This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly et

Cover

Team Fly Nex!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page iii

Visual Basic™ Net Power Tools

Evangelos Petroutsos and Richard Mansfield

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page vii

Acknowledgments

WE WERE FORTUNATE TO have several smart, thoughtful editors assist us in polishing this
manuscript. First, we'd like to thank Development Editor Tom Cirtin. He deserves credit for
his discernment, and the high quality of his editing. He's very good at dealing with his authors,
and equally skilled at raising important questions and improving their chapters.

Technical Editor Greg Guntle carefully reviewed the manuscript and made many useful
suggestions, caught a number of inconsistencies, and helped improve several code examples.
Production Editor Leslie Light ensured that this book moved smoothly through production and
was most helpful with suggestions about the graphics, drawings, and screen shots. Suzanne
Goraj, copy editor, combed through every line of our text, making improvements throughout.

To all these, and the other good people at Sybex who contributed to this book, our thanks for
the intelligence and care that they brought to this book. In addition, the authors would like to
give special thanks to their agents, Matt Wagner and David Fugate, of Waterside Productions,
whose contributions to the authors' careers goes above and beyond the call of duty.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page viii

Contents at a Glance

Introduction

Xix
Chapter 1 » Understanding the .NET Framework 1
Chapter 2 « New Ways of Doing Traditional Jobs 23
Chapter 3 « Serialization Techniques 59
Chapter 4 « Leveraging Microsoft Office in Your
Applications 93
Chapter 5 » Understanding .NET Security 119
Chapter 6 * Encryption, Hashing, and Creating Keys 139
Chapter 7 « Advanced Printing 159
Chapter 8 « Upon Reflection 191
Chapter 9 « Building Bug-Free and Robust Applications 215
Chapter 10 * Deploying Windows Applications 243
Chapter 11 « Building Data-Driven Web Applications 271
Chapter 12 « Peer-to-Peer Programming 289
Chapter 13 » Advanced Web Services 319
Chapter 14 « Building Asynchronous Applications with
Message Queues 341
Chapter 15 * Practical ADO.NET 391
Chapter 16 * Building Middle-Tier Components 441
Chapter 17 « Exploring XML Techniques 475
Chapter 18 * Designing Data-Driven Windows
Applications 505
Chapter 19 » Working with Regular Expressions 543
Chapter 20 » Advanced Graphics 589
Chapter 21 » Designing the User Interface 623

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 22 « Using the NET Compact Framework and Its
Emerging Technologies 643

Index 665

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page ix

Contents

=

Introduction
Chapter 1 ¢ Understanding the .NET Framework
Why Read This Chapter
Help!
Grappling with Framework Class Descriptions
The Hunt for a Grammar
Why Two Ways?

About Constructors

E BB o wmwo -

Assemblies Three Ways
Understanding Data Types

p—
p—

About System.Object
MemberWiseClone
Equals
ReferenceEquals
The Main Point about Equality
GetHashCode
GetType
ToString
Strong Typing Weakens
Is Color a Data Type?
Exploiting the Framework
A Useful Class View Utility
A Brief Lexicon

Summary

Chapter 2 « New Ways of Doing Traditional Jobs

BB BEBELELEEEREREGRERRS

Clipboard Access

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com
Working with "Control Arrays"
Multiple Handles
Using Arrays
Zero-Based Collections (Sometimes)
Initialization
Arrays of Objects
Array Search and Sort Methods
Customized Sorting
Many Properties and Methods
The Flexible ArrayList
Mass Manipulation
Data Binding
Enumerators
Using HashTables
New Date/Time Techniques

Adding Time

R RHRBEBERRREBEEBERERLDR

Team Fly Fresious

et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page xix

Introduction

THIS BOOK ACTUALLY BEGAN in Athens, Greece in 1993. Evangelos Petroutsos wrote a very
interesting outline, and several sample chapters, for a book about "fascinating and
sophisticated things" you could do with Visual Basic. I agreed with my publisher that his ideas
had potential, but Evangelos was a first-time author. I had a track record, though, so the
publisher said they'd invest in this "Power Toolkit" book if I agreed to co-author it. Even a
small book represents a $50,000 gamble for a publishing house, and this was a very large
book.

[merrily agreed because I thought the topics were compelling—fractals, encryption,
processing graphics, animated transitions, multimedia, manipulating color palettes, recursion,
and other topics that were largely ignored by other VB books. To our delight, the book
became a runaway bestseller in 1995. Evidently many Visual Basic programmers were ready
for a book about advanced, cutting-edge programming techniques.

In 2002, we decided to revisit this concept. Nearly a decade has passed, and we now have
what amounts to a brand new Visual Basic language: VB.NET. We decided to follow the same
path that we went down a decade ago: to explore aspects of VB.NET that have been largely
ignored in other books, but are useful or interesting, or both.

Most of the topics covered ten years ago in the previous book are not repeated here—times
have changed. But we feel that the subjects explored in this new book are compelling in their
own right.

Aesthetics

Why would captivating topics be largely ignored in computer books? We think there are two
primary reasons. The first category of ignored topics is seen as "trivial" or "marginal." Put
another way, these subjects involve aesthetics. Programmers by and large prefer to consider
themselves part of the scientific community, so examining such unscientific concepts as
beauty or appearance seems to many programmers to be a step down. Two of the chapters in
this book, nonetheless, boldly explore aesthetic subjects.

Truth be told, programming is an art, not a science. Some professors conjure up theoretical
constructs and special terminology, but airy obfuscation and lofty-sounding jargon do not, by
themselves, create a science—and all too often actually inhibit rational discourse.

Studies have shown that the best programmers are frequently English or music majors. Some
of the best developers around today got into programming when they purchased their first
Amiga computer—an early machine devoted to the creative side of computing. And although
academic programming is generally allied with mathematics departments, there is very little
real relationship between

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page xx

math (or science) and programming—just as there is often very little relationship in general
between many other academic studies and the real world.

Consider the primary current computer applications: word processing, database management,
Internet communications, and spreadsheets. Only spreadsheets have much at all to do with
math. Programming can, of course, involve math, but it's rarely central to the programmer's
task. You could write an entire word processing program without even knowing long division,
much less algebra or anything beyond.

And programming obviously isn't a science. Science involves theorizing and controlled
experimentation, behaviors rarely associated with programming. Sure, there's a kind of
experimental hacking that goes on while trying to fix bugs—but that's not scientific
experimentation by any stretch of the imagination. Debugging is much closer to searching for
a lost set of keys than sending a kite up into a thunderstorm.

Programming is basically communication—albeit between humans and machines. But it is a
linguistic and expressive act. It's not exactly rhetorical (we don't need to persuade the
machines, at least not yet). But it's certainly descriptive, grammatical, and fundamentally
communicative.

The two chapters in this book that some will consider "unscientific" are Chapter 21,
"Designing the User Interface," and Chapter 20, "Fractals: Infinity Made Visible." We agree.
But then we think the entire subject of programming is unscientific, and we're not bothered by
that fact.

Complexity and the Avant-Garde

Most of the remaining topics in this book fall into the second category: topics that are either
too cutting-edge or too complex for inclusion in many books. For example, not much is
written about VB.NET's splendid and extensive security features—even though security is a
primary ongoing challenge for the computing community.

Security-related VB.NET programming is avoided not because the programming involved is
inherently difficult or novel, but rather because the concepts underlying cryptology and other
aspects of security are fundamentally complex. Many computer book authors simply don't
know enough about encryption, for example, to explain its implementation in computer
programming. Fortunately, cryptology has long been a hobby of one of the authors of this
book.

Other topics are perhaps too new to be widely understood or implemented. Asynchronous
programming, Web services, employing Office objects, using reflection, and the new .NET
Compact Framework (how to squeeze programming and I/O into the highly restrictive
platform of small, portable devices such as PDAs and cell phones) all fall into this category.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Several of the chapters in this book, we admit, have been covered fairly extensively in other
books (database programming, debugging, printing), but we included them because we feel
that we have something new to say. For example, we've yet to find any book that correctly
describes how to print hard copy in VB.NET. All the programming examples we've seen
either cut letters in half at the end of lines, or cut lines in half at the end of pages. This doesn't
happen on every line or at the end of every page, but you'll agree that it's pretty bad when it
happens even intermittently. If you've been looking for the solution to this problem, see
Chapter 7.

Chapter 1 is unusual because it tackles an essential, yet widely avoided, question: Why was
Visual Basic .NET designed by C programmers, and what are the implications? It's as if the
Romans had been given the job of rebuilding Thebes—the result might be impressive, but it
certainly wouldn't remain Egyptian.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page xxi
Chapter 1 begins like this:

Visual Basic .NET WAS not written by Visual Basic programmers. The entire .NET family of
languages was created by C programmers. C—and its cohort OOP—is an academic language.
Visual Basic is a popular language. These facts have consequences.

The authors of this book are not beholden to any organization. We're not writing for Microsoft
Press, nor are we affiliated with any corporation or school. Indeed, we like to think that we're
not dependent on anyone for our paycheck—other than you, dear reader—and can therefore be
more objective than many of our colleagues.

We can ask heretical questions such as why OOP should be used in all programming situations
as many of its proponents insist. We can question the wisdom of allowing C programmers to
write the narratives and code examples for the Help system in VB.NET. We can wonder why
structures are included in VB.NET if OOP experts insist that you should never use them.

We can freely applaud VB.NET when it improves on traditional VB programming features
(streaming and serialization, for instance), and point out when VB.NET creates needless
confusion. (Some collections in VB.NET are zero-based; some are one-based. And there's no
rhyme or reason involved, no pattern you can discover, no rule you can learn, to deal with this
problem.)

Another benefit of being outside programming and academic officialdom is that we can be
clear. There is a lingo developing around programming, and too much of it appears to serve no
real purpose other than job protection. If others cannot read your source code, or even
understand your comments, then it's likely they'll respect you and you'll keep your job.
Likewise, if you follow the party line and keep your geek-speak up-to-date, you'll be on the
team. So the usual little closed society of a priest class is being built. Remember that only a
short time ago mass was said in Latin, a language that the churchgoers couldn't understand.
And if you visit a college class in music theory or film theory today, you won't comprehend
most of what's being said.

When we do now and then indulge in techie jargon in this book, it's usually to let you know
what's meant by the latest catchphrases. True, the term overloaded signature is used in this
book, but right next to it is the parenthetical explanation (more than one argument list), just so
you'll know what the heck is being discussed. And when terminology, such as strongly typed,
has several different meanings, we point that out to you.

There's one final benefit derived from the authors' status as independent writers, free of any
obligation to particular corporations or institutions: we can be entertaining, or at least less
boring than the average computer book. Academic articles and books, including many
programming books, deliberately avoid amusing or interesting writing. It's thought in some
circles that if your writing isn't obscure or tedious, then you must not be discussing anything
sufficiently serious. We take the position that honest, understandable, direct, and interesting
writing is preferable to the alternative.

Who Should Read This Book, and Why?

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This book is intended to provide solutions for programmers who are ready to take the next step
up to more complex, cutting-edge, or sophisticated topics. Chapters 1 and 2 are useful if you're
making the transition to VB.NET from another programming language (such as classic Visual
Basic, versions 6 and earlier).

This book is, we believe, accessible to any intelligent person with programming experience.
We have tried to be clear throughout the book, explaining everything as directly as possible,
regardless of degree of difficulty of the various topics.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 1

Chapter 1
Understanding the .NET Framework

VISUAL BASIC .NET was not written by Visual Basic programmers. The entire .NET family of
languages was created by C programmers. C—and its cohort OOP—is an academic language.
Visual Basic is a popular language.

These facts have consequences. Visual Basic was conceived in 1990 specifically as an
alternative to C. VB was designed as a rapid application-development language—blessedly
free of cant and obscurantism. VB was created especially for the small businessman who
wanted to quickly put together a little tax calculation utility, or the mother who wanted to
write a little geography quiz to help Billy with his homework. VB was programming for the
people. Several hundred thousand people use C; millions use Visual Basic.

As with many cultures—Rome versus Egypt, USA versus France, town versus gown—
programming languages quickly divided into two camps. C and its offspring (C++, Java, C#,
and others) represent one great camp of programmers. Visual Basic is the other camp.
However, .NET is an attempt to merge Visual Basic with the C languages—while still
retaining as much as possible of the famous populist VB punctuation (direct, clear,
straightforward, English-like), syntax, and diction.

Many professors, bless them, thrive on abstraction, classification, and fine distinctions. That's
one reason why VB.NET is in some ways more confusing than necessary. It has many layers
of "accessibility" (scoping) and many varieties of ways to organize data, some more useful
than others. It has multiple "qualification" schemes; considerable redundancy; single terms
with multiple meanings (strong typing, for example); multiple terms for a single behavior
(Imports versus Import); and all kinds of exceptions to its own rules.

VB.NET, however, is clearly an improvement over earlier versions of VB in many respects.
We must all find ways of moving from local to distributed programming techniques. And
VB.NET is also quite a bit more powerful than previous versions. For example, streaming
replaces traditional file I/O, but streaming can also handle data flowing from several sources—
not just the hard drive. Streaming considerably expands your data management tools. You can
replace a FileStream with a WebResponse object, and send your data to a Web client.

Nonetheless, in the effort to merge all computer languages under the .NET umbrella, VB had
to give up some of its clarity and simplicity. In fact, VB now produces the same compiled
code

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 2

that all the other .NET languages do—so under the hood, there is no longer any distinction to
be made between the two linguistic cultures. It's just on the surface, where we programmers
work, that the differences reside.

OOP itself, like biology, involves a complex system of classification. This means that people
using OOP must spend a good amount of their time performing clerical duties (Where does
this go? How do I describe this? What category is this in? Are the text-manipulation functions
located in the Text namespace, or the String namespace? Does this object have to be
instantiated, or can I just use its methods directly without creating the object first?)

Why Read This Chapter

If you're one of the millions of VB programmers who, like me, came upon VB.NET with the
highly intelligent reaction "Whaaaaa??!!," this chapter might be of use to you.

I'm not unintelligent, and I'm assuming you're not either. But slogging through the VB.NET
world makes one seem rather slow, especially at first. This chapter gives you some hard-won
advice that can save you considerable confusion.

VB.NET is, of course, far easier to navigate if you have a background in C programming
languages (and its lovely wife, object-oriented programming).

Millions of VB programmers deliberately decided nof to use C. That's why we became VB
programmers in the first place. We preferred the power of VB's rapid application development
tools. We didn't care for the reverse-Polish backward syntax, the redundant punctuation (all
those semicolons) and other aspects of C and its daughter languages.

The Internet changed all that—we must develop new skills and adapt to new programming
styles. Leaving the cozy and predictable world of local programming (applications for
Windows, running on a single computer) requires new techniques. You don't have to switch to
C or its ilk, but you do have to expand your VB vocabulary and skills.

Today's programs are sometimes fractured into multiple programlets (distributed applications)
residing in different locations on different hard drives and sometimes even using different
platforms or languages. Web Services are the wave of the future, and this kind of computing
greatly increases the impact of communication and security issues. Not to mention the
necessity of encapsulating code into objects.

So gird your loins or whatever else you gird when threatened, and get ready for some new
ideas. You've got to deal with some different notions.

Each of us (the authors) has written several books on VB.NET in the past few years —
working within the .NET world daily for three years now—and we're still discovering new
tools, concepts, and features. Part of this is simply getting to know the huge .NET Framework,
and part of it is adjusting to OOP and other C-like elements that are now part of VB.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

What they say of quantum mechanics applies to OOP: only ten people in the world understand
it well, and nobody understands it completely. So be brave. You can learn some patterns and
rules to help you get results in .NET, and the benefit is that VB.NET is quite a bit more
powerful and flexible than traditional VB. There are considerable rewards for your patience
and efforts.

You'll find ideas in this chapter that will deepen your understanding of the great, vast NET
environment and framework. You'll find useful information here that will improve your
VB.NET programming—guaranteed. For example: What are structures, and when should you
use them? (They're

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 3

a replacement for classic VB's user-defined types, and you should never use them. OOP
experts say that whenever you're tempted to use a structure, create a class instead—it's more
flexible. Of course other OOP experts disagree, and the squabbling begins.)

Help!

A significant effect of the merging in of VB with C-style languages is that the VB.NET Help
system and documentation were mostly written by C programmers. These people are not
generally wrifers nor are they very familiar with Visual Basic. That's why you find techno-
speak error messages, convoluted descriptions in the Help system, and other foggy patches.

So, instead of VB's justly acclaimed clarity, we get Help descriptions that sound like they
were written by a barmy IRS bureaucrat. Here's an example:

Changing the value of a field or property associated with any one instance does not affect the
value of fields or properties of other instances of the class. On the other hand, when you
change the value of a shared field and property associated with an instance of a class, you
change the value associated with all instances of the class.

Got 1t?

Not only is the VB.NET documentation all-too-often puzzling, the fact that C programmers
wrote it means that the descriptions and even the source code examples are often some half-
English, half-C beast.

Many Help source code examples listed as "VB.NET" versions are, in fact, written by C
programmers. VB programmers must spend the time to translate this faux VB code. It's great
that there is now so much tested, bug-free example code in Help. However, perhaps Microsoft
would be wise to ask experienced VB programmers to go over the pseudo "Visual Basic" code
examples, and translate them into actual VB-style programming.

For example, take a look at the entry in Help for string. Indexof. If you scroll down the
right pane, you can see all the ways that the sample code is not typical VB code. Many VB
programmers will have to figure out how to actually make this code work. It can't just be
copied and pasted.

VB programmers can be confused by some of the strange punctuation and other odd qualities
of the following, and many other examples you find in Help. Although nominally Visual Basic
source code, too many Help examples are alien in many particulars, as you can see in this
sample code illustrating the IndexOf method:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Imports System

Class Sample

Public Shared Sub Main ()

Dim brl As String = _
"O-—--—4----1----4----2----4----3----F-——---4—-——-—F—-——-F-e e ———— ="
Dim br2 As String = _
"0123456789012345678901234567890123456789012345678901234567890123456"
Dim str As String = _

"Now is the time for all good men to come to the aid of their party."

Dim start As Integer

Team Fly { Prewvious Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 5

In fact, until VB.NET, the Visual Basic language didn't even permit the use of braces,
semicolons, or brackets. Blessed simplicity, including the avoidance of extraneous junk
punctuation, has always been a hallmark of Visual Basic.

To make this usable, to-the-point, Visual Basic-style sample code, you have to eliminate the
C-flavored elements. What follows is a simplified, and pure-VB.NET, translation of this same
sample. In addition to being written in recognizable VB programming style, it also has the
advantage of focusing on IndexOf, the method being illustrated. The example displayed above
from Help is overly complex: involving a loop, word counting, and one of the less frequently
used of the IndexOf method's over-loaded variations. The idea that the example is supposed to
be demonstrating gets lost in a mess of irrelevancies. To be really helpful to VB programmers,
Help code and Help narrative explanations should be written by a professional
writer/programmer, not simply someone technically competent, with a strong C bias. And the
example code should simply illustrate the method being explained, like this:

Private Sub Forml Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim s As String = _

"Now is the time for all good men to come to the aid of their party."

Dim found As Integer = s.IndexOf ("men")
Console.Write (found)
End Sub

Grappling with Framework Class Descriptions

You have to learn how to translate the class descriptions in the Object Browser, online
documentation, or Help into useable VB code. Sure, there's example code in many Help
entries, but that code all too often doesn't precisely demonstrate the syntax you are looking for
(it was written by C programmers, after all).

Other entries offer no example code at all. There are tens of thousands of members in
VB.NET, each with its own signature (parameter list) or set of signatures (thanks to
overloading). And as you'll see in this chapter, even seemingly similar classes can require
quite different instantiation and different syntactic interactions with other classes to
accomplish a particular job.

You therefore frequently have to read a description in Help, the Object Browser, or other
documentation and then translate that description into executable source code.

Press Ctrl+Alt+] to open the VB.NET Object Browser. Locate System.IO.File, then in the
right pane locate the first version of the Create method, as shown in Figure 1.1. In the lower
pane, you see this information:

Public Shared Function Create (ByVal path As String) As System.IO.FileStream
Member of: System.IO.File

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 6

Summary:
Creates a file in the specified path.

Parameters:
path: The path and name of the file to create.

Return Values:
A System.IO.FileStream that provides read/write access to the specified file.

Many VB programmers aren't used to having to interpret this kind of information—VB used to
be a simpler language. Now, with VB.NET, it's a new ball game.

You are certain to find yourself often looking at something like the description in Figure 1.1,
and wondering how to change this into source code.

The Hunt for a Grammar

We want to think that there is an underlying set of rules, a grammar, that organizes .NET
source code. We want to learn the rules so we can instantiate objects, and invoke their
methods, without having to continually make educated guesses, then see error messages, then
try again by adjusting the syntax, punctuation, or phrasing. We want to assume that the
grammar of .NET is consistent—so we don't have to struggle time and again with
constructions that follow no particular pattern.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 1.1 Often this is all the information you get about how to use a .NET class. Translating this into
useable source code is up to you.

Team Fly { Previous Plix

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 11

its sub New 1s executed automatically. Because constructors can accept arguments, the person
who writes a class can specify which arguments, if any, are required (or optional, in the case
of overloaded constructors).

Assemblies Three Ways

Recall that you needn't use an Imports statement to use objects in the XML namespace or the
data namespace. You do, however, need to use Imports with other namespaces, including quite
commonly used ones such as system. 10. There appears to be no rational reason why certain
assemblies are referenced by default, and others need to be imported. (One clue is perhaps that
nearly any C code you look at always contains #include <stdio.h>, the standard I/O
library.)

Beyond that, there is even a third class of assemblies that cannot be referenced by Imports.
They are included in your projects by choosing Project = Add Reference.

Another curiosity. You find one list of default assemblies in the References section of Solution
Explorer, and a slightly different list of assemblies (including the Collections namespace)
when you right-click the name of your project (it's boldface) in Solution Explorer, choose
Properties from the context menu, then click the Imports option in the left pane of the Property
Pages dialog box. You see that only some namespaces here duplicate those in Solution
Explorer. What gives?

Understanding Data Types

Earlier you saw how to use the GetDirectories method of the DirectoryInfo object to obtain a
list of subdirectories:

Dim di As DirectoryInfo = New DirectoryInfo(''c:\")
Dim dirs As DirectoryInfo() = di.GetDirectories()

Here's how you can use the Directory object to get a list of files. Notice that you use a string
and string array here, rather than Directorylnfo objects. Also, notice that the Directory object
does not need to be instantiated at all:

Dim s As String() = Directory.GetFiles ("c:\")
Dim sl As String
For Each sl In s
Console.WritelLine(sl)
Next

This is the information from the Object Browser, explaining that you need to assign the results
of the GetFiles method to a string array:

Public Shared Function GetFiles (ByVal path As String) As String()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Experienced VB programmers are used to a finite set of variable data types (strings, objects,
and a handful of numeric types). Now, in VB.NET, you must get accustomed to the fact that
everything is an object. Further, some objects must be instantiated before they can be used
(with the New statement), but other objects— viewed by the .NET designers as more "basic"
objects, one assumes—do not need instantiation. The DirectoryInfo object does need
instantiation; the Directory object does not.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 18

If everything in .NET is an object, then everything is—at least abstractly—a data type.
Fortunately, it's not this bad; within a given class, such as Color, there are enumerations that in
themselves aren't, technically, objects. However, most VB programmers are used to just
assigning a simple string (or at least a built-in enum, such as VBBIlue) to many different
properties. For example:

Backcolor = '"'blue"

Now, in .NET, you must either use Imports to bring in a specialized namespace, or fully
qualify your value:

Me.BackColor = Color.Blue

The System.Drawing namespace is now included in current VB.NET projects by default, so
you don't have to fully qualify this one. The underlying problem here, though, is: How can you
know that there is a Color class, and that it's located in the System.Drawing namespace? How
do you deal with unfamiliar parts of the .NET Framework? Color might be easy enough to
imagine, or you might finally come across example code by using the Help search feature to
locate entries with BackColor =. But how do you deal with more complex situations, such
as the Security namespace? Most books on VB.NET avoid discussing the System.Security
assembly precisely because it is both obscure and massive. This in spite of the fact that
communication and security are the primary issues that distinguish the .NET world from
classical VB programming. Put another way: OOP itself is fundamentally a set of rules
designed to solve communication and, especially, security problems. Code reusability, the
primary justification for OOP, is largely an attempt to enforce communication rules to solve
security problems—though doubtless OOP theorists will consider this a reductive
generalization.

Exploiting the Framework

But back to our regular programming. What are the best strategies for tapping into the
tremendous power (and consequent complexity) of the NET Framework?

Remember that it's hierarchical. NET APIs are divided into namespaces. Namespaces contain
a set of related classes. Classes contain methods (and the methods are usually overloaded—
permitting you to perform different, but related, jobs based on what parameters you pass).

Let's try to solve a common problem, to see some tactics you can use to locate the solution.

Assume that you have to parse a string. You've got a comma-delimited string from a use like
"Barry Morgan, 12 Dalton Ln., Akron, OH, 22022" and you want to subdivide it into its
substring parts. You want to create a string array holding each part.

Start by running VB.NET Help, then click the Search tab. Search for parse string. You get 500
hits, including a Dr. GUI article that tells you about the Parse method. Unfortunately, it doesn't
parse, it converts a string into other data types. Somebody incorrectly thinks that "parse"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

means convert. When computer languages are written, the specification committees don't
include any English majors, so we get too many poorly named functions like this one, and too
many nearly unreadable "help" narrative descriptions.

Trying to narrow your search using quotes to look for "parse a string" fails. Let's try the Index
feature.

Click the Index tab in the Help screen and type System.Text (no luck here, unless you want to
enter the complicated netherworld of Regex, which requires even more elaborate code than
using InStr to loop through your string).

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 20

Whoever wrote the Help entry for the Split method evidently was unaware of this approach.
The code example employs the bizarre, cumbersome ToCharArray method instead.

Note that VB programmers are unfamiliar with using braces in their programming, but in
VB.NET they can be used to fill an array with values, as this example illustrates. The rest of
the code is straightforward:

Dim delim As Char() = {'',"}

Dim tt As String = "Barry Morgan, 12 Dalton Ln., Akron, OH, 22022"

Dim split As String () 'create string array

split = tt.Split(delim)

For i As Integer = 0 To split.Length - 1
Console.WritelLine (split (1))

Next

Here's an even more exotic alternative syntax. It combines the declaration of the string array
with the declaration of the character array:

Dim split As String() = tt.Split(New [Char] () {","})

This is exotic to VB programmers partly because it uses brackets in addition to braces—
neither punctuation is used in classic VB. It's also exotic in that a single logical line of code
manages to declare two arrays, and to add a value to the second array.

Whatever. It's fine that there are several ways to create and fill a character array. Just fiddle
around until you come upon a syntax that works.

A Useful Class View Utility

WinCV (Windows Class Viewer) comes with .NET. It offers you yet another view of the
details of every class.

TIp If you're not sure where to begin in WinCV or other Framework references, or if you want
a useful descriptive overview of the available .NET classes, click on the Contents tab at the
bottom of the VB.NET Help window, then follow this path in the tree in the left pane: Visual
Studio .NET\.NET Framework\Reference\Class Library. You'll see all the namespaces there,
and all the classes within them.

To add WinCV to the IDE, choose Tools * External Tools and type WinCV into the Title
field. Click the ellipsis ... button next to the Command field. Now find WinCV.exe in this
path: C:\Program Files\Microsoft Visual Studio .NET
2003\SDK\v1.1\Bin\WinCV.exe. (If you haven't upgraded to VS.NET 2003, the location
may be .NET 2002 or simply .NET.)

Choose Project Directory in the Initial Directory field, and click OK to close the Open File
dialog box. WinCV is now available from the VB.NET Tools menu.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 21

A HANDY C# TO VE.NET TRANSLATORA

As you know, unfortunately some .NET Help and reference source code is written in C#
(particularly online examples). However, C# is actually quite a simple language to understand
and to translate into VB.NET. C# shares some of the backwards syntax of other C languages,
and of course all those semicolons—but you can generally switch the C# source code lines
around pretty quickly to get usable VB.NET code. However, if you don't want to bother,
there's a handy translator that takes C# and generates the equivalent VB.NET. Find it at
www.kamalpatel.net/ConvertCSharp2VB.aspx, and the utility is also available with full source
code showing the process and the rules. If you prefer, though, you can just paste some C# and
get the result automatically.

Choose Tools # WinCV and then type string in the Searching For box. You now see all the
members of the string class, in a helpful quasi source code format. It's not VB, unfortunately;
it's C#— but if you ignore the useless semicolons ending each line, and make a few other
allowances (such as changing brackets to parentheses), it often provides a better overall view
of a class's members than you get in Help. For example, the entry for the Split method looks

like this:
public string[] Split((char[] separator));
public string[] Split(char[] separator,, int count);

You have to add the object for the method (String.), so after a little VB massaging it actually
should look like this:

String () = String.Split(char () separator)

That's pretty descriptive pseudo-code. The WinCV is good for quick overviews of classes,
their overloaded members, and correct syntax.

A Brief Lexicon

Given that C usage has permeated VB.NET, you might want to memorize the definitions and
comparisons in Table 1.1. You'll come upon them now and then in the .NET documentation,
and it helps to know what terms have shifted meaning. This small list supplements the other C-
derived terms discussed at greater length throughout this chapter. Note that many of these
term-pairs are still used interchangeably.

TABLE 1.1: VB vS. VB.NET TERMINOLOGY

TRADITIONAL VB USAGE NET

Private or Ppublic variables inside Fields

classes

DLL, library, or application Assembly

Related DLLs, libraries, or Namespace (imprecise in size: there can be multiple
applications namespaces within a single assembly, or a single

namespace can include several assemblies. Namespaces
can even contain other namespaces.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Presious Mexd

Page 22

Project (an application and its Solution (design-time source code) or Assembly (runtime

dependencies)

Classes, arrays, modules,
enumerations, structures,
interfaces, and value types,
collectively.

Code

DOS Application
Forml Load
RecordSet

Fields and records in
databases

Built-in constants
User-defined type
Error

Trapping errors

Classes are Public by default

executable and support). A Solution can contain multiple projects,
in which case you must specify the "startup project” in the Project
menu.

Types

Managed code (runs under the control of the .NET runtime library.
C++ programmers can choose to write unmanaged code.)

Console Application
Sub Main
DataSet

Columns and rows in databases

An enumeration (or enum)

Structure

Exception (or, when working with XML, Fault)
Handling exceptions

Classes are Friend by default

Summary

In this chapter I tried to explore and describe ways to successfully approach VB.NET. I
wanted to help you come to grips with this important language, giving you tools and concepts
necessary to master it. Learning to use VB.NET is well worth the effort: VB.NET is quite
powerful and flexible, a significant improvement over traditional VB.

But there is effort required. .NET is a new world. And, alas, Microsoft's documentation for
VB.NET (both online and in the Help system) is mostly written in a language somewhat like
English, and the code examples are usually similar to VB.NET code. Similar, somewhat like,
but...you'll laugh, you'll cry, you'll pull your hair.

All too often the C programmers who wrote the Help descriptions are better programmers than
writers. And they're better C programmers than VB programmers, writing code examples that

can best be described as Javaesque—Visual Basic from an alternative universe. Close, but not
right.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Nonetheless, adapting to a powerful, new, cutting-edge computer technology requires that you
sacrifice some time and make some effort. I hope that this chapter has given you guidance and
tools that simplify the process. VB.NET—once you're at ease with it—expands your
programming abilities in ways you never imagined.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 23

Chapter 2

New Ways of Doing Traditional Jobs

THIS CHAPTER COVERS VARIOUS techniques that are new in VB.NET and that most
programmers need to know about. For example, we must now move to streaming and
serialization, capabilities that extend the power of traditional data storage and retrieval, and

that address the needs of I/O beyond the local hard drive. These and other important advances
are the topic of this chapter.

Clipboard Access

To retrieve text contents from the Windows Clipboard, you used this code in VB version 6 and
earlier:

Textl.Text = Clipboard.GetText

Now in VB.NET you can bring text in from the Clipboard using this code:

Dim txtdata As IDataObject = Clipboard.GetDataObject ()

' Check to see if the Clipboard holds text

If (txtdata.GetDataPresent (DataFormats.Text)) Then
TextBoxl.Text = txtdata.GetData (DataFormats.Text) .ToString/()

End If

To export or save the contents of a TextBox to the Clipboard, use this code:

Clipboard.SetDataObject (TextBoxl.Text)

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 24

Working with '""Control Arrays"

When you had several controls of the same type performing similar functions, being able to
group them into a control array was a valuable feature in classic VB, allowing you to
manipulate the group efficiently. Also, a control array was the only way to create a new
control (such as a brand-new TextBox or a new group of buttons) while a program was
running.

Grouping controls into an array lets you manipulate their collective properties quickly.
Because they're now labeled with numbers, not text names, you can use them in loops and
other structures (such as select Case) as a unit, easily changing the same property in each
control by using a single loop or index-based scheme. Similarly, you can collapse all their
individual Click events into a single, collective Click event.

There were several ways to create a control array, but probably the most popular was to set the
index property of a control during design time. During runtime, you can use the Load and
Unload commands to instantiate new members of this array.

Each control in a control array gets its own unique index number, but they share every event
in common. In other words, one Click event, for example, would be shared by the entire array
of controls. An Index parameter specified which particular control was clicked. So you would
write a Select Case structure like the following within the shared event to determine which
of the controls was clicked and to respond appropriately:

Sub Buttons Click (Index as Integer)
Select Case Index
Case 1
MsgBox ("HI, you clicked the OK Button!")
Case 2
MsgBox ("Click the Other Button. The one that says OK!")
End Select
End Sub

(There is a way to simulate this all-in-one event that handles all members of a control array in
VB.NET. It is described in the following section, "Multiple Handles.")

Control arrays have now been removed from the language. However, in VB.NET you can still
do what control arrays did. You can instantiate controls during runtime, and also manipulate
them as a group. You just use different techniques.

To accomplish what control arrays used to do, you must now instantiate controls (as objects)
during runtime and then let them share events (even various different #ypes of controls can
share an event). Which control (or controls) is being handled by an event is specified in the
line that declares the event (following the Handles command, as you'll see in the next
example). Instead of using index numbers to determine what you want a control to do (when it
triggers an event), as was the case with control arrays, you must now check an object
reference. You are also responsible for creating events for runtime-generated controls. The
Name property can now be changed during runtime.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

WARNING Experienced VB programmers will expect VB.NET to assign names to dynamically
added controls. However, be warned that VB.NET does not automatically assign names to
new controls added at design time. Therefore, the Name property remains blank unless you

specifically define it, as you will do in the following example (textBox1.Name =
"TextBox1")

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 28

Tip VB.NET creates the event in the code window for you, if you wish. Your btnSearch doesn't
show up in the Design window, so you cannot double-click it there to force VB.NET to create
a Click event for it. However, you can use the dropdown lists. After you have declared a
control WithEvents (Dim WithEvents btnSearch As New Button ()), drop the list in the
top left of the code window, and locate btnSearch. Click it to select it. Then drop the list in the
top right, and double-click the event that you want VB.NET to create for you in the code
window.

T1p Each form has a collection that includes all the controls on that form. You access the
collection, as illustrated previously, using Me . Controls or simply Controls. The collection

can be added to, as shown in the previous example, or can be subtracted from
Me.Controls.Remove (Buttonl) .

Note, too, that the Me . Controls collection also has several other methods: Clear, Equals,
GetChildIndex, GetEnumerator, GetHashCode, GetType, SetChildIndex, ShouldPersistAll,
and ToString. There are also three properties available to Me . Controls: Count, Item, and
IsReadOnly.

Using Arrays

You probably should familiarize yourself with all the new, significant members available in
VB.NET for the collection classes, including the various kinds of arrays.

Arrays can now contain objects (technically, that's a/l they now contain) and can search and
sort themselves, and the new ArrayList class is especially worthwhile.

Zero-Based Collections (Sometimes)

Arrays are always zero-based in the .NET Framework. In classic VB you could use the
Option Base statement to allow arrays to start with element 1 instead of 0. Option Base
has been deleted from VB.

Therefore, you must wrestle with the artificial distinction between dimension (the size you
declare) and capacity (the number of elements). For decades now, programmers have had to
fiddle with their loop values to fix this silly distinction:

Dim a(3) As String
For i = 0 To a.Length - 1

Because dimensioning this array as 3 actually creates 4 elements, you must therefore subtract
1 from your loop counter.

We humans always count up from 1 when dealing with collections (lists, sets, groups, and so
on). It's natural to our way of describing, and therefore thinking about, numbers. When the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

first person arrives at your BBQ, you don't say "Welcome, you're the zeroth one here!" And
when your child is one year old, you don't send out invitations titled "Jimmy's Zeroth Birthday
Party!!" We quite properly think of zero as meaning nothing—absence, nonexistence.

You've doubtless had to fiddle around with this foolishness many times in your programming
career. The old familiar error message, "An unhandled exception of type
'System.IndexOutOfRangeException' occurred...," has been unnecessarily triggered millions
of times. Unnecessarily because mathematical diction, fundamental logic, elementary
grammar, and simple common sense all require that lists begin with the first (not the zeroth)
item. Computer languages, though, are designed by a certain kind of committee—a group that
does not invite language specialists, such as English majors, to the table.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 35

The Flexible ArrayList

The ArrayList, new in VB.NET, offers a variety of helpful features not typical of ordinary
arrays. For one thing, it can dynamically resize itself, so you don't have to resort to ReDim and
other techniques that an ordinary array can demand.

Here's one way to use an ArrayList to add values:

Dim MyArray as new ArraylList
myArray.Add (''key")
myArray.Add ("Name")
myArray.Add ("Address")

Msgbox (MyArray(2))

Both array and ArrayList .NET classes can sort, search, reverse, and otherwise manipulate
their data. The ArrayList, however, takes the idea of an array to new levels. One problem with
arrays is that you can't easily add or delete items. If you want to remove, say, the tenth item in
an array, you must write some code that loops through the array, moving each value down one
in the index list from the tenth item up to the final element.

The ArrayList has built-in facilities to automatically handle any resizing and re-indexing that's
needed if you insert or delete elements.

Put a ListBox and a Button on a form. Then type in the code in Listing 2.6, which illustrates
how you can remove an element by using the RemoveAt method and specifying an index
number.

LISTING 2.6: USING THE REMOVEAT METHOD TO DELETE AN ARRAY ELEMENT
Public Class Forml

Inherits System.Windows.Forms.Form
Public arrList As New ArrayList()

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
arrList.Add("ET")
arrList.Add ("Pearl Harbor")
arrList.Add ("Rain")

ListBoxl.Items.AddRange (arrList.ToArray)
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 37

example with a ListBox and Button, replace the Button's Click event with this code to see how
to bind an ArrayList to a ListBox:

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click
Dim Monkey As New ArrayList ()
Monkey.Add (''A")
Monkey.Add ("B")
Monkey.Add ("C")
Monkey.Add ("D")
Monkey.Add ("E")
Monkey.Add ("F")
ListBoxl.DataSource = Monkey
End Sub

Enumerators

You're used to looping with For. . .Next, While, and other structures, but now Microsoft
encourages us to use enumerators when looping through a collection class. This example
illustrates how to rewrite the previous example to display both elements in the RangeOfArrList
ArrayList:

Dim RangeArrListEnumerator As System.Collections.IEnumerator = _
RangeOfArrList.GetEnumerator ()
While RangeArrListEnumerator.MoveNext ()
Console.Write (RangeArrListEnumerator.Current)
Console.WriteLine ()
End While

Using HashTables

The collection class called a HashTable is quite similar to the ArrayList in both design and
features. However, a HashTable permits "strong data typing": You can give each element a
name in addition to its index number.

In some situations, it's easier to work with a collection if each element is labeled. Say your
collection holds the foods eaten by each animal in your private zoo. It's simpler to manage the
data if each element is named after a different animal:

Dim Food As New Hashtable ()
Food.Add ("Lion", "Meat")
Food.Add ("Bear", "Meat")
Food.Add ("Penguin", "Fish")
Console.WritelLine (Food.Item("Bear"))

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 38

In this example, the names of the animals can be used as keys to access the elements, instead
of index numbers. Each key must be unique, though the data itself can be duplicated ("meat"
and "meat" in this example).

New Date/Time Techniques

Before VB.NET, the Date function used to give you the current date (for example, 11/29/00).
The Time function used to give you the current time. Now you must use the Today and
TimeOfDay functions instead.

NOTE The old DATES and TIMES functions have been eliminated.

In Visual Basic 6.0 and previous versions, a date/time was stored in a double (double-
precision floating point) format (four bytes). In VB.NET, the date/time information uses the
NET Framework DateTime data type (stored in eight bytes). There is no implicit conversion
between the Date and Double data types in VB.NET. To convert between the VB6 Date data
type and the VB.NET Double data type, you must use the ToDouble and FromOADate
methods of the DateTime class in the System namespace.

Here's an example that uses the TimeSpan object to calculate how much time elapsed between
two DateTime objects:

Dim StartTime, EndTime As DateTime
Dim Span As TimeSpan

StartTime = "9:24" AM
EndTime = "10:14" AM
Span = New TimeSpan (EndTime.Ticks - StartTime.Ticks)

MsgBox (Span.ToString)
Notice the Ticks unit of time. It represents a 100-nanosecond interval.

Here's another example illustrating the AddHours and AddMinutes methods, how to get the
current time (Now), and a couple of other methods:

Dim hr As Integer 2

Dim mn As Integer 13

Dim StartTime As New DateTime (DateTime.Now.Ticks)

Dim EndTime As New DateTime (StartTime.AddHours (hr).Ticks)
EndTime = EndTime.AddMinutes (mn)

Dim Difference = New TimeSpan (EndTime.Ticks - StartTime.Ticks)
Debug.WriteLine ("Start Time is: " + StartTime.ToString("hh:mm"))
Debug.WriteLine ("Ending Time is: " + EndTime.ToString("hh:mm"))

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presvious Mexi
Page 39
Debug.WriteLine (' 'Number of hours elapsed is: " + Difference.Hours.ToSt
Debug.WriteLine ("Number of minutes elapsed is: " +

Difference.Minutes.ToString)

The following sections provide some additional examples that illustrate how to manipulate

date and time.

Adding Time

Here's an example of using the AddDays method:

Dim ti As Date = TimeOfDay 'the current time
Dim da As Date = Today 'the current
Dim dati As Date = Now 'the current

da = da.AddDays(12) ' add 12 days

Debug.WriteLine ("12 days from now is: "

date
date and time

& da)

Similarly, you can use AddMinutes, AddHours, AddSeconds, AddMilliseconds, AddMonths,

AddYears, and so on.

Using the Old-Style Double DateTime Data Type

There is an OA conversion method for currency data types and for date data types. (O4 stands
for Ole Automation, a legacy technology that still keeps popping up.) Here is an example
showing how to translate to and from the old double-precision date format:

Dim dati As Date = Now
Dim da as Date, n As Double
n = dati.ToOADate '
n =n+ 21 ' add three weeks
da = Date.FromOADate (n) '
Debug.WritelLine (da)

Use Now, not Today, for these OA-style data types.
Finding Days in a Month

2004 is a leap year. Here's one way to prove it:

Debug.WritelLine ("In the year 2004, February
Date.DaysInMonth (2004, 2).ToString & "
Debug.WriteLine ("In the year 2005, February
Date.DaysInMonth (2005, 2).ToString & "

File I/0 (Streaming)

The classic familiar VB file opening syntax is this:

Open filepath {For Mode} {options}As {#} filenumber {Len =

days.

days.

'the current date and time

translate into double-precision format
(the integer part is the days)
translate the OA style into

.NET style

has " &
")
has " &
")

recordlength}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 45

Form References: Communication Between Forms

Before VB.NET, you could reference a form's properties in code inside that form by merely
specifying a property (leaving off the name of the form):

BackColor = vbBlue

Or to reference a form from outside that form: If you want to show or adjust properties of
controls in one form (by writing programming in a second form), you merely use the outside
form's name in your code. For instance, in a CommandButton Click event in Form1, you can
Show Form2, and change the ForeColor of a TextBox on Form2, like this:

Sub Commandl Click ()
Form2.Show
Form2.Textl.ForeColor = vbBlue
End Sub

Now in VB.NET, when you reference a form's properties from code inside the form, you must
use Me:

Me.BackColor = Color.Blue

And to manipulate a form's contents from outside the form: Say that you want to be able to
contact Form2 from within Form1. You want to avoid creating clone after clone of Form2. If
you use the New statement willy-nilly all over the place (Dim FS As New Form2), you'll be
propagating multiple copies of Form2, which is not what you want. You don't want lots of
windows floating around in the user's Taskbar, all of them clones of the original Form2.
Remember that every time you use As New, you instantiate a new object.

Instead, you want to be able to communicate with the single, original Form2 object from
Form1. But how can you do that? How can you create an object variable in Form1 that
references Form2?

One way to do this is to create a public variable in Forml, like this:

Public f2 As New Form2
Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
£f2.S5how ()
f2.BackColor = Color.Blue
End Sub

Forml is instantiated first when a VB.NET project executes (by default, it is the "startup
object") in any Windows-style VB.NET project. So, by creating a Public variable that
instantiates Form?2 (the New keyword does that), you can then reference this variable (F2 here)
any time you need to manipulate Form?2's properties or methods from within Form1. It's now
possible for Form1 to be a client of Form2, in other words.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The problem of communicating from Form2 to Form1, however, is somewhat more complex.
You cannot use the New keyword in Form2 or any other form because that would create a
second Forml. Forml already exists because it is the default startup object.

Previous Mexi

Team Fly

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 48

If e.KeyCode = Keys.N And e.Control = True Then
'they pressed CTRL+N
searchnext () 'respond to this key combination
Exit Sub
End If
End Sub

Loading Graphics with LoadPicture

Before VB.NET, you put a graphic into a PictureBox with this code:

Set Picturel.Picture = LoadPicture(''C:\Graphics\MyDog.jpg")

Now in VB.NET, LoadPicture has been replaced with the following code:

PictureBoxl.Image = Image.FromFile ("C:\Graphics\MyDog.jpg")
Managing the Registry

Although .NET applications avoid using the Registry, you may still nonetheless need to access
it. Where should a VB.NET programmer store passwords or other customization information
(such as the user's choice of default font size) instead of the Registry that you've used for the
past several years? Cookies? What goes around comes around. You can go back to using good
old once-disgraced .INI files, or similar simple text files (though they can be deleted). They
are, however, quick and easy, and using them avoids messing with the Registry.

In VB6 and before, you could use API commands such as RegQueryValueEx to query the
Registry. Or you could employ the native VB Registry-related commands such as GetSetting,

like this:
Print GetSetting(appname := "MyProgram" ,
section := "Init" , key := "Locale" , default := "1")

If you must use the Registry, here's how to access it from VB.NET. In VB.NET, you can
query the Registry using the RegistryKey object. Type Listing 2.13 into a button's Click event.

LISTING 2.13: MANAGING THE REGISTRY

Private Sub Buttonl Click 1(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim objGotValue As Object
Dim objMainKey As RegistryKey = Registry .CurrentUser
Dim objOpenedKey As RegistryKey

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 49
Dim strValue As String
objOpenedKey = objMainKey.OpenSubKey
(' 'Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings")
objGotValue = objOpenedKey.GetValue ("User Agent"
If (Not objGotValue Is Nothing) Then
strValue = objGotValue.ToString()
Else
strvalue = " "
End If
objMainKey.Close ()

TextBoxl.Text = strValue

End Sub

You must also add Tmports Microsoft.wWin32 up there at the top of the code window
where all those other Imports are. The Microsoft.wWwin32 namespace contains the Registry-
access functions, such as the OpenSubKey method that you need in this example.

Press F5 to run this example, and click the button. If your Registry contains the same value for
this key as my Registry contains, you should see a result similar to this:

Mozilla/4.2 (compatible; MSIE 5.0; Win32)

Note that the complete name (path) of the entire Registry entry is divided into three different
locations in the example code (they are in boldface): first the primary key, CurrentUser, then

the path of subkeys, and finally the actual specific "name":
objOpenedKey.GetValue ("User Agent").

Writing to the Registry

The RegistryKey class includes a group of methods you can use to manage and write to the
Registry. These methods include Close, CreateSubKey, DeleteSubKey, DeleteSubKeyTree,
DeleteValue, Get-SubKeyNames, GetType, GetValue, GetValueNames, OpenSubKey, and
SetValue.

Random Numbers

In VB6 and previous versions, you would generate a random number between 1 and 12 like
this:

X = Int(Rnd * 12 + 1)

Or to get a random number between 0 and 12, you would use this code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

X = Int(Rnd * 13)

You used the Rnd and Randomize functions.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presvious Mexi
Page 53
For i = 0 To a.Length - 1
Debug.WriteLine (i.ToString + '' . + " a(i).ToString)
Next

WARNING Neither the old Rnd function nor the new Random object uses algorithms that are
sufficiently sophisticated to be of direct use in most kinds of cryptology.

SendKeys

You can still use the Shell command to run an application, such as Notepad. Shell works much
as it did in VB6. An associated command, SendKeys, imitates the user typing on the keyboard.
SendKeys works differently in VB.NET. This code will run an instance of Windows's
Notepad, and then "type" This message into Notepad:

Dim X As Object
X = Shell ("notepad.exe" , AppWinStyle.NormalFocus)
System.Windows.Forms.SendKeys.Send ("This Message")

WARNING If you put this code in a Form_Load event, it will only send the T into otepad (there
are timing problems involved). So, put it into a different event, such as Buttonl Click, and
VB.NET will have enough time to get itself together and send the full message.

Serializing

It's easy enough to store a text file. You just save it as Unicode characters, byte-pairs, or
whatever. Simple, consistent variables are easily handled by the streaming techniques
described earlier in this chapter.

When storing a simple integer or string variable, for example, there are only three things to
worry about: the variable's name, its type, and its value. Such simple entities can just be
directly streamed.

However, other kinds of data need to be stored or retrieved. More complicated constructions,
such as arrays or objects, require that you also store an internal organization (the hierarchy, or
other metadata). Such objects are sometimes fairly elaborate. What's more, there's no known
pattern. Classes are defined by programmers. So how can VB.NET know in advance what to
store or retrieve, the way it knows all about storing integers and strings?

The answer to streaming more complicated or unique data constructions is serialization.
Serialization deconstructs a complicated construction into data and metadata that can be
streamed. This deconstruction preserves the internal order of the construction, data types,
scope, assemblies, and other details that must all enter a stream and be saved (or be retrieved).
Serialization can handle objects, arrays, rectangles, and pretty much any other complex data
construction. (I'm using the term construction rather than structure so you won't be puzzled by
the other use of structure inVB.NET.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

VB.NET includes considerable serialization facilities. You can, for example, pick and choose
which fields in a class you want serialized. To exclude a particular field from serialization, use
the following syntax:

<NonSerialized()> Public Secrets As String

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 57

Console.WriteLine (dl.Price)
Console.WriteLine (ar (2))

End Sub

End Class

Notice that in this example, you created a stream (£s1) and then used it to deserialize both
your Donut structure and the ArrayList. One stream can handle multiple serializations or
deserializations.

Summary

This chapter is a kind of mini-encyclopedia of the primary differences between classic Basic's
popular techniques and the way they're handled—the dissimilar way they're handled—in
VB.NET.

I chose these particular techniques because of their usefulness, and the frequency with which
most programmers use them in their projects, but also because they are handled in what
traditional Basic programmers may consider unusual, novel, or counterintuitive ways. For
example, in .NET setting Properties in Form1 from within the code of Form2 is not
straightforward (this used to be easy).

You should be able to glance through the section titles in this chapter to locate the solution to a
problem that's bothering you. I cover saving and loading data, including new techniques such
as serialization (which saves disparate kinds of data); control arrays and other types of arrays,
and the new methods available for sorting and searching them; date/time manipulations;
random numbers; trapping keypresses; managing the Registry; loading graphics; the new
flexible data binding; and so on. I don't claim that this chapter contains anywhere near the total
list of differences between traditional Basic and VB.NET—only that it's a collection of many
of the more significant, and less obvious, differences.

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 59

Chapter 3
Serialization Techniques

IN CHAPTER 2 YOU learned how to read and write basic data types from and to files using
streams. As far as file manipulation goes, Visual Basic got a real facelift. However, most
practical applications don't store simple numeric values and strings to files. They need to store
objects and, quite often, collections of objects. These objects may be built-in objects (such as
Rectangle, Color, and other simple objects) or custom objects. This is where serialization
comes in. Serialization is one of the truly exciting features introduced with the NET
Framework.

Serialization is the process of converting an arbitrary object, or collection of objects, into a
stream of bytes, suitable for transmission to another process or another computer, or for
persisting to a disk file. In the preceding chapter you learned how to store information to files
using streams. When you use streams to write information to a file, or read it back from a file,
you're responsible for formatting your data and writing them to the file. To read back the data,
you must know what data types you're reading from the file and place them into appropriate
variables.

Serialization goes beyond saving data to a file. It's a mechanism for saving an object in a way
that makes it easy to reconstruct it later using the reverse process, which is called
deserialization. Serializing an object means saving its properties. The serialization process
doesn't persist the definition of an object, just its state. In other words, you can't serialize the
methods of an object. You can serialize the values of its properties, so that you can later
reconstruct an instance of the same object that will be in the same state as the object you
serialized. The application that will deserialize the object must have access to the object's code
(i.e., the class from which the object was instantiated), so that it can recreate the persisted
object. Most importantly, you don't have to specify how each property is serialized. The
serialization classes of the .NET Framework will determine how each data type is serialized
and will read back the values of the serialized properties.

Serialization is not entirely new to the NET Framework. VB6 programmers are familiar with
the PropertyBag object, which we used to store instances of objects. .NET's serialization
classes are more flexible and powerful and they go beyond the binary format.

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 60

How Serialization Works

Let's say you have a class named Person, which stores information about persons (customers,
contacts, and so on). The Person class obviously exposes properties such as Name, Address,
PhoneNumber, and so on. Depending on the application, the Person class may store a person's
date of birth, a customer's credit limit, or just about any property you will need in your code.
For each person you want to manipulate in your code, you'll create an instance of the Person
class and populate this instance with different data. Each instance of the Person class is a
Person object and its state is determined by the values of its properties. To persist an object of
the Person type, you need only save the values of its properties—this is what serialization is
all about. The class may also expose methods that act on the data, but code is not serialized.

To read back the persisted values into the same application, you simply create new instances
of the Person class and populate them with the values of the serialized properties. Once all
properties and fields have been assigned values, you have an object that's identical to the
original one (the object you serialized) and you can call any of the object's methods to
manipulate them.

Assuming that the application that deserializes the object has access to the code of the Person
class, it's almost trivial to serialize and deserialize objects. You create an instance of the
appropriate Serializer class and call its Serialize and Deserialize methods. Serialized objects
can also be used by applications that don't have access to the code of the class that produced
the objects. The remote application can't recreate identical objects, but it can use the serialized
data to reconstruct an object with a similar structure. Of course, the remote application will
never call the methods of the original class, because it can't access them. As you will see, it's
possible to serialize an object in XML format. XML contains a description of the object's
values, making it possible to create a new class with similar properties. For example, the
remote application can create a Customer class, which can read some of the serialized
properties (it can use the Name and Address properties, say, but skip the birth date). When you
serialize objects in XML, the resulting document holds not only data, but its structure as well.
Another application can take advantage of the self-descriptive nature of the XML document
and reuse the data.

Serialization Types

There are three types of serialization: binary serialization, SOAP serialization, and XML
serialization. Binary and SOAP serialization are very similar; XML serialization is a little
different, but it allows you to customize the serialization process. Binary serialization is
performed with the Binary-Formatter class and it converts the values of the object's properties
into a binary stream. The result of the binary serialization is very compact and the
serialization/deserialization process is as fast as it can get. However, binary serialized objects
can be used only by applications that have access to the code of the class that produced the
objects and can't be used outside .NET. Another limitation of binary serialization is that the
output it produces is not human-readable and you can't do much with a file that contains a
binary serialized object without access to the original class's code. Because binary serialization

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

is very compact and very efficient, it's used almost exclusively to persist objects between
sessions of an application, or between applications that share the same classes. For example,
you can create an ArrayList of Person objects, serialize them to a file and reload the collection
of the serialized objects from the file in a later session of the same application.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 65

The last few statements in the event handler extract the two objects (the Rectangle and Bitmap
object) from the ArrayList and display some of their basic properties. The last statement
retrieves the bitmap stored in the second item of the reconstructed ArrayList, casts it to the
Bitmap type, and then uses it as the form's background image. The code displays the bitmap
on the form to demonstrate that the bitmap was preserved during the serialization process.

BINARY SERIALIZATION PRESERVES TYPE FIDELITY

If you serialize the same ArrayList in SOAP and binary formats, you'll realize that the sizes of
the two files are very different. The file that stores the binary representation is actually much
smaller than the file with the SOAP representation of the same object. The binary file's size is
nearly the same as the image file, with a few dozen more bytes for the Rectangle object. The
SOAP file is nearly twice as large. The difference is not due to any form of compression; the
SOAP file is quite verbose.

This remark brings us to a very important point about the various types of serialization: type
fidelity. Binary serialization preserves type fidelity, because it has stored the bitmap as a GIF
file. The SOAP serialization, on the other hand, has stored the actual bitmap, without the
compression built into the GIF file. If you open the objects.bin file generated by the
SoapFormatter, you'll see that the image's bytes are encoded in Base64, but the element under
which the bitmap is stored is called "Bitmap." In other words, the SoapFormatter serialized the
actual bitmap, not the GIF file from which the Bitmap object was constructed.

In most cases, such extreme fidelity won't matter. After all, a bitmap is a bitmap, and as long as
you can reconstruct the image from the serialized data you shouldn't care how the image was
serialized.

An object can be serialized in binary and SOAP format with the same statements. You can
uncomment the statements that refer to the SoapFormatter and comment out the statements
that refer to the BinaryFormatter to test both serialization techniques. Keep in mind that binary
serialization uses the CLR data types and generates the most accurate representation of the
objects. However, it's limited to .NET; you can't use a binary serialized object outside .NET. If
you need to exchange serialized objects with other systems, use SOAP, or XML, serialization.

Creating Serializable Objects

Just about any custom class created in .NET can be serialized, as long as it's marked with the
<Serializable> attribute. Many of the built-in objects are serializable, but not all of them.
Unfortunately, nonserializable .NET classes are not clearly marked as such in the
documentation. As you can understand, all basic data types in .NET are serializable, and so are
some of the collections (arrays and ArrayLists are serializable, but the HashTable isn't). If you
want to serialize an ArrayList with numbers, or strings, you don't have to create a custom
class, or do anything special. You simply call the Serialize method of the appropriate
Serializer class and the collection will be persisted to a stream, which in turn will move the
serialized data to a disk file.

NET programming means developing and using custom classes. If you want to be able to
serialize your custom classes, all you have to do is prefix their declaration with the
<Serializable> attribute. You don't have to mark any of the class's public fields as

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

serializable, but you can exclude selected fields from the serialization process by marking
them with the <Nonserializable> attribute. Fields

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 79

There's a substantial overhead the first time you create an instance of the XmlSerializer class.
This process, however, isn't repeated during the course of the application. The overhead is due
to the fact that the CLR creates a temporary assembly for serializing and deserializing the
specific type. This assembly, however, remains in memory for the course of the application
and the initial overhead won't occur again. This means that, although there will be an
additional delay of a couple of seconds when the application starts (or whenever you load the
settings), you can persist the class with the application's configuration every time the user
changes one of the settings without any performance penalty.

Custom Serialization

The .NET Framework makes it possible to override the default serialization process and take
complete control of how your objects are serialized and deserialized. You may wish to control
the serialization process if you want to serialize more than just public fields, but not every
aspect of an object. To build classes that control their own serialization, you must first make
sure that they implement the ISerializable interface:

<Serializable()> _
Public Class Employee
Implements ISerializable

The ISerializable interface contains a single method, the GetObjectData method, whose
signature is the following:

Sub GetObjectData (ByVal info As SerializationInfo,

ByVal context As StreamingContext)

The SerializationInfo class exposes the AddValue method, which adds members to the
serialized object. This method accepts as argument a key—value pair, as demonstrated in the
following sample code. The first three fields can be public or private. The last field,
CreationDate, need not even be a member of the class—it's created and populated during the
serialization. The custom deserializer can take this field's value into consideration, or ignore it
completely.

Private Sub GetObjectData (ByVal info As SerializationInfo,
ByVal context As StreamingContext)
Implements ISerializable.GetObjectData
info.AddValue (''classFieldl" , wvaluel)
info.AddValue ("classField2" , value?2)
info.AddValue ("classField3" , wvalue3)
info.AddValue ("CreationDate" , DateTime.Now())
End Sub

The custom deserialization process is implemented as an overloaded form of the class's
constructor, which has the following signature:

Friend Sub New (ByVal info As SerializationInfo,
ByVal context As StreamingContext)

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 81

You can exploit this information to include additional information with (or exclude
information from) the object you serialize, depending on its context. If the object is being
serialized to a file, for example, you can include a date/time property to indicate when the
object was serialized. Upon deserialization you can extract this value and set the object's
"age." The following constructor serializes an object differently if the serialization process's
destination is a file:

Public Sub New (ByVal info As SerializationInfo,

ByVal context As StreamingContext)
If context.State = StreamingContextStates.File Then
' Serialize a date//time member
Else
' Serialize all other fields
End If
End Sub

Serializing SQL Server Data

Before we end this chapter, we'd like to discuss an interesting topic that combines SQL
Server's support for XML and serialization. SQL Server can return the results of a query in
XML format. The XML document describing the result of a query corresponds to the
serialized version of a custom object and, if we can create a class that matches the schema of
the XML document, we'll be able to deserialize SQL Server's XML response into an instance
of the custom class. In this section we'll describe a technique for moving data out of SQL
Server and into an instance of a custom class, without setting up DataAdapters and populating
DataSets. The custom object will be an object that represents an order, including its header
and its detail lines. The advantage of this approach, as compared to a straight ADO.NET
approach based on DataSets, is that you don't have to worry about related tables and accessing
related rows in DataTable objects. The custom object that represents the order is a business
object that represents one of the entities you work with in your code, and you can manipulate
it through its properties (read the values of an existing order, or create a new order). The
application we'll use to demonstrate this technique is the NWOrders project, which reads
existing orders from the Northwind database and creates new ones using a custom business
object. The application's form is shown in Figure 3.4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 3.4 The NWOrders project

Team Fly Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 91

Summary

Serialization is one of the major new components of .NET and it's used heavily throughout the
Framework. Persisting object is not new to .NET, but it's far more flexible and powerful than
the PropertyBag object of VB6. Web Services—the most promising of the .NET technologies
—use SOAP serialization to pass objects between client applications and web servers. SOAP
and binary serialization is also used in remoting to pass objects between remote applications.

Binary serialization is very efficient and very compact, but it's limited within an application
domain, or to applications that share the same classes. XML is verbose and not as fast, but it's
a universal format. Although XML serialization is quite verbose and doesn't preserve type
fidelity, it's ideal for passing hierarchical data between layers of an application, or between
remote systems. A typical example of the type of integration between components you can
achieve with XML was demonstrated in the last section of this chapter, where you saw how to
retrieve XML data out of SQL Server and use it to populate instances of custom classes that
match the structure of the data.

Another advantage of XML serialization is that you can control the serialization process of a
given class with the use of attributes in the class that will be serialized. Finally, XML is the
format in which DataSets are serialized and persisted to the client. In Chapter 19 you'll see an
example of persisting DataSets in XML format at the client. The resulting XML document
describes not only the data, but the changes made to the DataSet as well, and it can be used to
submit the changes to the database.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 93

Chapter 4
Leveraging Microsoft Office in Your Applications

EFFICIENTLY ACCESSING ONE APPLICATION'S features from within another application is a
longstanding goal in the programming community. After all, if you can run a spell-check on
documents within Word for Windows, why can't that same Word spell checker work just as
effectively on documents held anywhere within the computer? Restricting such a useful utility
to only documents within a particular application seems like an unreasonable limitation.

Indeed, the difficulty of communicating data between applications and sharing functionality
was originally one of the primary justifications for object-oriented programming. The idea was
that you should be able to write your programs in ways that permitted the features (objects) in
your applications to be self-contained, reusable, and capable of being consumed by other
objects (either inside or outside your application).

As usual, these noble goals have been less achievable in practice than they seemed in theory.
There's still quite a bit of individuality and idiosyncrasy floating around in the computer
world. The goals of application independence, not to mention platform independence, always
seem to move just a bit out of reach as we approach them.

Nonetheless, Microsoft-designed products such as the Office suite and the .NET languages do
offer a degree of interoperability and free communication between objects. How to understand
the object models and consume methods within .NET and Office applications is the topic of
this chapter. We'll focus on three of the most useful Office products—Word, Outlook, and
Excel—but the techniques described for accessing these applications are applicable to other
Office and Works applications. (4Applicable, but requiring the usual fiddling around necessary
to get the qualification and syntax correct for accessing members. Just because nearly all
contemporary computer programs use a print method, for instance, that doesn't mean it's a
universal usage. As you'll see in this chapter, Word and Excel use the term printout.)

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 94

Using Word's Features

Before you can access functionality from an Office application, you must reference its object
library. You need a COM wrapper, as they say. For Word, you have to add a reference in your
VB.NET project to—as you might guess—the Word object collection:

1. Start a new Windows-style VB.NET project.
2. Choose Project = Add Reference.

3. Click the COM tab in the Add Reference dialog box, then locate the Microsoft Word 10.0
Object Library (your version number may not be 10.0).

4. Double-click this object library, then click OK to close the dialog box and add the
reference.

NOTE At the start of the sections on Outlook and Excel below, you'll find instructions on
referencing their objects.

The following sections describe how to use various handy features of Microsoft Word in your
VB.NET applications.

Spell-Checking

To start things off, let's see how to check spelling in a VB.NET TextBox by borrowing that
capability from Word's spell checker. We'll explore three different ways to accomplish this
goal:

1. Sending TextBox text into a Word document, employing the spell-check dialog box to
interact with the user to fix any spelling problems, then sending the fixed text back to the
TextBox after spell-checking, via the Clipboard.

2. Feeding text directly into the Word spell-check utility and getting back an all or nothing
(yes or no) answer as to whether there were any spelling errors in the string.

3. Same as number 2, except in this case getting back a list of misspelled words, and lists of
alternative spelling suggestions for each misspelled word. With this approach, you can
construct your own VB.NET version of the Word spell-check dialog.

To try the first example (Listing 4.1), start a new Windows-style VB.NET project and add a
TextBox and a Button to Form1, then type this into the Button's Click event.

LISTING 4.1: SPELL-CHECKING A VB.NET TEXTBOX

Private Sub Buttonl Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim w As Object = New Word.Application 'instantiate a Word ar
w.visible = False 'don't confuse things by showing the app

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Dim d As Object = w.Documents.Add 'create a word document
Dim id As IDataObject 'will contain the results sent back frc

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 109

Using Outlook Objects

One quick way to add an e-mail-reading feature to a VB.NET application is to employ the
facilities in Outlook.

First, use VB.NET's Project # Add Reference dialog box to add a reference to the COM
library named Microsoft Outlook 10.0 Object Library. (Your version might not be 10.0.)

The Outlook object hierarchy exposes several "folder" objects: olFolderCalendar,
olFolderContacts, olFolderDeletedItems, olFolderDrafts, olFolderInbox, olFolderJournal,
olFolderNotes, olFolderOutbox, olFolderSentMail, olFolderTask. If you've worked with
Outlook, you'll notice that these folders correspond to the various utilities and features
available within Outlook.

To access the Outlook folders, you have to instantiate them indirectly by creating a MAPI
message store (like API, only with the term messaging prepended).

Don't bother yourself with the wearisome nonsense that "explains" why you must first create a
special Outlook namespace, then get a MAPI store. You'll add nothing to your understanding
of programming by trying to follow the reasoning for this unique way of accessing Outlook's
object library. Only Outlook does things this freaky way, so no use learning a process that
occurs only once. You wouldn't study mammalian behavior by examining a platypus. Just
copy the code in the examples below and you're home free.

WARNING Before you can test this example code, you must ensure that there's at least one e-
mail message in your QOutlook Inbox. Otherwise, the code will fail—I'm not bothering here to
employ a Try. . .Catch. . .End Try failsafe error-trapping structure.

Put a TextBox, ListBox, and button on a form, then type Listing 4.13 into the Button's Click
event.

LISTING 4.13: GETTING INBOX E-MAIL MESSAGES

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim o As New Outlook.Application
Dim MAPI As Outlook.MAPIFolder
Dim NSpace As Outlook.NameSpace = o.GetNamespace ("MAPI")

MAPI = NSpace.GetDefaultFolder (Outlook.OlDefaultFolders.olFol
Dim it As Outlook. Items = MAPI.Items

Dim i1 As Integer, s As String
Dim m As Outlook.MaillItem

m = it.Item (1)
m.SenderName & ": "& m.Subject 'get the name and topic

[0)
Il

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ListBoxl.Items.Add (s)
TextBoxl.Text = m.Body 'send the actual message to the TextBc

End Sub

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 111

Accessing Excel

Use Project # Add Reference, then click the COM tab and add the Microsoft Excel 10.0
Object Library (yours might be 9.0 or some other version number).

As you probably realize by now, if you've read this chapter, your first job when accessing
Excel objects is to declare an application object:

Dim exl As New Excel.Application

Then you contact the primary unit of organization in Excel, the range object (which can be as
small as a single cell or as large as a worksheet). The remaining sections describe how to use
handy features of Microsoft Excel in your VB.NET programs.

Evaluating Math Expressions

One useful feature that Excel has to offer us VB.NET programmers is its ability to evaluate
mathematical expressions. Given that VB.NET includes lots of math functions, such as SIN,
COS, and so on (if you first Imports System.Math), why would you need to use Excel?
For one thing, Excel allows you to submit a string for evaluation, thereby making it relatively
simple to permit users to enter expressions into your application and have them evaluated.

Listing 4.14 shows how you can calculate a SIN in VB.NET, while Listing 4.15 is an example
that uses Excel to evaluate the same expression.

LISTING 4.14: EVALUATING MATH EXPRESSIONS IN VB.NET
Imports System.Math

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim n As Double = 4.3444

n = cos(n)
MsgBox (n)
End Sub

LISTING 4.15: EVALUATING MATH EXPRESSIONS IN EXCEL

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim exl As New Excel.Application

Dim n As Double

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 117

Summary

In this chapter you saw how to access Microsoft Office applications' features from VB.NET
projects. You saw how to send data to and from Word, Outlook, and Excel. And you explored
various ways to employ the major tools and utilities within Office applications.

First you saw how to reference, then instantiate, Word and exploit its spell-checker utility
three different ways from within VB.NET. Then you saw how to send a fax from VB.NET via
Word's faxing facilities. You learned how to load a document, and get statistics about
documents, such as a word count. You saw how to suppress unwanted dialog box messages,
and how to get a list of files from within directories and their subdirectories.

You explored Word further, seeing how to feed text into documents—including manipulation
such as insertion and replacement—and also how to format and print text from within Word.

Then you learned to use Outlook to access incoming e-mail messages. Finally, you saw how to
employ Excel to evaluate math expressions, print tabular data for reports, and format,
calculate, and read or write .xls files.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 119

Chapter 5
Understanding .NET Security

CONSIDER THE PARADOX IMPLICIT in this chapter: You are about to read details about security
measures in Windows and .NET, but if you can read about it, how can it remain secure?
Shouldn't security rest on secrecy and depend on the fact that people can't buy books
describing precisely how it works?

Well, yes and no. Somebody has to have the keys to Fort Knox. It may as well be you, the
trusted programmer, or trusted I'T administrator.

In fact, there are multiple layers of security within today's computer systems and they
generally work on an all-or-nothing premise: all the layers must grant permission to the
agency (consuming caller or user) attempting to try anything potentially dangerous. By
dangerous we usually mean any kind of file access (whether to read private data, to write and
maybe add viruses to files, or to have the ability to reformat drives and so on) or access to the
Registry, to peripherals such as printers, or to the security system itself (where they can fiddle
around and make themselves administrators and fling the doors open).

Security features in .NET are extensive, comprehensive, and powerful. You should familiarize
yourself with them because, as we all know, security is Topic A in many IT departments these
days. Few programmers, though, have much experience with encryption and other security
measures.

In this chapter, you'll learn about the various levels of Windows (generally role-based) and
NET (generally code-based) security, including aspects of "trust," the various kinds of
permission management, and the interactions between role-based and code-based permissions.
This subject is quite large, but this chapter is intended to provide you with an overview of the
major tools at your disposal as you attempt to ensure the integrity of your .NET applications—
prevent them from being breached, or from being misused to breach other resources.

NOTE This chapter gets you well on your way down the long road to ensuring system security.
For deeper coverage of the topic, see NET Development Security Solutions by John Mueller
(Sybex, 2003).

Chapter 6 covers a different aspect of .NET security: encryption and hashing, highly effective
tools for ensuring the integrity of transmitted messages and for protecting privacy.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 120

Security: An Overview

Security features proliferate throughout today's computers. In fact, most anything larger than a
single procedure can have some kind of security feature that can be adjusted by a user, an
administrator, a programmer, or all three groups. As you'll see later in this chapter,
programmers can even use .NET to specify security behaviors for single procedures.

There are all kinds of levels and varieties of security—and some of them conflict with each
other, stepping on each other's toes. You find self-contained security feature sets in
applications such as Internet Explorer, utilities, the operating system, networks, databases and
database languages, servers, Internet applications, languages such as VB.NET and ASP.NET,
IIS settings, and so on.

There's a more-the-merrier quality to current computer security efforts—you find locks and
bolts, checkpoints and identity verifications all over the place. If you've ever lived in New
York or another large city, you probably know someone whose idea of increasing security is
to add yet another deadbolt to the 12 locks they already have on their apartment door. Doors in
big city buildings are like Houdini's escape-proof suit—straps, chains, alarms, sliders, and
what have you.

And if you've ever struggled to get your .NET prototype applications working with a database
or SQL Server, for example, you've entered the security house of mirrors.

Obviously, security isn't something that is designed to be easily circumvented—by definition,
security measures are supposed to be, if not obscure, at least somewhat difficult for the
average user to understand and manipulate. You're not supposed to have a helpful message
box pop up saying "You need to adjust your logon identity permission level before you can
access this database. To make this adjustment, choose Start = Programs = Microsoft SQL
Server = Enterprise Manager. Expand the Security node, then click Logins to see the list of
users who are permitted to log into SQL Server. If you have this permission, take the
following step"

No, you have to dig around to figure out that in addition to your Windows role (the security
group you belong to, as identified by your logon name), you have another, separate role to
define with SQL Server. If you're told that you don't have permission to create a connection to
a particular database, you have to get down and give yourself permission.

Beyond Windows and SQL Server, there are yet other layers. For example, when VB.NET's
managed code is expected to work with SQL Server, then SQL Server's security apparatus
comes to life and, possibly, denies access on this level. Perhaps you're running an application
that doesn't have permission (or doesn't grant permission). Perhaps a particular file is set to
read-only. The list goes on.

Some security settings are specified by the user, such as adjusting which macros Word allows
to execute, or whether or not Outlook Express warns you about executable attachments to e-
mail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Other security settings are under the control of administrators, the IT professionals who look
after the safety of workplace operations. Still other aspects of security are managed by
developers and programmers who can specify various levels of access and permissions right
within their applications' code.

Nearly all of the various types of access security, though, come down to one thing: Who is this
user, and what exactly do they have permission to do? The answers to these questions fall
mostly to what's called role-based security, and the key to role-based security is the
administrator—the person or persons with total access to a computer or network, and the one
who defines everyone else's role (or "level of trust," also known as permissions). Anyone who
can figure out how to gain administrator status can run riot.

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 125

mobile code—networked, or web-based applications—can of course be more complex. You
often don't know who's on the other end of an Internet connection, or what hard drive is being
used as the server, or, most important, what methods are being executed against your local
hard drive or network.

However, .NET insists that in all cases, both role-based and code-based security settings must
be satisfied for a particular action to take place. For example, if you attempt to load a file into
a .NET TextBox, several security settings are triggered and al// must be satisfied before the file
is loaded. The .NET application's identity is checked; is it from a trusted source? Does this
application have permission (from code-access security settings) to read this file? And does
this user have permission from the Windows security settings to read this directory and this
particular file? If any of these questions are answered No, the file doesn't get into the TextBox.

This last question—Windows permissions—becomes impossible to answer when you're
consuming a remote Web service, for example. Of course the author of the Web service
response doesn't have permission to access your Windows machine at any level. That foreign
person is unknown to your installation of Windows and isn't a member of any group known to
your administrator.

Understanding Code-Access Security

One solution to communication with strangers is to keep them in the lobby and talk to them
through an intercom, or if you're running a gas station, encase your clerks inside bullet-proof
Plexiglas. In other words, fix it so you can communicate with strangers, but don't let them get
next to you physically. Don't let them completely in. This, in essence, is the idea of "partial
trust," the notion that you keep the stranger at a distance—close enough to talk to, but beyond
the range of a knife or bullet.

Similarly, you can communicate with unknown Internet servers and other strangers by
partially trusting them—Ietting them near, but not actually in, your system.

The CAS system has been developed to permit you to consume mobile executable code
securely within .NET (or indeed other contexts). In fact, unless you specify otherwise, any
executable coming in from the Internet is by default executed within this "partially trusted"
context. Foreign, unrecognized executables are kept in the lobby by security, so to speak.

One meaning of the term mobile code is distributed code (code not local to an application on
your machine, but rather coming into your machine from the Internet, an intranet, or modules
distributed on separate servers). In other words, it's alien code that resides outside the local
environment. As is usually the case, however, new computer terminology forks rapidly into
more than a single meaning. Mobile is also being used these days to describe portable devices,
specifically PDAs and cell phones (see Chapter 22 for details on programming for these
mobile devices).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Scripting was one effort in the past to permit harmless mobile code to execute safely on your
machine. The idea was: We'll take a language like VB and strip it of any methods that can
manipulate the hard drive, the Registry, or other sensitive resources. Then, with this new
"VBScript," people can trust that it's unable to do damage. Alas, this solution, like verification
and other initiatives, was only partially successful. After all, hackers have learned how to
embed executables in strings, and other techniques that make scripts potentially just as
damaging as traditional executables.

Verification slows things down. One type of authentication surprises users with a dialog box
asking them if they trust this Authenticoded site. This not only halts execution, it throws the
responsibility for virus attacks onto the user—many of whom are not equipped to respond
usefully to the

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 128

enforces no permissions when native code executes, and SRP enforces none of its permissions
when managed code executes.

If you've never worked with SRP, you can quickly take a look at its capabilities (limited
capabilities, in fact, when compared to the greater range of CAS options). In Control Panel,
open the Administrative Tools icon and choose Local Security Policy. In the left pane of the
Local Security Settings dialog box, open the Software Restriction Policies node and look
around. You can adjust these policies here for this individual machine. For more details on
using this technology to block rogue ActiveX controls, virii, tainted scripting, and other
dangers from unmanaged, alien code execution, see:

Managing .NET Security Policy

Now that you've got an overview of the layers of Windows security and how they interact
with .NET security features, it's time to go down into another dungeon and see how to manage
NET security itself.

When you fire up an XP or Windows 2000 machine for the first time, it has a generally
predictable set of security policies—the defaults that Microsoft thinks make sense for the
average user. Here's an overview of the default settings for XP machines:

Code from within the Internet zone (as Windows calls Internet locations) has a restricted
permission level. The default setting for this zone is Medium (see Table 5.1). No code
originating within the Internet is allowed to execute. If your computer or network
requires that this policy be loosened, the administrator must explicitly adjust
permissions. Run Internet Explorer, then choose Tools = Internet Options and click the
Security tab in the Internet Options dialog box. Move the slider to see the various
options, and make any adjustments you want by clicking the Custom Level button.

Code from the restricted sites zone is similarly forbidden from execution. The default
setting for this zone is High.

Code in the trusted sites zone has fairly limited permissions. The default setting is
basically Low, but Java permissions are adjusted to Medium and unsigned ActiveX
controls can be downloaded.

Code from your local network (intranet) has certain default capabilities (it can read, but
not write, environment variables), but it is forbidden access to the security system, the
Registry, and so on. The intranet zone includes network paths and any sites that are
bypassed by the proxy server. The default setting for this zone is Medium-Low.

Code executed from the My Computer zone, however, is unaffected by settings
adjustable from within Internet Explorer.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 133

FIGURE 5.6 Use this Security Adjustment Wizard for specific, emergency shutdowns.

Click Next and choose Local Intranet. Move the slider to No Trust. Now let's see Nicky use
his computer to make more mischief. Of course, if you find him using other people's
computers, you'll want to adjust his user policies—and you might just want to get into
Windows role-based settings and tie his hands there as well.

Before concluding this chapter with some suggestions that programmers can use to improve
the security of the applications they write, the following is one final caution for administrators:

Avoid, of course, opening up anyone's quivering, vulnerable hard drive to TotalTrust levels in
the Internet zone (or indeed other zones). You don't want to invite trouble, and Full Trust is
just asking for it because no .NET Framework security tests will be conducted against
executing code from the Internet. Operating system settings will remain in effect, but if any of
them permit trust beyond what you'd allow for trusted local execution—beware. Full Trust is a
broad and dangerous permission. If you're tempted to use this setting, consider instead
modifying the permissions individually using the Trust Assembly Wizard. With that tool you
can more rationally fine-tune permissions. Don't simply blow open all doors by using Full
Trust.

Programming for Security

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Programmers don't ordinarily consider themselves on the front line of security. They usually
assume that if they provide relatively bug-free code, they are doing their job. Programmers
make the tools, and it's up to security enforcers (normally I'T administrators in offices
throughout the land) to ensure that those tools are used for their intended purposes.

However, .NET offers you, the programmers, the opportunity to take steps to create safer
code. You've already seen some ways to write code that contains some security elements
earlier in this chapter, and ways to employ CAS to increase the safety of your programs. Let's
conclude this chapter with an overview of techniques available to programmers working with
NET security facilities.

If your .NET application doesn't get called by other code ("consumed," as they say), you can
probably relax and not worry about the security issues. After all, NET itself automatically
demands permissions for many kinds of sensitive behaviors, and performs a code-access stack
walk to throw exceptions as necessary. You can rest on CAS for many Windows-based
applications.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 136

' But remember and beware that any Shared

' methods in this class can bypass instantiation

' so in the following case, if you must use

' Shared, you have to repeat the permission test:

Public Shared Sub ReadAFile ()
Dim p As New FileIOPermission (PermissionState.Unrestricte
p.Demand ()

End Sub

'The rest of the (not Shared) methods in
' this class don't have to test security--
'they won't even exist if the above constructor test fails.
Public Function SaveFile() As String
' do some I//O here
End Function

End Class

Use the Demand method, as illustrated in this code, to make certain that callers are allowed to
access something (in this example, files). Here, before allowing this class to be instantiated,
you demand a security check. The entire call stack is checked and all must have permission. If
there is no security exception thrown, then the Demand is met.

You can use this security check class to test individual methods within the class (as illustrated
by the SaveFile method in Listing 5.2 above), or you could have this class generate a special
key that the caller can use during the entire session with your application.

Tip For simplicity I used FilelOPermission in the example in Listing 5.2; however, note that
the .NET security system automatically demands File I/O permissions (and other, similar
sensitive resource permissions). You don't typically need to write special code for this kind of
thing. However, you can use these techniques to provide additional protection within database
access procedures and other situations.

Summary

In this chapter, you saw the ways that a programmer can address security issues to prevent
hackers from breaching a system via your application, from using your application to access
sensitive resources, and from other kinds of attack.

You saw that application security is divided into two primary levels: role-based (derived from
the user logon) and code-based (derived from assertions or denials made within .NET code
itself).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You saw how Windows built-in permissions groups are accessed and what they mean. Then
code-access security (CAS) was examined, and how it interacts with role-based security
features. You worked with the Framework Configuration tool, and saw how to employ various
of its features to specify how .NET security is enforced. Finally, you explored some of the
ways that you can protect consumed code such as Web services by setting up a permissions
gateway through which the caller(s) must pass.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 139

Chapter 6
Encryption, Hashing, and Creating Keys

THE.NET ENCRYPTION FEATURES are among the most useful of the framework classes,
but are rarely mentioned in books and articles. There's nothing terribly difficult about
employing these classes, but perhaps there are a couple of reasons that most authors avoid this
topic. First, many people are only vaguely familiar with the concepts underlying
cryptography, and some of those concepts can be indeed complex. Second, the best word to
describe the current state of affairs in computer security is probably havoc.

Computer security divides into two primary categories: safety (protection from attack), as
described in the previous chapter, and privacy (concealing information), which is the topic of
this chapter.

Fortunately, there are extremely simple solutions to both of these security dangers. If you are
concerned that a virus might erase your hard drive or otherwise mess up your machine, simply
back up your data frequently (and also make use of the System Restore feature in XP in case
the virus goes after the Registry and other key files, as some do).

If you are concerned that someone might read your private files, simply encrypt them.

All too often, however, these simple security measures are not practical. In many business
situations, the majority of employees are incapable of managing their own backup or
encryption needs. Either the IT department has to intervene, or these processes must be in
some way automated for the ordinary user.

In this chapter you'll see how to use the .NET encryption classes to programmatically encrypt,
decrypt, and manage keys. This can provide the foundation for writing applications that
automate the job of encrypting and decrypting files. You can also use these techniques to build
encryption features into your own programs.

The Main Problem

The primary problem when enforcing workplace security policies is the creation and
management of passwords. A user types in a character-based secret string that can (and
should) contain digits as well. Then that password is usually transformed into an all-digit key
that is used by the computer to encrypt or decrypt a file. In public key encryption systems,
random keys are

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 143

Just send the hash value along with the file and the recipient can hash the file on their end to
see if the hash values match, demonstrating that the file has not been altered during
transmission.

Encrypting

The goal of encryption is to rearrange information so that it makes no sense to an intruder.
Rearrange, not destroy. You don't want to so completely disturb the original information (the
plaintext) that it is impossible to restore. You don't want to reduce the data to a fuming wreck.

However, precisely because the encrypted information (the ciphertext) is restorable, the wrong
people—the intruder—can potentially restore it, read it, and make use of it. Intruder or Eve are
the traditional names for people who intercept messages—FEve for evesdropper.

DES is the most popular strong encryption in use today to encrypt large amounts of data.
Everything from money wire transfers to secret government communications are transmitted
after having been encrypted via DES.

The government went to IBM in the early seventies and asked them to come up with an
encryption standard for government and business communications. The government wanted
the system to be computer-based and impossible to break, and they got their wish in 1976.
Ever since, it's been the standard. Some observers say that DES has been cracked, but others
disagree. In any case, it would require tremendous multi-processing power—many tens of
thousands of personal computers working in tandem—to hope to crack a DES encrypted
message. (Some experts suggest that the government has such power, but prefers to keep DES
the standard because they want to be able to read messages and keep track of things.)

If you feel that your information is likely to draw attention from the government or 90,000
personal computer users who will gang together to focus on your secrets, .NET offers even
stronger encryption functions. You might be particularly interested in the asymmetric public
key system (RSA) described at the end of this chapter. The problem with asymmetric systems
is that they are less efficient, slower. Some people advocate dividing the job into two
processes: Using asymmetric encryption to transmit keys (which are short, compared to the
size of most messages), then using DES to encrypt the messages.

Or, if you just want a beefier version of DES, .NET offers a couple of other algorithms,
including TripleDES. How much slower is TripleDES than DES? Three times. But unless
your messages are huge or your computer is slow, you probably won't be bothered by the
speed issue.

There are many dozens of ways to encrypt files in .NET. Listing 6.3 illustrates one way to
encrypt and decrypt a file using the DES algorithm.

LISTING 6.3: ENCRYPTION AND DECRYPTION A FILE WITH DES

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

encrypt ()
decrypt ()
End Sub

Public Sub encrypt ()

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 151

In this code, you first create a key and an IV, then create a byte array (barray) holding the
plaintext. You use the ComputeHash method to get the hash value of the plaintext. (Notice
that these techniques require lots of byte arrays—so far, you've used four of them.) Then you
use a cryptostream object to encrypt and save the results (the ciphertext) to a file, and then to
append the encrypted hash values to the same file. Both your encryption and decryption
procedures know how many bytes to remove from the end of the file because the hash value
size (in bytes) is available from the SHA1 hashing object. For example, the decryption routine
reads this value from the SHA1's HashSize property:

Dim hashSize As Integer = shal.HashSize / 8

The results reported from this property are in bits (who knows why?) so you have to divide by
8 to get the actual number of bytes. The answer for SHA1 is 20 bytes.

The Decrypt procedure mostly follows the same steps as the encryption procedure. First you
define a key and vector, then you open the file into a filestream and decrypt it via a
cryptostream, and finally you are ready to test the hash. Recall that the hash values in the
encrypting procedure were calculated only on the plaintext message, not on the entire contents
sent to the file. You cannot get into the house of mirrors that would be created were you to try
to get a hash value of your plaintext+hashvalue.

So, in the decryption procedure you create a byte array (sArray) that holds the entire file
contents (ciphertext+hashvalue). Then you extract the hash value from the message portion of
(sArray.Length - hashSize). In other words, you subtract the length of the hash value
(hashSize) from the size of the byte array.

Next you extract the hash value that was appended to the file, and store those 20 bytes into the
byte array messageHashValue. Finally, you use a loop to compare each byte in the message's
hash value (messageHashValue) to each byte in the hash value computed in the decrypt
procedure (hash Value). If any of the 20 bytes don't match, you alert the user that tampering
occurred and that the ciphertext file's integrity has been compromised.

Asymmetrical Encryption

It's slower, but stronger. Asymmetrical encryption technology was illegal only a few years
ago. The government felt that the bad guys—mobsters, dealers, wheeler dealers, lounge
lizards, Eurotrash, and whatnot—would have a way of communicating that the FBI and others
couldn't monitor. The problem with these laws was the usual one: laws don't deter
lawbreakers.

The law against strong encryption was withdrawn. So now you can go ahead and use the most
advanced encryption, asymmetrical algorithms. They're asymmetrical because the method
used to encrypt is different from the method used to decrypt. It's a little more cumbersome
than symmetrical systems, though, and slower. Because it's slower, you quite frequently find
people using an asymmetric system such as RSA to encrypt the keys, but encrypting the actual
plaintext message with a faster symmetrical system such as DES.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

RSA and other asymmetric systems allow quite a bit of information to be public. They're
sometimes even called public key systems. Three elements are permitted to be viewed by
everyone, including any intruders: the enciphering process itself (the algorithm used to
encipher and decipher), the ciphertext message, and a key. With all that information, Eve
should be able to figure out the plaintext, don't you imagine? Guess again.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 158

In a real-life situation, there's no big problem sending the public key or the ciphertext—
capturing them would do an intruder no good, so you don't have to be concerned about their
security. However, the potential weakness in the whole asymmetric system is the
public/private key pair string that the decryptor (recipient) must somehow protect from prying
eyes.

In a temporary session, the recipient can just generate a public/private key pair, and send the
public part to the encryptor. Then the message can be encrypted, sent to the recipient,
deciphered, and all the keys thrown away. But in other situations, keys are used repeatedly.
Perhaps you want to use RSA to encrypt some files and keep those files for future reference.
You must then also keep the private key that decrypts them.

Or perhaps a set of everyone's public keys is published in a list and given to everyone in the
office. Maybe it's inconvenient to change these keys more than every month or so. When
public keys are reused for more than a single session, each recipient must retain the private
key that works with their public key. Actually, retain is probably not the right word; conceal
would be more like it. If a private key isn't kept totally private, the game is over.

If you write applications that employ RSA and you don't want to limit communications to
short sessions, you'll want to add some code to securely persist the private keys. Alas, there is
no feature in .NET that explicitly solves this problem, but you can work with key containers
available via the CryptoAPIL

Summary

In this chapter you entered the secret and, to me at least, fascinating world of hidden
messaging—encryption, the effort to disguise the meaning of text.

It's been thousands of years in the making, but today's cryptographic schemes (several of the
best are available in .NET) no longer rely on the various and fallible historical tricks. A lord
would send a hunter carrying a string of dead rabbits to the next castle in the Middle Ages.
One of those rabbits had a message in its stomach.

In ancient Greece they shaved a guy's head, wrote a message on his skull, then waited for his
hair to grow out before sending him on his way.

Le Roi-Soleil's patsies and minions wrote long letters to each other using lemon juice, which
dries invisibly but can be restored by holding the paper over a candle. These messages were
sent among the chateaux, and as an additional precaution, only every 12th word contained the
true message. Of course, several courtiers lost their heads when they couldn't explain why they
were sending blank pages to each other. Twits.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You needn't resort to these ineffectual and messy tactics. As you saw in this chapter, you have
at your command some of today's best cryptographic power tools. Tap into the .NET
Framework's security features and use DES, TripleDES, or ramp up to full RSA protection.
It's more than doubtful that your secrets will be revealed if you hide them inside this
technology.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 159

Chapter 7
Advanced Printing

AMONG THE MOST VISIBLE features introduced to VB.NET are the improved printing and print
previewing mechanisms of .NET. You'll find it very easy to write your own printing routines,
and the same code will produce both printouts and previews. To access the printing
capabilities of .NET, you must use a few new controls. There's no longer a Printer object; you
must use one of the controls that facilitate printing, and we examine these special controls in
depth in the chapter. These controls can't be used to build interfaces; they simply expose the
printing functionality of .NET to your application.

While printing has gotten both simpler and more powerful in VB.NET, the Windows controls
we use to build our interfaces don't support printing. None of the controls that come with
NET provide a Print method, not even the TextBox control. Most developers will sooner or
later face the problem of generating simple (or not so simple) printouts for their applications,
and they'll have to write their own printing code. The other alternative is to buy a third-party
control that supports printing, which is the suggested course of action if you need to print
formatted text, but most developers will be handling simple printing tasks.

This chapter doesn't contain only advanced printing topics. It starts with an overview of the
printing process in the NET Framework (a process that's entirely different from the equivalent
VB6 process) and it also covers simple topics such as printing text. The reason we've included
this seemingly trivial topic is that we haven't found a reliable tool for printing text. Even the
TextBox control doesn't provide a Print method, so we felt that a solid explanation of the
process of printing text is in order. And as you will see in the corresponding section, printing
text isn't as trivial as you may have thought. To make the sample code a little more useful,
we've added a Print method to the TextBox control.

Another very common task in business applications is the printing of tabular data. We've
decided to demonstrate this topic by creating a class that can print the contents of a ListView
control.

Printing in .NET

The basic printing component in .NET is the PrintDocument control. To send something to the
printer, you must first add an instance of the PrintDocument control to the project. This
control is invisible at runtime and its icon appears on the Components tray at design time. To
initiate the

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 162

NOTE You can use the SetClip method of the Graphics object that represents the page to
impose the margins. This method prohibits printing outside a specified rectangle, and you can
use it to make sure that all graphics elements that fall outside this rectangle are clipped. In
most cases, however, we write code to arrange the graphic elements on the page taking into
consideration the margins. When we print text, for example, we write code to break the lines
when the text reaches the right margin, or start a new page when the text reaches the bottom

of the page.

When the event handler exits, the appropriate graphics commands are sent to the printer and
the page is actually printed. If you need to print additional pages, you set the
e.HasMorePages property to True just before you exit the event handler. This will fire
another PrintPage event. The same process will repeat until all the pages have been printed.
When you're finished, you set the e . HasMorePages property to False, and no more PrintPage
events will be fired. The default value of this property is False, so you need not set it when
you're done printing.

Printer and Page Properties

One of the most common tasks in writing code to generate printouts is to retrieve the settings
of the current printer and page, as they were specified by the user on the PageSetup and
PrinterSetup dialog boxes. The properties specified on these two dialog boxes are reported to
your application through the PrinterSettings and PageSettings objects. The PageSettings
object is a property of the PrintPageEventArgs class, and you can access it through the e
argument of the PrintPage event handler. The DefaultPageSettings property of the
PrintDocument object is also a PageSettings object.

The PrinterSettings object is a property of the PrintDocument object, as well as a property of
the PageSetupDialog and PrintDialog controls. Finally, one of the properties exposed by the
PageSettings object is the PrinterSettings object. These two objects provide all the information
you may need about the selected printer and the current page through the properties listed
next.

The PageSettings Object

The PageSettings object exposes the following properties, which you can use to retrieve the
properties of the current page.

Bounds Returns a Rectangle object that represents the current page. Its dimensions
are expressed in hundredths of an inch. The PageSettings.Bounds property is
equivalent to the MarginBounds property of the e argument of the PrintPage event
handler. The Bounds property doesn't take into consideration the margins specified
by the user on the PageSetup dialog. For a letter-size page the dimensions of this
rectangle are 850%1100, and for an A4 page they are 827x1169.

Color Returns a True/False value indicating whether the current page can print in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

color. You can set this property to determine whether the page should be pﬁnted in
color or not.

Landscape Returns a True/False value indicating whether the page should be
printed in landscape or portrait orientation. Use this property to find out the
orientation specified by the user on the PageSetup dialog; setting this property won't
affect the printout, because you still have to provide the appropriate code to print in
landscape orientation (i.e., swap the page's width and height).

Margins Returns a Margins object, which exposes the user-specified margins as
properties (Top, Left, Right, and Bottom). The properties of the Margins object are
expressed in hundredths of an inch.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 164

IsPlotter A True/False value indicating whether the printer is a plotter.

IsValid A True/False value indicating whether the PrinterName corresponds to a
valid printer.

LandscapeAngle Returns an angle, in degrees, by which the portrait orientation
must be rotated to produce the landscape orientation.

MaximumCopies Returns the maximum number of copies that the printer allows
you to print at a time.

MaximumPage, MinimumPage Two properties that return or set the largest and
smallest values the FromPage and ToPage properties can have. Set these two
properties if you want users to select a range of pages on the PageSetup dialog box.

PaperSizes Returns all the paper sizes that are supported by the selected printer.
PaperSources Returns all the paper source trays on the selected printer.
PrinterName Returns or sets the name of the printer to use.

PrinterResolutions Returns all the resolutions that are supported by the selected
printer. This PrinterResolutions property is a collection of PrinterResolution objects
and its members are read-only.

PrintRange Determines the options available to the user on the Page Setup dialog
box for selecting the range of pages to be printed. This property can be set to one of
the members of the PrintPage enumeration (AllPages, Selection, or SomePages) and
it determines which of the page selection options will be enabled on the Page Setup
dialog box. Read the value of this property to find out the type of selection made by
the user on the Page Setup dialog box. If the user has selected a range of pages, use
the FromPage/ToPage properties to find out the numbers of the starting and ending
pages.

SupportsColor Returns a True/False value indicating whether the selected printer
supports color printing.

CreateMeasurementGraphics Returns a Graphics object that represents the page's
drawing surface. We use this object to calculate the dimensions of text when
rendered on the printer with a specific font.

The Printing Dialog Boxes

In addition to the PrintDocument control, there are three more printing controls, which are
visible at runtime as dialog boxes: the Page Setup dialog box, the Print dialog box, and the
Print Preview dialog box. The PageSetupDialog control displays the Page Setup dialog box,
shown in Figure 7.2, which allows users to set up the page (its orientation and margins). This
dialog box returns the current page settings in a PageSettings object. The settings specified by
the user on the Page Setup dialog must be taken into consideration by your application to
produce a printout limited within the page's margins, with the proper orientation, and so on. As
you can see, there aren't many parameters to set on this dialog box, but you should display it
and take into account the settings specified by the user.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 168

Page Layout and Printing

The process of printing is identical to displaying graphics on a Form or PictureBox control.
You can use any of the drawing methods of the Graphics object that represents the page. It's
your responsibility to place the graphics elements on the page and determine when the current
page has been filled and start printing a new page.

The origin of the page is its upper-left corner; the coordinates of this point are (0, 0). The
origin of the printed element is the upper-left corner, too. If you print a string at coordinates
(0, 0) it will be printed just inside the page, but it will be printed in its entirety. If you print the
same string at the lower-left or lower-right corner of the page, nothing will appear on the
printout.

The default unit of the page is a hundredth of an inch (there are 100 units in an inch). A
lettersized page's dimensions are 850x1100. Every professional-looking printout has a
respectable margin on all four edges. Printouts that cover the entire page look very odd—
you've probably never generated such a printout. You can change the default units by setting
the PageUnit property of the Graphics object to one of the members of the
System.Drawing.GraphicsUnit enumeration. Among the members of this enumeration are

Inch, Millimeter, Point, Pixel, Display (1/75th of an inch), and Document (1/300‘[h of an inch).
You can also use your own units by setting the PageUnit property to World.

However, not all printers can cover the entire page. There's a small margin that laser printers
ignore, a very small margin compared to the user-specified margin. The printer's margin is
usually a tenth of an inch. In most cases, we don't care about this margin, because the user-
specified margin is much larger. However, if you plan to create printouts that cover the entire
page, you must take into consideration the printer margin. The printer margin will cause a very
disconcerting problem, namely a discrepancy between the preview and the actual printout. The
monitor has no such margin, so you can preview graphics elements very near the edges of the
page. When the same printout is sent to the printer, the printer margin may affect the
appearance of the printout—it will not be identical to the page's preview on the monitor. Let's
consider the printout of a rectangle that fills the entire page. If you preview the printout you'll
see a rectangle that fills the page as expected. If you send the same document to a laser printer,
the rectangle's origin will be displaced by a tenth of an inch (or so) from the upper-left corner
of the page. The lower-right corner of the page will end up outside the page. If you print a
rectangle that fills the printable area of the page (that is, the entire page excluding the user-
specified margins), the rectangle will be the same, both on the preview pane and the printed

page.

This behavior is caused by the fact that any shape whose origin falls within the printer margin
is displaced slightly. If the element's origin is within the printable area of the page, the element
is not displaced. To handle the printer margin, you can use the RenderingOrigin property of
the Graphics object that represents the page. The RenderingOrigin property exposes the X and
Y properties, which are the coordinates of the top-left point that can be printed on the page.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

NOTE The RenderingOrigin property of the Graphics object is new to version 1.1 of the NET
Framework. If you're using version 1.0 of the Framework, you can't use this property.

The DrawString and MeasureString Methods

You can use any of the Graphics object's methods to draw shapes, but for business
applications the method you'll be using the most is the DrawString method, which renders

strings in a specified font with a specified brush on the printer's page. Printing text is not a
trivial operation, as you will see

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 174

Else
strFormat.Alignment = StringAlignment.Center
e.Graphics.DrawString (''Print Mode", tFont, tBrush, _
New RectangleF (e.PageBounds.X, 50,

e.PageBounds.Width, 100), strFormat)
End If

The last three statements in the PrintPage event handler print three rectangles: a red rectangle
that delimits the printout's margins, a yellow rectangle around the page (from the page's upper-
left corner to the page's lower-right corner), and a gray rectangle around the page's printable
area, which is the entire page minus the printer margins, given by the RenderingOrigin
property. The yellow rectangle doesn't take into consideration the areas of the page that can't
be printed and will not be visible in the preview pane (it will be drawn at the very edge of the
page). If you print the page on a color printer, you'll see that the yellow rectangle doesn't start
at the upper-left corner of the page and is slightly smaller than the page. The three rectangles
are printed with the following statements:

e.Graphics.DrawRectangle (New Pen(Color.Red, 3), _
New Rectangle (e.MarginBounds.X, e.MarginBounds.Y,
e.MarginBounds.Width, e.MarginBounds.Height))
e.Graphics.DrawRectangle (New Pen(Color.Yellow, 3), _
New Rectangle (0, 0, e.PageBounds.Width,
e.PageBounds.Height))
e.Graphics.DrawRectangle (New Pen(Color.Gray, 3), _
New Rectangle (e.Graphics.RenderingOrigin.X,
e.Graphics.RenderingOrigin.Y,
e.PageSettings.PaperSize.Width - e.Graphics.RenderingOrigin.X,
e.PageSettings.PaperSize.Height - e.Graphics.RenderingOrigin.Y))

The X and Y properties of the RenderingOrigin object are the sizes of the two non-printable
bands at the upper-left corner of the page. There are two equivalent bands at the page's lower-
right corner as well.

You've seen examples of printing simple graphics elements, such as text and rectangles, how
to take into consideration the page's geometry, and how to control the appearance of the
graphics elements on the page, especially the appearance of text. It's time to look at a few
more practical and interesting examples.

Printing Plain Text

Our first real-world example is a Print method for the TextBox control. We're actually
wondering, What good is a TextBox control without a method to print its contents? A
procedure that prints a text segment should be fairly simple, but it's not. As you will see, there
are various parameters you must take into consideration, and a robust text-printing mechanism
is a must-have tool for a developer. Most professional developers will purchase a third-party
tool that can generate elaborate printouts, but you may find a few good uses for a simple text-
printing tool.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The TextBox control uses a single font for its text, which simplifies our code immensely. To
demonstrate how to print text with the Framework's printing controls, we'll create an enhanced
TextBox control with a Print and a Preview method. If you were asked to suggest an
enhancement to the TextBox

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 179

Printing Tabular Data

In this section we're going to build another custom control by adding printing capabilities to
the ListView control. The ListView control is a flexible tool for displaying tabular data, but
like all other built-in controls doesn't provide printing capabilities. Another limitation of the
ListView control is that it can't break its contents into multiple lines when displaying data in
detail mode (which is the most common mode in typical applications). Figure 7.8 shows the
test form of the application and a Print Preview window with the control's data. The control's
data will be printed as shown on the preview window. Notice that the long lines that don't fit
in the control's cells are printed on multiple lines.

FIGURE 7.8 Printing tabular data with an enhanced version of the PRNListView control.

The PRNListView control exposes a single method, the Print method. The code picks up the
data as well as the formatting information from the control itself and prepares the printout,
which is displayed in the Preview dialog box first. The user can send the output to the printer
by clicking the Print button on the dialog box's toolbar.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In addition to the Print method, the control exposes a number of properties that allow you to

customize the appearance of the report. All of the enhanced control's property names start with
the prefix "Print"; they are as follows:

PrintBorderColor The color of the border around each cell.
PrintColumnPadding The extra space between columns (expressed in pixels).

PrintMaxCellLines The maximum number of lines in each cell. This property

prevents a cell with a lot of text from becoming too tall. Normally, the control fits
the text in its cell by breaking it into multiple lines.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 186

After printing a row, the program draws the horizontal line that separates it from the following
row. The vertical lines are printed last, because we need to know the vertical coordinate of the
last row on the page. The code isn't really complicated, but it's quite lengthy. We've inserted
comments to explain its operation and we hope you'll find these comments useful in
customizing the printing process.

A PrintScreen Utility

The last sample in this chapter is rather odd, in the sense that it uses API calls to capture the
screen (or the current window) and print it. I've received requests from readers in the past
about a simple technique to print a form. Obviously, many VB6 programmers used this
technique in the past and they need a quick mechanism to generate printouts of the current
window. Our recommendation is that you write code to generate proper printouts, as explained
in the preceding sections of this chapter. If you think a screen-printing utility suits you, use the
code of the PrintScreen sample application. Figure 7.9 shows the preview of a screen capture.

While printing the current form in VB6 was trivial, there's no simple mechanism in GDI+ to
capture the screen. The closest we were able to come to a screen-printing utility was to use the
BitBlt GDI32 function. This function can copy the bitmap from any device context onto any
compatible device context. We'll use it to copy the entire screen (or the current window) onto
an Image object, and then we will use the NET Framework's printing mechanism to send the
bitmap to the printer. The current window is not the active window on the desktop. By
"current window" we mean the form that contains the code. There's no simple mechanism to
capture a keystroke meant for another application, and our code can't print any other window
(the "active" window) on the desktop.

Start a new project, the PrintScreen project, and paste the function declarations from Listing
7.5 at the form's level. These are three API functions that we'll call from within our VB.NET
application.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 7.9 Printing the screen, or the current window

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 189

LISTING 7.7: THE PRINTBMP() SUBROUTINE

Private Sub PrintBMP ()
PD = New Printing.PrintDocument
Dim PGSETUP As New PageSetupDialog
PGSETUP.PageSettings = PD.DefaultPageSettings
If PGSETUP.ShowDialog = DialogResult.OK Then
Dim PP As New PrintPreviewDialog
PP.Document = PD
PP.ShowDialog ()
End If
End Sub

In the PrintPage event handler we print the bitmap by calling the DrawImage method of the
Graphics object. The code calculates the coordinates of the bitmap's upper-left corner so that it
will be centered on the page (regardless of the margins) and then prints the bitmap, with the
statements of Listing 7.8.

LISTING 7.8: PRINTING A BITMAP CENTERED ON THE PAGE

Private Sub PD PrintPage (ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PD.PrintPage
Dim img As Image = bmp
Dim X, Y As Integer
X = Math.Max (0, (e.PageSettings.Bounds.Width - img.Width) / 2)
Y = Math.Max (0, (e.PageSettings.Bounds.Height - img.Height) / 2)
e.Graphics.DrawImage (img, X, Y)
End Sub

Notice that this time we retrieve the page's width and height from the PageSettings. Bounds
property and we don't have to worry about the orientation of the page. In Listing 7.2 we used
the DefaultPageSettings property of the PrintDocument object to extract the coordinates and
dimensions of the printable area of the page, and we had to swap the width and height from
within our code to account for landscape orientation.

Summary

In this chapter we thoroughly discussed the printing capabilities of .NET. We've demonstrated
the printing process with practical examples, which you can use in your applications or extend
by adding more features.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 191

Chapter 8
Upon Reflection

REFLECTION IS ONE OF those new technologies that is described in various different ways by
various experts (rather like Web services). It's new, at least, to Visual Basic programmers.

And we cannot pretend that reflection isn't just a /ittle bizarre. Like recursion, it can involve a
kind of self-consumption—an esoteric process. Something about reflection isn't quite normal.

At its most elemental level, reflection means finding out details about the contents of
assemblies during runtime. And, like much in .NET, reflection has its antecedents in the C
language, specifically the Runtime Type Information (RTTI) feature of C++.

Reflection permits you to learn the type, and members, of an object, while a program is
running. But there's more: After you've discovered this information about objects, you can
then do something with your knowledge. You can use reflection to execute the discovered
methods, access discovered properties, pass parameters, and even generate, compile, and
execute new code during runtime.

What Use Is It?

What good is all that? Some cool tricks become possible. For example, with reflection you can
write code that will later (during runtime) consume objects that have not yet been designed. Or
you can defer making the choice of which methods to invoke until runtime.

Sometimes you don't know the context or environment that will be in effect during runtime.
One way to deal with this problem is to use reflection, thereby permitting your code to select

an appropriate method during runtime. Think of this use of reflection as an advanced form of
Select...Case.

Reflection can also be used to build custom object browsers, code—generators, sophisticated
self-commenting code, utilities that examine and secure compiled executables, and advanced,
dynamic debugging tools that facilitate runtime error trapping.

Understanding Types

The target of reflection is usually an entire assembly. The term assembly is new in VB.NET.
It's what was traditionally called an application—a collection of related "types" and resources
that do a particular job, such as word processing.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 194

Seeing Reflections

Before getting into some additional aspects of reflection, try it in some code. You first must
instantiate a Reflection. Assembly class and also access an existing assembly. There are
several ways to do this (as is usually the case in .NET—you can choose from a variety of
coding styles).

Accessing a Type

Probably the simplest example of reflection is accessing a single type (a class, in this case, and
in most cases). Add a TextBox to a new VB.NET Windows style project, change the
TextBox's MultiLine property to True, delete its default Text property, add a vertical scrollbar,
then type Listing 8.1 in.

LISTING 8.1: A SIMPLE EXAMPLE OF REFLECTION
Imports System.Reflection

Public Class Forml
Inherits System.Windows.Forms.Form
' Form designer code goes here

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim cr As String = ControlChars.CrLf

Dim t As Type GetType (puria)

TextBoxl.Text _
'"Here are the public constructors of the type " &
t.ToString & cr

Dim cinfo As ConstructorInfo() = t.GetConstructors ((BindingFl
BindingFlags.Instance))
Dim m As MemberInfo
For Each m In cinfo
TextBoxl.Text &= m.ToString &cr
Next m
TextBoxl.SelectionLength = 0 'turn off the default selection

End Sub

End Class

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 208
TextBoxl.SelectionLength = 0
End Sub
End Class

Public Class TestClass

Private Fieldl As String = ''5255"
Private Field2 As String = "Info goes here"
End Class

Executing Discovered Code with Createlnstance and Invoke

It's well and good to be able to thoroughly examine the types, members, and parameters within
an assembly. But reflection has two additional tricks up its sleeve. You can also execute
reflected code during runtime (as illustrated by the following example).

In the example in Listing 8.8, you provide the user with a list of methods in a ListBox. The
user clicks on that list, and you then ask the user to type in the correct parameters required by
the method they chose. Finally, you execute the method.

This illustrates how you can write a program that explores an unknown assembly (unknown at
least to you, the programmer, while writing your code). Your program explores the unknown
assembly, displays its classes and members during runtime, permits a user to choose among
the displayed items, tells them what parameters to pass, and then executes the code from
within the reflected classes.

Listing 8.8 ties together several of the techniques introduced throughout in this chapter. Start a
new VB.NET project and add a TextBox, a label, a ListBox, and a button. Then type this in:

LISTING 8.8: EXPLORING AN UNKNOWN ASSEMBLY
Imports System.Reflection

Dim t As Type = GetType (TestClass)

Dim obj As Object = Activator.CreateInstance(t)
Dim mInfo As MethodInfo

Dim 1 As Integer 'number of parameters

Dim paramInfo () As ParameterInfo

Dim cr As String = ControlChars.CrLf

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 213

However, imagine my excitement when I discovered the new Parse method. For a moment |
thought my dream had come true and this was the built-in way to parse a string. No. Instead,
they are using the term parse in a way it's never been used in English before. The Parse
method doesn't parse (examine, divide into components); it casts.

Whatever. You can use it to change a string into various numeric data types.

In this example, I merely check for string or int32 types. However, in a real-world application
you would include a Case to handle each possible data type that might be discovered as a
parameter in an unknown assembly.

Each parameter's correct data type is created and added to a parameter array (p) in this loop:

For Each s In split
'figure out parameter's variable type
Select Case paramInfo (C).ParameterType.Name
Case ''String" 'case sensitive
p(C) = split(C)
Case "Int32"
Dim NewInt As Integer = Integer.Parse(split(C)) 'turn string into integer
p(C) = NewlInt
End Select
C += 1
Next s

And, finally, you use the Invoke method to pass the array of parameters (p) to the instantiated
method (obj):

mInfo.Invoke (obj, p)

If there are no parameters to pass to an instantiated method, your job is easier. Just pass
Nothing:

mInfo.Invoke (obj, Nothing)

Emission

If you think reflection has a bit of a Twilight Zone quality to it, just wait until you find out
about its ability to emit code. The Reflection.Emit namespace contains facilities that
permit you to generate code at runtime. Yes, generate code.

It's not VB.NET source code; it's Intermediate Language (IL), so the drawback is that you
have to use a kind of opcode (assembly language) low-level programming. It's so specialized
that few of us are likely to learn the language in order to emit. It features the usual assembly-
language specificity, though in fact most of the instructions in this language should be familiar
to you (the usual features

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 214

of any programming language: looping, branching, moving and editing data, and so on, along
with low-level techniques such as stack management):

ILang.Emit (OpCodes.Ldarg 1) 'load 1 or O from the stack
ILang.Emit (OpCodes.Ret)

The .NET compiler translates your VB.NET source code into MSIL (Microsoft intermediate
language), a sort of Esperanto that can be converted to CPU-specific native code later, prior to
execution in a specific environment. The .NET CLR (Common Language Runtime) includes
JIT compilers for every supported environment. MSIL is converted to native code just in time
to be executed.

In addition to MSIL code, emission (like the .NET compiler) also produces associated
metadata—type definitions, signatures (parameter lists) for members, and so on. MSIL code,
combined with its metadata, is sent to a file—a "portable executable" (PE) file.

Emission is, well, a rather specialized technique, to say the least. (I expect some of you may
even consider it a bit twee.)

You can generate types during runtime using the Builder classes within the Emit namespace.
These classes, including MethodBuilder and AssemblyBuilder, emit MSIL code.

If you are interested in code that generates code, you have to explain to people why. How
would you use it? There are some security applications I can think of (whenever you move
toward greater abstraction, you decrease the number of people who can figure out what you're
doing). Also note that VB.NET itself uses code-generating-code in various ways. You find it
in wizards, in ADO.NET (for example, to transform a DataSet into a serialized XML version),
and in the text processing available via regular expressions, among other locations in the
framework.

If this interests you, you can find many tools (such as the ILDasm, an MSIL Disassembler)

and lots of documentation in the .NET help system and in the SDK. Look in C:\Program
Files\ Microsoft Visual Studio .NET 2003\SDK\vl.1\Tool Developers

Guide\docs\StartDocs.htm. You'll find extensive documentation there covering the
Common Language Infrastructure (CLI), and the huge IL it contains.

Summary

In this chapter you discovered what the technique of reflection does, and how it does it. You
also saw how reflection interacts with security issues and how to manage the results sent back
when reflection is used against various kinds of targets.

You saw how to filter reflections and how to access loaded assemblies. Also covered was the
somewhat perplexing terminology currently in use to distinguish the various kinds of types
(arrays, modules, enumerations, structures, interfaces, and value types). Beyond that, another
level of abstraction and categorization was discussed (the differences between the terms
assembly, solution, project, module, and namespace).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Finally, you learned about discovered code, Createlnstance, and Invoke. And the idea of code
emission was discussed. If you suspect that reflection might be a technique of use in your
programming, this chapter's example code and discussions should have provided you with a
good launching pad to further exploration of this intriguing new technique.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 215

Chapter 9
Building Bug-Free and Robust Applications

YOUR BASIC TASK, As a developer, is to write functional, robust applications. To write
functional applications, you must keep the interface as simple as possible, use your common
sense, and listen to the users. If you take the users' comments into consideration while
designing your application's interface, you will produce a functional application. You should
also carefully examine similar applications; keep the good ideas and make sure you don't
repeat the mistakes of others. The design of functional applications can't be taught. If you've
been around in this field for a while, you already know that this is an acquired skill and there's
no substitute for experience. Younger developers tend to make their applications more
complicated than they should, simply because they think that users will appreciate a brilliant
piece of code. It took most of is quite a while to learn how to "keep it simple."

Writing robust applications, on the other hand, is not as hard. While writing functional
applications is an art, writing robust application is a technique and it can be taught. It takes a
lot of code, but it's well within the average developer's skills. A robust application is one that
will continue its operation under adverse conditions. The most typical such condition occurs
when users supply the wrong data. Users will enter data that defy any logic and your code
should be able to handle them. At the very least, the application shouldn't crash. Your
application may discard some of the user-supplied data, but it shouldn't terminate without a
good indication of what went wrong. If possible, you should give users a chance to correct
their mistakes. At the very least, your application shouldn't terminate without giving users a
chance to save their data.

In this chapter we'll discuss structured exception handlers, which allow you to write robust
applications that execute gracefully even under unforeseen conditions. The goal is to write
applications that can handle everything users throw at them, as well as cope with unexpected
situations beyond the program's control. To handle user errors, we provide extra code that can
handle situations that throw off the "regular" code ("regular" code being all the statements that
process perfect data).

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 231

the Common Language Runtime Exceptions section of the Exception window. You can
choose an exception in the upper window of the dialog box and specify how the Debugger will
handle it in two frames near the bottom of the dialog box. The options in the upper frame
determine how the debugger will react to an exception as soon as it's thrown and before your
code is given a chance to handle it through the appropriate exception handler. The options in
the lower frame determine how the debugger reacts when an unhandled exception is thrown.
The options you set in the two frames affect the selected exception, and you can handle
different types of exceptions differently. The option "Break into the debugger" breaks the
execution of the program as if there were a break point on the statement that caused the
exception. The option "Continue" allows the application to continue its execution. If the
statement that threw the exception is in a structured exception handler, the handler will be
activated. The "Use parent setting" option handles the exception as it would handle an
exception of the parent category (if there is one). Notice that you can add your custom
exceptions to the list of exceptions with the Add button.

FIGURE 9.3 The Exceptions dialog box

If an error occurs in an error handler's code, you can retrieve the statement that caused the
initial error with the InnerException property of the Exception object.

Debugging Techniques

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In addition to handling user mistakes, you must also handle your own mistakes. How many
times did you write code that contains no syntax errors, executes fine, but doesn't produce the
correct results? It's happened to everyone who has written some serious code. Your code
contains logical errors, which you must identify and then fix. When you're dealing with logical
errors, you must step back and reevaluate your algorithm. Make sure that you're using the
proper steps to get to the desired result. The algorithm is usually correct, but in most cases it's
not implemented correctly.

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 241

FIGURE 9.8 The Call Stack window

Summary

In this chapter you learned how to write robust applications that can handle user errors or
abnormal conditions that may never occur in the design phase. These conditions cause runtime
exceptions, which you must handle from within your code by inserting the appropriate
exception handlers. A professional-grade application should be robust, which means that you'll
have to write more code to handle exceptions than to actually perform useful tasks.

You also learned the basics of the integrated debugging tools, which allow you to locate logic
errors in your code and make sure that your application works correctly, even in the absence
of exceptions. How many times were you absolutely convinced that your code was correct, but
users discovered bugs in your code? It's been said that if builders built homes like
programmers write code, the first woodpecker that came along would have destroyed our
civilization. On the other hand, we can afford to experiment and make mistakes because our
computers are so fast and there are so many tools to help us write better code.

All debugging tools are based on a simple premise: the code that fails should be executed one
statement at a time and we should be able to examine the effect of each statement. We can
view how each statement affects the variables in its scope, execute statements outside the
application, and monitor the progress of the application.

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 243

Chapter 10
Deploying Windows Applications

ONE OF LAST PHASES in an application's development cycle is the deployment process. While
developing, testing, and debugging an application, many developers suddenly realize that they
must deploy their application to a number of workstations. If you don't think of the
deployment process while you're developing your application, you may run into surprises
when you attempt to install the application on another machine. As you code the application,
you make changes to the development environment. You may install a peculiar font (an OCR
font, for example), use icons from the folder in which they exist, install custom components on
the development machine's global assembly cache (GAC), and so on. When the application is
deployed to a target machine, it may not find a drive or folder that existed on the development
machine, or a component that's not installed in the target machine's GAC.

You should always keep in mind that your application will be distributed to other people's
workstations. If you're using icons, for example, place them first in a folder under the project's
Bin folder and then use them. Distribute the folder with the icons along with the application's
executable files, to make sure that your code will find the icons. In addition, you should decide
on your deployment method early in the process and deploy the application to a production
machine from time to time. Production machines are set up differently than development
machines, and you'll be surprised how often an application that works as expected in the
development environment misbehaves when installed on a production machine. The problem
is usually simple to resolve (most often components that have been installed on the
development machine, but not on the target machines), but you shouldn't postpone the
deployment problems to the very end of the cycle.

In this chapter we're going to explore the various deployment techniques for .NET
Windowsbased applications. There are two common deployment scenarios:

Applications that will be distributed in a corporate environment
Applications that will be distributed to the general public

Most developers write applications that will be used within their corporation, and we'll focus
on a technique for deploying applications in a fairly controlled, trusted environment. You'll
also learn how to create setup programs to distribute your .NET applications to the public.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Team Fly Presious Mexd

Page 244

Another related topic is that of upgrading applications that have already been installed on the
target computer. Let's say you have written and deployed an application to a large number of
users throughout your corporation. What happens when you need to update the application?
Do you distribute a new setup program and ask your users to run it? It's inevitable that while
some users will be running the new version, others will still be running the old one. If you
upgrade the application (or some of its components) several times, it's certain that most
versions of the application will be in use at your company. We will address the issue of
upgrading an existing application in our discussion.

Installing the .NET Framework Runtime

The client computers to which you're going to deploy your .NET applications must have the
NET Framework runtime installed. If not, the application won't run. To install the .NET
Framework on the target computer, you must run the Dotnetfx.exe setup program. You can
obtain this file from Microsoft and deploy it with your applications. This file is an installer that
contains the Common Language Runtime and .NET Framework class libraries necessary to
run .NET Framework applications. You can find this file on the Visual Studio CDs (it's on the
NETF ramework SDK CDi in the \dotNETRedist dlrectory) or download it from Microsoft at:

hﬁp[&mmmndmmpdale&gm (Keep in mlnd that both of these hnks may be 1nvahd by the
time you're reading this book, so you should search the MSDN site).

Installing the .NET Framework takes a few moments, but it's an unattended process and it will
either install the Framework successfully or will fail and the original computer configuration
will be restored. You can install the NET Framework on Windows 98 computers and your
applications will also work under this pre-.NET operating system. The next version of the
Windows operating system will come with the NET Framework preinstalled. This will
simplify the deployment of .NET applications even more (ignoring the fact that we'll have to
deal with updates in the .NET Framework itself).

To install the NET Framework on a client computer, the user must log on with administrator
privileges. This isn't usually the case in a corporate environment, so it's best to leave this task
to the system administrator, who can install the NET Framework on all client computers using
the Systems Management Server. You can also install the .NET runtime files silently, along
with your application. The process is described in detail in the documentation (search for the
item Redistributing the .NET Framework).

In the following sections we're going to look at the deployment methods for Windows forms-
based applications, starting with the XCopy method, which is as simple as copying the
executable files from the development machine to the production workstations. This is a very
basic deployment method that can be used with simple applications—and it's a seriously
limited deployment method, because it doesn't allow you to perform custom actions, such as
installing a shortcut on the user's desktop, or a new font on the target computer.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The deployment method we'll explore in detail is the Internet-based deployment, or no-touch
deployment, which is ideal for corporate intranets. The application's files are copied to a
virtual directory of the web server and users can run the application by pointing their browser
to the application's URL.

The last deployment method is to create a Windows installer package, distribute it to the target
machines, and ask users to run the Setup program, which will install the application and
integrate it

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 245

with the user's environment (create shortcuts, add entries to the Registry, request product
registration, and so on). Programs installed through Windows installer can later be removed
through the Add Or Remove Programs snap-in of the Control Panel.

XCopy Deployment

Once the .NET Framework runtime has been installed on a client computer, you can deploy an
application by copying its files to the client computer. Simple applications consist of just an
EXE file. Large applications may contain DLL files with custom components. The good news
is that you don't have to register the DLLs and worry about versions. The DLLs are copied
along with the EXE and you can have different versions of the same DLL running side-by-
side. Different versions of the same DLL reside in different folders, along with the version of
the application that uses them. You can even install different versions of a DLL in the GAC,
where applications look for a DLL if it's not in their path.

This type of deployment is called XCopy deployment, because the application is installed on
the target machine by simply copying the files in the application's Bin folder (and any
subfolders with custom files that may exist in this folder) to the target computer. No
components are registered and no changes are made to the target computer's file system. To
remove the application, you simply delete the folder and no trace of the application will
remain on the computer—except perhaps for a shortcut the user may have created on the
desktop. You can also install multiple versions of the same application, which can run side-by-
side. Each application folder contains its own DLLs and dependencies and they won't interfere
with one another. The fact that DLLs are treated as application files and need not be registered
at the client computer may bring an end to the situation known in pre.NET days as DLL hell.

If a component is going to be used by multiple applications, we usually place it in the GAC.
To install a DLL in the GAC, open a Command Prompt window, switch to the folder that
contains the DLL, and execute the following statement:

cagutil -i component.dll

To uninstall the same component, call the cagutil with the -u argument. When using XCopy
deployment, it's a good idea to avoid the GAC, because you must remember to install the new
version of each component to each client's CAG. If you decide to create an installer package to
distribute your application, you can automatically install components to the GAC from within
the installation project.

As convenient as this method of deployment may sound, it's not flexible at all, and can't be
used with anything but the simplest projects. You can't even create a shortcut on the target
computer's desktop; users will have to do so manually. If your application needs to install a
component at the GAC, or install a new font to the target computer, then you can't use this
deployment method. You must resort to a setup project that will install the application to the
target computer and perform custom actions.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

XCopy deployment eliminates the update problems as well. To deploy a newer version on the
client machine, just copy the new files over the existing ones. The next time the user on this
client runs the application, they will see the new version of the application. Of course, if you
copy the files to a different folder, both versions of the application will coexist on the client.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 246

Internet Deployment

This type of deployment is new to .NET and you'll find it extremely convenient if you're
working for a company that uses an intranet. Internet deployment is also known as no-touch
deployment, because you don't have to install the application on the target machines. Users
can connect to a web server and download the application to their workstations, where it will
be executed. It's also known as zero-install and zero-administration deployment, and we'll
explain why immediately.

The problem with installers is that every time we make a change to the application, we must
create a new installation project and redistribute the application to all clients. Deploying an
application to hundreds of user desktops is a nightmare for system administrators, which
explains the popularity of Web applications. Web applications run from a web server, and no
components need be installed on the client computers. However, a browser-based application
can't offer the rich user experience of Windows forms applications. A WebForm can't provide
immediate feedback to user actions as Windows forms can, and WebForms make numerous
trips to the server. With no-touch deployment, we can simply copy the files generated by the
compiler in the application's Bin folder to a virtual folder on the company web server and be
sure that all clients will see the latest version of the application. In short, no-touch deployment
combines the best of Windows forms— and WebForms—based applications. The executables
are downloaded to the client where they're executed, while no components are installed at the
client.

Internet-based deployment eliminates the problem of distributing upgrades. You can simply
replace the original executables on the web server with the newer ones, and the next time a
user connects to the application, they will see the new version. If you're developing an
application in a corporate environment, this type of deployment is your best option, because
you can upgrade your application on all desktops with zero downtime. You'll never have to
ask users to stop their applications and install a newer version. The worst-case scenario is that
you may have to ask users to exit the application and restart it.

To run an application from a web server, users must start their browser and enter the URL of
the application's main executable file on the server. Alternatively, you can create a simple web
page with a hyperlink to your application and ask users to connect to this page's URL. If your
company runs an intranet and users connect to a starting page every morning, you can place
the hyperlink to this page.

Note that users need not start their browser to connect to an application deployed through a
web server. They can create shortcuts to the URL of the application on the desktop and start
the application by double-clicking this shortcut. When the shortcut is double-clicked, the
browser's window comes up for a moment and then the application's form will appear.

With this type of deployment, the application's files are copied to the download cache of the
client, from where they'll be executed. Every time the user starts the application, the CLR
compares the hashcode of the application in the local cache to the hashcode of the application
on the web server. If they're the same, the application is started from the cache. If not, the CLR

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

downloads the newer version from the web server to the cache and then executes it. As you
will see, it's possible to download components from within the application, a technique that
allows you to download components on a separate thread while the application is running.
Practically speaking, you aren't going to use this type of deployment unless you know that all
clients have a high-speed connection to the server. This means that new components won't
take long to download to the client, so you expect users to wait for a few moments to
download the newer version of an application (or component) from time to time.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 259

The following code segment shows how to download the NoTouchDeployment project's EXE
file to the client, then extract the application's main form and display it:

Dim appURL As String = ''http://localhost/NWEmployees/NoTouchDeployment.exe"
Dim asm As [Assembly] = [Assembly].LoadFrom (appURL)

Dim formType As Type = asm.GetType ("NoTouchDeployment.Forml")

Dim objForm As Object = Activator.Createlnstance (formType)

Dim Forml As Form = CType (objForm, Form)

Forml.Show ()

Notice that the name of the Assembly class is embedded in a pair of brackets, because
"assembly" is a reserved word in VB. Strangely, it's not used, but it's a reserved word. The
assembly could be an EXE or a DLL. What this short code segment demonstrates is how to
start an application from within another application, even though none of the applications lives
at the client.

Deploying with Windows Installer

The last option for deploying .NET applications is the most advanced one and involves the
generation of a setup project, which users must run on the client machines to install the
application. This is also the most professional method of deploying an application, and it's the
only option for distributing an application to the general public. Using the Windows Installer
we can create shortcuts on the user's desktop, add items to the user's Programs menu, provide
custom dialog boxes to customize the installation process, and do a lot more. The setup
program is a bootstrap application that opens an MSI package and installs the application and
its components on the client computer, according to instructions embedded into the package at
design-time.

Creating a simple Windows installer package with Visual Studio .NET is a straightforward
process, because the setup project can be part of the same solution as the application for which
the package is created. In earlier versions of Visual Studio, setup projects were created with a
tool outside Visual Studio. Creating a flexible installation program for a large application may
become quite a task, but at the very least you can design and test the setup project in the IDE
of Visual Studio.

A Windows installer package is a database with all the data needed to install the application.
The information stored in the database remains at the client, and you can run the setup
program again to either repair or uninstall the application. Every application installed at the
client computer with the Windows installer package is assigned an item in the Add Or
Remove Programs snap-in; and this is how users repair or remove applications from their
machines. Figure 10.10 shows the Add Or Remove Programs snap-in window after the
installation of the NWOrder application. If you click the Support information hyperlink, you
will see the Supportinfo window, which is also shown on the same figure. This is the
application for which we'll create a Windows installer package to demonstrate the process of
deploying a Windows application with a setup project.

To demonstrate the process of deploying an application through a Windows installer package,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

we'll build a setup project for the NWOrders application. This is one of the sample
applications we'll explore in detail later in this book. The NWOrders application lets you
create orders for the North wind database. Users can specify the products to be added to the
order either by their ID, or by their name. The selected products are added to a ListView
control along with their prices, quantities, and discounts, and the order is committed to the
database when the Save button is clicked. Figure 10.11 shows the main form of the NWOrders
application.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 270

You should experiment a little with the custom dialog boxes to get exactly what you want.
Look up the default appearance of each custom dialog box in the documentation and then
adjust them through their properties. The custom actions you can take based on the user's
choice(s) on these custom dialog boxes are quite limited. Some of the dialog boxes allow you
to start a custom application. The Register User dialog box, for example, has an Executable
property, which you can set to the name of an EXE file. When the user agrees to register the
application, the executable is invoked automatically. The Register User dialog box also
exposes a property named Arguments, which you can set to a string with arguments to be
passed to the executable that will handle the user registration.

Summary

In this chapter you learned the basics of deploying Windows forms applications. The new
deployment technique is the Internet-based deployment, which makes the deployment of
Windows forms applications as simple as the deployment of WebForms applications. With
this type of deployment, nothing is installed at the target machines; applications are
downloaded to the clients from a web server and executed. When the application is upgraded,
the clients will detect the newer versions at the web server and will download them
automatically. Internet-based deployment is also known as no-touch deployment and zero-
install/zero-administration deployment, which indicates the expectations of Microsoft for this
type of deployment.

Internet-based deployment is a very convenient deployment mechanism in corporate
environments, but you have to deal with security issues. As far as the client is concerned, the
application is downloaded from the Internet and as such it will be executed in a context of
seriously limited privileges. Use the Microsoft .NET Framework Configuration to give the
application the proper privileges. If the application doesn't interact with the local resources,
then you don't need to assign additional privileges to the application. Web applications don't
interact with the local computer's resources and you don't have to fiddle with their security
settings. However, if you want to provide a rich user experience by making the most of the
client, you must request that your application is executed with additional privileges. Because
of this, the Internet-based deployment is best suited for applications that are deployed within a
corporation.

The classical deployment method that relies on Windows installer has become a lot more
flexible than those with previous versions of Visual Studio. The setup project is part of the
solution and you can set up the installation actions with point-and-click operation in the IDE.
We've explored the basics of creating Windows setup projects, which should be all you need
to deploy an application within a corporate environment.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 271

Chapter 11
Building Data-Driven Web Applications

THIS CHAPTER COVERS THE primary new tools—especially server-side controls such as the
essential DataGrid—that make creating database-connected web pages a pleasure to program.
If you've struggled with the task of attaching databases to websites in the past, you'll
appreciate how much work .NET's tools and controls do for you, and how quickly you can
build an effective solution.

First you'll read an overview of the important new advances that make .NET Internet-database
programming so much more efficient than previous technologies. Then you'll see how to best
make use of the DataGrid, DataList, and Repeater controls. You'll next see how to handle
post-back and validation. Finally, you'll find out how to send graphics and when you would
perhaps want to revert to old-style HTML controls, rather than the new .NET WebForm
controls. Now, on to the overview of the advantages of .NET's approach to creating database-
driven web pages the easy way.

New Features in ASP.NET

The .NET database features integrate well with its web page features. Both ADO.NET and
WebForms offer high-level tools, rapid application development elements, and programmatic
support for hooking up Internet browsers to databases.

In addition you'll find up-to-date special capabilities, such as the capacity to translate database
tables into XML and vice versa. Life has become much easier for the Internet programmer,
thanks to ADO.NET and ASP.NET.

There's no point in reviewing the mind-numbing struggles of the past few years as developers
wrestled with e-commerce "solutions" that involved tedious client-side scripting (often either
blocked for security reasons or the victim of browser incompatibilities), ActiveX, JavaScript,
and other attempts to bridge the gap between databases and web pages. ASP.NET gives you a
full server-side language that, along with client-side scripting, security via compiled code, and
other features, makes our work far less wearisome.

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 273

The client's browser accepts this composed HTML, of course (though it would likely reject an
executable object, such as a traditional ActiveX control, for security reasons). In this way, a
relatively sophisticated user-interface is created in the client browser—sophisticated compared
to traditional HTML GUI controls such as a Submit button. When the user interacts with their
browser, the results are posted back to the server, which can then send a response to the client.
In this way, rich client controls are made available, in spite of the usual security and
bandwidth problems. The server control solution is effective for most kinds of GUI. Server
controls are also browser agnostic, so the few remaining users of Netscape products can see
the GUI too.

If you have any doubts about the efficacy of server controls, compare the more flexible,
sophisticated visual and user-interaction features of the DataGrid (discussed later in this
chapter) with the rather poor features of the traditional HTML table. If you want to display
data in browsers, the DataGrid is clearly the superior choice.

Displaying Data on a WebForm

For the first example in this chapter, let's see how to use the code-behind feature of the .NET
WebForm to make a connection to a database, then display some of its fields on the client
browser. This example involves no server-side controls; it's simply directly written on the
user's browser with the HTML Response.Write command.

Start a new VB.NET ASP.NET Web Application. Double-click the WebForm to get to the
code-behind window (by default it's named WebForm1.aspx.vb).

Add these two Imports statements to the top of the code window:

Imports System.Data
Imports System.Data.SglClient
Then type Listing 11.1 into the Page Load event.

LISTING 11.1: CONNECTING TO A DATABASE

Private Sub Page Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim conString As SglConnection = New SglConnection _
('"'Data Source=localhost;Integrated Security=SSPI;Initial Catalog=puk
conString.Open ()

Dim SQLc As SglCommand = New SglCommand ("SELECT * FROM Author
Dim datReader As SglDataReader = _
SQLc.ExecuteReader (CommandBehavior.CloseConnection)

While datReader.Read
Response.Write (datReader.GetString (1) & ", ")
Response.Write (" " & datReader.GetString(2))
Response.Write (" --- " & datReader.GetString(3))

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 282

ListBoxl.DataSource = MyArray
ListBoxl.DataBind ()

Else ' it is a postback, so process the user's click
Response.Write (''You clicked: " & ListBoxl.SelectedItem.
End If
End Sub

Here you only need to fill this ListBox the first time you send the page to the user. So 1f Not
IsPostBack Then makes this decision. If the user is sending a postback, the ListBox remains
filled, but now you have to react to the user's click.

Validation

Users have been known to enter all kinds of wrong input, including zip codes for area codes,
their date of birth in reverse Polish notation, and their mother's maiden name for their favorite
pet. There's not much you can do to detect that last one—pet names cannot easily be
distinguished from maiden names—but most user input can be screened before adding it to a
database or using it to fulfill a catalog order.

If they're ordering a shirt and they type in 125 as their neck size, you can politely request that
they revise this measurement. If they type in nine digits for an area code, you can respectfully
suggest that they try, try again.

You can validate user input either programmatically or via the new .NET validation controls,
as described in the following sections.

Programmatic Validation

There are various ways to programmatically validate user entries, but one of the most useful
involves Regex, a complex language for various kinds of text management. In general, you
don't want drive yourself barmy by trying to construct regular expressions yourself—there's
nothing regular about them.

However, they can come in handy, so to use them just locate libraries of pre-written
expressions on the Internet, or examples in VB.NET Help. I located the following mind-
bender in Help. It determines whether or not a string is a valid e-mail address. Here's what it
looks like:

"M \w-NL T4 @
21{2,4}1[0-9]

T{1, 3N [0-91{1,3I\.[0-97{1,3I\.) | (([\w=]1+\.)+)) ([a-zA-"
?)S
See what [mean?

This next example illustrates another way to interact with the user via the middle tier. Add
Imports System.Text.RegularExpressions to the code window. Put a button and a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

TextBox on a WebForm. The user enters an e-mail address in the TextBox, then clicks the
button. Change the Text properties of these controls so they look like this:

TextBoxl.Text = "Please enter your email address..."
Buttonl.Text = "Click to wvalidate"

Then type Listing 11.5 into the button's Click event.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 286
Sending Graphics

You can provide handsome backgrounds or dynamically generated graphs and other quick-
response images using the new Response.Outputstream property. You can use this property to
transmit a variety of different kinds of binary data to the client. In this example, you build a
graphic using the powerful new GDI features in .NET, then you serialize the graphic to the
Stream object returned by the Response.Outputstream property. Listing 11.6 generates the
gradient and the Bezier curves shown in Figure 11.5:

LISTING 11.6: USING RESPONSCE.QUTPUTSTREAM FOR RAPID GRAPHICS

Imports System.Drawing
Imports System.Drawing.Drawing2D

Private Sub Page Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

'set format
Dim b As New Bitmap (300, 500, Drawing.Imaging.PixelFormat.Format32bpr
Dim g As Graphics = Graphics.FromImage (b)

'build gradient

Dim rect As New Rectangle (0, 0, 300, 500)

Dim bl As New LinearGradientBrush (rect, Color.DarkGoldenrod,
Color.PaleGoldenrod, LinearGradientMode.ForwardDiagonal)

g.FillRectangle (bl, rect)

'superimpose Bezier whip curves
Dim pl As New Point (54, 12)
Dim p2 As New Point (212, 122)
Dim p3 As New Point (134, 129)
For 1 As Integer = 10 To 400 Step 100
g.DrawBezier (Pens.BlueViolet, pl, p2, p3, New Point (i, 5C
Next i

'blank current contents and specify jpeg as response type
Response.Clear ()
Response.ContentType = ''image/jpeg"

b.Save (Response.OutputStream, Imaging.ImageFormat.Jpeq)

g.Dispose ()

b.Dispose ()

Response.End ()
End Sub

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 287

FIGURE 11.5 Send generated graphics or any binary data directly to the client browser.

This technique is not for a typical web page that the user would simply surf to via hyperlink or
such. Just use an Image control for that kind of graphic. Instead, this is a page that is a
response to a user query, and it is dynamically generated—not some graphics file that you're
sending or embedding in a web page. Use this technique to, for example, generate a histogram
out of the sales figures stored in a database. This on-demand graph could be quite useful to the
traveling salesmen in your company: they could see at a glance, on a real-time basis, their
current status relative to their competition. This feature transmits binary data, so it's not
limited to graphics. Indeed, I could send this Word .doc file.

Using HTML Controls

So far you've worked with WebControls in this chapter, but it's possible that in some situations
you might want to resort to the old-style HTML controls located in a separate tab on the
Toolbox. For most situations, the WebControls are preferable, if for no other reason than they

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

permit you to easily integrate VB.NET via the code-behind process. Also, if you've ever tried
to manage GUIs within HTML, you'll recall that it's confining, to say the least. All the HTML
controls' functionality is available in equivalent, but usually more powerful and efficient,
WebForm controls (WebControls). The only exception to this is the File Field control, which
you can use to have the client upload a file to your server.

Both WebControls and HTML controls have an attribute collection, but WebControls are
simply far richer than HTML controls. WebControls have a full set of properties and also
feature a consistent and type-safe object model—consistent meaning that if you know how to
set a BorderStyle

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 288

property in one WebControl, you know how to deal with it in all WebControls. WebControls
also sometimes offer high-level abstractions that have no HTML equivalent; the Calendar
control is one example.

HTML controls can be useful, though, if you have to maintain or revise an existing ASP or
HTML page. This approach might be simpler than translating the pages into.NET
WebControlbased WebForms. HTML server-side controls either contains the
runat="'"'server" attribute or are enclosed with a form element that itself has the runat
server attribute, like this HTML password control:

<form id= "WebForml" method== "post" runat= "server" >
<input

type=password>

</form>

Should you want to compel an HTML control to execute server-side like a server control,
right-click the control in the design window and choose Run As Server Control. The Button
control, for example, defaults to client-side execution.

Summary

This chapter explored the novel features that ASP.NET and ADO.NET bring to the previously
formidable job of building data-driven websites. The chapter begins with a survey of the
several problems solved by using web pages in concert with server-side controls such as the
powerful, flexible DataGrid. You saw how using server-side controls to compose HTML
pages for transmission to client browsers solves issues as disparate as security and bandwidth.

This chapter describes how to use various WebForm controls such as DataGrid, DataList, and
Repeater. You also saw how to employ templates, deal with postback, and handle validation
(both programmatic and control enforced validating). A technique for efficient graphics
transmission was discussed. Finally, we covered a couple of reasons why—in spite of the clear
superiority of server-side controls—you might want to occasionally revert to using legacy
HTML controls instead.

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 289

Chapter 12
Peer-to-Peer Programming

TODAY'S APPLICATIONS ACCESS RESOURCES on remote servers, and the Internet is becoming an
extended network that allows us to reach any computer (almost) as if it belonged to our local
area network. We want to access information wherever it exists—retrieve the most up-to-date
information and process it as needed, and where it's needed. New technologies, such as Web
services, allow us to easily expose information to other systems, or consume information from
remote systems.

Even Web applications are not always limited to a browser connected to a web server. You
can write a Windows application that contacts a web server and downloads one or more files
to process locally. It's also possible to upload files to the web server, as long as you specity the
name of an application that runs on the server and knows what to do with the uploaded files.

The .NET Framework provides a number of tools for exposing objects to remote systems, as
well as for consuming objects on remote systems. In addition to the new tools, Microsoft has
enhanced the traditional tools for peer-to-peer programming. Sometimes we don't need to
expose our data to the world, just to specific remote systems. To enable two computers to talk
to each other, you must use the System.Net namespace, which exposes the required
functionality. In this chapter we explore the System.Net namespace and we show examples of
peer-to-peer programming. You'll see how to write applications that run on two different
computers, contact one another, and execute commands on the remote computer. These
applications are written in pairs and they allow you to determine how the two computers will
exchange information. You can use your own encryption techniques to protect your data, use
custom authentication techniques, and have complete control over the flow of data between
the two machines.

Internet Addressing

Before we start our exploration of sockets and peer-to-peer programming, we'll briefly discuss
the System.Net.Dns class, which simplifies the task of addressing computers on the Internet.
You're probably familiar with the topics of this section, but we'll repeat a few basic terms for
the sake of VB programmers who are new to Internet programming.

Every computer on the Internet is identified by a unique address, known as the IP address. The
IP address is a long number that is written as a group of four numbers, each one in the range of
0

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 292

Aliases property This property returns (or sets) a list of aliases associated with a
host.

HostName property This property returns (or sets) the friendly name of the host.
The System.Net.Dns class exposes a few methods to manipulate computer
addresses, which are:

GetHostByAddress(IPAddress) method This method accepts an IP address as
argument and returns an [PHostEntry object. On my computer, the statement

Console.WritelLine (GetHostByAddress (''127.0.0.1") .HostName)

returned the string "PowerToolkit." The GetHostByAddress method will return a
hostname if the client with the specified address is on the same local network, or if
it belongs to network with a registered name.

GetHostByName(hostname) method This method accepts a hostname as argument
and returns the host's IP address. The following statement will return your
computer's IP address, if you change the hostname to your computer's hostname:

Console.WritelLine (System.Net.Dns.GetHostByName (
"myHost") .AddressList (0))

If you're on a local area network and the Internet at the same time, the
IPAddressList array will have multiple elements (multiple IP addresses).

Resolve(hostname) method This method accepts as argument an [P address or a
hostname and returns an [PHostEntry object that represents the host. The argument
can be either a friendly name (like "PowerToolkit" or "www.domain.com") or an IP
address.

Now we can switch our attention to the classes for peer-to-peer programming, starting with the
concept of sockets.

Using Sockets

At the lowest level, network programming consists of programming with sockets. Sockets are
an old concept in network programming and they represent input points at a system, where a
remote system can connect and make requests. There are many types of sockets, but the most
common ones are the Internet sockets, because they deal with Internet addresses. Internet
sockets come in two flavors: UDP (User Datagram Protocol) sockets (also known as Datagram
sockets) and TCP (Transmission Control Protocol) sockets. The difference between the two is
that UDP sockets are connectionless. Every time you need to send data using a UDP socket, a
new connection to the remote machine is established. The connection is closed automatically
when the data arrives at the remote machine. Every package of data is independent of the
others, because it carries in its header all the information needed for its delivery.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

TCP sockets require that a link between the two computers be established before they start
exchanging data. The advantage of TCP sockets is that they're more reliable than UDP
sockets. Packets sent through a UDP port may arrive in different order than the order in which
they were sent. Moreover, a UDP packet may be lost without any indication. The sending
machine will not receive a positive or

Presious Mexd

Team Fly

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 300

TCPSocket.Close ()
End If
End If
End Sub

The Socket object exposes asynchronous versions of its methods. They're the BeginListen,
Begin-Accept, and BeginReceive methods, which initiate the appropriate action in
asynchronous mode. You need to implement AsyncCallbacks to intercept and process the
event of the completion of the operation. However, most typical applications use the
TcpListener, TcpClient, and UdpClient classes. These classes abstract the operations of the
two types of connections and simplify coding. However, a basic understanding of sockets and
the basic principles demonstrated in the previous sections are necessary to use the classes that
are specific to a protocol.

Because the TCP protocol is inherently more reliable than the UDP protocol and is also used
more often, we're going to demonstrate how to use the TcpListener and TcpClient classes to
build a chat application.

The TCPChat Application

In this section you'll build a fairly advanced application that allows multiple remote clients to
engage in a chat. Figure 12.3 shows the server and a few clients of the application. Each client
joins the conversation by establishing a connection to the server. Once the client is connected
to the server, it sends messages to the server. The server displays the incoming messages on a
TextBox control on its own interface and then broadcasts them to all clients. Once a message
arrives at a client, it's displayed on a TextBox control, along with the name of the person who
sent the message. As each client establishes a connection to the chat server, it also establishes
a username for the session.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 12.3 The TCPChat server and clients

Team Fly Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 308

Interacting with Web Resources

Another group of classes in the System.Net namespace handles the interaction with web
resources. The WebClient class provides the functionality needed by a Windows application to
interact with a web server: retrieve HTML pages or files and upload files to the server. The
WebClient class is very simple and supports synchronous operations only. However, it
abstracts the details of accessing a web server and makes the process of exchanging files with
the web server as simple as reading from, or writing to, a local file. The WebClient class
provides methods for exchanging information with a web server through streams, similar to
accessing local files.

The WebClient class is part of the System.Net namespace, which you must import to your
application. Then you can create instances of the WebClient class and call its methods. A
WebClient object need not establish a connection to the web server explicitly; you just specify
the desired URL when you request a document, or when you want to upload a document from
the local computer. Because of this, using the WebClient class is almost trivial, and its
functionality is exposed through a small number of methods, discussed next:

DownloadData method The DownloadData method downloads data from a web
server and returns them in an array of bytes. The syntax of the method is:

WebClient.DownloadData (documentURL)

where documentURL is the URI of the document to download. If you're downloading an
existing file, you specify the URI of this file. You can also specify the URI of an ASP
application that generates its output on the fly. The output of the script is transmitted to the
client and you can retrieve it as an array of bytes. The following statements will download the
main page of the Sybex site and store the HTML document in an array of bytes:

Dim wClient As New WebClient
Dim bytes () As Byte
bytes = wClient.DownloadFile (''www.sybex.com")

To convert the byte array to a string, use the members of the System.Text.Encoding class. The
following statement will display the HTML code of this page on a message box:

MsgBox (System.Text.Encoding.UTF8.GetString (bytes))

DownloadFile method The DownloadFile method is similar to the DownloadData
method, but a little more convenient, because it allows you to specify the path of the
file where the data will be stored at the client. The syntax of the DownloadFile
method is:

WebClient.DownloadFile (documentURL, localFileName)
The first argument is the document's URL and the second argument is the path of the local file

where the downloaded data will be stored. The following method will download the main page
of the Sybex site and store it to the specified local file:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Dim wClient As New WebClient
wClient.DownloadFile ("www.sybex.com", "C:\DLoads\Data\Sybex.htm")

Team Flv { Presious Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 317

txtResponse.AppendText (data & vbCrLf)
data = RStream.ReadLine
End While
wResp.Close ()
End Sub

Reading lines off the incoming stream synchronously is not a very efficient process either. The
Stream object exposes the BeginRead/BeginWrite and EndRead/EndWrite methods, which are
very similar to the asynchronous methods of the WebResponse object: they accept a delegate
and they invoke it when the read/write operation has completed. You can edit the code of the
application and make the read operations asynchronous as well.

Summary

The .NET Framework was designed from the ground up with the Internet in mind. It provides
numerous tools that simplify the communication between remote systems, including the all-
new Web services. In addition to the new ways of harnessing the Internet, the NET
Framework includes the basic classes that expose the traditional functionality of sockets.

In this chapter you've learned the basics of the Socket class, as well as how to use specific
classes to exchange data with the TCP and UDP protocols. These classes are the TCPListener,
TCPClient, and UDPClient classes and they abstract the basic operations you'd have to
perform with traditional sockets to move data between two computers using the TCP and UDP
protocols, respectively. The TCP protocol requires a dedicated connection, and each computer
engaged in the conversation has a distinct role, either as a client or as a server. The UDP
protocol is connectionless, and the computers involved in the conversation are all clients.

You've also learned how to use the WebClient, WebRequest, and WebResponse classes to
interact with web resources from within your code. The WebClient class is the simplest one; it
allows you to exchange data with a web server in a synchronous mode. The other two classes
provide asynchronous methods, which enable you to write functional and responsive
interfaces that interact with remote resources.

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 319

Chapter 13
Advanced Web Services

Nobody Yet Knows What the final ratio between web-based computing and local computing
will eventually be. Will it end up 10% local, or even 0% local—with all databases and
computations residing on the Internet with your home and portable devices merely dumb
terminals? Or will the speed, and especially security, advantages of local computing cause a
backlash against the current trend toward distributed computing?

No matter how it turns out, it's clear now that data storage and processing are currently
migrating from local machines to Internet servers. What we used to call personal computing is
mutating into something more like extended computing, with software subscriptions
potentially replacing ownership, remoting replacing self-contained applications, and servers
located whoknows-where replacing your resident hard drive.

And we programmers have to deal with this new .NET world, learning new techniques. For
example, debugging might require that we step through a series of procedures located on
various hard drives around the world. And how do you preserve state in a "stateless"
environment?

Obviously new communication and security issues arise when you call a procedure across the
world, and wait for the response. If you substitute the words Web for "across the world," and
service for "procedure," you come up with Web service—the idea that a query-response
messaging relationship can be set up between widely distributed computers, and that this
relationship can be both efficient and secure.

That's the hope for Web Services, a novel technology built upon familiar components
(fundamentally, computing is always about data that gets processed, and always will be, no
matter what new communications protocols are invented, or what new names are used for it).

What Are Web Services?

First, how big is a Web service? Some say that Web services can be as large as a full business
solution—a set of applications working together to handle a complete distributed enterprise.

Others say that Web services are small, individual procedures—single functions that accept
some data, process it, and send back a result. We shall see. Currently the term Web service is
used to describe both large and small processing—the essence being that a message is sent
over the Internet to trigger the Web service.

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 320
Here is a list of characteristics that define Web services:

They have no user interface.

They are published and consumed via a network (the Internet, an intranet, and so on).
They are not localized.

SOAP and other XML-based technologies send messages using ordinary, plain text.
This, obviously, raises some security issues. Plain text can be read by anyone, and aside
from that, many people mistakenly think that a Web service could not transmit a virus.
Given that firewalls are supposed to pass XML through (it's sometimes simply seen as a
flavor of HTML), Web service communications slide right in. Hackers, though, know
full well that virii executables can be embedded as ASCII strings.

They are similar to traditional objects (they expose methods and properties, and their
clients consume what they expose). The difference between a classic object and a Web
service is that the latter isn't tightly coupled, doesn't demand that the consumer and
service share the same object model. Instead, XML (and its derivatives) is the shared
language into which members are translated during the request-response
communication.

They communicate via XML (SOAP variation), theoretically thereby eliminating
language-, and even platform-, dependence. They are not proprietary, like COM objects.
However, the Web service itself is written in a computer language—not XML. XML is
a metalanguage: It can describe language and data, but cannot actually compute. When
the Web service receives the client's request (or the client receives the service's
response), the XML message has been automatically repackaged into an object. If you're
familiar with .NET object-to-XML serialization, you understand that this process is
handled for you—there are built-in .NET serialization features. (You won't have to
handle the serialization process in the Web service examples in this chapter.) Note that
this process is similar to DCOM, but open XML is used to transmit the object rather
than a proprietary format.

Creating a Web Service

In this example you create and test a Web service that requires parameters. You'll pose as the
client to test the service's response. The service exposes a method that accepts a string and
returns the words in it reversed (one two three becomes three two one). Start a new VB.NET
project and double-click the ASP.NET Web Service icon in the New Project dialog box. (If
this type of new project cannot be created, read the VS.NET documentation to find out how to
install IIS.) You'll see a design window for this project, but it's not intended to be used for
visible UI controls such as TextBoxes; rather, it's for adding database-connection controls and
such. Switch to code view.

This line is required:

Imports System.Web.Services

Delete the commented sample code lines and replace them with Listing 13.1.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 323

Not surprisingly, ASP.NET has facilities for caching data and for allowing you to define how
long it remains cached. Here's how to do it.

Assume that you want to cache the response to your Headlines Web service for a half hour,
then refresh it. If you were providing headline news service that you wanted to update every
half hour, this would be the way to do it.

<WebMethod (Description := ''Number of times this service has been accessed",
CacheDuration := 1800, _
MessageName := "Headlines")>
Public Function Headlines () As String

The CacheDuration is expressed in seconds, and in this example, the first time this Web
service is called, the response is calculated and returned to the client, but is also placed into the
cache. For the next 30 minutes, any subsequent calls are not calculated. Instead, the cached
response is merely sent to the clients. Obviously, this technique will often improve response
time and Web service performance.

Consuming a Web Service

In the previous example, you saw how to write and test a Web service. Now let's move to the
other side and see how to consume a Web service.

Later in this chapter you'll see how UDDI, WSDL, and other initiatives facilitate the
publication, discovery, and consumption of Web services. For now, though, let's create a quick
example that illustrates how, from within VB.NET code, you would go about consuming a
Web service. The first step is to add a Web reference to a VB.NET project. For this example,
you'll consume the Web service from within a Windows-style project.

Create a new VB.NET Windows-style project by double-clicking that icon in the New Project
dialog box. Add a TextBox to the form, then choose Project = Add Web Reference. You see
what looks like a streamlined browser window (shown in Figure 13.3) where you can search
for Web services and see details about them, such as the parameters they expect when you
submit a message to them for processing.

For this example, you want to contact and consume the Web service you created in the
previous example in this chapter. Click the Web Services On The Local Machine link and
VB.NET will provide you with a list of all the .ASMX files on your machine. Scroll past any
QuickStart or other sample services until you locate Servicel (the default name VB.NET gives
new Web services you write—we didn't change this default name in the previous example).
You also see a path, like this:

htto:/locall

as the "URL" for your service. Just to be sure that you have the correct service, click the
Servicel link, as shown in Figure 13.4, to see that this is the correct service. You should see
this description:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Reverses the words in a submitted string

The following operations are supported.

For a formal definition, please review
Service Description.

ReverseWords

Team Fly

{ Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 325

If you look at the service description, you see the necessary data types and parameters
required: ReverseWords (s As string) As string. This is the right service, so click the
Add Reference button. Look in Solution Explorer to see that your reference has been added.

This reference is similar to the simulation of Internet connections that is used to test ASP.NET
projects and Web services (as in the previous example). The local host refers to your local
machine pretending to be an Internet URL.

Now write the code that consumes a Web service by feeding a parameter to it, then receiving
the response and displaying the result in the TextBox.

Type in the source code shown in Listing 13.2.

LISTING 13.2: CONSUMING A WEB SERVICE

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim WebServiceAnswer As New localhost.Servicel

Dim param As String = ''This is my sentence"
TextBoxl.Text = WebServiceAnswer.ReverseWords (param)
Me.Text = WebServiceAnswer.Url

End Sub

Press F5 to instantiate a new Servicel, then invoke it and pass a parameter. If you have a
firewall, it will probably ask if you want to permit your VB.NET project to "contact the
Internet," or it may ask your permission to let this service connect to local host port 80. You
get back from the Web service this response: sentence my is This.

TIp If you edit a Web service, be sure to right-click localhost in the Solution Explorer, then
choose Update Web Reference in the context menu to rebuild the service.

Preserving State

Like many other Internet communications, Web services are theoretically stateless. Parameters
are passed to the service, but that data is only persisted in memory while the service is
generating a response. After the response is sent, the parameters are discarded. Normally,
details like a client's fax number are not refained by the server. Statelessness is often necessary
—ryou usually don't have room nor reason to store the number of every visitor to your popular
website.

Some Web services don't need to retain data about the client. There's no need to retain their
zip code after sending a client the local weather report, for instance. But what if you do want
to retain data about certain returning visitors, such as customers, so they don't have to
repeatedly supply you with their fax number every time they place an order?

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 326

Using Session State

ASP.NET includes a Session object that can persist data and can make that data global to all
the pages in a given website. To see how to use the Session object, start a new ASP.NET Web
service project and replace the commented green template code with the code in Listing 13.3.

LISTING 13.3: SAVING STATE IN THE SESSION OBJECT

<WebMethod (Description:=''"'Figures visits.",
enablesession:=True)> Public Function CountVisits () As Integer
If Session("counter"™) Is Nothing Then
Session.Add ("counter", 1)
Else
Session ("counter") += 1
End If

Return Session ("counter")

End Function

WARNING You must add the Description argument in this method, because the enablesession
argument can't come first in an argument list.

Your session variable named counter tracks the number of times this method is invoked during
a given session. Notice that the name within the parentheses—here, counter—is used as an
ordinary variable name. If you wish, you could get a unique ID from the session object by
changing the declaration, as in

Public Function CountVisits () As String
and then replacing the Return with this line:
Return Session.SessionID

When this Web service is consumed, you get the ID, which looks something like this:

<?xml version="1.0" encoding== "utf-8" ?>
<string xmlns= "http://tempuri.org/services/Servicel"> d2lpzlqg5pklctngntwcb4a4
</string>

Making a Database Connection

Given that most all computer business applications require database connections, you want to
know how to connect a database to Web services. This next example shows you how to make
that connection. The example assumes that you have the Pubs sample databases available on
your hard drive. If

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 330

<job_ id>2 </job_ id>
<job desc>Chief Executive Officer</job desc>
<min 1v1>200</min 1v1>
<max_1v1>250</max_ 1lvl>
</Jobs>
<Jobs diffgr:id=''Jdobs3" msdata::rowOrder= "2">
<job_id>3</job_id>
<job_desc>Business Operations Manager</job desc>
<min 1v1>175</min 1lvl>
<max 1v1>225</max_ 1lvl>
</Jobs>

Implementing WSDL

XML attempts to self-describe—to contain both data and information describing that data. To
assist with this difficult job when XML is used to send Web service messages, a new language
named WSDL (Web Services Description Language) was developed. WSDL is an effort to
standardize descriptions of responses, formats, and protocols used during Web service
messaging. WSDL can describe these aspects of a Web service message:

The address of the Web service

What kind of processing should be carried out on the data

The type of exchange (one-way, multicast, response/request, solicit/response)

The type of data being exchanged between client and server

The type of message used for input and output (procedure-style or document-style)
The protocol used to send the message(s)

Error information

WSDL descriptions are written in XML and are usually placed within an XML schema or set
of schemas. The client and service employ the same schema and agree both on how the client
should format its message and how the Web service should process the data it gets from the
client. In this way, WSDL permits various proprietary models to easily couple, such as COM
or ERP.

WSDL is yet another in the many initiatives designed to promote interoperability. It's called a
"contract" between client and service, and ideally should describe all the information
necessary to permit successful Web service consumption without the need for human
intervention. Alas, this remains more a dream than a practical reality, like other aspects of the
XML program. Nonetheless, WSDL can improve the readability (by humans) of the
interaction between client and service.

Simply put: WSDL describes what kinds of messages a given server accepts, specifying the
format required and the types permitted.

Here are the specific elements of WSDL:

Message Optional, can appear in various places within the document.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 336

The binding element describes the protocol, any serialization, and encoding for the message
transmission.

The service element concludes a WSDL description, and it provides yet another listing of the
final destination of the client message. A message can move to multiple locations on its trip to
the service, but in the service element is the actual, final address where the Web service itself
is located. However, WSDL descriptions can contain multiple Web services—so consumers
are thus able to select between options (preferring, say, a Web service that returns its response
in pounds rather than dollars).

<service name='"'Servicel">

<documentation>Adds or Multiplies to Integers</documentation>
<port name="ServicelSoap" binding="s0:ServicelSoap">
<soap:address location="http://localhost/xx/Servicel.asmx" />

</port>

</service>

Seeing SOAP, WSDL, and the Reference Map

You don't have to generate the dependency SOAP, WSDL, and Reference Map files—
VB.NET does this for you when you create a Web service, then add the service to a project.
Nonetheless, you should take a look at them to see the information they contain. In particular,
there's a Reference. vb file that contains information you need to know to consume a Web
service (the parameters it expects, and what it returns), written in familiar VB.NET code.

Use Project = Add Web Reference to add a Web service to your current project; for this
example I'll use the ShowJobs service created previously in this chapter.

Now slowly move your mouse pointer across the icons in Solution Explorer's title bar to locate
the one labeled Show All Files. Possibly the icons are not visible, which means you're in a
mode in the IDE that the designers thought wasn't a context in which you'd want to see the
icons (this kind of thing seems a little zoo helpful to me; what harm is done by leaving these
icons always visible?). To make them visible, click the name of your project (it's the line in
boldface) in Solution Explorer.

Now expand the Web service node (Web References\Localhost). Take a look at the Disco
(discovery) file, then also double-click the WSDL file to see what it looks like for this service.
Disco is Microsoft's alternative to UDDI (or their supplement, you might say). Disco is
supposed to be an easier way to figure out which Web services are available on a particular
server. Where UDDI is an Internet-wide registry, Disco does the same job for smaller, intranet
services.

The reference.vb file in Solution Explorer can be the most useful to programmers trying to
figure out how to access a Web service (unless the service's own documentation is clear). In
particular, this VB code makes it pretty clear that no parameter is expected, and that a dataset
will be returned from this Web service:

Public Function ShowJobs () As System.Data.DataSet

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

UDDI: The Registry

Web services employ SOAP, WSDL, and UDDI. SOAP explains how to use the service (and
possibly additional documentation). WSDL describes the entire transaction between client and
service.

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 337

To complete the Web service package, you need UDDI (Universal Description, Discovery,
and Integration) as well. It provides specifications for a directory of Web services. The UDDI
Business Registry (also called UBR and cloud services) is the actual registry where potential
consumers can search through UDDI lists, and where service publishers can register and
describe the Web services they offer. The registry is divided into three sections:

Yellow pages The most abstract layer, simply listing data such as the company's
product or type of business (geologic research, for instance). Think of it as similar
to the phone book yellow pages.

White pages More specific details about a company that is offering a Web service
(addresses, phone numbers, salespersons' contact info, and so on).

Green pages The actual nitty gritty details: specs explaining the Web service itself.
You can put whatever you want in the Green pages, but typically you include the
URI to the address of the Web service, or reference associated SOAP or WSDL
files. (You aren't required to use SOAP here. You can use alternative descriptions.
And, if you wish, you need not include details about your Web service, but instead

simply provide an e-mail address or Web page where customers can look for further
information.

You can browse Microsoft's node of the UDDI Registry, or you can even add your own Web
service to it to test it. To register your own service, choose Help = Show Start Page, click the
Online Resources tab, then click the XML Web Services option in the left pane.

You can also use this registry to add Web services to your .NET projects. When you open the
Project = Add Web Reference dialog box, you can access UDDISs in several ways (in
addition to the "local machine" option described previously in this chapter):

Browse UDDI Servers on the Local Network Click this link to see servers in your
LAN that are currently publishing UDDI described Web services.

UDDI Directory With this link you can traverse the Microsoft UDDI Registry and
discover the Web services that have registered on Microsoft's node.

Test Microsoft UDDI Directory Use this link to search for test Web services that
have been posted here, so you can experiment with the Web service technology as a

consumer. You can also use this test directory to register and publish your own Web
services for testing purposes.

For further information on the UDDI Registry in general, look at:
Testing a Published Web Service

If you want to try consuming a Web service that's published on the Internet (written by
someone else), you can give it a try. It's useful practice, to see if you can manage to figure out
someone else's intentions and successfully get back a response.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I've looked around and many of the test services listed are either impossible to figure out
without further help from their authors or no longer active at their URL. Nonetheless, you
might find one on your own that you can discover (figure out) and consume (use).

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 339

When you press F5 to run the program, you should see an HTML-formatted message, returned
from this Web service, appear in your message box. If this example doesn't work for you, try
other available Web services until you discover one that does work.

Security Considerations

The third oldest profession is security—the attempt to conceal information without actually
destroying it in the process, or the attempt to defend yourself without actually imprisoning
yourself in the process.

These goals—privacy and protection—have been sought since envy became a factor in human
relations. In other words: since Adam's boys. And each time we think we're getting close to an
effective solution, the goal recedes and we realize that the envious are just as clever as the
envied.

Web services are just as vulnerable to security problems as any other technique that involves
Internet messaging. You have the problem that someone might intercept the message and read
it. This can be solved pretty effectively with strong encryption, as described in Chapters 5 and
6. Similarly, the related problem of validation (has someone changed $1000 to $1000007?) can
be solved via encryption. If they cannot read the message, they cannot modify it.

The other security issue, authentication, is less easily solved, especially when you consider
that one goal of Web services can be described as letting strangers into your server so they can
execute commands and invoke procedures. That's just the sort of thing that virus protection
software and firewalls are designed to prevent.

HTTP and HTML are supposed to slide into servers right through port 80. Firewalls permit
this because HTTP and HTML transport and express only harmless documents, not
executables.

SOAP, though, extends these capabilities beyond page description and text messages into the
ability of a remote client to invoke procedures and issue commands on the server.

Some experts suggest blocking text/xml content types, or messages with SOAPAction in their
headers, but this throws the babies out with the bathwater. The committees that govern XML
and, by extension, Web services have been trying to come up with practical recommendations.
Likewise, firewall vendors are also seeing what can be done to tell the bad guys from the good
guys. Can the problem of entertaining strangers be solved? Time will tell, but history suggests
that the answer is no. Security can often be strengthened, but never perfected.

Summary

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This chapter covers Web services and related technologies. You saw that computing—no
matter how distributed it becomes, and no matter what names they give new technological
twists—always comes down to two things: data and processing. Web services are no different.
True, they send messages via XML, they operate remotely, and they face special security and
communications challenges. But, in essence, they accept a request to process some data, just
like any classic function, utility, or application.

You learned how to write a Web service, how to cache data, and how to consume a Web
service. You also saw how to preserve state using the Session object and how to deal with
database connections.

The chapter concluded with an examination of WSDL, the Web service description language;
XML and SOAP features; and the UDDI registry, the official Universal Description,
Discovery, and Integration registry where you can list your Web services, and locate others'
services, along with descriptions of how to consume them.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 341

Chapter 14
Building Asynchronous Applications With Message
Queues

WHILE MOST PROGRAMMING TASKS are synchronous, there are situations when we must
implement asynchronous systems. An asynchronous system involves two or more computers
that must exchange information, but we can't assume that they're always connected, or that
each system will perform certain tasks in a timely manner. In an asynchronous system, we
should be able to send a request from one computer to another and be sure that the computer
that receives the request will eventually process it. A web server that accepts orders does not
usually process them. The orders are forwarded to another machine to be processed, and this
machine is usually on a different network. The processing of an order may actually involve
communication with a remote system as well (ordering an out-of-stock item from its publisher,
or placing large orders to a warehouse) and it may take a while to complete. The computers
involved in an operation may not be connected at all times, or one of the computers may take a
while to perform a task. The other computers involved in the process shouldn't have to wait for
each task to complete.

In this sense, the architecture just described is that of an asynchronous system. More
specifically, it's a loosely coupled system. In such a system we assume that all resources are
available, but not necessarily at all times. Applications for systems consisting of multiple
computers that communicate with one another are based on a so-called loosely coupled
architecture. In English, this term means that the various components of the system are
connected to one another, but they operate independently of one another and they may
disconnect at any time. This architecture requires a secure, reliable mechanism for the system's
parts to exchange information. This mechanism is provided by the Microsoft Message
Queuing (MSMQ) component, which comes with both Windows 2000 and Windows XP, but
it's an optional component that you will have to install through the Add/Remove Windows
Components tool. The basic functionality of MSMQ is to set up queues, send messages to
these queues, and receive messages from the same queues. Your application will create
messages and send them to a specific queue. After that, MSMQ takes over and makes sure that
the message is delivered to the destination queue. If the message can't be

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 342

delivered, MSMQ can generate an acknowledgment message to indicate that the delivery of
the original message failed.

Consider an application that runs on a salesperson's portable machine. The salesperson should
be able to record orders on the go, but can't assume a connection to a server at the company's
headquarters. The orders should be uploaded to the company's server as soon as possible, so
that they can be processed in a timely fashion. What we just described here is a loosely
coupled system: the order-taking application on the portable computer and the server at the
company work together, but they can't be connected at all times. Data is stored in the portable
machine and is uploaded when the two computers are connected. One of the basic
requirements of a loosely coupled system is that information be safely stored locally until the
two systems are connected and can exchange information. Messaging is an excellent
mechanism for moving information from one machine to another.

As you know, messages are an ideal mechanism for passing information between remote
computers. You can also send messages to a queue on the same computer. A simple technique
to develop multithreaded applications is to create messages that represent specific tasks and
leave them on a queue, rather than process each task. Another application can retrieve the
messages from the queue and perform the task described by each message. This type of
application isn't really a multithreaded application, but it's an efficient mechanism for running
tasks in the background while the front end is free to interact with the user, as long as the tasks
need not communicate with one another. If the number of tasks exceeds the capacity of a
single workstation, you can have multiple workstations process the messages in the queue.

Queues and Messages

A message queue is a structure for storing messages, much like a first in, first out (FIFO)
queue. Messages are stored in the queue according to their priority and the time they arrived.
Messages with the same priority are stored in the queue in chronological order (the order in
which they're received) and are read in the same order. When you read a message, the oldest
message in the queue will be returned. You can change the default order by setting the priority
of the messages you write to the queue. Messages with higher priorities are read before
messages with lower priorities, even if they haven't been in the queue as long. The order of the
messages in the queue is determined by MSMQ and you can't change the order of the
messages in a queue after their arrival.

The messages themselves are serialized objects. Although we can create simple text messages,
we rarely do. We create one or more custom classes that represent physical entities (such as
orders, products customers, and so on) and our messages are instances of these custom classes.
The custom classes must be marked as serializable, so that MSMQ can serialize the
corresponding objects either in binary or XML format. At the receiving end we read a
Message object from the queue, cast it to the appropriate type, and process it in our
application.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unlike mail messages, queue messages have a well defined structure, which must be known to
both the sending and receiving end. In effect, they're equivalent to the messages we exchange
through our mail software, but meant to be understood and processed by applications, not
humans. In the same sense, MSMQ is equivalent to a mail client that can send and receive
messages. The queue, finally, is equivalent to a message store.

The process of passing messages between two machines (whether they're mail messages or
MSMQ messages) is inherently asynchronous: the sending machine isn't blocked until the
message

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 347

This form of the Send method sends a simple message to the queue. The first argument is the
message's body and the second argument is the message's label (a string that will be displayed
on the MSMQ snap-in under the Label heading).

To read the message from the queue, call the MessageQueuel component's Receive method.
This method returns a Message object, which exposes many properties. The Body and Label
properties return the message's body and label, respectively. Enter the following statements in
another button's Click event handler to retrieve the message and display its label and body on
a message box:

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles Button2.Click
Dim msg As Message

msg = MessageQueuel.Receive
MsgBox (msg.Label & vbCrLf & msg.Body)
End Sub

The Receive method retrieves the first message in the queue. Usually this is the oldest
message in the queue, unless the messages have different priorities. Messages with higher
priority are stored ahead of messages with lower priority. You can't set the priority (or many
other properties of a message) with the simple form of the Send method shown here. As you
will see shortly, you must create a Message object, then set its properties, and finally send it
with the Send method. We rarely use this simple form of the Send command; we've only
shown it here to simplify the example.

Even simple text messages are first serialized into XML format before they're written to a
queue. You can read the XML-serialized description of a message with the BodyStream
property of the Message object. The following statements read the XML description of a text
message:

msg = MessageQueuel.Receive

Dim buffer (msg.BodyStream.Length - 1) As Byte
msg.BodyStream.Read (buffer, 0, msg.BodyStream.Length)
Console.WritelLine (System.Text.Encoding.UTF7.GetString (buffer))

The Receive method won't return without reading a message. If the queue is currently empty,
the Receive method will wait until a new message arrives. We describe how the Receive
method is used in the section "The Message Class," later in this chapter.

The simple code examples we use in the following sections are parts of the SimpleQueue
sample application. This application assumes that the ToolkitQueue private queue exists on the
local machine. Follow the steps outlined in the section "Creating New Queues" to create the
ToolkitQueue on your machine (or edit the properties of the MessageQueuel object in the
application).

The MessageQueue Class

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Once you know how to reference queues, you can use the MessageQueue class's methods to
create new queues, delete existing ones, and find out whether a specific queue exists or not
from within your code. The Exists method of the MessageQueue class returns True if the
queue specified with the argument to the method exists, False otherwise. To create a new
queue, pass its path or format name as argument to the Create method of the MessageQueue
class. The Create method has a second overloaded form

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 349

TABLE 14.1: THE PROPERTIES OF THE MESSAGEQUEUECRITERIA CLASS

FILTER NAME DESCRIPTION

Category The category of the desired queue(s). A queue's category need not be
unique.

CreatedAfter A date that filters out the queues that were created before the specified
date.

CreatedBefore A date that filters out the queues that were created after the specified date.

Label A string that specifies the queue's label. MachineName The computer
name on which the desired queue(s) reside.

ModifiedAfter A date that filters out the queues that have not been modified after the
specified date.

ModifiedBefore A date that filters out the queues that have not been modified before the
specified date.

Another method to retrieve the queues on a computer is to use the MessageQueueEnumerator
class. The GetMessageQueueEnumerator method of the MessageQueue class returns a
MessageueueEnumerator object, which you can use to iterate through all public queues in the
network. This is a typical enumerator that exposes the MoveNext method, which moves to the
next queue, and the Current property, which references the current queue

The MessageQueue classes expose members to send messages as well as retrieve messages
from queues. These methods make use of the Message class, which represents queue
messages. In the following section we'll discuss the Message class and then look at the
methods of the MessageQueue class for manipulating messages.

The Message Class

The other major class of the Messaging namespace is the Message class, which represents
MSMQ messages. You've seen how to send simple messages with the Send method of the
MessageQueue class, but applications exchange information in the form of objects, not strings.
Moreover, the simple form of the Send method we used in our earlier example doesn't allow
you to set the properties of the message: You can't assign a label to the message (a string that
describes the message while it resides in the queue), nor can you change the message's
priority. You should always create Message objects and pass them to the Send method, even if
these objects are strings.

The Message class exposes only properties and no methods. The purpose of this class is to
enable us to manipulate the properties of the messages before sending them to a queue, or read
the properties of messages retrieved from a queue. To send a Message object you must create
an instance of the Message class, populate its properties, and then pass it as argument to the
Send method of the MessageQueue class. The Message class exposes two types of properties:
read-only properties designed to work with incoming messages and read/write properties
designed to work with outgoing messages. To read a message off a queue, you must create a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

new instance of the Message class and assign to this object the value returned by one of the
methods that reads messages from a queue.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 358

specified ID. If no related messages exist in the queue, the PeekByCorrelation]D method
returns a Nothing value.

There's one simple operation that's fairly expensive in terms of resources, and this is the
counting of messages in a queue. There's no method to return the number of messages in a
queue. You must call the GetAllMessages method, which accepts no arguments and returns an
array with all the messages in the queue, and then examine the array's Length property (or call
its GetUpperBound method). This is a fairly expensive operation and its value is questionable,
because the number of messages in the queue varies all the time. As with all classes that
implement the [Enumerable interface, you should use the appropriate Enumerator to actually
process the messages. If you want to look at the messages and then decide which one to
process, you can call the GetAllMessages method to retrieve a snapshot of the queue and then
retrieve each message you want to process with the ReceiveByID method, or process one or
more of the messages returned by the GetAllMessages method and then remove it from the
queue with the ReceiveByID method. We'll use the GetAllMessages method in the
OrdersServer project later in this chapter to copy all the messages in the queue and allow the
user to view them, move back and forth through them, and select which ones to process. The
processed messages will be removed from the queue with the RemoveAt method.

Acknowledgments and Time-Outs

Sending a message to a remote queue doesn't mean that the message will actually arrive at its
destination. The destination queue may not exist, the computer on which the queue resides
may be disconnected, or the application that sent the message may not have the rights to write
to the specific queue. Even if a message is delivered to the destination queue, we can't be sure
that the message will actually be retrieved from the queue and processed. Sometimes it's
critical that a message is processed within a predefined time interval. If the messages represent
orders, for example, your application should eventually find out which orders were processed
and which not, and take the appropriate action. Delaying the processing of an order for a week
is simply unacceptable.

A robust distributed application should be able to know whether a message has reached the
destination queue and whether it was retrieved from the queue and processed. MSMQ
provides a confirmation mechanism based on acknowledgments. Acknowledgments are
messages that are generated automatically by MSMQ in response to events, such as the arrival
of a message to a queue or the retrieval of a message from a queue. Acknowledgments are not
generated by default; you must request that specific acknowledgments be generated and
forwarded to a specific queue. You can also request positive acknowledgments (signifying the
successful completion of an operation) or negative acknowledgments (signifying the failure of
an operation).

Requesting Message Acknowledgment

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To request the acknowledgment of a message, you must first create a queue that will receive
the acknowledgment messages. The queue that will accept the acknowledgment messages is a
regular queue; there's nothing special about messages sent to this queue, except for the fact
that they're generated automatically. To use the acknowledgment queue, you must set certain
properties of the message before you send it. These properties are the AdministrationQueue
property, which determines where the acknowledgment messages are sent, and the
AcknowledgeTypes property, which indicates what

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 373

As you can understand, not all operations can be placed into a transaction. If you're sending a
message to a remote queue, you probably don't want to wait for the message to arrive at the
destination queue (let alone be processed) before you commit the transaction. This is simply a
limitation of loosely coupled systems. Message transactions are not the same as database
transactions. However, there are mechanisms to ensure the integrity of messages, such as
acknowledgments. In the following section we're going to learn yet another mechanism for
message integrity—how to keep copies of the sent messages and process them again if they
can't be delivered.

AUDITING MESSAGES

Transactions are invaluable in designing robust systems. Another technique, perhaps not as
valuable but very useful, is the logging of messages. In addition to sending a message, you can
create a copy of it and send it to a designated queue. If everything else fails, you can at least
recover the message that wasn't delivered (or processed) and repeat it. Under each queue in the
MSMQ snap-in there are two items: the Queue Messages item, where incoming messages are
stored, and the Journal Queue, where MSMQ keeps copies of the outgoing messages. In effect,
journal queues are equivalent to acknowledgment queues, in the sense that they keep track of
the movement of the messages in a specific queue.

Messages are not copied to the corresponding journal queue by default. To create copies of the
messages sent to a specific queue, set the UseJournalQueue property of the MessageQueue
object that represents the queue to True. Every message sent to this queue will be copied into
its journal queue. Earlier in the chapter we showed you how to retrieve acknowledgment
messages from a queue and take appropriate action. A more robust technique is based on a
combination of acknowledgment and journal queues. Let's assume that certain messages, such
as messages about orders, must be processed within an interval of a few hours to a few days. If
the message regarding an order isn't retrieved from its queue within the specified interval, a
negative acknowledgment is sent to an acknowledgment queue (the acknowledgment message
won't be sent unless the sending application has requested message acknowledgment). In
addition, the sending application should also send copies of the messages into a journal queue.
Another application can continuously remove messages from the acknowledgment queue
(presumably, there won't be many messages in this queue) and retrieve their IDs. For every
message that failed to be delivered (or retrieved from its queue), the application can retrieve
the associated message from the journal queue and resend it. Alternatively, you can send it to a
different queue, or log an error message. You can even send a mail message to an operator at
the site that fails to read the messages. The most common scenario for message delivery
failures is that the destination queue has been moved to another computer, or the user
privileges on the remote computer have been altered.

MSMQ won't remove messages from the journal queues. Instead, you must write code to
retrieve the messages of a journal queue using the techniques discussed earlier in this chapter.

Processing Orders with Messages

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As you have realized by now, working with queues is fairly straightforward. In this section
we'll put together all the information presented so far in the chapter to build a practical
application that uses the MSMQ component. This section's example consists of a client
application that takes orders and submits them to a specific queue and a server application that
retrieves orders from the queue and

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 382

Message Queuing Triggers

One might expect that the MessageQueue class would support events. If a MessageQueue
object could fire an event every time a new message arrives, we'd be able to write simple code
to process messages as soon as they arrive and we wouldn't have to use asynchronous
techniques to read messages from a queue. MSMQ doesn't support events, but you can use the
Message Queuing Triggering service to process messages as soon as they arrive at a specific
queue. This service comes as a component of Windows XP. If you're using Windows 2000,
you can download it from the following URL:

The setup dialog boxes for the version of Message Queuing Triggering for Windows 2000 are
a little different than the ones for the XP version, and in this section we'll describe the XP
version of the component. You shouldn't have any problem applying your knowledge to
Windows 2000, but bear in mind that the various dialog boxes you'll see while setting up
triggers are different than the ones shown in the figures of this section.

Setting up a trigger for a specific queue is straightforward and you need not write any code.
Actually, you can't set up triggers from within your code, but you should expect a new class in
the next version of the NET Framework that exposes the functionality of the Message
Queuing Triggering component. The process of setting up a trigger for a queue involves two
items:

Rules A rule determines the conditions under which the trigger will be fired. By
default, triggers are fired every time a new message arrives at the queue to which
the trigger is attached, but you can request that triggers are fired only when certain
conditions are met. For example, you can request that a trigger is fired only if the
message's label contains (or doesn't contain) a string, the message's priority is
greater (or smaller) than a specific value, and so on.

Actions Actions are programs that process the message that caused the trigger to be
fired. There are two types of actions, or equivalently two ways to process a
message. You can either start an executable (an EXE file) or a call a method of a
COM object (a DLL file). The program is started automatically by the trigger every
time the conditions specified by the corresponding rule are met. It's also possible to
pass one or more arguments to the program that services the trigger, such as the
message's ID or label, the date and time it was sent or has arrived at the queue, and
SO on.

Once you've created a set of rules and their corresponding actions, you can create triggers.
Each trigger is unique to a specific queue, but it can deploy any of the existing rules. New
triggers are created by combining one or more rules and assigning the trigger to a specific
queue. The same rules can be reused in as many triggers as you need.

Defining Rules

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The first step in creating a trigger is to define the rule(s) that will be used by the trigger.
Expand the Message Queuing Triggers item in the MSMQ snap-in, right-click the Rules item
and select New = Rule. You'll be prompted to enter a name and a description for the rule,
shown in Figure 14.8. Let's call our trigger NWOrderRule. We'll create a trigger to signal the
arrival of a new message at the NWOrders queue.

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 388

To test the application, you must first create the OrderTrigger trigger. This trigger is attached
to the NWOrders queue and its "Message processing type" setting should be Peeking. Its rule
is the NWOrderRule, which has no conditions (it's fired every time a new message arrives at
the NWOrders queue) and its action is the ProcessOrders.exe application. Check the box
"Interact with the desktop" on the Rule Action tab of the NWOrderRule rule's property pages,
so that the console window will appear on your desktop and you'll be able to interact with it.
Figure 14.12 shows the Rule Action tab for the NWOrderRule, as well as the Parameters
window.

FIGURE 14.12 Setting up the NWOrderRule rule for the OrderTrigger trigger

Assuming that you've set up the OrderTrigger trigger in the MSMQ snap-in, switch to the
ProcessOrders project and build it. This project isn't meant to run on its own, because it should
be called by a trigger, which is also responsible for passing the appropriate arguments to the
application as command-line arguments. Switch to the DisconnectedOrders project and create
a new order. As soon as the new order message is written to the NWOrders queue, the
OrderTrigger will be fired, which in turn will invoke the ProcessOrders console application.
You will see a console window that looks like the window of Figure 14.13. The data shown in
this window correspond to those in the order shown on the form of the DisconnectedOrders
project of Figure 14.14.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Summary

In this chapter you learned how to build applications running on loosely coupled systems.
Large systems may involve computers that are not part of the same local area network, and we
can't assume that all the computers we need to access are always online. To pass information
from one system to another in a reliable, fail-safe way, we use messages.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 391

Chapter 15
Practical ADO.NET

ADO.NET, MICROSOFT'S LATEST DATA access technology, is the evolution of ActiveX Data
Objects (ADO). ADO.NET was designed from the ground up for distributed architectures, so
that it can fit nicely in a networked world. The basic premise is that clients are not constantly
connected to a data source. There has to be a convenient mechanism to store the data at the
client, process them locally, and submit the updates to the database. This mechanism is the
DataSet, which is something like a lightweight, in-memory database. A DataSet is a data
structure for storing related tables, and it offers developers a relational view of the data.

ADO.NET is ideal for distributed, disconnected applications, but it's just as good for
client/server applications and multi-tier connected applications. A thorough explanation of the
architecture of ADO.NET and its classes would require another book, and there are many
books on the topic. In this chapter you'll find an overview of the basic classes of ADO.NET
and explanations of the techniques we'll use to build a few practical applications in Chapter
18. Our goal is to show you how to write practical data-driven Windows applications with
functional, user-friendly interfaces.

As you might expect, Visual Studio .NET supports two approaches for building data-driven
applications: a visual approach, which relies heavily on data-binding and wizards, and the
programmatic approach. We'll focus on programming the ADO.NET classes. Data binding is
convenient for building prototypes, but you can't expect to build professional data-driven
applications with data-binding and point-and-click operations.

Accessing Databases

The basic tasks in working with databases are to establish a connection to a database, execute
commands against the database, and move data to the client, where they'll be processed. The
commands we execute may update some tables in the database and not return any data to the
client (except for the number of rows that were affected by the command), or retrieve data and
move them to the client. The ADO.NET architecture is based on a few fundamental classes
that encapsulate these actions. The Connection class provides the functionality to establish a
connection to a database, the Command class provides the functionality to execute a command
against the database, and the DataSet class provides a convenient mechanism for storing data
at the client. The

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 409

The Command Class

The Command class allows you to specify the command you want to execute against the
database, set its parameters (if any), and finally execute the command. So far you've seen how
the DataAdapter interacts with the database with the commands that were generated by the
wizard. The advantage of the DataAdapter is that it knows how to prepare the parameters of
each command, execute it against the database, and populate a DataSet with the results. In this
section you'll learn how to set up custom commands from within your code and execute them
outside the context of the DataAdapter. The commands you can execute against a database are
SQL statements (queries) and stored procedures. The CommandText property stores the SQL
statement, or the name of the stored procedure, that will be executed against the database. The
CommandType property specifies the type of the command, and its value is one of the
members of the CommandType enumeration:

StoredProcedure The command is the name of a stored procedure.
Text The command is an SQL statement.

TableDirect The command is the name of a table. When the command is executed,
it will retrieve all rows and all columns of the specified table. This member can be
used only with the OLE DB data provider. You can retrieve the join of multiple
tables by setting the CommandText property to a comma-delimited list of table
names.

Once the Command object is configured, you can call one of the following methods to execute
the command against the database:

ExecuteNonQuery This method is used to execute action queries; it returns the
number of rows affected by the query.

ExecuteScalar This method is used to execute a query and returns the first row of
the first column in the resultset. This value is returned by a selection query and it's
usually an aggregate value, or the result of some calculations. Note that the method
doesn't return the return value of a stored procedure. To read the return value, you
must set up an output parameter for the stored procedure's return value.

ExecuteReader This method executes a selection query and returns a DataReader
object. This object is similar to a StreamReader, in that you can use its methods to
read consecutive rows in the resultset and their columns.

ExecuteXmlReader This method executes a selection query and returns an
XmlReader object. The query should return its data in XML format, by using the
FOR XML clause of the SELECT statement. The XmlReader allows you to read the
elements and attributes of the XML document returned by SQL Server.

As you can see, the Command object doesn't provide any methods for filling DataSets. We use
the Command object to execute action queries against the database and retrieve the number of
rows that were affected. You can also use its ExecuteReader method to retrieve the results of a
selection query and use them to populate a custom structure at the client. Strictly speaking, it's
possible to use the ExecuteReader method to populate a DataTable manually, but there's no

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

reason on earth to do it. The DataAdapter is much more efficient in filling DataTables. The
use of the DataReader class with the ExecuteReader method is demonstrated in the section
"Using the DataReader," later in this chapter.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 415

This query will return two cursors, one with the selected rows of the Products table and
another one with the selected rows of the Suppliers table. While you can't use this batch query
to populate a DataSet with two tables (you must set up two different DataAdapters, one for
each table, and call their Fill method), you can retrieve the rows from both tables with a
DataReader object. You start reading rows as usual. When you reach the end of the first
cursor, call the DataReader's NextResult method to move to the following cursor:

Do
While RDR.Read()
' statements to process the rows of the current cursor
End While

While RDR.NextResult() ' skip to next cursor, if there is one

The first time through the outer loop, the inner loop reads the rows of the Products table.
When the NextResult method is called, you're into the second cursor and the inner loop is
executed again, this time reading the rows of the Suppliers table.

Working with DataSets

Now that you know how to contact a database and execute commands against it, we can
examine the DataSet object in detail. This is the main object of ADO.NET and this is where
most applications store data at the client. The DataSet is made up of DataTable objects; there's
one DataTable for each one of the tables involved in the query. The DataTable objects are
made up of DataColumn and DataRow objects. The DataColumn objects specify the structure
of the table, and the DataRow objects contain the rows of the table. You can also establish
relations between the tables in the DataSet; these relations are represented with DataRelation
objects.

As you already know, we use DataAdapters to fill DataSets. It's possible to create a DataSet
and also fill it from within your code, but this isn't common. Most often, DataSets are
generated at design-time and populated at runtime with the DataAdapter's Fill method. These
DataSets are called typed DataSets, because they know about the structure of the data they
store. Notice that only DataSets created at design time are typed. This happens because the
IDE generates a class behind your back to encapsulate the data and the basic operations you
can perform on the data. A DataSet generated at runtime won't expose the names of its tables
as properties and it won't provide methods that are specific to your data (such as the
FindByCustomerID method, or the IsUnitPriceNull property) for example).

By the way, if you want to see the code of the class that implements a typed DataSet, click the
Show All Files button at the top of the Solution Explorer window and then expand the file
named after the DataSet (its extension is XSD). Under this file you'll see two more files, which
are normally hidden, and they're both named after the DataSet. Double-click the file with
extension VB and you'll see the code of the class that implements the typed DataSet. Figure
15.9 shows a section of the DSProducts.vb class, which is part of the NWProducts project. As
you can see, there's nothing complicated or magic about typed DataSets. They're implemented
with code that some of us might have written to simplify the process of coding large projects,
only this code was generated by a wizard. Normally, you'll never have to see the auto-

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

generated code, unless you want to add a few members that are specific to an application.
Even so, you should implement these members in a separate class, because every time you
redesign the DataAdapter and re-generate the DataSet, this class is auto-generated.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 428

Insert and Update Operations

One of the most important topics in database programming is the commitment of the changes
made at the client back to the database. The changes involve edited rows, which must update
the underlying rows in the table, new rows, which must be inserted into the underlying table,
and deletions, which must remove the corresponding rows from the underlying table. There
are basically two modes of operation: single updates and multiple updates. A client application
running on a local area network as the database server can (and should) submit changes as
soon as they occur. If the client application is not connected to the database server at all times,
then changes may accumulate at the client and be submitted in batch mode when a connection
to the server is available.

From a developer's point of view, the difference between the two modes is how you'll handle
update errors. If you submit individual rows to the database and the update operation fails, you
can display a warning and let the user edit the data again. You can write code to restore the
row to its original state, or not. In any case, it's fairly easy to handle isolated errors. If the
application submits a few dozen rows to the database, several of these rows may fail to update
the underlying table and you'll have to handle the update errors from within your code. At the
very least, you must validate the data as best as you can at the client before submitting them to
the database. No matter how thoroughly you validate your data, you can't be sure that they
will be inserted into the database successfully.

Another factor you should consider is the nature of the data you work with. Let's consider an
application that maintains a database of books and an application that takes orders. The book
maintenance application handles publishers, authors, translators, and other data. All users who
are entering and correcting titles are working with the same table of authors. If you allow them
to work in disconnected mode, the same author name may be entered several times, as no user
can see the changes made by any other user. The result is that several rows in the Authors
table refer to the same author. This application should be connected: every time a user adds a
new author, the table with the author names in the database must be updated, so that other
users can see the new author. The same goes for publishers, translators, topics, and so on.

The order-taking application can safely work in a disconnected mode, because orders entered
by one user are not aware of, and they don't interfere with, the orders entered by another user.
You can install the client application on the notebooks of several salespersons so they can take
orders on the go and upload them when they establish a connection between their notebook
and the database server (which may happen when they return to the company's offices).
There's a small implication here, namely the stock. If you can't make a sale unless the items
are in stock, things get quite complicated; the order-taking application can't run in
disconnected mode. Incidentally, this is one of the most complicated types of projects you
may run into and we will not discuss it in this book. The solution is dictated by the business
rules and, in most cases, it's non-trivial.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The order-taking application can be used in a disconnected mode, because each order contains
existing products and there will be no update errors. The worst that can happen is that a
product's price will change. In this case, a business rule determines whether the sale is made
with the old price, or whether the customer should be contacted and confirm the revised price.

Updating the Database with the DataAdapter

The simplest method of submitting changes to the database is to use each DataAdapter's
Update method. At the beginning of the chapter we discussed how to submit changes to the
database and

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 440

Of course, a real application shouldn't allow the user to enter invalid data in the first place.
We're going to build a practical interface for entering orders and invoices in Chapter 18. The
example we just finished was merely meant to demonstrate the basic principles of performing
multiple updates in the context of a transaction using a DataAdapter.

Summary

In this chapter, which is one of the longest ones on the book, we've explored the basic objects
of ADO.NET. The Connection object establishes a connection to the database, through which
we can submit and execute commands against the database. The commands to be executed
against the database are represented by Command objects. A Command object is assigned the
SQL query to execute against the database, as well as the necessary parameters. To actually
execute the query, you must call one of the Execute methods of the Command object. Action
queries return a single value, which is the number of rows affected by the query. Selection
queries return a DataReader object, which you can use to read the values retrieved from the
database serially.

You can also use DataAdapter objects, which move data into a client DataSet. Most of the
applications you'll write will make use of the DataSet object, which can store sections of
database tables and maintain relations between them. The DataSet knows how to submit
changes to the database, and you can use it at the client as an in-memory database. As you
have seen, DataAdapters and DataSets are classes generated for you at design time. These two
classes expose most of the functionality you need for typical business applications. You have
also seen how to use these classes to perform the basic data operations, from retrieving a
table's rows to performing transactional updates.

In this chapter we used the DataGrid control to view and edit our data. Practical applications
aren't built around the DataGrid control, however. They use interfaces based on regular
Windows controls and they contain quite a bit of code. In Chapter 18 you're going to see
several examples of practical user interfaces, which are based on Windows controls and make
use of the objects discussed in this chapter.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 441

Chapter 16
Building Middle-Tier Components

IN THIS CHAPTER WE'LL discuss the concepts of distributed architecture and the role of
components and multiple tiers in developing data-driven applications. We'll focus on the drift
from client/server architectures to multi-tier architectures and we'll present a few simple
examples to demonstrate the principles of middle-tier components and how to deploy them on
a remote server.

We'll also discuss how to use existing COM components (including ActiveX controls) and
COM+ applications with .NET clients. Every corporation has made an investment in COM
components, which you aren't going to throw away. Whether these components you've
developed as recently as a year ago can be called "legacy" components is a different story.

Finally, we'll show you how to deploy .NET components on remote servers and allow clients
to request their services over the network, or the Web. We'll touch the subjects of Web
services and remoting, which are central in deploying business components in a distributed
environment.

From Client/Server to Multiple Tiers

The dominant architectural model for data-driven applications today is the client/server model.
Most applications written today in small business environments are based on the client/server
model and most VB6 developers are quite familiar with it. The client/server model distributes
the processing on two layers: the database, which is a powerful machine running the database
management system, and the clients (Figure 16.1). The program running on the client is
responsible for interacting with the user: it accepts user input, validates it, and makes requests
to the server. When the server sends the data, the client application presents it to the user,
using a rich Windows interface.

The advantage of this architecture is that the workload is distributed on two different layers.
The database server is optimized for performing queries against a database. The basic
requirements of the database server are very fast disk systems (usually RAID systems) and
large (to enormous) amounts of memory. The clients need not be nearly as powerful: a regular
workstation will do. The application running on the client is either a Windows application (in
which case the client is called rich client, to indicate that the client application can exploit all
the resources of the client

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 449

You may notice that all the work is done by the GetltemDiscount stored procedure. This
means that we can change our discount policy by editing the stored procedure at the database
server, without even looking at the middle-tier component's code. This is an added bonus for
the specific application, but you can't count on this. A complicated business rule may require
quite a bit of code in the middle tier, and you can't always implement business rules at the
database level. When this is possible, you can simplify deployment even further (no need to
touch the application's code, just change the stored procedure at the database). However, you
shouldn't place an additional burden on the server just to avoid the deployment of a new
component. In our example, the rule requires the execution of a non-trivial query against the
database and we can't avoid it.

Remoting the Business Logic

As we mentioned, one of the benefits of building components, especially in large applications,
is that we can deploy them on a single server (or a small number of servers) and service a large
number of clients. The servers on which the components reside are called application servers
and they're fast machines, usually connected to a database server through a high-speed link.
The application server is where the business logic is executed. If your corporation changes a
business rule, you can revise one or more components and install them on the application
server, and all clients will see the new component the next time they request it. It's not
uncommon for the application and database servers to be hosted on the same machine. When
the system is overloaded, you can add application and database servers as needed. It's not a
trivial task, but this is the way to build a highly-scalable application. Scalable applications are
written so that they can be spread over multiple servers. You can add multiple application
servers to scale out the business components, as well as database servers to scale out the
database. With some form of load-balancing software, client requests are directed to the least
loaded server at the time.

Another good reason for building components that can be executed remotely is that not all
components may reside on your corporation's servers. Today's applications may need to work
with resources outside a corporation's environment. Consider a Web application that accepts
orders and calculates shipping costs. To calculate the shipping cost, you may have to connect
to the database of the shipping company and interact with a component that can calculate the
cost of a shipment, given its source and destination, and the weight of the goods to be shipped.
You may also wish to display the progress of the shipping, if this information is available from
the shipping company. Many online stores display the progress of the shipment online. This
information comes from the shipping company, not from the merchant's database. The
merchant's system requests this information from the shipper and displays it for its own
customers.

Given the need for remoting components and different systems to talk to one another, we'll
explore .NET's techniques for invoking components on remote systems. The two techniques
are Web services and remoting. Web services are simple to set up; remoting can be
substantially more difficult, but ultimately faster and more flexible. Web services are actually
based on remoting, but they hide many of the underlying details.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

First, we're going to host the business component on the web server and expose it as a Web
service. All the clients on the network will call the Web service to retrieve the discount. Then
we'll use remoting to access the middle-tier component on an application server.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 465

This is how you can use a COM component in your .NET applications, regardless of whether
it's a legacy component you developed with VB6 or a third-party control. The source code is

not required and you don't have to create the interoperability layer yourself; instead, the IDE

will create it as needed and will also copy it to the project's output directory. This means that

interop assemblies will be distributed with the project's setup application.

TP The CLR can determine the dependencies of your code on COM components and include
them automatically in the project's output when you build the application's setup program (the
MSI package, as discussed in Chapter 10). However, it can't determine the dependencies of
the COM component. If the COM component has dependencies of its own, you must add them
to the project's output manually.

Using COM+ Applications in .NET

In many situations, middle-tier components are distributed to the production environment as
COM+ applications. A COM+ application runs as a Component Service: that is, the
component is hosted by the Component Services on an application server and any number of
client machines can contact the server and request an instance of the component. There are
many benefits to this approach, especially for large-scale applications. COM+ applications can
be used to create objects that run on the application server, not on the client. They can
participate in transactions and, most importantly, you can maintain a pool of objects on the
server to service a large number of clients.

Let's start by reviewing the process of creating a COM+ application with VB6. First, you
create a class as usual. The class's compiled code, which is a DLL, can be installed on an
application server as a COM+ application. This is done with the help of the Component
Services Explorer (or the Component Services console). You simply create a new COM+
application and add the new component (the DLL) to the application. The COM+ application
can be configured easily from within the Component Services Explorer. You can specify
whether the component will run at the server or the client, whether the component will
participate in transactions, and whether the component can be pooled. You can also determine
who can access the component. All these operations take place through a point-and-click
interface, and you don't have to modify the DLL's code or the application that uses it.

Once the COM+ application has been installed and configured, you create a proxy for the
clients. The Component Services Explorer will export the application into an MSI package,
which you distribute and install at the clients. The MSI package will install a proxy for the
actual COM+ component at the client. The proxy appears at the client as a new COM+
application and any application on the client can contact it. However, you can't set the
component's properties through the proxy.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

What does it take to use an existing COM+ application in a .NET client application? Basically,
once the proxy has been installed on the client machine, you can add a reference to the COM+
proxy as we demonstrated in the preceding section. The IDE will create an interop assembly,
which will be included in the .NET project. Let's look at the process by building a simple
application. For the example of the following section we'll assume that you have VB6 installed
on your system, which you'll use to create a COM component. If not, you can copy the sample
DLL that's included in the zip file with this chapter's projects.

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 473

Run the application and click the button. Ten seconds later you will see a message box with
your computer's name. After that, the message box will pop up within a second after you click
the same button. The object is pooled and need not be created again. If you remove the
ObjectPooling attribute from the class's definition, recompile the component, and run the test
project again, every time you click the button you'll wait for 10 seconds before seeing the
message box on your desktop. Notice also that regardless of whether the component runs as a
server or library application, the objects you create are pooled automatically.

Summary

In this chapter we discussed the importance of the middle-tier component in designing scalable
applications. Middle-tier components are used commonly with large applications, because
they simplify the tasks of maintaining and deploying the revised applications. Reinstalling a
client application to a large number of workstations can be quite a task and any technique to
simplify this task is welcome.

The maintenance of a large application is also greatly simplified if the application is built with
components, because the middle tier can be revised independently of the presentation tier and
be deployed on selected servers rather than on every client. If you choose to post the middle
tier on a web server and expose its functionality through Web services, you can build both
Windows and web clients that exploit the functionality of the middle tier to access the
database, regardless of the actual location of the database. The clients will never interact with
the database directly, and the objects of the middle-tier component abstract the view of the
database at the presentation tier's level.

Finally, you learned how to use existing COM components with .NET clients, as well as how
to develop serviced components in .NET. Serviced components provide the functionality of
COM objects, such as automatic transactions, role-based security, and object pooling, which is
new to VB developers.

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 475

Chapter 17
Exploring XML Techniques

IT'S SAID THAT .NET rests on XML, meaning that in the NET world, XML is the data storage
and transmission technology of choice. The XML classes built into the .NET Framework are
gathered into these primary categories:

XmlDocument for editing XML (part of Microsoft's implementation of DOM)
XmlReader for reading and searching (part of Microsoft's SAX)

XmlWriter for saving

XmlSchema creating and managing XSD schemas

XmlValidatingReader validation

XmlTransform executing XSL transformations

XpathNavigator applying Xpath queries

There are several auxiliary technologies that expand and assist XML. For instance, XML, like
HTML, can use Cascading Style Sheets, or the even more advanced styles technology called
XSL, which can reorder, or add and delete, tags and attributes.

XML rests on two main APIs:

DOM (Document Object Model)
SAX (Simple API for XML)

Each has its uses. DOM needs an entire XML document to sit in memory while DOM
processes it (DOM is therefore capable of random-access processing). DOM is preferred for
editing XML. SAX works serially on an XML stream, and is preferred for reading or
searching.

This chapter covers a variety of XML tools and features that every .NET programmer needs to
understand, exploring the first four of the primary categories listed at the opening of this
chapter.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 476

Choosing SAX

DOM can be used right along with SAX, if you wish, but normally you select the set of tools
appropriate to the job at hand. SAX is best for searching, particularly simple searches or when
large documents are involved. DOM is best for tasks involving document modification, or
when the task is complex (for instance, when you are dealing with internal cross-reference
structures such as ID and IDREF).

DOM builds a verbose, navigable tree structure in memory—it even adds a type description
for each node. If you're merely interested in reading through a large XML document, you
normally wouldn't want to hand it over to DOM. But do remember that you can use the
technologies together. You could emit a SAX stream from a DOM tree, or ask SAX to build a
DOM tree.

Let's take a look at how SAX works first because it's the simpler of the two technologies.

Copying the Sample File

Before going further, you should now copy a sample XML file to your C:\ drive. Several
examples in this chapter require this XML document.

As with the famous Pubs and Northwind sample databases, Microsoft offers a sample XML
file for you to experiment with. Included with Visual Studio is a file in the Help system you
should now save to your hard drive. Save it in a file named books . xm1 on your C:\ drive. Use
the VB.NET Help Search feature (click the Search tab at the bottom of the Help window) and
search for:

<author>Gambardella, Matthew</author>

You see an entry titled Sample HTML File For XML Data Islands. Copy it to Notepad. The
data you want begins with the usual ?:

<?xml version='"'1.0"?>
<catalog>

and it ends like this:

</book>
</catalog>

Using SAX

To see how to access a SAX stream in .NET, start a new VB.NET Windows-style project,
then type in the code in Listing 17.1.

LISTING 17.1: ACCESSING A SAX STREAM

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Imports System.Xml

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim Xreader = New XmlTextReader ("c:\books.xml")
Dim ele, att As Integer, m As String

While Xreader.Read()

Team Fly Presvious

Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 478

NodeType The type of the current node (using the XmINodeType constants —see
"Xml-NodeType enumeration" in Visual Studio Help).

Prefix The namespace prefix of the node.
Value The text value of the node.

Note that the XMLTextReader's Read method maintains a pointer within the streaming
document, keeping track as the nodes flow by, leaping from node to node. At each leap, you
have the opportunity to query the current node, using the Reader's properties and methods,
such as the HasAttributes property used in this example.

You can stream XML in from a variety of sources, including a URL, like this:

Dim Xreader = New XmlTextReader (http://www.myplace.xml")

If you are one of those who are simply determined to avoid Microsoft technology, you will
want to find and use other versions of SAX (and what are you doing reading this book?).

A primary distinction between classic SAX parsing and the Microsoft XMLReader is that
SAX pushes the events into your source code, meaning that you are notified each time a node
is read by the parse. The XMLReader pulls the XML in, offering you a bit more flexibility.
For one thing, with the XMLReader you can rather painlessly access multiple input streams
Another signal advantage of the XML Reader is that it includes Skip and MoveToContent
methods, so you can locate nodes of interest to you more quickly. It's similar to random-
access, albeit forward-only.

Deeper into DOM

The DOM is a way for programs to read and write to XML, adjusting the style, content, and
structure of the XML file.

The original DOM specification is not itself a library of functions. It's merely a collection of
interfaces. Interfaces are often used when a committee is concerned that a set of class and
member names be standardized and enforced. XML DOM is a list of words, and you (or any
other programmer) can create the source code that actually makes the interfaces do their jobs.
However, I suspect you'll simply want to join the crowd and use Microsoft's version of the
DOM.

The Microsoft .NET implementation of the DOM specification closely follows the official
W3C DOM interfaces. The NET XMLNodeList and XMLDocument classes—and related
classes—offer both the fundamental and extended technologies specified by W3C. If you've
worked with W3C DOM, you'll find its .NET implementation very familiar and easy to use.
What's more, you will surely appreciate the additional features available in .NET that make
working with XML both easier and less error-prone.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The DOM can be viewed as an interface to the many proprietary APIs and XML data
structures, making it possible for a programmer to work with standard DOM interfaces rather
than having to study proprietary APIs.

For example, Ford and GM may use different APIs to handle their XML needs, but with
DOM, a programmer can move from GM to Ford and still count on a known, abstract interface
that will work with either the Ford or GM APIs. In other words, DOM is a linguistic
convention.

Also supporting XML are XML schemas, which assist programmers in defining their own,
proprietary XML structures. Schemas, including one proposed by Microsoft, ultimately go
beyond

Team Fly Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 480

Using Namespaces in XML

XML namespaces help prevent "collisions" that can happen when attribute names or tags are
identical if a document contains multiple markup vocabularies (more than one namespace).
They are similar to .NET namespaces. This works in XML because each namespace is given a
unique number. Commonly, a different URL (Uniform Resource Identifier) is assigned to each
namespace. By definition and design URLs are unique—there's only one possible number for
each URL anywhere in the world of the Internet. Sometimes a URN (Uniform Resource
Number) is used instead. In either case, the number is unique and prevents collisions of the
names you use in different vocabularies.

You can either come right out and explicitly name an XML namespace within your XML
code, or you can allow the parser to assume the namespace implicitly, by omitting it from your
code.

Explicit Declaration

Just as with variables in VB6 and earlier, you can either explicitly declare an XML namespace
or let it happen implicitly. Explicit declarations keep things straight if your node contains
elements from more than one namespace. You use a shorthand name for the namespace that
you use as a prefix (like an alias) to specify which namespace an element belongs to.

<mo:film xmlns:mo="urn:FilmSociety.com:FilmData"
xmlns:directors="urn:CinemaHistory.com:Directors">
<mo:name>Annie Hall</mo:name>
<directors:director>Woody Allen</directors:director>
</mo:film>

xmlns is the attribute used to declare a namespace and at the same time to specify a prefix that
represents the namespace. In the example above, we defined a prefix (mo) that represents the
namespace identified by the unique value of "urn:FilmSociety.com:FilmData" and also
declared a second namespace ("urn:CinemaHistory.com:Directors") and assigned the word
directors as its prefix. Then the mo prefix indicates that the name element belongs to the
"urn:FilmSociety.com:FilmData" namespace.

Next the directors prefix specifies that the director element belongs to the
"urn:CinemaHistory.com:Directors" namespace. In this way, you can freely employ elements
from different namespaces, and not have to worry that you'll run into duplicate (therefore
ambiguous) element names. With the prefixes, there will never be confusion if more than one
element has the same name.

Implicit Declaration

Implicit declaration means that all the elements inside the element's scope belong to the same
namespace (so a prefix is not needed). You accomplish explicit declaration by simply leaving
out the prefix when you declare the namespace, like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<film xmlns="urn:FilmSociety.com:FilmData">
<name>Annie Hall</name>
<star>Diane Keaton</star>
</film>

Team Flv { Prewious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 481

The Explosion of Schemes

As you probably guessed, the extensibility of XML is a two-edged sword. Allowing everyone
to create their own tag vocabulary (element and attribute names) and data structures has
resulted in many thousands of unique, proprietary XML vocabularies.

In the early 80s, an intriguing language named Forth fascinated many programmers. It
permitted a crude form of inheritance and polymorphism.

Using Forth was similar to Lego and transformer toys where a robot can be changed into a
truck, and a truck can be built up until it becomes a city. Essentially, the Forth language was
open and protean: You took the core language and modified it until it transformed into an
application. Each Forth application was merely the core language itself, but renovated and
expanded until it became functional, specialized, and unique.

The problem was that each application contained many unique statements that only the
programmer could understand (if even he or she could figure it out after a few weeks passed).
Also, programmers tended to quickly customize the language in other ways, creating their own
personal (and incompatible) version of string manipulation, data shorthand, and other language
components.

Linux aficionados call this effect forking. By this they mean that an IT department can lose
control of a Linux-based project because it's all too easy to create forks in the code base.
Precisely because the central source code is open to anyone's fiddling, the fundamental core
(code base) of Linux can divide into incompatible code bases which cannot ever be reconciled.

This effect is not accidental or rare. Forking becomes a tree of forks rather rapidly. Indeed,
forking always seems to happen to languages such as Forth, and operating systems such as
BSD (now we have multiple forks: NetBSD, FreeBSD, OpenBSD and so on). XML
(supposedly standardized) itself is forking rapidly into incompatible versions for bankers,
bakers, and candlestick makers. Efforts are made to enforce conformity on extensible
languages (there are XML standards committees; Linus Torvald's and Alan Cox's attempt to
act as a central authority for adding and accessing the Linux kernel, and so on). Nonetheless,
these efforts at keeping open source languages and platforms closed are oxymoronic. They
have always failed in the past. Despite heavy breathing on the part of the techie crowd, and
quite a bit of positive publicity in the press, Forth rapidly disappeared.

Every organization left to build its own set of XML structures and tags generates a new XML
language, unique to itself. All these new languages share the XML punctuation and syntax
rules (in effect, they share the XML interface), but the actual vocabulary is special to each
implementation.

How you navigate unique XML structures, what the tags mean, the hierarchy, the
relationships, the diction—all this can differ among the many thousands of versions of XML
schema currently being invented by disparate organizations.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Microsoft, and others, have proposed sets of rules, schemata. One such initiative is Microsoft's
biztalk, a site that attempts to gather information about XML, XSL and other data models used
by all those thousands of organizations. See www.biztalk.org for further details.

Now let's turn our attention to XSD, Microsoft's choice for the building blocks for schemas.
As you'll see, XSD is uniquely suited to representing data sets, and to translating database
tables into XML and vice versa.

Understanding XSD

Visual Studio.NET focuses on XSD rather than DTD or other alternatives. So we'll take a brief
look at what you can do with XSD.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 487

Programmatic XML

In .NET, an XML document can be loaded using the Load method (you pass an argument
describing the source, which can be a disk file, a stream, an XMLReader, or a TextReader
object). Or you can use the LoadXML method to load a literal string, or string variable, into
your document.

Start a new VB.NET Windows project, and add these namespaces:

Imports System.Xml
Imports System.Xml.Xsl

To see how to create an XML document, then load a literal string into it, type in the code in
Listing 17.3.

LISTING 17:3 LOADING A LITERAL STRING INTO AN XML DOCUMENT

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim XMLdoc As XmlDocument
Try

XMLdoc = New XmlDocument
XMLdoc.LoadXml (' '<Cookie>

<Name>Francine Cerance</Name></Cookie>")
Console.WritelLine (XMLdoc.DocumentElement.OuterXml)
Console.WritelLine (XMLdoc.DocumentElement.InnerXml)

Catch ex As Exception
MsgBox (ex.Message)

End Try

End Sub

Here's the result when this code is executed:

<Cookie><Name>Francine Cerance</Name></Cookie>
<Name>Francine Cerance</Name>

To see how to load XML from a file, make the following change to the previous example.
Change LoadXml to Load, and replace the string argument with the path to an XML file:

XMLdoc.Load ("c:\books.xml")

Press F5 and you'll see two long lines of data in the Output window. The only difference
between these lines is that the first line includes the <catalog> tags because it displays the
outer XML.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 493

FIGURE 17.1 The program atomizes an XML document into its smallest components.

XML and DataSets

Among the most useful aspects of XML in .NET is its interchangeability with DataSets. In this
section you see how to create an XML schema that becomes a DataSet, then connect it to a
DataGrid, and save or load this schema and the associated data.

Start a new VB.NET Windows-style project. Choose Project * Add New Item, then double-
click the XML Schema icon in the dialog box. The Toolbox is now filled with the Tinkertoys
you can use to build a schema. Double-click the Element icon in the Toolbox. A graphic
appears in the design window, ready for you to define the structure (add attributes, for
example). Each element in this kind of XML schema is the equivalent of a table in a database
or DataSet.

Add several attributes to your element by dragging attribute icons from the Toolbox and
dropping them into the element box graphic. You can adjust the data type in the right column
of the element box by clicking, then dropping a list of available types. You can rename the
attributes by clicking them, then typing.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Right-click the background of the design window and choose Generate DataSet from the
context menu. Now click the Form1.vb [Design] tab to display your project's form. Click the
Data tab on the Toolbox and double-click the DataSet icon. The Add DataSet dialog box
opens with the name of your schema already displayed in the dialog box by default.

Click the Windows Forms tab on the Toolbox and add a DataGrid by double-clicking its icon.
If you haven't experimented with it, the DataGrid is an excellent, flexible user-interface device
for database work. In the Properties window, set the DataGrid's DataSource property to
XmlSchemal1.elementl.

Now add some source code to permit you to persist and retrieve DataSets stored as XML files.
Add two buttons to your form, then type Listing 17.7 in.

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 495

Then click the Save button and take a look at the file that VB.NET has saved:

<XMLSchemal xmlns=''http://tempuri.org/XMLSchemal.xsd">
<elementl FirstName="Danny" attribute2= "Prior" attribute3= "12" attributed=
<elementl FirstName="Hoda"

attribute2="Macksoof" attribute3= "55" attributed="-4" />

<elementl FirstName="Soledaa" attribute2="Nussy"

attribute3="-2" attributed4="-5" />

</XMLSchemal>

This isn't your father's database. Stop the program, then run it again and click the Load button
to populate the DataGrid.

Persisting with SOAP

Persisting arrays and collections (and arraylists, hashtables, what have you)—as well as
objects, structures and so on—can be conveniently handled by an XML daughter technology,
SOAP. You use the SoapFormatter to create or load an XML file that contains both the
structure of the collection and its data. This technique draws upon the .NET serialization
capability and is illustrated in Listing 17.8.

T1p XML serialization ignores any private fields (binary serialization saves both private and
public fields).

WARNING To use XML serialization, you must choose Project = Add Reference, then scroll
down the list of "components" and add
System.Runtime.Serialization.Formatters.Soap fo your project. Oddly, some
namespaces (mercifully only a few) must be added in this way—as a "reference"—to a project
rather than employing the usual Imports statement. The distinction between which
namespaces are imported and which assemblies must be added as "references"” escapes me. It
perhaps reveals which technologies were added to .NET late in the game. After you finish this
step, you'll see the System. Runtime.Serialization.Formatters.Soap reference in
the Solution Explorer, and you're ready to roll.

LISTING 17.8: PERSISTING TYPES VIA XML SERIALIZATION

Imports System.IO
Imports System.Runtime.Serialization.Formatters
Imports System.Runtime.Serialization.Formatters.Binary

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim Arr (2), ArrNew(2) As String

Arr (0) = "This test"
Arr (1) = "continues until"
Arr (2) = "it finishes."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 503

Console.WritelLine (cl.FirstName)
Console.WriteLine(cl.LastName)
End Sub
Sub deser UnknownElement (ByVal sender As Object, ByVal e As XmlElementEventArgs
MsgBox (e.Element.Name & '' is not recognized. Deal with it. The prob
in line number " &

e.LineNumber & " in the XML source file.")
End Sub

Notice that when you execute this program, the Output window displays the LastName, but
not the FirstName (which was ignored in the input stream). Also, you can use the
ObjectBeing-Deserialized property of the XmlElementEventArgs object to identify which
object instantiated by your application is having the problem.

More Interchangeability

As you see in various examples in this chapter, XML is pervasive in .NET. You can quickly
design an XML schema, then transform it into an ADO.NET DataSet structure with a click of
the mouse (see the section titled "XML and DataSets" earlier in this chapter).

In various other contexts in .NET you also see XML popping up here and there—and often
you need not do anything yourself because .NET creates the XML or schemas all by itself.

How easy is it to transform XML data (as opposed to a schema) into a database-style data
table? As easy as clicking a Data tab in the VB.NET IDE. Try it.

Choose File = Open = File in VB.NET. Locate and load the sample XML file,
c:\books.xml. You see a formatted view of the XML. Now click the Data tab at the bottom
of the NET IDE window. The XML is automatically translated into an editable data table, as
shown in Figure 17.3:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 17.3 NET transforms XML into a DataSet with the click of a button.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 504

Can you go the other way? Create a DataSet, then change it into XML? Sure. Build a dataset
from the Pubs sample database by adding an OleDbDataAdapter from the Toolbox to your
form, then follow the instructions provided by the Data Adapter Configuration Wizard. Then
right-click the OleDbDataAdapter icon on your form and choose Generate Dataset.

Click the DataSet1.xsd tab at the top of the Design window to see your new DataSet. Click the
XML tab at the bottom of the Design window to see its XML version, as shown in Figure
17.4:

FIGURE 174 It's easy to go the other way: From database table to XML.

Summary

In this chapter you saw how to manage XML-based programming, starting with the
differences between, and uses for, DOM and SAX, the two primary APIs supporting XML.

You explored XML namespaces, schemas, and XSD along with XML data types. Then you
went on to manipulate XML features programmatically, recursively walking nodes and
transforming data into XML and back from XML into data again.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Finally, you learned how to employ serialization to persist data two ways: via SOAP and via

simpler, more streamlined, XMLSerializer techniques. And you saw the uses, and limitations,
of self-description during deserialization.

Team Fly

Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 505

Chapter 18
Designing Data-Driven Windows Applications

IN CHAPTER 15 WE discussed the architecture of ADO.NET and the classes that make up
ADO.NET. So far we've shown you simple examples to demonstrate the basic operations you
can perform with the ADO.NET objects, and the interfaces of these sample applications were
based on the DataGrid control. The DataGrid control is not the be-all-and-end-all of your data
display requirements. For one thing, it's almost impossible to edit a DataGrid control without
reaching for the mouse, and a basic requirement for many applications is that they be used
with the keyboard only. Another limitation of the DataGrid control is that it doesn't support
the functionality of the ComboBox control, which is frequently used as a lookup tool. If you
search the Internet for tips on using Windows controls, you'll find numerous resources on
adding functionality to the DataGrid control. Our tip is to not use a control for a purpose for
which it wasn't designed.

Real-world applications are based on interfaces built with regular Windows controls—data-
binding is not a developer's first choice. In this section you'll learn how to build functional,
userfriendly applications with regular Windows controls. You'll also learn how to build
navigational tools that allow users to quickly locate the desired rows. A navigational tool
based on a couple of buttons that take the user to the next or previous row is simply
unacceptable. In this chapter we'll describe a couple of functional navigational models that you
can use with your applications.

We'll start this chapter with a quick overview of data-binding and then we'll present a few
typical data-driven applications. The applications of this chapter contain quite a bit of code,
but these aren't simple applications. We'll explain their architecture and then we'll look at the
code. We suggest that you download the projects from the book's website and open them in
the Visual Studio IDE. The projects are well documented and you'll find it easy to understand
their code.

Data-Binding

Data-binding is a mechanism for mapping selected columns of a DataTable to a control
property, which is usually the Text property. When a control is bound to a column, the
column's value is displayed automatically on the control. As you move through the rows of the
DataTable, the property changes value to reflect the value of the bound column in the current
row. If the control's text is

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 506

edited, the new value replaces the column's value in the DataSet. A data-bound control is in
effect a window for viewing and editing a specific column in the DataTable.

In most cases we bind the control's Text property, but there are other properties you can bind
to a data source, such as the Tag property. To set the data-bound properties of a control,
expand its Data-Bindings section in the Property Browser, select one of the data-bound
properties, and set it to the appropriate column name. You will notice that the properties listed
in the DataBindings section do not have unique names; you will see a Text property, a Tag
property, and so on. In the DataBindings section, you bind the values of these properties to a
data field. The properties by the same name that appear outside the DataBindings section can
be set to static values as usual.

Some of the Windows controls can be bound to columns and display all the rows in the table.
The ListBox and ComboBox controls, for example, can be populated with the rows of a table
and display a specific column. These controls are used almost exclusively as lookup tools on
data entry forms, and you'll see several examples of this technique in the following sections.
It's possible to populate a ComboBox control with the rows of the Categories table, for
example and bind the control to the CategoryID field of the Products table. As a result, every
time you move to another row in the Products table, the current product's category name will
appear on the control. To change the category of the current row, you simply select another
category name on the control.

Data-binding is not new to ADO.NET.Data-binding was available with earlier versions of
ADO, but it has never been a real developer's tool. You will see how to use data-binding to
build a functional viewing and editing interface for the Products table, but most of the
examples aren't based on data-binding. We'll discuss the relevant topics as we go through the
examples.

The NWProducts Application

Our first example is a typical application for viewing and editing a table with products. You've
seen how to display the Northwind Products table's rows on a DataGrid control and how to
submit to the database the changes made to these rows by the user with the DataAdapter
object. In this chapter we're going to build a functional and intuitive interface for viewing and
editing the rows of the Products table.

The basic requirement of this application is that we shouldn't have to download the entire table
to the client: in a production database the Products table is quite large. This application will be
used by multiple users on a local area network, and they should be able to see each other's
changes. If we give each user a copy of the table, multiple users may edit the same line.
Moreover, there will be a lot of conflicts we'd have to reconcile as we submit the changes to
the database. We'll build a connected application that submits the changes to the database as
soon as they occur.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another important aspect of the application is the navigational model. Even if the rows of the
Products table are copied to a DataSet at the client, we should provide a mechanism for users
to locate a desired product quickly and conveniently. Dumping all the product names on a
ListBox control may work with a small table, but it's a totally impractical approach for a
production database with many thousands of products. Moreover, we'll allow users to locate a
product with several criteria, and not just the product's name. We'll allow users to select a
product by its name, its category, or its supplier, on a separate form.

The Products table is related to the Categories and Suppliers tables. Obviously, we can't
display category and supplier IDs on our interface; we must retrieve and display each
product's category and

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 507

supplier name on the form. When users edit a product, they should be able to select a category
and a supplier by name from a list. To facilitate this operation, we'll download the tables with
the categories and suppliers to the client. We're assuming that these two tables aren't edited
frequently and users will almost always find the desired category and supplier in a DataSet at
the local machine.

The Application's Interface

The application's main form is shown in Figure 18.1. Users can select the product to view or
edit on the form shown in Figure 18.2. This form is invoked when users click the button with
the question mark on the application's main form. On the Product Search Form users can select
a product by name, by category, or by supplier. To view the products in a given category, or
the products by a given supplier, they can simply select the desired category or supplier on the
appropriate ComboBox control. Every time users select another item on either list, the
corresponding products are displayed on a ListView control at the bottom of the form. To
select products by name they must enter part of the product's name in the top TextBox control
and press Enter.

The matching products are displayed on a ListView control at the lower half of the form,
where users can double-click a product's name, or press Enter, to view the selected product's
details on the program's main form. The auxiliary form will close and the selected product's
fields will be displayed on the main form. While viewing products, the controls on the main
form are locked. The Edit button unlocks the controls for editing and it also changes the
background color of the various controls on the form to indicate that the controls can be
edited. The editing process must end with the OK or Cancel button. While editing, users are
not allowed to select another product.

FIGURE 18.1 Editing the Products table with the NWProducts application

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 18.2 Locating the product to view or edit with the NWProducts application

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 516

first instance of the application and try to retrieve the new product. You can search for it by
name, category, or supplier. If the new category doesn't appear in the ComboBox of the
auxiliary form, close the auxiliary form and open it again. The application will fail to load the
selected row, because it violates the DataSet's referential integrity. This will activate the Catch
clause of the structured exception handler shown in Listing 18.3, and the application will
silently reload the Categories and Suppliers DataTables.

You can't delete any products from the database, because they're all referenced by one or more
rows of the Order Details table. You will be able to delete a row in the DataSet, but the update
operation will fail. Start two instances of the application and add a new product using one of
two windows on the desktop. Then select this product in both instances of the application.
Delete the product in one instance of the application, and then edit it in another instance of the
application. The deletion will succeed, but the edit operation will fail, because the application
can't find the row in the Products table and update it. When you click the OK button for the
first time, the changes will be submitted to the database. When you click the OK button of the
other instance of the application, the update operation will fail. You must cancel the edits and
reload the same product row to see the current values of the row in the database. This happens
because the DataAdapters were configured for optimistic concurrency. If you turn off
optimistic concurrency, then all changes will be written to the database, overwriting changes
made by other users.

An Invoicing Application

A very common task in business applications is a program for entering orders and invoices.
All invoicing applications are based on a grid control, where the user can enter, as well as edit,
the items. If you attempt to build an interface for an invoicing application with the DataGrid
control, you'll end up writing a lot of code to add functionality that's not natively supported by
the control. A basic requirement of an invoicing application is that it should provide full
keyboard support. Can you imagine a cashier at the Wal-Mart using the mouse? Of course,
Wal-Mart doesn't use Windows workstations at their registers, and there's a very good reason
for this: they want the lines to move fast. Editing the contents of a DataGrid control is
practically impossible without the mouse. However, we've seen many similar applications that
allow users to enter orders/invoices by editing a grid control. To better understand the
requirements of such an application, consider how cashiers at large department stores work:
most of the time they scan barcodes. They don't touch their keyboards, except to print the
reciept. When the scanner fails to read, the cashier enters the barcode manually. If the barcode
can't be read at all, they can search by a product code that's printed on the label.

The Application's Interface

Short of building a custom control or buying a third-party control, your best bet for building
an invoicing application is to base it on a ListView control. The ListView is a non-editable
grid; the editing of the data should take place on a few controls outside the grid, and the
ListView control should be used for displaying the invoice's rows. The form shown in Figure
18.3 is our idea of a functional invoicing interface.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 535

The automated discount calculations impose another limitation on the design of the
application's interface. The original NWOrders application allows you to switch tabs and
select another customer even after adding detail lines to the order. We can't have this
flexibility when the discount policy is based on the customer. To prevent users from selecting
a new customer after having entered detail lines with discounts for another customer, we
disable the Order Header tab. Another approach would be to allow users to select another
customer and recalculate the discounts for the detail lines on the Order Detail tab.

The Relations Application

The Relations project demonstrates how to present related data on a Windows form. As you
should guess, we're not going to use the DataGrid control, despite the fact that it's been
designed to display related tables. The major disadvantage of the DataGrid as a data
presentation tool is that it doesn't allow users to view the hierarchy of the data. The DataGrid
control displays one level of data at any one time. Besides, users must select the relation they
want to view on the control—certainly not the friendliest approach. We must give credit to the
designers of the controls for the fact that the DataGrid can display any DataSet. A well-crafted
application is very specific as to the data it handles and you can't expect a general tool to
accommodate your needs as nicely as a custom solution. And this is what we'll do in this
project: we'll write an interface that allows users to select a product from a list and see the
customers who purchased the specific product, in how many of their orders it has appeared,
and the total number of items of the same product each customer has ordered. The
application's form is shown in Figure 18.6.

FIGURE 18.6 The Relations project displays sales data about each product.

The Application's Architecture

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When the application's form is loaded, all the data are loaded into the ProductSales DataSet. In
a real application you should provide an interface that enables users to limit the selection. For
example, select orders placed in a time interval, the orders of customers from a specific
country, and so on. The tables of the Northwind database are very small and we've chosen to
download all their rows to the client.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 539

The listing is a bit lengthy because it calculates totals, formats the cells of the ListView
control, and so on. We'll focus on the statements that navigate through the hierarchy of the
DataSet's rows. When the user selects an item in the list, the following actions are performed
from within the control's SelectedIndexChanged event handler:

1. The detail lines that refer to the selected product are copied from the Order Details
DataTable into an array of DataRow objects with the DataTable's Select method:

DetailRows = _
ProductSalesl.Order Details.Select(''ProductID = " & productID)

The DetailRows array contains all the rows of the Order Details DataTable that refer to the
product whose ID we passed to the Select method as argument.

2. The program creates a new DataTable, the OrdersTable, with the same structure as the
original Orders DataTable of the DataSet. This DataTable will store all the rows of the
Orders DataTable that correspond to the details selected in step 1. The following
statements iterate through the rows of the DetailRows DataTable, retrieve the order to
which the detail belongs, and add it to the OrdersTable DataTable. The GetParentRow
method accepts as argument the name of the relation between the Order Details and

Orders tables.

For Each DetailRow In DetailRows
OrderRow = DetailRow.GetParentRow ("OrdersOrder Details")
OrdersTable.Rows.Add (OrderRow.ItemArray)

Next

3. The OrdersTable DataTable now contains the orders that include the product selected on
the ListBox control. Another loop iterates through the rows of this DataTable and
displays them on the ListView control. In addition, it keeps track of the number of orders
placed by each customer and the total amount spent by each customer for the selected
product.

4. To retrieve the customer name from each order, the program calls the FindByCustomerID
method of the Customers DataTable, passing as argument the customer's ID with the
following statements. The CustomerRow variable is of the ProductSales.CustomersRow

type.

CustomerID = OrderRow.Item("CustomerID")
CustomerRow =

ProductSalesl.Customers. FindByCustomerID (CustomerID)

The remaining statements populate the ListView control, calculate the totals, and perform
other straightforward tasks.

The Relations project demonstrates an interesting alternative to the DataGrid control for
building interfaces that display related data. It involves quite a bit of code, as opposed to the
DataGrid, but you have absolute control over the appearance of the data and you can display
all the levels of your data hierarchy.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The Relations1 Project

Figure 18.7 shows an application that maps more complicated relations on a ListView control.
The Relations1 project maps the publishers of the Pubs database, along with their titles and
each title's

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 542

LI = New ListViewItem()
LI.Text = '" "
Next
Next
End Sub

The outer loop adds a new item for each publisher in the publishers table. Then it retrieves all
the books under the current publisher by calling the GetChildRows method of the DataRow
object that represents the current publisher. The selected titles are stored in an array of typed
DataRow objects.

The first nested loop iterates through the titles and retrieves each title's entries in the
titleauthor DataTable. These entries, which are pairs of title/author IDs and correspond to
the authors of the current title, are stored in the TitleAuthorRows array. The last nested loop
goes through these rows and retrieves the authors of the current title by calling the
GetParentRows method of the current Tit1leauthorRow object.

The code also keeps track of the changes in the publisher name and title, so that it can add
each publisher's first title next to the publisher name, but not repeat the same publisher name
until it runs into a new publisher. The same is true for titles: titles with multiple authors appear
only once, but each author is added to the ListView control as a separate item. You can open
the Relations1 project in the Visual Studio IDE and go through its code, which contains quite
a few comments, which are not shown in Listing 18.23.

Summary

In this chapter we've shown a few practical data-driven applications. The DataGrid control is
not the utlimate tool for displaying data—in fact it's not even the most appropriate control for
building data-driven interfaces. Typical business applications use the same controls used to
build any other type of interface.

Some of the more advanced and richer Windows controls, such as the ListView and TreeView
controls are not even data-bound. However, it's fairly straightforward to populate them with
data from a DataSet, as you have seen in the examples of this chapter. The DataGrid control is
a very convenient tool for developers, because it allows you to quickly view the contents of a
DataSet, but it's not the most suitable control for building intuitive interfaces for end users.
The ListView control is ideal for displaying data. In Chapter 7 we developed a custom control
that inherits from the ListView control and can also print its contents. You can combine this
custom control with the techniques of this chapter to build even more functional interfaces.

You've also seen an example of a data-driven application that makes use of a middle tier
component to simplify the deployment of the application. The middle tier component was
implemented as part of the application, but we discussed in Chapter 14 how to deploy middle
tier components as COM+ applications, web services or remotable components.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 543

Chapter 19
Working with Regular Expressions

THIS CHAPTER DEALS WITH a classic and very popular topic in computer science, regular
expressions. Regular expressions are supported in the .NET Framework by the
System.Text.RegularExpressions, which we'll discuss here, along with a few practical
examples. Regular expressions are strings that match patterns of text. They consist of
characters and digits, some of which have special meaning. The asterisk, for example, means
any number of characters and the period means any single character. The expression ".*"
(without the quotes, of course) means any character, any number of times. Regular expressions
are not the same as the wildcard characters you use to match file patterns. The expression ".*"
has a totally different meaning as a regular expression than it has as a file-matching
specification. As a regular expression, it matches an entire line of text, or the entire text.

A regular expression allows you to search for general text patterns, instead of literals. The
IndexOf method of the String class searches for a specific string in a longer one. The IndexOf
method (the InStr() function works the same way), locates exact instances of the string you
specify as argument. When you use regular expressions, you can specify a pattern such as all
e-mail addresses or all dollar amounts in the text. If the text contains product codes that have a
specific pattern, like XX-NNN-X, where Xs are uppercase letters and Ns are digits, you can
locate all product codes in a single sweep through the text with the help of the appropriate
regular expression.

Regular expressions are an extremely powerful tool in text processing. The
System.Text.RegularExpressions class abstracts a very powerful engine for matching regular
expressions against arbitrary text. All you have to do is specify the regular expression and the
text to be searched and then call a method to retrieve the matches. The RegularExpressions
class makes it very easy to locate any pattern in a text, as long as you can construct the
appropriate regular expression. Writing the correct regular expression is not trivial, but this is
something you get used to. Besides, a simple search on the Internet will return many regular
expressions for common patterns such as e-mail addresses, [P addresses, phone numbers, and
SO on.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 544

Writing Regular Expressions

Before examining the methods of the RegularExpressions class and how to program it, we'll
review the process of building regular expressions. To experiment with regular expressions as
you read through the material of this tutorial, use the RegExEditor application, which is
described later in this chapter. This application, shown in Figure 19.1, is a simple text editor
that supports the usual editing operations (copy/cut/paste); its Find command allows you to
search with regular expressions as well as literals. The regular expression in the Search For
box of the Find & Replace dialog box locates words that begin with "t," followed by three
characters (any three characters) and ending with the character "e."The \w construct in the
regular expression is a so-called metacharacter that matches a word character (everything
except spaces and punctuation symbols). This metacharacter is followed by a count in curly
brackets. The subexpression \w{ 3} stands for three consecutive word characters. The \b
construct is another metacharacter that matches word boundaries. By placing the \b
metacharacter at the beginning and the end of the regular expression, we specify that the
matches should be complete words. If you're totally unfamiliar with regular expressions you
may find them quite odd, but don't give up yet. We'll explore all metacharacters in the
following sections, starting with the simpler ones and progressing to more complicated ones.

You can also use the RegularExpressions project to experiment with regular expressions. This
project demonstrates a few of the more advanced topics, such as using groups in the regular
expressions and performing replace operations using regular expressions. You can also use it
with simple regular expressions such as the ones we'll build in the following sections. Enter
the regular expression to match against the text in the upper TextBox control (Search Pattern
box) and the text to be searched in the large TextBox control (Text box), then click the Find
First Match button to locate the first match. After that, keep clicking the Find Next Match
button to locate the next match in the text. Each time a match is found, the matched text will
be highlighted on the control with the text. For the time being, you can ignore the Replace
Pattern box and the Replace Matches button, as well as the Groups box at the bottom of the
form. We'll look at the function of these two buttons later in the chapter, when we'll discuss
replacement operations with regular expressions. The Groups box contains the matches of
complicated regular expressions that contain groups, which we'll cover later. Simple regular
expressions, like the ones we're going to discuss in the introductory sections, contain a single
group and a single capture.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 19.1 Matching regular expressions with the RegExEditor project

Team Fly { Previous Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 547

If the letters (or numbers) are consecutive, you can use the range operator and specify the first
and last letter in the range. The following expression matches all uppercase characters:

[A-Z]

while the following matches all numeric digits:

[0-9]

The expression [1357] means any of the digits "1", "3" or "5" or "7."

ISBNs are made up of 9 numeric digits followed by a check digit, which can be either a
numeric digit or the character X. The following expression locates ISBN values in the text (but
it doesn't validate their check digit, of course):

[0-91{9}[0-9X]

This pattern instructs the regular expression engine to locate 9 numeric digits followed by
another numeric digit, or the character X. The expression [0-9] {9} means 9 digits. The next
character can be either a digit or the letter X.

Notice the content of the second pair of square brackets: it matches a character in the range 0—
9, or the character "X." Digits are so common that there's a special metacharacter for them.
This is the \ d metacharacter. The following regular expression will also locate ISBNs in a
text:

\d {9} [\dX]

This expression will match all runs of 10 digits in the text, even if they're part of a very large,
unformatted number. If the text contains the number 390102188541, then the previous regular
expression will report the first 10 digits as a match. To avoid erroneous matches, we must also
use the \b metacharacter, which specifies the beginning or the end of a word. Our final regular
expression for locating ISBN values is:

\b\d{9} [\dX]\b

There's quite a bit about regular expressions and we'll return to the topic of building regular
expressions shortly, but first we'll take a closer look at the RegularExpressions class. This
class belongs to the System.Text namespace and it exposes all the functionality you'll need to
use regular expressions in your .NET applications.

The RegularExpressions Class

Now that you have a general idea of what regular expressions are and how to locate general
patterns of text, we can explore the basic functionality of the RegularExpressions class. To
exploit the functionality of regular expressions in your code, you must import the
System.Text.RegularExpressions class to your project:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Imports System.Text.RegularExpressions

and then create an object of the RegEx type:

Dim RX As Regex

Team Fly

Presvious

Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 558

The Elements of a Regular Expression

In this section we'll go though the various metacharacters you can use in building regular
expressions and look at numerous examples. This is a more formal treatment of regular
expressions and, unlike in the introduction of the chapter, we've organized the metacharacters
according to their function.

Characters and Metacharacters

Regular expressions are made up of regular characters (they match the same characters in the
text), metacharacters, and special symbols. Metacharacters are regular characters prefixed by
the slash character. The character "w" in a regular expression will match the same character in
the text. If you prefix it with a slash, you turn it into a metacharacter: the \w metacharacter
will match any word character. The "d" character will match the same character in the text, but
the \ d metacharacter will match a digit. The \w and \ D metacharacters will match any non-
word character and any non-digit character, respectively. Some symbols also have special
meaning in a regular expression. The period matches a single character (any character,
including the space) in the text and the square brackets are used to declare a range of
characters. To match any of these symbols in the text, you must prefix them with the slash.

The simplest regular expression you can build is a regular string. The Match method will
locate all the instances of the regular expression in the text, as if you were using the InStr()
function, or the IndexOf method of the String class. If you use the string "Basic" as a regular
expression, you will locate all instances of the word "Basic" in the text. By default, the search
is case-sensitive. If you turn on the IgnoreCase option, you will also locate all instances of the
words "BASIC," "basic," and so on.

To specify a more general pattern, you must include one or more metacharacters in the regular
expression. One of the most common metacharacters of regular expressions is the period,
which matches any character. The asterisk is another metacharacter that matches the preceding
pattern any number of times. The expression .* will locate entire sentences in the text, because
the period doesn't match the newline character.

If you want to treat any of the metacharacters in the regular expression as regular characters,
you must "escape" them with a slash. To locate a period followed by an asterisk in the text,
use the following regular expression:

A

In the following sections you will find descriptions of all metacharacters used in building
regular expressions, and examples to demonstrate their usage.

Single Character Metacharacters

A very common metacharacter in building regular expressions is the \w symbol, which means

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

a "word character." Use this metacharacter to specify a character in a word and exclude spaces
and punctuation. The period metacharacter matches any character, including spaces and
punctuation symbols. The \w metacharacter matches word characters only. The pattern

.ce

Previous Maxt

Team Flv

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 567

LISTING 19.8: THE REPLACE ALL BUTTON'S CODE

Private Sub bttnReplace Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles bttnReplace.Click
If chkRegEx.Checked Then

Dim searchOptions As RegexOptions

searchOptions = RegexOptions.Multiline

If Not chkCase.Checked Then

searchOptions = searchOptions Or RegexOptions.Ignore(

End If

RegEx = New System.Text.RegularExpressions.Regex(
searchWord.Text, searchOptions)

Dim selStart As Integer = EditorForm.txtBox.SelectionStart

Dim replacementText As String

replacementText = RegEx.Replace(_
EditorForm.txtBox.SelectedText,
replaceWord.Text,
System.Text.RegularExpressions.
RegexOptions.Multiline)

EditorForm.txtBox.SelectedText = replacementText

EditorForm.txtBox.Select (selStart, replacementText.Length)

EditorForm.txtBox.ScrollToCaret ()

Else
If EditorForm.txtBox.SelectedText <> '' " Then
EditorForm.txtBox.SelectedText = replaceWord.Text
End If
End If
bttnFindNext.PerformClick ()
End Sub

You can experiment with the RegExEditor project, or even use it as a starting point for a
highly specialized editor. Let's move on to some more advanced topics in regular expressions.

Advanced Topics in Regular Expressions

So far you've learned the basics of regular expressions. The metacharacters and symbols
you've seen so far are adequate for many practical applications, but there are more topics to
explore in regular expressions.

First, we'll examine the grouping of matches in a regular expression. A lengthy regular
expression can be broken into simpler ones, which you can refer to later in the same regular
expression. Being able to refer to previous matches allows you to perform very powerful
searches (such as locating repeated words in a text).

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 579

In the replacement string we'll make use of the two grouped subexpressions in the regular
expression. The following replacement pattern will place each key and each value in square
brackets and each pair on a separate line:

[$1] = [$2]

You must also press the Enter key once at the end of the replacement string. If not, each
key/value pair won't be printed on a separate line. You must also make sure that there's no
newline character at the end of the search pattern. The text after replacing all instances of the
search pattern with the replacement string is shown next. The text contains the same data as
the original document, but it appears in a nicer format (see Figure 19.7):

[valuel] [34]
[value?2] [405]
[value3] [4534]
[valued] [45]
[value5] : [3334]
[valuelO] : [-4554]
[valuell] : [3904]
[valuel2] : [4506]
[valuel3] : [5564]

FIGURE 19.7 Cleaning a data file with a regular expression that captures all the instances of the same
pattern in the text

The RegularExpressions Project

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now we can examine the code of the RegularExpressions project, which you can use to
experiment with regular expressions, or process long text files using regular expressions. In
the Search Pattern box you enter a regular expression that determines the matches you want to
locate in the text, which is entered in the Text box (just copy the text you want to search and
paste it in the Text box). Then you can click the Find First Match and Find Next Match
buttons to locate the matches in the text.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Pressous e
Page 582
End Try
If txtReplace.Text.Trim <> ''" Then
txtText.Text = RX.Replace (txtText.Text, txtReplace.Text)
Else

Dim MatchEval As New MatchEvaluator (AddressOf UCaseEvaluator)
txtText.Text =
RX.Replace (txtText.Text, txtPattern.Text, MatchEval)
End If
End Sub

The Visual grep Project

One of the classic (and most popular) tools of the Unix operating system is the grep utility,
which searches text files with regular expressions. Even though it's spelled in lowercase, it
stands for General Regular Expression Parser. The application's interface is shown in Figure
19.8. I've actually tried to emulate the look of the old monitors by using shades of green on the
visual interface of the application, but you may find them objectionable.

The Visual grep project is a visual adaptation of the grep utility. It allows you to select any
number of text files on your drive and apply a regular expression against them. The names of
the selected files appear in the ListBox control at the top of the form and you can add/remove
files with the Add and Remove buttons. Once you've selected the files you want to process,
you can type a regular expression, or select one of the predefined regular expressions by
clicking the button with the ellipses. A dialog box, shown in Figure 19.9, will pop up; here
you can select a regular expression by its description and click the OK button to paste the
regular expression that corresponds to the selected description onto the appropriate box on the
application's main form.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 19.8 Using the Visual grep project to locate e-mail addresses with a regular expression

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 588

Summary

This concludes our overview of regular expressions. You have enough information about
building regular expressions and using them to perform powerful searches in large text files,
but there's more to regular expressions. The details can get hairy, but, fortunately, for most
practical applications you won't need extreme knowledge of regular expressions. Regular
expressions are an inherently difficult topic that is very popular among computer science
majors and Unix programmers. However, they are very interesting and should be explored
further. We should mention here that Perl (Practical Extraction and Report Language) is based
on regular expressions and was designed around them. With Perl you can embed regular
expressions in your code just like variables. The If statements of Perl are very compact, but
really awkward to understand. If there's a write-only language, this should be Perl. Yet it's
quite popular.

You should perform some searches on very large text files (using either of the applications
discussed in this chapter) to get an idea of how efficient the RegularExpressions class's code
is. Of course, regular expressions aren't the bread and butter of a typical developer, but some
tasks can be simplified enormously with the functionality of the RegularExpressions class.
You will find this class especially useful if you're interested in language statistics (distribution
of word count versus their length, words that contain specific letter combinations, and so on).
Project Gutenberg at www.gutenberg.net is a great resource for text files representative of the
English language: It provides thousands of free electronic versions of classic literature.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 589

Chapter 20
Advanced Graphics

ONE OF THE MOST interesting aspects of a programming language is graphics. The graphics
engine of .NET is the Graphics Device Interface (GDI+). GDI+ is part of the Windows XP
operating system that provides support for two-dimensional vector graphics, imaging, and
typography. GDI+ is the successor to the Windows Graphics Device Interface (GDI), but it's
more than an improved version of GDI; it's a new optimized graphics engine with many new
features. We looked at GDI+ in Chapter 7, where we discussed the new printing techniques of
NET. In Chapter 7 we focused on a few methods we use to generate business graphics: how
to print text, how to create reports with tabular data, how to draw lines and frames. In this
chapter, we'll explore methods for manipulating individual pixels on a bitmap.

To demonstrate the advanced graphics methods of this chapter, we'll build two very different
applications, one for plotting functions and one for generating fractals. The first application is
a custom control that will plot any user-supplied two-dimensional function. In the process
you'll also learn how to evaluate math expressions at runtime. The PlotControl custom control,
which you'll build in the following section, allows you to set the properties of the plot (the
range of values over which the function will be plotted, the axis titles, the style and color of
the plot, and more) and you can incorporate it into your applications to give them plotting
capabilities.

PERSISTENT DRAWING

According to the documentation, you should insert your graphics statements into the
OnPaint event, which is fired every time a form (or control) must be redrawn by
Windows. In effect, this technique redraws your graphics elements every time a
segment of the window is uncovered, or when the window is resized. The graphics
you generate from within the OnPaint event are not persistent: they're redrawn on
the form or control as needed.

A complicated drawing, such as the drawings we'll develop in this chapter, may
involve a large number of calculations. If you create your graphics from within the
OnPaint event handler, the calculations will be repeated every time the form is
refreshed. As a result, the refresh operation won t be instant. To avoid this
unnecessary delay, you can create persistent graphics by drawing on a bitmap object
and then displaying this bitmap. The bitmap need not be refreshed and the form that
contains it is redrawn instantly. In the examples of this chapter we'll create persistent
graphics by drawing on a bitmap, which is the background image of a Form, or
PictureBox control.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 590

The second application is a fractal generator. Fractals are a special type of function plotting;
instead of a simple curve, fractals fill the space with intricate patterns of startling beauty. The
fractal generator is not a practical application in a strict sense, but it's a fun application you can
use to experiment with fractals.

The PlotControl

Our first sample application is a custom control for plotting two-dimensional functions, as
shown in Figure 20.1. Figure 20.1 shows a test form that uses the PlotControl. The control,
which takes up the upper part of the form, displays the plot of the two functions specified in
the TextBox controls near the bottom of the form. To create a plot, you set the control's
properties and then call the Plot method.

Create a new solution in Visual Studio and add two projects to it: a Windows Control Library
(the PlotControl project) and a Windows project (the TestProject). The Windows project is the
test project for the control. The PlotControl is a compound custom control that contains a
PictureBox control, where the function plots and the grid are drawn. The titles and the axis
numbers are printed on the control itself. The PictureBox control is anchored at all four sides
and the bands around it, where the elements of the plot are drawn, have fixed sizes. In our
code we set up two Graphics objects for drawing. The ¢ Graphics object represents the surface
of the control. This is where we'll draw the axis titles and numbers, and the G object is created
with the following statements:

Dim bmp As Bitmap

bmp = New Bitmap (Me.Width, Me.Height)
Me .BackgroundImage = bmp

Dim G As Graphics

G = Graphics.FromImage (bmp)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 20.1 Using the PlotControl in a test application

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious

Mexd

DEALING WITH SINGULARITIES

One issue that deserves attention is the handling of singularities. Singularities are
points at which a function can't be calculated. Consider the function Cos(X) / X.
This function can be plotted in any range that doesn't contain the point 0. If you
attempt to calculate the function at X = 0, the result is an undefined number (NaN).
If you run into a singularity, you can either ignore it and continue, or abort the
process and inform the user that the function can't be plotted. In our code, we abort
the process.

However, it's possible to skip the singularity, even though it's included in the range
of X values. If the size of the PictureBox control is 200 pixels and you're plotting a
function in the range from -2 to 2, you'll be calculating the function at increments of
4 /200, which is 0.02. The points at which the function is calculated are : —2, —1.98,
—1.96, and so on up to —0.02, 0, 0.02. When you attempt to calculate the function at
point 0, you'll run into a singularity. If the PictureBox control's width were 285
pixels, however, the step along the X axis would be 4 / 285, or 0.014035087. The
function will be evaluated at the point —0.00701754 and then at 0.00701754. The
function can be evaluated at both points and the singularity has been skipped with
no special effort on our part. Usually, it's the responsilibity of the user to avoid
singularities in the range of X values and specify a meaningful X range for the plot.

Page 602

In the second half of this chapter we're going to look at fractals. Fractals are special plots that

aren't plotted with curves; instead, they fill the space with intricate patterns.

A Fractal Generator

People who start playing around with fractals sometimes get hooked. Fractals are like alien
worlds—obviously different from things we see in nature, yet also somehow familiar. You can
zoom into a fractal endlessly, producing fascinating variations of color, texture, and shape.
And what you see as you take this tour somehow looks not only natural, like a cabbage or a
tree, but also mysterious enough to earn fractals their reputation as the most complex objects

in all math.

In this section we're going to demonstrate how you can generate fractals in VB. Beyond that,
we'll also attempt to explain to nonmathematicians the strange numbers and odd dimensions
that produce fractals. Mathematicians like fractals because they produce images of often
startling beauty. Most mathematical formulae, when plotted, result in wave-like lines, arcs,
and other visually simple—really rather boring—geometric designs. Fractals, by contrast,
yield extremely complex, lacy, colorful patterns that hover just beyond symmetry. You never
really see the same thing twice, though at first you might think so. Fractals often imitate the
patterns found in nature—those produced, say, when a coastline erodes, or when an octopus

grows a tentacle.

What Is a Fractal?

One way of describing a fractal is the adventures of a small number on the complex plane. A

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

fractal is a peculiar and very dense "graph" generated by a mathematical process. Although the
resulting images are literally infinitely complex, the underlying algorithms are short and rather
simple. When you want to see relationships between numbers—to see mathematical
expressions—you can put them into a kind of grid called a plot. The coordinates of this space
are arbitrary—that is, you can set up the marks to be large enough to embrace whatever
expression you are trying to make visual. You saw how to scale the plot of an arbitrary
function to fill a given area in the example of the first part of the chapter.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 620

experiment with the sample applications and discover other values of the Cx and Cy
parameters that yield rich, colorful Julia shapes). Note, however, that most numbers you enter
randomly will produce uninteresting fractals, and that your numbers must be between —2 and
+2. Also remember that often the most elegant pictures result from zooming into the initial
Julia fractal six or eight times.

1. Cx=-0.754 Cy=0.049

2. Cx=-0.744 Cy=0.097

3. Cx=-0.736 Cy=0.097

4. Cx=-0.756 Cy=0.097

5. Cx=-0.743 Cy=0.097

6. Cx=-0.766227 Cy=0.096990
7. Cx=-0.9 Cy=0.12

8. Cx=-0.745429 Cy=0.113008
9. Cx=-1.0300 Cy=-0.9200
10. Cx=0.320 Cy=0.043
11. Cx=0.3080 Cy=0.46

12. Cx=-1.330 Cy=0.043
13. Cx=-0.16 Cy=1.32

14. Cx=-1.8 Cy=-1.67

Complex Number Operations

Most readers are not likely interested in the details about addition and multiplication of
complex numbers. So, we left this discussion for the end of the chapter. For the intrepid, here
are the three basic complex number operations: addition, subtraction, and multiplication.
Complex numbers are actually pairs of numbers (the real and imaginary parts) that are handled
separately. The sum of two complex numbers is another complex number, whose real number
is the sum of the real parts and whose imaginary part is the sum of the imaginary parts of the
operands.

Adding and Subtracting Complex Numbers Here are the formulae for adding and
subtracting complex numbers:

(a + ib) + (c + id)
(a + ib) - (c + 1id)

(a + ¢c) + 1(b + d)
(a — c) + 1i(b - d)

or

(a, b) + (c, d)
(a, b) = (c, d)

(a + ¢, b + d)
(a — ¢, b - d)

And here are some examples of addition and subtraction of complex numbers:

(1, 9)

(1 + 19) also: (3, 7) + (-2, 2)
-2, (5, 5)

(5 + 15) also: (3, 7) — (2)

e
N
I

Multiplying Complex Numbers To multiply two complex numbers, we form all four
products:

(a + ib) * (c + id) = a*c + ib*c + ia*d + ib*id

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 622

Summary

In this chapter we discussed some advanced graphics topics by means of two demonstration
applications: a practical application for plotting 2-dimensional functions and a "fun"
application that generates fractals. While building the plotting application you learned how to
build GraphicsPath objects and how to apply transformations to graphics elements before
rendering them in the drawing surface. You also learned how to calculate arbitrary math
expressions at runtime with the MSScript ActiveX control.

The second sample application of this chapter was a simple fractal generator that produces
startling fractal images. This application generates the fractals by painting one pixel at a time.
The calculation of each pixel's color involves some math, which isn't beyond the grasp of the
average developer. You can enhance the fractal generator in many ways and the most
challenging aspect of the application is the design of a palette for coloring the fractals.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 623

Chapter 21
Designing the User Interface

IF YOU'RE LIKE MANY programmers, you ask your spouse or a friend if this tie goes with that
suit. You leave it up to someone else to select colors, patterns, and designs. In other words,
you don't have much experience with visual design.

Fear not. In this chapter you'll find some guidelines for good Windows design. Talented
designers at various software companies have spent lots of time developing these concepts in
the past decade. You can see the results by comparing the uninviting flat gray appearance of
early Windows applications with the sleek, sculpted, dimensional look that has become the
standard in recent versions of Windows, especially XP.

Many studies have demonstrated that how a program looks influences how it's used, and also
how it's rated. The most obvious example is grouping a set of related radio buttons into a
single GroupBox. This cues the user that these buttons are mutually exclusive choices, making
the user's life easier. There are many other examples. User-interface design is a surprisingly
highly developed set of techniques and suggestions, some rather subtle. Surprising, given that
it's only a decade old (nobody counts pre-Windows DOS UI theory as significant anymore—
for the same reason that automakers no longer take into account the features of the horse-
drawn carriage).

Making Applications Look Reliable

We'll explore a variety of techniques you can use to make your VB programs look better. At
first we'll work with tools that VB provides—the BackgroundImage property of forms and of
a few controls. Then we'll go beyond what VB provides, demonstrating how to do pretty much
anything visual that you want to do. You've seen commercial software with slick lighting
effects, fade transitions, embossed and shadowed text, sliding panels, opacity, and all the rest.
In this chapter you'll see how to accomplish those tricks and other effects. But before going
further, we've got to finish dealing with the fundamental question some of you are doubtless
asking: Why bother?

A pretty form is more than merely a desirable luxury. If your work looks coordinated,
polished, and professional on its surface, people will think it is equally solid on the inside.
They will trust it more. Study after study has demonstrated that handsome men or beautiful
women are far more likely to be believed than plain people. That's why grifters, lounge
lizards, and con artists of all stripes are usually physically attractive. It's also why so many
companies pay huge sums to improve their logo, and millions to get movie stars to recommend
their products.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 626

USING Focus GROUPS TO PRODUCE VISUAL GUIDELINES

Microsoft and others have conducted many focus groups, testing tens of thousands
of people, and have found that certain design elements result in the most efficient
form organization and most visually appealing "looks." One finding that might
surprise you: Choose icons with relatively subtle coloring when designing your
application. Too many bright tiny icons are annoying and clutter the screen.

If you've never studied, or even thought about, pictorial design, here's your chance.
VB, and Windows, offer rich graphics possibilities. Computing is becoming
increasingly, even relentlessly, visual. (This trend will not stop until computer
programs are photo-realistic, until a telephone icon looks like a 3D hologram of a
telephone, and until multimedia is so common that the distinction between
computers and television disappears. So prepare yourself. Programming now
requires that at least someone involved has a visual sense.)

Design is not just a matter of making things look better—it's also a matter of user-
comfort, efficiency, and, ultimately, a quality that distinguishes professional from
amateur programming. How things look and feel is a big part of how easily they are
used. Ergonomics matters. And ergonomics is, in part, visual.

Visual design and decoration have not traditionally been part of a programmer’s job
description. But computing is increasingly graphical, and will never revert to the
text-based interface typified by the beloved but infamous black DOS screen with its
white words. The computer console is as dead as the floor-standing radio.

These days you must communicate with the user via graphics—even sometimes via
video—as well as with text. Fortunately there are guidelines and conventions you
can learn. Explaining these conventions, and providing hints about design, is the
purpose of this chapter.

In the best-designed applications, some visual conventions include placement of the Close or
Exit buttons in the lower right, a gray (or at least not white) background, related controls
grouped into zones separated by frames, and so on. If one of your Visual Basic forms has its
BackColor set to white, is unzoned, and locates the Exit Button on the left, your application
will slow users down. It will confuse them because it's both homely and, in a bad sense,
unique. Users are simply not familiar with odd design elements. There are conventions to
Windows (form) design. Users might not know why, but they will be uncomfortable using
your program.

Windows Conventions

There are several graphics conventions to which virtually all Windows programs now submit.
Y our programs should too. The most important of those are explained in the following
sections.

The Metallic Look

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

First, many Windows programs still aspire to look "metallic," though various "themes" are less
severe and involve earth tones and other color schemes. You can achieve the metallic look by
building highlights and shadows into controls, such as buttons, and by using a metallic
gradients for backgrounds to your forms and other elements. (For an explanation
demonstrating how to create gradients, see the section titled "Metallic Shading" later in this
chapter.)

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Presious Mexd

Metallic Shading

Page 635

One of the best ways to avoid dull-looking forms is to use gradient metallic shading. It's subtle
and conservative enough for any business application, yet considerably more attractive than

plain gray.

You can create gradients with Adobe's Photoshop, Corel's Picture Publisher, or most any

photo-retouching program. Here's how to do it.

The best metallic gradient is a gradual shift between two shades: white and the typical
Windows gray (the light gray often used as shading on windows and controls).

You can use the code in Listing 21.4 to add the top-left to lower-right metallic gradient to a

form, as shown in Figure 21.10.

LISTING 21.4: CREATING METALLIC CRADIENTS

Imports System.Drawing
Imports System.Drawing.Drawing2D

Private Sub Forml Paint (ByVal sender As Object,
ByVal e As System.Windows.Forms.PaintEventArgs)

Dim g As Graphics = Me.CreateGraphics

Handles MyBase.Paint

'coordinates for both the gradient and the fillRectangle routi

Dim x As Integer = Me.Width
Dim y As Integer = Me.Height

Dim lgBrush As New LinearGradientBrush (

New Point (0, 0), New Point (x, V),

Color.White, Color.FromArgb (190, 190,

190))

'linGrBrush.GammaCorrection = True 'smooth the transition

g.FillRectangle (lgBrush, 0, 0, x, y)

End Sub

To draw gradients on buttons and such, you either can create a gradient the button's size in a
graphics program (including caption), then import the graphic into the button's Image

property, or you can use this code:

Dim g As Graphics = Buttonl.CreateGraphics

Dim x As Integer Buttonl.Width - 3
Dim y As Integer = Buttonl.Height - 3

Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 636

Dim lgBrush As New LinearGradientBrush(_
New Point(l, 1), New Point(x, y), _
Color.White, Color.FromArgb (190, 190, 190))

g.FillRectangle (1lgBrush, 0, 0, x, vy)

Notice the adjustments, in boldface (-3 and so on), that permit the button's frame to show.
You want to put the gradient only on the button surface, not cover up the shading around its
edges.

TIP You may want to add additional special effects to your forms, such as custom buttons
(perhaps round), lights that dim and fade, drop shadowing, neon, 3D, animation, sculpted
labels, and other effects. Use graphics programs to create these effects, then import them into
the form's and controls' BackgroundImage or Image properties. Use a Timer, for example, to
occasionally display a reflection like those in Figure 21.10, then hide it by setting the
PictureBox containing it toVisible = False.

FIGURE 21.10 Using a variety of different gradient effects add solidity and sophistication to your
applications. Notice that the background on this form is, itself, a gradient.

Sliding and Fading Transitions

Applications with multiple forms benefit from animated transitions. Just as it can be annoying
if a movie jumps abruptly from one scene to another—simply slapping a new scene on top of
the current one—so too will your projects look more professional if there's a visual transition

between your forms.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When a user clicks a button to bring up Form2, you can slide it over from the side, or down
from the top, like a garage door. Or you can use the classic fade: the new form gradually
appears as if from out of the mist, replacing the current form.

In the past, computer video was too slow for fades (though it could cope with slides). Also,
there was no built-in facility for adjusting opacity as there is now, the form's Opacity property
(alas, there's no such property yet for individual controls—they all fade along with their parent
form).

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 641

Private Sub Buttonl Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Buttonl.Click
Timerl.Enabled = True

End Sub

Private Sub Timerl Tick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Timerl.Tick

Panell.Left += 2

'stop when it hits the correct position
If Panell.Left >= X Then Timerl.Enabled = False

End Sub

When you run this, you see the panel slide in and take its correct position. Adjust the step size
(+-2) to fiddle with the granularity; it's unlikely that you can lower the timer's Interval enough
to speed things up as much as you'd like to, so you have to accept some granularity. However,
a step of 4 isn't noticeable, and 12 is probably too fast for you.

Try dropping panels or other controls down from the top; slipping them in, then back out when
the user is finished with them; sliding more than one control at a time; and so on.

Summary

This chapter covers one of the most overlooked aspects of program design—the design itself,
properly so called; the actual /ook of the finished application. Among the issues considered in
this chapter are metallic surfaces, fonts, layering, light sources, depth, framing, shading,
gradients, and transitions.

If you think the design job is best left to the art department, either you work for a very large
company (with enough cash to hire application-design specialists with Windows ergonomics
experience) or you're trying to avoid what is partly a programmer's responsibility. You, the
programmer, are often the best person to advise which controls should be grouped together,
and how the various windows in your application interact (and therefore what kinds of
transitions should link them), and other graphics issues.

At the very least, the programmer or programming team should participate in meetings with
the art department—if there is one—to ensure that purely visual considerations aren't
overriding logical groupings or Windows conventions. And if there is no art department, that's
all the more reason for programmers to refer to this chapter's suggestions before considering
an application finished. Oh, and one more thing: Take a good look at Word or the Visual
Studio IDE and make sure that your Cancel, OK, and other buttons are in the same location as
theirs on your forms; make sure that your toolbars look like theirs; ensure that your menus are
located where theirs are, and so on. Microsoft has spent loads of money testing their designs,
so if you follow their conventions you won't go far wrong.

Team Fly Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 643

Chapter 22
Using the .NET Compact Framework and Its
Emerging Technologies

PEOPLE WANT TO REMAIN connected to the Internet—and to their computer applications and
files—no matter where they are. The current buzzword is mobile computing. This phrase has
several meanings, but the one we're focusing on in this chapter is: How to squeeze
programming and I/O into the highly restrictive platform of small, portable devices like PDAs
and cell phones.

This chapter offers you an overview of the technologies and tools available to the VB.NET
programmer who wants to extend their programming skills into the mobile arena. We'll
explore the ways that .NET addresses the needs of users and programmers within the
limitations imposed by mobile devices: as you'll see, this is truly computing lite.

Writing programs that will work on a cell phone is a bit like traveling back in time about
twenty-five years to the day when personal computing was just getting started. Processor
speeds were much slower than today's desktop machines enjoy. You had very little memory to
work in, so you had to be careful and conserve this precious resource by avoiding such
memory-hungry luxuries as graphics. And there was another reason to avoid graphics: You
had to deal with I/O constraints such as low-resolution, black and white, text-based screens,
and little, if any, mouse capability. Although most early computers were more restrictive (32K
RAM was considered a lot of memory), today's mobile devices are nonetheless significantly
less powerful than today's personal computers. The mobile platform demands a different kind
of communication with the user.

The .NET Framework is designed for desktop computing, and to run on servers managing
Internet sites. The .NET Framework runtime is large; it simply cannot fit within the memory
available to mobile devices. The solution: a new framework, the NET Compact Framework, a
condensed, stripped-down version.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 644

What's Eliminated?

To get a sense of the limitations you must work within when programming under the Compact
Framework (CF), consider the Button control. If you look in Help under ButtonBase members,
you see the properties and methods available to the base class from which various button-like
controls inherit (RadioButton, CheckBox, Button). In the list of members, you see 68 total
properties, but only 25 of them are described as "Supported by the .NET Compact
Framework."

You find that properties such as AllowDrop are unavailable (dragging and dropping cause
difficulties, serious bandwidth problems, if the mobile client expects to see an animated
illustration as they drag). Also unavailable are TabIndex, Image, Dock, FlatStyle, and others.
Here's a list of the properties supported for Button controls running on the CF:

BackColor BindingContext Bottom
Bounds Capture ClientRectangle
ClientSize ContextMenu Controls
DataBindings Enabled Focused
Font ForeColor Height
Left Location Parent
Right Size Text
Top TopLevelControl Visible
Width
Output Lite

Writing for mobile devices presents several problems to a programmer. For one thing, PDAs
and phones vary widely in their screen resolutions, color capabilities, input technology, and so
on. Some mobile device programming platforms have "solved" this incompatibility issue by
stripping down the features to the lowest common denominator. But clearly someone owning a
nice color PDA doesn't want their applications in black and white.

Microsoft addresses this issue by promising to provide class libraries for the .NET Compact
Framework that will target the capabilities of types of devices as well as individual models.
There's only so much you can do with this approach, however. For example, when you're
creating a word processor application for a color-capable screen, you make design decisions
differently than you would for a black and white screen. You employ different visual cues
than you do with the more restrictive environment of a black and white screen.

Solving the Connectivity Problem

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With mobile computing there's another major issue a programmer faces: where should the
actual programming execution take place? In the mobile device, in the server communicating
with it, or shared between the two locations? And, if shared, should the client mobile device
remain in continuous contact with the server during application execution? This is one aspect
of what's called the connectivity problem.

The connectivity problem was solved by ASP.NET and ADO.NET—information to be
detached from databases, for instance, and sent as an HTML package to users' browsers. This
way, a continuous

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 645

connection between client browser and server (or database) was not necessary. This
decoupling of the remote user from the server is also a feature that distinguishes the CF from
other mobile-computing platform initiatives, such as WAP (Wireless Application Protocol, a
UNIX-derived standard for Internet communications and telephony on pagers, PDAs, two-
way radios, cell phones, and other wireless devices). With the CF, you, the programmer, can
balance the advantages, and the mix, of server-side versus client-side code execution. Also,
one doesn't foresee the CF attempting to service pagers or two-way radios. Their I/O
limitations are just too severe.

Security is also superior on the CF because it's managed code, and it has access to the various
Code Access Security strategies described in Chapter 5.

When you program for the CF you benefit from many of the familiar and useful tools in the
justly praised .NET IDE. You can also write your code in VB.NET or C# (the two languages
currently supported in the CF). On the minus side, because the CF is a subset of the full NET
Framework, many tools and many language features are available to you, but some are not. If
you've ever programmed with VBScript or other script versions of languages, you understand
that limitations are built in.

The single most significant advantage of using the .NET CF, however, is that you can leverage
your knowledge of how to write VB.NET programs, and how to use the .NET IDE tools, when
programming for mobile devices. Most of the familiar features and techniques—ADO.NET,
ASP.NET, security classes, and so on—are right there at your disposal, ready to be applied to
the new and sometimes challenging task of creating mobile applications.

Using the Simulator

Within VB.NET 2003 is a facility for designing and testing CF applications. It roughly
simulates the user experience of running your application, similar to the way that ASP.NET
applications can be previewed in the Internet Explorer browser during development by
pressing F5 to execute them. This simulation is a way for you to test the functionality of your
application, but it cannot replicate how your application will actually look on mobile devices.
In fact, it will look different on different devices. In any case, you can get the I/O sketched in,
and the logic working and tested. Then you can switch to emulation, or actual testing on target
devices for any final tweaking.

Try it out. Choose File = New = Project then double-click the ASP.NET Mobile Web
Application icon in the New Project dialog box, as shown in Figure 22.1:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 22.1 This icon is your gateway to building and modeling a PDA or cell phone application.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 647

Use the Toolbox to add a second form to your page. Note that forms are controls on the
toolbox in CF applications. The traditional ASP.NET form (which represents a browser
window), and the traditional Windows form (which represents a window) are not used here.
The form in CF is merely a unit of organization, a way of grouping controls, a container for
code. Forms reside within a Page object.

Add a Link control to Form1 and change its NavigateURL property to #Form2. You'll find
this option and any other application targets listed in the dropdown list in the Properties
window.

Now put a Label control on Form2 and change its Text property to "You've arrived!" Press F5
and click the Link in Form1. You should see the You've arrived! message appear,
demonstrating that you indeed navigated to Form?2.

CF Forms offer several novel properties you should know about. There's a Method property;
isn't it wonderful that a property is named method? Programmers have been driven barking
mad by less. Anyway, the "Method property" describes the HTTP request—either Get or, the
default, Post. The Action method can be an absolute or relative URL to which the form must
submit a Get or Post, but it defaults to an empty string causing it to post back to the URL from
which the form itself came. The PageCount tells you how many pages the form has when
paginated, and the CurrentPage gives you the index of the current page. The PageStyle
property includes a set of other properties such as color, text font, alignment, and so on, which
you can use to customize the defaults used for pagination (the styles used for NextPage Text
properties and such).

A Form's Deactivate event triggers when a new form becomes active via programming, or
when the user navigates to a different form via a link.

More New Features

Now look at the Toolbox. You'll see some interesting controls available in no other Toolbox
but the CF's: Form, PhoneCall, List, SelectionList, Object List, DeviceSpecific, and
StyleSheet.

The new TextView control offers automatic pagination (within the text it displays). However
the Form's Paginate property must be set to True for this to work.

The Image control has a tricky job because of the wide range of graphics capabilities of the
various mobile devices. If you want to ensure the best experience for your users, you should
choose images conservatively (make them rather simple and recognizable). Remember you're
likely up against screens as small as 94x72 pixels in cell phones. Also you must tailor your
image formats specifically to the various devices you're targeting using the device filters.
Some devices will want .jpg and others some different graphics file format. .JPG is requested
by Pocket Internet Explorer, for example, but WAP devices want a format you've perhaps
never heard of called .wbmp. WAP also supports a .png format (Portable Network Graphics).
.GIF is also popular. You just have to use a format translator (found in many graphics

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

programs) to create the various files in the various formats. PaintShop Pro, for example,
supports .png, but I couldn't find any support for .wbmp.

Just as e-mail and instant messaging users resort to emoticons and other crude symbols instead
of graphics, mobile devices often include a set of symbols, clipart, icons, cartoons, or glyphs
representing common graphics ideas such as lightning storms. You can employ these to liven
up your output. Resources are available online and you can locate them by searching for the
device you're targeting. You use the ImageURL property and specify symbol:nnnnn with
nnnnn being a code or code word, such as symbol:cloudy.

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 652

FIGURE 22.5 Bind mobile List controls to arrays or other data sources.

Mobile Security

As you can imagine, sending information over the air is even less secure than sending it over a
LAN, cable, or phone line. When you're exchanging messages wirelessly using cell phones or
PDAs, you might as well consider yourself a radio station.

You can, of course, encrypt sensitive data, and you should. As described in Chapter 6, .NET
includes several powerful encryption routines that can easily be added to your programs to
ensure your privacy. As for authenticating callers, you'll find the following authentication
section in the Web.config file:

<!-- AUTHENTICATION
This section sets the authentication policies of the application.
Possible modes are ''Windows","Forms","Passport" and "None"

"None" No authentication is performed.

"Windows" IIS performs authentication (Basic, Digest, or Integrated
Windows) according to its settings for the application. Anonymous access must b
disabled in IIS.

"Forms" You provide a custom form (Web page) for users to enter their
credentials, and then you authenticate them in your application. A user credent
token is stored in a cookie.

"Passport" Authentication is performed via a centralized authenticati
service provided by Microsoft that offers a single logon and core profile servi
for member sites.

-=>

ASP.NET relies on cookies when performing form-based authentication, so you should
probably avoid this approach (so many mobile devices don't support cookies). For details
about the features of Windows-based authentication, see Chapter 5.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can specify user names, roles (such as administrator), and other modes of access such as
passport. IIS stands guard in front of the localhost (Web simulator) or the Web itself in a
deployed mobile application. You can use IIS's Internet Services Manager in Control Panel's
Administrative Tools folder to modify security policies rules.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 654
Debugging via Tracing

Debugging a mobile application is similar to the techniques you can use in traditional
Windows applications, and is particularly like debugging ASP.NET applications. You'll be
able to resort to many of your usual practices and strategies, and many of the usual VB.NET
debugging tools. See Chapter 9 for an in-depth discussion of various approaches to debugging.

However, mobile and ASP.NET applications do offer their own peculiar challenges. In this
section, we'll take a close look at the tracing feature, which can be especially useful in a
distributed programming context such as mobile applications where you have to deal with
execution shared between a server and client.

To set a trace, adjust the line in the web. config file so it sets the Trace to True and
pageOutput to True (so the trace won't be sent into a file, a log in your mobile application's
root directory named trace.axd).

<trace enabled=''true" requestLimit="10"
pageOutput="true" traceMode="SortByTime" localOnly="true" />

The pageOutput trace will be appended to your output page in Internet Explorer, as shown in
Figure 22.8:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 22.8 For the most complete report on your application's behavior, request a trace.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 656

If you want your custom message to really stand out in the trace listing, substitute
Trace.Warn for Trace.Write. Tracing can be a special tool when debugging because of the
wealth of information it provides, and because it shows you a complete list of all the steps that
took place during execution, their order, and their duration.

Tracing tells you these primary facts:

How long each step takes in milliseconds (you can quickly see if there are any
significant delays, or use this information to optimize your application)

Which processes executed
Any error messages, and specific details about these errors

Custom trace messages you insert, along with variable values if you wish to add them
(illustrated above)

Details about variables used in the project
Specifications about the containers and controls on each page
Specifications about when requests happened

Trace Information Sections

When you request a trace you see six major divisions, but the Trace Information section is
most often the most useful information. The Request Details section simply identifies the
HTTP request type and other data about the request such as the type of character encoding
(usually Unicode), when the request was made, and so on. The Control Tree lists server
controls that may be on your page, and also lists child controls. If you're tracing an ordinary
ASP.NET page, you would see a Cookies Collection section, but this isn't displayed for a
mobile application. Instead, you see a Session State section that displays the Session ID. The
Headers Collection zone lists the HTTP headers that your server sent to the client device. In
ordinary ASP.NET applications, this section also includes cookie information. Finally, the
Server Variables section describes your server in considerable detail, identifies quite a bit
about the state of your server—its URL, connection type, and so on.

Providing Friendly Error Messages

You always want to avoid frightening your users with lengthy, technical error messages such
as Object Not Found or Stack Collapse. They'll think their PDA is broken, or their phone is
about to explode. Never underestimate the confusion and fear that the average person
experiences after punching some buttons on a high-tech device. If anything unusual happens,
many of them think they must have accidentally entered the activation code.

In ordinary Windows applications, you can intercept error messages and, instead of letting
users see them, substitute your own user-friendly descriptions displayed in message boxes.
MsgBox doesn't work in ASP.NET applications, though. You have to employ a different
tactic. Find this section in Web.config :

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<!-- CUSTOM ERROR MESSAGES

Team Flv 1 Prewvious Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 658

FIGURE 22.9 Some users would panic if this appeared on their cell phone.

FIGURE 22.10 Rather than the default messages, intercept errors and show users something they can
understand.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Press F5 and VB.NET will choke on the MsgBox, causing an error and displaying your
custom message page rather than the default page.

Device Specificity

Although word wrapping, color rendering and other features of display devices are generally
automatically handled for you on most mobile devices, you must sometimes perform the old is
it Internet Explorer or is it Netscape? branching within your code. Of course Netscape is all
but dead now, but varying kinds of mobile operating systems—and varying display
capabilities, input keys, and hardware features—are still alive and well. The differences
between Palm and Pocket PC systems aren't trivial, not to mention the variations of output you
can expect between phones and PDAs.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 660

Similarly, some devices offer more room for text than others, and so on. You sometimes want
to be able to send different sources to different devices or models. You accomplish this by
defining device filters, then doing a kind of elaborate, roundabout select Case or If Then
comparison. Why this simple, common computing act of branching has to be made elaborate
and unique for mobile computing programming I can't say. My guess is that this new
technique probably fits in better with the invisible structures deep within .NET, and it also
allows for protocols such as querying devices, asking them to tell you details about their
capabilities. You can also deal with multiple devices by setting up a filter system. My only
problem with this is that we all know how to use select Case and If Then, so why set up
method testing? It's sure inconvenient for us programmers up on the higher levels where
everyday coding goes on.

And, if you're not yet convinced that new technologies often hand us totally unnecessary extra
debugging worries, note that in VB.NET variable names, property names, and values are not
case-sensitive. We VB.NET programmers are proud that our language doesn't introduce
burdens like case-sensitivity into the language. But, alas, when you compare property values
in these mobile-project filters (unless they're Boolean where True and true do match), the
values are case-sensitive. Here's yet another exception to the traditional rules for you to
memorize, or suffer later from confusing bugs in your code.

Using Emulators

You can roughly design your mobile application's user interface, and write your code-behind
programming to get the kinks worked out, all as described above using Internet Explorer as the
target "device." However, before deploying a mobile application, you'll doubtless want to test
it with real PDAs or cell phones. But do you have to buy dozens of cell phones and PDAs?
One easy way to test your mobile applications is to use emulators that, via software, mimic the
I/O facilities and behaviors of a particular device.

Custom Device Emulators

You can search the Internet for devices and their emulators. Most device manufacturers make
emulators available for your use. Microsoft, for example, offers an emulator for the Pocket PC
from:

http://microsoft.com/downloads/details.aspx?FamilyId=9996B314-0364-4623-9EDE-
0B5FBB133652&displaylang=en

The entire download is an SDK with which you can create and test applications using the
"eMbedded" C variations or VB.NET in Visual Studio .NET 2003. After you compile your
mobile application, you type your application's start page URL into the emulator.

You can find some of the most popular emulators at these locations:

YoSpace This is the place to start:www.yospace.com. They offer multiple, simultaneousWAP

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

emulations, including a variety of models and manufacturers. You can emulate Sony, Nokia,
Motorola, Siemens, and others all at once without having to switch among various emulation
environments.

Ericsson http://www.ericsson.com/mobilityworld/sub/open/index.html

Go.America (includes BlackBerry devices)

http://www.goamerica.net/partners/developers/index.html

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 663

Firewall feature. If you still cannot connect to the emulator for testing, try the usual new-
technology problem-solving tactics: Search Google Groups or MSDN, post a message on
NET user groups, or throw up your hands.

Summary

This chapter begins by exploring the limitations you'll face when writing programs for mobile
devices—primarily PDAs and cell phones today, but who knows what tomorrow has to offer?
The .NET Compact Framework is a condensed, stripped-down version of the familiar NET
Framework you're used to. You'll face memory and processor speed restrictions that you don't
face when writing VB.NET applications for full-size desktops and portables.

But the most severe challenge is I/0. The keyboard on portable devices (if any) is pretty
difficult to type on (so you'll want to help your users by avoiding typed input whenever
possible). And the screen is very, very small. It may not even have color. How do you handle
the screen compatibility problem? Programs are designed differently for black and white
screens versus color.

You also saw that quite a few control properties aren't available in the Compact NET
Framework. Microsoft isn't, however, blind to these problems. For one thing, they've designed
libraries specific to individual brands, and even individual models of mobile devices.

The solutions to the connectivity problem (should the connection persist throughout the
session?) and security issues were discussed. Then you saw how to use the built-in mobile
device simulator, how to navigate between forms, and some new features on the Toolbox
when you're working with the NET IDE within the template that Microsoft has named the
ASP.NET Mobile Web Application.

You saw how to write source code for a mobile application, how to display lists in various
ways, how to employ tracing during debugging, how to intercept error messages and replace
them with your own, user-friendly versions, and how to use emulators so you don't have to go
to the trouble of connecting to an actual mobile device during program development.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 665

Index

Note to the reader: Throughout this index boldfaced page numbers indicate primary
discussions of a topic. ltalicized page numbers indicate illustrations.

Symbols

* (asterisk), in regular expressions, 543, 558

. (period), in regular expressions, 543, 545, 558

? (question mark), as metacharacter, 560

| (pipe symbol), for alternation in regular expressions, 563—564

A

Abort method, of MessageQueueTransaction class, 371-372
aborting transaction, 437
Accept method, of Socket class, 298
AcceptChanges method, of DataSet, 420, 425-426
AcceptTcpClient method, 302
AcknowledgeTypes property, of message, 358, 359, 360, 363
acknowledgments for queued messages, 358-373, 367
fault tolerance and load balancing, 366-370
processing, 361-366
requesting, 358-361
retrieving for specific message, 350
timeout, 359
transactional messages, 371-373
action queries, 407
executing, 409
Activator class, Createlnstance method of, 211
ActiveX controls, use with .NET clients, 462465
ActiveX Data Objects. See ADO.NET
Add Dialog dialog box, 268, 268
Add method, of Rows collection of DataTable, 419
Add New Project dialog box (Visual Studio), 261, 261

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Add Or Remove Programs snap-in, 259, 260
Add Project Output Group dialog box, 263-264, 264
Add Reference dialog box, 63
Add Web Reference dialog box, 456, 456
AddDays method, of DateTime class, 39
AddHours method, of DateTime class, 38
addition of complex numbers, 620
AddMinutes method, of DateTime class, 38
AddOrder method, in middle tier, 446
AddressFamily enumeration, 293
AddressList property, of IPHostEntry class, 291
AddValue method, of SerializationInfo class, 79
AdministrationQueue property, of message, 358
administrator, and security, 120, 122
ADO.NET
accessing databases, 391415
Command class, 409415
Connection class, 402—403
DataAdapter class, 404408
Visual database tools, 392402
DataSets, 415427
accessing tables, 416417
adding and deleting rows, 419-420
binding to DataGrid control, 277-278
creation, 395-396
DataViews, 426427
locating rows, 420421
multiple tables for, 396400
navigation, 421-426
null values, 418-419
rows, 417418
viewing, 396
Insert and Update operations, 428440
DataAdapter for transactions, 436440
DataAdapter to update, 428430
Identity columns, 430436
Advanced SQL Generation Options window, 407, 407
aesthetics, Xix—xx
alerts, suppressing, 100
Aliases property, of [IPHostEntry class, 292

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Alignment property, for string printing, 169, 171

All Code membership condition, 256

AlIDBNull property, of DataColumn class, 417
AllowSelection property, of PrintDialog control, 166
AllowSomePages property, of PrintDialog control, 166
AlternatingBackColor property, of DataGrid control, 281

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 667

attributes in XML

data types for, 483

deleting, 488
<AttributeType> element (XML), 483
auditing messages in queues, 373
authentication, 339

in NET Compact Framework, 652
Authenticode, 121
Author property, of Setup Project, 266
authorization, of user for database connection, 402—403
AutoGenerate Columns property, of DataGrid control, 280
Autolncrement property, of DataColumn class, 417, 431
Automatic Transaction Processing service, 468
autopostback attribute, for ListBox control, 281
Autos window for debugger, 238, 239
AxisNumberColor property, 592
AxisNumberFont property, 592
AxisTitleColor property, 592
AxisTitleFont property, 592

B

backreferences, in regular expressions, 571-572
BaseURI property, of XMLReader object, 477
BasicSerialization project, 61-65, 62
batch mode for database updates, 428
batch query, 414
beep, metacharacter for, 560
Begin method, of MessageQueueTransaction class, 371-372
BeginGetResponse method, of HttpWebRequest object, 315
BeginReceive method, for messages in queues, 356
BeginTransaction method, of Connection object, 436
bell, metacharacter for, 560
binary file

for application configuration files, 76

deserialization into ArrayList collection, 64
binary serialization, 60

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

of ArrayList collection, 62—64
for messages in queues, 352
and type fidelity, 65
BinaryFormatter class, 60, 61
Serialize method, 63
BinaryReader, 44
Binary Writer, 44
Bind method, of Socket class, 294
binding
array to SelectionList control, 651
controls to DataTables, 509
Binding element in WSDL, 331
BindingFlags, 195-198
BitBIt GDI32 function, 186, 187
bitmaps
capturing window or desktop to, 188
for persistent graphics, 589
printing centered, 189
biztalk (Microsoft), 481
Blackberry devices, emulators, 660
Body property, of Message object, 347
body text, font for, 625
boldface in user interface, 627
boolean value type, 14
Bounds property, of PageSettings object, 162
braces ({}), 4
to fill array with values, 20
Break Condition window, 238, 238
breakpoints for debugging, 237-238
and display, 240
BreakPoints window, 238
Browse With dialog box, 662
business logic, 442, 443
remoting, 449—461
business rules, 443—445
adding to middle tier, 532-535
business tier. See middle tier component
BusinessLayer class
converting to Web service, 450457
GetltemDiscount method, 533

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

GetltemDiscount stored procedure, 534
remoting, 458461
BusinessLayer project, 450457
buttons
depth for, 628
etched text on, 625
in NET Compact Framework, 644—645
byte, 14
byte arrays
converting strings to, 311
converting to string, 308
for DES, 145

Team Fly

Presvious

Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 668

C

C programming language, 1, 2
C# programming language, translating to VB.NET, 21
Cab Project, as New project option, 261-262
cagutil command, 245
Call Stack window, debugging with, 240, 241
CancelEdit method, 421
CanDuplex property, of PrinterSettings object, 163
Capacity property, of ArrayList, 36
capacity, vs. dimension, 28
capturing

errors, 217

matches for regular expressions, 573

multiple captures, 573-575

carriage return, metacharacter for, 560
CAS (code-access security), 124, 125128

config files, 127
case sensitivity

in NET Compact Framework, 660

in regular expressions, 545, 577
caspol.exe, 129, 252
Catch statement, 217, 218
Category property, of MessageQueueCriteria class, 349
cell phones. See also mobile computing

emulators, 660-663
centering when printing bitmap, 189
char value type, 14
character counting

to fit in rectangle, 178

in Word document, 106
characters in regular expressions, 558

escaping metacharacter to treat as, 563

ranges of, 559-560
chat. See TcpChatClient application; TcpChatServer application
ChatClass, 301, 302-303

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ChildKeyConstraint property, of Relation class, 431
ciphertext, 143
classes, 14, 18
in NET Framework, XML, 475
converting to Web service, 450
descriptions, 56
in DOM (Document Object Model), 479
searching for members or data, 207-208
viewer for, 20-21
ClassSerializer project, 66, 6671
Book class, 67-70
deserializing individual objects, 71
serializing individual objects, 70-71
Clear method, of DataAdapter, 404
CLI (Common Language Infrastructure), 214
client computer
installing NET Framework on, 244
storing data on, 412
client/server architecture, 441, 442
Clipboard
code to access, 23
for spell—check, 95
ClipBounds property, of Graphics object, 173
closed schema model, 485
closing connection, 402
cloud services, 337
CLR. See Common Language Runtime (CLR)
code
access to, 134
demanding permission through, 257
to implement typed DataSet, 415, 416
reuse by components, 444
code access permissions, 251-257
code-access security, 124, 125-128
config files, 127
Code Access Security Policy Tool, 129, 252
code-behind window, of WebForm, 273
Collate property, of PrinterSettings object, 163
collections
for controls, 28

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

zero- vs. one—based, xxi
collisions, namespaces to avoid, 193, 480
color
for fractals, 614—615
in user interface, 627
Color class, 18
Color property, of PageSettings object, 162
column headers, printing, 185
ColumnName property, of DataColumn class, 417
Columns collection, 417
COM+ applications, 465473
COMPIlus component, 466467
exporting proxy, 467468
COM-+ Component Install Wizard, 467

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Mexd

custom objects, in middle tier, 444
CustomValidator control, 283

D

Data Adapter Configuration Wizard, 394, 394
data binding, 36-37, 505-506
data display on WebForm, 273-283
connecting to database, 273-274
DataGrid control, 276-281
DataList control, 275
detecting postback, 281-282
Repeater control, 276
templates, 275
Data Encryption Standard (DES), 142, 143
encrypting and decrypting file with, 143—145
data entry, 216
to robust applications, 215
validation, 282
Data Link Properties dialog box, 392-393, 393
data types, 11-18
color as, 17-18
mixing in single stream, 55-56
strong typing and mismatch, 17
in WSDL, 332
in XML, 483-486
data validation, 225. See also validation
DataAdapter class (ADO.NET), 404-408
configuration, 393-394
for transactions, 432—440
Update method, 400, 404, 425, 428430
database. See also ADO.NET
connection, 392-393
in client/server model, 442
immediate update of, 508
insert and update operations, 428—440
DataAdapter for transactions, 436—440

Page 670

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

DataAdapter for updating, 428430
Identity columns, 430-436
SQL connection to, 273-274
update frequency, 408
Web services connection to, 326330
database server, 441
DataColumn objects, 415, 417
Data.DataException, 227
Data.DBConcurrencyException, 227
DataGrid control, 276-281
AlternatingBackColor property of, 281
AlternatingltemStyle property of, 281
appearance of, 278-280, 279
AutoGenerate Columns property, 280
binding DataSet to, 277-278, 396, 399
detecting postback, 281-282
formatting, 401402
limitations, 505
on hierarchy display, 535
mouse and, 516
specifying behaviors, 278
DatalList control (ASP.NET), 275
DataReader class (ADO.NET), 392, 412, 413415
DataRelation objects, 421
DataRelations project, 422-424, 423
DataRow objects, 415, 417418
DataRowState enumeration, 424, 425
DataRowVersion enumeration, 425
DataSet class (ADO.NET), 391-392
DataSets, 415-427
accessing tables, 416417
adding and deleting rows, 419—420
binding to DataGrid control, 277-278, 396
converting to XML, 504, 504
converting XML to, 503, 504
creation, 395-396
DataViews, 426427
editing with constraints, 421
HasErrors property of, 429
locating rows, 420421

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

multiple tables for, 396400

navigation, 421-426

null values, 418-419

to pass data between tiers, 444

rows, 417418

typed vs. untyped, 416

updating database from, 400402

viewing, 396

and XML, 493495
DataSource property, for binding controls, 509
Data.SqlClientSqlException, 227
Data.SqlTypes.SqlTypeException, 227
DataTable objects, 415, 416417

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 672

DisconnectedOrders application, 374, 374-375
discount policy component, in middle tier, 447449
DiscountServer project, 458461
DisplayName property, for binding controls, 509
distributed applications, 2. See also middle tier components
distributed code, 125
DivideByZeroException, 226
division by zero, 234
DLL files, and XCopy deployment, 245
DnsPermission code access permission, 252
documentation. See help
Documentation element in WSDL, 331
DocumentElement property, 489
documents collection, and Word object model, 104
documents, loading into TextBox, 99—-100
DOM (Document Object Model), 475, 478479
classes, 479
Dotnetfx.exe setup program, 244
dotted-quad notation, 290
double-sided printing, printer support for, 163
double value type, 14
Download method, of WebClient class, 311
DownloadData method, of WebClient class, 308, 311
DownloadFile method, of WebClient class, 308
downloading. See also Internet-based deployment process
assemblies on demand, 258259
documents with WebClient, 311-312
DrawRectangle method, 161
DrawString method, 161, 168-169
Duplex property, of PrinterSettings object, 163
duplicate entries, preventing, 16
duplicate rows in invoice, combining, 531-532
Dynamic Host Configuration Protocol (DHCP), 290

E

e-mail addresses, regular expression for, 568

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e-mail messages, getting from inbox, 109-110
ECMAScript member of RegExOptions enumeration, 549
Edit Relation dialog box, 398, 398
editing row in DataTable, 418
ElementName property, of XmlElement, 74
elements in XML, deleting, 488489
<ElementType> element (XML), 484
embossed frames, 632-633
emulators in mobile computing, 660-663
Pocket PC in Visual Studio, 66/, 661-662
problems, 662—-663
enablesession argument, in WebMethod element, 326
encryption, 143-151
in NET Compact Framework, 652
asymmetrical, 151-158
DES (Data Encryption Standard), 143—145
hashing with, 147-151
initialization vectors for DES, 146-147
key length, 147
End, 4
end of file, determining, 4142
end of line, metacharacter for, 562
End Try statement, 217
EndGetResponse method, 315
enterprise level for security policy, 251
enterprisesec.config file, 127
EnterpriseServices class, 470
enum value type, 14
enumerations
AddressFamily enumeration, 293
CommandType enumeration, 409
DataRowState enumeration, 424, 425
DataRowVersion enumeration, 425
DataViewRowsStates enumeration, 427
Keys enumeration, 47
modifying member names, 75
reflection and, 205
RegExOptions enumeration, 549
SocketType enumeration, 294
StreamingContextState enumeration, 80

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

enumerators, 37
EnvironmentPermission code access permission, 252
EOF property, 41
equality, 14-16
vs. identity, 13
Equals method, 12-13
ergonomics, 626
Ericsson, emulators, 660
error messages, 3

"The application attempted to perform an operation
not allowed by the security policy", 250, 250

"login failed", from MSDE, 329

Team Fly Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 673

in NET Compact Framework, 656658, 658
from object instantiation, 8
"Object reference not set to an instance of an object", 8, 19

"Overload resolution failed because no accessible "New' accepts this number of
arguments", 9

"permission denied", from MSDE, 329

"An unhandled exception of type 'System.Runtime.InteropServices. COMException' ...",
95

from validation controls, 284
ValidationSummary control, 284
errors. See also structured exception handling
in database update process, 429
preventing, 225
in programming, 232-236
escape, metacharacter for, 560
escape velocities, and color, 614615
escapees, from Mandelbrot Set, 608, 612
escaping metacharacters, in regular expressions, 563
etched frames, 632633
EventLogPermission code access permission, 252
events
adding to runtime—created controls, 2627
handling multiple controls with single, 27-28
Everything permission set, 251
evidence, 251
Excel, 111-116
evaluating math expressions, 111-113
pretty printing, 113
retrieving data, 115-116
sending data to, formatting, calculating and saving, 113-115
Exception class, 218, 225-228
exception handling. See also structured exception handling for regular expressions, 548
Exceptions dialog box (Debugger), 230-231, 231
executables
compiled for release, 232
partial trust of, 125
Execute method, of Command class, 410411

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ExecuteNonQuery method, of Command class, 409
ExecuteReader method of Command class, 409
DataReader object from, 414
ExecuteScalar method, of Command class, 409, 412-413
ExecuteXmlReader method, of Command class, 409
executing code, discovered through reflection, 208213
Execution permission set, 251
Exists method, of MessageQueue class, 347
explicit declaration of XML namespace, 480
Explicit option for module, 232-233
ExplicitCapture member of RegExOptions enumeration, 549
exporting
proxy, 467468
TextBox content to Clipboard, 23

F

fading transitions in user interface, 637, 637-640
fault tolerance, in MSMQ, 366
fax, Word's Wizard to send, 98
fields
in database, setting to null value, 401
excluding from serialization, 53
file stream, for DES, 145
File System editor, 262, 263266
File Types editor, 262
FileDialogPermission code access permission, 252
FileGet command, 41-42
FileIOPermission code access permission, 252
filenames, filling ListBox with, 101-102
FileNotFoundException, of Open method, 220
files
Directory object for getting list, 11
finding, using Word objects, 100-102
hashing, 142—-143
input/output, 39—44. See also streaming
determining end, 4142
reading, 4041
writing, 4244
loading assembly from, 201-203

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

loading from assembly, 200-201

reading attributes of, 224

as Response object arguments, 272

runtime errors when opening, reading and writing, 219-224
Open method exception handling, 219-221

size in binary vs. SOAP serialization, 65

tampered, 142

on target computer, setup project impact on, 262

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 674

FileSearch method, 101
FileStream object

constructor, 9

instantiating, 7

Read method of, 221
Fill method, of DataAdapter, 395, 415
filter

for DataView object, 426

for e-mail messages, 110

for reflection results, 195-198
Finalize method, 12
Finally clause, 219
Find method, of DataView object, 427
FindBy method, of DataTable object, 420
finding files with Word objects, 100-102
FindRows method, of DataView object, 427
firewall, 339

serialization and, 61
fixed IP address, 290
FlatStyle property, of buttons, 628
focus group, for user interface guidelines, 626
folders, adding items to user's, 267
font, for TextBox control, 174
Font property, 175
FontBold off, as user interface convention, 627
FontName property, of TextBox control, 625
For statement, declaration included within, 116
FOR XML AUTO clause, 82, 83
foreign keys, rules on changing, 431
forking, 332, 481
Form1 load event, 4
FormatFlags property, of StringFormat object, 169
FormatName property, of remote queue, 343
formatting

DataGrid control, 401-402

Word for manipulating, 102—104
formfeed, metacharacter for, 560

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

forms, 193
adding controls at runtime, 25-27
collections, for controls, 28
communication between, 4546
KeyPreview property of, 187
KeyUp event handler of, 187
for mobile computing, 646647
Forth, 481
fractal generator, 602—-620
fractals, 590
coloring, 614615
explained, 602—606
exploring, 616—620
Julia Sets, 609, 612, 612616, 613, 619-620
programming, 613—614
Mandelbrot Set, 605, 607, 607-612, 617-619
programming, 608—612
transformation process, 604—605
complex numbers in, 605-606
zoom operation on, 616
frames in user interface, 630-634
multiple, 634, 634
Framework Configuration tool, 129-133, /30
Adjust Security option, 132—133
New and Open options, 131
Reset All option, 132
Friend modifier, 80
FromOADate method, of DateTime class, 38
FromPage property, of PrinterSettings object, 163
FromXMLString method, 157
Full Trust, 133
FullReachQueue member of AcknowledgeTypes enumeration, 359
FullReceive member of AcknowledgeTypes enumeration, 359
FullTrust permission set, 251
FunctionColors collection, in PlotControl application, 592
FunctionLineWidths collection, in PlotControl application, 592
functions
calculating path, 597-598
calculating Y axis range, 594
evaluating at runtime, 593595

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

singularities, 602
Functions collection, in PlotControl application, 592
FunctionStyles collection, in PlotControl application, 592

G

GAC (global assembly cache), 243
installing DLL in, 245

genericerror.aspx file, for custom error messages, 657

Team Fly Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 675

GenericPrincipal class, 122
GetAllMessages method, 358
GetAssembly method, 198
GetAttributes method, of File class, 224
GetBytes method, of System.Text.Encoding. ASCII class, 311
GetChanges method, of DataTable object, 425
GetChildRows method, of DataRow object, 422
GetDC function, 187
GetDirectories method, of DirectoryInfo class, 11
GetFiles method, 11
GetHashCode method, 12, 16
GetHostByAddress method, of IPHostEntry class, 292
GetHostByName method

of Dns class, 291

of [PHostEntry class, 292
GetltemDiscount method

of BusinessLayer component, 447448

testing, 454, 455

GetltemDiscount stored procedure, 448-449
GetLowerBound method, of Array class, 34
GetMessageQueueEnumerator method, 349
GetObjectData method, of [Serializable interface, 79-81
GetPrivateQueuesByMachine method, 348
GetProductByID method, in middle tier, 446
GetProductsByName method

in middle tier, 446

limiting number of rows returned, 456

GetPublicQueues method, 348
GetPublicQueuesByCategory method, 348
GetPublicQueuesByLabel method, 348
GetPublicQueuesByMachine method, 348
GetRequestStream object, 314
GetResponseStream method, of WebResponse object, 314
GetString method, of System.Text.Encoding. ASCII class, 311
GetType method, 12, 16, 205

to instantiate assembly, 198
global assembly cache (GAC), 243

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

installing DLL in, 245
global variables, 15
Go.America, emulators, 660
GoTo statement, 224
gradient brush, 173
gradient metallic shading, 635
grammar, 611
graphics, 589
file format for mobile computing, 647
LoadPicture to load, 48
sending, 286287, 287
Graphics Device Interface (GDI+), 589
Graphics object
ClipBounds property of, 173
PageUnit property, 168
for printing, 168
SetClip method of, 162
Graphics property, of PrintDocument object, 160
GraphicsPath object, 591
greedy regular expressions, 561
greedy subexpression, metacharacter for, 578
grep utility (Unix), 582
GridColumnStyle property, 401
grids, drawing on PictureBox control, 598-602
<group> element (XML), 486
grouping in regular expressions, 568-573, 569
groups, 122
GUIDs (globally unique identifier)
and Identity columns, 431
for messages in queues, 345, 350
GUIDs (globally unique identifiers), 419

H

hackers, 134, 320
handled exceptions, 216
handles, 4648
key press detection, 4748
runtime, 47
Handles command, 27-28

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

hardware, errors from, 216
HasAttributes property, of XMLReader object, 477
HasErrors property, of DataSet object, 429
Hash membership condition, 256
hashcodes, 16

for password, 77
hashing, 140

with encrypting, 147-151

files, 142—-143

passwords, 140142
hashtables, 37-38
HasMorePages property, 162

Team Fly Pressious Faxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 676

HasValue property, of XMLReader object, 477

header of column, printing, 185

headlines in applications, sans serif font for, 627

help, 3-5, 18

"high encryption pack", 140

Hit Count property, for debugging, 237

HKEY LOCAL_ MACHINE\Software\[Manufacturer] key, 267
HostName property, of IPHostEntry class, 292

hostnames, 290

HTML (Hypertext Markup Language), from server controls, 272273
HTML controls, 287-288

HttpWebRequest class, 314

HttpWebResponse class, 314, 315

I

Icon property, for application shortcut, 266
icons, 624
ICryptoTransform object, 146
ID property, of Message class, 350
Identity columns, 430-440
in DataSet, 419
and GUID (globally unique identifier), 431
identity, vs. equality, 13
idref data type in XML, 483
IgnoreCase member of RegExOptions enumeration, 549
IgnorePatternWhiteSpace member of RegExOptions
enumeration, 549
Image control, in .NET Compact Framework, 647
Image object, copying screen onto, 186
ImageURL property, 647
imaginary number, 603—604
imperative code access, 124
implicit declaration of XML namespace, 480
importing
API functions, 187
data from Excel, 116

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

namespaces, 193
Imports statement

for ASP.NET Web application, 273

need for, 11

for remoting project, 460

for security examples, 140

for serialization, 54

for XML, 487
Index property

of control, 24

of Match class, 550
IndexOf method

help sample code, 3—4

of String class, 543
IndexOutOfRangeException, 29
infinity, 234

testing for, 235-236
inheritance, 12
inherited controls, appearance of, 176
initialization, 30
initialization vectors for DES, 146-147
InnerException property, 225
INSERT statement (SQL), 405

DataAdapter task for, 404
InsertAfter method

in Word object model, 104

for XML elements, 489
InsertAt method, of Rows collection of DataTable, 421
InsertBefore method, for XML elements, 489
InsertCommand property, of DataAdapter, 404, 435
InstalledPrinters method, of PrinterSettings object, 163
installing .NET Framework runtime, 244245
instantiation

of FileStream object, 7

of objects, 8
integers, 14
IntelliSense list, 105
interfaces, 14, 193

in DOM specification, 478
Intermediate Language (IL), 213

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Internet addressing, 289292
Internet-based deployment process, 246-259
assembly download on demand, 258-259
code access permissions, 251-257
preparation, 247-249
running application, 257-258
Windows application deployment on Web server, 249-250
Internet Explorer, security settings, 122
Internet Information Services snap-in, 249
Internet permission set, 251

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 677

Internet sockets, 292
Internet zone, permissions for code from, 128
interoperability, 93
intranet zone, 128
InvalidCastException, 227
invoicing application, 516-535

architecture, 518-525

interface, 516-518, 578
Invoke method, 213
IOException

of FileStream.Read method, 221

of Open method, 220
[0.InternalBufferOverflowException, 227
[0.I0Exception, 227
IP addresses, 289—-290

for local computer, 291
IPAddress class, 291
IPCONFIG utility, 290, 290
IPEndPoint class, 291
IPHostEntry class, 291
Is comparison operator, 13
ISBN values, regular expression for, 577
IsContactNameNull method, for typed DataSet, 418
IsDefault property, of XMLReader object, 477
IsDefaultPrinter property, of PrinterSettings object, 163
IsEmptyElement property, of XMLReader object, 477
ISerializable interface, 79
IsInfinity method, 235-236
IsNaN method, 235-236
IsNegativelnfinity method, 236
IsNull method, of DataRow object, 418
IsNullable property, of XmlElement, 74
IsolatedStorageFilePermission code access permission, 252
IsPlotter property, of PrinterSettings object, 164
IsPositivelnfinity method, 236
IsValid property, of PrinterSettings object, 164
Item property, of DataRow object, 417

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

iteration through rows of DataSet, 417

J

journal message queues, 343
referencing, 345-346

Julia Sets, 609, 612, 612616, 613, 619-620
programming, 613—614

Just In Time Activation (JITA), 468

Just In Time (JIT) compilation, 121

K

key distribution center, 152

key length, 140

key transfer, 152

KeyChar property, 47

KeyPreview property, of forms, 187
Keys enumeration, 47

KeyUp event handler, of forms, 187
Kind property, of PaperSize object, 163

L

label for queue, 345
Label property

of Message class, 347, 350

of MessageQueueCriteria class, 349
landscape mode, 113
Landscape property, of PageSettings object, 162
LandscapeAngle property, of PrinterSettings object, 164
laser printers, minimum margin, 168
LastIndexOf method, of Array class, 34
Launch Conditions editor, 262
layering, as user interface convention, 627
layers, vs. tiers, 443
Length property, 29

of Match class, 550
library application, creating, 466
License Agreement dialog box, 269
lighting in user interface, 628—629

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

LineAlignment property, for string printing, 169
LineLimit property, for string printing, 171
List controls, for mobile computing, 650—-651
ListBox control
autopostback attribute for, 281
binding to columns, 506
filling with filenames, 101-102
SelectedIndexChanged event handler, 537-539
Listen method, of Socket class, 297, 298
ListenClass, 301
ListView control
adding print capabilities, /79, 179-186
handling user actions on, 527528

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 678

for invoicing application, 516-517
relations mapped on, 539542, 540
load balancing, in MSMQ, 367-370
load-balancing software, 449
LoadFrom method, of Assembly class, 203, 258
LoadPicture method, 48
local area network, IP address on, 290
local computer
IP address for, 291
queues on, 348—-349
Locallntranet permission set, 251
LocalName property, of XMLReader object, 477
Locals window for debugger, 238
localSocket object, 297
locked rows in database
from pessimistic concurrency, 408
for transactions, 436
logical errors, 231, 237-240
"login failed" error message, from MSDE, 329
logon dialog box, for mobile computing, 653, 653
lookahead assertions, 575-578
metacharacters for, 578
lookbehind assertions, 575-576
metacharacters for, 578
loosely coupled system, 341, 342

M

machine level for security policy, 251

MachineName property, of MessageQueueCriteria class, 349
macros in Word, to view VB code, 103—-104

Mailltem objects, 110

MajorGridWidth property, in PlotControl application, 592
MajorXTicks property, in PlotControl application, 592
MajorYTicks property, in PlotControl application, 592
managed code, 121, 462

Mandelbrot Set, 605, 607, 607-612, 617619

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

programming, 608—612
ManufacturerURL property, of Setup Project, 266
MarginBounds property, of PrintDocument object, 160
margins, 161

minimum for laser printers, 168
Margins property, of PageSettings object, 162
Match class, properties, 550
Match method, of RegEx class, 551-552
Matches method, of RegEx class, 548, 550-551
MatchEvaluator function, 553
MatchEvaluator project, 554-557, 555
math

Excel to evaluate expressions, 111-113

overflow exception in calculation, 218

and programming, Xx

transformations, 604—605
Math object, 15
Max method, 15
MaximumCopies property, of PrinterSettings object, 164
MaximumPage property, of PrinterSettings object, 164
MaxLength property, of DataColumn class, 417
Me, 45

Me.Controls collection, 28
MeasureString method, 169-170, 185
MeasureString property, 175
MemberAccessException, 227
MemberwiseClone method, 12
MemoryStream, 61
Merge Module Project, as New project option, 261
Message class, 349-358

creating and sending messages, 352—-358

deleting messages, 357

with MessageEnumerator class, 355

peeking at messages, 357-358

properties, 350-351

reading messages, 354-355

retrieving messages asynchronously, 356357
Message element in WSDL, 330
Message property, of Exception class, 218, 225
message queues, 342347

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

acknowledgments and time-outs, 358-373
auditing messages, 373
fault tolerance and load balancing, 366-370
processing acknowledgment messages, 361-366
requesting acknowledgment, 358-361
transactional messages, 371-373

creating, 344-345

deleting, 345

processing orders with messages, 373-381, 374
committing order to database, 380381
deleting order and related message, 381

Team Fly Previous

Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 680

ModifiedAfter property, of MessageQueueCriteria class, 349
ModifiedBefore property, of MessageQueueCriteria class, 349
modules, 193, 205
creating, 46
month, number of days in, 39
mouse, and DataGrid control, 516
MoveNext method, of MessageEnumerator class, 355
MS Sans Serif, 627
MSDE (Microsoft SQL Server 2000 Desktop Engine), potential problems, 329
MsgBox command, 17
MSIL (Microsoft Intermediate language), 214
MSMQ. See Microsoft Message Queueing (MSMQ) component
MSMQLoadBalancing project, 367-370
BalancedQueue setup, 368
enumerating messages, 369
random message creation, 369
MSScript control, 593
multi-tier architecture, 442, 443. See also middle tier components
for invoicing application, 518-519
Multiline member of RegExOptions enumeration, 549
multiplication, of complex numbers, 620-621
My Computer zone, code executed from, 128

N

Name property
changing, 24
of XMLReader object, 477
Namespace property, of XmlElement, 74
namespaces, 18, 193
accessing compatibility, 201-202
added automatically as default, 7
adding as reference, 495
in XML, 480, 487
NaN (not a number), 234, 235
testing for, 235-236

navigation

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

DataSets, 421-426

in mobile computing, 646—647
negative lookahead, 575
negative lookbehind, 576
NegativeReceive member of AcknowledgeTypes enumeration, 359
nesting TextBoxes, 625
NET applications, COM component use with, 461-467
NET Compact Framework, 643

case sensitivity in, 660

code-behind programming, 648—649

debugging via tracing, 654656

device specificity, 658—660

emulators, 660—-663

friendly error messages, 656—658, 658

limitations, 644—645

List controls, 650-651

new features, 647—651

security, 652—653

simulator, 645—647

mobile form, 646
navigation to second form, 646—647

NET Configuration snap—in, 253, 253-257
NET Framework, 1

class descriptions, 56

data types, 11-18

exploiting, 18-20

grammar, 611

help, 3-5

installing runtime, 244245

security features, 121-122

WinCV (Windows Class Viewer), 20-21

XML classes in, 475
NET Framework Samples Database, installing, 327
NET Security Policy management, 128—133
NETConfigFiles project, 76-79, 78
Netscape products, 273, 658
New keyword, 7

need for, 8
New Project dialog box, 645
NewGuid method, of Guid class, 419

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

newline, metacharacter for, 560

Next method, of system.random object, 51-52

NextDouble method, of system.random object, 51-52
NextMatch method, of RegEx class, 551-552

NextMatch property, of Match class, 550

no-touch deployment. See Internet-based deployment process

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 681

nodes in XML document
adding to XML document, 489490
recursive walk through, 491492, 493
NodeType property, of XMLReader object, 478
Nokia, emulators, 661
non—greedy regular expressions, 561
None member
of AcknowledgeTypes enumeration, 359
of RegExOptions enumeration, 549
Northwind database, establishing connection, 403
NoSupportedException, of FileStream.Read method, 221
NotAcknowledgeReachQueue member of
AcknowledgeTypes enumeration, 359
NotAcknowledgeReceive member of AcknowledgeTypes
enumeration, 359
NotFiniteNumberException, 226
Nothing permission set, 251
NoTouchDeployment project, 248-249
NotSupportedException, of Open method, 220
null values
in DataAdapter, 406, 418419
setting database field to, 401
in XML format, 85
numbers
random, 49-53
real and imaginary, 603—604
undefined, 234
testing for, 235-236
NWOrders project, 81, 81-90
AddDetailLine stored procedure, 524525
AddHeader stored procedure, 524
adding business rule, 532-535
code, 525-532
committing order to database, 88-90, 530531
creating and serializing new order, 86—87
deserializing XML into custom class instance, 87-88
deserializing XML representing order, 90

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

GetProductByld stored procedure, 523
GetProductsByName stored procedure, 524
OrderClass class, 519-525
ReadOrder stored procedure, 89-90
ReduceRows subroutine, 531-532
setup project for, 259-260
user interface, 445

NWProducts application, 506-516
architecture, 508-510
code, 510-516
code of search form, 514-515
concurrency handled by, 515
interface, 507, 507-508

O

OAEP, 157
Object Browser, 6
opening, 5
translating information in, 8, 8
object pooling, 469, 469—470
implementing, 470—473
"Object reference not set to an instance of an object" error message, 8, 19
object type, 16
ObjectList control, for mobile computing, 651
objects
accessing members, 10
Instantiation, 45
in Microsoft Outlook Library, 109
reflection to learn about, 191
serialization, 59
Office applications, 109-110. See also Excel; Word
Ole Automation, 39
OleDbDataAdapter class (ADO.NET), 392
OleDbPermission code access permission, 252
one—way functions, 154
OnError statement, Resume, 224
OnPaint event, 589
OOP (object oriented programming), 2
Opacity property, of forms, 636, 638

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Open method, exceptions, 219-220

OpenRead method, of WebClient class, 309

Openwave, emulators, 661

OpenWrite method, of WebClient class, 309

optimistic concurrency, 407, 516

Option Base statement, 28, 29

OR Boolean operator, for DataView object, 426

order processing with messages, 373-381, 374
committing order to database, 380381
deleting order and related message, 381
message retrieval from queue, 378-379

order preparation, 375-377

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 682

origin of graph, relocating, 595-596
origin of page, 168
outgoing queues, 343344
Outlook, 109-110
Output window for debugging, 239-240
Outputstream property, of Response object (HTML), 286
OverflowException, 226
in math calculation, 218
overhead, in serializing and deserializing, 79

"Overload resolution failed because no accessible "New' accepts this number of arguments"
error message, 9

P

padding algorithm in encryption, 157
page layout for printing, 168-174

DrawString method, 168—-170

PrintTests project, 170, 170174
Page Setup dialog box, 164-165, 165
PageSettings object, 162—163

Page Setup dialog box to display current settings, 164, 165
PageSettings property, of PrintDocument object, 160
PageUnit property, of Graphics object, 168
paging, DataGrid support, 276
PaintPixel() function, 615-616
PaperName property, of PaperSize object, 163
PaperSize property, of PageSettings object, 163
PaperSizes property, of PrinterSettings object, 164
PaperSource property, of PageSettings object, 163
PaperSources property, of PrinterSettings object, 164
paragraphs.Item collection, 106
Parameter object, for SQL commands, 410
parent class, 12
Parse method, 213
parsing, 212
passwords

hashing, 140—-142

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

as security problem, 139-140
PathTooLongException, of Open method, 219
PDAs. See also mobile computing

emulators, 660-663
Peek method, 41

of MessageQueue class, 357-358
PeekByCorrelationID method, 357
peer-to-peer programming, 289

sockets, 292-300

UDP (User Datagram Protocol), 295-297

performance

open transactions and, 408

verification and, 125
PerformanceCounterPermission code access permission, 252
period (.), in regular expressions, 543, 545, 558
Perl (Practical Extraction and Report Language), and regular expressions, 587
"permission denied" error message, from MSDE, 329
permission sets

built-in, 251

creating and configuring, 253-257
permissions

demand to test caller level, 135-136

NET settings, 121
persistence

in drawing, 589

of object, 60. See also serialization
pessimistic concurrency, 408
PEVerity, 121, 121
PictureBox control

axes numbering for tick marks, 599-600

drawing grids on, 598602

in PlotControl application, 590

titles, 601
plaintext, 143, 320

printing, 174-178, 175
PlotControl application, 590, 590-602

members, 591598
PlotTitle property, in PlotControl application, 592
PlotTitleColor property, in PlotControl application, 592
PlotTitleFont property, in PlotControl application, 592

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Poll method, of socket, 295

pool of objects for reuse, 469—470
implementing, 470473

PooledServer project, 470473
testing, 472473

portrait mode, 113

ports, 294
for UDP connection, 297

portType element in WSDL, 331

PortType section, of WSDL document, 335-336

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 684

enumerating messages, 369
random message creation, 369
NETConfigFiles project, 76-79, 78
NoTouchDeployment project, 248-249
NWOrders project, 81, 81-90
AddDetailLine stored procedure, 524525
AddHeader stored procedure, 524
adding business rule, 532-535
code, 525-532
committing order to database, 88-90, 530531
creating and serializing new order, 86—87
deserializing XML into custom class instance, 87-88
deserializing XML representing order, 90
GetProductByld stored procedure, 523
GetProductsByName stored procedure, 524
OrderClass class, 519-525
ReadOrder stored procedure, 89-90
ReduceRows subroutine, 531-532
setup project for, 259-260
user interface, 445
NWProducts application, 506-516
architecture, 508-510
code, 510-516
code of search form, 514-515
concurrency handled by, 515
interface, 507, 507-508
PlotControl application, 590, 590-602
members, 591-598
PooledServer project, 470473
testing, 472—473
PrintTests project, 170, 170174
ProcessOrders console application, 385-388
ReadWriteFile project, 219-224
RegExEditor project, 564-567
Find & Replace dialog box, 564-567
RegularExpressions project, 544, 545, 579582

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Relations application, 535, 535-539
architecture, 535-536
code, 536-539
Relations] project, 539-542
RemoteOrders application, 460
SimpleQueue project, 362363
processing acknowledgment messages, 365-366
TcpChat application, 300, 300-307
TcpChatClient application, 305-307
MessageArrived event, 307
TcpChatServer application, 301-305
ChatClass, 302-303
listening for requests on separate thread, 303
TCPServer project, 297-298
Transaction project, 430, 431, 432-436
UDPClient application, 296297
UDPServer application, 295, 295-296
Visual grep project, 582, 582587
properties
of forms, 45
public, reflection to report on, 197
serialization for saving, 60
of Setup Project, 265-266
proxy
exporting and testing, 467468
between managed and unmanaged code, 462
proxy server, 290
public key encryption systems, 139-140, 151, 153
code for encryption and decryption, 154—156
managing keys, 158
public properties, reflection to report on, 197
public queues, 343
referencing, 345
public variables, to reference form, 45
Publisher membership condition, 256
Pubs sample database, connection to, 327
punctuation symbols, printing, 178
purging message queues, 345

Q

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

quantifiers, in regular expressions, 546, 560-562

Query Analyzer window, 82

Query Builder, 394

query, to retrieve order information in XML format, 82—83
question mark (?), as metacharacter, 560

queued components, 469

queues. See message queues

Quick Watch window for debugger, 238

R

random generator seeding, 5052

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 686

Relations application, 535, 535-539
architecture, 535-536
code, 536-539
Relations property, of DataSet, 421
Relations|1 project, 539-542
relationships between tables, 397-398
Release mode, 232
ReleaseDC function, 187
remote systems
accessing, 289
invoking components on, 449
RemoteOrders application, 460
remoting BusinessLayer class, 458461
Remove method, of Rows collection of DataTable, 419
RemoveAt method, 35-36
of Rows collection of DataTable, 419
RemovePreviousVersion property, of Setup Project, 266
RenderingOrigin property, of Graphics object, 168
repeated words, removing, 571
Repeater control, 276
Replace method, of RegEx class, 552557
MatchEvaluator project, 554-557
replacement
with regular expressions, 553
grouped matches, 569-573
of text, 106-107
replication of public queues, 343
RequestLimit attribute, in Web.config file, 655
RequiredFieldValidator control, 283
resolution of printer, 163
Resolve method, of IPHostEntry class, 292
Response object (HTML)
arguments for, entire files as, 272
Outputstream property, 286
Write command, 273
restricted sites zone, 128
RetrieveByCorrelationID method, 357

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

reverse engineering, 134
Reverse method, 34
rich client, 441442
vs. Web applications, 457
RichTextBox control for Visual grep project, 585
formatted text in, 587
RightToLeft member of RegExOptions enumeration, 549
Rivest, Shamir, and Adleman. See RSA (Rivest, Shamir, and Adleman) encryption system
Rnd function, 49
role-based security, 120, 122, 469
Rollback method, of Transaction object, 437
root element, changing name, 76
Row property, of DataTable object, 425
rows in database, 417418
adding and deleting in DataTable, 419—420
deleting, 405
limiting selection, 405
search for, 420421
RowStateFilter property, for DataView object, 427
RSA (Rivest, Shamir, and Adleman) encryption system, 151-158
how it works, 153-156
RSACryptoServiceProvider object, 156
rules
grammar, 611
for message queue triggers, 382-384, 383
runtime
adding controls to form at, 25-27
DataSet generated at, 415
evaluating functions at, 593-595
runtime-callable wrapper (RCW), 462
runtime errors, 232
"Failed to enable constraints...", 398-399
when opening, reading and writing files, 219-224
Open method exception handling, 219-221
runtime handles, 47
Runtime.Serialization.SerializationException, 227

S

sa account, 403

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sans serif font, 625

for headlines, 627
Save method, of XMLConfiguration class, 7677
SaveFileDialog control, 43—44
SAX (Simple API for XML), 475

choosing, 476478
Scale property, of Parameter object, 410
schemas in XML, 329, 478479, 481-486

data types, 483—486

extending, 484486

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 689

security, 120

serialization of data, 81-90
SqlClientPermission code access permission, 252
SqlDataAdapter class (ADO.NET), 392
SqlDbType property, of Parameter object, 410
StackOverflowException, 228
StackTrace property, of exception objects, 225, 226
Start method, of TCPListener class, 302
start of line, metacharacter for, 562
StartChat method, 301, 304
StartListening method, 301
startup object, default, in Visual Basic, 4
state, preserving in Web services, 325-326
State property, of rows in DataSet, 424
statelessness, 325
static methods, 15
Status property, of MessageQueueTransaction class, 371-372
step into when debugging, 239
step over when debugging, 239
stored procedures

CommandText property to store, 409

executing, 411-412

for item discount, 534

in NWProducts application, 508
Stream object, ReadLine method of, 311
streaming, 1, 39—44

mixing data types in same, 55-56

to write to file, 43
StreamingContextState enumeration, 80
StreamReader object, ReadToEnd method of, 42
Strict option for module, 232233
String class, IndexOf method of, 543
StringFormat object, 169, 172
strings, 14-15

converting byte arrays to, 308

converting to byte arrays, 311

DrawString method for printing, 168—169

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

empty, in database, 401
Excel to evaluate math expressions as, 111-112
listing methods for, 19
Word for formatting, 102—-104
strong name, creating, 470
Strong Name membership condition, 256
strong typing, 17-18, 37
structure value type, 14
structured exception handling, 63, 216-231
bypassing error handlers, 230-231
error prevention, 225
Exception class, 225-228
Finally clause, 219
ReadWriteFile project, 219224
resuming failed statements, 224-225
sections of code, 217
throwing custom exceptions, 228-230
Sub. See constructors
Sub Main, 4
subdirectories, process to get list, 10
subtraction of complex numbers, 620
Success property, of Match class, 550
SupportPhone property, of Setup Project, 266
SupportsColor property, of PrinterSettings object, 164
SupportUrl property, of Setup Project, 266
suppressing messages, 100
symmetric encryption routine, 142
syntax errors, 232, 233
System namespace, 4, 7
System.Data namespace, 7
System.Drawing namespace, 7, 18
System.IO namespace, 11
System.Messaging.MessageQueue class, 345
System.Net namespace, 289
System.Net.Dns namespace, 289, 291
System.Object class, 12
System.Random object, 50
System.Runtime.Serialization class, 61
System.Runtime.Serialization.Formatters.Soap, as reference, 495
System.Security.Principal namespace, 122

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

System.Text.Encoding class, 308
System.Text.Encoding. ASCII class, 311
System.Type class, 192
System.Windows.Forms namespace, 7
System.XML namespace, 7
System.Xml.Serialization namespace, 72

T

tab, metacharacter for, 560
tables in database. See also DataTable objects
multiple, for DataSet, 396400

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Mexd

TableStyles property, of DataGrid control, 401
tabular data, printing, 179-186
target computer, setup project impact on file system, 262
TargetSite property, of exception objects, 225
TCP (Transmission Control Protocol)
classes to exchange data, 307
server, sending message to, 299-300
sockets, 292, 294, 297-300
TCPChat application, 300, 300-307
TcpChatClient application, 305-307
MessageArrived event, 307
TcpChatServer application, 301-305
ChatClass, 302-303
incoming messages, 305
listening for requests on separate thread, 303
TCPServer project, 297-298
templates, for Webform controls, 275
testing
for infinity, 235-236
proxy, 467468
regular expressions, 571
transactional updates, 439440
for undefined numbers, 235-236
Web services, 327, 337-339
Text property, of control, binding, 506
TextBox controls
exporting content to Clipboard, 23
loading Word document into, 99-100
nesting, 625
Print method, 174-178, 175
and printing, 159
spell-checking contents, 94
TextView control, in .NET Compact Framework, 647
threads
background on client chat application, 305-306
for chat programs, 301

Page 690

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Throw method, 229
Ticks, 38
tiers, vs. layers, 443
time, calculating elapsed, 38
Time function, 38
TimeOfDay function, 38
timeout, for queued message acknowledgment, 359
TimeSpan object, for Receive and BeginReceive methods, 356
TimeToBeReceived property, of Message class, 351, 360
TimeToReachQueue property, of Message class, 351
tlbimp.exe tool (Type Library Importer), 462
Today function, 38
ToDouble method, of DateTime class, 38
ToPage property, of PrinterSettings object, 163
ToString method, 12, 16, 112
trace, to debug mobile application, 654—-656
Transaction object, 436
Transaction project, 430, 431, 432-436
transactional messages, 343, 371-373
transactions
DataAdapter class for, 432—440
implementing optimistic concurrency with, 408
testing updates, 439440
transformation matrix, in GDI+, 596
Translate method, of world coordinate system, 595-596
Transmission Control Protocol (TCP) sockets, 292, 294
trap doors, 153—154
triggers for message queues, 382—388
defining, 384-385
ProcessOrders console application, 385-388
rules, 382-384, 383
Trimming property, of StringFormat object, 178
TrimToSize method, of ArrayList, 36
TripleDES, 143
trusted sites zone, 128
Try statement, 217
type, 56
type size, user interface convention for, 627
typed DataSets, 415
table names as properties, 416

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

types
binary serialization and, 65

direct contact with specific, 206-207
and reflection, 191-192, 205-206
Types element in WSDL, 331
TypeText method, 106

U

UBound function, 29
UDDI Business Registry (UBR), 337
UDDI (Universal Description, Discovery, and Integration), 336-337

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious

Mexd

UDP (User Datagram Protocol) sockets, 292, 294, 295-297
UDPClient application, 296297
UDPServer application, 295, 295-296
UlIPermission code access permission, 252
UnauthorizedAccessException, of Open method, 220, 222
"An unhandled exception of type
'System.Runtime.InteropServices. COMException' ..."
error message, 95
unhandled exceptions, 216
Universal Description, Discovery, and Integration (UDDI), 336-337
Unix, grep utility, 582
UnknownAttribute event, when deserializing XML stream, 501-502
UnknownElement event, when deserializing XML stream, 501-502
unmanaged code, 462
Update method, of DataAdapter, 400, 404, 425, 428430
UPDATE statement (SQL)
from DataAdapter configuration wizard, 406
DataAdapter task for, 404
UpdateCommand property, of DataAdapter, 404
UpdateRule property, 431
upgrading applications, 244
Internet-based deployment and, 246
UploadData method, of WebClient class, 309-310
UploadFile method, of WebClient class, 310
uploading documents, with WebClient, 312-313
UploadValues method, of WebClient class, 310
URL membership condition, 256
URLs (Uniform Resource Locators), for namespaces, 480
UseDeadLetter Queue property, of Message class, 351
User Datagram Protocol (UDP) sockets, 292, 294, 295-297
user interface
DataGrid control and, 396, 399
fading transitions, 637, 637-640
focus group for guidelines, 626
metallic shading, 635-636, 636
reliability of applications, 623-626, 624
slide transitions, 640, 640—641

Page 691

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Windows conventions, 626634
depth, 627-628
FontBold off, 627
framing, 630—634
layering, 627
light from upper left, 628—629
metallic look, 626—627
sans serif font for headlines, 627
type size, 627
zones, 629
User Interface Editor, 262, 267-270
user level for security policy, 251
users, 122
User's Programs Menu, adding application to, 267

\Y%

validation, 282285

in ASP.NET, 282-285

controls, 283-285
programmatic, 282—283

controls, 283-285

of data, 225

programmatic, 282—283
ValidationSummary control, error messages, 284
Value property

of Match class, 550

of Parameter object, 410

of XMLReader object, 478
value types, 14
ValueMember property, for binding controls, 509
variables

displaying, 17

forcing declaration, 232233

initialization, 30

public, to reference form, 45

scope of, 239
Variants, 17
velocity of escape, and fractal color, 614-615

verification

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

of method argument lists, 121
and performance, 125
Version property, of Setup Project, 266
vertical alignment of string, 169
views, for table editing, 426
Visual Basic
beginnings, 1
changes for .NET, 1-2

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 692

inflation, 192
terminology changes for VB.NET, 21-22
Word macros to view, 103—104
Visual Basic .NET, translating C# to, 21
Visual grep project, 582, 582587
Visual Studio .NET
to create connection strings, 403
creating Windows installer package in, 259, 261-262
DataAdapter configuration, 393—-394
database connection, 392-393
DataSet creation, 395-396
multiple tables, 396400
Pocket PC emulator, 66/, 661-662
problems, 662—-663
updating database, 400—402
viewing DataSet, 396
void, 15

W

WAP (Wireless Application Protocol), 645
Watch window for debugger, 238
Web applications, 246

for database client, 442

vs. rich client applications, 457
web page, for connecting to application, 258, 258
web resources, 308-317
web server

downloading document from, 315

user download of application from, 246

Windows application deployment on, 249-250
Web services, 2

adding to project, 336

caching data, 322-323

characteristics, 319-320

consuming, 323-325, 324

converting BusinessLayer class to, 450457

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

creating, 320-323
first line, 322
making database connection, 326-330
middle tier component as, 247
preserving state, 325-326
referencing, 456457
security, 339
testing, 32/, 337-339
UDDI (Universal Description, Discovery, and Integration), 336-337
XML Dataset, 327-328, 328
Web Services Description Language (WSDL), 330-336
complex types, 333-335
Enum translated into SOAP and WSDL, 334-335
PortType section, 335-336
Reference Map, 336
SOAP, 333
viewing, 331-332
Web Setup Project, as New project option, 261
web sites, C# to VB.NET translator, 21
WebClient class, 308
to download documents, 311-312
Web.config file
authorization section for mobile computing, 653
changing for remoting, 459460
for custom error messages, 656—657
device specificity, 659
RequestLimit attribute in, 655
to set trace, 654
WebForm data display, 273-283
connecting to database, 273274
DataGrid control, 276-281
DataList control, 275
detecting postback, 281-282
Repeater control, 276
templates, 275
<WebMethod> attribute, 450
WebPermission code access permission, 252
WebRequest object, 314-315
WebResponse object, 315-317
WebResponse stream, 61

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

white space, in regular expressions, 560
WinCV (Windows Class Viewer), 20-21
Windows
application deployment on Web server, 249-250
security, 120
user authentication, 403
user interface conventions, 626—634
depth, 627-628
FontBold off, 627
framing, 630—634
layering, 627
light from upper left, 628629

Team Flv Previous

et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 693

sans serif font for headlines, 627
type size, 627
zones, 629
Windows 98, installing .NET Framework on, 244
Windows Class Viewer. See WinCV (Windows Class Viewer)
Windows controls
binding to columns, 506
data to populate, 412
Windows Explorer, security settings, 122
Windows form, related data on, 535-539
Windows installer
creating in Visual Studio .NET, 259, 261-262
deployment process with, 259-270, 260
File System Editor, 263-266
installer package creation, 261-262
Registry Editor, 267
shortcut creation, 266267
User Interface Editor, 267-270
Windows Server 2003, Software Restriction Policies, 122
Windows XP
default security settings, 128—129
Graphics Device Interface (GDI+), 589
Message Queuing Triggering service, 382
Software Restriction Policies, 122
Windowsldentity class, 122—123
WindowsPrincipal class, 122123
Wireless Application Protocol (WAP), 645
WithEvents, in declaration, 28
Word
fax sending, 98
feeding individual strings and specialized formatting, 102—104
finding files, 100-102
IntelliSense list, 105
loading documents, 99-100
printing features, 107-108
replacing text, 106-107

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sending text to VB.NET from, 106
spell-check, 94-98
passing text directly, 96
retrieving misspelled word list, 96-98
for VB.NET TextBox, 94-95
text manipulation and insertion, 104-106
word character, metacharacter for, 544, 546, 558-559
word count, 100
Word object model, 104
WordWrap property, 175, 178, 178
WorkingFolder property, for application shortcut, 266
worksheet object in Excel, 115
workstations
access by multiple to same queue, 370
authentication for database connection, 402—403
world coordinate system, Translate method of, 595-596
wrapper, 52
COM, %4
Write command, of Response object, 273
WriteLine method, of Debug class, 240
writing files, 42—44
WSDL (Web Services Description Language), 330-336

X

XAxisTitle property, in PlotControl application, 592
XCopy method, 244
XMax property, in PlotControl application, 592
XMin property, in PlotControl application, 592
XML. See also SAX (Simple API for XML)

for application configuration files, 76

classes in .NET Framework, 475

controlling output, 73-76

converting DataSet to, 504, 504

converting to DataSet, 503—504, 504

database results as, 329-330

and DataSets, 493495

DOM (Document Object Model) and, 475, 478479

interchangeability, 503-504

namespaces in, 480

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

persistence with SOAP, 495-503
persisting instance of AppConfig class in, 77
programmatic, 487492

edit and save, 488—490

recursive walk through nodes, 491-492
query to retrieve order information in, 82—83
restoring instance of AppConfig class from, 77
SAX (Simple API for XML), 476478
schemas, 481-486

data types, 483—486

XSD, 481482

Team Fly Previous

Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious

Page 694

specifications, 332
for Web services, 320
WSDL descriptions in, 330
XML Dataset, 327-328, 328
XML document. See also elements in XML
adding node, 489490
loading literal string into, 487
XML (SOAP) serialization, 55, 60—61, 72-76, 495-503
deserialization trapping, 501-503
mixing and matching types, 497-501
reading mixed data, 499-501
queued message in, 353354
XmlAnyAttribute property, 73—-74
XmlAnyElements attribute, 74
XmlArray attribute, 74
XmlArrayltems attribute, 74
XmlAttribute attribute, 74, 75
XmlAttributes class, 73
XmlChoiceldentifier attribute, 74
XMLConfiguration class, Save method, 7677
XmlDefaultValue attribute, 74
XmlElement attribute, 74
XmlEnum attribute, 74, 75
Xmllgnore attribute, 74
xmlns attribute, 480
XMLReader object, 477
XmlRoot attribute, 74
XmlSerializer class, 61, 72, 500-501
deserializing XML stream, 501-502
XmlText attribute, 74
XmlType attribute, 74
XPathNavigator API, 477
XSD, 481482
command-line tool, 83—-86

Y

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Y AxisTitle property, in PlotControl application, 592
YoSpace, 660

Z

zero, division by, 234
Zone membership condition, 256
zones, as user interface convention, 629

zoom operation, on fractals, 616

Team Fly Presvious

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 10

Figure 1.3 illustrates how you must look in two locations in the Object Browser to find details
about the process of getting a list of subdirectories:

FIGURE 1.3 You must look at both the New and GetDirectories methods in the Object Browser to figure
out how to employ this technique.

And even after you figure out how to use New to instantiate a DirectoryInfo object, and how
to use GetDirectories, you still don't have enough information to know how to make these two
objects (the DirectoryInfo object and the separate array of Directorylnfo objects) work
together. Thank goodness there's sample code illustrating how to get directories. By the way,
to see the results, you can reuse the DirectoryInfo object di to iterate through the array:

For Each di In dirs
Console.WriteLine (di)
Next

Why Two Ways?
Why, then, these two different ways of accessing objects' members? One requiring New
(instantiating the object), the other not requiring instantiation?

Dim fstream As FileStream = File.Create(''c:\myfilex.tst")
Dim dirI As DirectoryInfo = New DirectoryInfo("c:\")

Some objects, such as the ArrayList, can be instantiated either way:

Dim ara As ArraylList

or

Dim ara As New ArraylList

In VB6 and earlier versions, the As New command meant something different than it does
now in .NET. In older versions of VB, when you declared an object variable using as New, it
was "autoinstancing"— meaning that it isn't instantiated until used later in the code
somewhere. In .NET the object is instantiated as soon as the line with the Dim statement
executes. No delayed instantiation.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

About Constructors

A constructor is a Sub (a method) that executes when a new instance of its class is instantiated,
hence the name of a constructor method is always New. In other words, when you instantiate a
class,

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 100

In this example, you use the RecentFiles collection of the application object to load the most
recent file, then copy it to the TextBox via the Clipboard. In addition, you get the Name
property of this file and display it in the form's title bar.

NOTE The Documents collection within the Word application is 1-based, so there is no
documents(0).

GETTING A WORD COUNT

Writers need to know many words they've written—a typical computer book page has about
175 words, so you know the size of your chapters, and the entire book, if you count words.
However, you cannot use the Word Count feature in Word for text copied and pasted from a
VB.NET TextBox—you always get too many words in the count (because of CRLF
formatting, I suspect). To make this work, you'd have to strip off the formatting codes before
copying the text to the Clipboard. If you're going to this much trouble, just count the words by
counting the space characters in your TextBox.Text.

Here's code you can use, however, if you want to count words in a .doc file (not
TextBoxcopied text):

Dim w As Object = New Word.Application
Dim d As Object = w.Documents.Add
MsgBox (' 'Wordcount: " & d.Words.Count)

SUPPRESSING MESSAGES

If, however, this most-recent file is currently open in Word, you'll get a dialog box asking if
you want to see a read-only version. You cannot suppress this dialog because it's a
fundamental security alert, but most messages—modal or not—can be suppressed by setting
the WdAlertLevel to wdAlertsNone, like this:

Dim w As Object
w.DisplayAlerts

New Word.Application
Word.WdAlertLevel.wdAlertsNone

The other possible settings for this property are wdAlertsAll (the default) and
wdAlertsMessageBox, which displays only message boxes, not other types of alerts.

Finding Files

Here's a way to locate all files in a particular path, including subdirectories. This would be
useful if you wanted to activate Word after selecting a particular .doc file to work on. If you've
ever tried to code this kind of thing yourself, you probably realize that recursion is your most
efficient approach, and recursion is not for the faint of heart. The technique illustrated here in
Listing 4.6 works just as well, and is quite a bit easier on the programmer.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 101

LISTING 4.6: LOCATING FILES

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim w As Object = New Word.Application
w.visible = False

Dim id As IDataObject

Dim s, t As String
Dim cr As String = ControlChars.CrLf

Try

With w.FileSearch
.FileName = ''*_doc"
.LookIn = "C:\Book VB Power Toolkit"
.SearchSubFolders = True
.Execute ()
For Each s In .FoundFiles

t &= s & cr

Next

End With

Catch ex As Exception
MsgBox (ex.ToString)
End Try

TextBoxl.Text = t

End Sub

Here you use the FileSearch method, filtering with the .doc extension and searching
subfolders. The FileSearch returns a FoundFiles collection (of strings) through which you can
iterate to build the list of filenames you display in the TextBox. You could easily replace the
TextBox with a ListBox, allowing the user of your VB.NET application to choose which file
to edit.

Listing 4.7 gives the changes (shown in bold) to use an ArrayList to fill a ListBox with all the
.doc files.

LISTING 4.7: FILLING A LISTBOX WITH FILENAMES

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim w As Object = New Word.Application

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 102
w.visible = False

Dim s As String
Dim t As New Arraylist

Try

With w.FileSearch
.FileName = ''*_.doc"
.LookIn = "C:\Book VB Power Toolkit"
.SearchSubFolders = True
.Execute ()
For Each s In .FoundFiles

t.Add (s)

Next

End With

Catch ex As Exception
MsgBox (ex.ToString)
End Try
ListBoxl.Items.AddRange (t.ToArray)

End Sub

Feeding Individual Strings and Specialized Formatting

Although VB.NET includes a useful RichTextBox control, it's not nearly as capable as Word
when you want to adjust formatting, employ templates, adjust typeface colors, and do other
specialized kinds of text manipulation. Rather than reinvent the wheel when you need to
manage specific aspects of your text, go ahead and dump it into a Word document, then you're
free to save it as a .doc file with most imaginable kinds of formatting.

In this example (Listing 4.8), you feed some separate strings into Word from VB.NET,
adjusting their formatting on-the-fly. This technique could also be a way of parsing and
formatting the text in a TextBox, or you could provide a set of several TextBoxes—some for
headlines, some for body text, and so on. In this way, the user could specify aspects of the
formatting themselves (along with RadioButtons for whatever options you wanted to allow
them to specify: color, font size, italic, and so on).

Combine this technique with the printing code (demonstrated in the next section) and you've
got a pretty powerful adjunct amplification to VB.NET's intrinsic word processing
capabilities.

LISTING 4.8: FORMATTING TEXT

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim w As Object = New Word.Application

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 103

w.visible = False
Dim d As Object = w.Documents.Add

With w.Selection

.Font.Italic = True

.Font.Size = '"'11" 'specify absolute size

.font.name = "Arial"

.TypeText ("This is italic, size 11.")

.TypeParagraph () 'carriage return

.Font.Size = "24"

.font.name = "Times New Roman"

.Font.Italic = False

.Font.Color = Word.WdColor.wdColorBlue

.TypeText ("This is quite large (24 pt. absolute), Roman, and

.TypeParagraph ()

.Font.Color = Word.WdColor.wdColorBlack

.Font.Underline = True

.Font.Size = w.Selection.Font.Size - 10

.TypeText ("Now black, underlined, and decrease the point size
End With

Try

d.SaveAs ("c:\test.doc")
Catch ex As Exception

MsgBox ("Failed to save document: " & ex.Message)
End Try

w.Quit ()

End Sub

This is entirely programming, no VB.NET controls involved. Notice that you can specify
various aspects of the text formatting—color, font name, font size, underlining, and so on. In
each case, you're employing the Selection object of the Word application object (the selection
here is the entire document, but you can specify a selection of paragraphs, words, or individual
characters if you wish). The TypeText method is used to send a string into the document and
the TypeParagraph method simulates pressing the Enter key to move to a new paragraph.

If you're unsure how to write the code to invoke a style, template, or formatting command in
Word's VBA language, just record a new macro and apply the styles you're interested in, using
the menus and toolbars. Then choose Tools # Macros = Edit to see what the VBA code is.
Translating VBA into VB.NET source code isn't terribly difficult. Fiddle around until it
works.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 104

Here's an example of a Word macro employing italics, a headline style, and a color applied as
Word recorded the keystrokes. You can ignore the MoveLeft and other positioning
commands; just look for the VBA formatting. Replace the := symbols with =, and make minor
adjustments such as changing wdToggle commands to assignments (such as . Font.Italic
= True), or necessary qualifications such as prepending Word.wdColor. to color
specifications.

Sub Macrob6 ()
' Macro6 Macro
' Macro recorded 7/10/2003 by Richard Mansfield

Selection.TypeText Text:=''This is my text."
Selection.MovelLeft Unit:=wdCharacter, Count:=4, Extend:=wdExtend
Selection.Font.Italic = wdToggle

Extend:=wdExtend
ActiveDocument.Styles.Add Name:="Heading 3 Char" , Type:= _

wdStyleTypeCharacter

ActiveDocument.Styles ("Heading 3 Char") .LinkStyle = "Heading 3"
Selection.Style = ActiveDocument.Styles ("Heading 3 Char")

Selection.MoveRight Unit:=wdCharacter, Count:=2
Selection.Font.Color = wdColorAqua
End Sub

THE WORD OBJECT MODEL

If you've written or edited macros, you've had experience with the Word object model and with
VBA, the version of Visual Basic designed for use with application macros. Working with this
object model gives you insights into how to consume features in other Office and other
Microsoft applications, such as those found in Works. At the top of the Word object hierarchy
is the application object. And beneath that is the documents collection, just as if you started
Word running, then opened one or more documents underneath the application.

Text Manipulation and Insertion

The Word InsertAfter method works with a selection object (or range object) in Word (see
Listing 4.9). It appends text, as you might guess, and it extends the selection as well. The
selection object contains a contiguous block of text, but there can be multiple range objects,
specifying blocks of text here and there throughout the document. Adjusting the range doesn't
affect any selection that's in effect. Other than this distinction, the range and selection objects
expose much the same functionality and behave in much the same ways. There's also an
InsertBefore method to prepend text.

It's useful to specify ranges or selections primarily because other objects, such as the
paragraph or word, do not expose all the functionality of the range and selection objects. You
can specify a range by providing a paragraph number within the document (it's not possible to
adjust the text of a paragraph object to make it bold, for example—you must first identify a
range).

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Mexd

Presious

LISTING 4.9: SPECIFYING RANGES

Page 105

Private Sub Forml Load(ByVal sender As System.Object,

ByVal e As System.EventArgs)

Dim w As Object =
w.visible = True

Dim d As Object =
With w.Selection

.TypeText (''This 1is
.TypeParagraph ()

Handles MyBase.Load

New Word.Application

w.Documents.Add

the first paragraph.")

.TypeText ("This is the second.")

End With

Dim range As Word.Range
range.Font.Bold = True

w.quit ()

End Sub

= d.paragraphs (2) .range

USING THE INTELLISENSE LIST

When working with Word's VBA language in the VB.NET IDE, you'll likely notice that you
don't have the advantage of statement completion or other useful IntelliSense features.
However, if you precede a method name, for example with Word., you'll then see an
IntelliSense list of the possible members for the Word object. Here's an example that brings up

the IntelliSense list:

Dim range As Word.

As soon as you type the period following Word, you'll see the IntelliSense list, as shown in the
following illustration (then typing r moves you to that alphabetic location within the list):

et

Presious

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 106

You can also specify a range by starting and ending character:

Dim range As Word.Range = d.range (2, 13)

Unfortunately, character counting in a Word document is zero-based, even though the
document collection and other collections are one-based. Just another of those funny little
inconsistencies.

You can send text from VB.NET into a Word document by using the TypeText method as
illustrated in the previous section. You can get text from a Word document into VB.NET by
using the document.range method (there are other ways as well). Listing 4.10 shows how to
get a substring, and a full paragraph, back from a Word document.

LISTING 4.10: SENDING TEXT FROM WORD INTO VB.NET

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim w As Object = New Word.Application
w.visible = True
Dim d As Object = w.Documents.Add

With w.Selection
.TypeText (''This is the first paragraph. And we want to ens
read it completely.")

.TypeParagraph ()
.TypeText ("Remember the Maine!")
End With

Dim range As Word.Range

MsgBox (d.range (0, 12).text)
MsgBox (d.range.paragraphs.Item(1l) . range. text)

w.quit ()

End Sub

Notice that the paragraphs.Item collection is one-based, not zero-based.

Replacing Text

It can be useful to automate the process of searching and replacing. For example, if your
company changes its name from LocalShop to WorldDomination, you could go through entire
folders of .doc files or templates, replacing the old name with the new one throughout all the
documents. This might also be useful following a divorce or other adjustments in life. (To see
a technique that quickly provides

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 107

you with all the .doc files in a given path, including subdirectories, see the section earlier in
this chapter titled "Finding Files.")

Assuming that you have a .doc file named test.doc in your C: \ folder, and that this
document includes the term LocalShop here and there, Listing 4.11 demonstrates how to
automate the process of searching for LocalShop and replacing it with WorldDomination.

LISTING 4.11: SEARCHING AND REPLACING

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim w As Object = New Word.Application
w.visible = False

w.Documents.Open ("c:\test.doc")

'point the document object to the opened document
Dim d As Word.Document = w.activedocument

Dim r As Word.Range

d.Content.Find.Execute (FindText:= "LocalShop",
ReplaceWith:= "WorldDomination", -
Replace:= Word.WdReplace.wdReplaceAll)
While d.Content.Find.Execute (FindText:=" ",
Wrap:= Word.WdFindWrap.wdFindContinue)
d.Content.Find.Execute (FindText:= " ",
ReplaceWith:=" ",
Replace:=Word.WdReplace.wdReplaceAll,
Wrap:=Word.WdFindWrap.wdFindContinue)

End While
w.Documents.Item(1l) .Save ()
w.Documents.Item(1l) .Close ()
w.quit ()

End Sub

Borrowing Word's Printing Features

Just as the previous examples illustrate how you can considerably improve VB.NET's built-in
text formatting and manipulation capabilities, you can also improve VB.NET printing by
borrowing from Word's more advanced features.

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 108

Printing in Word is achieved through a document's Printout method. This method has 19
properties, all of which you can set, but most of which you can leave set to their defaults (all
are optional). The properties are:

Background Append, Range OutputFileName

From To Item

Copies Pages PageType

PrintToFile Collate FileName
ActivePrinterMacGX ManualDuplexPrint PrintZoomColumn
PrintZoomRow PrintZoomPaperWidth PrintZoomPaperHeight

This next example illustrates how to print and set properties. In this case, we'll specify that we
want printing done in the background, appending to any existing job, and specifying that we
want two copies. To set a particular property, you must include all preceding properties, or at
least insert a comma if you want to leave a property set to its default. In other words, we need
all these commas in order to let Word know that we're specifying the eighth parameter, copies:
d.Printout (True, True, , , , , , 2).

Put a TextBox and button on a form, then type Listing 4.12 into the button's Click event.

LISTING 4.12: PRINTING AND SETTING PROPERTIES

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim w As Object = New Word.Application
w.visible = False

Dim d As New Word.Document
d = w.documents.add

d.Range.InsertAfter (TextBoxl.Text)

Try
d.PrintOut (True, True, , , , , , 2) 'do two copies
Catch ex As Exception
MsgBox (ex.ToString)
End Try
d.Close (Word.WdSaveOptions.wdDoNotSaveChanges)

w.quit ()
End

End Sub

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 110

After a bizarro, though necessary, set of objects are instantiated in the first five lines, you
finally get the one object you're really interested in, the Mailltem object. With it you can
access quite a bit of information about each message. In this example, you display the
SenderName, Subject, and Body—the primary data. However, if you wish, you can also
display a variety of other properties of each Mailltem, including Attachments,
AutoForwarded, CreationTime, Importance, ReadReceiptRequested, Recipients, Size, and
VotingOptions. There are a couple dozen other, more arcane, properties as well. If you wish,
you can use this same technique to explore and display the messages in the other folders, such
as the Outbox.

This example displays only the first e-mail message, but it's easy to use this same code to see
all Inbox messages. To employ this technique in a finished application, use this loop to get the
entire collection of Inbox e-mail messages:

For 1 = 1 To it.Count

Then you can display the actual message (m.Body) for whatever message header the user
clicks in the ListBox.

You can also use the various properties as a way of filtering the messages: show all between
certain dates, show all from a certain sender, and so on. To do that, you employ the Restrict
method of the InBox.Items collection. You build a filter string used as the argument for the
Restrict method. For example, to see only those messages from Mary Stuart, you build the
string using SenderName, one of the properties of the Mailltem object:

Dim MyFilter As String = ''[SenderName]='Mary Stuart'

And you then use that string as an argument (here the variable if represents the MAPI Items
collection—see the previous example code):

It = InBox.Items.Restrict (MyFilter)

You can use other Mailltem properties, such as SentOn. In that case, your filter argument
requires the ToShortDateString method of the .NET DateTime object, like this:

Dim d As DateTime = Now
Dim s As String = d.ToShortDateString
Dim MyFilter As String = "[SentOn] <= 's'

In this case, you've defined your filter as "before now," which would not exclude any
messages. However, you can combine the usual comparison operators >, <, and so on to create
whatever date filter you wish. What's more, you can combine various filters, such as
requesting to see all messages from Mary Stuart sent before last Christmas, or between last
Christmas (the start date of the date range would employ the > operator, meaning "greater than
Dec. 25, 2002) and New Year's Day (this would employ the < operator). Just concatenate the
filter strings: MyFilter &="[SentOn] <='s', for instance. You could permit the user to choose
the date range with a DateTime Picker Control, then translate its Value property using the
ToShortDateString method. Or let the user type in a date, as a string in the format: 7/16/2003.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 112

n = exl.Evaluate(''COS(4.3444)"™)
exl.Quit ()

MsgBox (n)

End Sub

Notice the important difference between these two examples: Both evaluate the expression,
but one takes a string, the other a numeric variable. The Excel version accepts a string version
of the problem, evaluates it, and returns the result as a floating-point variable. This is why you
can simply put up a TextBox for the user to type in an expression, which is then sent to Excel
as a string. By contrast, the pure VB.NET code cannot evaluate a string. Instead, you must
submit a floating-point number to the VB.NET COS function.

Let's expand the previous example for a moment. Put two TextBoxes, two Labels, and a
button on a form. Then type Listing 4.16 into the button's Click event.

LISTING 4.16: PERMITTING USERS TO INPUT EXPRESSIONS, THEN EVALUATING

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim exl As New Excel.Application
Dim n As Double

n = exl.Evaluate (TextBoxl.Text)
TextBox2.Text = n.ToString

exl.Quit ()

End Sub

Press F5 to execute this code, then type in an expression (notice that the SIN and other
methods are not case-sensitive). When you click the Evaluate button, the results are displayed.
A key to understanding why all this matters is the .ToString method. It's easy and painless to
convert a numeric variable to a string—you just attach. ToString as illustrated in this example.
However, there is no .ToDouble that translates a string variable into a double-precision
floating point variable. But the really difficult job—which Excel's Evaluate method nicely
solves—is translating sin(2/1)/cos(12.2)+(2+3.21/12)/2 into

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 113

a format that VB.NET can analyze. Sure, the NET Math namespace understands sin and cos.
What .NET cannot do is evaluate a complicated expression such as the one shown in Figure
4.1.

FIGURE 4.1 Borrow Excel's expression evaluation abilities to permit users to enter math expressions into
your VB.NET applications.

You might think that you can write a Select Case structure that could translate a complex
expression from a string to a format that VB.NET would understand. I imagine it's possible,
but once you start trying to deal with the complexities of nested expressions, operator
precedence, and other factors, you'll be happy to just feed a string to Excel and get back the
result instantly. After all, one of Excel's specializations is translating user input, so why should
you tackle that gruesome job in VB.NET? The evaluate capability is just sitting there in Excel
waiting for you to utilize it.

Pretty Printing

Formatting and printing tables of data can be another daunting task facing a VB.NET
programmer. There are various controls, such as the powerful DataGrid, that display tabular
information effectively on screen. But what about sending nice-looking tables to a printer?
You can't just dump the screen contents to the printer; the aspect ratio is different. Reports are
usually printed in what's called portrait mode (8 1/2x11 aspect ratio), but computer screens are
nearly the opposite aspect ratio and can be called landscape mode (wider than they are high).

Creating reports on hard copy is a fairly common task. Do you want to struggle in VB.NET

with this job, or just turn the task over to Excel, with its specialized formatting and printing

routines? Excel won't always do the best possible job, but with some fiddling, you can often
get superior printouts. To print an Excel worksheet, use this code:

Dim exl As New Excel.Application
Dim w As New Excel.Worksheet

w = exl.Workbooks.Add.Worksheets.Add
w.PrintoOut ()

Notice the unusual prinfout method rather than the far more common print.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sending Data to Excel, Formatting, Calculating, and Saving

If you need to fill an Excel worksheet with data, format cells, force calculations on data, or
save a worksheet, the following example illustrates how to accomplish all four tasks. Type
Listing 4.17 into the Form Load event.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 114

LISTING 4.17: EXPORTING DATA, FORMATTING, CALCULATING, AND SAVING USING EXCEL

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim exl As New Excel.Application
Dim w As New Excel.Worksheet
w = exl.Workbooks.Add.Worksheets.Add

'select and format titles
w.Range ('"A1:E1") .Select ()
With exl.Selection.Font

.underline = True

.8ize = 13

.Name = "Arial"
End With

' create data

With w
Cells (1, 1) .Value =" Bob "
Cells (1, 2).Value =" Sandy "
Cells(1l, 3).Value =" Jane "
Cells (1, 4).vValue = " Snapper (Johnson)"
Cells(1l, 5).Value = " Sales Force Total"
Cells (3, 1) .Value = 25000
Cells (3, 2).Value = 42000
Cells (3, 3).Value = 37000
.Cells (3, 4).Value = 6890

End With

' Have the fifth column calculate the total of the first four
w.Cells (3, 5).Value = "=Sum(A3:D3)"

' Make numeric data smaller
w.Range ("A3:E3") .Select ()
With exl.Selection.Font

.3ize = 10
.Name = "Arial"
End With

'this next formatting should be done after the cells
'are filled with their data:
w.Range ("Al:E1") .Select ()
With exl.Selection
.Columns.AutoFit () 'make the columns wide enough

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 115

'center the headers
.HorizontalAlignment = Excel.X1lHAlign.xlHAlignCenter
End With

w.PrintoOut ()

'save it to disk
Try
w.SaveAs (''C:\temp.x1s")
Catch ex As Exception
MsgBox (ex.ToString)
End Try

ex]l.Workbooks.Close ()

End Sub

Managing an Excel worksheet object is similar to the way you manage a Word doc when
using the range object. After creating the Excel object, and a worksheet within it, you describe
the formatting for the top row of cells (the cells that will contain your column headers). You
want them underlined and rather large.

Next you specify that same row of header cells that you fill with descriptive strings. Notice
that when referring to the cells within a range you use the format A1:E1 (as you would when
specifying a range within Excel itself). This is the same format you use to specify calculations,
such as =SUM(A3:D3). However, when referring to the cells collection when you're adding
data to them, cell A1 becomes instead .Cells(1, 1).

You also add the numeric data for the row representing the sales figures, but in the final
column of the sales figures, you specify a calculation that adds all the previous cells in that
rowW: w.Cells (3, 5).Value ="=sum(A3:D3)".

After that, you specify that the numeric row is 10 point, somewhat smaller than the header
row's font size. And you ensure that the headers are readable by using the AutoFit method of
the Columns collection to widen the columns as necessary to display the text. Finally, you
center the text within the header row using Excel.x1HAlign.x1HAlignCenter.

At the end, you print your data to the printer, save the file, and close the workbooks.

WARNING Don't use the Quit method—it leaves an instance of Excel running in the
background.

Retrieving Data from Excel

You may find yourself wanting to import data from an Excel worksheet into a VB.NET
project. Use the previous example to create an Excel worksheet located at "C: \temp.x1s" as
your source of data, and type Listing 4.18 into the Form Load event.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 116

LISTING 4.18: IMPORTING DATA FROM AN EXCEL WORKSHEET

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim exl As New Excel.Application

Dim w As New Excel.Worksheet

w = exl.Workbooks.Open(''C:\temp.x1ls").
Worksheets.Item (1)

exl.Range (" Al:E3 ") .Select ()

'create an object to hold the imported data
Dim r As Excel.Range = exl.Selection

Dim s As String
For i As Integer = 1 To 3 'requires VB.NET 2003
For j As Integer = 1 To 5
s = r(i, j).value
TextBoxl.Text &= s & vbTab
Next
TextBoxl.Text = TextBoxl.Text & vbCrLf
Next

exl.Workbooks.Close ()
TextBoxl.SelectionLength = 0 'turn off the selection

End Sub

After using the Open method to access the Excel data file, you select the range within this
worksheet that contains data. The next line defines an object to hold the data in one chunk
(similar to the way that an array holds tabular data). Then you assign the current selection (the
range) to the range object so the data is actually now in VB.NET and available for picking off
in the usual way, via a nested loop.

Notice the declaration included within the For statements (For I As Integer). This
shortcut is a new feature available only in VB.NET 2003. The loops pluck each data value
from the range object, one at a time, and do some simple formatting with the tab and CLRF
constants. After closing Excel, you then turn off the TextBox selection. This strange artifact—
automatically selecting text added to a TextBox—is an undesirable side effect in VB.NET.
You just have to set the SelectionLength property to 0 to turn it off.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious Mexd

Page 118

This page intentionally left blank.

Team Fly { Prewious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 12

One clue about why the Directory object doesn't need to be instantiated is this description in
the Object Browser:

Public NotInheritable Class Directory
Inherits System.Object

The Directory object is low-level, like the Integer object—so you can just use it without
instantiation. The clue? It's that this Directory class inherits right from the essence, the very
heart of the .NET Framework, the base class System.Object. By contrast, the DirectoryInfo
class inherits from a derived class (System.IO.FileSystemInfo):

Public NotInheritable Class DirectoryInfo
Inherits System.IO.FileSystemInfo

About System.Object

The term base class is a bit too modest for System.Object; it's actually the mother of all NET
classes. They all derive from System.Object, at least implicitly. System.Object does not inherit
from any deeper object—and it's the only class in the entire measureless .NET Framework that
is not inherited. It's the .NET equivalent of the big bang.

Remember that .NET, unlike various C languages, does not permit multiple inheritance.
(Being able to inherit from more than one parent class has been the source of a great number
of bugs for C programmers, who already have enough to worry about without adding this
extra source of confusion.)

Other than System.Object, all other classes in .NET inherit from one (and only one) parent
class. However, a parent class can inherit from its own parent class, and so on up the line.
Ultimately, at the end of the line, sits System.Object.

This is why when you look at the methods for any object in .NET, you always find at least the
same six methods—Equals, GetHashCode, Finalize, MemberwiseClone, GetType, and
ToString— no matter what other methods a class might have. Where do they come from?
System.Object, of course. What do they do?

Object types are called self-describing, like so many other current programming elements—
notably XML and its many offspring, and .NET assemblies with their metadata. Several of the
six primary object methods serve the purpose of describing the object.

MemberWiseClone

MemberWiseClone and Finalize are Protected, and can thus be accessed only from a child
class. Finalize, in fact, does nothing because it's overridden when inherited.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

MemberWiseClone creates a "shallow copy" of the instance (the object). That means it copies
the non-static fields in the object. However, it does initialize the clone's variables (fields) and
properties. This works fine if the instance contains only value types, but if you want to, you
can override this method and define your own method of cloning your object.

Equals

Equals tells you whether two object variables point to the same object. The .NET compiler
doesn't permit you to use = (lest you get confused and think the result means equality in the
sense that there

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 121

NET's Strong Features

Although .NET was conceived and built several years before the recent "security initiative"
was launched at Microsoft—pushing security issues to the fore of the company's focus— NET
is nonetheless filled with security features built into the .NET Framework and the overall
NET design. In a sense, .NET has absorbed some security features that used to be part of the
operating system. This is yet another aspect of the "platform independence" that .NET claims.

NET offers settings of considerable specificity for various types of permissions.
Administrators can define with great precision which applications can do what (an application
might be permitted to delete files, for example, but not access the Internet, or vice versa).
Many sensitive OS elements can be specified on an application-by-application basis. By
modifying configuration files, administrators can specify exactly what a .NET application is
able to do.

What's more, .NET security features are abstracted from the OS in yet another way: the NET
security model is not tied to any particular version of Windows.

Other improvements include built-in self-checking features. Each .NET component is
automatically scanned to ensure that its code has not been tampered with (modified, appended
to, or otherwise disturbed) in any way. Optionally, you can employ Authenticode and digital
signatures with your .NET applications to provide users with a measure of comfort, knowing
that you are likely who you say you are and that your .NET applications can be trusted.

Also, Just In Time (JIT) compilation cooperates with the metadata available in various ways in
a .NET assembly (all the dependency files that, collectively, make up an application). This
cooperation permits .NET to verify each method's argument list and ensures that no wayward
memory access is taking place (the classic cause of GPFs). This verification is, however,
optional. It does slow things down a bit during an application's startup, so administrators are
permitted to switch it off if desired.

You, an application's designer, and administrators might find it useful to run .NET
applications through a utility named PEVerify (PE for portable executable). It reports whether
or not a .NET application has passed the verification test. If it does pass, administrators can
flip the switch bypassing the startup verification process. Look for PEVerify in \Program
Files\Microsoft Visual Studio .NET 2003\SDK\V1.1\Bin. The results of an
executable that passes are shown in Figure 5.1.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 5.1 Use this utility to verify that a .NET application is type safe and won't otherwise cause a
GPF.

If you write your applications in VB.NET, you can be sure they're type safe unless you're
fiddling around with some arcane, old-style API calls. However, administrators might well be
interested in verifying the safety of .NET applications.

Traditional compiled code is unmanaged, meaning that it runs free of oversight—in the native
language. Managed code, executables produced by .NET, run under the direction of the NET
CLR (Common Language Runtime). Security improvements result when managed code is thus
observed and supervised during its execution, and its behaviors can be governed. In other
words, executables can be managed by a system of permissions.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 122

You may be surprised to learn that the CLR looks at each method being executed—a file-save
method, for instance. Is this .NET application permitted to save a file to the hard drive? To
actually execute the file-save method, the CLR examines three kinds of permissions: role-
based, identity, and code access. Let's look at role-based security first. (XP and Windows
Server 2003 both include special code-access security features called Software Restriction
Policies, which work with unmanaged code. These features are described later in this chapter.)

Users and Groups

Most OS security under Windows is role-based. Essentially there's a list of danger spots (the
Registry, file access, security settings, disk reformatting commands, and such) and a list of the
computer's users with various levels of permission granted to each user. Interestingly, every
single file on the hard drive is assigned a security descriptor. Certain roles (or groups) such as
administrators are permitted wide access. Other roles, such as guests, have highly restricted
permissions. Individual users can be assigned to one or more groups to define their
permissions. As a result, certain kinds of code, as well as certain OS features, cannot be
executed by certain users.

Administrators can also adjust system object security settings using various utilities—even
Internet Explorer and Windows Explorer can be used to adjust file and folder access levels.

This approach combines the classic role-based approach (does the administrator give Susan
permission to delete files?) with classic code-based security (does the administrator give code
located in the "Intranet Zone" permission to delete files?).

On XP systems, go to Control Panel = Administrative Tools = Local Security Policy. In
the tree choose Local Policies = User Rights Assignment (to define group behaviors, such as
whether Users and Power Users are permitted to back up files, change the clock, and so on). If
you're not able to see these options, you're not an administrator and don't, yourself, have
permission to manipulate others' permissions and behaviors.

The Principal

Role-based security creates a profile of permissions for each user, often by assigning the user
to a particular "group," which is defined as allowed to do certain things, and prohibited from
doing other things. Special groups (Administrators, for example) may have everything-level
permission—they can view all logs, reformat hard drives, and so on.

NET uses what it calls a "principal" object that behaves like a proxy for each user and
interacts with "identity" objects that the runtime employs as a way of telling users apart. In the
System .Security.Principal namespace you find both Windows principals (the
WindowsPrincipal class), which map directly to existing Windows groups, as well as user's
membership in those groups.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In addition, this same namespace includes the GenericPrincipal class, which manages the

NET-specific role-based security. You can also have your .NET applications specify custom
principals as well.

Try this code (Listing 5.1), which illustrates two objects you can examine—the
Windowsldentity and the WindowsPrincipal-—and then manage behaviors on a custom basis.

LISTING 5.1: EXAMINING WINDOWSIDENTITY AND WINDOWSPRINCIPAL

Imports System.Security.Principal
Imports System.Threading

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 123

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim myDomain As AppDomain = Thread.GetDomain ()

Dim p As WindowsPrincipal
myDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal)
p = CType (Thread.CurrentPrincipal, WindowsPrincipal)
Console.WritelLine (p.Identity.Name.ToString())

Dim WinRoles As Array = [Enum].GetValues (GetType (WindowsBuiltl
Dim rName As Object

For Each rName In WinRoles

Try
If p.IsInRole(CType (rName, WindowsBuiltInRole)) Then
Console.WritelLine (''The current user is in the " ¢
rName.ToString & " group.")
Else

Console.WritelLine ("The current user is NOT in the
rName.ToString & " group.")
End If
Catch
Console.WriteLine ("No specification for the role " & 1
End Try
Next rName

End Sub

For example, if executing Listing 5.1 reveals that this user is a member of the Administrator
group, then you would permit them to view a secret log. Otherwise, your application would
not take that action. Or you might disable some buttons on your user-interface form based on
the security level permitted the current user. Are they forbidden to use the printer (not a
member of Print-Operator group)? Disable the Print button in that case.

Alternatively, you can get some information from the Windowsldentity object, or pass that
object to the WindowsPrincipal object:

Dim w As WindowsIdentity

w = w.GetCurrent
MsgBox (w.Name & "Is this person a member of the guest group? " & w.IsGuest)
Dim p As WindowsPrincipal = New WindowsPrincipal (w)

In either case, you can get the user's name and the various groups (and therefore permissions)
to which the user belongs.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 124

Code-Access Security

Code-access security (CAS) grants or refuses permissions based not on the identity of the user
but rather on the identity (or authenticity) of code or assemblies. Where does the code come
from? What permissions does this code have? Typically, code access refers to a situation
where one application is attempting to consume an object located in a different application, or
exposed as a Web service method, for example. It means that code (as opposed to a particular
user) is attempting to access your application or one of its public members.

The answer to "Does this code have permission to consume me?" can be provided by hashing
(see Chapter 6 for demonstrations and details on this technique), or by the URL identifying the
assembly's origin, by digital signatures, or by other means of verification.

However, CAS does not ignore or violate any role-based security settings. If some outside
agency does not have permission from Windows security to delete a file, nothing in CAS can
grant that permission and override Windows itself.

As with role-based security, administrators specify CAS permissions, and base these
permissions on known origin of the assembly. If the origin is suspect, access can be denied to
various system resources.

Code-access security allows you to specify which resources can be accessed by a particular
body of code. It allows you to specify, for example, that an entire class refuses file access (no
matter what the caller's permission levels), by adding an attribute, like this:

Imports System.Security.Permissions
<FileIOPermissionAttribute (SecurityAction.Deny)> Public Class MyNewClass
End Class

You can use code access in another way, as well. The previous example is called declarative
because you add an attribute to the declaration of an assembly, class, or member. There are a
slew of attribute classes in addition to the FilelOPermissionAttribute used above.

Alternatively, code-access security can be enforced via what's called the imperative mode,
which is used for members only, not entire assemblies or classes. To employ this approach,
instantiate an object from one of the permission classes and then call one of its action methods.
Use code like this for the imperative approach:

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
Dim p As New FileIOPermission (PermissionState.Unrestricted)
p.AllLocalFiles = FileIOPermissionAccess.AllAccess
End Sub

Everyone Must Agree

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Security is relatively straightforward for traditional single-machine applications, such as a
word processing program that you install from a CD on your personal computer. Security for
distributed or

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 126

dialog box query. They just guess, balancing their fear of virus infection against their need for
whatever mobile service they're about to permit entry.

Let's face it—our local hard drive is no longer our primary source of data, nor in the future is it
likely to remain even the primary source of executables. Your machine is susceptible to many
sources of intrusion, including e-mail, subscription applications, Web services, automated
updating, and so on.

Recall that most computer security tactics depend on identification: Does the user's logon ID
match the password? Does the user belong to a group with permission to delete files? Does
this incoming code originate from a trusted source? And so on.

How, then, can unidentified incoming code be safely executed, even when no logon/password
or permission level has been established between the remote server and your computer?

NET's answer to this question is CAS, providing several levels of trust (just as the Windows
system offers various groups different levels of access to vulnerable resources). One useful
aspect of CAS is that before you distribute your application or publish it as a service, you can
specify which behaviors your code is permitted to carry out (can it delete a file?). If you say
no to file deletion, then any attempt to delete a file from within your application violates the
CAS protection and indicates that your application code has been infected with a virus. It's as
if you tell a customer: I'm sending a messenger to see you, but she won't ask to come into your
apartment. If she does, she's an impostor, so lock her out.

To summarize, CAS does the following:

Lets administrators map permission levels to code groups

Examines each assembly and gives or withholds permission (looking at both permissions
allowed by the local security policies and permissions the code itself requests)

Specifies individual permissions or sets of permissions that relate to system resources

Allows your .NET source code to ask for permissions—those it must have, those it
would like to have, and those it should never request (unless it's been invaded by a virus)

Allows you to specify within your .NET code that any callers have a digital signature, or
make it otherwise known that they possess specified permissions levels

As you see, CAS involves cooperation between you, the creator of a VB.NET application, and
the end user or administrator. (Remember, too, that Internet Explorer contains its own group of
security settings—and that by default, mobile code is enabled in IE.)

Administrators must be aware that several levels of permissions interact—it may be necessary,
for example, to adjust CAS-level settings, Windows security policy, and browser settings for
even a simple activity such as file reading via mobile code. If any of these layers of security
refuse permission, the file reading cannot take place.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Administrators must usually modify these various security settings on an application-by-
application (or mobile code source) basis. If the administrator wants to increase trust levels for
a particular application or mobile source, there are usually several locations where that trust
specification must be adjusted. Recall that Windows security settings cannot be overridden by
any CAS settings. Both must offer permission for any behavior that they both govern
(commonly, access to hard drives or other storage media, printers, and the Registry).

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 127

CAS Config Files

CAS looks for its security settings in three files containing XML documents, but, as you might
suspect, you have to be an administrator to modify these files (you should probably take steps
to ensure that power users cannot modify them). The files represent the settings for the user,
the machine, and the enterprise. Let's go down into the dungeons where the secrets are kept.
Find the machine level file here:

Windows\Microsoft .NET\Framework\v1l.1.4322\CONFIG\security.config

The version number portion of the path can differ (v1.1.4322 in this example path), and your
Windows directory might also have a different name. But you'll find it. Look at the file to see
the various settings. The enterprise file is in the same path and is named
enterprisesec.config. The user file can be found in this path for NT, Windows 2000 and
XP:

Documents and Settings\Your User Name\Application data\Microsoft\CLR security
config\ v1.1.4322\security.config

For Windows 95 and 98:

Windows\Your User Name\CLR security config\ v1.1.4322\security.config

The Your User Name location is the name you log onto the computer with.

TIP These files can be accessed via the .NET Framework Configuration Tool described later
in this chapter.

Descriptors

Technically, the OS builds a security descriptor for each new system object (folders, files,
printers, and so on) that's created. This descriptor is just a little array of permission switches:
the ACE (access control entry) permission lists the user's access permissions regarding the
object, including whether this user can delete, modify, read, or change the owner of, the
object. The most significant permission list in a security descriptor is the DACL, Dynamic
Access Control List. It lists permissions governing access to the object.

When a VB.NET application is executed, both CAS and DACL settings must agree on various
permissions. Put another way, DACL must permit your .NET application's assembly, and the
user executing your application, to, say, access a particular folder or file.

Software Restriction Policy

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You may have heard about Windows's Software Restriction Policies (SRP), available in
Windows Server 2003 (formerly known as Windows .NET Server) and Windows XP. This is
yet another set of locks on the door. With it, administrators have the ability to specify code-
identity-based policies, which are separate from any role-based policies in effect.

You might think: What, another layer of code-based security for .NET assemblies or
applications? Fortunately, SRP is mutually exclusive with .NET CAS. In other words, if CAS
is in effect, SRP is turned off. And vice versa. CAS works only with managed code (running
under the .NET Common Language Runtime). SRP turns on only when unmanaged native
code is executing. CAS

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 129

TABLE 5.1: XP CODE EXECUTION SECURITY PERMISSIONS

BEHAVIOR HIGH MEDIUM MEDIUM- Low
Low
Download Signed ActiveX Controls Disable Prompt Prompt Enable
Download Unsigned ActiveX Controls Disable Disable Disable Prompt
Run ActiveX Controls and Plug-Ins Disable Enable Enable Enable
Initialize and Script ActiveX Controls Disable Disable Disable Prompt
Not Marked as Safe
File Download Disable Enable Enable Enable
Font Download Prompt Enable Enable Enable
Access Data Sources Across Domains Disable Disable Prompt Enable
Allow Meta Refresh Disable Enable Enable Enable
Display Mixed Content Prompt Prompt Prompt Prompt
Don't Prompt for Client Certificate Disable Disable Enable Enable
Drag and Drop or Copy and Paste Prompt Enable Enable Enable
Files
Installation of Desktop Items Disable Prompt Prompt Enable
Launching Programs or files in an Disable Prompt Prompt Enable
IFRAME
Navigate Subframes Across Different Disable Enable Enable Enable
Domains
Software Channel Permissions High Safety Medium Medium Low Safety
Safety Safety
Submit Non-Encrypted Form Data Prompt Prompt Enable Enable
Userdata Persistence Disable Enable Enable Enable
Active Scripting Disable Enable Enable Enable
Allow Paste Operations Disable Enable Enable Enable
Allow Paste Operations via Script Disable Enable Enable Enable
Scripting of Java Applets Disable Enable Enable Enable

Now it's time to turn our attention from this code-access security overview and see how to use
some important security tools.

Using the Framework Configuration Tool

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Administrators can use various tools provided with .NET to manipulate security policies. The
NET Framework Configuration Tool is an MMC snap-in; the Code Access Security Policy
Tool is a utility named caspol.exe.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 13

are two distinct objects but they have identical members and are otherwise identical internally,
including their data-clones, in other words). You use Equals, like this:

Dim objl As New Object

Dim obj2 As New Object

objl = obj2

If objl.Equals(obj2) Then MsgBox(''They are the same.")

When a class inherits an object type, the Equals method is supposed to be overridden. You
provide a custom method to determine equality. Similarly, you should override the
GetHashCode method to ensure it remains consistent when two objects are equal.

Testing for equality can be tricky in computer programming because the idea of "equality"
(two objects holding an equal value, such as 2.114) can be confused with "identity" (two
object variables pointing to the same object). The Equals method simply compares pointers,
but many classes over-ride this method to force it to compare values (for example, the Integer
class Equals method tells you whether two integer variables contain the same number).

ReferenceEquals

The System.Object type includes an additional equality testing method named
ReferenceEquals. It returns True if the two object variables being compared refer (point to an
identical address in memory) to the same object. ReferenceEquals cannot be overridden.
(Think of ReferenceEquals as doing the job of the traditional Is comparison operator in classic
VB.)

For example:

Dim 1 As Object

Dim m As Object

Dim n As New Object
Console.WritelLine (Object.ReferenceEquals(l, m))
m = n
Console.WriteLine (Object.ReferenceEquals (m, n)
Console.Writeline (Object.ReferenceEquals (1, m)

—_ —

results in:

True (both refer to nothing—they are object variables but don't point to any object yet).
This can be very confusing because these are two different object variables, yet they
return equality.

True (both m and n refer to the actual object n. v is an object because you instantiated it
with the New command).

False (1 remains an object variable that has not been pointed to any object).

(Notice the unusual use of the term Object in Object.ReferenceEquals. Where is this Object
ever instantiated so that you can use it in your source code? It's not. It's just there! Fortunately,
this syntax is extremely rare in VB.NET programming.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 130

In Control Panel, open Administrative Tools, then double-click Microsoft .NET Framework
1.1 Configuration (or it will be 1.0 if you don't have the latest version of .NET).

This tool contains a considerable collection of features for specifying how .NET security is
enforced (and for manipulating most other configurable aspects of .NET). For example,
choose the Applications node at the bottom of the tree and click the Add An Application To
Configure link; you'll see a list of .NET applications that have been executed on this machine,
as shown in Figure 5.2.

For an example of specifying particular permission sets (role-based) for users, click
Everything under User, then click the Change Permissions link and you'll see the Create
Permission Set dialog box shown in Figure 5.3.

FIGURE 5.2 Manage elements of individual .NET applications using this dialog box.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 5.3 Build your own .NET permission configuration with this dialog box.

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 131

Or expand the Runtime Security Policy node and then expand the Enterprise, Machine, or
User policy nodes, and you'll see how to manipulate permission sets, code groups, or policy
assemblies.

If an administrator wants a simpler, though less specific, approach to specifying role-based
policies, choose Microsoft NET Framework 1.1 Wizards in the Administrative Tools dialog
box in Control Panel. Then double-click the Adjust .NET Security icon and follow the
instructions the wizard gives you, as shown in Figure 5.4:

Return now, though, to the options available to you in the .NET Configuration 1.1 dialog box.
Right-click the Runtime Security Policy node, as shown in Figure 5.5:

NEW AND OPEN OPTIONS

The New and Open options are for testing policy settings, so you can see the effects without
actually committing to the policy. Perhaps you want to build a policy on your computer, then
when you've perfected it you can deploy it across your intranet. Or you want to view and test
previously saved policy files, or try out some new policies. For whatever reason, the New and
Open options permit you to experiment without necessarily committing the changes.

You can create a new policy and try out any of the adjustments available for .NET assembly
security, then right-click the Runtime Security Policy node, as shown in Figure 5.5, and
choose Evaluate Assembly to test your adjustments and see if there are any effects on one of
your .NET applications (assemblies) that is affected by the adjustment.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 5.4 Administrators can adjust .NET security policies using this dialog box.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 132

RESETTING

You can choose the Reset All option (shown in Figure 5.5) to restore the default policies,
which are primarily defenses against code coming in from outside the local machine (Internet
or intranet). In case you decide that it's easier to modify existing custom policies than to start
over from scratch with the defaults, it's a good idea to first save the current policies before
choosing to reset.

ADJUSTING SECURITY

The Adjust Security option (shown in Figure 5.5) allows you to make large-scale adjustments
(as opposed to the more detailed changes you can make to specific sources or assemblies). Use
the Security Adjustment Wizard to make global adjustments to all assemblies from an entire
zone (such as the local computer zone or the intranet zone).

This Wizard is also good for quick responses to sudden security problems. You can use it to
slam some doors shut globally until you can ferret out the source of the problems.

Say, for example, that there's a wacky hacker in your office. You don't know who is peeping
into other people's files (is it Nicky? probably) but you're not yet positive that it's Nicky who's
been telling everyone details about the list of salaries that he found by running an application
located in accounting. You do need to take action before locking the suspect in a room with
the personnel director and the bright lights.

Run the Security Adjustment Wizard and slam Nicky's intranet freedoms shut temporarily.
You can do this by changing all code interactions from the intranet for Nicky's computer (and
leave the rest of the office's computers alone). Start the Wizard by right-clicking the Runtime
Security Policy node, as shown in Figure 5.5. Choose Adjust Security, then you see the
Wizard as shown in Figure 5.6.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 5.5 Choose several options from the Runtime Security Policy node.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 134

However, you may want to beef up security in your Web services and other Internet/intranet-
based applications. You may want to build in additional demands for validation, verification,
permissions, trust-levels, or authentication.

The danger spots if you're exposing your code to strangers are the openings, the places where
outsiders are allowed in. Just as you want to guard against entry via windows and doors in a
house, you want to prevent outsiders from misusing exposed methods in your code. You have
to also watch out for incoming data streams, network connections or other locations where
outsiders are allowed in, and are therefore sources of possible attack. Here are some ideas to
consider when writing a .NET program that you want to assure your customers is as safe as
you can make it:

Assume that your source code either will be directly available to the intruder or can be reverse
engineered. Don't, for example, embed secret keys—they likely won't be very secret. Also,
don't think that you've successfully "hidden" security defenses within your code by making
them obscure, convoluted, or disguised.

You should take these measures—obscuration and disguise are important security techniques.
Make things as difficult as you can for hackers. Just don't rely on these tactics alone. There are
too many ways that an outsider can get hold of source code (the company is sold, consultants
request the code, someone carelessly leaves it lying around, and so on). Many security
problems are caused by insiders—disgruntled workers, or people who are fired. Also, what
you might think is a difficult, tricky maze can often be quickly solved by outsiders using
special tools that can provide them with lists of threads and call stacks instantly. Consider this:
Most people think that mazes are difficult to solve, but they actually aren't. All you have to do
to get through any maze is to always turn left at every junction. (You could always turn right,
as well, but the point is to consistently make the same turn.)

Also assume that hackers will test your public interface, rattling away at the bars on your
windows to see if anything comes loose. For example, you shouldn't assume that they'll
employ your methods by following the rules. Unexpected behavior is their stock in trade.

Some experts suggest that you always start off declaring all your members (properties,
methods, and so on)—and, indeed, entire classes—Private. Only later, and only when
compelled by the necessities of the communication needs of your application, should you
extend the members' and classes' scope to Friend or, if absolutely necessary, public. If, for
example, a property must be exposed, don't make the property variable itself public. Instead,
force outsiders to pass through property procedures to get to the variable:

Private m _title As String
Public Property title() As String
Get
Return m_title
End Get
Set (ByVal Value As String)
m _title = Value
End Set
End Property

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Ensure—as much as possible—that incoming data is not going to foul things up. You can do
this in several ways: by insisting that the identity of the sender be verified via digital

signatures or other hashing, by verifying that the data is in the correct format (and otherwise
trustable), and by refusing

Team Fly

Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Presious Mexd

Page 135

to accept input from any but expected sources. For example, in Windows, administrators can
specify read-only for certain files or directories—and you can take advantage of this fact to
prevent people from tampering with your incoming data. And, of course, watch any incoming
code especially carefully.

Finally, you can employ the built-in NET CAS features to insist that a caller pass a test before
you allow them to employ a sensitive feature in your application. This test might be that they
provide a password, that they have a particular permission, or that they otherwise authenticate
themselves.

You could demand this test (which throws a security exception if the condition is not met—if
the caller doesn't have the specified permission) at the very beginning of your application's
execution path, during initialization. In that way, it functions as a kind of logon demand. Or
you could demand the test at key points within your classes or methods. Listing 5.2 is an
example.

LISTING 5.2: USING DEMAND TO TEST CALLER PERMISSION LEVEL

Imports System.Security.Permissions

Public NotInheritable Class SecurityCheck

'instantiation of this class will require that they pass

' a parameter to the Sub New below (because THIS constructor is ¢
Private Sub New ()

End Sub

'This is the only way the caller can instantiate this class:
Public Sub New (ByVal password As String)

'You can demand a particular password here, if you wish,
'though this is minor protection given that source code is
'where you would store the validation of this password.

'"Here next you validate the permission level of the

' caller (and any callers of the caller)

'If the caller does not have unrestricted File I/O

' permissions, an exception is thrown here

'during instantiation and this SecurityCheck object is never

Dim p As New FileIOPermission (PermissionState.Unrestricted)
p.Demand ()

' Now we 've checked the caller (and all their callers too)
' have the necessary permission, we can get on with the
' business of setting up the database connection and other
' housekeeping tasks.

End Sub

Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 137

Hackers try to accomplish two primary goals: mess things up using virii (or worms or other
variations on virii), or peep at private information to learn secrets. This chapter dealt with the
features that NET has built in as defenses—and steps a programmer can take—to try to thwart
hackers from achieving their first goal.

In the next chapter, you'll learn to employ the other great aspect of security: hiding data and
protecting privacy via encryption. The .NET Framework offers you several quite powerful
encryption engines. Some of these technologies were not even legal only a few years ago;
they're so effective that the U.S. government banned them for fear that it couldn't eavesdrop on
the bad guys' wicked messages and nasty plots. Chapter 6 provides you with code you can
plug into your applications to add functionally unbreakable cryptologic protection for any
secrets you, or your customers, might have.

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious Mexd

Page 138

This page intentionally left blank.

Team Fly { Prewious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 14

The Main Point about Equality

If you need to test for value equality, you can rely on the = test in most ordinary programming.
To test for reference equality (two object variables point to the same object), you can use the
ReferenceEquality method. Take a look at this code:

Dim a As Object =
Dim b As Object =
If a.Equals(b)

'a = b
If Object.ReferenceEquals(a, b) Then MsgBox("a.ReferencekEquals b")

N

hen MsgBox (''a.Equals b")

If you run this you see no message box. Object a holds a value of 1 and object b holds 2, so
they are not "value equal." (1f a = b Then would also fail.)

Remove the ' comment from a = b and you've assigned a to point to (to reference) the same
object as b, so the ReferenceEquals message box is displayed.

Change object a to = 2 and the value equals (.Equals) message box is displayed because now
the values held in these two objects are identical.

Note that in .NET objects are of two primary types: value and reference. Value types tend to
be simple and small (all the numeric types are value types: integers, byte, char, single, double,
boolean, decimal). Enum and structure are also value types. Value types execute faster.

When value types are compared for equality, the actual values (323 versus 62, for example)
are compared. When reference types are compared for equality, only the addresses (pointers)
where the objects sit in memory are compared. A reference equality means that two object
instances (two different object variables that point to an instantiated object) point to the same
object. It's like having two names for the same thing: President and Bush.

Reference types are larger and more complex: classes (and interfaces), arrays, and strings are
all examples of reference types.

As usual, these classifications are important because you sometimes need to know the
distinction between reference equality and value equality when you're writing a program. Also
as usual, there is an exception. Strings are technically reference types but in practice they
behave as value types: copying a string copies the actual string in memory (the value) not
merely the reference (the pointer to an address). And when you test for the equality of strings,
you are testing them as if they were value types—in other words, if two different strings hold
the same value, they return True.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You'll be delighted to know that the experts have a term describing this hermaphroditic
behavior on the part of .NET strings: If a reference type now and then acts like a value type

(as strings do), then that type is said to possess "value semantics." Strings are technically
reference types, but in practice they behave as value types. Fun, isn't it? Merrily we go along
classifying this and that, happy little biologists that we are! Then we see a platypus laying an
egg. Reality, like programming linguistics, always seems to have a way of messing up our neat
little categories.

Technically, strings do not derive from System. Value Type, and they are also technically
passed by reference when used as an argument in a function (you don't see this, though; it all
goes on in some

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 140

automatically generated for you by the RSA encryption algorithm, as you will see later in this
chapter. With that approach, your only problem is guarding the keys from prying eyes.

NET cryptography includes sophisticated hashing functions. Hashing produces a unique value
from a set of bytes. Hashing can be used to uniquely identify messages and various other
objects. For example, a hash value for an assembly provides a unique ID number that can be
used to prevent name-space collisions. Hash values can be used instead of digital signatures to
authenticate information.

For our purposes, hashing can be used to translate a user's password into a unique key to be
used for certain kinds of encryption and decryption. A hash value is extremely sensitive—
changing merely a single bit in the source bytes results in a totally different hash value. Take,
for example, the different hash values for #and and hang:

hand 150,33,162,68,164,71,236,116,149,152,248,50,117,96,255,134,9,94,44,38

hang
130,78,230,138,140,129,113,112,135,212,49,214,107,110,250,168,182,49,71,205

As you can see, changing a single character vibrates through the entire structure, affecting
everything. Even changing a single bif would have an extensive effect on the result. This
effect is quite useful because it makes deducing the original submitted bytes from the output
hash value extremely difficult. And you don't want intruders deducing your password should
they come upon your hash value.

Here are the Imports statements you need for the examples in this chapter:

Imports System.Security.Cryptography
Imports System.Text
Imports System.IO

If you want to use the strongest encryption offered by .NET, you must have the "high
encryption pack." If you have XP, Internet Explorer 5.5 or later, or Windows 2000 with
Service Pack 2, then high encryption is already in your operating system. Otherwise,
download it from the Microsoft website. Without this update, key lengths are restricted. Key
length plays a big part in how secure encryption systems can be.

NOTE For many years the government attempted to prevent strong encryption algorithms from
public use, on the theory that criminals and foreign agents would be able to communicate free
from government eavesdropping. However, restrictions were eventually lifted, hence the
strong encryption pack from Microsoft.

Hashing a Password

And here's a function (Listing 6.1) that returns a 20-byte array containing a hash value for
whatever password you provide to it:

LISTING 6.1: GETTING A HASH VALUE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim k() As Byte 'hold the returned hash value (20 bytes retuz
k = makehash ("morph")

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 141

'display the hash value:

For i As Integer = 0 To 19
Console.Write(k(i) & "', ™)

Next

End Sub
Public Function makehash (ByVal password As String) As Byte()

' Byte array to hold password
'the size of this array affects the hash wvalue
Dim arrByte (password.Length - 1) As Byte

'translate password into a byte array of ASCII values:

Dim AscVals As New ASCIIEncoding

Dim i1 As Integer = 0

AscVals.GetBytes (password, i, password.Length, arrByte, 1)

Dim hashSha As New SHAlCryptoServiceProvider

'Get the hash value of the password

Dim arrhash () As Byte = hashSha.ComputeHash (arrByte)
Return arrHash

End Function

Notice that it does matter what size byte array you feed into the ComputeHash method.
Trailing spaces count. The strings "hope" and "hope " return different hash values.

Also, no matter what or how many source bytes you feed to a hash function, it always returns
a predetermined number of bytes for its hash value. You can stream an entire file or a large
assembly into a hash function, not merely a little password. But if you use the SHA1
algorithm, you always get back 20 bytes as your hash value, no matter how large the file you
feed in. Here are the classes you can use in .NET to get hash values, along with number of
bytes returned as the hash value:

Class name Hash Value Size in Bytes
SHA1CryptoServiceProvider 20
SHA256Managed 32
SHA384Managed 48
SHAS512Managed 64
MD5CryptoServiceProvider 16

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 142

Nearly everyone, including banks and the government, uses the SHA1 version, and we'll stick
with it in this chapter as well. Although you get 20 bytes from SHA1, you need not use them
all when providing a key to an encryption/decryption function, but in general the longer the
password and key the more secure the encryption becomes. However, you must provide an
identical hash value, the same number of bytes (the first eight, for example), to both the
encryption and decryption functions. This requirement applies to what is called a symmetric
encryption routine, which is the first type of routine we'll deal with in this chapter. It's called
DES (Data Encryption Standard) and is a famous and frequently used contemporary
encryption system.

The versions of SHA that offer larger values are designed to provide protection against brute
force attacks (a computer speeding through all possible keys, until one of them unlocks the
cipher-text). Roughly speaking, brute force attacks require exponentially greater time for each

bit you grow the key. A key of eight bits, for example, requires 28 buta key of nine bits
requires 2.

Hashing a File

One security danger is tampering. Someone might intercept a transmitted file or e-mail
message and change it. For example, they might grab their bank account file and change a
$100 deposit into a $100000 deposit. One way to ensure that no one has tampered with a file
or other message is to create a hash value for that file.

Hashing a file provides you with a kind of super checksum—remember, if even a single bit is
altered in the file, the file's entire hash value will then be quite different. Add some zeros to a
deposit and the file's hash value will be very different.

You can stream a file into the ComputeHash method. Listing 6.2 shows how.

LISTING 6.2: COMPUTING A HASH VALUE FOR A FILE

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim objFilename As FileStream = New FileStream(''c:\test.txt'
FileMode.Open,
FileAccess.Read, FileShare.Read)

Dim hashSha As New SHAl1CryptoServiceProvider

'Get the hash value of the file
Dim arrhash () As Byte = hashSha.ComputeHash (objFilename)

'display the hash value:

For i As Integer = 0 To 19
Console.Write (arrhash(i) & ", ")

Next

objFilename.Close ()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

End Sub

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Presious Mexd

Page 144

'define an 8-byte key
Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}

'define an IV
Dim Vector () As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

'Create a file stream
Dim fs As New FileStream(''c:\testFile.txt",

FileMode.Create, FileAccess.Write)

'create a byte array holding the message:
Dim barray As Byte() = (New UnicodeEncoding) .GetBytes
("Marva Johnson writ into the stream..")

Dim des As New DESCryptoServiceProvider
'stuff the key & IV

des.Key = k

des.IV = Vector

Dim desencrypt As ICryptoTransform = des.CreateEncryptor ()
'create a cryptostream, specifying DESencrypt

' as the transform (the encrypting scheme)

Dim cryptostream As New CryptoStream

(fs, desencrypt, CryptoStreamMode.Write)

'save the encrypted file to the hard drive
cryptostream.Write (barray, 0, barray.Length)

cryptostream.Close ()
End Sub
Public Sub decrypt ()

'define an 8-byte key
Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}

'define an IV
Dim Vector () As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

Dim des As New DESCryptoServiceProvider
'stuff the key & IV
des.Key = k

Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 145
des.IV = Vector
'"NOW BRING IT BACK IN AND DECRYPT IT

'create the input file stream
Dim fs As New FileStream(''c:\testFile.txt", FileMode.Open, t

'create a decryptor from the crypto service provider
' (uses same key assigned earlier)
Dim desdecrypt As ICryptoTransform = des.CreateDecryptor ()

'create a cryptostream for reading the file in, and decrypt i
Dim cryptostreamDecrypt As New CryptoStream _
(fs, desdecrypt, CryptoStreamMode.Read)

'display the result
MsgBox (New StreamReader

(cryptostreamDecrypt, New UnicodgEncoding).ReadToEnd())

End Sub

Both the encrypt and decrypt procedures here are similar (DES is a symmetrical cryptographic
algorithm, after all). First you must create a couple of byte arrays to hold the key and
initialization vector (described below). For ordinary DES, the default size for both of these
arrays is eight bytes.

You're also going to use two types of streams, a regular file stream (fs here) and a
cryptostream that "wraps" around the filestream, thereby enciphering the stream. This use of
streams prevents you from having to actually store the plaintext on a disk file where it
becomes vulnerable to intruders. If you first store a plaintext on a hard drive in order to
encrypt it, even if you delete it when you're finished, the data is usually still there. All deleting
does is to remove the file's entry in the file allocation table. Even moderately sophisticated
intruders have no problem reading hard drives without benefit of the allocation table.

Of course, many times you'll find it a practical necessity to store plaintext on hard drives.
Nonetheless, cryptostreams and memorystreams offer you the option of operating on byte
arrays in volatile memory, for example, rather than committing your secrets to a disk file.
Instead you can just stream the output to the input of some other object.

In the above example, the plaintext is never committed to the hard drive, residing only in the
source code in this byte array:

'create a byte array holding the message:
Dim barray As Byte() = (New UnicodeEncoding) .GetBytes ("Marva Johnson writ into
stream..")

After creating this byte array, you create a DES CryptoServiceProvider object and assign your
key and IV (initialization vector) to it. If you omit either the key or IV assignments, they are
concocted for you by the CryptoServiceProvider (the key and vector will contain random
values). If you are

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 146

sending a message or storing a ciphertext (as here), you need to use the same key and
initialization vector for both the encrypting and decrypting processes. For example, if you
omit specifying the IV during decryption, a random IV will be supplied and as a result the first
four bytes of the restored plaintext will be wrong.

Finally, you define an ICryptoTransform object that embodies both encryption and decryption
methods and which contains the information about the key, the IV, and the encryption process
(DES here), as shown in Listing 6.4. You use this object with a cryptostream class and your
filestream (in this example) to actually encrypt the plaintext being streamed. Note that if you
didn't specify a filestream (fs) when defining the cryptostream, the cryptostream's Write
method wouldn't write to disk. The target could just as easily be a memorystream, for
example, rather than a filestream.

LISTING 6.4: USING A CRYPTOSTREAM
Dim desencrypt As ICryptoTransform = des.CreateEncryptor ()

'create a cryptostream, specifying DESencrypt
' as the transform (the encrypting scheme)
Dim cryptostream As New CryptoStream _

(fs, desencrypt, CryptoStreamMode.Write)

'save the encrypted file to the hard drive
cryptostream.Write (barray, 0, barray.Length)

cryptostream.Close ()

The cryptostream object's constructor takes these arguments:

CryptoStream (Stream argument, ICryptoTransform transform, CryptoStreamMode mod

The mode can be either read or write. When you press F5 to run this example, you get back
the original plaintext about Marva, but all that resides on the hard drive is the ciphertext

7"t 'fenr—0"eir— oli* *%o5_6i-

UYO41i°Oie ooiPe Mfg>+a" KliS@ srO\ere uwaYIY7(+V=
Understanding Initialization Vectors

The DES and other symmetrical encryption systems chain blocks of plaintext, and each block
provides a kind of feedback to the subsequent block in the chain. In other words, if you change
Marva to Darva, some or all subsequent bits that follow in the message will be affected by this
change. In DES, for example, the plaintext is broken up into eight-byte groups, or blocks,
which are each then manipulated as individual units. However, what about the first block? It
has no preceding block to provide the feedback needed to distort it.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

An initialization vector provides a fake block that gives simulated feedback to the first real
block of plaintext. All you need to remember, though, is not to use something plain and simple
as your initialization vector (such as all 1s). Instead, employ something that has a randomness.
Also, it's actually not important that you try to hide the IV from intruders. You can send it just
as it is to the recipient of your encrypted message (don't do this with your key, though—that
must remain secret).

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 147

In the previous example (Listing 6.4), both the sender and recipient of the encrypted message
knew the IV (it can be hard-wired into the encryption/decryption software, for example, as it is
in the example). However, you could also permit it to be randomly generated by .NET (simply
don't assign an IV to the CryptoServiceProvider object, as with des.Iv = vector in the
example). If you don't assign an IV, one is randomly generated for you. However, if you take
this approach, you must prepend or append the IV to the message prior to transmission. Then
the recipient software strips off the IV, assigns it to the CryptoServiceProvider object, and
decrypts the rest of the ciphertext message.

Discovering Key Sizes

You cannot feed in just any size key to the .NET encryption routines. Each has a default size
(the largest size that particular algorithm permits), but you can set alternative, shorter key sizes
if you must. DES defaults to an 8-byte, but the Rijndael algorithm wants 16-, 24-, or 32-byte
keys.

If you need to find out which key sizes are required, just query the LegalKeySizes property.
You can request MinSize (the smallest permitted), the MaxSize (largest), or the SkipSize (the
increment). SkipSize tells you of any sizes available between the minimum and maximum
sizes. For instance, the SkipSize for the Rijndael algorithm is 8 bytes, hence the sizes 16, 24,
and 32. Note that the results are returned in bits, not bytes.

Here's how to query key sizes:

'create the TripleDES object
Dim des As New TripleDESCryptoServiceProvider ()
Dim fd() As KeySizes
fd = des.LegalKeySizes () 'tells you the size(s), in bits
MsgBox (''minsize = "& £d(0).MinSize & Chr(13) & _
"maxsize = " & f£d(0).MaxSize & Chr(13) & _

"skipsize =" & £d(0).SkipSize)

Run this code and you get: 128, 192, 64. Here are the key sizes for the NET symmetric

algorithms:
Algorithm Permitted Key Sizes Default
DES 64 bits 64
TripleDES 128, 192 bits 192
RC2 40-128 bits 128
Rijndael 128, 192, or 256 bits 256

Hashing while Encrypting

Encrypting your message keeps Eve the intruder from reading your secrets. But what prevents
her from modifying your message? How do you ensure the integrity of your transmission?
How do you know that you received what was sent?

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recall that this tampering problem can be solved via hashing, and if you wish you can

combine hashing with encryption right in the same streaming operation. Here's an example. If
a single character

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 148

"r'" in the ciphertext file is changed to "s," in "Marva Johnson writ into the stream.." the
resulting deciphered plaintext can look like this:

Marv hnsin writ into the stream..

Mangled, but not destroyed. However, other situations demand that you do more than merely
eyeball a received message for oddities like this. After all, wire transfers, among other
messaging, demand accuracy and authentication. What's more, humans are often simply not
involved in the process of receiving encrypted messages, so there would be nobody there to
notice the strange word Marv hnstin. Usually an encrypted message isn't actually read by a
human; instead, some software receives and processes the transmitted message. Hashing's the
answer because it immediately and accurately sets off an alarm if data has been tampered with,
no matter how slightly.

Listing 6.5 1s a modification of the encrypt/decrypt source code used in a previous example in
this chapter that combines the cryptographic process, along with a hashing process, to ensure
both the privacy (encryption) as well as the integrity (hashing) of the message.

LISTING 6.5: COMBINING HASHING WITH CRYPTOGRAPHY

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

encrypt ()
decrypt ()
End Sub

Public Sub encrypt ()

'define an 8-byte key

Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}
'define an IV

Dim Vector () As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

'Create a file stream
Dim fsOUT As New FileStream("c:\testFile.txt",
FileMode.Create, FileAccess.Write)

'create a byte array holding the plaintext message:
Dim barray As Byte() = (New UnicodeEncoding) .GetBytes
("Marva Johnson writ into the stream.")

'RAAkxxxx GET THE HASH VALUE OF THE PLAINTEXT BYTE ARRAY:
Dim shal As SHAl1l = shal.Create()
Dim hashValue () As Byte = shal.ComputeHash (barray)

Dim des As New DESCryptoServiceProvider
'stuff the key

des.Key = k

des.IV = Vector

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Meaxl
Page 149
Dim desencrypt As ICryptoTransform = des.CreateEncryptor ()

PARxAkxdkxdkxk SAVE ciphertext and hashvalue

'create a cryptostream, specifying DESencrypt

' as the transform (the encrypting scheme)

Dim cryptostream As New CryptoStream(fsOUT, desencrypt,
CryptoStreamMode.Write)

'save the CIPHERTEXT to the hard drive
cryptostream.Write (barray, 0, barray.Length)

'append the hash wvalue
cryptostream.Write (hashValue, 0, hashValue.Length)
cryptostream.Close ()
fsOUT.Close ()
End Sub
Public Sub decrypt()

'define an 8-byte key
Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}

Dim des As New DESCryptoServiceProvider

'define the IV
Dim Vector () As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

'stuff the key and IV
des.Key = k
des.IV = Vector

'NOW BRING THE MESSAGE BACK IN AND DECRYPT IT

'create the input file stream
Dim fs As New FileStream(''c:\testFile.txt", FileMode.Open, I

'create a decryptor from the crypto service
' provider (uses same key assigned earlier)
Dim desdecrypt As ICryptoTransform = des.CreateDecryptor ()

'create a cryptostream for reading the file in, and decrypt i
Dim cryptostreamDecrypt As New CryptoStream _
(fs, desdecrypt, CryptoStreamMode.Read)

'put the whole message into "m"

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 15

dark recess of the NET netherworld). Up in the sunlight where we programmers reside,
strings are pretty much always treated just as if they were value types. For example, like all
other "objects" passed as parameters in VB.NET, when you write any function, VB.NET fills
in ByVal automatically by default for every and any item in your function's argument list.

WHAT'S SHARED, WHAT'S STATIC?

Why don t you have to instantiate a Math object before using its methods, such as Abs or Max?
The actual answer is: just because.

But here's the technical rationale: You've probably seen the term static (or class member) used
with some methods in the documentation for C#, C++, and all the other C family of languages.
In VB.NET this same trick is achieved by using the Shared command.

Ordinarily, if you want to use a method of an object you have to instantiate the object first.
However, methods (or events, properties, or fields) declared as Static (in C languages) or
Shared in VB.NET can be "invoked on a class" (translated: used in your programs) without
your having to actually create an instance of that class. What? How can a property or method
be usable without any instance of its object? Isn't that rather similar to the idea of global
variables? Global variables so enrage professors of OOP that they've been known to shout
"Verboten!" and slap their pointer against the blackboard so hard it breaks.

One example of a Shared method is the Max method. It tells you which number is larger than
another. Sure, Max is a method of the Math class, but you don't have to instantiate a Math
object in order to use the Max method. No. It's one of those privileged "shared" (AKA static)
methods, so you can just use it in your code directly. C languages use the term instance to refer
to methods (or other members) requiring that you must first instantiate their object before
you're allowed to use the functionality of the members. We're figuring out what goes where,
aren't we? Isn't clerical work fun?

[Visual Basic] Overloads Public Shared Function Max(Byte, Byte) As Byte
[C#] public static byte Max(byte, byte);

You can't instantiate a Math object even if you wanted to. It's Private. This won't work:
Dim ma As New System.Math

You must instead just directly use the Math.Max method:

Dim x As Integer =2 : Dim y As Integer = 4
MsgBox(Math.Max(x, y))

Shared members are an exception to the OOP rule that you're supposed to instantiate an object
before you can actually, you know, use it.

Into the Void: While we're on the topic of C terminology, what does the term
void mean? You see it quite often in the VB.NET documentation, though it's
not part of the VB language. If you see public Static Void, don't be
alarmed. Void is just C#, which means: nothing is returned from this
procedure. In other words, the procedure is what we VB programmers would
call a Sub (as opposed to a Function). There's no returned value, for example:
Public Static Void Delete(string path).

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 150

Dim m As String = New StreamReader
(cryptostreamDecrypt, New UnicodeEncoding) .ReadToEnd ()

'now test the hash

' compute the hash value of everything but the hash in ms
Dim shal As SHA1l = shal.Create()

'figure out the bytes needed

Dim hashSize As Integer = shal.HashSize / 8

'create byte array and fill with the entire
' restored plaintext plus the hash wvalues
Dim sArray As Byte() = (New UnicodeEncoding) .GetBytes (m)

'calculate the hash value of the entire message

' (to compare with the transmitted one ''messageHashValue")

Dim hashValue () As Byte = shal.ComputeHash (sArray, 0, sArray.
hashSize)

Dim messageHashValue (hashSize - 1) As Byte
Dim ms (sArray.Length - 1)

'extract the appended hash value from the message array
Array.Copy (sArray, sArray.Length - hashSize, messageHashValue
Array.Copy (sArray, 0, ms, 0, sArray.Length - hashSize)

'compute plaintext
Dim s As String = " Restored Plaintext Message:"
For 1 As Integer = 0 To ms.Length - 1 Step 2
s &= Chr (ms(i))
Next 1

'compare hashValue and msHashValue
For i As Integer = 0 To hashSize -1
If messageHashValue (i) <> hashValue (i) Then
MsgBox ("There has been an intrusion."é&
"The hash values are not identical."& s)
Exit Sub
End If

Next
MsgBox ("The file has not been tampered with." & s)

End Sub

Team Flv Presious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 152

The RSA system (named after its creators, Professors Rivest, Shamir, and Adleman) uses a
particularly clever encryption process. RSA uses two keys, one of which is made public. This
is the first time in the entire history of cryptography that two different keys are used, one for
enciphering (the public key) and a different one for deciphering (the private key). Until the
RSA system was first suggested in the late seventies, no one had imagined that the key used to
decipher could be anything other than the key used to encipher (or at least a version of that

key).

For example, it seems essential that if the encipherment process involves moving, say, the
third character to the end of the message—then the decipherment process must move the last
character to the third position, to restore the plaintext. Another odd quality of the RSA system
is that it does not employ either substitution (use x to mean the letter f, for instance) or
permutation (switch the third character with the last character, for example). These are the two
classic encryption processes. Instead, RSA enciphers using purely mathematical manipulations
of the characters.

With the public-key RSA system, everyone knows the key that is used to encipher a message.
Everyone on your network usually has access to a list of everyone else's public key. And if an
outsider gets hold of this list, no harm done. Public keys do Eve no good. The second key, the
one that deciphers the message, is kept private, known only to the person receiving the
message (it's not even known to the person enciphering the message—all they need is your
public key). Hundreds of different people could use your public key to encipher plaintext and
send the resulting ciphertext messages to you. Then you use your secret key to decipher all
those messages. One implication of this system is that you need not exchange secret keys with
any of your communicants. Probably the single greatest weakness of traditional symmetric
systems (including DES) is that both the encipherer and decipherer must know the secret key.
So how do you transmit this secret key between these two people? You could encipher the
secret key, but that doesn't solve the problem, just moves things back one step—you'd still
have to exchange another key to unlock the enciphered first key.

The problem of key transfer is similar to the problem of transmitting the plaintext message:
just how do I get the key from me to you?

Managing traditional paired (symmetric) keys introduces a nasty clerical problem, too. How
do you provide key pairs for all people in a typical office? Each pair of people must have
different keys (otherwise they could all read each other's messages). And if your office is
networked, you have to generate many more keys than the simple number of people on the
network. Because each communicating pair requires its own unique key, if you have 150
people you have to provide 11,175 unique keys. There are that many possible pairs of
communicants in a network of 150 people. Obviously this isn't practical.

Several solutions have been developed to deal with this problem. One solution employs a key
distribution center in which a DES key for each person is saved on the network in a central,
secure repository. When Alice wants to send a ciphered message to Bob, a temporary DES
session key is generated, then the temporary key is itself enciphered using Alice's stored key
and the result is sent to Alice. Likewise, the temporary key is enciphered using Bob's stored
key and the result sent to Bob. When each temporary key arrives at its destinations, it is

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

deciphered by both Alice and Bob. Now both communicants have the same key, which is then
used to encipher and decipher the message.

If you encrypt multiple messages using the same key, you weaken the encryption system.
Using a key distribution center makes it easy to generate a temporary key for each new
message, and also avoids giving an Eve cryptanalyst the advantage of having several messages
enciphered with a single key. Another obvious benefit of dynamic key generation is that even
if an intruder were to somehow

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 153

get hold of a key, this still wouldn't lead to a major breach in security. Only a single message
or session is compromised. These temporary keys are sometimes called session keys because
they are used for a single communication session, then discarded.

But the best solution to the key problem is the public key method, because you neither have to
transmit a secret key between two parties nor generate a unique key for each communication.
If your network has 150 people, for example, you need to generate only 300 keys, one public
key and one private key for each member of the network.

The public and private keys work together to unlock a message, like the way you open your
safe deposit box by inserting two keys: you insert your key and the teller inserts the bank's
key.

Public key encryption is deep and strong. The plaintext is quite gone. The RSA public key
system works because some kinds of math operations are very easily accomplished in one
direction, but functionally impossible in the other direction.

Let's quickly generate an actual public key using the RSA algorithm (which produces an XML
string containing the key):

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim rsa As RSACryptoServiceProvider = New RSACryptoServiceProvider
Dim publicKeyOnly As String = rsa.ToXmlString(False)

Console.WritelLine (publicKeyOnly)
End Sub

The result I get is this:

<RSAKeyValue>
<Modulus>qJ9CevDiMmPsMHzkblAmMWc5s0]/+Zsv+mrMzZskmd/VX19b/Tgb96mROtm5moSeChY8ISF2
5fXvE4gax90JaC8fbZfgf8WAIdPTM6J6CuUYRIHLO3QD5uFV/ATZ2T8SLu0XkzwThuS2PngyojKIm+AQ
23t7bfmMEkwtvs=

</Modulus>

<Exponent>AQAB</Exponent>

</RSAKeyValue>

Your result will differ. The key is randomly generated. The RSA system permits keys to be
anywhere between 384 to 16,384 bits in 8-bit increments. However, the default key size is
1,024 bits.

How RSA Works

RSA depends on a math operation that is in a category called #rap doors. They are named after

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the trick doors in the floor of a theatre stage through which Hamlet's ghost, for example, can
slowly rise up through the fog. To the actor below stage waiting for his entrance, the elevator
lift and the hinges and sliders make it quite obvious where the trapdoor is in the stage floor.
However, to people onstage, the door is barely visible—it blends into the floor around it.

The idea of a trap door mathematical process is that some things can be easily accomplished in
one direction, but are very difficult, if not practically impossible, to reverse. It's easy, for
example, to

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 154

run a tree through a chipper and reduce it to sawdust. It's impossible to restore the tree from
that pile of sawdust and chips. Trap door processes are also called one-way functions.

RSA employs the trap door involved when two very large prime numbers are multiplied.
When you multiply two large prime numbers, it is very hard to figure out which primes were
multiplied if all you have is the result of the multiplication.

When the numbers involved are small, of course, it's not hard at all to figure out which two
primes were multiplied. Consider the number 15. It's pretty easy to figure out that 3 and 5 are
the primes multiplied to get 15. But with large primes it's essentially impossible to figure out
the factors.

The system works because when you multiply one prime by another prime, the resulting
number cannot be produced by multiplying any other pair of primes. Therefore, there is only
one possible pair of primes that, when multiplied, can produce this particular result. It is not
practical—takes way too much time—to factor the result of multiplied primes to figure out
which pair of prime numbers were multiplied to produce that result. The public key is the
result of this multiplication of large primes. Only one person, the recipient of the message,
knows the correct private key, and that private key is the two primes that were multiplied to
produce the public key.

NOTE Theoretically, someone brilliant or lucky could figure out an algorithm that would
factorize the public key into its prime factors with reasonable efficiency (in other words, would
get the private key prime factors before the universe ends). So far, however, nobody has.
Estimates are rough, of course, but current brute force attempts to crack 1,024-bit long RSA
private keys require around 90 million Mips-years. Mips means a million processor
instructions per second. Imagine what a Mips~year must represent. Perhaps if quantum
computing is achieved, or some new Fermat works out a mathematical solution to the
factorizing problem, we'll have to come up with a better system than RSA. For now, it works.

The code in Listing 6.6 encrypts a message using RSA, then decrypts it.

LISTING 6.6: ENCRYPTION AND DECRYPTION USING THE PUBLIC KEY SYSTEM

Imports System.Security.Cryptography
Imports System.Text

Dim xmlKeys As String 'holds the public and private keys
Dim xmlPublicKey As String 'holds the public key only

'holds plaintext, then the encrypted version (in the encryptRSA ¢
Dim plainTextinBytes As Byte()

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

'generate public and private keys
Dim rsa As New RSACryptoServiceProvider

'save both public and private keys

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Team Fly Presvious Meaxl
Page 155
' in global variable for use in decryption procedure
xmlKeys = rsa.ToXmlString (True)
'save only public key for use in encryption procedure
xmlPublicKey = rsa.ToXmlString(False)
encryptRSA ()
decryptRSA ()
End Sub
Private Sub encryptRSA()
Dim rsa As New RSACryptoServiceProvider
'import public key:
rsa.FromXmlString (xmlPublicKey)
Dim message As String = ''Drastic weather changes experiencec
'turn message into a byte array:
plainTextinBytes = (New UnicodeEncoding) .GetBytes (message)
'PlainTextinBytes.Length = 86 bytes going into the encryptior
Try
' Encrypt
plainTextinBytes = rsa.Encrypt (plainTextinBytes, False)
Catch e As CryptographicException
MsgBox (e.ToString)
End Try
'PlainTextinBytes.Length = 128 bytes after encryption
'see it enciphered:
For i As Integer = 0 To plainTextinBytes.Length - 1
Console.Write (Chr (plainTextinBytes(i)))
Next 1
Console.WritelLine ()
End Sub
Private Sub decryptRSA()

Team Fly

Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 156
Dim rsa As New RSACryptoServiceProvider

'"import the keys from the XML string global variable

'this recreates an identical RSA object to

' the one used to create the keys (in the Form Load event abc
rsa.FromXmlString (xmlKeys)

Dim decryption As Byte() = rsa.Decrypt(plainTextinBytes, Fals

'see it deciphered:

For 1 As Integer = 0 To (decryption.Length - 1) Step 2
Console.Write (Chr (decryption(i)))

Next 1

End Sub

Here's how this example works. To simulate the relationship between the encryptor and
decryptor, I set up two global variables to hold the keys. The decryptor (the person who
receives the RSAencrypted ciphertext message) needs to know both the public and private
keys. The encryptor knows only the public key.

An RSACryptoServiceProvider object can either generate or import just the public key, or the
public/private key pair. It creates a public key when you execute the ToXMLString method
with its argument set to False. It creates a public/private key pair when that argument is set to
True. When you execute the FromXMLString method, you cause an
RSACryptoServiceProvider object to make a clone of the RSACryptoServiceProvider object
that originated the keys.

Recall that when using DES or other symmetrical algorithms, you can specify the key by
simply making up a value, translating it into a byte array, then assigning that array to the Key
property of the DES object. However, with the RSA system, you must do a little more key
management. First, the decryptor (the person receiving the ciphertext) generates a
public/private key pair using the ToXmlString method. This pair works together, and only
these two values will work together. When generated, the keys are in a string in XML format.
The public key of this pair is, you guessed it, made public. It's perhaps listed in a file or
otherwise published. The encryptor (the person sending the message) gets a copy of the
decryptor's public key. The encryptor then imports this public key into the RSA object,
thereby permitting the RSA object to correctly encrypt the message.

Encrypting and Decrypting using RSA

Here are the steps taken in Listing 6.6 to "pass" the public key to the encryptor (message
sender), retain the public/private key pair by the decryptor (message receiver), encrypt, and
finally decrypt the message:

1. The decryptor (recipient) generates a public/private key pair (put into an XML string)
with this code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Dim rsa As New RSACryptoServiceProvider
xmlKeys = rsa.ToXmlString (True)

Team Fly { Prewvious Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 157

2. The decryptor saves this XML string (xmlKeys) for later use when the ciphertext is
received.

3. The decryptor generates a public-key-only XML string using this code:

xmlPublicKey = rsa.ToXmlString(False)

4. The decryptor sends the public key to the encryptor. The encryptor needs only the public
key to accomplish the encryption. The encryptor assigns (imports) the public key (an
XML string) to the encryptor's RSA object, using the FromXmlString method:

Dim rsa As New RSACryptoServiceProvider

'import public key:
rsa.FromXmlString (xmlPublicKey)

5. The encryptor now uses the public key to translate a byte array containing the plaintext
message into a byte array holding the encrypted message:

plainTextinBytes = rsa.Encrypt(plainTextinBytes, False)

The False argument when you use this Encrypt method specifies which padding
algorithm you want to use (padding is necessary because the RSA algorithm wants
specific-sized blocks to work with—so random numbers are generated by the
RSACryptoServiceProvider object when you use the Encrypt method). A more
recent, but some say compromised, padding technique, OAEP, is used if you set the
Boolean flag to True. I set it to False to use the older but tried-and-true PKCS#1
v1.5 (Public Key Cryptography Standards) padding. Whichever padding you
choose, be sure that you use it for both the encryption and decryption (set the flag
argument the same way). Note that OAEP only works under XP.

6. The encrypted byte array is sent to the decryptor (recipient).

7. The decryptor creates a new RSACryptoServiceProvider object, but ensures that it's a
clone of the one that generated the public/private key pair. This cloning takes place if the
public/private keys held in the XML string are fed to the new
RSACryptoServiceProvider object using the FromXMLString method:

Dim rsa As New RSACryptoServiceProvider

rsa.FromXmlString (xmlKeys)

8. Now the decryption can take place:
Dim decryption As Byte() = rsa.Decrypt(plainTextinBytes, False)

And you've got the original plaintext restored in a byte array.

In the example code, the ciphertext is displayed in the output window (it blows up to 128
bytes after the padding). Then after the decryption, the restored plaintext is sent to the output
window. To simulate the transmission of the public key from the decryptor to the encryptor—
and the transmission of the ciphertext from the encryptor to the decryptor—I just use a couple

of global variables in this example code. Also, I persist the public/private key needed by the
decryptor in another global variable.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly { Prewious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 16

When you run across strings and objects behaving strangely, just relax. The string and object
types—I'm not talking here about every kind of object, but rather the actual object type, as in:
Ifobject.ReferenceEquals (a, b) Then—are special. They are exceptions to the
"reference type" rules. They are treated differently by .NET. They are called "built-in
reference types" and this means they are supposed to behave more like the good old built-in
integers and booleans and other familiar data types. (But don't be fooled; the built-in object
type is a pretty odd bird.) Speaking of odd birds, consider the Shared member, described in the
sidebar titled "What's Shared, What's Static."

GetHashCode

GetHashCode returns a number unique to the object. Think of it as a kind of GUID, a
computergenerated number intended to uniquely identify a particular object. The .NET
hashcode for the string "Helen," for example, is always 222703087, but the hashcode for
"Helex" is 222703097. Store "Helen," however, in two separate string variables and you get
the same HashCode (as you should). Some books claim that different objects containing the
same value result in different hashcodes. This is incorrect; sometimes you get the same
hashcode, sometimes not.

Hashcodes are used two ways in .NET. A simple hashcode such as the one generated for
Helen can be used as a unique index number to check for duplicate values when an object is
added to a collection or hash table. This is useful to prevent duplicate entries, which are
forbidden in a primary key field, for example. Unfortunately, though, the GetHashCode
method as implemented in System.Object is relatively useless because unpredictable.

In general, inheriting classes override this GetHashCode method, and also override the Equals
method at the same time. Not only can they thereby provide more useful hashcodes, but can
simultaneously ensure that objects that are equals also return the same hashcode.

A more sophisticated hashing algorithm is used in the .NET Security assembly, and it can be
used quite effectively to generate unique keys from text passwords. This use of hashing is
explored in Chapter 6.

GetType

The GetType method returns a data or object type. .NET maintains metadata (information
about information, like the signs in a bookstore categorizing the books: Philosophy, Cooking,
and so on). In a .NET assembly, each object is stored with a description of its nature and
relationships. GetType can be used in your programming if you need to figure out the type of
an object:

Dim xn As Type = s.GetType

For additional information on how to use GetType in reflection—a technology that takes
advantage of metadata—see Chapter 8.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ToString

The final fundamental method inherited from System.Object is ToString, and you know what
that does. Often overridden, ToString is also automatically invoked behind the scenes when
you use common commands such as Console.WriteLine Or MsgBox.

ToString transforms some objects' names or qualifications into strings so they can be seen in
message boxes or in the output window or otherwise viewed. I say some objects because in
certain situations, ToString is optional. Read on.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 160

printing process, you call the PrintDocument object's Print method, which doesn't produce any
output but raises the PrintPage event. This is where you must insert the code that generates
output for the printer. You can use any drawing methods of the System. Drawing class to
generate the graphics elements on the page. The current page is printed when the PrintPage
event handler terminates. The following statement initiates the printing; it's usually placed in a
button's or a menu's Click event handler:

PrintDocumentl.Print

To experiment with simple printouts, create a new project, place a button on the form, and add
an instance of the PrintDocument object to the project. Then enter the previous statement in
the button's Click event handler. After calling the Print method, the

PrintDocument1 PrintPage event handler takes over. The signature of the PrintPage event
handler is shown next:

PrintPage (ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocumentl.PrintPage

The second argument exposes all the properties you need to access the printer. The Graphics
property represents the printer's page, which is where your output will be sent. The
MarginBounds property contains information about the printable area of the page (basically,
the user-specified margins, which you must take into consideration in your printing code) and
the PageSettings property contains information about the page you're printing on (the size of
the page, its orientation, margins, and so on). The properties of the PageSettings object include
the PrinterSettings, which is another object that contains information about the printer—the
settings specified by the user on the Printer Setup dialog box. You'll see how to use these
properties, and how to display the corresponding dialog boxes, shortly. But first, let's generate
a simple printout. Start a new project, place a button on the form, and then drop an instance of
the PrintDocument control on the form. In the button's Click event handler, enter the following
statements:

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles Buttonl.Click
PrintDocumentl.Print ()
End Sub

The code that will generate the printout must reside in the PrintDocument object's PrintPage
event handler. The statements shown in Listing 7.1 will print a rectangle that encloses the
printable area of the page and a short string within the rectangle. Insert them in the PrintPage
event handler, then run the application and click the button to generate the printout.

LISTING 7.1: A VERY SIMPLE PRINTOUT

Private Sub PrintDocumentl PrintPage (ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocumentl.PrintPage
Dim G As Graphics = e.Graphics
Dim X, Y, W, H As Integer
X = e.MarginBounds.X

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Y = e.MarginBounds.Y

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 161

e.MarginBounds.Width
= e.MarginBounds.Height
G.DrawRectangle (Pens.Blue, New Rectangle (X, Y, W, H))
Dim prnFont As New Font (''Comic Sans MS", 36, FontStyle.Regular)
G.DrawString ("Printing with VB.NET", prnFont,
Brushes.Green, 150, 300)
G.DrawString ("Sample Printout",
New Font ("Verdana", 16, FontStyle.Regular),
Brushes.Gray, 10, 10)

W
H

End Sub

The PrintPage event handler shown in the listing produces the page shown in Figure 7.1. The
first statement creates a Graphics variable and stores there the Graphics object that represents
the printing surface. The following few statements extract the origin and the dimensions of the
printable area of the page. These settings are retrieved from the MarginBounds property of the
PrintPageEventArgs argument of the event handler. The default margins are one inch on
every side; you'll see shortly how you can allow users to specify different margins with the
Page Setup dialog box.

The DrawRectangle method draws the rectangle that encloses the printable area of the page.
The dimensions of the rectangle are specified in the default units of the printer's Graphics
object, which are hundredths of an inch. The DrawString method draws a string with the
specified brush and the specified font. The first call to the DrawString method prints a string
within the page's margins, while the second call to the same method prints a string outside the
margins. You can draw anywhere on the Graphics object, regardless of the margins. It's your
responsibility to impose the margins and make sure that your graphics elements are limited
within the area of the MarginBounds property. The syntax of the drawing methods is the same,
whether you're drawing on a PictureBox control or printing on a page.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 7.1 The output of the sample code, shown at 50% of its actual size

Team Fly { Previous Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Team Fly Presious Mexd

Page 163

PaperSize Returns a PaperSize object that represents the size of the paper in the
selected bin. The paper's dimensions are the same as the ones returned by the
Bounds property. In addition to the dimensions of the paper, the PaperSize object
exposes two more interesting properties, the Kind and PaperName properties. The
Kind property returns a member of the PaperKind enumeration (Letter, B5
Envelope, etc.), while the PaperName property sets or returns the name of the paper
for custom sizes.

PaperSource Returns a PaperSource object that represents the currently selected
tray on the printer. For printers with a single tray, the PaperSourceName property of
the PaperSource object is "Auto Sheet Feeder."

PrinterResolution Returns a PrinterResolution object that represents the printer's
resolution. The X and Y properties of the PrinterResolution object return the current
horizontal and vertical resolutions respectively in dots per inch. The Kind property
of the PrinterResolution object exposes in turn several properties, including the
Low, Medium, High, Custom, and Draft properties.

PrinterSettings Returns a PrinterSettings object that represents the properties of the
printer. Use this property to read the properties set by the user on the Printer Setup
dialog box, or set the same properties from within your code. The properties of the
PrintSettings object are described in the following section.

The PrinterSettings Object

The PrinterSettings object exposes the following properties, which you can use to retrieve the
properties of the current printer.

InstalledPrinters A method that retrieves the names of all printers installed on the
computer, as well as the names of any remote printers to which the computer has
access. The same printer names also appear in the Print dialog box, where the user
can select one of the available printers.

CanDuplex A read-only property that returns a True/False value indicating whether
the printer supports double-sided printing. This feature won't affect your printing
code; you'll print the pages as usual and the printer will print them on the
appropriate side of each page.

Collate Another read-only property that returns a True/False value indicating
whether the printout should be collated or not. This setting entails no changes in
your code.

Copies A numeric property that returns, or sets, the requested number of copies of
the printout.

DefaultPageSettings The PageSettings object that returns, or sets, the default page
settings for the current printer. We usually assign the PageSettings property of the
Page Setup dialog box to the DefaultPageSettings property of the PrintDocument
object.

Duplex The property that returns or sets the current setting for double-sided
printing.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FromPage,ToPage The printout's starting and ending pages, as specified in the
Print dialog box by the user.

IsDefaultPrinter Returns a True/False value indicating whether the selected printer
(the one identified by the PrinterName property) is the default printer. Note that

selecting a printer other than the default one in the Print dialog box doesn't change
the default printer.

Team Flv Presvious Meaxl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 165

FIGURE 7.2 The Page Setup dialog box

To display this dialog box, drop the PageSetupDialog control on the form and then call its
ShowDialog method. Before showing this dialog box, you must set the PageSettings property.
You can create a new PageSettings object, set its properties, and then assign this object to the
PageSettings property of the PageSetupDialog control. We usually assign to this property the
DefaultPageSettings property of the PrintDocument object. After the user closes the Page
Setup dialog box with the OK button, assign the control's PageSettings object to the
DefaultPageSettings object of the PrintDocument object, to make the user-specified settings
available to our code. Here's how we usually display the dialog box from within our
application and retrieve its PageSettings property:

With PageSetupDialogl
.PageSettings = PrintDocumentl.DefaultPageSettings
If .ShowDialog().DialogResult = OK Then _
PrintDocumentl.DefaultPageSettings = .PageSettings
End With

The PrintDialog control displays the standard Print dialog box, shown in Figure 7.3, which
allows users to select a printer and set its properties. If you skip this dialog box, the output will
be sent automatically to the default printer and the default settings of the printer will be used.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FIGURE 7.3 The Print dialog box

Team Flv Presious Mexd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 166

The printer selected on this dialog box automatically becomes the active printer; you don't
have to insert any code to switch between printers. In addition to listing the available printers,
this dialog box allows the user to specify the range of pages to be printed and the number of
copies. Skipping a number of pages is straightforward—you simply perform all the
calculations, but you skip the statements that actually print on the page. This means that
printing just the last page of a document will take as long as printing the entire document. If
your report is made up of a fixed number of rows per page, you can easily skip a number of
pages by ignoring the number of rows that will fit in the first so many pages (e.g., if you're
printing 25 rows per page, you can skip the first three pages by simply ignoring the first 75
Tows).

Some of the options on the Print dialog box are not enabled by default. In the Print Range
zone section, only the All option is enabled. To allow the user to print the currently selected
section of the document, set the control's AllowSelection property to True. Likewise, to enable
the Selection option, set the control's AllowSomePages property to True. Another interesting
property of the PrintDialog control is the ShowNetwork property, which determines whether
the dialog box allows the user to select a non-local printer (a printer connected to a different
computer on the network). The following statements display both the Print and Page Setup
dialog boxes. All print range options on the control are enabled, and the Page Setup dialog box
is displayed only if the Print dialog box is closed with the OK button. If the Page Setup button
is also closed with the OK button, the program starts printing by calling the Print method of
the PrintDocument object.

PrintDialogl.PrinterSettings = _
PrintDocumentl.DefaultPageSettings.PrinterSettings
PrintDialogl.AllowSelection = True
PrintDialogl.AllowSomePages = True
If PrintDialogl.ShowDialog = DialogResult.OK Then
PageSetupDialogl.PageSettings = PrintDocumentl.DefaultPageSettings
If PageSetupDialogl.ShowDialog = DialogResult.OK Then
PrintDocumentl.DefaultPageSettings = _
PageSetupDialogl.PageSettings
PrintDocumentl.Print
End If
End If

To summarize, before displaying the Print dialog box, you must set the PrinterSettings
property. Unless you want to create a new PrinterSettings object, you will assign the
DefaultPageSettings. PrinterSettings property of the PrintDocument object to the
PrinterSettings property of the PrintDialog control. Likewise, before showing the Page Setup
dialog box, you must set its PageSettings property to the DefaultPageSettings of the
PrintDocument object. When the Page Setup dialog box is closed, we retrieve the settings
specified by the user on this control and assign the control's PageSettings property to the
PrintDocument object's DefaultPageSettings property.

The third of the printing controls is the PrintPreview control. The Print Preview dialog box
displays a preview of the printed document. This dialog box exposes a lot of functionality and
allows users to examine the output, and, when they're happy with it, they can send it to the
printer. The PrintPreview dialog box, shown in Figure 7.4, is made up of a preview pane, in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

which you can display one or more pages at the same time at various magnifications, and a
toolbar. The buttons on the toolbar allow you to select the magnification, set the number of
pages that will be displayed on the preview pane, move to any page of a multi-page printout,
and send the preview document to the printer.

Team Flv Previous et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 167

FIGURE 7.4 The Print Preview dialog box

Once you've written the code to generate the printout, you can easily direct it to the
PrintPreview control. You don't have to write any additional code; just place an instance of the
control on the form and set its Document property to the PrintDocument control on the form.
Then call the control's ShowDialog method, instead of the PrintDocument object's Print
method:

PrintPreviewDialogl.Document = PrintDocumentl
PrintPreviewDialogl.ShowDialog

After the execution of these two lines, the PrintDocument object takes over. It fires the
PrintPage event as usual, but it sends its output to the preview dialog box, and not to the
printer. The dialog box contains a Print button, which the user can click to send the document
being previewed to the printer. The exact same code that generated the preview document will
also print the same document on the printer.

The PrintPreview control will save you a lot of paper and toner while you're testing your
printing code, because you don't have to actually print every page to see what it looks like.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The same PrintPage event handler of the PrintDocument object will generate both the actual
printout and the document preview. In other words, you don't have to duplicate code. If the
user is satisfied with the appearance of the printout, they can click the Print button at the top of
the PrintPreview control to send the document to the printer. The Print Preview option adds a
professional touch to your application; there's no reason why you shouldn't add this feature to
your projects. In the examples in this section, we'll use this control to display the printouts on
the screen.

Team Flv Previous Maxt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 169

shortly, and we'll review the basic methods for printing strings in the following section. The
simplest form of the DrawString method accepts as arguments the string to be printed, a Font
and a Brush object that determine how the string will be rendered on the Graphics object, and
the coordinates of the string's upper-left corner:

Graphics.DrawString(str, tFont, tBrush, X, Y)

Some overloaded forms of the DrawString accept an additional argument, which is a System.
DrawString.StringFormat object. The StringFormat object sets the alignment, rotation, and a
few more properties that determine the appearance of the string. To print a string at a specific
location on the page and specify a different alignment, use the following statements:

Dim strFormat As New System.Drawing.StringFormat ()
strFormat.Alignment = StringAlignment.Far
e.Graphics.DrawString(str, pFont, pBrush,

New RectangleF (100, 200, 150, 50), strFormat)
e.Graphics.DrawRectangle (pPen, New Rectangle (100, 200, 150, 50))

Change the Alignment property of the st rFormat variable to print the same string in the
same rectangle with different alignments. The last statement prints a rectangle that outlines the
area in which the string will appear.

If the rectangle specified in the DrawString method isn't tall enough for the entire string, then
the string will be printed partially, as shown in the last box of the first column in Figure 7.5.
Notice that only part of the string is printed (and you can't tell how many lines of text are
missing). To prevent a line from being partially printed, set the FormatFlags property of the
StringFormat object to StringFormatFlags.LineLimit, as shown in the following statement:

strFormat.FormatFlags = StringFormatFlags.LinelLimit

This flag will cause the DrawString method to print only as many lines of text as can fit in
their entirety in the specified rectangle. We'll use this property to prevent the partial printing of
the last line on a page.

The StringFormat property has a few more interesting settings. The Alignment property
determines the horizontal alignment of the string and its settings are the members of the
StringAlignment enumeration: Far (right aligned), Center, and Near (left aligned). The
LineAlignment property determines the vertical alignment of the string, and its settings are
also the members of the StringAlignment enumeration. The member Far causes the string to be
aligned at the top of the corresponding rectangle, while the Near member causes the string to
be aligned at the bottom of the corresponding rectangle.

To fully control the appearance of the text on the page, you need to know the arrangement of
the text in a rectangle. If you're printing plain text, this rectangle is the entire page, minus the
margins. If you're printing a tabular report, this rectangle is the cell in which the text must fit.
In other words, you need to know how the DrawString will break the specified string into
multiple text lines. We usually know the width of the rectangle in which the text will appear,
but we need to calculate the height of the rectangle. The MeasureString method accepts the
same arguments as the DrawString method, but it doesn't print anything. Instead, it reports the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

number of characters that will fit in the specified rectangle and the number of text lines that

will fit vertically in the rectangle. The simplest syntax of the MeasureString method is shown
next:

Public Function MeasureString(str, fnt) As SizeF

Team Flv Fresious et

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 17

Strong Typing Weakens

For a decade, many VB programmers used a quick debugging technique of printing variables
directly on a form to see their values. This convenience is missing in VB.NET (you can't print
on a form with a simple Print command). Instead, to see variables you have to use either a
MessageBox or Console .Writeline to see results in the Output window. This has resulted in
some modifications to the strict rules governing the message box.

People were getting a little annoyed at having to type MessageBox.Show (x.ToString)
each time they were debugging and wanted to see this variable x. So MessageBox was
shortened to MsgBox, the show was omitted, and, after a while, even the ToString method
was dropped. Now you can use the shorthand version: MsgBox (x) .

As you see, VB.NET is gradually abandoning some of the more onerous rules demanded by a
strict adherence to what they call strong typing.

Is Color a Data Type?

Yes. Each time you work in an area of .NET that you've not previously dealt with (or that
you've forgotten), you'll nearly always find yourself butting up against the problem of syntax
and data typing. You see "cannot be converted" or "reference not set" or a handful of other
error messages over and over.

THE VARIOUS MEANINGS OF STRONG TYPING

The phrase strong typing is used in several different ways in computer programming literature.
It sometimes means using descriptive strings as the keys in a collection, rather than using index
numbers.

In other places, you'll see strong typing described as the enforcement of a rule that each
element in a collection be of a specific data type, not a generic "object" type..NET Framework
collections in fact do include only object types, on the lowest level. And you can add anything
to your collections, which is a useful freedom. But you are urged by OOP professors to
"strongly type your collections." Don't just add objects and only objects. They point out that it
prevents someone ignorant of your collection's purpose from adding, say, an automobile type
to a collection of fresh fruit types (which could cause errors). However, it seems to me that this
is actually a non-problem if you simply follow the usual OOP practice of always validating
incoming data. Still other OOP experts say that a fundamental virtue of strong typing is that
type mismatch errors are trapped during compilation rather than later at runtime. This claim
ignores the fact that the only time some outsider is submitting objects to your class is during
runtime.

Here's yet another, similar meaning of strong typing in the literature. It means that if you
always be sure to declare your data types, you avoid errors in VB.NET. In earlier versions of
VB you could leave the type ambiguous by using the Variant, or by implicit declaration (you
never actually declare the variable's type, you merely use it in code by assigning a value to it—
VB then interprets what kind of number it is, or if it's a string). Now, in .NET, you cannot use
Variants, nor can you implicitly declare (you can turn option Explicit off if you wish).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Nonetheless, you can be ambiguous by declaring a variable as an object type (and since
everything is an object, this is similar to declaring a Variant). However, you're urged not to do
this for three main reasons: to permit IntelliSense lists, to allow type checking during

compilation (so certain kinds of incorrect data type usage are prevented), and to speed up
compilation.

Team Fly Previous Mexi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team Fly Presious Mexd

Page 170

FIGURE 7.5 The output of the PrintTests project in preview mode

The two arguments are a string and the font