element specifies an ID
for the replacement, the Type element specifies the data type of the object that should be
replaced, ToolTip provides a descriptive tooltip when the user passes the mouse over the
replacement, and Default provides a default value. Now imagine you want to create a
custom code snippet that will be added to the code snippets library so that you can reuse
it inside Visual Studio. First, you need a Visual Basic code snippet. As an example, consider
the following code that implements an extension method for converting an
IEnumerable(Of T) into an ObservableCollection(Of T):

<Extension()> Module Extensions

<Extension()> Function ToObservableCollection(Of T)(ByVal source As _

IEnumerable(Of T)) As ObservableCollection(Of T)

If source IsNot Nothing Then

From the Library of Wow! eBook

ptg

1195Using, Creating, and Managing Reusable Code Snippets
5

6

Return New ObservableCollection(Of T)(source)

Else

Throw New ArgumentNullException(“source”)

End If

End Function

End Module

Now the goal is building a custom .snippet file to make the preceding code reusable. Thus
you must create an Xml file according to the snippet schema. Listing 56.2 shows how to
accomplish this. You can use any text editor, such as the Windows Notepad or the Visual
Studio’s Xml editor.

LISTING 56.2 Building a Custom Code Snippet

<?xml version=”1.0” encoding=”utf-8”?>

<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>

<CodeSnippet Format=”1.0.0”>

<Header>

<Title>ToObservableCollection</Title>

<Author>Alessandro Del Sole</Author>

<Description>Convert an IEnumerable(Of T)

into an ObservableCollection(Of T)

</Description>

<HelpUrl>http://community.visual-basic.it/Alessandro</HelpUrl>

<SnippetTypes />

<Keywords />

<Shortcut>toObs</Shortcut>

</Header>

<Snippet>

<References />

<Imports>

<Import>

<Namespace>System.Runtime.CompilerServices</Namespace>

</Import>

<Import>

<Namespace>System.Collections.ObjectModel</Namespace>

</Import>

</Imports>

<Declarations>

<Literal Editable=”true”>

<ID>source</ID>

<Type>IEnumerable(Of T)</Type>

<ToolTip>Replace with a different identifier if needed</ToolTip>

<Default>source</Default>

<Function></Function>

</Literal>

From the Library of Wow! eBook

ptg

1196 CHAPTER 56 Advanced IDE Features

</Declarations>

<Code Language=”VB” Kind=”” Delimiter=”$”><![CDATA[<Extension()> Module

Extensions

<Extension()> Function ToObservableCollection(Of T)(ByVal $source$ As _

IEnumerable(Of T)) As ObservableCollection(Of T)

If $source$ IsNot Nothing Then

Return New ObservableCollection(Of T)($source$)

Else

Throw New ArgumentNullException(“$source$”)

End If

End Function

End Module]]></Code>

</Snippet>

</CodeSnippet>

</CodeSnippets>

Xml elements are self-explanatory. At this point you simply need to save the preceding
snippet in the C:\Users\UserName\My Documents\Visual Studio 2010\Code
Snippets\Visual Basic\My Code Snippets folder. For example, save it as
ToObservableCollection.snippet. Now go back to the Visual Basic code editor, right-click
to insert a snippet until you find the new My Code Snippets|ToObservableCollection
element. If you add it, you should get a result similar to the one shown in Figure 56.25.

FIGURE 56.25 Adding the new code snippet in Visual Studio.

From the Library of Wow! eBook

ptg

1197Summary
5

6

Notice how you get information on the replacement via the specified tooltip, when the
mouse pointer passes over the replacement.

TOOLS FOR PRODUCING CODE SNIPPETS

Writing code snippets manually can be annoying. Fortunately there are a lot of tools
(most of them are open source) for generating code snippets via a graphical user inter-
face to make this task easier. Check Appendix C, “Useful Resources and Tools for
Visual Basic Developers,” for a list of available tools.

Maybe you want to know how to deploy code snippets for sharing with other developers
or simply to create a code snippets database. The most appropriate way for sharing snip-
pets is creating a redistributable .Vsi package based on the Visual Studio Content Installer,
a particular engine dedicated to sharing additions for Visual Studio (particularly add-ins
and code snippets, the only two additional contents not covered by VSIX packages in
Visual Studio 2010). This is appropriate because such an engine can install contents into
the correct folders so that developers will not do this manually. The VSCI is not covered
here (read the MSDN documentation at this address: http://msdn.microsoft.com/en-
us/library/ms246580(VS.100).aspx), but in Appendix C you can find tools capable of
generating .vsi packages for you. Another way to share snippets is to create a compressed
archive storing .Snippet files that you can send to other developers; then they will just
extract the archive content into the snippets folder.

Summary
This chapter covered some important features about customizing Visual Studio 2010. We
started by explaining how to export both projects and items templates, then moved to
customizing the IDE by providing additional commands to the Tools menu and by
customizing existing toolbars or adding a new one. Then we described how you can
export and import Visual Studio settings to keep your environment up to date with your
preferences. Finally we took an important tour through code snippets to see how they can
improve the way you write code by creating your code library and taking advantage of the
Visual Studio code snippets library.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/ms246580(VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms246580(VS.100).aspx

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 57

Introducing the Visual
Studio Extensibility

IN THIS CHAPTER

. Introducing Visual Studio
Extensibility

. Building a Visual Studio
Package

. Deploying Visual Studio
Extensions

. Managing Extensions with the
Extension Manager

. Managing Add-Ins with the Add-
In Manager

. Extending the Code Editor

Visual Studio is with no doubt a great application, offer-
ing hundreds of integrated tools that cover hundreds of
aspects of the development experience. It is also a complex
and composite application, made of components. For
example, each tool window is a single component devel-
oped separately and then put together with the rest of the
environment. Developing Visual Studio components and
then putting them together is something made possible
because of Visual Studio Extensibility. This means that
Visual Studio is an extensible application and that other
developers, like you and me, can build their own compo-
nents to be put together within the IDE. Although, as
mentioned before, Visual Studio offers hundreds of tools
that covers many development needs, it cannot cover all
possible requirements; with regard to this, one of the
biggest benefits inside the Visual Studio development envi-
ronment is that you can customize it with additional tools,
windows, and items that can make your developer life even
easier. In this chapter you get started with the Visual Studio
2010 extensibility, building custom components, and also
taking a tour of what is new in the 2010 version.

Introducing Visual Studio
Extensibility
Since previous versions, Visual Studio has always been an
extensible environment. This means that it can be extended
and enhanced with additional tools, windows, add-ins,
packages, and macros to increase your productivity with
specific instruments that you might need for adjusting the
environment to your developer needs. Behind the scenes,

From the Library of Wow! eBook

ptg

1200 CHAPTER 57 Introducing the Visual Studio Extensibility

Visual Studio is a mixed-mode application meaning that it is built on both COM and .NET
architectures, although in the 2008 and 2010 versions the managed architecture plays a
bigger role than in the past.

Visual Studio takes advantage of several .NET assemblies whose names begin with
Microsoft.VisualStudio.XXX.dll (where XXX stands for a particular environment area) for
maintaining its infrastructure. Such assemblies expose lots of namespaces whose names
begin with Microsoft.VisualStudio and play an important role in the IDE extensibility,
because the developer can build components referencing those assemblies to get access to
IDE functionalities and extend the functionalities with custom packages or add-ins. As you
can imagine, this opens to interesting development scenarios; building extensions for
Visual Studio can be an important business, and several companies build extensions for
Visual Studio. But this is what developers could do with Visual Studio until the 2008
version. With the new Visual Studio 2010 IDE, Microsoft completely revisited the IDE
architecture and infrastructure so that the environment can be extended in further ways
other than classic add-ins. The next section explains what is new in the Visual Studio
2010 extensibility before showing practical examples.

What’s New in the Extensibility with Visual Studio 2010

The IDE has been completely revisited in Visual Studio 2010. Several areas now rely on
Windows Presentation Foundation, bringing a lot of improvements to the developer expe-
rience. The most evident area affected by this change is the code editor, which is entirely
built upon WPF. Visual Studio 2010 enables extending the code editor with specific WPF
objects that can actually enrich the code editor with useful or just attractive extensions.
Another key concept is how the IDE infrastructure is now built. The old extensibility
architecture has now been replaced with the Managed Extensibility Framework (or just
MEF), a set of .NET libraries that favors building extensible applications with composition
techniques according to a plug-in model. MEF is actually an open source project available
on the CodePlex website that you can use to build your own extensible applications. You
can check out MEF here: http://mef.codeplex.com. After this brief introduction we can
divide the Visual Studio extensibility into two main areas: packages and add-ins develop-
ment and code editor extensions development. The next section provides more details on
the available projects, for now focus on the concept of extension. Each component
extending the IDE is called extension, independently from its nature (for example, pack-
ages or code editor extensions). This concept, together with the new extensibility features
(especially for the WPF-based features) required a new deployment system for extensions.
With Visual Studio 2010, Microsoft introduces a new .VSIX file format, specific for deploy-
ing extensions and that is intended as a replacement for the .VSI file format (with some
exceptions as explained later in this chapter). But before going into further discussions,
you need some additional tools required for developing versus Visual Studio, known as the
Visual Studio 2010 SDK.

From the Library of Wow! eBook

http://mef.codeplex.com

ptg

1201Building a Visual Studio Package

The Visual Studio 2010 SDK

Basically you create custom extensions for and with Visual Studio taking advantage of
specific project templates. To enable Visual Studio 2010 extensibility projects, you need to
download and install the Visual Studio 2010 Software Development Kit, which is available
from the Visual Studio Extensibility Center located here: http://msdn.microsoft.com/en-
us/vsx/default.aspx. The SDK setup can install tools, project templates, and documenta-
tion so that you can build custom extensions for the IDE. In the Microsoft Visual Studio
2010 SDK you can find shortcuts to online tools, samples, and documentation about the
extensibility. Also there is a subfolder named Tools where you can find a shortcut for start-
ing Visual Studio under the experimental hive and for resetting the environment. The
experimental hive is a fully functional instance of Visual Studio used for extension debug-
ging and testing, and in most cases you do not need to launch it manually, because it will
be launched by the development instance of Visual Studio. The experimental hive keeps
track of all extensions you develop and debug, so you can reset the instance when you
want it to be clean.

EXTENSIBILITY SAMPLES

The Visual Studio Extensibility team from Microsoft published (and periodically
updates) code examples about extending Visual Studio 2010 onto the MSDN Code
Gallery. I suggest you to visit the dedicated Web page located here: http://code.msdn.
microsoft.com/vsx. You can find several interesting examples covering almost every
extensibility area.

The SDK installs additional projects templates for the Visual Studio extensibility as
summarized in the following list:

. Editor extensibility projects. Basically such projects are fully functional code exam-
ples that you can use for understanding how extensions work.

. Add-ins, integration packages, and Visual Studio Shell projects.

. Extension deployment projects, including toolbox controls.

All the listed projects templates are available in the New Project dialog. In next section
you develop your first extension for Visual Studio 2010 taking advantage of the new WPF
infrastructure.

Building a Visual Studio Package
The goal of this introductory chapter on the Visual Studio extensibility is showing how
you create and deploy a Visual Studio Package. Basically Visual Studio is made of packages.
Each package represents a working unit. For example, the toolbox is a package; Solution
Explorer is another package, and so on. You can extend Visual Studio by building custom
integration packages. There are different kinds of integration packages, such as tool
windows, menus, wizards, and languages. The big difference between a package and an

5
7

From the Library of Wow! eBook

http://code.msdn.microsoft.com/vsx
http://code.msdn.microsoft.com/vsx
http://msdn.microsoft.com/en-us/vsx/default.aspx
http://msdn.microsoft.com/en-us/vsx/default.aspx

ptg

1202 CHAPTER 57 Introducing the Visual Studio Extensibility

add-in is that a package can add completely new tools and features to the IDE, whereas
add-ins typically extend existing features in the IDE with other features. In the next code
example you learn to build a custom tool window that can provide the ability of compil-
ing code snippets on-the-fly in both Visual Basic and Visual C#. Open the New Project
window by selecting File, New Project. When the New Project window appears, select the
Other Project Types, Extensibility subfolder on the left and then the Visual Studio
Integration Package project template. Name the new project
SnippetCompilerVSPackage (see Figure 57.1) and then click OK.

At this point the Visual Studio Integration Package Wizard starts. In the first step select
Visual Basic as the programming language and leave unchanged the new key file option,
as shown in Figure 57.2.

In the next window you can set information for the new package, such as author, descrip-
tion, and icon. Figure 57.3 shows an example for these settings.

The next step is important and is the place where you can select the package type. Select
Tool Window and then click Next (see Figure 57.4). You can also select multiple options
depending on where you want the tool to be available.

In the next step, represented in Figure 57.5, you can specify the Window name and
Command ID. The Window name is actually the tool window title, whereas the ID is used

FIGURE 57.1 Creating the new extensibility project.

From the Library of Wow! eBook

ptg

1203Building a Visual Studio Package
5

7

FIGURE 57.2 Setting language and key file options.

FIGURE 57.3 Setting package information.

FIGURE 57.4 Package type selection.

From the Library of Wow! eBook

ptg

1204 CHAPTER 57 Introducing the Visual Studio Extensibility

internally by Visual Studio for invoking the new package. Figure 57.5 shows an example
about setting the information.

The next step requires you to specify if you want to add test projects for the new package.
For this example, uncheck both projects and proceed. At this point you can complete the
wizard and Visual Studio will generate the new project. When the new project is ready, the
first thing you notice is that, differently from previous version, the tool window is nothing
but a WPF custom control. Now double-click the MyControl.xaml file in Solution Explorer,
in order to enable the designer. Figure 57.6 shows how the IDE appears at this point.

Visual Studio implements a WPF skeleton for a new tool window that you need to
customize. Before going into that, consider the meaning of files available within Solution
Explorer. This is summarized in Table 57.1.

FIGURE 57.5 Setting title and ID for the new tool window.

TABLE 57.1 VS Package Code Files

File Description

Guids.vb Defines a number of GUIDs that Visual Studio will utilize
to recognize and implement the tool window

MyToolWindow.vb A class implementing the tool window hosting it as a
user control

PkgCmdId.vb Exposes a unique identifier for the package within Visual
Studio

Resources.resx Exposes resources required by the IDE

VSPackage.resx Exposes resources required by the package

MyControl.Xaml The WPF custom control actually implementing the tool
window content

From the Library of Wow! eBook

ptg

1205Building a Visual Studio Package
5

7

FIGURE 57.6 The IDE is ready on the new extensibility project, showing the WPF custom
control.

There is also a subfolder named Resources that contains the icons used within the package
and that identifies the new tool in Visual Studio. All code files contain comments that can
help you understand what that particular file is for. For example, take a look at the
SnippetCompilerVsPackagePackage.vb file. For your convenience, Listing 57.1 shows the

TABLE 57.1 Continued

File Description

SnippetCompilerVsPackagePackage.vb The class implementing the tool window

SnippetCompilerVsPackage.vsct An xml file defining the layout of the package, including
company information

Source.extension.vsixmanifest An xml file used for deploying packages as a .Vsix file
(see later in this chapter)

Key.snk Strong name file required for signing the package
assembly

From the Library of Wow! eBook

ptg

1206

content of this file. Notice how comments are detailed and how they provide complete
explanations on types and their role within the user interface.

LISTING 57.1 Understanding Packages Behind the Scenes

Imports Microsoft.VisualBasic

Imports System

Imports System.Diagnostics

Imports System.Globalization

Imports System.Runtime.InteropServices

Imports System.ComponentModel.Design

Imports Microsoft.Win32

Imports Microsoft.VisualStudio.Shell.Interop

Imports Microsoft.VisualStudio.OLE.Interop

Imports Microsoft.VisualStudio.Shell

‘’’ <summary>

‘’’ This is the class that implements the package exposed by this assembly.

‘’’

‘’’ The minimum requirement for a class to be considered a valid package for

‘’’ Visual Studio is to implement the IVsPackage interface and register itself with

‘’’ the shell.

‘’’ This package uses the helper classes defined inside the

‘’’ Managed Package Framework (MPF)

‘’’ to do it: it derives from the Package class that provides the implementation of

‘’’ the IVsPackage interface and uses the registration attributes defined in the

‘’’ ‘’’ framework to register itself and its components with the shell.

‘’’ </summary>

‘ The PackageRegistration attribute tells the PkgDef creation utility

‘ (CreatePkgDef.exe) that this class is a package.

‘

‘ The InstalledProductRegistration attribute is used to register the information

needed to show this package

‘ in the Help/About dialog of Visual Studio.

‘

‘ The ProvideMenuResource attribute is needed to let the shell know that this

‘ package exposes some menus.

‘ The ProvideToolWindow attribute registers a tool window exposed by this package.

<PackageRegistration(UseManagedResourcesOnly := true), _

InstalledProductRegistration(“#110”, “#112”, “1.0”, IconResourceID := 400), _

ProvideMenuResource(“Menus.ctmenu”, 1), _

ProvideToolWindow(GetType(MyToolWindow)), _

Guid(GuidList.guidSnippetCompilerVSPackagePkgString)> _

Public NotInheritable Class SnippetCompilerVSPackagePackage

Inherits Package

CHAPTER 57 Introducing the Visual Studio Extensibility

From the Library of Wow! eBook

ptg

1207Building a Visual Studio Package
5

7

‘’’ <summary>

‘’’ Default constructor of the package.

‘’’ Inside this method you can place any initialization code that does not require

‘’’ any Visual Studio service because at this point the package object is created

‘’’ but not sited yet inside Visual Studio environment. The place to do all the

‘’’ other initialization is the Initialize method.

‘’’ </summary>

Public Sub New()

Trace.WriteLine(String.Format(CultureInfo.CurrentCulture,

“Entering constructor for: {0}”,

Me.GetType().Name))

End Sub

‘’’ <summary>

‘’’ This function is called when the user clicks the menu item that shows the

‘’’ tool window. See the Initialize method to see how the menu item is associated to

‘’’ this function using the OleMenuCommandService service and the MenuCommand class.

‘’’ </summary>

Private Sub ShowToolWindow(ByVal sender As Object, ByVal e As EventArgs)

‘ Get the instance number 0 of this tool window. This window is single instance

‘ so this instance

‘ is actually the only one.

‘ The last flag is set to true so that if the tool window does not exists it

‘ will be created.

Dim window As ToolWindowPane = Me.FindToolWindow(GetType(MyToolWindow), 0, True)

If (window Is Nothing) Or (window.Frame Is Nothing) Then

Throw New NotSupportedException(Resources.CanNotCreateWindow)

End If

Dim windowFrame As IVsWindowFrame = TryCast(window.Frame, IVsWindowFrame)

Microsoft.VisualStudio.ErrorHandler.ThrowOnFailure(windowFrame.Show())

End Sub

‘’’’

‘ Overriden Package Implementation

#Region “Package Members”

‘’’ <summary>

‘’’ Initialization of the package; this method is called right

‘’’ after the package is sited, so this is the place

‘’’ where you can put all the initilaization code that rely on services provided by

‘’’ VisualStudio.

From the Library of Wow! eBook

ptg

1208

‘’’ </summary>

Protected Overrides Sub Initialize()

Trace.WriteLine(String.Format(CultureInfo.CurrentCulture,

“Entering Initialize() of: {0}”,

Me.GetType().Name))

MyBase.Initialize()

‘ Add our command handlers for menu (commands must exist in the .vsct file)

Dim mcs As OleMenuCommandService = _

TryCast(GetService(GetType(IMenuCommandService)), OleMenuCommandService)

If Not mcs Is Nothing Then

‘ Create the command for the tool window

Dim toolwndCommandID As New CommandID(GuidList.

guidSnippetCompilerVSPackageCmdSet,

CInt(PkgCmdIDList.cmdidSnippetCompiler))

Dim menuToolWin As New MenuCommand(New EventHandler _

(AddressOf ShowToolWindow), toolwndCommandID)

mcs.AddCommand(menuToolWin)

End If

End Sub

#End Region

End Class

The class inherits from Microsoft.VisualStudio.Shell.Package, the base class exposing
the required interface for every functional package. Notice how the ShowToolWindow
method gets an instance of the Microsoft.VisualStudio.Shell.ToolWindowPane class
pointing to the custom tool window (Me.FindToolWindow (GetType(MyToolWindow))). The
same exam can be done on the ToolWindow.vb file. After doing this, it is possible to
customize the WPF control. The goal of the tool window is enabling on-the fly compila-
tion for code snippets. With that said, there is the need of implementing the user interface
side, so in the XAML editor type the code shown in Listing 57.2.

LISTING 57.2 Implementing the Tool Window User Interface

<UserControl x:Class=”MyControl”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:vsfx=”clr-

namespace:Microsoft.VisualStudio.Shell;assembly=Microsoft.VisualStudio.Shell.10.0”

mc:Ignorable=”d”

d:DesignHeight=”300” d:DesignWidth=”300”

CHAPTER 57 Introducing the Visual Studio Extensibility

From the Library of Wow! eBook

ptg

1209Building a Visual Studio Package
5

7

Name=”MyToolWindow”

Background=”{DynamicResource

{x:Static vsfx:VsBrushes.ToolWindowBackgroundKey}}”>

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height=”30” />

<RowDefinition Height=”40” />

<RowDefinition />

<RowDefinition Height=”50” />

<RowDefinition Height=”40” />

<RowDefinition />

</Grid.RowDefinitions>

<!— This will allow selecting the compiler —>

<ComboBox Name=”LanguageCombo” Text=”VisualBasic” Margin=”5”>

<ComboBoxItem Content=”VisualBasic” />

<ComboBoxItem Content=”CSharp” />

</ComboBox>

<TextBlock Margin=”5” Grid.Row=”1”

Foreground=”{DynamicResource

{x:Static vsfx:VsBrushes.ToolWindowTextKey}}”>

Write or paste your code here:</TextBlock>

<TextBox Grid.Row=”2” Name=”CodeTextBox” Margin=”5”

Foreground=”{DynamicResource

{x:Static vsfx:VsBrushes.ToolWindowTextKey}}”

AcceptsReturn=”True” AcceptsTab=”True”

VerticalAlignment=”Stretch”

VerticalScrollBarVisibility=”Auto”

HorizontalScrollBarVisibility=”Auto” />

<Button Grid.Row=”3” Content=”Compile code” Width=”80” Height=”40”

Name=”button1”/>

<TextBlock Grid.Row=”4” Margin=”10”

Foreground=”{DynamicResource

{x:Static vsfx:VsBrushes.ToolWindowTextKey}}”>

Compilation results:</TextBlock>

<ListBox Grid.Row=”5” ItemsSource=”{Binding}”

Name=”ErrorsListBox” Margin=”5”

Foreground=”{DynamicResource

{x:Static vsfx:VsBrushes.ToolWindowTextKey}}”/>

</Grid>

</UserControl>

On the Visual Basic side, enter the MyControl.xaml.vb file and write the code shown in
Listing 57.3. This adds compile functionalities to the tool window when the button is

From the Library of Wow! eBook

ptg

1210

clicked. Basically the code makes use of the System.CodeDom namespace for getting
instances of the .NET compilers, as you will understand through comments in the code.

LISTING 57.3 Code for Compiling On-the-Fly the Code Typed Inside the Tool Window

Imports System.Security.Permissions

Imports System

Imports System.Reflection

Imports System.Reflection.Emit

Imports System.CodeDom.Compiler

Imports System.Windows.Controls

‘’’<summary>

‘’’ Interaction logic for MyControl.xaml

‘’’</summary>

Partial Public Class MyControl

Inherits System.Windows.Controls.UserControl

<System.Diagnostics.CodeAnalysis.SuppressMessage(“Microsoft.Globalization”,

“CA1300:SpecifyMessageBoxOptions”)> _

Private Sub button1_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles button1.Click

Try

If String.IsNullOrEmpty(CodeTextBox.Text) = False Then

Me.ErrorsListBox.ItemsSource = _

Compile(CType(Me.LanguageCombo.SelectedItem,

ComboBoxItem).Content.ToString)

End If

Catch ex As Exception

‘Handle other exceptions here, no compiler errors

End Try

End Sub

Private Function Compile(ByVal language As String) As IEnumerable(Of String)

‘Gets the ComboBox selected language

Dim languageProvider As String = language

‘Creates an instance of the desired compiler

Dim CompilerProvider As CodeDomProvider = _

CodeDomProvider.CreateProvider(languageProvider)

CHAPTER 57 Introducing the Visual Studio Extensibility

From the Library of Wow! eBook

ptg

1211Building a Visual Studio Package
5

7

‘Sets compiler parameters

Dim params As New CompilerParameters()

Dim results As CompilerResults

‘Configure self-explanatory parameters

With params

.GenerateExecutable = False

.GenerateInMemory = True

.IncludeDebugInformation = False

‘You can add multiple references here

.ReferencedAssemblies.Add(“System.dll”)

End With

‘Compiles the specified source code

results = CompilerProvider.

CompileAssemblyFromSource(params,

CodeTextBox.Text)

‘If no errors, the ListBox is empty

If results.Errors.Count = 0 Then

Return Nothing

Else

‘If any errors, creates a list of errors...

Dim errorsList As New List(Of String)

‘..iterating the compiler errors

For Each item As CompilerError In results.Errors

errorsList.Add(item.ErrorText & “ Line “ & item.Line.ToString)

Next

Return errorsList.AsEnumerable

errorsList = Nothing

End If

End Function

End Class

At this point you can test the new tool window. This can be accomplished by simply
pressing F5 as you would do in any other kind of .NET application. This starts a new
instance of Visual Studio known as Experimental Hive. It is a fully functional instance of
Visual Studio that is used for debugging custom extensions. If the new tool window is not
visible, simply click the new View, Other Windows, Snippet Compiler command. Figure
57.7 shows how the new tool window appears in the IDE.

From the Library of Wow! eBook

ptg

1212

The new tool window is a fully functional one, so it can be anchored like any other Visual
Studio window. To stop the test environment, simply close the experimental instance of
Visual Studio. Until now you saw a debugging scenario. When the debugging and testing
phase is completed, you need to deploy the extension to other developers. As explained in
the next section, Visual Studio 2010 offers a new, simple deployment system for this kind
of extensions.

Deploying Visual Studio Extensions
Among new features in the Visual Studio extensibility, deploying extensions also changes.
Microsoft introduces a new file type named VSIX (with .vsix extension) for packaging
deploying Visual Studio extensions. This new format is intended as a replacement for the
previous .vsi file format first introduced with Visual Studio 2005. Basically a VSIX package
is nothing but a zip archive that is built with regard to the open packaging convention.
This means that if you rename the .vsix package into .zip, you can browse its content
with any compression tool supporting zips. This kind of package needs to store some
other files:

. A [Content_Types].xml file that describes the archive content according to the open
packaging convention

CHAPTER 57 Introducing the Visual Studio Extensibility

FIGURE 57.7 The new tool window running inside Visual Studio 2010.

From the Library of Wow! eBook

ptg

1213Deploying Visual Studio Extensions
5

7

. An extension.vsixmanifest file storing information on the extension and on how it
will be deployed

. Binary files for the extension (set named product payload)

. Support files, such as license, icons, and so on

VSIX packages cannot deploy add-ins, macros, and code snippets, whereas they can
deploy any other kind of extensions. You can also deploy extensions via Windows
Installer packages; this is preferable when you need to accomplish specific requirements
such as installing assemblies to the GAC or writing to the Registry. For all other cases,
VSIX packages are a good thing.

DEPLOYING ADD-INS AND CODE SNIPPETS

Because you cannot deploy Visual Studio add-ins and code snippets with Vsix pack-
ages, you still need to build a .vsi package or recur to Windows Installer projects.

There are also some other good reasons for preferring VSIX packages. First, they can check
for updates. Second, they can be uploaded to the Visual Studio Gallery so that other devel-
opers can download your extension directly from the Visual Studio Extension Manager.
(That will be covered later in this chapter.) Another good reason is that you do not need
to edit a VSIX package manually. Visual Studio offers an integrated designer for creating
VSIX packages directly into the current project. Continuing the previous example, double-
click the source.extension.vsixmanifest file in Solution Explorer. This file is added to
each extensibility project at creation time and is the deployment manifest for the exten-
sion. Once this is done, Visual Studio 2010 looks like Figure 57.8.

With the exception of the ID field, which is filled by Visual Studio, you just need to fill
blank and self-explanatory fields with custom values, as Figure 57.8 exemplifies. It is
worth mentioning that VSIX packages are localizable (check out the Locale combo box)
and can target multiple editions of Visual Studio (click the Select Editions button). You
can also specify a license agreement (License Terms field) adding an existing text file or
RTF file. The References group simply enables specifying other extensions that the current
one depends on. To build the deployment package, simply build the project. The VSIX
package is now available in the project output folder (Bin\Debug or Bin\Release). With
regard to the previous example, the package is named SnippetCompilerVSPackage.Vsix. If
you double-click such a file, you will be prompted with some information before installa-
tion begins, as represented in Figure 57.9.

By clicking Install, the new custom extension will be available onto the target system.
This means that you simply need to deploy the VSIX package and you are done.

From the Library of Wow! eBook

ptg

1214 CHAPTER 57 Introducing the Visual Studio Extensibility

FIGURE 57.8 Customizing properties for the deployment package.

FIGURE 57.9 Installing the new custom extension.

Managing Extensions with the Extension Manager
Visual Studio 2010 has a new integrated tool for easily managing installed extensions and
for finding online extensions that can be easily installed from the Internet. To enter this
tool, simply select the Tools, Extension Manager command. Figure 57.10 shows how the
Extension Manager appears.

From the Library of Wow! eBook

ptg

1215Managing Extensions with the Extension Manager
5

7

The Extension Manager can be used for finding, downloading, and installing extensions to
Visual Studio 2010. If you select the Online Gallery option on the left, the tool shows all
available extensions in the Visual Studio Gallery, an online website from Microsoft specific
for Visual Studio extensions (reachable at http://visualstudiogallery.com and that you
should visit to get a complete overview of extensions and possibly the source code where
available). The tool simply shows the list of available extensions, providing a brief descrip-
tion on the right side of the dialog. You simply click Download to download and install
the desired extension. Each time you install an extension, Visual Studio needs to be
restarted to correctly recognize such additions. As you can see, extensions can be of three
categories: Controls, Templates (including project and item templates), and Tools. Each
category is divided into subcategories, explaining what the extension is bound to.
Basically the Extension Manager can find only VSIX packages, meaning that add-ins and
code snippets are not supported and need to be handled differently. You can also search
through on-line additions using the search box in the upper right of the dialog. Also, you
can easily manage installed additions. Simply click Installed Extensions to get the full list
of available extensions on your system, as shown in Figure 57.11, that lists extensions
available on my development machine.

Here you can simply disable an extension, keeping it installed on the machine and avail-
able for future reuse, or completely uninstall. The tool can also find updates for installed
extensions. This can be accomplished by selecting the Updates command on the left side.

FIGURE 57.10 The new Extension Manager tool.

From the Library of Wow! eBook

http://visualstudiogallery.com

ptg

1216 CHAPTER 57 Introducing the Visual Studio Extensibility

FIGURE 57.11 Managing installed extensions.

Managing Add-Ins with the Add-In Manager
Visual Studio 2010 enables enhancing the environment with add-ins. As mentioned at the
beginning of this chapter, an add-in basically extends an existing functionality. You can
manage installed add-ins via the Add-in Manager tool, which was already available in
previous versions. You enter the tool by selecting Tools, Add-In Manager. Figure 57.12
shows how the tool looks when some add-ins are installed.

FIGURE 57.12 The Add-in Manager.

From the Library of Wow! eBook

ptg

1217Extending the Code Editor
5

7

Each add-in you can specify must be loaded at the IDE startup or if it has command-line
support. Because building custom add-ins is something that was already available in previ-
ous versions of the IDE, this topic is not covered here, so refer to the official MSDN page
at http://msdn.microsoft.com/en-us/library/80493a3w(VS.100).aspx.

Extending the Code Editor
As explained at the beginning of this chapter, one of the most important new features in
the Visual Studio 2010 is the capability of extending the code editor, which is now based
on WPF. Code editor extensions get the instance of the WPF objects keeping the editor
itself alive. For a better understanding, instead of building a particular extension, we
explain required objects taking advantage of one of the sample projects added by the
Visual Studio 2010 SDK. Create a new project and select the Visual Basic, Extensibility
folder; finally select the Editor Text Adornment project template, as shown in
Figure57.13.

The goal of this sample project is simple: adorning each “a” character in the code with a
different background color. The most important object in providing editor extensions is
the Microsoft.VisualStudio.Text.Editor.IWpfTextView type that represents the
instance of the code editor. For the current example, there is the need of placing an
adornment on all occurrences of the specified character. To place adornments, you need
an instance of the IAdornmentLayer type that represents a space for placing adornments.
Listing 57.4 shows the complete code; read comments that can help you understand what
is under the hood.

FIGURE 57.13 Selecting the code editor extension template.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/library/80493a3w(VS.100).aspx

ptg

1218 CHAPTER 57 Introducing the Visual Studio Extensibility

LISTING 57.4 Providing a Code Editor Extension with Adornments

Imports System.Windows

Imports System.Windows.Controls

Imports System.Windows.Media

Imports Microsoft.VisualStudio.Text

Imports Microsoft.VisualStudio.Text.Editor

Imports Microsoft.VisualStudio.Text.Formatting

‘’’ <summary>

‘’’ ScarletCharacter adornment places red boxes behind all

‘’’ the “a”s in the editor window

‘’’ </summary>

Class ScarletCharacter

Private WithEvents _view As IWpfTextView

Private ReadOnly _layer As IAdornmentLayer

Private ReadOnly _brush As Brush

Private ReadOnly _pen As Pen

‘The IWpFTextView object represents the

‘instance of the code editor

Public Sub New(ByVal view As IWpfTextView)

_view = view

‘IAdornmentLayer represents the place where

‘adorners are placed

_layer = view.GetAdornmentLayer(“ScarletCharacter”)

‘Create the pen and brush to color the box behind the a’s

Dim brush As New SolidColorBrush(Color.

FromArgb(&H20, &H0, &H0, &HFF))

brush.Freeze()

Dim penBrush As New SolidColorBrush(Colors.Red)

penBrush.Freeze()

Dim pen As New Pen(penBrush, 0.5)

pen.Freeze()

_brush = brush

_pen = pen

End Sub

‘’’ <summary>

‘’’ On layout change add the adornment to any reformated lines

‘’’ </summary>

Private Sub OnLayoutChanged(ByVal sender As Object,

From the Library of Wow! eBook

ptg

1219Extending the Code Editor
5

7

ByVal e As TextViewLayoutChangedEventArgs) _

Handles _view.LayoutChanged

‘TextViewLayoutChangedEventArgs provides information when

‘the code editor layout changes

For Each line In e.NewOrReformattedLines

Me.CreateVisuals(line)

Next line

End Sub

‘’’ <summary>

‘’’ Within the given line add the scarlet box behind the a

‘’’ </summary>

Private Sub CreateVisuals(ByVal line As ITextViewLine)

‘grab a reference to the lines in the current TextView

Dim textViewLines = _view.TextViewLines

Dim lineStart As Integer = line.Start

Dim lineEnd As Integer = line.End

‘Loop through each character, and place a box around any a

For i = lineStart To lineEnd - 1

If _view.TextSnapshot(i) = “a”c Then

Dim charSpan As New SnapshotSpan(_view.TextSnapshot,

Span.FromBounds(i, i + 1))

Dim g As Geometry = textViewLines.GetMarkerGeometry(charSpan)

If g IsNot Nothing Then

Dim drawing As New GeometryDrawing(_brush, _pen, g)

drawing.Freeze()

Dim drawingImage As New DrawingImage(drawing)

drawingImage.Freeze()

Dim image As New Image()

image.Source = drawingImage

‘Align the image with the top of the bounds of the text geometry

Canvas.SetLeft(image, g.Bounds.Left)

Canvas.SetTop(image, g.Bounds.Top)

‘AdornmentPositioningBehavior sets how

‘the adornment is placed

_layer.AddAdornment(AdornmentPositioningBehavior.

TextRelative, charSpan,

Nothing, image, Nothing)

End If

End If

From the Library of Wow! eBook

ptg

1220 CHAPTER 57 Introducing the Visual Studio Extensibility

Next

End Sub

End Class

Notice how the Microsoft.VisualStudio.Text namespace exposes objects and other
namespaces for interacting with the code editor. Now run the extension by pressing F5.
Try to create a new console project and write some text containing “a” characters and you
will see how they are surrounded with a different background, as shown in Figure 57.14.

There are so many scenarios in which you might need to extend the Visual Studio code
editor. You can find lots of interesting extensions by searching the Visual Studio Gallery
with the Extension Manager.

FIGURE 57.14 The WPF editor extension adorning some text.

From the Library of Wow! eBook

ptg

1221Summary
5

7

Summary
Visual Studio 2010 is an extensible development environment that can be enhanced with
custom extensions such as add-ins, packages, and new code editor extensions due to a
new architecture based on Windows Presentation Foundation. Instrumentation required
for creating extensibility projects are available when installing the Visual Studio 2010 SDK
that provides projects templates, tools, and documentation. This chapter explained how to
build a custom tool window based on WPF for the Visual Studio development environ-
ment. Then you saw how custom extensions can be packaged into VSIX files and
deployed to other developers. Next you saw how you can take advantage of the new
Extension Manager for getting and easily installing extensions from the Visual Studio
Gallery. The last example provided in this chapter was about extending the WPF-based
code editor by taking advantage of Visual Studio’s managed assemblies.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CHAPTER 58

Advanced Analysis Tools

IN THIS CHAPTER

. Introducing Analysis Tools

. Performing Code Analysis

. Calculating Code Metrics

. Profiling Applications

. IntelliTrace, the Historical
Debugger

. Generating Dependency GraphsWriting code is just one part of the developer life. There
are so many other aspects to consider in producing high-
quality applications. For example, if you produce reusable
class libraries, you must ensure that your code is compliant
with Common Language Specification, and this requires
deep analysis. Another key aspect is performance. If you
produce a great application with the most desired function-
alities but with poor performance, perhaps your customer
will prefer a faster and less-consuming application even if it
has a minor number of features. Continuing from its prede-
cessors, Visual Studio 2010 offers a number of integrated
tools for analyzing code and performance to improve your
applications’ quality. It is worth mentioning that most of
the previously existing tools have been significatly
enhanced due to the WPF-based architecture of the IDE. In
this chapter you learn how to take advantage of Visual
Studio 2010’s integrated analysis tools for writing better
applications.

VISUAL STUDIO SUPPORTED EDITIONS

Analysis tools are available only in some Visual Studio
2010 editions. To complete tasks explained in this
chapter, you need at least Visual Studio 2010
Premium or the Visual Studio 2010 Ultimate that is
required for IntelliTrace.

From the Library of Wow! eBook

ptg

1224 CHAPTER 58 Advanced Analysis Tools

Introducing Analysis Tools
Visual Studio 2010 offers the following analysis tools, which can help you produce high-
quality applications:

. Code Analysis, which analyzes code for compliance with Microsoft coding rules

. Code Metrics, which returns statistic results and analyzes code maintainability
according to specific indexes;

. Profiler, which analyzes application performance and suggests solutions for solving
problems

. IntelliTrace, formerly known as Historical Debugger, which allows keeping track of
every single event and exceptions happening during the entire application lifetime

In this chapter you learn to take advantage of the listed tools for improving quality in
your code.

Performing Code Analysis
Earlier in this book you learned about Common Language Specification, learning that it is
a set of common rules and guidelines about writing code that can be shared across differ-
ent .NET languages favoring interoperability and that is considered well designed for the
.NET Framework. In some cases it can be hard ensuring that all your code is CLS-compli-
ant, especially when you have large projects with tons of lines of code. To help you write
better and CLS-compliant code, Microsoft produced a code analysis tool named FxCop
that analyzes compiled assemblies for non-CLS-compliant code and that reports sugges-
tions and solutions for solving errors. Although free, FxCop is an external tool and is
bound to developers using Visual Studio editions such as Express or Professional.

DOWNLOADING FXCOP

If you do not have Visual Studio Ultimate but want to try the code analysis features,
you can check out FxCop, which is available on the MSDN Code Gallery at http://code.
msdn.microsoft.com/codeanalysis. Generally all concepts described in this section are
available in FxCop, too.

Fortunately, the Ultimate edition offers an integrated version of the code analysis tool that
you can invoke on your project or solution directly within the IDE; moreover you can
customize the code analysis process by setting specific rules. Before examining available
rules, it is a good idea to create a simple project for demonstrating how code analysis
works, so create a new class library project in Visual Basic 2010. When the code editor is
ready, rename the Class1 file to HelperClass and write the code shown in Listing 58.1,
which attempts defining a CLS-compliant class but that makes several violations to the
Microsoft rules, for which I give an explanation for solving later in this section.

From the Library of Wow! eBook

http://code.msdn.microsoft.com/codeanalysis
http://code.msdn.microsoft.com/codeanalysis

ptg

1225Performing Code Analysis

LISTING 58.1 Writing a Simple non-CLS-Compliant Class Library

<CLSCompliant(True)>

Public Class HelperClass

Private CustomField As String

Public Property customResult As String

‘Just a demo function

Public Function doubleSum(ByVal FirstValue As Double,

ByVal SecondValue As Double) As Double

Return FirstValue + SecondValue * 2

End Function

End Class

For rules, it is worth mentioning that Microsoft divides guidelines in writing code into the
rules summarized in Table 58.1.

5
8

TABLE 58.1 Microsoft Code Analysis Rules

Rule name Description

Microsoft.Design Determines if assemblies contain well-designed objects or if the
assembly definition is CLS-compliant

Microsoft.Globalization Determines if globalization techniques are well implemented

Microsoft.Interoperability Determines if the code makes correct usage of COM interoperability

Microsoft.Maintainability Checks for code maintainability according to Microsoft rules

Microsoft.Mobility Checks for timer and processes correct implementation

Microsoft.Naming Determines if all identifiers match the CLS rules (such as
public/private members, method parameters and so on)

Microsoft.Performance Checks for unused or inappropriate code for compile time and runtime
performances from the CLR perspective

Microsoft.Portability Determines if the code is portable for invoked API functions

Microsoft.Reliability Provides rules for a better interaction with the Garbage Collector

Microsoft.Security Provides security-related rules sending error messages if types and
members are not considered secure

Microsoft.Usage Determines if a code block correctly invokes other code

From the Library of Wow! eBook

ptg

1226 CHAPTER 58 Advanced Analysis Tools

Performing code analysis does not require all the mentioned rules to be checked. You can
specify only a subset of preferred rules or specify the complete set. To specify the rules sets
involved in the code analysis, follow these steps:

1. Open My Project and click on the Code Analysis tab. Figure 58.1 shows how the
designer looks

2. Expand the Run This Rule Set combo box. You get a list of available rule sets with an
accurate description for each set. By default, the offered set of rules is Microsoft
Minimum Recommended Rules. Replace it by selecting Microsoft All Rules that
includes all sets listed in Table 58.1 and that is the most accurate. To get detailed
information on each rule set, simply click Open. Figure 58.2 shows how you can
browse rules available in the selected set, getting summary information for each rule,
and specifying how you want to get help on violations (for example, online or offline)

3. Select the Analyze, Run Code Analysis command and wait for a few seconds until
the building and code analysis process is completed. When ready, Visual Studio
shows a report listing all violations to coding rules encountered in the project. The
report is shown in Figure 58.3.

Each violation message includes the violation ID and a description that can help you fix
the error. In most cases violations are interpreted by the IDE as warnings, but in the code

FIGURE 58.1 The Code Analysis designer.

From the Library of Wow! eBook

ptg

1227Performing Code Analysis
5

8

FIGURE 58.2 Browsing rule sets.

FIGURE 58.3 Report from the code analysis tool.

From the Library of Wow! eBook

ptg

1228 CHAPTER 58 Advanced Analysis Tools

analysis designer you can modify this behavior by setting what violations must be notified
as breaking errors. Also notice how assembly-level violations do not include the line of
code to be fixed, whereas code-level violations do. In this case you simply double-click the
error message to be immediately redirected to the line of code to be fixed.

GETTING ERROR HELP

There are hundreds of Microsoft rules, so summarizing all of them in this book is not
possible. You can get detailed information on each violation (and on how you solve the
violation for each) by simply right-clicking the error message and selecting Show Error
Help from the pop-up menu.

At this point we can begin fixing violations. It is worth mentioning that there can be situ-
ations in which violations cannot be fixed due to particular scenarios. For example, the
first violation in our example (CA1020) indicates that we should merge the current type
into an existing namespace, because a well-formed namespace contains at least five
members. Due to our demo scenario, we can ignore this violation that is nonbreaking. The
next error message (CA2210) indicates that the assembly must be signed with a strong
name. I described strong names in Chapter 53, “Understanding the Global Assembly
Cache,” so follow those instructions to add a strong name file to the library. I named the
strong name file as TestCode.pfx providing the TestCode password. The next violation
(CA1014) requires the assembly to be marked as CLS-compliant. To accomplish this, click
the Show All Files button in Solution Explorer, expand My Project and add the following
line to the AssemblyInfo.vb file:

<Assembly: CLSCompliant(True)>

The next violation (CA1824) indicates that a neutral-language resource should be supplied
to the assembly. Because you have the AssemblyInfo.vb file already open, write the
following line:

<Assembly: NeutralResourcesLanguageAttribute(“en-US”)>

You could also set this property via the Assembly Information dialog from the Application
tab in My Project. With this step, all assembly level violations were fixed. Now it’s time to
solve code-level violations. The CA1823 violation suggests that there is a field named
CustomField that is never used and that, because of this, should be removed to improve
performance. Now, remove the following line of code:

Private CustomField As String

The next step is to solve three CA1709 violations that are all about members naming. We
need to replace the first letter of the doubleSum method with the uppercase and the first
letter of both arguments with lowercase. This is translated in code as follows:

Public Function DoubleSum(ByVal firstValue As Double,

ByVal secondValue As Double) As Double

From the Library of Wow! eBook

ptg

1229Performing Code Analysis

NAMING CONVENTIONS

We discussed naming conventions in Chapter 7, “Class Fundamentals,” with regard to
methods, method arguments, and properties, so refer to that chapter for details.

There is also another naming convention violation to be fixed on the customResult
property that must be replaced with CustomResult. The last required fix is on perfor-
mance (CA1822 violation). The code analysis tool determines that the DoubleSum method
never invokes the class constructor; therefore, it suggests to mark the method as Shared
or to invoke the constructor. In this particular situation the method can be marked as
Shared like this:

Public Shared Function DoubleSum(ByVal firstValue As Double,

ByVal secondValue As Double) As Double

In this particular case we do not need an instance method. For your convenience all edits
are available in Listing 58.2 (except for assembly level edits).

LISTING 58.2 Fixing Errors Reported by the Code Analysis Tool

<CLSCompliant(True)>

Public Class HelperClass

‘Private CustomField As String

Public Property CustomResult As String

Public Shared Function Sum(ByVal firstValue As Double,

ByVal secondValue As Double) As Double

Return firstValue + secondValue

End Function

End Class

If you now run the code analysis tool again, you notice that only the CA1020 design rule
is still reported (the one on merging types into an existing namespace that we decided not
to fix due to our particular scenario). The code analysis tool is a helpful instrument, espe-
cially if you are a libraries developer. Microsoft has a Code Analysis Team with a blog
where you can find interesting information: http://blogs.msdn.com/fxcop. Also remember
that you can easily retrieve detailed information on violation errors and fixes directly from
within Visual Studio.

5
8

From the Library of Wow! eBook

http://blogs.msdn.com/fxcop

ptg

1230 CHAPTER 58 Advanced Analysis Tools

Calculating Code Metrics
Code metrics is an interesting tool that analyzes a project or a solution providing results
about the ease of maintainability according to specific indexes. You can invoke the tool
from the Analyze menu by selecting the Calculate Code Metrics command or by right-
clicking the project name in Solution Explorer and then selecting the same-named
command. The tool calculates code metrics according to the indexes summarized in
Table 58.2.

To understand how it works, in Visual Studio 2010 open the SnippetCompilerVSPackage
sample project described in the previous chapter; then run the Code Metrics tool by select-
ing the Analyze, Calculate Code Metrics for Solution command. After a few seconds you
get the report shown in Figure 58.4.

As you can see from the report, the project has a maintainability index of 88 that is quite
good. Generally values from 80 to 100 are the best range for maintainability; Visual Studio
shows a green symbol if the index is good or a red one if the maintainability index is too
poor. You can expand the SnippetCompilerVsPackage item to see how the global result is
subdivided for each class and also for each class member. The global Cyclomatic
Complexity index is 11, which is a small number for our kind of project. Depth of
Inheritance index is 3, which is a small value, meaning that there is one or more class
inheriting from another class that inherits from another one (the third one is

TABLE 58.2 Code Metrics Analyzed Indexes

Index Description

Maintainability
index

A percentage value indicating ease of maintainability for the selected project
or solution. A higher value indicates that the project is well structured and
easily maintainable.

Cyclomatic
complexity

A percentage value indicating complexity of loops, nested loops, and nested
conditional blocks, such as nested For..Next loops, Do..Loop loops, or
If..End If nested blocks. A higher value indicates that you should consider
refactoring your code to decrease loop complexity because this leads to diffi-
cult maintainability.

Depth of inheri-
tance

Indicates the inheritance level for classes in the project. The result shows
the report for the class with the highest inheritance level. A higher value indi-
cates that it might be difficult finding problems in a complex inheritance hier-
archy.

Class coupling Calculates how many references to classes there are from method parame-
ters and return values, local variables, and other implementations. A higher
value indicates that code is difficult to reuse, and you should consider revisit-
ing your code for better maintainability.

Lines of code Just a statistic value. It returns the number of IL code affected by the analy-
sis.

From the Library of Wow! eBook

ptg

1231Profiling Applications
5

8

FIGURE 58.4 Calculating code metrics for the specified project.

System.Object); this is an absolutely acceptable value in this particular scenario. The Class
Coupling index is a little too high. It is determined by the
SnippetCompilerVsPackagePackage class, meaning that this class has a lot of references to
other classes. Particularly, if you expand the class you notice that the problem is the
Initialize method that makes calls to a lot of objects. Obviously, a high index doesn’t
necessarily indicate problems. In this code example a high value is acceptable, because all
invocations are required to make the Visual Studio package work, but in a reusable class
library a high value needs attention and code refactoring.

EXPORTING TO EXCEL

If you need to elaborate the code metrics results, you can export the analysis report to
Microsoft Excel. This can be accomplished with the Open List in Excel button on the
Code Metrics Result tool window.

Profiling Applications
Performance is a fundamental aspect in development. An application with slow perfor-
mance can discourage customers, even if it has the coolest user interface or features.
Visual Studio offers an integrated profiling tool that has been deeply enhanced in the
2010 edition. The new profiler takes advantage of the WPF-based user interface of Visual
Studio also offering better organization for the collected information layout. To under-
stand how the profiler works, we need a test project. Now, create a new console applica-
tion in Visual Basic. The best way for understanding how the profiler can improve your
productivity is considering the simple example of strings concatenation both using String
and StringBuilder objects. In the main module of the console application type this
simple code:

Module Module1

Sub Main()

ConcatenationDemo()

From the Library of Wow! eBook

ptg

1232

Console.ReadLine()

End Sub

Sub ConcatenationDemo()

Dim testString As String = String.Empty

For i = 0 To 10000

testString += “I love VB 2010”

Next

End Sub

End Module

The preceding code simply creates a big concatenation of String objects. To analyze
performance, we now need to start the profiler. Select the Analyze, Launch Performance
Wizard command. This launches the step-by-step procedure for setting up the profiler
running against your project. Figure 58.5 shows the first dialog in the wizard, where you
can select the most appropriate profiling technique according to your needs.

CHAPTER 58 Advanced Analysis Tools

There are several available modes, all described in Table 58.3.

FIGURE 58.5 Selecting the profiling technique.

From the Library of Wow! eBook

ptg

1233Profiling Applications
5

8

Leave unchanged the default CPU-sampling option and click Next. The second dialog
allows selecting the executable to be analyzed. As you can see from Figure 58.6, you can
choose one of the executables resulting from the current solution or an external
executable. Select the current executable (the default option) and continue.

TABLE 58.3 Available Profiling Modes

Mode Description

CPU Sampling Analyzes performances at predetermined intervals for monitoring CPU
usage. This is the recommended mode for applications that use few
resources; it collects less information but it consumes less system
resources.

Instrumentation Collects complete information on the application performance injecting
specific testing code. It is suggested for long-running applications and
processes and consumes more system resources.

.NET Memory
Allocation

Analyzes memory allocation performance.

Concurrency Analyzes how multithreaded application consume resources and their perfor-
mance.

FIGURE 58.6 Selecting the executable to be analyzed.

From the Library of Wow! eBook

ptg

1234 CHAPTER 58 Advanced Analysis Tools

The last dialog in this wizard is just a summary. Uncheck the one check box available so
that the Profiler will not be launched when you click Finish (see Figure 58.7).

You might want to leave the flag on the checkbox to automatically launch the Profiler if
the default settings are okay for you, but in this particular scenario we need to make a
couple of manual adjustments. When the wizard shuts down, the Performance Explorer
tool window appears in the IDE. Because the sample application does not actually stress
the CPU very intensively, we need to set a smaller value for the CPU Sampling intervals.
To accomplish this, follow these steps:

1. In the Performance Explorer window, right-click the ProfilerDemo_Before item.

2. Select the Properties command from the popup menu.

3. In the ProfilerDemo_Before Property Pages dialog, select the Sampling node on the
left and then replace the default value in the Sampling Interval text box with 50000.
This will let the profiler collect data at smaller intervals of CPU clock cycles (see
Figure 58.8 for details). This small value is appropriate for small pieces of code like
the current example, but you could leave unchanged the default value in real-world
applications.

FIGURE 58.7 Completed set up of the Profiler.

From the Library of Wow! eBook

ptg

1235Profiling Applications
5

8

4. Click OK to close the dialog and then right-click the ProfilerDemo_Before item in
Performance Explorer, finally click Start Profiling from the popup menu. This will
launch the Profiler.

If it is the first time you have run the Profiler, Visual Studio requires your permission for
upgrading driver credentials to let the Profiler access system resources for monitoring
purposes (see Figure 58.9).

Visual Studio now runs your application with an instance of the Profiler attached. During
all the application lifetime Visual Studio will look like Figure 58.10, showing a work-in-
progress message.

FIGURE 58.8 Setting CPU Sampling interval.

FIGURE 58.9 Upgrading driver profiler credentials.

From the Library of Wow! eBook

ptg

1236 CHAPTER 58 Advanced Analysis Tools

The application will be analyzed unless you terminate it. The profiler monitors perfor-
mances at specific intervals to collect detailed information. When ready, simply close the
application. This also detaches the profiler instance. At this point the profiler generates a
report about the analysis. Figure 58.11 shows how the report appears.

If you are familiar with the profiler in Visual Studio 2008, you notice some differences but
also some improvements in the new reporting system. On the top of the report there is a
graph showing the CPU usage at monitored intervals. In the center of the screen there is
the Hot Path summary, which shows the most resources consuming function calls and
their hierarchy. The analyzed executable has a global impact of 100%, which is a high
value and that can be negative for performances. Notice how the ConcatenationDemo
method makes invocations to String.Concat. This is the function doing most individual
work, as evidenced in the Hot Path view and in the Functions Doing Most Individual
Work graph. It has a 98.65% impact meaning that there is some work to do to improve
performance. By default, the profiler report shows results for your code but not for code
invoked at a lower level by and within the CLR. Fortunately you can also analyze deeper
function calls by clicking the Show All Code link in the upper right. Figure 58.12 shows
how behind the scenes the sample code invokes the System.String.wstrcpy system func-
tion that also has a high impact.

FIGURE 58.10 The profiler is currently running.

From the Library of Wow! eBook

ptg

1237Profiling Applications
5

8

FIGURE 58.11 The analysis report produced by the profiler.

FIGURE 58.12 Showing all code function calls.

From the Library of Wow! eBook

ptg

1238 CHAPTER 58 Advanced Analysis Tools

The report is saved as a .vsp file that can be useful for later comparisons. You can also
export the report to Microsoft Excel or as Xml data (Export Report Data command).
There is other good news. If you check out the Error List window, you notice a warning
message saying that the invocation to String.Concat has an impact of 100 and that you
should consider using a StringBuilder for string concatenations. This means that in most
cases Visual Studio can detect the problem and provide the appropriate suggestions to fix
it. Following this suggestion, replace the application code as follows:

Module Module1

Sub Main()

ConcatenationDemo()

Console.ReadLine()

End Sub

FIGURE 58.13 Checking intervals and CPU usage.

The Current View combo box enables viewing lots of other useful information, such as
processes involved in profiling, function details, lines of code most consuming, and
marks. For marks, you can check out intervals and related CPU usage percentage, as
shown in Figure 58.13.

From the Library of Wow! eBook

ptg

1239Profiling Applications
5

8

Sub ConcatenationDemo()

Dim testString As New Text.StringBuilder

For i = 0 To 10000

testString.Append(“I love VB 2010”)

Next

End Sub

End Module

Now follow the same steps described before about setting the value for the CPU Sampling
clock cycles to 50000 for the current project. Then run the Profiler again via the Analyze,
Profiler, Start Profiling command. After a few seconds, Visual Studio 2010 generates a
new report, represented in Figure 58.14.

FIGURE 58.14 The new report after code improvements.

From the Library of Wow! eBook

ptg

1240 CHAPTER 58 Advanced Analysis Tools

FIGURE 58.15 Comparing two performance reports.

Notice how the invocations to strings concatenations method completely disappeared
from the performance negative impacts. Also notice how the CPU usage is better than
before. This means that our edits improved the application performance, as also demon-
strated by the Error List window that is now empty. The most resource-consuming func-
tion is now Console.ReadLine, which just waits for you to press a key and therefore can
be completely ignored. To get a better idea of what actually happened you can compare
the two generated reports. Right-click one of the available reports in the Performance
Explorer tool window and select Compare Performance Report. In the dialog browse for
the second report and click OK. Figure 58.15 shows the result of the comparison.

The Delta column indicates the difference between the old value and the new one. The
Baseline column indicates the value in the old analysis, whereas Comparison indicates the
value in the new analysis. Referring to this specific example, it means that the
String.Concat function passed from a bad state to a good one. The profiler is a good
friend in your developer life, and the suggestion is to profile applications every time you
can. The Visual Studio 2010 profiler also offers improvements for profiling multithreaded
applications, which is useful against parallel programming techniques.

From the Library of Wow! eBook

ptg

1241Profiling Applications
5

8

FIGURE 58.16 Selecting a standalone executable.

Profiling External Executables

The Visual Studio profiler is not limited to solutions opened in the IDE, but it can be
successfully used for profiling standalone executables. Basically you are allowed profiling
also Win32 executables over managed ones. To demonstrate how this works, close the
solution opened in Visual Studio (if any) ensuring that nothing is available in Solution
Explorer. Now start the Performance Wizard following the steps shown in the previous
section until you get the result shown in Figure 58.5. The next step is selecting the An
Executable (.EXE file) option. When selected this, you need to specify an executable to
analyze. Just for demo purposes, select the executable generated in the previous example.
Figure 58.16 shows how to accomplish this.

After completing this wizard, Visual Studio launches the specified executable with an
instance of the profiler attached. When completed, Visual Studio also generates a report,
as shown in the previous section. In this particular case you get nothing but the same
profiling results, being substantially the same application. In all other cases you get
specific analysis results for the selected executable. The Error List continues to show
warning or error messages related to the application performance providing the appropri-
ate suggestions when available. Of course, improving performance requires having the
source code for the executable analyzed.

From the Library of Wow! eBook

ptg

1242 CHAPTER 58 Advanced Analysis Tools

IntelliTrace, the Historical Debugger
EDITION NOTE

The IntelliTrace debugger is available only with the Visual Studio 2010 Ultimate edition.

One of the most important new tools in Visual Studio 2010 is IntelliTrace, formerly known
as the historical debugger. This tool can improve your debugging experience because it can
record and navigate every event occurring during the application lifetime, such as events
and failures including information on specific threads. IntelliTrace is fully integrated with
the code editor and with the rest of the IDE functionalities, such as Call Stack and Locals
tool windows so that it can provide a complete debugging environment. The tool is
capable of recording (to a file, too) and debugging the following happenings:

. Application events, such as user interface events or application exceptions

. Playback debugging, which allows deep debugging over specific events occurred
before and after a particular code block

. Unit test failures

. Load test failures and build acceptances test

. Manual tests

In this section you learn how to use IntelliTrace to debug application events, exceptions,
and unit test failures. Before showing IntelliTrace in action, it is a good idea to set its
options in Visual Studio.

IntelliTrace Options

There are a lot of available options for customizing IntelliTrace’s behavior. You set its
options via the usual Tools, Options command and then selecting the IntelliTrace item.
Figure 58.17 demonstrates this.

IntelliTrace is enabled by default. The default behavior is that IntelliTrace will collect
events only, but for this discussion select IntelliTrace Events and Call Information to get
complete information on the code calls, too. This kind of monitoring is the most expen-
sive in terms of system resources and should be used only when necessary but it offers a
high-level view of what happens during the application lifetime. You have deep control
over application events that IntelliTrace can keep track of. Select the IntelliTrace Events
item. You see a list of .NET elements, such as ADO.NET, Data Binding, and Threading; for
each of them you can specify particular events you want to be traced. For example the
Gesture events collection enables specifying user interface events such as button clicks, as
demonstrated in Figure 58.18.

From the Library of Wow! eBook

ptg

1243IntelliTrace, the Historical Debugger
5

8

FIGURE 58.17 Setting general options for IntelliTrace.

The Advanced and Modules items enable respectively specifying locations and size for logs
and which .NET modules must be tracked other than the current application. For this
demonstration leave the default settings unchanged. At this point we need a sample appli-
cation to see IntelliTrace in action.

Creating a Sample Application

The goal of this section is to illustrate how IntelliTrace can save your time by tracking
events and exceptions with detailed information that can help you to understand what
the problem is. According to this, creating a client WPF application can be a good
example. To demonstrate both application events and exceptions, we can place a button

FIGURE 58.18 Selecting events to be tracked by IntelliTrace.

From the Library of Wow! eBook

ptg

1244 CHAPTER 58 Advanced Analysis Tools

that invokes a method attempting to open a file that does not exist. After creating a new
WPF project named (IntelliTraceDemoApp) with Visual Basic, in the XAML code editor,
write the code shown in Listing 58.3.

LISTING 58.3 Setting Up the User Interface for the Sample Application

<Window x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”MainWindow” Height=”350” Width=”525”>

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Button Name=”OpenFileButton” Width=”100” Height=”50”

Content=”Open file” Grid.Row=”0”/>

<TextBox IsReadOnly=”True” Name=”FileTextBox”

Grid.Row=”1”/>

</Grid>

</Window>

On the Visual Basic code-behind side, write the code shown in Listing 58.4, which simply
handles the Button.Click event and tries to open a text file.

LISTING 58.4 Writing the Failing Visual Basic Code Before Running IntelliTrace

Class MainWindow

Private Sub OpenFileButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles OpenFileButton.Click

Me.FileTextBox.Text = OpenFile()

End Sub

‘Just for demo purposes

‘Consider dialogs implementation in real life apps

Private Function OpenFile() As String

‘Attempting to open a fake file

Return My.Computer.FileSystem.

From the Library of Wow! eBook

ptg

1245IntelliTrace, the Historical Debugger
5

8

ReadAllText(“C:\Alessandro.txt”)

End Function

End Class

Now that we have a sample project, which will voluntarily fail at runtime, it is time to see
how to catch problems via IntelliTrace.

Tracking Application Events and Exceptions with IntelliTrace

Run the demo application and click the button to cause an exception. The application
breaks because the specified file is not found. At this point the IntelliTrace tool window
appears inside Visual Studio 2010, showing a list of events that you can see in Figure 58.19.

FIGURE 58.19 IntelliTrace in action, showing occurred events.

FILTERING RESULTS

You can filter information by category and by thread. Use the upper combo box to
respectively select which kind of events category you want to check out (for example,
Console, ASP.NET, ADO.NET, and so on) and which specific thread you want to get track-
ing information for.

As you can see, IntelliTrace is not just a debugger showing errors or places where errors
occurred. It is a powerful tool capable of tracking every single event occurring during the
entire application lifetime—meaning that you could even use IntelliTrace to just keep
track of events without errors. In the current example notice how the first tracked event is
the application startup. There are other events tracked: Click the Gesture event to get
information on such a happening. IntelliTrace informs you that the user clicked the

From the Library of Wow! eBook

ptg

1246 CHAPTER 58 Advanced Analysis Tools

FIGURE 58.20 Showing functions call tree with IntelliTrace.

OpenFileButton control, which is of type System.Windows.Controls.Button and whose
content is Open File, also showing the thread description and ID. This is a predictable
event, but as you can imagine you can keep track of all events, for example when data-
binding is performed on a data-bound control or when the user selects an item from a
ListBox or when the application attempts to make a particular action. This can produce a
huge amount of information that you can analyze later. To get information on the excep-
tion thrown, simply click the exception item. Visual Studio shows the full error message
and the line of code that caused the exception; when you click such an item, the line of
code will be automatically highlighted in the code editor for your convenience.
IntelliTrace also offers the ability of checking the entire tree of function calls (just in case
you enable call information). In a few words, this feature keeps track of every single func-
tion call made by the runtime during the application lifetime. To show this, click the
Show Calls View button in the IntelliTrace toolbar. Figure 58.20 shows an example,
pointing to the place where the user clicked the button.

The sample figure shows the first function call that is a call for starting the main thread.
The next functions are calls that the CLR makes to run the application and initialize it;
the list is complete, also showing calls made during the rest of the application lifetime
until it broke because of the exception. You can easily browse calls using the vertical scroll
bar on the right.

From the Library of Wow! eBook

ptg

1247IntelliTrace, the Historical Debugger
5

8

FIGURE 58.21 Analyzing IntelliTrace logs.

Analyzing IntelliTrace Logs

When the application is running with the debugger attached, IntelliTrace records every-
thing happening. (This is the reason why you might notice a small performance decrease
when you select the events and call recording option.) Such recordings are saved to log
files available in the C:\ProgramData\Microsoft Visual Studio\10.0\TraceDebugging
folder and can be analyzed directly from within Visual Studio. To accomplish this, follow
these steps:

1. In Windows Explorer, open the C:\ProgramData\Microsoft Visual
Studio\10.0\TraceDebugging folder.

2. Double-click the last log file related to your application. Notice that log file names
all begin with the application name but you can open the most recent according to
the date modified value.

Visual Studio opens the log file showing a result similar to what you see in Figure 58.21.

Logs contain lots of information. For example, you can select a particular thread in the
upper graph and check for the related threads list below. This is useful for understanding
at what time a specific thread was tracked. Moreover information on exceptions will also
be shown. You can also check about system information and modules involved in the
tracking process (such information is placed at the bottom of the page).

From the Library of Wow! eBook

ptg

1248

Using IntelliTrace for Unit Tests

IntelliTrace is not limited to tracking the application lifetime but can also be used for unit
tests for understanding what is behind failures. This particular scenario is discussed in
Chapter 59, “Testing Code with Unit Tests, Test-Driven Development, and Code
Contracts,” which provides an overview of unit testing and test-driven development.

Generating Dependency Graphs
Another interesting addition, new to VS 2010, is the Dependency Graph generation.
Basically this feature enables generating a WPF-based, graphical, browsable view of depen-
dencies between objects in your projects. Dependency graphs can be generated at assem-
bly level (including all types), namespace level (including only types from a given
namespace), or at class level. To demonstrate this feature, create a new console project and
add the following items:

. An Entity Data Model mapping the Customers, Orders and Order_Details tables
from the Northwind database (see Chapter 27, “Introducing the ADO.NET Entity
Framework,” for a recap).

. A new class named Helper, whose purpose is just offering a simple method returning
a collection of order details based on the order identifier. The code for this class is
shown in Listing 58.5.

LISTING 58.5 Demo Class to Be Mapped into the Graph

Imports System.Data.Objects

Public Class Helper

Public Shared Function GetOrderDetails(ByRef context As NorthwindEntities,

ByVal orderID As Integer) As _

ObjectQuery(Of Order_Detail)

Dim result = From det In context.Order_Details

Where det.Order.OrderID = orderID

Select det

Return CType(result, Global.System.Data.Objects.

ObjectQuery(Of Global.DependencyGraphDemo.Order_Detail))

End Function

End Class

CHAPTER 58 Advanced Analysis Tools

From the Library of Wow! eBook

ptg

1249

FIGURE 58.22 The newly generated assembly-level dependency graph.

Generating Dependency Graphs
5

8

Now select the Architecture, Generate Dependency Graph, By Assembly command.
After a few seconds the new graph will be available inside Visual Studio 2010. You can
then expand items and check for their dependencies with other objects, as represented in
Figure 58.22.

To understand items mapping you can check out the legend. To show complete dependen-
cies information, right-click the graph and select the Show Advanced Selection command.
This launches the Selection tool window where you can select one or more objects to be
investigated and additional objects to be analyzed such as public or private properties.
Figure 58.21 shows public properties dependencies from all classes in the project. For
example, the NorthwindEntities class has dependencies with the
Helper.GetOrderDetails method because this one receives an argument of type
NorthwindEntities. The dependency graphs are flexible and can be exported to XPS docu-
ments or to images (right-click the graph for additional options).

From the Library of Wow! eBook

ptg

Summary
This chapter covered some important analysis tools available in Visual Studio 2010
Premium and Ultimate that are necessary for improving applications’ quality. You discov-
ered how to analyze code for compliance with Microsoft coding rules, required especially
when you produce reusable class libraries. Then you saw how to check for code maintain-
ability using the Code Metrics tool. In the second part of the chapter you got information
on the integrated Profiler that simplifies checking for performance issues through IDE
suggestions; you also saw different usages of the Profiler, including standalone executables.
The chapter also focused on the most interesting addition in Visual Studio 2010, the
IntelliTrace debugger. Explanations provided information on using this tool for under-
standing how to keep track of all application events and exceptions during the entire
application lifetime, showing also how to analyze summary logs within Visual Studio.
Finally, you got an overview of another new addition, the Dependency Graph generation
that provides a graphical view of dependencies at assembly, namespace, and class levels.

1250 CHAPTER 58 Advanced Analysis Tools

From the Library of Wow! eBook

ptg

CHAPTER 59

Testing Code with Unit
Tests, Test-Driven

Development, and Code
Contracts

IN THIS CHAPTER

. Testing Code with Unit Tests

. Introducing Test-Driven
Development

. Understanding Code Contracts

When you purchase new software, you expect that the
software works. I’m pretty sure you don’t like applications
you buy to cause unexpected crashes or errors due to appar-
ently unhandled situations. The same is for users purchas-
ing your software or for colleagues in your company
performing their daily work through your applications, so
you need to pay particular attention to check if and how
your code works. Although implementing error handling
routines is fundamental, another important moment in
application development is testing code. Testing allows
checking for code blocks’ correct behavior under different
situations, and it should be the most deep possible. In big
development teams, testers play an important role, so they
need to have good tools for successfully completing their
work. In this chapter you learn about the Visual Studio
tools for testing code, starting from unit tests until the new
Code Contracts library, passing through the Test-Driven
Development approach. You also see how such tooling can
be successfully used even if you are a single developer.

Testing Code with Unit Tests
Unit tests enable testing code portions outside the applica-
tion context to check if they work correctly so that testing
is basically abstracted from the application. Typically you
create a test project, where there are classes and methods
that encapsulate and isolate the original code so that you
can test it in a kind of isolated sandbox without editing the

From the Library of Wow! eBook

ptg

1252 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

source project. Visual Studio 2010 is the ideal environment for performing unit tests, so
this section explains how you can accomplish this important task.

Creating Unit Tests

First, you need some code to test. Imagine you have a Rectangle class that exposes methods
for math calculations on a rectangle’s perimeter and area. Create a new class library, name it
UnitTestDemo; then rename Class1.vb as Rectangle.vb and write the following code:

Class Rectangle

Shared Function CalculatePerimeter(ByVal sideA As Double,
ByVal sideB As Double) As Double

Return (sideA * 2) + (sideB * 2)
End Function

Shared Function CalculateArea(ByVal sideA As Double,
ByVal sideB As Double) As Double

Return sideA * sideB
End Function

End Class

Imagine you want to test both methods to check if they work correctly but inside an
isolated environment, abstracted from the original project. In the code editor select both
methods; then right-click and select Create Unit Tests. This launches the Create Unit
Tests dialog, where you can select objects to add to the test project. Expand the
UnitTestDemo namespace and select both methods, as demonstrated in Figure 59.1.

FIGURE 59.1 Choosing methods to be added to unit tests.

From the Library of Wow! eBook

ptg

1253Testing Code with Unit Tests

When you click OK, you will be asked to specify a new test project name. For this example
leave unchanged the default selection and go ahead. Visual Studio will also raise a
warning message because in this case we are creating a unit test for a class marked as
Friend, asking if you want to mark the test project with the InternalsVisibleTo attribute.
You can click Yes in order to decorate the project with such an attribute. When Visual
Studio finishes generating the new project, you notice a RectangleTest test class whose
content is reported in Listing 59.1.

LISTING 59.1 The Newly Generated Test Class

Imports Microsoft.VisualStudio.TestTools.UnitTesting

Imports UnitTestingDemo

‘’’<summary>

‘’’This is a test class for RectangleTest and is intended

‘’’to contain all RectangleTest Unit Tests

‘’’</summary>

<TestClass()> _

Public Class RectangleTest

Private testContextInstance As TestContext

‘’’<summary>

‘’’Gets or sets the test context which provides

‘’’information about and functionality for the current test run.

‘’’</summary>

Public Property TestContext() As TestContext

Get

Return testContextInstance

End Get

Set(ByVal value As TestContext)

testContextInstance = Value

End Set

End Property

#Region “Additional test attributes”

‘

‘You can use the following additional attributes as you write your tests:

‘

‘Use ClassInitialize to run code before running the first test in the class

‘<ClassInitialize()> _

‘Public Shared Sub MyClassInitialize(ByVal testContext As TestContext)

‘End Sub

‘

‘Use ClassCleanup to run code after all tests in a class have run

5
9

From the Library of Wow! eBook

ptg

1254

‘<ClassCleanup()> _

‘Public Shared Sub MyClassCleanup()

‘End Sub

‘

‘Use TestInitialize to run code before running each test

‘<TestInitialize()> _

‘Public Sub MyTestInitialize()

‘End Sub

‘

‘Use TestCleanup to run code after each test has run

‘<TestCleanup()> _

‘Public Sub MyTestCleanup()

‘End Sub

‘

#End Region

‘’’<summary>

‘’’A test for CalculateArea

‘’’</summary>

<TestMethod()> _

Public Sub CalculateAreaTest()

Dim sideA As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim expected As Double ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculateArea(sideA, sideB)

Assert.AreEqual(expected, actual)

Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

‘’’<summary>

‘’’A test for CalculatePerimeter

‘’’</summary>

<TestMethod()> _

Public Sub CalculatePerimeterTest()

Dim sideA As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim expected As Double ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculatePerimeter(sideA, sideB)

Assert.AreEqual(expected, actual)

Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

End Class

CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

From the Library of Wow! eBook

ptg

1255Testing Code with Unit Tests
5

9

For code in Listing 59.1, there are some aspects to consider:

. The TextContext object, known as context, represents the isolated box where unit
tests are executed.

. A test class is decorated with the TestClass attribute while test methods are deco-
rated with the TestMethod attribute.

. By default Visual Studio provides result comparisons via the Assert.AreEqual
method that checks for parameters’ equality, but you are not limited to this particu-
lar operation. You can choose which of the Assert class static methods is the most
appropriate for your needs.

. Test methods cannot be shared while they must be public, accept no parameter, and
return no value. This is the reason why values must be initialized within method
bodies. By default Visual Studio assigns zero or null values that you have to replace
with valid ones.

Also notice that the Assert.Inconclusive statements are placed as a way for communicat-
ing that the method implementation has not been completed yet, and they will be
commented before running tests. The idea of unit testing is comparing the expected result
with the actual result of an action. With that said, first comment the
Assert.Inconclusive statements; then replace the methods’ code as follows:

<TestMethod()> _

Public Sub CalculateAreaTest()

Dim sideA As Double = 10 ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 20 ‘ TODO: Initialize to an appropriate value

Dim expected As Double = 2000 ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculateArea(sideA, sideB)

Assert.AreEqual(expected, actual)

‘Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

<TestMethod()> _

Public Sub CalculatePerimeterTest()

Dim sideA As Double = 10 ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 20 ‘ TODO: Initialize to an appropriate value

Dim expected As Double = 60 ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculatePerimeter(sideA, sideB)

Assert.AreEqual(expected, actual)

‘Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

From the Library of Wow! eBook

ptg

1256

FIGURE 59.2 Viewing unit test results.

Notice that the first method voluntarily causes an error, to demonstrate how unit testing
works. The expected value is in fact greater than it should be. At this point you are ready
to run both unit tests.

Running Unit Tests

When you create unit tests, Visual Studio automatically shows and anchors the Test Tools
toolbar that contains buttons for executing, debugging, and managing unit tests. You can
choose to run a single unit test or multiple ones. For the current example, click the Run
All Tests in Solution button. When all unit tests complete, the Test Results tool window
shows a report about test success or failures. Figure 59.2 shows how such a window looks
for the current example.

CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

Notice how the CalculateAreaTest method failed while CalculatePerimeterTest
succeeded. The Error Message column provides details on the occurred error so that you
can fix it. In this case the equality check failed because the method returned a result
different from the expected one. You can also get detailed failure information, by clicking
the Test Run Failed hyperlink. Figure 59.3 shows the failure summary, where you can get
information on the test name, server, and timestamp.

NOTE ON FIXING ERRORS

In a typical real-life scenario, you will not edit the expected result to make a unit test
work, whereas you will instead fix errors in the code. The example proposed in this
chapter is a demo scenario, and its purpose is explaining how unit test works. This is
the reason why here you are about to fix the expected result, but in real-world applica-
tions the expected result will remain unvaried.

In the CalculateAreaTest method, replace the expected declaration as follows:

Dim expected As Double = 200

From the Library of Wow! eBook

ptg

1257

FIGURE 59.3 Viewing the test failure summary.

Testing Code with Unit Tests
5

9

Now run again both unit tests. At this point both tests pass because in both cases expected
value and actual value are equal, as demonstrated in Figure 59.4.

Enabling Code Coverage

Visual Studio enables getting information on the amount of code that was subject to the
actual test. This can be accomplished by enabling a feature known as Code coverage. To
enable it, follow these steps:

1. Select the Test, Edit Test Settings, Local command. This enables editing the current
test configuration;

2. When the Test Settings dialog appears, select Data and Diagnostics; then flag the
Code Coverage option in the bottom-right part, as shown in Figure 59.5;

FIGURE 59.4 Both unit tests passed.

From the Library of Wow! eBook

ptg

1258 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.5 Enabling code coverage.

FIGURE 59.6 Examining code coverage results.

3. Click Configure. When the Code Coverage Details dialog appears, select the test
assembly, which in this case is TestProject1.dll.

Now rerun all unit tests. When completed, the Code Coverage Results dialog shows infor-
mation on collected results. Figure 59.6 shows the results.

You can expand the results to get information on code coverage percentage for single
members. For example, both test methods have a 100% coverage percentage against a
total 77.78% for the entire project. If you switch to the test code file you notice that
Visual Studio automatically highlights lines of code that were subject to test.

From the Library of Wow! eBook

ptg

1259Testing Code with Unit Tests
5

9

Unit Tests and IntelliTrace

In Chapter 58, “Advanced Analysis Tools,” you discovered IntelliTrace, and you learned
how the historical debugger can be helpful in debugging code due to its in-depth analysis
features. IntelliTrace can also be used for unit test failures to get even more detailed infor-
mation on occurred exceptions. For this, you first need to enable IntelliTrace in the testing
environment, so select the Test, Edit Test Settings, Local command. When the settings
dialog appears, select IntelliTrace, as shown in Figure 59.7.

Now provide the following bad value in the CalculateAreaTest method so that unit
test will fail:

Dim expected As Double = 2000

Run the unit test again, at this point you get a test failure. Simply double-click the error
message, and you get detailed information on the exception, as shown in Figure 59.8.

Now click on the log file hyperlink shown below the Collected Files item. This launches
the IntelliTrace log analysis tool (as shown in Figure 59.9), where you can analyze
collected information according to what you already learned about this in Chapter 58.

Notice how you can get detailed information on the stack trace related to the failed asser-
tion in the test code.

FIGURE 59.7 Enabling IntelliTrace for unit tests.

From the Library of Wow! eBook

ptg

1260 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.8 Detailed information provided by IntelliTrace about the failed unit test.

FIGURE 59.9 Analyzing IntelliTrace log for unit test failures.

From the Library of Wow! eBook

ptg

1261Introducing Test-Driven Development
5

9

Introducing Test-Driven Development
Test-Driven Development (also known as TDD or Test-Driven Design) is a programming
approach in which developers create applications by first writing unit tests and then
writing the actual code after the unit test passes. This particular approach helps writing
better code, because you ensure that it will work via unit tests, but it is also a life philoso-
phy so that you need to have a change of mind when approaching TDD. Basically TDD is
structured into three main moments:

. Red: The developer generates a new unit test from scratch, so that it will typically
fail. This is the reason why it’s called Red.

. Green: The developer focuses on writing code that makes the unit test work and
pass. As you saw in the previous section, passing unit tests return a green result.

. Refactor: This is the moment in which the developer reorganizes code, moving it
from the unit test to the actual code system in the application project, making the
code clearer and fixing it where necessary.

This chapter is not intended to be a deep discussion on TDD, whereas it is instead
intended to be a guide to Visual Studio 2010 instrumentation for Test-Driven
Development. Particularly you see how the Generate from Usage new feature discussed in
Chapter 18, “‘Generate from Usage’ Coding Techniques,” is the main help you have in
TDD with Visual Basic 2010. Before going on, it is a good idea to enable test options that
enable double-clicking a test result failure in the Test Results dialog to be redirected to the
code that threw errors. Follow these steps:

1. Go to Tools, Options and select the Test Tools, Test Execution subfolder.

2. Enable the Double Clicking Failed or Inconclusive Unit Test Result Displays the
Point of Failure in Test item. Figure 59.10 shows how to accomplish this.

3. Click OK to close the dialog.

At this point you can create a test project where you can launch your unit tests.

Creating a Test Project

The first step in the Test-Driven Development approach is creating a Test Project related to
the actual application project. Follow these steps:

1. Create a new class library named Rectangle and remove the Class1.vb default file.

2. Add a new test project to the solution. To accomplish this, select File, Add, New
Project, and then in the Test Projects folder, select the Test Documents sub node,
finally select the Test Project template. Figure 59.11 shows how to find and select
the template in the New Project dialog.

3. Add a new class to the test project and name it RectangleTest.vb. This is basically
the place where you write unit tests.

From the Library of Wow! eBook

ptg

1262 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.10 Setting test execution options.

FIGURE 59.11 Creating a new test project.

The new class is the place where you write and run unit tests. Now imagine you want to
test a Rectangle class exposing Width and Height properties and methods for math calcu-
lations such as the perimeter. The class will be exposed by the actual project at the end of
the TDD approach, at the moment you need to test class and methods in the test project.
To accomplish this, the first thing is marking the test class with the
Microsoft.VisualStudio.TestTools.UnitTesting.TestClass attribute. Fortunately the

From the Library of Wow! eBook

ptg

1263Introducing Test-Driven Development
5

9

namespace is automatically imported by Visual Basic when you generate a test project, so
you do not need to write this import manually. This is therefore how the new class looks:

<TestClass()>

Public Class RectangleTest

End Class

Basically the TestClass attribute makes a class recognizable by Visual Studio as a place for
unit tests, which the next subsection covers.

Creating Unit Tests

As you can recap from the “Testing Code with Unit Testing” section, unit tests are
methods allowing tests against small, isolated portions of code. To be recognized as unit
tests, such methods must be decorated with the
Microsoft.VisualStudio.TestTools.UnitTesting.TestMethod attribute. Continuing our
example and having the requirement of implementing a method for calculating the
perimeter for rectangles, this is how the method stub appears:

<TestMethod()>

Sub CalculatePerimeter()

End Sub

Now go into the method body and write the following line:

Dim rect As New Rectangle

The Rectangle type is not defined yet, so Visual Studio underlines the declaration by
throwing an error. Click on the error options pop-up button and click Generate New Type,
as shown in Figure 59.12.

This launches the Generate New Type dialog, where you can select the Rectangle project
in the Location combo box. See Figure 59.13 for details.

WHY GENERATE A TYPE IN THE PRODUCTION PROJECT?

You might ask why the preceding example showed how to add the new type to the actu-
al project instead of the test one. In a demo scenario like this, adding a new type to
the test project would be useful, but in real life you might have dozens of new types to
add and then moving all types from a project to another, including code edits, can be
less productive. The illustrated approach keeps the benefits of TDD offering a way of
implementing types directly in the project that will actually use them.

At this point you will need to replace the following declaration:

Dim rect As New Rectangle

From the Library of Wow! eBook

ptg

1264 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.12 Choosing a correction option.

FIGURE 59.13 Generating a new Rectangle type.

From the Library of Wow! eBook

ptg

1265Introducing Test-Driven Development
5

9

with this one, including the namespace:

Dim rect As New Rectangle.Rectangle

Now type the following line of code:

rect.Width = 150

The Width property is not exposed yet by the Rectangle class, so Visual Studio underlines
it as an error. As for the class generation, click the error correction options and select the
Generate Property Stub for ’Width’ choice, as shown in Figure 59.14.

This adds a property to the Rectangle class. Now write the following line of code and
repeat the steps previously shown:

rect.Height = 100

Now complete the method body by writing the following lines:

Dim expected = 500

FIGURE 59.14 Generating a property stub.

From the Library of Wow! eBook

ptg

1266 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.15 Running the new unit test fails due to an exception.

Dim result = rect.CalculatePerimeter

Assert.AreEqual(expected, result)

Basically you have an expected result (notice I’m using type inference) and an actual result
returned by the CalculatePerimeter method. This method does not exist yet, so use the
Generate from Usage Feature to add a new method stub to the Rectangle class. Now run
the unit test and it will fail as expected, being in the Red moment of TDD, as demon-
strated in Figure 59.15.

Basically the unit test fails because the current method definition for CalculatePerimeter
is the following:

Function CalculatePerimeter() As Object

Throw New NotImplementedException

End Function

So edit the method as follows, to make it return a more appropriate type and perform the
required calculation:

Function CalculatePerimeter() As Integer

Return (Width * 2) + (Height * 2)

End Function

Now run again the unit test and it will pass. You have thus successfully completed the
Green phase of TDD, and now you can now move to the final Refactor step.

Refactoring Code

When your unit tests all pass, it is time to reorganize code. For example, if you take a look
at the Rectangle class, you notice that the Generate from Usage Feature generated
objects of type Integer, and this is also the reason why the CalculatePerimeter method
has been forced to return Integer. Although correct, the most appropriate type for math
calculations is Double. Moreover, you might want to consider writing a more readable
code in the method body. After these considerations, the Rectangle class could be reorga-
nized as follows:

Public Class Rectangle

From the Library of Wow! eBook

ptg

1267Understanding Code Contracts
5

9

Public Property Width As Double

Public Property Height As Double

Public Function CalculatePerimeter() As Double

Dim sumOfWidth As Double = Me.Width * 2

Dim sumOfHeight As Double = Me.Height * 2

Dim perimeter As Double = sumOfHeight + sumOfWidth

Return perimeter

End Function

End Class

In this way you have working code that uses more appropriate types and that is more
readable.

Understanding Code Contracts
Code Contracts is a new library in the .NET Framework 4.0 offered by the
System.Diagnostics.Contract namespace and enables checking, both at runtime and
compile time, if the code is respecting specified requirements. This is something that you
will often hear about as Contracts by design. The idea is that code needs to respect speci-
fied contracts to be considered valid. There are different kinds of contracts, known as
preconditions (what the application expects), post-conditions (what the application needs
to guarantee), and object invariants (what the application needs to maintain). We cover
all of them in next subsections. At the moment it is important to understand some other
concepts. Code contracts are a useful way for testing code behavior and this can be
accomplished both at runtime (runtime checking) and compile time (static checking).
Runtime checking needs the code to be executed and is useful when you cannot predict
some code values; for example the application needs the user to enter some values that
will be then validated; at this point you can take advantage of contracts for implementing
validation rules. Static checking can be useful if you have hard-coded variable values and
you need to check if they are contract-compliant. Both checking methods can be used
together and can be set in the Visual Studio IDE as explained in the next sections.

Setting Up the Environment

The Code Contracts library is part of the .NET Framework 4.0, so you do not need to install
anything more to use it in code; there are some components that you need to install sepa-
rately to access contracts settings in the Visual Studio IDE. So, before going on reading this
chapter, go to the following address: http://msdn.microsoft.com/en-us/devlabs/dd491992.

From the Library of Wow! eBook

http://msdn.microsoft.com/en-us/devlabs/dd491992

ptg

1268 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.16 Accessing code contracts settings.

aspx. From the DevLab site download the Code Contracts tools in the most appropriate
version for you. (For example the VSTS Edition is intended to work with Visual Studio
2010 Ultimate.) When installed, you can access design-time settings for code contracts.

Setting Contracts Properties

You set code contracts properties by first opening My Project and then clicking the Code
Contracts tab, as shown in Figure 59.16.

Notice how you can enable general settings, such as runtime checking and static checking,
and specific settings for both profiles. Particularly, for runtime checking you should leave
the default Full selection if you have both preconditions and post-conditions. If you want
to enable static checking, too, for compile time contracts checking, by default the Check
in Background option is also selected. This enables the background compiler to check for
contracts violations and send error messages to the Errors tool window. If this option is
unselected, eventual error messages will be listed at the end of the build process.

TIP

If you remove the flag on Assert on Contract Failure, instead of an error dialog showing
details about the violation, the control will be returned to the Visual Studio code editor
that will break at the line of code that violated the contract.

From the Library of Wow! eBook

ptg

1269Understanding Code Contracts
5

9

The next examples show both preconditions and post-conditions, so leave unchanged the
default settings. Before getting hands on the code, you should read a little about tools that
enable Visual Studio to integrate and work with contracts.

Tools for Code Contracts

When you use code contracts, the first requirement is the System.Diagnostics.Contracts
namespace, exposed by the Mscorlib.dll assembly. By the way, this is not enough to make
your code take advantage of contracts. Although you never see this, Visual Studio invokes
behind the scenes some command-line tools. This subsection provides basic information
on these tools and on their purpose.

The Binary Rewriter
As you know, when you compile a .NET executable, the file is made of metadata and
Intermediate Language. When you use contracts, especially for runtime checking, the
Intermediate Language within an executable needs to be modified to recognize contracts.
The edits are performed by the CCrewrite.exe tool that injects the appropriate code for
contracts in the appropriate place into your assembly.

The Static Checker
The static checker is represented by the CCCheck.exe tool and provides Visual Studio the
capability of performing static analyses and checks for contracts violations without the
need of executing code; a typical scenario is the compilation process.

Now that you have basic knowledge of the code contracts system, it is time to write code
and understand how contracts work.

Preconditions

You add preconditions contracts to tell the compiler that the code can be executed only if
it respects the specified contract. Generally preconditions are useful replacements for
custom parameters validation rules. For example, consider the following simple method
that multiplies two numbers:

Function Multiply(ByVal first As Double,

ByVal second As Double) As Double

If first < 0 Or second < 0 Then

Throw New ArgumentNullException

Else

Return first * second

End If

End Function

Inside the method body, the code checks for valid parameters; otherwise, it throws an
exception. This is common, but code contracts provide a good way, too. The preceding
method could be rewritten with code contracts as follows:

Function Multiply(ByVal first As Double,

From the Library of Wow! eBook

ptg

1270 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

ByVal second As Double) As Double

Contract.Requires(first > 0)

Contract.Requires(second > 0)

Return first * second

End Function

So you just invoke the Contract.Requires method for evaluating a Boolean condition that
will be accepted only when evaluated as True. Now consider the following Rectangle class:

Class Rectangle

Property Width As Double

Property Height As Double

Function CalculatePerimeter() As Double

Dim result = (Width * 2) + (Height * 2)

Return result

End Function

Sub New(ByVal width As Double, ByVal height As Double)

Me.Width = width

Me.Height = height

End Sub

End Class

The CalculatePerimeter instance method takes no arguments and performs calculations
on instance properties but does not check for valid values. With regard to this you can
take advantage of the Contract.Requires method that specifies a condition allowing the
code to be considered valid if the condition is evaluated as True. For example, consider
the following reimplementation of the method:

Function CalculatePerimeter() As Double

Contract.Requires(Me.Height > 0)

Contract.Requires(Of ArgumentOutOfRangeException) _

(Me.Width > 0)

Dim result = (Width * 2) + (Height * 2)

Return result

End Function

In this case the contract requires that the Height property is greater than zero; otherwise a
runtime error is thrown. You instead use Contract.Requires(Of T) when you want to
throw a specific exception when the contract is violated. The above example throws an

From the Library of Wow! eBook

ptg

1271Understanding Code Contracts
5

9

FIGURE 59.17 The exception thrown when the code violates a precondition.

ArgumentOutOfRangeException if the Width property is less than zero. For example
consider the following code that creates an instance of Rectangle but violates the contract:

Dim r As New Rectangle(0, 80)

Console.WriteLine(r.CalculatePerimeter)

When you run this code, the runtime throws an ArgumentOutOfRageException, as shown
in Figure 59.17, due to an invalid Width value.

Preconditions are thus useful when you want to validate code elements before they are
invoked or executed. The next section discusses post-conditions instead.

Post-Conditions

A post-condition is a contract that is checked after code is executed and is basically used
to check the result of some code execution. Continuing with the previous example, you
might want to check that the CalculatePerimeter method produces a value greater than

From the Library of Wow! eBook

ptg

1272 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

zero before returning the result. This kind of post-condition is accomplished via the
Contracts.Ensures method, as demonstrated in the following snippet:

Function CalculatePerimeter() As Double

Contract.Ensures(Contract.Result(Of Double)() > 0)

Dim result = (Width * 2) + (Height * 2)

Return result

End Function

Also notice how Ensures invokes Contract.Result(Of T). This is basically the representa-
tion of the code result, and T is nothing but the expected type, which in this case is
Double. This line of code must be placed before the code is executed and the compiler can
link the actual result with the contract evaluation.

EXCEPTIONAL POST-CONDITIONS

The Contract class also provides an EnsuresOnThrow(Of TException) method that
checks for the condition only when the specified exception is thrown. Generally this
approach is discouraged, and you should use it only when you have complete under-
standing of what kind of exceptions your method could encounter.

Old Values
You can refer to values as they existed at the beginning of a method by using the
Contract.OldValue(Of T) method. For example, the following code ensures that a hypo-
thetical value variable has been updated:

Contract.Ensures(value) = Contract.OldValue(value) + 1)

Invariants

Invariants are special contracts that ensure an object is considered valid during all its life-
time. Invariant contracts are provided inside one method decorated with the
ContractInvariantMethod attribute that affects all members in the enclosing class. Only
one invariant method can be declared inside a class, and typically it should be marked as
Protected to avoid risk of calls from clients. The method is by convention named
ObjectInvariant (although not mandatory) and is used instead of preconditions and post-
conditions. The following code snippet provides an example:

<ContractInvariantMethod()>

Protected Sub ObjectInvariant()

Contract.Invariant(Me.Width > 0)

Contract.Invariant(Me.Height > 0)

End Sub

From the Library of Wow! eBook

ptg

1273Summary
5

9

Simply this code establishes that during the entire lifetime of the Rectangle object, both
Width and Height properties must be greater than zero so that they can be considered in a
valid state.

Assertions and Assumptions

The Contract class provides an Assert method that is used for verifying a condition at a
particular point in the program execution. Typically you use it as follows:

Contract.Assert(Width > 0)

There is also another method named Assume, which works exactly like Assert but is used
when static verification is not sufficient to prove the condition you are attempting to check.

Contract Events

The Contract class exposes a ContractFailed event that is raised when a condition is
violated and that you can handle to get detailed information. The following sample event
handler shows how to collect violation information:

Private Sub Contract_ContractFailed(ByVal sender As Object,

ByVal e As ContractFailedEventArgs)

Console.WriteLine(“The following contract failed: {0}, {1}”,

e.Condition, e.FailureKind.ToString)

End Sub

The ContractFailedEventArgs.Condition property is a string storing the condition while
the ContractFailedEventArgs.FailureKind is an enumeration offering the failure kind
(for example, Precondition, Invariant, and so on).

Summary
This chapter illustrated the Visual Studio instrumentation and libraries about testing appli-
cations. The first discussion was about unit testing, a technique used for checking if code
blocks work outside the application context, inside a sandbox. For this you saw how test
projects work and how to enable code coverage. The last topic in the unit test discussion
was about IntelliTrace, useful for unit tests debugging. The second discussion of the
chapter was about Test-Driven Development, a programming approach in which develop-
ers write their software by starting by writing unit tests. Particularly you saw Visual Studio
2010’s support for TDD, with special regard of the Generate from Usage feature. The final
part of this chapter was dedicated to Code Contracts, a new library in the .NET Framework
4 that enables writing code in the contract-by-design fashion and that is supported by the
System.Diagnostics.Contracts namespace and the Contract class.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

APPENDIX A

Installing Visual Studio
2010

IN THIS APPENDIX

. Installing Visual Studio 2010

. Installing the Offline
Documentation

. Running Visual Studio 2010 for
the First Time

Installing Visual Studio 2010 and required components is a
key step in your development experience. In this appendix
you can find useful information to get the most out of the
Visual Studio installation and first run.

Installing Visual Studio 2010
When you insert the installation media in your DVD-Rom
drive, the Setup.exe application starts. In the Setup dialog,
as shown in Figure A.1, click the Install Microsoft Visual
Studio 2010 link. After a few seconds, the installer loads
required components. After loading setup components, you
will be asked to read and accept the license agreement and
review user information. At this point click Next so that
you can choose what feature you want to install. As you
can see in Figure A.2, the installer shows a list of available
features. For this book, the only features that are not strictly
required are Visual C#, Visual F#, Visual C++, the Graphics
Library, and SharePoint Development Tools. Also notice
that if you want to install Visual C++, you have the ability
to specify the components, such as compilers and libraries
for the managed and the unmanaged environment. When
you decide on your favorite features, click Install. At this
point you need to wait for the installation process to
complete. A dialog continuously informs you of the process
state telling you what component is being currently
installed, as shown in Figure A.3. If you have experience
with previous Visual Studio versions, you notice that the
Setup dialog windows don’t show anymore pictures and
animated content to provide better performance. After
installing the Microsoft .NET Framework 4.0, the setup

From the Library of Wow! eBook

ptg

1276 APPENDIX A Installing Visual Studio 2010

reboots your machine. When rebooted, the installation continues from the point it was
interrupted. After a number of minutes the Visual Studio setup finishes. In the final dialog
you have an opportunity to choose to close the setup process or to install the offline
documentation (see Figure A.4).

FIGURE A.1 The startup dialog of the Visual Studio installation.

FIGURE A.2 Choosing features to install.

From the Library of Wow! eBook

ptg

1277Installing Visual Studio 2010
A

FIGURE A.3 Getting information on the setup process state.

FIGURE A.4 Setup completes, so now it’s time to install the documentation.

From the Library of Wow! eBook

ptg

1278 APPENDIX A Installing Visual Studio 2010

FIGURE A.5 Setting the target folder for the MSDN Library.

Installing the offline documentation is useful if you want to have a local copy of the
MSDN library, as described in the next section.

Installing the Offline Documentation
When the installation finishes, click the Install Documentation button. This launches
the new Help Library Manager. The first thing you are asked to specify is the target direc-
tory for the offline help, as shown in Figure A.5. Leave the default setting unchanged and
then click OK.

At this point the Library Manager shows you a series of options; click Find Contents on
Disk. This lists available components that you can install to your local machine from the
installation media (see Figure A.6 for details). Ensure you add at least the VS
Documentation element and then click Update.

After a few minutes the offline documentation will be available on your computer. At this
point you can return to the final Setup dialog, as shown in Figure A.4, where you just
click Finish to return to the operating system.

Finding Additional Contents Online

Because including the entire MSDN Library in one installation media is not possible, you
have the ability of installing additional documentation from the Internet. This is some-
thing that can be accomplished after you run Visual Studio for the first time. On the Help
menu, click the Manage Help Settings command. This launches again the Help Library
Manager. In the list of available options, select Find Content Online. At this point the
Help Manager lists available contents, as shown in Figure A.7.

From the Library of Wow! eBook

ptg

1279Running Visual Studio 2010 for the First Time
A

FIGURE A.7 Selecting additional help contents available on the Internet.

FIGURE A.6 Selecting documentation contents.

When ready, click Update and wait for the documentation to be installed.

Running Visual Studio 2010 for the First Time
When you run Visual Studio 2010 for the first time, the IDE needs to be configured. It first
requires you to specify one of the default environment settings, as shown in Figure A.8.

From the Library of Wow! eBook

ptg

1280 APPENDIX A Installing Visual Studio 2010

Choosing one of the development settings configures menus, buttons, and icons to
provide the appropriate shortcuts according to the selected profile. A popular choice is the
General Development Settings so that you can later customize the IDE according to your
particular needs, but you can also consider the Visual Basic Development Settings that
configures the IDE with the most-common shortcuts for Visual Basic, especially if you
come from the Visual Basic 6 experience. You can revert changes later from the Tools
menu, as described in Chapter 56, “Advanced IDE Features.”

FIGURE A.8 Selecting a default environment setting.

From the Library of Wow! eBook

ptg

APPENDIX B

Useful Resources and
Tools for Visual Basic

IN THIS APPENDIX

. Visual Basic Resources in
MSDN

. Useful Developer Tools for
Visual Basic

. Coding Tools

. Networking

. Data Access

. Diagnostics and Performance

. Miscellaneous

. Where Do I Find Additional
Tools?

The Visual Basic 2010 language is the most powerful
version ever and enables you to access every feature and
technology exposed by .NET Framework 4. But the
Framework is a large technology, and the language has so
many features that remembering everything is almost
impossible. So, instead of remembering everything, it is
important for you to know where to search for information,
resources, and learning material. Moreover, Visual Studio
2010 is a powerful development environment that includes
a plethora of tools to make your development experience
great. There are some situations in which the IDE does not
include particular features that are instead provided by
third-party tools. This appendix gives you a number of
Visual Basic resources inside the MSDN documentation and
websites for you to bookmark in your Favorites. Also, this
appendix provides a list of useful tools for you as a Visual
Basic developer. They are all free tools, so you can enjoy
their functionalities.

Visual Basic Resources in MSDN
Following are learning resources for Visual Basic 2010 inside
the MSDN Library and websites:

The Visual Basic Developer Center: The principal website
from Microsoft dedicated to Visual Basic: http://msdn.
com/vbasic.

Visual Basic “How Do I” videos: A portal where you can
find a lot of videos illustrating programming techniques
and usage of Microsoft technologies with Visual Basic:
http://msdn.microsoft.com/en-us/vbasic/bb466226.aspx.

From the Library of Wow! eBook

http://msdn.com/vbasic
http://msdn.com/vbasic
http://msdn.microsoft.com/en-us/vbasic/bb466226.aspx

ptg

1282 APPENDIX B Useful Resources and Tools for Visual Basic

Visual Basic Code Samples: A portal where you can find an updated list of open source
projects and applications from the MSDN Code Gallery and the CodePlex community
targeting Visual Basic: http://msdn.microsoft.com/en-us/vbasic/ms789074.aspx.

Visual Basic Tutorials, a portal where you can find a list of tutorials covering a great
number of Microsoft technologies with VB: http://msdn.microsoft.com/en-us/vbasic/
ms789086.aspx.

Visual Basic Community Content, a web page offering news about contents produced by
community members such as Microsoft Visual Basic MVPs: http://msdn.microsoft.com/en-
us/vbasic/ms789066.aspx.

Visual Basic MSDN Library, probably the most important reference for every Visual Basic
developer, where you can find documentation, language reference, walkthroughs and
examples: http://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx.

.NET Framework Developer Center, the principal website for information on all .NET-
based Microsoft technologies: http://msdn.microsoft.com/en-us/netframework/default.aspx.

Also don’t forget to use search engines, which in most cases will be your best friends.
Typically they will return the most accurate results if your search is performed by writing
English strings.

Useful Developer Tools for Visual Basic
This section provides a list of free useful tools that will enrich your developer toolbox.

Coding Tools
In this section you can find a list of tools to improve your productivity in writing better
code.

CodeRush Xpress from DevExpress is a free Visual Studio add-in that enhances the Visual
Studio code editor by providing refactoring tools to write better, more-readable, and more-
efficient code. If you used Refactor! Express in the past, CodeRush is its more powerful
successor. You can find it at http://www.devexpress.com/Products/Visual_Studio_Add-in/
CodeRushX/.

Code Snippet Editor is an open source tool written in Visual Basic for creating and
exporting reusable code snippets with advanced functionalities in VB, C#, and Xml
languages via a comfortable graphical user interface. It is available at http://www.codeplex.
com/SnippetEditor.

From the Library of Wow! eBook

http://www.devexpress.com/Products/Visual_Studio_Add-in/CodeRushX/
http://www.devexpress.com/Products/Visual_Studio_Add-in/CodeRushX/
http://www.codeplex.com/SnippetEditor
http://www.codeplex.com/SnippetEditor
http://msdn.microsoft.com/en-us/vbasic/ms789074.aspx
http://msdn.microsoft.com/en-us/vbasic/ms789086.aspx
http://msdn.microsoft.com/en-us/vbasic/ms789086.aspx
http://msdn.microsoft.com/en-us/vbasic/ms789066.aspx
http://msdn.microsoft.com/en-us/vbasic/ms789066.aspx
http://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx

ptg

1283Diagnostics and Performance

Vsi Builder 2008 is a free tool from the author of this book that enables creating .Vsi
packages for deploying code snippets, add-ins, and additional contents for Visual Studio.
You can download it from http://code.msdn.microsoft.com/VsiBuilder.

P/Invoke Interop Assistant is an open source tool that lets you write P/Invokes in the
better way: http://clrinterop.codeplex.com/.

Networking
One of the most famous tools in networking is Fiddler, which is a free Web debugging
proxy that can log all http and https traffic between the computer and the Internet. Other
than inspecting http traffic, Fiddler can set breakpoints and walk through incoming or
outgoing data. You can find it at http://www.fiddler2.com/fiddler2/. Fiddler is particularly
useful in debugging WCF services and WCF Data Services, other than requests coming
from Web browsers such as Internet Explorer and Firefox.

Data Access
For data access tools, you can find LINQPad very useful. This is a free tool that provides
advanced instrumentation for querying data sources and that can generate the necessary
code using LINQ. Visual Basic is one of the supported languages. You can find it at http:/
/www.linqpad.net. Although LINQPad requires .NET Framework 3.5 to be executed, the
generated queries can be reused in the current Visual Basic version.

Diagnostics and Performance
This section lists a number of tools for Visual Studio diagnostics and applications perfor-
mance.

Visual Studio 2010 Diagnostic Tool enables collecting traces, dumps, and performance
information about Visual Studio 2010. Such information can be useful if you are interested
in sending your feedback to Microsoft about problems occurring during the Visual Studio
2010 lifetime. It is available from the Visual Studio Gallery at http://visualstudiogallery.
msdn.microsoft.com/en-us/e8649e35-26b1-4e73-b427-c2886a0705f4.

Windows Performance Toolkit is capable of analyzing performances of WPF applications
through different kinds of analysis methods. You can obtain the toolkit in two ways: The
first way is downloading and installing the previously described VS 2010 Diagnostic Tool,
whereas the second one is downloading and installing the Microsoft Windows SDK for
Windows 7 and Windows Server 2008 R2 available from at
http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-
1fd44e0e2505&displaylang=en.

B

From the Library of Wow! eBook

http://www.fiddler2.com/fiddler2/
http://www.linqpad.net
http://www.linqpad.net
http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-1fd44e0e2505&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-1fd44e0e2505&displaylang=en
http://code.msdn.microsoft.com/VsiBuilder
http://clrinterop.codeplex.com/
http://visualstudiogallery.msdn.microsoft.com/en-us/e8649e35-26b1-4e73-b427-c2886a0705f4
http://visualstudiogallery.msdn.microsoft.com/en-us/e8649e35-26b1-4e73-b427-c2886a0705f4

ptg

1284 APPENDIX B Useful Resources and Tools for Visual Basic

Miscellaneous
In this section you can find a list of tools not strictly related to a single technology or that
cannot be classified in other sections.

.NET Reflector is a free tool capable of exploring .NET assemblies via Reflection. The tool
can show the Intermediate Language or offer decompilation results in both Visual Basic
and Visual C# of the specified executable. Reflector is not only useful for reflecting or
decompiling assemblies, but is also particularly useful for inspecting .NET Framework Base
Class Libraries and understanding how many things are implemented behind the scenes.
You can find it at http://www.red-gate.com/products/reflector/.

XAML PowerToys is a free add-in for Visual Studio 2010 that integrates the WPF and
Silverlight designers with tools for generating business forms and objects enabled for the
Model-View-ViewModel pattern and adds design-time functionalities for rearranging UI
elements. You can find at http://karlshifflett.wordpress.com/xaml-power-toys/.

Windows Azure Management Tool is an open source snap-in for Windows Management
Console that provides client-side access to Windows Azure’s blob storage and queues,
where you can easily upload your contents. It is available at http://code.msdn.microsoft.
com/windowsazuremmc.

Where Do I Find Additional Tools?
If you are interested in enhancing your toolbox with third-party tools, often check out the
Visual Studio Gallery (http://visualstudiogallery.com) that contains hundreds of useful
tools divided into categories. Also visit both the MSDN Code Gallery (http://code.msdn.
microsoft.com) and the CodePlex community (http://www.codeplex.com) where you can
find hundreds of useful tools, which are free in most cases.

From the Library of Wow! eBook

http://www.red-gate.com/products/reflector/
http://www.codeplex.com
http://karlshifflett.wordpress.com/xaml-power-toys/
http://code.msdn.microsoft.com/windowsazuremmc
http://code.msdn.microsoft.com/windowsazuremmc
http://visualstudiogallery.com
http://code.msdn.microsoft.com
http://code.msdn.microsoft.com

ptg

SYMBOLS
/logger switch, 1117
/noconsolelogger switch, 1117
= (equality) operator, 127
@ character, 1117
\ (inequality) operator, 127
_ (underscore) character, 66
1-Click deployment, 866

A
abstract classes

Class Designer, 412
CLS, 332
inheritance, 331

abstraction, 604
access

ADO.NET, 514. See also ADO.NET
attributes, 1069
BCL members, 332-336
classes, properties, 233
ClickOnce, 1172-1173
code, names, 475
data access tools, 1283
databases, SQL, 563
directories, 431
files, 436-438
Generate From Usage coding techniques, 423
interfaces, 343-345
members, 64
MSDN Library, 59
networks, 462-463
Object Browser window, 60
objects, My namespace, 451. See also My

namespace
properties, 43
rules, 865
Silverlight, 887
templates, 21
VBA object models, 1129
Windows Registry, 460-462

accounts
formatting, 865
Storage Account activation, 922-925

actions
customization, 1155-1156
XBAP, 713

From the Library of Wow! eBook

ptg

activation of Storage Accounts, 922-925
ActiveX controls, 1075

code, 1077
Add command, 409
Add Command dialog box, 1184
AddHandler keyword, 376
adding

actions, 1155-1156
annotations, 787
AnnotationService class, 792
ArrayList collections, 386
breakpoints, 54
code snippets, 1196
columns, 699
comments, 637
connections, Windows Azure, 923
containers, 925
controls, 691-693, 876

navigation, 861
Silverlight, 875-877

custom launch conditions, 1156
data controls, 859-861
data sources, 888-889
Domain Service Classes, 889-892
entities, 624-625
Entity Data Models, 604, 857
file types, 1154
filtering, 818
hyperlinks, 792
images, 781-783
Imports directive, namespaces, 284
ink notes, 794
items, 721, 1179
keys in Registry editors, 1152
LINQ

queries, 672
to SQL classes, 563

member interfaces, 411
multiple entities, 583
multiple roles, 906
objects, Class Designer, 410-413
online templates, 19
references, 83

assemblies, 1144-1145
COM libraries, 84-86

rows, 699
service references, 939
stored procedures, 631

strong names, 1141
task panes, 1126
time to time, 145
toolbars, 1184
trace listeners, 202
underscore (_) characters, 66
Web forms, 857-859
windows, 709
WinForms, 1122

Add-In Manager, 1218
add-ins

deployment, 1213-1215
design, 1130
document-level, formatting Excel, 1129-1133
VSTO deployment, 1133-1137
Word, creating, 1121-1129

Add method, 386
Add New Data Source command, 519, 670
Add New Item dialog box, 563, 1181
AddNew method, 822
Add Reference command, 83
Add Reference dialog box, 80, 1144
Add/Remove Programs tool, 1164
addresses

applications, 916
services, 965
WCF, 928-930

AddressOf clause, 373, 1009
Add Service Reference dialog box, 938
Adjust Shapes Width command, 409
administration. See also management

applications, debugging, 201-204
Configuration Manager, 44
privileges, 1137

ADO.NET, 511, 601
Data Services, 9
Entity Data Models, 604-621
Entity Framework, 9
Entity Framework overview, 603-604, 623-624
overview of, 514-517
serialization, 990
Windows Forms applications, creating, 668-

681
adornments

code editor extensions, 1218
text, 1220

AdRotator control, 845
Advanced Compiler Settings window, 45

activation of Storage Accounts1286

From the Library of Wow! eBook

ptg

advanced features, IDE, 1175
Age property, 501
Aggregate method, 492
aggregation operators, 545-546
Al.exe, 1142
alignment commands, 1183
All Files view, 71
All method, 492
allocation, memory, 267-268

structures, 304
types, 106-107
value types, 100

allow partially trusted callers (APTCA), 1041
AllRead permission, 965
ambiguities, avoiding, 228
analysis

code, 265
tools, 1221

calculating code metrics, 1230-1231
dependency graphs, 1250-1251
executing code analysis, 1224-1230
IntelliTrace, 1243-1249
overview of, 1224
profiling applications, 1232-1242

value types, 98-99
AndAlso operator, 543
And operator, 543
animation, 747

creating, 778-779
double, implementation, 881
events, 777-778
Silverlight, 880-883
WPF, 771-778

annotations, 787, 795
AnnotationService class, 792
anonymous types, 499-501

building complex queries, 598
Any method, 492
API (Application Programming Interface), 1075

references, 1089
App.Current property, 897
AppDomain class, 1032
AppDomainSetup class, 1040
Application.Designer.vb file, 72
application-level add-ins (Word), creating, 1121-

1129
application-level solutions, VSTO, 1120

How can we make this index more useful? Email us at indexes@samspublishing.com

Application.myapp file, 71-73
Application object, WPF, 710-711
Application Programming Interface. See API
applications

ASP.NET, 840. See also ASP.NET
assemblies, 1030. See also assemblies
Azure (Windows), 897

activating Storage Accounts, 922-925
creating demo projects, 902-916
deployment, 916-922
Management Console snap-in, 925
platforms, 899-901
registration, 901
roles, 904-906
testing, 913-916

ClickOnce, 1159-1166. See also ClickOnce
clients, creating, 958-962
CLR. See CLR
creating, 25
cultures, 453-454
debugging, 52-54, 181

administration, 201-204
attributes, 204-209
Autos window, 192
breakpoints, 182-185
Call Stack window, 188-189
code, 177-178, 194-209
Command window, 187
debugger visualizers, 193-194
Just My Code, 180-182
Locals window, 186
Mixed Mode feature, 180
processes, 178-180
Threads window, 192
tools, 178-193
trace points, 182-185
Watch windows, 190-191

desktop, 1038
domains, 1031-1034
events, 484-486
files, 1166
formatting, 79-82
Forms (Windows), 481, 665-668
GenerateFromUsage, 422
Installer (Windows), 1145-1146. See also

Installer (Windows)

applications 1287

From the Library of Wow! eBook

ptg

IntelliTrace, 1244-1247
localizing, 453, 830

overview of .NET localization, 829-830
Windows Forms, 830-832
WPF, 832-837

logs, Windows, 456
mapping, 1112
multitargeting, 20
My namespace, 483-486
.NET Framework, 1-10. See also .Net

Framework
profiling, 1232-1242
registration, Azure (Windows), 901
running, 681, 862
serialization, 969
Silverlight, 71, 871

creating, 872-875
hosting, 906-913
navigation, 884-887
Out of Browser, 896-897
overview of, 872
resources, 473
running, 895
WCF RIA Services, 887-896

types, 36
versions, targets, 51
Web

creating, 853-864
deployment, 865-866
hosting WCF Data Services, 951
MSDeploy, 868-870
publishing, 866

WPF
browsers, 711-713
creating, 511, 681-682
Visual Studio, 686-687

Application state, 849
Application tab (My Project tool), 35-41
Application Updates dialog box, 1168
applying

annotations, 795
arrays, 152-159
attributes, 1065-1068, 1071
BitmapCacheBrush, 757-758
Breakpoints window, 182-185
CaretBrush, 753-754
clipboards, 459
ColorAnimation, 774-775
COM objects, 1075-1078

cookies, 851
custom attributes, 1070-1071
data-binding, 859
dates, 139-146
delegates, 372
DoubleAnimation, 772-774
DrawingBrush, 756-757
enumerations, 311-312
Expression Blend, 764
fields, 228
GUIDs, 151-152
ImageBrush, 751-753
inheritance, 318-322
LinearGradientBrush, 748-749
logs, 588-589
memory streams, 444
multiple transforms, 770
nongeneric collections, 386-396
objects, COM, 1077-1078
RadialGradientBrush, 750-751
RotateTransform, 768
ScaleTransform, 768
SelectionBrush, 753-754
SkewTransform, 769
SolidColorBrush, 747-748
SQL syntax against entities, 593
streams with strings, 444-445
strings, 126-139
time, 146-147
tool windows, 29-34
TranslateTransform, 770
value types, 93-99
VisualBrush, 754

APTCA (allow partially trusted callers), 1041
architecture

collections, 385-386
COM, 1075. See also COM
LINQ, 529
.NET Framework, 2-4
WPF, 683-686

Architecture, Generate Dependency Graph, 1250
arguments

attributes, 1066
command-line, retrieving, 456
If operators, 510
lambda expressions as, 504
as lambdas, 495
methods, 238-243

applications1288

From the Library of Wow! eBook

ptg

nullable, 242
optional, 241-242
ParamArray, 240-241
Title, 1100

arithmetic operators, 159-110
ArrayList collection, 386-389
arrays

applying, 152-159
versus collections, 152
jagged, 155, 490-491
literals, 155, 489-491
multidimensional, 155, 490-491
passing, 240
rules, 267

As clause, 94, 364
AsEnumerable method, 492
asInvoker level, 40
AsParallel, 660
ASP.NET, 9

controls, 847-848
Development Server, 935
events, handling, 848
overview of, 839-842
page requests, 840
performance, 840-841
scalability, 840-841
state management, 849-853
templates, 841-842
Web applications

configuring security, 864-866
creating, 853-864
deployment, 865-866
MSDeploy, 868-870
publishing, 866

Web forms, 843-847
assemblies, 1027

application domains, 1031-1034
attributes, 1031
BCL, 1138
CLS, 264, 1143
execution, 1032-1034
GAC, 83, 1030, 1151
information

retrieving, 452-453
stored within, 1030

inspections, 1047
installation, 1140-1141

How can we make this index more useful? Email us at indexes@samspublishing.com

locations, 1030-1031
metadata, 71, 1047-1048, 1067
methods, loading, 1046
.NET Framework, 5-6, 928
overview of, 1029-1031
property assignment, 1060
references

adding, 1144-1145
selection, 83

registration, 1079
sandboxing, 1041
serialization, generation of, 49
signing, 1031, 1142-1143
System.ServiceModel.dll, 7
System.Xaml.dll, 985
uninstallation, 1140-1141

Assembly.GetModules method, 1048
Assembly Information button (My Project), 37
AssemblyInfo.vb file, 73-75
Assembly Metadata, 1044-1046
Assembly name field (My Project), 36
assertions, 1273
Assert method, 194
assignment, 302

assembly properties, 1060
enumerations to integers, 314
images, 473
operators, 162
passwords to strong names, 1143
styles, 759
value types, 97-98

association
Entity Data Models, 858
Web pages, 861

assumptions, 1273
attributes, 65

applications, debugging, 204-209
assemblies, 1031
CLSCompliant, 348
code, 1063

applying, 1065-1068
customization, 1068-1073

ComVisible, 1080
DataContract, 941
DebuggerBrowsable, 205-203
DebuggerDisplay, 207-204
DebuggerSteppeBoundary, 205

attributes 1289

From the Library of Wow! eBook

ptg

DebuggerTypeProxy, 207-209
FaultContract, 944
Just My Code, 181
OperationContract, 941
reflection, 1073-1074
security, 1037
SecurityTransparent, 1038
selection, 654
StructLayout, 305, 1085-1087
System.Runtime.InteropServices.ComVisible,

1080
System.Runtime.InteropServices.DllImport,

1082
System.Security.SecurityRules, 1038
type parameters, 1070
VBFixedString, 1088
XmlRoot, 982

audio, playing, 459-460, 783-786
Authenticode, 1143, 1172
auto-generated

contracts, 931
partial classes, 247

auto-implemented properties, 230-231
automatic updates, enabling, 1167
AutoPostBack property, 845
Autos window, 192
Average method, 492
avoiding

ambiguities, 228, 294-295
boxing and unboxing, 115
complex inheritance chains, 341
conflicts in namespaces, 285-286
local variables, 228

AxHost class, 1077
AxImp.exe, 1075
AxInterop.WMPLib.dll file, 1076
axis, 677

Xml, 646-647
Azure (Windows)

applications, 897
activating Storage Accounts, 922-925
creating demo projects, 902-916
deployment, 916-922
Management Console snap-in, 925
platforms, 899-901
roles, 904-906
testing, 913-916

installation, 925
SDK, 902
tools, downloading, 901-902

B
background compilers, 45
Background property, 705
backups, user settings, 1188
BAML (Binary Application Markup Language), 832
Barnes, Jeff, 937
Barrier class, 1014-1016
Base Address, DLL, 47
BaseClassDemo class, 336
Base Class Library. See BCL
Baseline column, 1242
batching MSBuild, 1115-1116
BCL (Base Class Library), 2, 6-7

assemblies, 1138
member access, 332-336
references, 83. See also references

behavior
breakpoint customization, 184
extension methods, 495
Option infer directive, 487

BigInteger value types, 100-102
Binary Application Markup Language. See BAML
binary files

reading, 443
writing, 443

BinaryFormatter class, 972
binary number conversions, 166-167
binary operators, PLINQ, 660
Binary Rewriter, 1270
BinarySearch method, 389
binary serialization, 972-975
binding, 115

assemblies, 1031
data-binding, 799, 859. See also data-binding
DataGrid control, 805-806
to DataSets, 822
elements, 800-806
late binding, 1062
LINQ queries, 597
View property, 820-825
WCF, 928-930
WCF built-in, 942

attributes1290

From the Library of Wow! eBook

ptg

Binding markup extension, 800-806
Bin subfolders, 1138
BitArray collection, 394
bit flag values enumerations, 315-317
BitmapCacheBrush, 746

applying, 757-758
BitmapImage class, 782
Bitvector32 collection, 395
bitwise operators, 165
BLOB containers, 925
Blob Storage, 900
BlockingCollection(Of T) concurrent collection,

1027
blocks

catch, overlapping, 43
code

conditional, 177-179
nested Try..Catch..Finally, 218
Try..Catch..Finally, 209-213

Finally, 212
Try..Catch, 436, 1089
Try..Catch..End Try, 1078

BooksCollection class, 907
Boolean types, 466
BorderBrush property, 705
Border control, 717
borders, drawing, 718
BorderThickness property, 705
boxing, 114
brackets, 153
breakpoints

customization, 184
debugging, 54-55, 182-185

Breakpoints window, applying, 182-185
Browse command, 467
browsers, 711-713. See also interfaces
brushes, 747

specifying, 718
WPF, 745-758

bubbling, 697
building

complex queries with anonymous types, 598
control templates, 764
extension method libraries, 498
packages, Visual Studio extensibility, 1202-

1213

How can we make this index more useful? Email us at indexes@samspublishing.com

built-in
extension methods, 492-494
reference types in .NET Framework, 104
trace listeners, 198-195, 198-201

BulletedList control, 845
Button control, 718, 845
buttons

Orders, 864
styles, assigning, 759

ByRef keyword, 238-243
ByVal keyword, 238-243

C
CAB Project templates, 1147
caches

events, 844
GAC, 83, 1030. See also GAC

Cache state, 850-851
calculations

code metrics, 1230-1231
logarithm, 102

Calendar control, 718, 845
Call Stack window, 55, 188-189
cameras, capturing, 880
canceling

PLINQ queries, 662
tasks, 1012-1014

Canvas panel, 704
capturing cameras, 880
CaretBrush, 746

applying, 753-754
CAS-based code, migration from old, 1041
case sensitivity, 70

strings, 130
XML comments, 1097

Cast method, 492
catch blocks, overlapping, 43
catching

events, 376
exceptions, 222

COM, 1078
without variables, 224-225

Category class, 569
entity definition, 614

central processing units. See CPUs
certificates, ClickOnce, 1172

certificates 1291

From the Library of Wow! eBook

ptg

chains, avoiding complex inheritance, 341
ChangeCulture methods, 453
ChangeExtension method, 431
Change Members Format command, 409
changes. See also configuration; formatting; modi-

fication
interceptors, 968
.NET Framework security, 1034-1041
thread pool default values, 999
tracking, 566, 625

ChangeUICulture method, 453
channels, RSS, 14. See also RSS
characters

_ (underscore), 66
types, literal, 95-96

Chart control, 667
Windows Forms applications, 668-681

chart design, 676
CheckBox control, 719, 845
CheckBoxList control, 846
checking

for empty or null strings, 130-131
intervals, 1238

CheckString delegate, 503
Choose Toolbox Items dialog box, 1190
Chrome control, 695
CInt function, 123
Class Designer, 407-419

derived class implementation, 414-417
enabling, 408-409
multiple diagrams, creating, 417-418
objects, adding, 410-413

Class Details window, 419
classes, 60, 225

abstract
Class Designer, 412
CLS, 332
inheritance, 331

AnnotationService, 792
AppDomain, 1032
AppDomainSetup, 1040
Application, 710-711
attributes, 1067
AxHost, 1077
Barrier, 1014-1016
BaseClassDemo, 336
BCL assemblies, 1138
BinaryFormatter, 972

BitmapImage, 782
BooksCollection, 907
Category, 569
CLS, 263-268
collections, 385. See also collections
Console, 61
constructors, 253-259
Contact, 338, 1073
CultureInfo, 830
Debug, 195-197
declaring, 225-227
diagrams, 409, 418-419
Document, 343
Domain Service Classes, 889-892
fields, 227-229
FileStream, 443
generating, 426
inheritance support, 414
Installer, 1152
libraries, 226
LINQ, 563-574
methods, 236-247

exit from, 246-247
overloading, 243-245
partial, 250-253. See also methods

ModuleBuilder, 1060
modules, differences between, 297
Monitor synchronization, 1001-1002
multiple diagrams, creating, 417-418
namespaces, 282
nested, 226-227, 343
NorthwindDataContext, 568
ObjectContext instantiation, 623-624
ObjectContext, 612-618
Parallel, 1006
ParallelLoopState, 1021
ParallelOptions, 1007
partial, 247-250
properties, 229-235

access, 233
auto-implemented, 230-231
default, 233-235
exposing custom types, 232
read-only, 231
write-only, 232

Proxy, 939
Readerwriterlock, 1002
reference types, 86

chains1292

From the Library of Wow! eBook

ptg

requirements, COM exposure, 1079
rules, 267
scope, 226-228, 235-236
shared members, 259-263
SnippetCompilerVsPackagePackage, 1231
StreamWriter, 442
System.Array, 156
System.DateTime, 144-141
System.Diagnostics.Process, 994
System.EventArgs, 380
System.Exception, 209-219
System.IO.Directory, 431-434
System.IO.DirectoryInfo, 434-435
System.IO.DriveInfo, 435-436
System.IO.File, 436-438
System.IO.FileInfo, 438-440
System.IO.Path, 430-431
System.Object, 86, 322-324
System.Threading.Threadpool, 998
System.TimeSpan, 146
System.ValueType, 87-89
Task, 1009
TaskFactory, 1007
TaskScheduler, 1007
Trace, 197
WPF, 684
XDocument, 639
XInfo, 1049

Class View window, 419
clauses

As, 94, 364
AddressOf, 373, 1009
Handles, 377

Clear method, 397
Click event, 695, 713
ClickOnce, 713, 1134, 1146, 1159

access, 1172-1173
applications, running, 1160
certificates, 1172
configuration, 1166-1171
deployment, 1161-1166
options, 1169-1171
overview of, 1159-1161
registration-free COM, 1174-1175
security, 1171-1172
updates, 1168-1169

ClientBin, 877

How can we make this index more useful? Email us at indexes@samspublishing.com

clients
applications, creating, 958-962
ClickOnce, 1161
exception handling, 221
WCF

creating, 939
overview of, 928-930

clipboards, applying, 459
Clone method, 133-134, 249
cloning

objects, 119
reference types, 105

Close method, 941
Close Solution command, 1184
closing connections, 565
closures, lexical, 508-509
Cloud Computing tools, 902
CLR (Common Language Runtime), 2, 4-6

LINQ, 528
memory allocation, 107
metadata, 1044

CLS (Common Language Specification), 263-268
abstract classes, 332
assemblies, 1143
code analysis, 1224
enumerations, 317
IConvertible interface, 357
inheritance, 322
interfaces, 347-348
namespaces, 295
structures, 309-310

CLSCompliant attribute, 348
code. See also languages

ActiveX controls, 1077
analysis, 265
applications, debugging, 177-178, 194-209
attributes, 1063

applying, 1065-1068
customization, 1068-1073
reflection, 1073-1074

Authenticode, 1172
blocks

conditional, 177-179
nested Try..Catch..Finally, 218
Try..Catch..Finally, 209-213

breakpoints, debugging, 50
case sensitivity, 70
classes. See classes

code 1293

From the Library of Wow! eBook

ptg

COM
components in, 85
objects, 1077-1078

complex objects, generating, 426-429
contracts, 1269-1273
coverage, enabling, 1259
documentation, defining, 1096-1098
document interaction, 1131-1132
dynamic code execution at runtime, 1034
editors, extensions, 1218-1221
elements, references, 1099-1101
errors, correction options, 422
extension methods, customization, 496-498
files, Visual Studio packages, 1204
Generate From Usage techniques, 419-426
implicit line continuation, 66-69
interfaces, generating, 428-429
Just My Code, 180-182
LINQ, 521. See also LINQ
LocBaml.exe, 832-833
managed, writing, 4-5
MediaElement control, 785
metrics, calculations, 1230-1231
migration from old CAS-based, 1041
MSBuild interaction, 1113
MSIL, 5
names, accessing, 475
namespaces, 281-282
new features, 421-426
ObjectContext class, 623
on-the-fly, 426
OpCodes, 1062
refactoring, 1267
reflection, 1045, 1055-1057
relaxed delegates, 501
reuse, 360
runtime, generating, 1058
samples, 1282
shared members, generating, 425
snippets, 1190-1197, 1213-1215
source, documentation, 1089
testing, 1251
tools, 1282-1283
unit tests, 1251-1261
WCF Data Services, 952
writing, 407. See also objects
XAML, 689

Code Access Security policies, 1035
Code Analysis tool, 32
codeBase assemblies, 1031
Code Contracts, 9
Code Editor, invoking Object Browser from, 60
CodePlex, 7, 1284
CodeRush Xpress, 1282
Code Snippet Editor, 1283
Code Snippet Manager, 1193
coercion methods, 245
collections, 383

architecture, 385-386
ArrayList, 386-389
arrays versus, 152
BitArray, 394
Bitvector32, 395
concurrent, 407, 1023-1027
customization, 406-407
debugging, 398
Dictionary (Of TKey, TValue), 400
extension methods, 396
generics, 396-406, 976, 986
HashTable, 391-392
HybridDictionary, 393
initializers, 398-399
in-memory queries, 532
LinkedList (Of T), 404-406
ListDictionary, 392
List (Of T), 396-398
members, 396
NameValueCollection, 394
nongeneric, 386-396
ObservableCollection (Of T), 401-404
OrderedDictionary, 392
Queue, 389-390
Queue (Of T), 406
ReadOnlyCollection (Of T), 399-400
SortedDictionary (Of TKey, TValue), 401
SortedList, 392
Stack, 390-391
Stack (Of T), 406
StringCollection, 393
StringDictionary, 393

ColorAnimation, applying, 774-775
columns

adding, 699
Baseline, 1242
Grid panel, 698

code1294

From the Library of Wow! eBook

ptg

selection, 858
COM, 1075

API references, 1089
Dll hell problem, 1137-1139
exceptions

catching, 1078
handling, 1088-920

libraries, adding references, 84-86
objects

applying, 1075-1078
interoperability, 1079-1081
releasing, 1078

P/Invoke, 1081-1089
registration-free, ClickOnce, 1174-1175
unmanaged code, 1081-1089

combining delegates, 374-375
ComboBox control, 720, 845
CommandLineArgs property, 456
command-line arguments, retrieving, 456
commands

Add, 409
Add New Data Source, 519, 670
Add Reference, 83
Adjust Shapes Width, 409
alignment, 1183
Browse, 467
Change Members Format, 409
Class Designer, 409
Close Solution, 1184
customization, 1183-1186
Enable Tracing, 946
Export Diagram as Image, 409
Export Report Data, 1240
Export Settings, 1186
Export Template, 1176
Generate Class, 426
Generate Other, 423, 427
Go to Definition, 61
Group Members, 409
Hit Count, 184
Insert Breakpoint, 54
Layout Diagram, 409
New Project, 666
New Project (File menu), 17
prompts, MSBuild, 1106
Run Code Analysis, 1228
Run the Cursor, 179

How can we make this index more useful? Email us at indexes@samspublishing.com

Show Error Help, 32
Show Next Statement, 180
Step Into, 178
Step Out, 179
Step Over, 179
View Help (Help menu), 59
When Hit, 185
Zoom, 409

Command window, 187
comments

adding, 637
Xml

enabling, 1093
generics, 1103
implementation, 1094

common controls, WPF, 717-746
common dialog boxes, WPF, 746
Common Language Runtime. See CLR
Common Language Specification. See CLS
common operators, 159-171
Common Type System, 85-89

objects, 86
Compare method, 128
CompareTo method, 128
comparisons

arrays, collections, 152
between classes and modules, 297
operators, 169-171
StringComparison enumeration options, 134-

135
strings, 127-130

compilation logs, 42
compiled help files, generating, 1103
Compile element, 1110
compilers

background, 45
configuration, 47
implicit conversions, 111
MSBuild, 834, 1103. See also MSBuild
Visual Basic Compiler, 2
Visual Studio options, 45-46
Xml documents, parsing, 644

compiling
constants, 48-49
projects, 33
Visual Studio, 41-51

completionPortThreads arguments, 999

completionPortThreads arguments 1295

From the Library of Wow! eBook

ptg

complex code documentation, defining, 1096-
1098

complex inheritance chains, avoiding, 341
complex objects, generating, 426-429
complex queries with anonymous types, 598
compliance, 310
compliance, CLS, 264, 348. See also CLS
components, COM, 1078. See also COM

Dll hell problem, 1137-1139
compressing data, 445-450
computer information, retrieving, 463-464
ComVisible attribute, 1080
concatenation

operators, 168, 558
strings, 138-139

Concat method, 492
Conceptual Schema Definition Language. See

CSDL
concurrency, optimistic, 592, 627-628
ConcurrentBag(Of T) concurrent collection, 1024
concurrent collections, 407

parallel programming, 1023-1027
ConcurrentQueue(Of T) concurrent collection, 1025
ConcurrentStack(Of T) concurrent collection, 1025
conditional code blocks, 177-179
conditioning, inheritance, 329-332
Condition property, 1158
conditions

debugging, 185
launch, specifying, 1156-1158
on-the-fly, ternary If operators, 509-510

configuration
animation, 778-779
applications, WPF, 511
ClickOnce, 1166-1171
compilers, 47
controls, 860
database connections, 606
DataSets, 519-520
Debug configurations, 42-45
dependency graphs, 1250-1251
dynamic code, 1055
files, 468-470, 941
IIS, WCF services, 945
importing, 40
installation, 1277
Installer (Windows), 1145

lambda expressions, 502
Manifest option, 1170
maximum tasks number, 661
MSDeploy, 870
navigation applications, 883
out-of-browser applications, 896
packages, 1158
profilers, 1234
Release configurations, 42-45
security

VSTO add-ins, 1134
Web applications, 864-866

Security Setup Wizard, 865
setup projects, Windows Installer, 1149-1158
SQL, 866
thread pool default values, 999
toolbars, 1185
trace listeners, adding, 202
user setting management, 1186-1190
warnings, Visual Studio, 46-51
WCF services, 947

Configuration Editor, WCF services, 947
Configuration Manager, 44, 1158
Configure Data Source Wizard, 860
confirmation, ClickOnce, 1134
conflicts, avoiding namespaces, 285-286
connections

adding (Windows Azure), 923
closing, 565
databases, 606
data readers, 515-517
modes, 515
opening, 565
strings, writing, 593

Console Application project template, 18, 23
Console class, 61
consoles, overview of, 25
Console.Writeline statement, 179
constants, 179-181

compiling, 48-49
customization, 49

constraints, 363-366
enabling, 1035
inheritance, 365
methods, 364
new, 365
types, 364

complex code documentation1296

From the Library of Wow! eBook

ptg

constructors, 109, 253-259
inheritance, 336-337
modules, 297
object initializers, 258-259
overloading, 255-258

consuming
code snippets, 1192-1193
generics, 360-367
WCF Data Services, 939-944, 957-963

Contact class, 338, 1073
containers

adding, 925
BLOB, 925
viewing, 924

Contains method, 492
ContentControl element, 716-717
ContentPlaceHolder element, 854
ContentPresenter control, 695
Content property, 716
content reproduction, 878
Context state, 851
continuation, implicit line, 66-69, 526
contracts

auto-generated, 931
code, 1269-1273
events, 1273
properties, formatting, 1269
WCF, 928-930

contra variance, 511
controlling PLINQ queries, 661-660
controls

ActiveX, 1075, 1077
adding, 691-693, 876
AdRotator, 845
ASP.NET, 847-848
Border, 717
BulletedList, 845
Button, 718, 845
Calendar, 718, 845
Chart, 667
CheckBox, 719, 845
CheckBoxList, 846
Chrome, 695
ComboBox, 720, 845
configuration, 860
ContentPresenter, 695
customization, 1123

How can we make this index more useful? Email us at indexes@samspublishing.com

data, adding, 859-861
data-binding, 892-895
DataGrid, 722, 803-806
DataList, 846
DataPager, 895
DatePicker, 723, 817
DetailsView, 846
DocumentViewer, 723, 797
DropDownList, 846
Ellipse, 724
EntityDataSource, 857
Expander, 725
FileUpload, 846
FlowDocumentReader, 791
Frame, 726
grids, placing on, 700
GridView, 846, 857
GroupBox, 727
HiddenField, 846
HTML, 848
HyperLink, 846
Image, 727, 783, 846
ImageButton, 846
ImageMap, 846
Label, 727, 846
LinkButton, 846
ListBox, 727-729, 768, 846
ListView, 729
management, 690
MediaElement, 730, 877
Menu, 731
MultiView, 846
navigation, adding, 861
nesting, 724
ObservableCollection, 803-806
Panel, 846
PasswordBox, 733
ProgressBar, 734
RadioButton, 736, 846
RadioButtonList, 846
RangeValidator, 846
Rectangle, 736
RequiredFieldValidator, 846
RichTextBox, 736, 795-796
ScrollBar, 737
ScrollViewer, 738
Separator, 738

controls 1297

From the Library of Wow! eBook

ptg

servers, 848
Silverlight, 716, 875-877
Slider, 739
StatusBar, 739
styles, 760
Substitution, 846
System.Windows.Controls.MediaElement, 783
TabControl, 740
Table, 846
TextBlock, 695, 741
TextBox, 846
ToolBar, 742
TreeView, 743
View, 846
WebBrowser, 744
Windows Forms, 668
WindowsFormsHost, 745-746
WinForms, 1122
Wizard, 846
WPF, 713

common controls, 717-746
ContentControl element, 716-717
features, 715-716
management with panels, 698-707
templates, 763-766

XAML, 691-693
Xml, 846

conventions
CType, 309
naming

identifiers, 70
.NET Framework, 92. See also naming con-

ventions
Pascal-casing, 348

conversions
data rows collections into objects, 598
between decimal and binary numbers, 166-

167
floating types, 101
functions, 121
implicit, 112-114
methods, 124-122
narrowing, 122-126
operators, 120-126, 547-549
sequential queries, 659
strings into dates, 142
types to unmanaged code, 1084
widening, 121-122

converters, value implementation, 825-829
cookies, applying, 851
copying

arrays, 156
strings, 133

CopyToDataTable method, 599-600
Counter property, 338
Count method, 492
covariance, 511
coverage, enabling code, 1259
CPUs (central processing units)

LINQ queries, 658
loops, 1006
PLINQ queries, 658
sampling intervals, 1235
targets, 50
usage, checking, 1238

CreateInstance, 159
CRUD (Create/Read/Update/Delete) operations,

805, 890
CSDL (Conceptual Schema Definition Language),

608
CStr function, 123
CType operator, 124-126, 821

overloading, 308-309
CultureInfo class, 830
Culture property, 453
cultures, applications, 453-454
CurrentTimeZone property, 148
Current View combo box, 1239
cursors, Run the Cursor command, 179
customization

actions, 1155-1156
breakpoints, 184
ClickOnce, 1165
code attributes, 1068-1073
collections, 406-407
commands, 1183-1186
compilers, Visual Studio, 45-46
configurations (with Configuration Manager),

44
constants, 49
controls, 1123
debugger visualizers, 194
events, 381-383
exceptions, inheritance, 339
extensions

installation, 1214
methods, 496-498

controls1298

From the Library of Wow! eBook

ptg

generics, 360
installer dialogs, 1153
IntelliTrace, 1244
logic, 933-938
logs, 1117
object serialization, 976-978
Office, 1117
properties, 1214
Registry, 1171
RSS, 15
serialization, 982-985
strings, 129
task pane implementation, 1123
templates, 1180
toolbars, 1183-1186
toolboxes, 1190
Tools menu, 1182
types, selection of, 111
validations, 589-592
value types, 102
Visual Studio, 1181-1186
Windows Forms, 674-675
WPF, 747
Xml serialization, 981-982

Customize dialog box, 1185
customResult property, 1229

D
data

access tools, 1283
controls, adding, 859-861
deleting, 521
inserting, 520-521
points, debugging, 54-55
providers, 514-515
queries, 517, 521
reader connections, 515-517
sources

adding, 888-889
object selection, 669

sources, selecting objects, 669
streams, compressing with, 445-450
thread pools, 999
types, 86-85, 485-489. See also types
updating, 516, 521
validation, 628-629

How can we make this index more useful? Email us at indexes@samspublishing.com

databases
abstraction, 604
ADO.NET, 514. See also ADO.NET
connections, 606
Entity Data Models, 604-621
SQL, 563, 866. See also SQL
SQL Server Compact Edition, 593

data-binding, 799
applying, 859
controls, 892-895
drag’n’drop, 807-829
modes, 802
overview of, 799-806

DataContext property, 767
DataContract attribute, 941
DataGrid control, 722, 803-806
DataList control, 846
DataPager control, 895
Data Services, WCF, 947

consuming, 957-963
deployment, 957
implementation, 951-957, 963-966
overview of, 949-951
query interceptors, 966-969
server-driven paging, 969

DataSets, 511
binding to, 822
configuration, 519-520
LINQ to, 593

extension methods, 598-601
queries, 595-598

overview of, 518-521
Data Source Configuration Wizard, 518
Data Sources window, 670
DatePicker control, 723, 817
dates

applying, 139-146
subtraction, 145

.dbml files, 593
Debug class, 195-197
Debug configurations, 42-45
DebuggerBrowsable attribute, 205-203
DebuggerDisplay attribute, 207-204
DebuggerSteppeBoundary attribute, 205
DebuggerTypeProxy attribute, 207-209

DebuggerTypeProxy attribute 1299

From the Library of Wow! eBook

ptg

debugging
applications, 52-54, 181

administration, 201-204
attributes, 204-209
Autos window, 192
breakpoints, 182-185
Call Stack window, 188-189
code, 177-178, 194-209
Command window, 187
debugger visualizers, 193-194
Just My Code, 180-182
Locals window, 186
Mixed Mode feature, 180
processes, 178-180
Threads window, 192
tools, 178-193
trace points, 182-185
Watch windows, 190-191

breakpoints, 54-55
collections, 398
conditions, 185
data points, 54-55
Edit and Continue feature, 58-59
history, 55
information, generating, 48
IntelliTrace, 1243-1249
keyboard shortcuts, 179
overview of, 51-59
parallel programming, 1023
runtime errors, 55-58
Visual Studio, 42-45

decimal number conversions, 166-167
declarations

classes, 225-227
controls, XAML, 691-693
delegates, 372-374
objects, 377-378

declarative mode, 692-693
Declare keyword, 1082
deep copy, 115-119

objects, 974-975
default constructors, viewing, 252
DefaultIfEmpty method, 492
default properties, 233-235
default settings

Start Page (Visual Studio), 13-15
UAC, viewing, 38-40

default values, 242
deferred execution LINQ, 536-542
defining

complex code documentation, 1096-1098
inheritance, 1072-1073
interfaces, 342-343, 347-348
styles, 759

Delegate keyword, 372
delegates, 369

applying, 372
attributes, 1067
CheckString, 503
declaring, 372-374
generating, 426
multicast, 374-375
namespaces, 282
overview of, 371-375
relaxed, 501

DeleteObject method, 961
deleting

data, 521
entities, 584-585, 625-626
items, 822

dependency graphs, 1250-1251
deployment

1-Click, 866
add-ins, 1213-1215
applications, 897, 916-922
ClickOnce, 1159, 1161-1166. See also

ClickOnce
code snippets, 1213-1215
extensions, Visual Studio extensibility, 1213-

1215
MSDeploy, 868-870
My.Application property, 454-456
VSTO add-ins, 1133-1137
WCF Data Services, 957
Web applications, 865-866
Windows Installer, 1145, 1158
without PIAs, 84-86
XCopy, 1138-1139

Deploy Without PIAs feature, enabling, 85
Dequeue method, 390
derived classes, Class Designer implementation,

414-417
derived members, overloading, 329
deserialization, 973, 987. See also serialization

debugging1300

From the Library of Wow! eBook

ptg

design
add-ins, 1130
charts, 676
Class Designer, 407-419
ClickOnce, 1165
code analysis, 1226
columns, 813-815
DataSets, 519
Entity Data Models, 607, 619-621
forms, 671
items, adding, 721
My.Settings property, 465
objects, 407, 410-413
Properties window, 708
resources, 471
SQL, LINQ, 565
TDD, 1261-1268
Windows Forms, 667
XAML

controls, 691-693
tools, 688

Xml schemas, 654
XPS documents, 799

desktop applications, 1038
destructors, Finalize method, 269-271
DetailsView control, 846
developer tools, 1282. See also tools
development

ASP.NET Development Server, 935
TDD, 1261-1268

Development Storage, 902, 913
DevExpress, 1282
diagnostics, 1283-1284. See also troubleshooting

System.Diagnostics namespace, 195
diagrams

classes, 409
creating, 417-418
exporting, 418-419

dialog boxes
Add Command, 1184
Add New Item, 563, 1181
Add Reference, 80, 1144
Add Service Reference, 938
Application Updates, 1168
Choose Toolbox Items, 1190
common WPF, 746
Customize, 1185

How can we make this index more useful? Email us at indexes@samspublishing.com

Generate New Type, 427
Menu Item Editor, 862
New Class, 414
New Interface, 410
New Item, 709
New Project, 666, 1176
ProfilerDemo_Before Property Pages, 1236
Publish Web, 868
Series Collection Editor, 677

Dictionary (Of TKey, TValue) collection, 400
differences between classes and modules, 297
Dim keyword, 94, 303
DirectCast operator, 124-126
directives

Imports, 17, 64-65
adding, 284
namespaces, 291-292

Imports System.Threading, 996
Option infer, 488
regions, 65

directories
access, 431
exceptions, 435-436
manipulating, 429-436

direct routing, 697
disable all warnings compile option, 44
disabling Just My Code debugging, 181
disallowing implicit conversions, 111
Dispatcher.Invoke method, 735
Disposable interface, 271-276
Dispose interface, 271-276
Distinct method, 492
distribution, ClickOnce, 1137-1161. See also

ClickOnce
DLL (dynamic link library)

Base Address, 47
Dll hell problem, 1137-1139
libraries, 2

docking floating windows, 26
DockPanel panel, 706-704
documentation

Chart control, 675
complex code, defining, 1096-1098
installation, 1277
permissions, 1102
source code, 1089
viewing, 59-61

Document class, 343

Document class 1301

From the Library of Wow! eBook

ptg

document-level
add-ins, 1129-1133
solutions, VSTO, 1120

Document Outline tool window, 694
documents

annotations
adding, 787
applying, 795

comments, adding, 637
flow, implementation, 787
hyperlinks, adding, 792
viewing, 791
WPF

management, 779
manipulating, 786-796

Xml, 1091-1093
manipulating, 636
Microsoft SandCastle, 1103. See also Xml

XPS, viewing, 799
DocumentViewer control, 723, 797
domains, applications, 1031-1034
Domain Service Classes, 889-892
DoSomething method, 1013
DoubleAnimation, applying, 772-774
double animation implementation, 881
DoubleSum method, 1229
downloading tools, 901-902
drag’n’drop data-binding, 807-829
drawing

borders, 718
ellipses, 724
TextBlock controls, 739

DrawingBrush, 746
applying, 756-757

drivers, upgrading, 1235
DropDownList control, 846
duplicate catch blocks, 43
dynamic code, running, 1055
dynamic code execution at runtime, 1034
dynamic link library. See DLL
DynamicResource extension methods, 761

E
early binding, 115
Edit and Continue feature, 58-59
Edit Breakpoints Label window, 183

editing
file systems, 1150-1152
Registry values, 1152-1153
strings, 135-138

editors. See also tools
code, extensions, 1218-1221
Code Snippet Editor, 1283
Configuration Editor, WCF services, 947
objects, designing, 407
Registry, adding keys, 1152
Resource Designer, 472
XAML, 688
Xml literals, 642

EdmGen.exe, 608
efficiency, structure optimization, 304
ElementAt method, 492
ElementAtOrDefault method, 492
elements

animation, Silverlight, 880-883
binding, 800-806
code, references, 1099-1101
Compile, 1110
ContentControl, 716-717
ContentPlaceHolder, 854
operators, 558-559
requestExecutionLevel, 39
Window, 690
XAML, 690
Xml, 638

Ellipse control, 724
embedding

expressions, 647-649
type verification, 86
XPS functionalities, 799

Embed Interop Types property, 84
empty strings, checking for, 130-131
Enable Application Framework group, 41
EnableRaisingEvents property, 996
Enable Tracing command, 946
enabling

automatic updates, 1167
Class Designer, 408-409
code coverage, 1259, 1258
compiler optimizations, 47
constraints, 1035
debugging, 52
Deploy Without PIAs feature, 85

document-level1302

From the Library of Wow! eBook

ptg

IntelliTrace unit tests, 1259
Just My Code debugging, 181
media players, 878
metadata, 937
roles, 865
server-driven paging, 969
uninstallation, 1164
WCF services, tracing, 946
Xml comments, 1093

encapsulation, P/Invoke, 1083-1084
endpoints, WCF, 928
End Using statement, 274
Enqueue method, 389
entities

adding, 624-625
changes, tracking, 566
deleting, 625-626
inserting, 580-583
multiple, adding, 583
queries, 630
SQL syntax against, applying, 593
updating, 583-584, 626-627

Entity Data Models, 604
adding, 857
associating, 858
LINQ queries, 629-630
object selection, 606
processes, 604-621
serialization, 991
SQL queries, 630-633
tools, 619-621
WCF, 938
Windows Forms, creating applications, 670
wizards, 605

EntityDataSource control, 857
enumerations, 297-302, 310-317

applying, 311-312
assignments, 302
attributes, 1067
CLS, 317
generating, 426
integer assignment, 314
namespaces, 282
return values from methods, applying as, 314-

315
System.Enum class methods, 312-314

How can we make this index more useful? Email us at indexes@samspublishing.com

values
as bit flags, 315-317
System.Data/Object.MergeOption, 630

writing, 310
environments

code contracts, 1269
My.Application property, 454-456
variables, retrieving, 455

equality (=) operator, 127
equality operators, 557
Equals method, 128, 309

inheritance, 323
ErrorCode property, 1088
ErrorDialog property, 994
Error List window, 31-33
errors, 209. See also exceptions

code analysis, 1228
correction options, 422
messages, 31
runtime, debugging, 55-58
unit tests, 1257
WCF Data Services, 968

events, 369
animation, 777-778
applications, 484-486
attributes, 1067
caches, 844
catching, 376
Click, 695, 713
contracts, 1273
customization, 381-383
garbage collection, 279. See also garbage

collection
handling, 375-378

ASP.NET, 848
Silverlight, 875-877
Windows Forms, 672-674
WPF, 695-697

MediaError, 1078
My.Settings property, 470-472
nonserialized, 978
pages, 844
postback, 844
raising, 378-381
registration, 376-377
routed, 696-697
SelectedDatesChanged, 719

events 1303

From the Library of Wow! eBook

ptg

serialization, 984-985
ShutDown, 1122
Startup, 1122
tracking, IntelliTrace, 1247-1248

Evidence instance, 1039
Excel

code metrics, exporting, 1231
document-level add-ins, creating, 1129-1133

exceptions, 209
catching, 222
COM, catching, 1078
directories, 435-436
FaultException, 946
files, 441
handling, 209-225

catching without variables, 224-225
COM, 1088
naming conventions, 209-219
parallel programming, 1011-1012
PLINQ, 663-664
serialization, 973
specialization, 209-219
Throw keyword, 219-223
upgrading from Visual Basic 6, 209
WCF services, 944-946
When keyword, 223-224

hierarchies, 213-214
inheritance, customization, 339
MissingLastException, 340
OutOfMemoryException, 1088
overview of, 207-208
pathnames, 436
SecurityException, 441
SEHException, 1089
System.Exception class, 209-219
tracking, IntelliTrace, 1247-1248
WPF, 378

Except method, 492
Exec built-in task, 1113
executables, 1063

external, profiling, 1242
standalone, selection, 1241

ExecuteAssembly method, 1032
ExecuteCommand method, 593
execution

applications, debugging, 178-180
assemblies, 1032-1034

code analysis, 1224-1230
deferred, LINQ, 536-542
dynamic code at runtime, 1034
JIT compilers, 5
tasks, 1112-1114
test options, 1262

exit from methods, 246-247
Exit Try statements, 218
Expander control, 725
explicit bounds

inline initialization with, 153-154
exponentiation calculations, 102
Export Diagram as Image command, 409
exporting

code metrics to Excel, 1231
diagrams, 418-419
extension methods, 498-499
templates, 1175-1181
TlbExp.exe, 1081

Export Report Data command, 1240
Export Settings Wizard, 1186
Export Template command, 1176
Expression Blend, 764
expressions, 86-85

embedding, 647-649
lambda, 501-509

creating threads, 996
multiline, 505-506
Sub, 506-508

regular, 251, 936
extending

LINQ, 529
My.Application property, 479
My.Computer property, 479
My namespace, 477-483
My.Resources property, 483
My.Settings property, 483
root levels, 477

extensibility, Visual Studio, 1197
Add-In Manager, 1218
building packages, 1202-1213
code editors, 1218-1221
deploying extensions, 1213-1215
management, 1216-1200
new features, 1200-1201
overview of, 1199-1201

eXtensible Application Markup Code. See XAML
Extension Manager, 1215

events1304

From the Library of Wow! eBook

ptg

extension methods, 126
built-in, 492-494
collections, 396
customization, 496-498
DynamicResource, 761
exporting, 498-499
languages, 494-499
LINQ to DataSets, 598-601
overloading, 339
StaticResource, 761
WCF Data Services, 961

extensions
code editors, 1218-1221
customization, installation, 1214
Visual Studio, 11, 1213-1215. See also Visual

Studio
external documentation files, referring to, 1101
external executables, profiling, 1242

F
failures, unit tests, 1257
FaultContract attribute, 944
FaultException, 946
features

Deploy Without PIAs, enabling, 85
Edit and Continue, 58-59
IDE, 1175
installation, 1276
Mixed Mode, 180
MSBuild, 1115-1117
.NET Framework, 8-9
Visual Studio

extensibility, 1200-1201
2010 Integrated Development Environment

(IDE), 11-12
Windows Forms, 667
WPF, 682-683, 715-716

feeds, RSS, 14. See also RSS
fetching lists, 955
Field(Of T) method, 600
fields

Assembly name (My Project), 36
attributes, 1067
classes, 227-229
generating, 426
Instance Count, 905

How can we make this index more useful? Email us at indexes@samspublishing.com

Startup Object (My Project), 37
File Associations, 1171
File menu commands, New Project, 17
files

access, 436-438
Application.Designer.vb, 72
Application.myapp, 71-73
applications, 1166
AssemblyInfo.vb, 73-75
audio, playing, 459-460
AxInterop.WMPLib.dll, 1076
binary

reading, 443
writing, 443

ClickOnce, 1160
code, Visual Studio packages, 1204
configuration, 941
.dbml, 593
exceptions, handling, 441
help, generating, 1103
Interop.WMPLib.dll, 1076
manipulating, 429, 436-441
naming, 468-470
overwriting, 198-201
permissions, 441
projects, 70-82, 1110
Resources.resx, 75-79
.sdf, 593
System.IO.File class, 436-438
System.IO.FileInfo class, 438-440
text

reading, 442-443
writing, 442-443

ThisAddIn.vb, 1122
ThisWorkbook.vb, 1130
types, creating, 1154
.VSI, 1201
.VSIX, 1201, 1213
.Wav, 474
Web.config, 931
.Xaml, 688. See also XAML

FileStream class, 443
FileSystem property, 457-459
file systems

editing, 1150-1152
publishing to, 1161-1163

FileUpload control, 846

FileUpload control 1305

From the Library of Wow! eBook

ptg

filling
brushes, 745-758. See also brushes
ellipses, 724

filtering
adding, 818
IntelliTrace, 1247
LINQ, 1131

Finalize method, 269-271
Dispose interface, 274-276

finalizers, 110
Finally block, 212
firewalls, FTP, 867
First method, 492
FirstName property, 319, 1099
FirstOrDefault method, 492
flags, bit, 315-317
Flatten method, 1012
floating type conversion, 101
floating windows, docking, 26
flow document implementation, 787
FlowDocumentReader control, 791
folders

ClickOnce, 1160
Release, 1138
target, MSDN Library, 1278

forcing
garbage collection, 269
parallelism in every query, 661

formats, media, 880
formatters, string implementation, 825-829
formatting

accounts, 865
animation, 778-779
application-level add-ins (Word), 1121-1129
applications, 79-82

clients, 958-962
domains, 1032-1034
Forms (Windows), 665-668
Silverlight, 872-875
WPF, 511, 681-682, 686-687. See also

WPF
arrays, 156
case sensitivity, 70
code snippets, 1190-1197
database connections, 606
dates, 139-146
dependency graphs, 1250-1251
diagrams, 417-418

document-level add-ins, Excel, 1129-1133
dynamic code, 1055
file types, 1154
generics, 360-367
ink notes, adding, 794
lambda expressions, 502
lists, XML, 1102
master-details forms, 815-820
navigation applications, 883
Option Strict settings, 113
projects, 17-18

testing, 1263
WPF, 1176

property contracts, 1269
Release configurations, 42
reusable templates, 23
root namespaces, 36
sandboxes, 1039
strings, 131-128
tabular data forms, 807-815
tasks, 1009, 1112-1114
threads, 996-997
time, 146-147
unit tests, 1252-1256, 1263-1267
Web applications, 853-864
Xml documents, 637

forms
design, 671
master-details, creating, 815-820
populating, 1129
tabular data, formatting, 807-815
Web

adding, 857-859
ASP.NET, 843-847

Windows Forms, 9
WinForms, adding, 1122

Forms (Windows)
applications, 481

creating, 665-668
localizing, 830-832

LINQ to SQL, 575-578
overview of, 665-666
validation, customization, 674-675

Forth, 7
Fortran, 7
Frame control, 726
Frame.UriMapper property, 885
Friend qualifiers, 303
Friends property, 985

filling1306

From the Library of Wow! eBook

ptg

From keyword, 527
FTP (File Transfer Protocol)

ClickOnce, 1160
firewalls, 867
Web applications, publishing, 866

FullInformation method, 333
FullName method, 319, 329, 1073
full-trust, 1038
Full Trust, ClickOnce, 1171
Function keyword, 502
Function method, 43, 496
functions

CInt, 123
conversion, 121
CStr, 123
.NET Framework, 6
String.Concat, 1242

fundamental types, .NET Framework, 126-159
FxCop, 1224

G
GAC (Global Assembly Cache), 1030

assembly installation, 1151
Dll hell problem, 1137-1139
installation, 1143-1144
overview of, 1139-1145

garbage collection, 268-269, 277
generations, 278-279
interaction with, 278
operations mode, 278-279
structures, 304

Generate Class command, 426
Generate From Usage coding techniques, 419,

421-426. See also code
Generate New Type dialog box, 427
Generate Other command, 423, 427
generate XML documentation file compile option,

44
generating

code at runtime, 1058
compiled help files, 1103
complex objects, 426-429
debug information, 48
dependency graphs, 1250-1251
garbage collection, 278-279
interfaces, 428-429
members on-the-fly, 423

How can we make this index more useful? Email us at indexes@samspublishing.com

method stubs, 425
serialization assemblies, 49
shared members, 425
Xml schemas, 651

generation operators, 549
generics, 359

collections, 396-406, 976, 986
delegate support, 372
formatting, 360-367
method implementation, 363
overview of, 359-360
variance, 510-511
WCF, 937
Xml comments, 1103

GetCreationTime method, 432
GetDirectoryName method, 430
GetExtension method, 430
GetFileName method, 430
GetFullName method, 1100
GetHashCode method, 309
GetName method, 313
GetNames method, 312
GetObjectData method, 983
GET requests, 966
Get Started tab (Visual Studio), 13-14
GetTempFileName method, 431
GetTempPath method, 431
GetType keyword, 119-120
GetValues method, 312
Global Assembly Cache. See GAC
Global keyword namespaces, 291
Go Filter button, 1131
Go to Definition command, 61
grammar, 141
graphs

Architecture, Generate Dependency Graph,
1250

dependency, 1250-1251
Green (TDD), 1261
Grid panel, 698-702
GridView control, 846, 857
GroupBox control, 727
GroupBy method, 492
grouping

controls, 727
Enable Application Framework, 41
operators, 552

grouping 1307

From the Library of Wow! eBook

ptg

GroupJoin method, 492
Group Members command, 409
Guidance and Resources tab (Visual Studio), 14
GUIDs, applying, 151-152

H
Handles clause, 377
handling

errors, 209. See also errors
events, 375-378

ASP.NET, 848
Properties window, 691
Silverlight, 875-877
Windows Forms, 672-674
WPF, 695-697

exceptions, 209-225
catching without variables, 224-225
COM, 1088
for directories and pathnames, 436
files, 441
naming conventions, 209-219
parallel programming, 1011-1012
PLINQ, 663-664
serialization, 973
specialization, 209-219
System.Exception class, 209-219
Throw keyword, 219-223
upgrading from Visual Basic 6, 209
WCF services, 944-946
When keyword, 223-224. See also

exceptions
optimistic concurrency, 592, 627-628
relationships between entities, 565

HashTable collection, 391-392
HasValue property, 368
Heap reference types, 106
heaps, garbage collection, 268
help. See also troubleshooting

files, generating, 1103
installation, 1279

Help Viewer, 1103
HiddenField control, 846
hierarchies, exceptions, 213-214
highlighting text, 795
history, debugging, 55
Hit Count command, 184

hosting
project selection, 873
Silverlight applications, 906-913
WCF Data Services, 946-947, 951

HTML (Hypertext Markup Language)
controls, 848
publishing, 1164

Http (Hypertext Transfer Protocol)
ClickOnce, 1160
requests, queries, 950-951

HybridDictionary collection, 393
HyperLink control, 846
hyperlinks, adding, 792

I
ICloneable interface, 249

implementation, 118
IComparable interface, 109, 351-353
IComparer interface, 353
icons, My Project, 36
IConvertible interface, 354-357
IDE (Integrated Development Environment)

advanced features, 1175
navigation, 9-11
templates, exporting, 1175-1181
user setting management, 1186-1190
Visual Studio customization, 1181-1186

identifiers
naming conventions, 70
reserved keywords, applying, 70

IDisposable interface, 346
IDocument interface, 346
IEnumerable interface, 349-351
If operators, ternary, 509-510
IFormattable interface, 357-359
IIS (Internet Information Services), 867

applications, publishing, 1162
WCF services, 946-947

IList interface, 345
ILogger interface, 1113
ImageBrush, 746
ImageButton control, 846
Image control, 727, 783, 846
ImageMap control, 846
images

assignment, 473
viewing, 781-783

GroupJoin method1308

From the Library of Wow! eBook

ptg

imperative mode, 692-693
implementation

auto-generated contracts, 932
Calendar controls, 719
CheckBox controls, 719
custom extension methods, 496
custom task panes, 1123
derived classes, Class Designer, 414-417
double animation, 881
events, raising, 378
Expander controls, 724
flow documents, 787
generics, methods, 363
Icloneable interface, 118
IComparable interface, 352
IConvertible interface, 354
IDisposable interface, 271-273
IEnumerable interface, 349
IEnumerator interface, 349
IFormattable interface, 357
interfaces, 109, 303, 343-345
IValueConverter interface, 826-829
LINQ, providers, 528
menus, 731
PasswordBox control, 732
Silverlight media players, 877
spell check, 798
strings, formatters, 825-829
submenus, 731
TabControl controls, 738
ToolBar controls, 740
TreeView controls, 741
values, converters, 825-829
WCF Data Services, 930-938, 951-957, 963-

966
Xml comments, 1094

Implements keyword, 303, 343
implicit conversions, 112-114

conditions, 42
implicit-line continuation, 66-69, 1066

LINQ, 526, 533-539
implicit type condition, 43
importing

COM objects, 1075-1078
configurations, 40
user settings, 1189-1190
Xml namespaces, 292-295, 654

How can we make this index more useful? Email us at indexes@samspublishing.com

Imports directive, 17, 64-65
namespaces, 284, 291-292

Imports keyword, 654
Imports System.Threading directive, 996
incremental architecture, 3. See also .NET

Framework
indexers, 235
indexes, calculating code metrics, 1230-1231
inequality(<>) operator, 127
inferences

local type, 485-489
multidimensional arrays, 490
types, lambda expressions, 505
Xml schemas, 650-655

information messages, 31
infrastructure

layers, LINQ, 528
.NET Framework. See .NET Framework

inheritance, 62, 108-109, 317
applying, 318-322
chains, avoiding, 341
class support, 414
CLS, 322
conditioning, 329-332
constraints, 365
constructors, 336-337
defining, 1072-1073
derived members, overloading, 329
Dispose interface, 273
exceptions, customization, 339
interfaces, 347
LINQ, 566-567
members

overriding, 325-329
scope, 321

modules, 297
MustInherit keyword, 331
MustOverride keyword, 331
NotInheritable keyword, 329-331
NotOverridable keyword, 328-329
objects, 88
polymorphism, 324-325
serialization, 984
shadowing, 337-338
shared members, overriding, 338-339
structures, limitations of, 303
styles, 761
System.Object class, 322-324

inheritance 1309

From the Library of Wow! eBook

ptg

Inherited property, 1072
Inherits keyword, 303
Inherits Person statement, 414
initializers

collections, 398-399
objects, 426

constuctors, 258-259
LINQ, 532-533

ink notes, adding, 794
inline initialization with explicit bounds, 153-154
in-memory collections

queries, 532
INotifyPropertyChanged interface, 978
Insert Breakpoint command, 54
inserting. See also adding

data, 520-521
entities, 580-583

Insert method, 387
InsertRange method, 387
inspections

arrays, 156
assemblies, 1047

installation
assemblies, 1140-1141
Azure (Windows), 901-902, 925
custom extensions, 1214
GACs, 1143-1144, 1151
help, 1279
.NET Framework, 2
offline documentation, 1278-1279
out-of-browser applications, 896
privileges, 1140
running for first time, 1280
templates, 20
Visual Studio, 1273-1278

Installer class, 1152
installer dialogs, customizing, 1153
Installer (Windows), 1134

deployment, 1145, 1158
overview of, 1145-1146
setup projects

configuration, 1149-1158
creating, 1146-1149

Instance Count field, 905
instances

CreateInstance, 159
debuggers, 48
Evidence, 1039
structure assignments, 302

instance variable accesses shared members
condition, 43

instantiation
ObjectConext class, 623-624
windows, runtime, 709-710

Integer reserved word, 90
integers

enumeration assignment, 314
overflow checks, removing, 47

Integrated Development Environment. See IDE
integration, languages, 7
IntelliSense

enumerations, 310
extension methods, 491
LINQ, 525
members, overriding, 326
operators, overloading, 308
type support, 124
WPF, handling events, 695
Xml documents, 643

IntelliTrace, 1243-1249
logs, 1248-1249
unit tests, 1249, 1261

interaction, Excel documents via code, 1131-1132
interceptors

change, 968
queries, 966-969

interfaces, 342
access, 343-345
API, 1075
attributes, 1067
CLS, 347-348
collections, 385. See also collections
defining, 342-343
Disposable, 271-276
Dispose, 271-276
element localization, 837
Finalize method, 274-276
generating, 426, 428-429
ICloneable, 249
IComparable, 109, 351-353
IComparer, 353
IConvertible, 354-357
IDisposable, 346
IDocument, 346
IEnumerable, 349-351
IFormattable, 357-359
IList, 345
ILogger, 1113

nherited property1310

From the Library of Wow! eBook

ptg

implementation, 109, 343-345
inheritance, 347
INotifyPropertyChanged, 978
IPerson, 412
ISerializable, 982
IService1, 932
ITask, 1113
IValueConverter, 826-829
media players, 784
members, adding, 411
method arguments, passing as, 345
modules, 297
namespaces, 282
nested classes, 343
.NET Framework, 349-359
polymorphism, 346-347
scope, 342
Silverlight, 874
structure implementations, 303
WPF, 682. See also WPF
XBAP, 713
Xml serialization, 980

internals, LINQ, 562
Internet Explorer. See also interfaces

Xml serialization, 980
Internet Information Services. See IIS
interoperability

COM objects, 1079-1081
WindowsFormsHost control, 745-746
WPF, 667

Interop.WMPLib.dll file, 1076
Intersect method, 492
intervals

checking, 1238
CPU sampling, 1235

invariants, 1273
invoking

code dynamically, 1055-1057
member services, 940-944
methods, 237-238

IPerson interface, 412
IronPython, 7
IronRuby, 7
IsDefined method, 313
ISerializable interface, 982
IService1 interface, 932
IsInRole method, 477

How can we make this index more useful? Email us at indexes@samspublishing.com

IsNot operator, 543
Is operator, 543
IsRunningOutOfBrowser property, 897
IsValidEmail method, 713
ITask interface, 1113
ItemGroup sections, 1110-1111
items

adding, 721, 1179
deleting, 822
SnippetCompilerVsPackage, 1231
templates

creating, 23
exporting, 1178-1181

toolboxes, 1189
Xml schemas, 650

ItemSource property, 721
iterations, 171-174
IValueConverter interface, 826-829

J
jagged arrays, 155, 490-491, 490
JavaScript Object Notation. See JSON
JIT (Just-In-Time), 5
Join method, 492
JSON (JavaScript Object Notation) serialization,

990
Just-In-Time compilers. See JIT compilers
Just My Code, 180-182

K
keyboards

management, 460
shortcuts, debugging, 179

keywords
From, 527
AddHandler, 376
ByRef, 238-243
ByVal, 238-243
Declare, 1082
Delegate, 372
Dim, 94, 303
Function, 502
GetType, 119-120
Global, namespaces, 291
Implements, 303, 343

keywords 1311

From the Library of Wow! eBook

ptg

Imports, 654
Inherits, 303
Let, 546
Me, 334
MustInherit, 331
MustOverride, 331
My, 452
MyBase, 327, 333-334, 339
MyClass, 335-336
New, 253
NotInheritable, 329-331
NotOverridable, 328-329
Overrides, 328
Partial, 248
RaiseEvent, 383
ReDim, 154
RemoveHandler, 376
reserved, 70
Select, 527
Shared, 259
Throw, 219-220
Using, 273
When, 223-224
Where, 527
WithEvents, 377-378

Kill method, 995

L
Label control, 727, 846
labels, services, 915
lambda expressions, 501-509

arguments as, 495
multiline, 505-506
Sub, 506-508
threads, creating, 996

languages
advanced features, 486
anonymous types, 499-501
array literals, 489-491
BAML, 832
case sensitivity, 70
CSDL, 608
extension methods, 494-499
generic variance, 510-511
lambda expressions, 501-509
local type inference, 485-489
Mapping Definition Language, 607

.NET Framework, 4, 7. See also .NET
Framework

relaxed delegates, 501
SSDL, 610
support, LINQ, 527
ternary If operators, 509-510
WDSL, 937
XAML, 684, 687-693. See also XAML

LastEdit property, 1070
Last-In, First-Out (LIFO), 390
Last method, 492
LastName property, 319, 1099
LastOrDefault method, 492
late binding, 115, 1062

conditions, 43
Latest News tab (Visual Studio), 14-15
launch conditions, specifying, 1156-1158
layers

infrastructure, LINQ, 528
.NET Framework. See .NET Framework
WPF, 684. See also WPF

Layout Diagram command, 409
Let keyword, 546
levels, scope, 234
lexical closures, 508-509
libraries

BCL, assemblies, 1138
classes, 226
COM

adding references, 84-86
ClickOnce, 1174

custom extension, testing, 499
DLL, 2
MsCorlib.dll (Microsoft Core Library), 7
MSDN Library, 59-60

resources, 1281-1282
target folders, 1278

Task Parallel Library, 1016
TestThrow class, 221
TPL, 9

lifetimes
objects, managing, 268
pages, 844

LIFO (Last-In, First-Out), 390
Like operator, 544
limitation of inheritance, 303
LinearGradientBrush, 746

applying, 748-749
lineRead variable, 193

keywords1312

From the Library of Wow! eBook

ptg

LinkButton control, 846
LinkedList (Of T) collection, 404-406
LINQ

ADO.NET, 511. See also ADO.NET
anonymous types, 499
architecture, 529
DataSets, 593

extension methods, 598-601
queries, 595-598. See also DataSets

deferred execution, 536-542
examples of, 525-526
extending, 529
extension methods, 494
filtering, 1131
implicit line continuation, 67, 526, 533-539
inheritance, 566-567
internals, 562
lambda expressions, 501-509
language support, 527
objects, 529

aggregation operators, 545-546
concatenation operators, 558
conversion operators, 547-549
elements operators, 558-559
equality operators, 557
generation operators, 549
grouping operators, 552
initializers, 532-533
Let keyword, 546
memory, 532-542
ordering operators, 550
overview of, 531
partitioning operators, 559-561
projection operators, 542-544
quantifiers, 557
restriction operators, 544-545
set operators, 551-552
standard query operators, 542-561
union operators, 554-557

overview of, 521
Parallel LINQ. See PLINQ
parallel programming, 1017
partial methods, 252
projects, 523-525
providers, 528-529
queries, 525

adding, 672
Entity Data Models, 629-630

How can we make this index more useful? Email us at indexes@samspublishing.com

performance, 656-657
Xml queries with, 644-647

relationships, 567-573
serialization, 566-567
SQL, 561

applying logs, 588-589
classes, 563-574
custom validations, 589-592
deleting entities, 584-585
handling optimistic concurrency, 592
inserting entities, 580-583
mapped stored procedures, 586-588
overview of, 562-574
prerequisites, 562
queries, 574-580
SQL Server Compact Edition, 593
syntax against entities, 593
updating entities, 583-584
Windows Forms, 674

System.Xml.Linq namespace, 637-639
WCF, 938
Xml, 636-642

ListBox control, 727-729, 768, 846
ListDicitionary collection, 392
List (Of T) collection, 396-398
lists

creating, 1102
fetching, 955

ListView control, 729
literals

arrays, 155, 489-491
type characters, 95-96
Xml, 642-649

LINQ queries with, 644-647
manipulating Xml documents, 636

loading assemblies, 1046
Load method, 1033
localizing applications, 453, 830

overview of .NET localization, 829-830
Windows Forms, 830-832
WPF, 832-837

Locals window, 186
local type inference, 485-489
local variables, avoiding, 228
locations

assemblies, 1030-1031
breakpoints, 183
memory, 86

locations 1313

From the Library of Wow! eBook

ptg

LocBaml.exe, 832-833
locks

reading, 1002-1003
writing, 1002-1003

logarithm calculations, 102
logic, customization, 933-938
logical operators, 162-164
Logical Tree, WPF, 694-695
login, Azure (Windows) applications, 913
Log property, 456
logs

applications, Windows, 456
applying, 588-589
compilation, 42
IntelliTrace, 1248-1249
MSBuild, 1116

LongCount method, 493
loops, 174-176

CPUs, 1006
Parallel.For, 1018-1019
Parallel.ForEach, 1020-1021
parallel programming, 1016-1022

loss of precision, 124

M
managed code, writing, 4-5
Managed Extensibility Framework (MEF), 1200
Managed Heap objects, 107
management

actions, customization, 1155-1156
Add-In Manager, 1218
Class View window, 419
code snippets, 1190-1197
Configuration Manager, 44, 1158
controls, 690, 698-707
files, 1150
keyboards, 460
object lifetimes, 268
processes, 994-996
state, ASP.NET, 849-853
structures, 304-305
tasks, 1009
types within namespaces, 279, 282-295
user settings, 1186-1190
Visual Studio extensibility, 1216-1200

WPF
documents, 779
windows, 707-710

Management Console snap-in
Azure (Windows) applications, 925

Manifest option, 1170
manipulating

directories, 429-436
documents

WPF, 786-796
Xml, 636-637

files, 429, 436-441
pathnames, 429-436

Manufacturer property, 1150
mapping

applications, 1112
stored procedures, 586-588, 634-635

Mapping Definition Language, 607
Mapping Details window, 617
markup, Xml, 642. See also Xml
master-details forms, creating, 815-820
master pages, 853-857
matching numeric types, 1082
maximum tasks number configuration, 661
Max method, 493
MaxValue property, 99
media

formats, 880
playing, 783-786
Silverlight, 877-880

MediaElement control, 730, 877
MediaError event, 1078
media players, Silverlight implementation, 877
MEF (Managed Extensibility Framework), 1200
Me keyword, 334
members

access, 64
Application class, 708-709
ArrayList collections, 388
BCL access, 332-336
collections, 396
derived, overloading, 329
inheritance, overriding, 325-329
interfaces, adding, 411
LinkedList (Of T) collection, 403
My.Computer.Clipboard, 458-459
My.User property, 474-475
on-the-fly, generating, 423

LocBaml.exe1314

From the Library of Wow! eBook

ptg

ParallelEnumerable, 660-661
projects, 59-69
scope, inheritance, 321
services, invoking, 940-944
shared

classes, 259-263
generating, 425
overriding, 338-339

streams, 438-440
structures, viewing, 303
uncommented, IntelliSense, 1092
View property, 819
XDocument class, 639

memory
allocation, 267-268

structures, 304
types, 106-107
value types, 100

locations, 86
objects, LINQ, 532-542
requirements, value types, 93
streams, applying, 444

Menu control, 731
Menu Item Editor dialog box, 862
menus

implementation, 731
Tools, customization, 1182

merging, PLINQ, 662
messages

Error List window, 31
execution, 1112
VSTO installations, 1135
WCF, overview of, 928-930

metadata, 5
assemblies, 71, 1047-1048, 1067
Assembly Metadata, 1044-1046
enabling, 937
WCF, 931

methods, 60-61
Add, 386
AddNew, 822
Aggregate, 492
All, 492
Any, 492
arguments, 238-243, 345
AsEnumerable, 492
assemblies, loading, 1046
Assembly.GetModules, 1048

How can we make this index more useful? Email us at indexes@samspublishing.com

Assert, 194
attributes, 1067
Average, 492
BinarySearch, 389
Cast, 492
ChangeCulture, 453
ChangeExtension, 431
ChangeUICulture, 453
classes, 236-247

exit from, 246-247
overloading, 245
partial, 250-253

Clear, 397
Clone, 119, 133-134, 249
Close, 941
coercion, 245
Compare, 128
CompareTo, 128
Concat, 492
constraints, 364
Contains, 492
conversions, 124-122
CopyToDataTable, 599-600
Count, 492
Debug class, 192-193
DefaultIfEmpty, 492
DeleteObject, 961
Dequeue, 390
Dispatcher.Invoke, 735
Distinct, 492
DoSomething, 1013
DoubleSum, 1229
ElementAt, 492
ElementAtOrDefault, 492
Enqueue, 389
Equals, 128, 309, 323
Except, 492
ExecuteAssembly, 1032
ExecuteCommand, 593
extension, 494-499

built-in, 492-494
collections, 396
DynamicResource, 761
exporting, 498-499
LINQ to DataSets, 598-601
overloading, 339
StaticResource, 761
WCF Data Services, 961

methods 1315

From the Library of Wow! eBook

ptg

Field(Of T), 600
Finalize, 269-271, 274-276
First, 492
FirstOrDefault, 492
Flatten, 1012
FullInformation, 333
FullName, 319, 329, 1073
Function, 43, 496
generating, 426
generics, implementation, 363
GetCreationTime, 432
GetDirectoryName, 430
GetExtension, 430
GetFileName, 430
GetFullName, 1100
GetHashCode, 309
GetName, 313
GetNames, 312
GetObjectData, 983
GetTempFileName, 431
GetTempPath, 431
GetType, 120
GetValue, 461
GetValues, 312
GroupBy, 492
GroupJoin, 492
Insert, 387
InsertRange, 387
Intersect, 492
invoking, 237-238
IsDefined, 313
IsInRole, 477
IsValidEmail, 713
Join, 492
Kill, 995
Last, 492
LastOrDefault, 492
Load, 1033
LongCount, 493
Max, 493
Min, 493
Move, 432
OfType, 493
OrderBy, 493
OrderByDescending, 493
overloading, 243-245
Parallel.Invoke, 1008
Parse, 314
PlaySystemSound, 460

Process.Start, 994
Queue, 389
ReadLine, 442
relaxed delegates, 501
Reverse, 493
rules, 267
Save, 467, 638
Select, 493
SelectMany, 493
SequenceEquals, 493
SetField(Of T), 600
Show, 709
ShowDialog, 709, 746
SimulateProcessing, 1017
Single, 493
SingleOrDefault, 493
Skip, 493
SkipWhile, 493
SpinWait, 1016
structures, passing, 302-303
stubs, generating, 425
Sub, 496
Sub Main, 37, 53
Sum, 493
System.DateTime class, 144-141
System.Enum class, 312-314
System.Object class, 88, 322
System.String, 127
Take, 493
TakeWhile, 493
Task.Wait, 1010
Test, 179
ThenBy, 493
ThenByDescending, 493
ToArray, 493
ToDictionary, 493
ToList, 494, 493
ToString, 123, 314
TrimToSize, 388
TryParse, 143
Union, 494
ValidateBook, 936
value types, 99-100
Where, 494
WriteAllBytes, 437
WriteAllLines, 436
WriteAllText, 436
WriteEntry, 456

methods1316

From the Library of Wow! eBook

ptg

WriteLine, 28, 442
XmlSerializer.Deserialize, 980

metrics, code calculations, 1230-1231
Microsoft

code analysis rules, 1225
Excel, 1119. See also Excel
Office, 1117. See also Office
SandCastle, 1103
Word, 1119. See also Word

Microsoft Common Language Specifications, 75
Microsoft Core Library (MsCorlib.dll), 7
Microsoft Expression Blend, 688
Microsoft Intermediate Language. See MSIL
migration from old CAS-based code, 1041
Min method, 493
MinValue property, 99
MissingLastException, 340
Mixed Mode feature, 180
Model Browser tool window, 618
models, transparency, 1035
modes

connection, 515
data-binding, 802
declarative, 692-693
imperative, 692-693
profiling, 1233
XCopy, 1030

modification
.NET Framework security, 1034-1041
Startup objects, 37
Sub Main method for debugging, 53
thread pool default values, 999

Mod operator, 544
ModuleBuilder class, 1060
modules, 61, 295

classes differences between, 297
constructors, 297
inheritance, 297
interfaces, 297
namespaces, 282
overview of, 295-297
scope, 297

Monitor class, synchronization with, 1001-1002
Move method, 432
MSBuild, 8, 834, 1105

batching, 1115-1116
features, 1115-1117

How can we make this index more useful? Email us at indexes@samspublishing.com

logging, 1116
overview of, 1105-1114
tasks, 1112-1114
transformations, 1117

MsCorlib.dll (Microsoft Core Library), 7
MSDeploy, 866
MSDN Library

resources, 1281-1282
target folders, 1278
Visual Studio, 59-60

MSIL (Microsoft Intermediate Language), 5
.Msi packages, 1146
multicast delegates, 374-375
multidimensional arrays, 155, 490-491
multiline lambda expressions, 505-506
multiple constraints, 365
multiple diagrams, creating, 417-418
multiple entities, adding, 583
multiple modules, defining, 296
multiple roles, adding, 906
multiple transforms, applying, 770
multitargeting, Visual Studio, 20
multithreading, 991, 996-997
MultiView control, 846
MustInherit keyword, 331
MustOverride keyword, 331
My.Application property, 451, 452-456, 479
MyBase keyword, 327, 333-334, 339
MyClass keyword, 335-336
My.Computer property, 451, 456-464, 479
My namespace

applications, 483-486
extending, 477-483
My.Application property, 452-456
My.Computer property, 456-464
My.Resources property, 472-476
My.Settings property, 466-472
My.User property, 452
MyWebServices property, 477

My Project
Application tab, 35-41
viewing, 71
Visual Studio, 34-41
WPF applications, 687

My.Resources property, 452, 472-476
extending, 483

My.Settings property, 452, 466-472
extending, 483

My.Settings property 1317

From the Library of Wow! eBook

ptg

My.User property, 452
MyWebServices property, 477
My.WebServices property, 452

N
names

anonymous types, 499-501
assemblies, signing with, 1142-1143
Assembly name field (My Project), 36
code, accessing, 475
files, 468-470
public, 921
System.Object class, 87

namespaces, 63-64
CLS, 295
conflicts, avoiding, 285-286
Global keyword, 291
Imports directive, 284, 291-292
My namespace, 452. See also My namespace
nested, 286-289
overview of, 281-282
root, 36, 290
scg, 987
scope, 289
System.Diagnostics, 195
System.Reflection, 1044
System.Reflection.Emit, 1057-1063
System.Windows.Controls, 885
System.Xml.Linq, 637-639
type management, 279, 282-295
Xml, importing, 292-295, 654

NameValueCollection collection, 394
naming conventions

CLS, 265-267
code analysis, 1229
exceptions, 209-219, 340
identifiers, 70
interfaces

CLS-compliant, 348
generating, 428

.NET Framework, 92
narrowing conversions, 122-126
NavigateUri property, 886
navigation

applications, Silverlight, 884-887
controls, adding, 861
error messages, 33

Object Browser window, 60-61
projects, 23-25
Start Page (Visual Studio), 12-15
Visual Studio 2010 Integrated Development

Environment (IDE), 9-11
WebBrowser controls, 744

nested classes, 226-227
interfaces, 343

nested namespaces, 282, 286-289
nested Try..Catch..Finally code blocks, 218
nested types, 366
nesting

controls, 724
grids with controls, 700

.NET Framework
ADO.NET. See ADO.NET
architecture, 2-4
assemblies, 5-6
BCL, 6-7
built-in trace listeners, 198-195, 198-201
classes. See classes
CLR, 4-6
data types, 86. See also data types
Developer Center, 1282
documentation, viewing, 59-61
fundamental types, 126-159
garbage collection, 268-269
generics, 359-360
installation, 2
interfaces, 349-359
languages, 7
memory allocation, 267-268
namespaces, 281-282
naming conventions, 92
new features, 54
nondefault types, 467
objects, anonymous types, 499
overview of, 1-4
PLINQ, 655. See also PLINQ
primitive reference types, 105-106
primitive value types, 90-93
references, 59
security, new features and changes in, 1034-

1041
Services. See Azure (Windows)
thread pools, 997-999. See also threads
tools, 8
WCF, 928-930

My.User property1318

From the Library of Wow! eBook

ptg

.NET Reflector tool, 1284
networks

access, 462-463
streams, 450-451
tools, 1283

New Class dialog box, 414
new constraints, 365
new features

code, 421-426
.NET Framework, 9
security, 1034-1041
Visual Studio

extensibility, 1200-1201
2010 Integrated Development Environment

(IDE), 11-12
Windows Forms, 667
WPF, 682-683

New Interface dialog box, 410
New Item dialog box, 709
New keyword, 253
New Project command (File menu), 17, 666
New Project dialog box, 1176
nodes, settings, 468
nondefault types, .NET Framework, 467
nongeneric collections, 386-396
nonserialized events, 978
NorthwindDataContext class, 568
NotInheritable keyword, 329-331
NotOverridable keyword, 328-329
nullable arguments, 242
nullable types, 100, 359, 367-369
nullint variable, 368
null strings

checking for, 130-131
numbers

conversions, 166-167
maximum tasks number configuration, 661

numeric types, matching, 1082

O
OBAs (Office Business Applications), 1121
Object Browser

collections, 386
XML comments, 1096

Object Browser window, 60-61
ObjectContext class, 612-618

instantiation, 623-624

How can we make this index more useful? Email us at indexes@samspublishing.com

object-oriented programming. See OOP
objects

Application, WPF, 710-711
Class Designer, adding, 410-413
Class Details window, 419
Class View window, 419
cloning, 119
collections, 385. See also collections
COM

applying, 1075-1078
interoperability, 1079-1081
releasing, 1078

Common Type System, 86
complex, generating, 426-429
declaring, 377-378
deep copies, 974-975
design, 407
Disposable interface, 271-276
Dispose interfaces, 271-276
Entity Data Model selection, 606
Finalize method, 269-271
garbage collection, 268-269

generations, 278-279
interaction with, 278

inheritance, 88
initializers, 258-259, 426
lifetime, managing, 268
LINQ, 529

aggregation operators, 545-546
concatenation operators, 558
conversion operators, 547-549
elements operators, 558-559
equality operators, 557
generation operators, 549
grouping operators, 552
initializers, 532-533
Let keyword, 546
memory, 532-542
ordering operators, 550
overview of, 531
partitioning operators, 559-561
projection operators, 542-544
quantifiers, 557
restriction operators, 544-545
set operators, 551-552
standard query operators, 542-561
union operators, 554-557

objects 1319

From the Library of Wow! eBook

ptg

Managed Heap, 107
memory allocation, 267-268
out of scope, 269
polymorphism, 325. See also polymorphism
Process, 994
releasing, 268
resurrection, 276-277
serialization, 972-979
Startup Object fields (My Project), 37
Storyboard, 777-778
StringBuilder, 139
StringComparison, 129
strongly typed, 103-104
System.Xml.linq namespace, 636
transformations, 766-770
types, 6. See also types

ObservableCollection control, 803-806
ObservableCollection (Of T) collection, 401-404
Office

customization, 1117
Visual Studio tools, 1120-1121

Office Business Applications. See OBAs
offline documentation installation, 1278-1279
OfType method, 493
omitting data types, 485-489
online help, 59-60
online templates, accessing, 21
on-the-fly code, 426

members, generating, 423
on-the-fly conditions, ternary If operators, 509-510
on-the-fly objects, generating, 426-429
OOP (object-oriented programming), 108-110, 225
OpCodes, 1062
opening

connections, 565
websites, 725

OperationContract attribute, 941
operations

garbage collection, 278-279
WCF Data Services, 963-966

operators
aggregation, 545-546
arithmetic, 159-110
assignment, 162
binary, PLINQ, 660
bitwise, 165
common, 159-171
comparison, 169-171

concatenation, 168, 558
conversion, 120-126, 547-549
CType, 124-126, 308-309, 821
DirectCast, 124-126
elements, 558-559
equality, 557
equality (=), 127
generation, 549
grouping, 552
If, ternary, 509-510
inequality(<>), 127
logical, 162-164
ordering, 550
partitioning, 559-561
precedence, 171
projection, 542-544
recursive, 43
restriction, 544-545
set, 551-552
shift, 167-168
short-circuiting, 164-165
standard query, 542-561, 598
structures, overloading, 305-309
TryCast, 124-126
TypeOf, 126
union, 554-557

optimistic concurrency, handling, 592, 627-628
optimization

structures, 304
value types, 100

Optimization tab (Visual Studio), 47
optional arguments, 241-242
Option infer directive, 488
options

applications, mapping, 1112
ClickOnce, 1169-1171
compilers, Visual Studio, 45-46
IntelliTrace, 1244
Manifest, configuration, 1170
StringComparison enumeration, 134-135

Option Strict, 1063
Option Strict settings, 113
OrderByDesending method, 493
OrderBy method, 493
OrderDesciption property, 304
OrderedDictionary collection, 392
ordering

operators, 550
sequences, 659-660

objects1320

From the Library of Wow! eBook

ptg

Orders button, 864
Order structure, 304
OrElse operator, 544
Or operator, 543
Out of Browser applications, Silverlight, 896-897
OutOfMemoryException, 1088
out of scope objects, 269
Output window, 33-34, 38

Debug class, 196
overflow checks, removing integers, 47
overlapping catch blocks, 43
overloading

constructors, 255-258
derived members, 329
extension methods, 339
methods, 243-245
operators

CType, 308-309
structures, 305-309

properties, 245
type parameters, 366-367

Overrides keyword, 328
overriding

members, inheritance, 325-329
polymorphism, 325
shared members, 338-339

overwriting files, 198-201

P
packages

configuration, 1158
.Msi, 1146
Silverlight, 876
Visual Studio extensibility, 1202-1213
Windows Installer deployment, 1158

pages
lifetime, 844
master, 853-857
requests, 840

paging, server-driven, 969
Panel control, 846
panels

Canvas, 704
controls, management with, 698-707
DockPanel, 706-704
Grid, 698-702

How can we make this index more useful? Email us at indexes@samspublishing.com

StackPanel, 702-703
ViewBox, 707
WrapPanel, 703-704

panes, adding task, 1126
Parallel class, 1006
ParallelEnumerable members, 660-661
Parallel Extensions for TPL, 9
Parallel.ForEach loop, 1020-1021
Parallel.For loop, 1018-1019
Parallel.Invoke method, 1008
parallelism, 660, 661
Parallel LINQ. See PLINQ
ParallelLoopState class, 1021
ParallelOptions class, 1007
parallel programming, 1003

concurrent collections, 1023-1027
debugging, 1023
exceptions, handling, 1011-1012
loops, 1016-1022
overview of, 1006-1007
tasks, 1007-1016

Parallel Stacks window, 1022
Parallel Tasks window, 1021
ParamArray arguments, 240-241
parameters

passing, 997
types, 234

attributes, 1070
overloading, 366-367

param tag, 1100
Parse method, 314
parsing Xml documents, 644
partial classes, 247-250
Partial keyword, 248
partial methods, 250-253
Partial Trust, ClickOnce, 1171
partitioning operators, 559-561
Pascal, 7

Pascal-casing conventions, 348
passing

arguments, 238
arrays, 240
event information, 379-381
interfaces as method arguments, 345
parameters, 997
structures to methods, 302-303

passing 1321

From the Library of Wow! eBook

ptg

PasswordBox control, 733
passwords, assigning strong names, 1143
pathnames

exceptions, 436
manipulating, 429-436

paths, WorkingDirectory, 1113
patterns, regular expressions, 936
performance, 1283-1284

ASP.NET, 840-841
exceptions, handling, 222
generics, 360
queries

LINQ, 656-657
PLINQ, 658-659

reports, 1240
strings, 138

Performance Wizard, 1242
permissions, 1035-1036

AllRead, 965
documentation, 1102
files, 441
out-of-browser applications, 897
UAC, 38. See also UAC
Windows Registry, 460

PIAs (Primary Interoperability Assemblies), 84
deployment without, 84-86

P/Invoke
COM, 1081-1089
encapsulation, 1083-1084
Interop Assistant, 1283

platforms
Azure (Windows) applications, 899-901
.NET Framework. See .NET Framework
WCF Data Services, 947. See also WCF

playing
audio, 459-460
media, 783-786
Silverlight, 877-880

PlaySystemSound method, 460
PLINQ (Parallel LINQ), 655-663

AsParallel, 660
binary operators, 660
merging, 662
ParallelEnumerable members, 660-661
queries

canceling, 662
controlling, 661-660

performance, 658-659
sequences, ordering, 659-660

policies, Code Access Security, 1035
polymorphism, 324-325

interfaces, 346-347
pools, threads, 993. See also threads
populating

Chart controls, 678-680
forms, 1129
TreeView controls, 741

postback events, 844
post-conditions, code contracts, 1273
precedence, operators, 171
preconditions, code contracts, 1270-1273
prerequisites

ClickOnce deployments, 1167-1168
LINQ, 562
packages, 1158

PresentationCore, 684
PresentationFramework, 684
Primary Interoperability Assemblies. See PIAs
primitive reference types, .NET Framework, 105-

106
primitive value types, .NET Framework, 90-93
private assemblies, 1030
private constructors, 258
Private qualifiers, 236, 303
privileges

administration, 1137
installation, 1140
Visual Studio, 902

probing assemblies, 1031
procedures

.NET Framework, 6
stored

mapped, 586-588
mapping, 634-635

processes, 991
applications, debugging, 178-180
execution. See execution
management, 994-996
queries, 995-996
serialization, 973. See also serialization

Process.Start method, 994
Product.QuantityPerUnit property, 628
ProfilerDemo_Before Property Pages dialog box,

1236

PasswordBox control1322

From the Library of Wow! eBook

ptg

profiling
applications, 1232-1242
external executables, 1242

programming
ClickOnce access, 1172-1173
languages. See languages
late binding, 1062
LINQ. See LINQ
parallel, 1003

concurrent collections, 1023-1027
debugging, 1023
loops, 1016-1022
overview of, 1006-1007
tasks, 1007-1016

ProgressBar control, 734
Project Astoria. See WCF, Data Services
projection operators, 542-544
projects

Application.myapp file, 71-73
applications, formatting, 79-82
code metrics, calculating, 1231
compiling, 33
creating, 17-18
files, 70-82, 1110
hosts, selection, 873
LINQ, 523-525
members, 59-69
MSBuild, 1106
multitargeting, 20
My Project, viewing, 71
navigation, 23-25
overview of, 59
project level default imports, 293
references, overview of, 82-86
reserved keywords, 70
resources, 75-79
searching, 26-28
setup

configuration, 1149-1158
Windows Installer, 1146-1149

strong names, adding, 1141
templates, 17

ASP.NET, 841-842
exporting, 1175-1178
WCF, 929

test, formatting, 1263
types, 59-69

How can we make this index more useful? Email us at indexes@samspublishing.com

Visual Studio, 15-28, 41-51
WPF

adding images, 781-783
playing media, 783-786
templates, 685

promoters, attributes, 1067
properties, 60

access, 43
Age, 501
App.Current, 897
assemblies, assignment, 1060
attributes, 1067
auto-implemented, 230-231
AutoPostBack, 845
classes, 229-235

access, 233
exposing custom types, 232

CommandLineArgs, 456
Condition, 1158
Content, 716
contracts, formatting, 1269
controls, binding, 801
Counter, 338
Culture, 453
CurrentTimeZone, 148
customization, 1214
customResult, 1229
DataContext, 767
default, 233-235
Embed Interop Types, 84
EnableRaisingEvents, 996
ErrorCode, 1088
ErrorDialog, 994
FileSystem, 457-459
FirstName, 319, 1099
Frame.UriMapper, 885
Friends, 985
generating, 426
HasValue, 368
IsRunningOutOfBrowser, 897
ItemSource, 721
LastEdit, 1070
LastName, 319, 1099
Log, 456
Manufacturer, 1150
MaxValue, 99
MinValue, 99

properties 1323

From the Library of Wow! eBook

ptg

My.Application, 451-456, 479
My.Computer, 451, 456-464, 479
My.Resources, 452, 472-476, 483
My.Settings, 452, 466-472, 483
My.User, 452
MyWebServices, 477
My.WebServices, 452
NavigateUri, 886
OrderDesciption, 304
overloading, 245
Product.QuantityPerUnit, 628
project configuration, 1150
read-only, 231
Reason, 946
Registry, 460
ResourceManager, 79
rules, 267
scalar, 622
Settings, 79-82
Stretch, 782
System.Exception class, 215-218
Template, 764
Title, 338
UICulture, 453
Value, 368
View, 730, 820-825
windows, 705
WrappedException, 1078
write-only, 232

Properties window, 33, 413, 619
control management, 690

PropertyGroup sections, 1111-1112
Protected Overrides, 269
providers

data, 514-515
LINQ, 528-529

Proxy class, 939
public names, 921
Public qualifiers, 236, 303
Public Shared Operator statement, 306
publishing

ClickOnce, 1160
to file systems, 1161-1163
HTML, 1164
MSDeploy, 868-870
Web applications, 866

Publish Method combo box, 867
Publish Web dialog box, 868
Publish Wizard, 1162, 1166

Q
quantifiers, 557
queries

data, 517, 521
Entity Data Models

SQL, 630-633
Http requests, 950-951
in-memory collections, 532
interceptors, 966-969
LINQ, 525

adding, 672
to DataSets, 595-598
Entity Data Models, 629-630
implicit line continuation, 67
performance, 656-657
SQL, 574-580
Xml documents with, 640
Xml queries with, 644-647. See also LINQ

parallelism, forcing in every, 661
PLINQ

canceling, 662
controlling, 661-660
performance, 658-659

processes, 995-996
sequential conversions, 659
standard operators, 542-561, 598
WCF Data Services, 963

Queue collection, 389-390
Queue method, 389
Queue (Of T) collection, 406
Queues Storage, 900

R
RadialGradientBrush, 746

applying, 750-751
RadioButton control, 736, 846
RadioButtonList control, 846
RaiseEvent keyword, 383
raising events, 378-381
RangeValidator control, 846
readers, data connections, 515-517
Readerwriterlock class, 1002
reading

binary files, 443
locks, 1002-1003
text files, 442-443
Xml documents, 637

properties1324

From the Library of Wow! eBook

ptg

Reading View, turning off RSS, 956
ReadLine method, 442
ReadOnlyCollection (Of T) collection, 399-400
read-only properties, 231
really simple syndication. See RSS
Reason property, 946
recent templates, accessing, 21
Rectangle control, 736
recursive operators, 43
ReDim keyword, 154
Red (TDD), 1261
refactoring code, 1267
Refactor (TDD), 1261
references

Add Service Reference dialog box, 938
API, 1089
arguments, passing, 238
assemblies, 1030

adding, 1144-1145
selection, 83

code elements, 1099-1101
COM libraries, adding, 84-86
logs, 1117
.NET Framework, 59
overview of, 82-86
services, adding, 939
Solution Explorer, 81
types, 86-89, 102-106

interfaces, 342
memory allocation, 107-106
.NET Framework, 105-106
performance, 110-111
selection, 111-120. See also interfaces

reflection, 120, 1041
assemblies, metadata, 1047-1048
Assembly Metadata, 1044-1046
attributes, 1073-1074
code, 1045, 1055-1057
late binding, 1062
overview of, 1043
security, 1055
single types, 1054-1055
System.Reflection.Emit namespace, 1057-

1063
types, 1048-1055

RegEdit.exe, 1144
regions, directives, 65

How can we make this index more useful? Email us at indexes@samspublishing.com

registration
assemblies, 1079
Dll hell problem, 1137-1139
events, 376-377
garbage collection, 279

registration-free COM, ClickOnce, 1174-1175
Registry

access, 460-462
customization, 1171
values, editing, 1152-1153

regular expressions, 251
patterns, 936

relationships
entities, deleting, 626
LINQ, 567-573

relaxed delegates, 501
Release configurations, 42-45
Release folder, 1138
releasing

COM objects, 1078
objects, 268

remarks XML tag, 1095
RemoveHandler keyword, 376
removing. See deleting
reports. See also analysis

ClickOnce, 1163
code analysis, 1227
performance, 1240
summary, 1149

reproduction, content, 878
requestExecutionLevel element, 39
requests

ClickOnce, 1134
GET, 966
Http queries, 950-951
page, 840
thread pools, 999

RequiredFieldValidator control, 846
requirements

classes, COM exposure, 1079
memory, value types, 93
permissions, documentation, 1102
UAC, 40

reserved keywords
My, 452
projects, 70

reserved words, Integer, 90

reserved words 1325

From the Library of Wow! eBook

ptg

ResourceManager property, 79
resources, 1280

MSDN Library, 1281-1282
projects, 75-79
WPF, 473-475

Resources.resx file, 75-79
REST approach, 950
restriction operators, 544-545
restyling windows, 766
results, unit tests, 1256
resurrection of objects, 276-277
rethrow techniques, 220-222
retrieving

assembly information, 452-453
command-line arguments, 456
computer information, 463-464
environment variables, 455

returning
streams, members, 438
values

attributes, 1067
tasks, 1010

reusable code snippets, 1190-1197
reusable templates, creating, 23
reusable types, BCL. See BCL
reuse, code, 360
Reverse method, 493
RichTextBox control, 736, 795-796
roles

Azure (Windows) applications, 904-906
enabling, 865

root levels, extending, 477
root namespace, 290
root namespaces, 36
RotateTransform, applying, 768
Roundtrip, strings, 131
routed events, 696-697
routing strategies, 697
rows

adding, 699
Grid panel, 698

RSS (really simple syndication), 14
Reading View, turning off, 956

rules
access, 865
arrays, 267
classes, 267
methods, 267

Microsoft code analysis, 1225
properties, 267

Run Code Analysis command, 1228
running

applications, 681, 862
ClickOnce, 1160
Silverlight, 895

dynamic code, 1055
Excel documents, 1133
MSBuild, 1106
profilers, 1236
sandboxes, 1039
tasks, 1008, 1009
unit tests, 1256-1257

running Visual Studio for first time, 1280
Run the Cursor command, 179
runtime

code, generating, 1058
data-biding, 861
dynamic code execution at, 1034
windows, instantiation, 709-710

Runtime Callable Wrapper, 1075
runtime errors, debugging, 55-58

S
samples, code, 1282
sampling, CPU intervals, 1235
sandboxing, 1039-1041
SandCastle, 1103
Save method, 467, 638
saving

cookies, applying, 851
user settings, 1188

scalability, ASP.NET, 840-841
scalar properties, 622
ScaleTransform, applying, 768
scg namespace, 987
schemas, Xml

inferences, 650-655
resources, 77

scope
assemblies, 1030
classes, 226, 235-236
interfaces, 342
local type inference, 488-489
member inheritance, 321
modules, 297

ResourceManager property1326

From the Library of Wow! eBook

ptg

namespaces, 289
out of scope objects, 269

ScrollBar control, 737
ScrollViewer control, 738
.sdf files, 593
SDK (Software Development Kit), 902

Visual Studio, 1201
searching

additional contents online, 1278
projects, 26-28
templates, 23
tools, 1284

sections
of Entity Data Models, 607
ItemGroup, 1110-1111
PropertyGroup, 1111-1112

security
assemblies, 1142
attributes, 1037
ClickOnce, 1171-1172
firewalls, FTP, 867
.NET Framework, new features and changes in,

1034-1041
reflection, 1055
VSTO add-ins, 1134
Web application configuration, 864-866

SecurityException, 441
Security Setup Wizard, 865
SecurityTransparent attribute, 1038
SEHException, 1089
SelectedDate property, 719
SelectedDatesChanged event, 719
selection

attributes, 654
columns, 858
custom types, 111
hosts, projects, 873
objects

data sources, 669
Entity Data Models, 606

prerequisites, 1157
properties, 33
references

assemblies, 83
types, 111-120

standalone executables, 1241
templates, Silverlight, 873

How can we make this index more useful? Email us at indexes@samspublishing.com

value types, 111-120
versions, 18

SelectionBrush, 746
applying, 753-754

Select keyword, 527
SelectMany method, 493
Select method, 493
Separator control, 738
SequenceEquals method, 493
sequences, ordering, 659-660
sequential query conversions, 659
serialization, 117, 119, 969

ADO.NET, 990
assemblies, generation of, 49
binary, 972-975
customization, 982-985
Entity Data Models, 991
events, 984-985
generic collections, 986
JSON, 990
LINQ, 566-567
objects, 972-979
SOAP, 975-976
WCF, 987-990
XAML, 985-987
Xml, 979-982

Series Collection Editor dialog box, 677
Server Explorer window, 565
servers

ASP.NET Development Server, 935
ClickOnce, 1160
controls, 848
server-driven paging, 969
SQL configuration, 866

services
addresses, 965
Add Service Reference dialog box, 938
Domain Service Classes, 889-892
labels, 915
members, 940-944
references, adding, 939
WCF, 925

configuration, 947
consuming, 939-944
handling exceptions, 944-946
IIS, 946-947
implementation, 930-938

services 1327

From the Library of Wow! eBook

ptg

overview of, 928-930
RIA Services, 887-896

Session state, 851
SetField(Of T) method, 600
set operators, 551-552
Settings Designer, 467
Settings property, 79-82
setup projects, Windows Installer

configuration, 1149-1158
creating, 1146-1149

Setup Wizard, 1147
shadowing, inheritance, 337-338
shallow copy, 116-117
shared classes, 260
shared constructors, 263
shared fields, 260
Shared keyword, 259
shared members

classes, 259-263
generating, 425
overriding, 338-339

shared methods, 261
shared properties, 260
shift operators, 167-168
short-circuiting operators, 164-165
shortcuts

keyboard, debugging, 179
My namespace, 451. See also My namespace

ShowDialog method, 709, 746
Show Error Help, 1228
Show Error Help command, 32
ShowInTaskBar property, 705
Show method, 709
Show Next Statement command, 180
ShutDown event, 1122
signing

assemblies, 1031, 1142-1143
ClickOnce manifests, 1171

Silverlight, 712
animation, 880-883
applications, 71, 871

creating, 872-875
hosting, 906-913
navigation, 884-887
Out of Browser, 896-897
overview of, 872
running, 895
WCF RIA Services, 887-896

controls, 716
adding, 875-877
data-binding, 892-895

data sources, adding, 888-889
media players, 877-880
resources, 473
template selection, 873
WCF Data Services, consuming, 958
XAML, 688-690

SimulateProcessing method, 1017
Simulation Environment, 914
Single method, 493
SingleOrDefault method, 493
single type reflection, 1054-1055
SkewTransform, applying, 769
Skip method, 493
SkipWhile method, 493
Slider control, 739
snap-ins, Azure (Windows) applications, 925
Sn.exe, 1142
SnippetCompilerVsPackage item, 1231
SnippetCompilerVsPackagePackage class, 1231
snippets, code, 1190-1197

deployment, 1213-1215
SOAP serialization, 975-976
Software Development Kit. See SDK
SolidColorBrush, 746

applying, 747-748
Solution Explorer, 29-31

references, 81
SortedDictionary (Of TKey, TValue) collection, 401
SortedList collection, 392
sorting arrays, 156
source code, 1089. See also code
specialization, handling exceptions, 209-219
specifying

addresses, applications, 916
brushes, 718
launch conditions, 1156-1158
links to other resources, 1103
tracepoint conditions, 184

spell check implementation, 798
SpinWait method, 1016
SQL Server Compact Edition, 593
SQL (Structured Query Language)

Azure, 900
configuration, 866
Entity Data Models queries, 630-633

services1328

From the Library of Wow! eBook

ptg

LINQ, 561
applying logs, 588-589
applying syntax against entities, 593
classes, 563-574
custom validations, 589-592
deleting entities, 584-585
handling optimistic concurrency, 592
inserting entities, 580-583
mapped stored procedures, 586-588
overview of, 562-574
prerequisites, 562
queries, 574-580
updating entities, 583-584

LINQ to, Windows Forms, 674
partial methods, 252
stored procedures, 632
WCF, 938

SSDL (Store Schema Definition Language), 610
Stack collection, 390-391
Stack (Of T) collection, 406
StackPanel panel, 702-703
Stack value types, memory allocation, 105
Staging deployment, 921
standalone executables, selection, 1241
standalone infrastructure, 4. See also infrastruc-

ture; .NET Framework
standard query operators, 542-561, 598
starting debugging, 52
Start Page, Visual Studio, 12-15
Startup event, 1122
Startup Object field (My Project), 37
statements

Console.Writeline, 179
Dim, 95
End Using, 274
Exit Try, 218
Inherits Person, 414
Public Shared Operator, 306
SyncLock..End SyncLock, 1000-1001
With..End With, 180

states
Application, 849
Cache, 850-851
Context, 851
management, ASP.NET, 849-853
Session, 851
ViewState, 852

How can we make this index more useful? Email us at indexes@samspublishing.com

Static Checker, 1270
StaticResource extension methods, 761
StatusBar control, 739
Step Into command, 178
Step Out command, 179
Step Over command, 179
Storage Account activation, 922-925
stored procedures, mapping, 586-588, 634-635
Store Schema Definition Language. See SSDL
Storyboard objects, 777-778
strategies, routing, 697
streams

data, compressing with, 445-450
manipulating, 429
members, 438-440
memory, applying, 444
networks, 450-451
overview of, 441-451
strings, applying, 444-445

StreamWriter class, 442
Stretch property, 782
StringBuilder object, 139
StringCollection collection, 393
StringComparison enumeration options, 134-135
StringComparison object, 129
String.Concat function, 1242
StringDictionary collection, 393
String resources, 75
strings

applying, 126-139
case sensitivity, 130
Clone method, 133-134
comparison operators, 169-171
comparisons, 127-130
concatenation, 138-139
connections, writing, 593
copying, 133
customization, 129
dates, applying, 139-146
editing, 135-138
formatters, implementation, 825-829
formatting, 131-128
performance, 138
streams, applying, 444-445

strongly typed objects, 103-104
strong names, signing with, 1142-1143
StructLayout attribute, 305, 1085-1087

StructLayout attribute 1329

From the Library of Wow! eBook

ptg

structures, 61, 297-302
assignments, 302
attributes, 1067
of ClickOnce deployments, 1165-1166
CLS, 309-310
generating, 426
inheritance, limitations of, 303
interface implementations, 303
management, 304-305
members, viewing, 303
memory allocation, 304
methods, passing, 302-303
namespaces, 282
operators, overloading, 305-309
optimization, 304
Order, 304
ThreePoint, 306, 356

stubs, generating methods, 425
styles, 747

ASP.NET, 844
inheritance, 761
triggers, 762-763
WPF, 759-763

subfolders, Bin, 1138
Sub lambda expressions, 506-508
Sub Main method, 37

debugging, 53
submenu implementation, 731
Sub method, 496
subscriptions, garbage collection, 279
Substitution control, 846
subtraction, dates, 145
summary reports, 1149

ClickOnce, 1163
Summary XML tag, 1095
Sum method, 493
support

class inheritance, 414
delegates, generics, 372
languages, LINQ, 527

SvcUtil, 937
symbols

date formatting, 140
debug, 42
strings, formatting, 131-128

synchronization
Monitor class, 1001-1002
threads, 1000-1003

SyncLock..End SyncLock statement, 1000-1001
System.Array class, 156
System.Data/Object.MergeOption enumeration

values, 630
System.DateTime class, 144-141
System.Diagnostics namespace, 195
System.Diagnostics.Process class, 994
System.Enum class methods, 312-314
System.EventArgs class, 380
System.Exception class, 209-219
System.IO.Directory class, 431-434
System.IO.DirectoryInfo class, 434-435
System.IO.DriveInfo class, 435-436
System.IO.File class, 436-438
System.IO.FileInfo class, 438-440
System.IO.Path class, 430-431
System.Object class, 86

inheritance, 322-324
System.Reflection.Emit namespace, 1057-1063
System.Reflection namespace, 1044
System.Runtime.InteropServices.ComVisible

attribute, 1080
System.Runtime.InteropServices.DllImport

attribute, 1082
System.Security.SecurityRules attribute, 1038
System.ServiceModel.dll assembly, 7
System.String methods, 127
System.String.wstrcpy system function, 1239
System.Threading.Threadpool class, 998
System.TimeSpan class, 146
System.ValueType class, 87-89
System.Windows.Controls.MediaElement control,

783
System.Windows.Controls namespace, 885
System.Xaml.dll assembly, 985
System.Xml.Linq namespace, 637-639

T
TabControl control, 740
Table control, 846
Tables Storage, 900
tabular data forms, creating, 807-815
tags, Xml, 1095. See also Xml
Take method, 493
TakeWhile method, 493
target folders, MSDN Library, 1278
Target Framework, 51

structures1330

From the Library of Wow! eBook

ptg

targets
CPUs, 50
multitargeting, 20
versions, 51

Task class, 1009
TaskFactory class, 1007
Task Parallel Library, 1016 See TPL
tasks

canceling, 1012-1014
Exec built-in, 1113
maximum tasks number configuration, 661
MSBuild, 1112-1114
parallel programming, 1007-1016
running, 1008
values, returning, 1010

TaskScheduler class, 1007
Task.Wait method, 1010
TDD (Test-Drive Development), 1261-1268
Template property, 764
templates, 747

ASP.NET, 841-842
CAB Project, 1147
code editor extensions, 1217
Domain Service Classes, adding, 888
exporting, 1175-1181
projects, 17
reusable, 23
searching, 23
Silverlight, selection, 873
Visual Studio, 21
WCF, 886, 929
WPF

Browser Application, 713
controls, 763-766
projects, 685

Xml schemas, 650
ternary If operators, 509-510
Test-Drive Development. See TDD
testing

applications, Azure (Windows), 913-916
code, 1251
custom extension libraries, 499
IntelliTrace, 1249
projects, formatting, 1263
TDD, 1261-1268

How can we make this index more useful? Email us at indexes@samspublishing.com

unit tests
code, 1251-1261
formatting, 1263-1267

updates, 1169
Test method, 179
Test property, 336
TestThrow class library, 221
text. See also documents

adornments, 1220
highlighting, 795
ink notes, adding, 794
reading, 442-443
writing, 442-443

TextBlock control, 695, 741
TextBox control, 846
ThenByDescending method, 493
ThenBy method, 493
ThisAddIn.vb file, 1122
ThisWorkbook.vb file, 1130
threads

Call Stack window, 189
creating, 996-997
cultures, 453-454
id, 1009
multithreading, 991. See also multithreading
synchronization, 1000-1003

Threads window, 192
ThreePoint structure, 306, 356
Throw keyword, 219-220
time

adding, 145
applying, 146-147

TimeZoneInfo type, 148-150
TimeZone type, 148-150
Title argument, 1100
Title property, 338, 705
TlbExp.exe, 1081
TlbImp.exe, 1075
ToArray method, 493
ToDictionary method, 493
ToList method, 493-494
ToolBar control, 742
toolbars

adding, 1184
configuration, 1185
customization, 1183-1186

toolbars 1331

From the Library of Wow! eBook

ptg

toolbox customization, 1190
tools, 1280, 1282, 1284

Add-In Manager, 1218
Add/Remove Programs, 1164
analysis, 1221

calculating code metrics, 1230-1231
dependency graphs, 1250-1251
executing code analysis, 1224-1230
IntelliTrace, 1243-1249
overview of, 1224
profiling applications, 1232-1242

applications, debugging, 178-193
AxImp.exe, 1075
Azure (Windows), downloading, 901-902
Class Designer, 407-419
Class Details window, 419
Class View window, 419
Cloud Computing, 902
code, 1282-1283
Code Analysis, 32
code contracts, 1270
code snippets, 1197
data access, 1283
debugger visualizers, 193-194
debugging, 53, 1023. See also debugging
design, XAML, 688
Document Outline, 693
EdmGen.exe, 608
Entity Data Models, 619-621
Expression Blend, 764
Extension Manager, 1215
FxCop, 1224
items, adding, 721
LocBaml.exe, 832-833
Microsoft Expression Blend, 688
MSDeploy, 866-870
.NET Framework, 8
networks, 1283
SandCastle, 1103
searching, 1284
Silverlight, 872. See also Silverlight
SvcUtil, 937
TlbExp.exe, 1081
TlbImp.exe, 1075
Visual Studio, 1201

My Project, 34-41
Office, 1120-1121
Windows Azure, 901

windows, applying, 29-34
Windows Azure MMC, 923

Tools menu customization, 1182
tooltips, local type inference, 486
TopMost property, 705
ToString method, 123, 314
TPL (Task Parallel Library), 9
Trace class, 197
trace listeners, 198-195

adding, 202
overwriting files, 198-201

tracepoints, debugging applications, 182-185
tracing WCF services, 946
tracking

changes, 566, 625
events, IntelliTrace, 1247-1248

transformations
MSBuild, 1117
WPF, 766-770

TranslateTransform, applying, 770
Transparency Level 2, 1037-1038
transparency model, 1035
treat all warnings as errors compile option, 44
TreeView control, 743
triggers, styles, 762-763
TrimToSize method, 388
troubleshooting, 1283-1284

code analysis, 1228
Dll hell problem, 1137-1139
Edit and Continue feature, 58-59
online help, 59-60
System.Diagnostics namespace, 195
unit tests, 1257

trust
ClickOnce, 1171
full-trust, 1038

TryCast operator, 124-126
Try..Catch blocks, 436, 1089
Try..Catch..End Try blocks, 1078
Try..Catch..Finally code block, 209-213
TryParse method, 143
tunneling, 697
turning off RSS Reading View, 956
tutorials, 1282

Azure (Windows), 925
TypeOf operator, 126
types

anonymous, 499-501, 598
applications, 36

toolbox customization1332

From the Library of Wow! eBook

ptg

arguments, passing, 238
assemblies, 1030
attributes, parameters, 1070
Boolean, 466
characters, literal, 95-96
CLS compliance, 264
Common Type System, 85-89
constraints, 364
conversions, 120-126
customization, selection of, 111
data, 86-85, 485-489. See also data types
deployment, Azure (Windows), 917
embedding, verification, 86
files, creating, 1154
floating, conversion, 101
fundamental, .NET Framework, 126-159
GetType keyword, 119-120
inference, lambda expressions, 505
local type inference, 485-489
memory allocation, 107-106
namespaces, management, 279, 282-295
nested, 366
nondefault, .NET Framework, 467
nullable, 100, 359. See also nullable types
numeric, matching, 1082
parameters, 234, 366-367
performance, 110-111
projects, 59-69
references, 86-89, 102-106

interfaces, 342
.NET Framework, 105-106
selection, 111-120. See also interfaces

reflection, 1048-1055, 1054-1055
reusable, BCL. See BCL
TimeZone, 148-150
TimeZoneInfo, 148-150
unmanaged code conversions, 1084
values, 86-89

analysis, 98-99
applying, 93-99
assignment, 97-98
BigInteger, 100-102
customization, 102
enumerations, 310-317
memory allocation, 100
methods, 99-100

How can we make this index more useful? Email us at indexes@samspublishing.com

optimization, 100
overview of, 90-102
primitive, 90-93
selection, 111-120
structures, 302

U
UAC (User Access Control), viewing, 38-40
UICulture property, 453
UI (user interface)

animation, Silverlight, 880-883
elements

binding, 800-806
localization, 837

Silverlight, 876
unboxing, 114-115
uncommented members, IntelliSense, 1092
uninstallation. See also installation

assemblies, 1140-1141
enabling, 1164
privileges, 1140

Union method, 494
union operators, 554-557
unit tests

code, 1251-1261
creating, 1263-1267
IntelliTrace, 1261

unmanaged code, COM, 1081-1089
unused local variable condition, 43
updates

automatic, enabling, 1167
ClickOnce, 1168-1169
testing, 1169

updating
data, 516, 521
entities, 583-584, 626-627
Visual Studio, 15

upgrading
drivers, 1235
from Visual Basic 6, 92, 209

usage, checking CPUs, 1238
use of variable prior of assignment condition, 43
User Access Control. See UAC
user setting management, 1186-1190
Using keyword, 273

Using keyword 1333

From the Library of Wow! eBook

ptg

V
ValidateBook method, 936
validation

data, 628-629
Windows Forms customization, 674-675

validations, customization, 589-592
Value property, 368
values

arguments, passing, 238
attributes, 1067
bit flag enumerations, 315-317
converter implementation, 825-829
default, 242
enumeration,

System.Data/Object.MergeOption, 630
Registry, editing, 1152-1153
tasks, returning, 1010
types, 86-89

analysis, 98-99
applying, 93-99
assignment, 97-98
BigInteger, 100-102
customization, 102
enumerations, 310-317
memory allocation, 100, 107-106
methods, 99-100
optimization, 100
overview of, 90-102
performance, 110-111
primitive, 90-93
selection, 111-120
structures, 302

variables
environments, retrieving, 455
exceptions, catching without, 224-225
lineRead, 193
local, avoiding, 228
nullint, 368

variances, generics, 510-511
Vbc.exe, 2, 8
VBFixedString attribute, 1088
verification, embedding types, 86
versions

assemblies, 1030
differences with previous, 4
selection, 18
targets, 51

video, playing, 783-786
ViewBox panel, 707
View control, 846
View Help command (Help menu), 59
viewing

code snippets, 1194
constructors, 252
containers, 924
documentation, 59-61
documents, 791
GACs, 1139
grid lines, 702
Help Viewer, 1103
images, 781-783
member structures, 303
My Project, 71
Object Browser window, 60-61
UAC, 38-40
unit test results, 1256
XPS documents, 799

View property, 730
binding, 820-825

views
All Files, 71
Class View window, 419

ViewState state, 852
Visual Basic Compiler, 2
Visual Basic Developer Center, 1281
VisualBrush, 746

applying, 754
visualizers, debuggers, 193-194
Visual Studio

Class Designer. See Class Designer
ClickOnce, 1159-1161. See also ClickOnce
code snippets, adding, 1196
COM components

importing into, 1076-1077
compile options, 45-46
customization, 1181-1186
debugging, 42-45, 53. See also debugging
2010 Diagnostic Tool, 1283
extensibility, 1197

Add-In Manager, 1218
building packages, 1202-1213
code editors, 1218-1221
deploying extensions, 1213-1215
management, 1216-1200

ValidateBook method1334

From the Library of Wow! eBook

ptg

new features, 1200-1201
overview of, 1199-1201

Get Started tab, 13-14
Guidance and Resources tab, 14
installation, 1273-1278, 1280
Latest News tab, 14-15
media players, 879
MSDN Library, 59-60
multitargeting, 20
My Project tool, 34-41
navigation, 9-11
new features, 11-12
privileges, 902
projects, 15-28, 17-18, 41-51
references, 1144-1145
SDK, 1201
Start Page, 12-15
templates, 21
tools

Office, 1120-1121
windows, applying, 29-34
Windows Azure, 901

Tools for Office, 9
Tools for Office Project Wizard, 1129
warning configurations, 46-51
WPF applications, creating, 686-687

Visual Tree, WPF, 694-695
Vsi Builder, 1283
.VSI files, 1201
.VSIX files, 1201, 1213
VSTO (Visual Studio Tools for Office), 1120-1121

W
warnings

messages, 31
Visual Studio configurations, 46-51

Watch windows, 190-191
.Wav files, 474
WCF (Windows Communication Foundation)

contracts, 929
Data Services, 947

consuming, 957-963
deployment, 957
implementation, 951-957, 963-966
overview of, 949-951
query interceptors, 966-969
server-driven paging, 969

How can we make this index more useful? Email us at indexes@samspublishing.com

overview of, 928-930
RIA Services, 887-896
serialization, 987-990
services, 925

configuration, 947
consuming, 939-944
custom logic implementation, 933-938
handling exceptions, 944-946
IIS, 946-947
implementation, 930-938

WDSL (Web-service Definition Language), 937
Web applications. See also applications

configuring security, 864-866
creating, 853-864
deployment, 865-866
MSDeploy, 868-870
publishing, 866
security, configuring, 864-866
WCF Data Services, hosting, 951

Web Application template (ASP.NET), 841-842
WebBrowser control, 744
Web.config file, 931
Web forms

adding, 857-859
ASP.NET, 843-847

Web pages, associating, 861
Web-service Definition Language. See WDSL
websites, opening, 725
Web Site template (ASP.NET), 841-842
When Hit command, 185
When keyword, 223-224
Where keyword, 527
Where method, 494
widening conversions, 121-122
Win32 API calls, references to, 1089
Window element, 690
Window.Initialized event handler, 795
Window_Loaded event handler, 821
Windows

application logs, 456
Azure. See Azure
Forms. See Windows Forms
Installer, 1134
Performance Toolkit, 1284

windows
adding, 709
Advanced Compiler Settings, 45

windows 1335

From the Library of Wow! eBook

ptg

Autos, 192
Breakpoints, applying, 182-185
Call Stack, 55, 188-189
Class Details, 419
Class View, 419
Command, 187
Data Sources, 670
Debug History, 55
Document Outline tool, 694
Edit Breakpoints Label, 183
Error List, 31-33
floating, docking, 26
Generate New Type, 428
Locals, 186
Mapping Details, 617
Model Browser tool, 618
My Project, 32. See also My Project tool
New Project, 16
Object Browser, 60-61
Output, 33-34, 196
Ouyput, 38
Parallel Stacks, 1022
Parallel Tasks, 1021
Properties, 33, 413, 619, 690
restyling, 766
Server Explorer, 565
Solution Explorer, 29-31
Threads, 192
tools, applying, 29-34
Watch, 190-191
WPF

instantiation at runtime, 709-710
management, 707-710

Xml Schema Explorer tool, 652
Windows Azure Developer Portal, 901
Windows Communication Foundation, 8-9
Windows Explorer, GACs, 1139
Windows Forms, 9

ADO.NET, creating applications with, 668-681
applications

creating, 665-668
localizing, 830-832

LINQ to SQL, 575-578
overview of, 665-666
validation, customization, 674-675

WindowsFormsHost control, 745-746
Windows Installer

deployment, 1158
overview of, 1145-1146

setup projects
configuration, 1149-1158
creating, 1146-1149

Windows Registry, access, 460-462
Windows SDK, 8
WindowStartupLocation property, 705
WindowState property, 705
WindowStyle property, 705
Windows Workflow Foundation, 9
WinForms, adding, 1122
With..End With statement, 180
WithEvents keyword, 377-378
Wizard control, 846
wizards

Configure Data Source Wizard, 860
Data Source Configuration Wizard, 518
Entity Data Models, 605
Export Settings Wizard, 1186
Performance Wizard, 1242
Publish Wizard, 1162, 1166
Security Setup Wizard, 865
Setup Wizard, 1147
Visual Studio Tools for Office Project Wizard,

1129
Word, creating application-level add-ins, 1121-

1129
workerThreads arguments, 999
WorkingDirectory path, 1113
WPF (Windows Presentation Foundation), 9

animation, 771-778
Application object, 710-711
applications

creating, 511, 681-682
events, 485
localizing, 832-837
Visual Studio, 686-687

applications framework, 484
architecture, 683-686
browser applications, 711-713
brushes, 745-758
common dialog boxes, 746
controls, 713

common controls, 717-746
ContentControl element, 716-717
features, 715-716
management with panels, 698-707

controls templates, 763-766
customization, 747

windows1336

From the Library of Wow! eBook

ptg

data-binding, 799
drag’n’drop, 807-829
overview of, 799-806

documents
management, 779
manipulating, 786-796

events, handling, 695-697
exceptions, 378
interoperability, 667
Logical Tree, 694-695
My.Application property, 484
overview of, 682-683
projects

adding images, 781-783
creating, 1176
playing media, 783-786

resources, 473-475
routed events, 696-697
Silverlight, 875
styles, 759-763
transformations, 766-770
Visual Tree, 694-695
VSTO, 1120
windows

instantiation at runtime, 709-710
management, 707-710

XPS documents, viewing, 799
WrapPanel panel, 703-704
WrappedException property, 1078
WriteAllBytes method, 437
WriteAllLines method, 436
WriteAllText method, 436
WriteEntry method, 456
WriteLine method, 28, 442
write-only properties, 232
writing

binary files, 443
code, 407, 419. See also objects

LINQ. See LINQ
connection strings, 593
custom attributes, 1068
enumerations, 310
locks, 1002-1003
managed code, 4-5
non-CLS-compliant class libraries, 1225
text files, 442-443

How can we make this index more useful? Email us at indexes@samspublishing.com

X–Z
Xaml Browser Applications. See XBAP
XAML (eXtensible Application Markup Code), 684,

687
Binding markup extension, 800-806
controls, 691-693
overview of, 687-693
PowerToys, 1284
serialization, 985-987
Silverlight, 688-690

X-axis, 677
XBAP (Xaml Browser Applications), 712

interfaces, 713
XCopy command

deployment, 1138-1139
mode, 1030

XDocument class, 639
XInfo class, 1049
Xml (eXtensible Markup Language)

axis, 646-647
comments

adding, 637
generics, 1103
implementation, 1094

controls, 846
documents, 636, 1091-1093
elements, 638
LINQ to, 636-642
lists, creating, 1102
literals, 642-649
Microsoft SandCastle, 1103
MSBuild, 1107. See also MSBuild
namespaces, importing, 292-295, 654
schemas

inferences, 650-655
resources, 77

serialization, 979-982, 981-982
Settings property, 79-82
System.Xml.Linq namespace, 637-639

XmlRoot attribute, 982
XmlSerializer.Deserialize method, 980
XPS documents, viewing, 799

Y-axis, 677

Zoom command, 409

XPS documents 1337

From the Library of Wow! eBook

	Table of Contents
	Part I: Learning the Basics of VB
	1 Introducing the .NET Framework 4.0
	What Is the .NET Framework?
	The Common Language Runtime
	The Base Class Library
	.NET Languages
	.NET Framework Tools
	What's New in .NET Framework 4.0

	2 Getting Started with the Visual Studio 2010 IDE
	What's New in Visual Studio 2010
	Start Page
	Working with Projects and Solutions
	Working with Tool Windows
	My Project
	Compiling Projects
	Debugging Overview
	Browsing the Visual Basic and .NET Documentation

	3 The Anatomy of a Visual Basic Project
	Brief Overview of Types and Members
	Visual Basic 2010 Reserved Keywords
	Understanding Project Files
	Understanding References

	4 Data Types and Expressions
	Common Type System
	Understanding Value Types
	Understanding Reference Types
	Differences Between Value Types and Reference Types
	Converting Between Value Types and Reference Types
	Conversion Operators
	Working with .NET Fundamental Types
	Common Operators
	Iterations, Loops, and Conditional Code Blocks

	5 Debugging Visual Basic 2010 Applications
	Preparing an Example
	Debugging Instrumentation
	Debugger Visualizers
	Debugging in Code

	6 Handling Errors and Exceptions
	Introducing Exceptions
	Handling Exceptions

	Part II: Object-Oriented Programming with Visual Basic 2010
	7 Class Fundamentals
	Declaring Classes
	Fields
	Properties
	Scope
	Methods
	Partial Classes
	Partial Methods
	Constructors
	Shared Members
	Common Language Specification

	8 Managing an Object's Lifetime
	Understanding Memory Allocation
	Understanding Garbage Collection
	Understanding the Finalize Method
	Understanding Dispose and the IDisposable Interface
	Object Resurrection
	Advanced Garbage Collection

	9 Organizing Types Within Namespaces
	Understanding What Namespaces Are
	Organizing Types Within Namespaces

	10 Modules
	Modules Overview
	Differences Between Modules and Classes

	11 Structures and Enumerations
	Assignments
	Passing Structures to Methods
	Members' Visibility
	Inheritance Limitations and Interfaces Implementation
	Memory Allocation
	Organizing Structures
	Overloading Operators
	Structures and Common Language Specification
	Enumerations

	12 Inheritance
	Applying Inheritance
	Illustrating System.Object in Detail
	Introducing Polymorphism
	Overriding Members
	Conditioning Inheritance
	Accessing Base Classes Members
	Constructors' Inheritance
	Shadowing
	Overriding Shared Members
	Practical Inheritance: Building Custom Exceptions

	13 Interfaces
	Defining Interfaces
	Implementing and Accessing Interfaces
	Interfaces and Polymorphism
	Interfaces Inheritance
	Defining CLS-Compliant Interfaces
	Most Common .NET Interfaces

	14 Generics and Nullable Types
	Introducing Generics
	Creating and Consuming Generics
	Introducing Nullable Types

	15 Delegates and Events
	Understanding Delegates
	Handling Events
	Offering Events to the External World

	16 Working with Collections
	Understanding Collections Architecture
	Working with Nongeneric Collections
	Working with Generic Collections
	Building Custom Collections
	Concurrent Collections

	17 Visually Designing Objects
	Visual Studio Class Designer
	Class View Window
	Class Details Window

	18 "Generate From Usage" Coding Techniques
	Coding New Types
	Generating Complex Objects

	Part III: Advanced VB Language features
	19 Manipulating Files and Streams
	Manipulating Directories and Pathnames
	Handling Exceptions for Directories and Pathnames
	Manipulating Files
	Introducing Streams

	20 The My Namespace
	Introducing My
	My.Application
	My.Computer
	My.Settings
	My.Resources
	My.User
	My.WebServices
	Extending My
	My in Different Applications

	21 Advanced Language Features
	Local Type Inference
	Array Literals
	Extension Methods
	Anonymous Types
	Relaxed Delegates
	Lambda Expressions
	Ternary If Operator
	Generic Variance

	Part IV: Data Access with ADO.NET and LINQ
	22 Introducing ADO.NET and DataSets
	Introducing ADO.NET
	Introducing DataSets

	23 Introducing LINQ
	What Is LINQ?
	LINQ Examples
	Language Support
	Understanding Providers
	Overview of LINQ Architecture

	24 LINQ to Objects
	Introducing LINQ to Objects
	Querying in Memory Objects
	Introducing Standard Query Operators

	25 LINQ to SQL
	Introducing LINQ to SQL
	Querying Data with LINQ to SQL
	Insert/Update/Delete Operations with LINQ
	Advanced LINQ to SQL
	LINQ to SQL with SQL Server Compact Edition

	26 LINQ to DataSets
	Querying Datasets with LINQ
	LINQ to DataSets' Extension Methods

	27 Introducing ADO.NET Entity Framework
	Introducing Entity Framework
	Understanding Entity Data Models
	Insert/Update/Delete Operations for Entities
	Querying EDMs with LINQ to Entities
	Querying EDMs with Entity SQL
	Mapping Stored Procedures

	28 Manipulating Xml Documents with LINQ and Xml Literals
	Introducing LINQ to Xml
	Xml Literals
	Xml Schema Inference

	29 Overview of Parallel LINQ
	Introducing PLINQ
	Handling Exceptions

	Part V: Building Windows Applications
	30 Creating Windows Forms 4.0 Applications
	What Windows Forms Is Today
	Creating Windows Forms Applications
	Building Windows Forms Applications with ADO.NET Entity Framework and Chart Control

	31 Creating WPF Applications
	What Is WPF?
	WPF Architecture
	Building WPF Applications with Visual Studio 2010
	Understanding the eXtensible Application Markup Language (XAML)
	Understanding Visual Tree and Logical Tree
	Handling Events in WPF
	Arranging Controls with Panels
	Managing Windows
	Introducing the Application Object
	Brief Overview of WPF Browser Applications

	32 WPF Common Controls
	Introducing WPF Controls Features
	Understanding the ContentControl
	Understanding Common Controls
	Using Common Dialogs

	33 Brushes, Styles, Templates, and Animations in WPF
	Introducing Brushes
	Introducing Styles
	Introducing Control Templates
	Introducing Transformations
	Introducing Animations

	34 Manipulating Documents and Media
	Viewing Images
	Playing Media
	Manipulating Documents
	Viewing XPS Documents

	35 Introducing Data-Binding
	Introducing the Data-Binding
	Discussing the New Drag'n'Drop Data-Binding

	36 Localizing Applications
	Introducing .NET Localization
	Windows Forms Localization
	WPF Localization

	Part VI: Building Web Applications
	37 Building ASP.NET Web Applications
	Introducing the ASP.NET Model
	Web Forms and Master Pages
	ASP.NET Controls
	Handling Events
	Understanding State Management
	Creating a Web Application with VB 2010 with Navigation and Data-Binding
	Configuring a Web Application for Security

	38 Publishing ASP.NET Web Applications
	Deployment Overview
	Classic Publishing
	MSDeploy Publish

	39 Building Rich Internet Applications with Silverlight
	Introducing Silverlight
	Creating Silverlight Projects with Visual Basic 2010
	Adding Controls and Handling Events
	Playing Media
	Animating UI Elements
	Introducing Navigation Applications
	Introducing WCF RIA Services
	"Out of Browser" Applications

	40 Building and Deploying Applications for Windows Azure
	About Windows Azure Platform
	Registering for the Windows Azure Developer Portal
	Downloading and Installing Tools for Visual Studio
	Creating a Demo Project
	Deploying Applications to Windows Azure
	Activating the Storage Account

	Part VII: Networking and Exposing Data Through Networks
	41 Creating and Consuming WCF Services
	Introducing Windows Communication Foundation
	Implementing WCF Services
	Consuming WCF Services
	Handling Exceptions in WCF
	Hosting WCF Services in Internet Information Services
	Configuring Services with the Configuration Editor

	42 Implementing and Consuming WCF Data Services
	What Are Data Services?
	Implementing WCF Data Services
	Consuming WCF Data Services
	Implementing Service Operations
	Implementing Query Interceptors
	Understanding Server-Driven Paging

	Part VIII: Advanced .NET Framework with VB 2010
	43 Serialization
	Objects Serialization
	XML Serialization
	Custom Serialization
	Serialization with XAML
	Serialization in Windows Communication Foundation
	Serialization in the ADO.NET Entity Framework

	44 Processes and Multithreading
	Managing Processes
	Introducing Multithreading
	Understanding the .NET Thread Pool
	Threads Synchronization

	45 Parallel Programming
	Introducing Parallel Computing
	Understanding and Using Tasks
	Parallel Loops
	Debugging Tools For Parallel Tasks
	Concurrent Collections

	46 Working with Assemblies
	Assembly Overview
	Understanding Application Domains
	Overview of Security Changes in .NET 4.0

	47 Reflection
	Introducing Reflection
	Understanding Assemblies' Metadata
	Getting Assembly Information
	Reflecting Types
	Invoking Code Dynamically
	Generating Code at Runtime with Reflection.Emit

	48 Coding Attributes
	Applying Attributes
	Coding Custom Attributes
	Reflecting Attributes

	49 Platform Invokes and Interoperability with the COM Architecture
	Importing and Using COM Objects
	Exposing .NET Objects to the COM World
	P/Invokes and Unmanaged Code
	References to the Win32 API calls

	50 Documenting the Source Code
	Understanding XML Documents
	Implementing XML Comments
	Generating Compiled Help Files

	51 Advanced Compilations with MSBuild
	Introducing MSBuild
	Advanced MSBuild Features

	52 Building Customizations for Microsoft Office
	Introducing the Visual Studio Tools for Office
	Creating an Application-Level Add-In for Microsoft Word
	Creating a Document-Level Add-In for Microsoft Excel
	Deploying VSTO Add-Ins

	Part IX: Applications Deployment
	53 Understanding the Global Assembly Cache
	The Dll Hell Problem
	The Global Assembly Cache

	54 Setup & Deployment Projects for Windows Installer
	Windows Installer Overview
	Creating a Setup Project
	Configuring the Setup Project
	Building and Deploying the Windows Installer Package

	55 Deploying Applications with ClickOnce
	Introducing ClickOnce
	Deploying Applications with ClickOnce
	Configuring ClickOnce
	Security Considerations
	Programmatically Accessing ClickOnce
	Registration-Free COM

	Part X: Mastering the Visual Studio 2010 IDE
	56 Advanced IDE Features
	Exporting Templates
	Customizing Visual Studio 2010
	Managing User Settings
	Customizing the Toolbox
	Using, Creating, and Managing Reusable Code Snippets

	57 Introducing the Visual Studio Extensibility
	Introducing Visual Studio Extensibility
	Building a Visual Studio Package
	Deploying Visual Studio Extensions
	Managing Extensions with the Extension Manager
	Managing Add-Ins with the Add-In Manager
	Extending the Code Editor

	58 Advanced Analysis Tools
	Introducing Analysis Tools
	Performing Code Analysis
	Calculating Code Metrics
	Profiling Applications
	IntelliTrace, the Historical Debugger
	Generating Dependency Graphs

	59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts
	Testing Code with Unit Tests
	Introducing Test-Driven Development
	Understanding Code Contracts

	Appendixes
	A: Installing Visual Studio 2010
	Installing Visual Studio 2010
	Installing the Offline Documentation
	Running Visual Studio 2010 for the First Time

	B: Useful Resources and Tools for Visual Basic
	Visual Basic Resources in MSDN
	Useful Developer Tools for Visual Basic
	Coding Tools
	Networking
	Data Access
	Diagnostics and Performance
	Miscellaneous
	Where Do I Find Additional Tools?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

