
Team Fly

Cover

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page iii

Visual Basic™ .Net Power Tools

Evangelos Petroutsos and Richard Mansfield

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page vii

Acknowledgments
WE WERE FORTUNATE TO have several smart, thoughtful editors assist us in polishing this
manuscript. First, we'd like to thank Development Editor Tom Cirtin. He deserves credit for
his discernment, and the high quality of his editing. He's very good at dealing with his authors,
and equally skilled at raising important questions and improving their chapters.

Technical Editor Greg Guntle carefully reviewed the manuscript and made many useful
suggestions, caught a number of inconsistencies, and helped improve several code examples.
Production Editor Leslie Light ensured that this book moved smoothly through production and
was most helpful with suggestions about the graphics, drawings, and screen shots. Suzanne
Goraj, copy editor, combed through every line of our text, making improvements throughout.

To all these, and the other good people at Sybex who contributed to this book, our thanks for
the intelligence and care that they brought to this book. In addition, the authors would like to
give special thanks to their agents, Matt Wagner and David Fugate, of Waterside Productions,
whose contributions to the authors' careers goes above and beyond the call of duty.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page viii

Contents at a Glance

Introduction xix

Chapter 1 • Understanding the .NET Framework 1

Chapter 2 • New Ways of Doing Traditional Jobs 23

Chapter 3 • Serialization Techniques 59

Chapter 4 • Leveraging Microsoft Office in Your
Applications 93

Chapter 5 • Understanding .NET Security 119

Chapter 6 • Encryption, Hashing, and Creating Keys 139

Chapter 7 • Advanced Printing 159

Chapter 8 • Upon Reflection 191

Chapter 9 • Building Bug-Free and Robust Applications 215

Chapter 10 • Deploying Windows Applications 243

Chapter 11 • Building Data-Driven Web Applications 271

Chapter 12 • Peer-to-Peer Programming 289

Chapter 13 • Advanced Web Services 319

Chapter 14 • Building Asynchronous Applications with
Message Queues 341

Chapter 15 • Practical ADO.NET 391

Chapter 16 • Building Middle-Tier Components 441

Chapter 17 • Exploring XML Techniques 475

Chapter 18 • Designing Data-Driven Windows
Applications 505

Chapter 19 • Working with Regular Expressions 543

Chapter 20 • Advanced Graphics 589

Chapter 21 • Designing the User Interface 623

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21 • Designing the User Interface 623

Chapter 22 • Using the .NET Compact Framework and Its
Emerging Technologies 643

Index 665
Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page ix

Contents

Introduction xix

Chapter 1 • Understanding the .NET Framework 1
Why Read This Chapter 2
Help! 3
Grappling with Framework Class Descriptions 5
The Hunt for a Grammar 6

Why Two Ways? 10
About Constructors 10
Assemblies Three Ways 11

Understanding Data Types 11
About System.Object 12
MemberWiseClone 12
Equals 12
ReferenceEquals 13
The Main Point about Equality 14
GetHashCode 16
GetType 16
ToString 16
Strong Typing Weakens 17
Is Color a Data Type? 17

Exploiting the Framework 18
A Useful Class View Utility 20
A Brief Lexicon 21
Summary 22

Chapter 2 • New Ways of Doing Traditional Jobs 23
Clipboard Access 23

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with ''Control Arrays" 24
Multiple Handles 27

Using Arrays 28
Zero-Based Collections (Sometimes) 28
Initialization 30
Arrays of Objects 30
Array Search and Sort Methods 31
Customized Sorting 33
Many Properties and Methods 34

The Flexible ArrayList 35
Mass Manipulation 36
Data Binding 36
Enumerators 37

Using HashTables 37
New Date/Time Techniques 38

Adding Time 39
Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xix

Introduction
THIS BOOK ACTUALLY BEGAN in Athens, Greece in 1993. Evangelos Petroutsos wrote a very
interesting outline, and several sample chapters, for a book about "fascinating and
sophisticated things" you could do with Visual Basic. I agreed with my publisher that his ideas
had potential, but Evangelos was a first-time author. I had a track record, though, so the
publisher said they'd invest in this "Power Toolkit" book if I agreed to co-author it. Even a
small book represents a $50,000 gamble for a publishing house, and this was a very large
book.

I merrily agreed because I thought the topics were compelling—fractals, encryption,
processing graphics, animated transitions, multimedia, manipulating color palettes, recursion,
and other topics that were largely ignored by other VB books. To our delight, the book
became a runaway bestseller in 1995. Evidently many Visual Basic programmers were ready
for a book about advanced, cutting-edge programming techniques.

In 2002, we decided to revisit this concept. Nearly a decade has passed, and we now have
what amounts to a brand new Visual Basic language: VB.NET. We decided to follow the same
path that we went down a decade ago: to explore aspects of VB.NET that have been largely
ignored in other books, but are useful or interesting, or both.

Most of the topics covered ten years ago in the previous book are not repeated here—times
have changed. But we feel that the subjects explored in this new book are compelling in their
own right.

Aesthetics

Why would captivating topics be largely ignored in computer books? We think there are two
primary reasons. The first category of ignored topics is seen as "trivial" or "marginal." Put
another way, these subjects involve aesthetics. Programmers by and large prefer to consider
themselves part of the scientific community, so examining such unscientific concepts as
beauty or appearance seems to many programmers to be a step down. Two of the chapters in
this book, nonetheless, boldly explore aesthetic subjects.

Truth be told, programming is an art, not a science. Some professors conjure up theoretical
constructs and special terminology, but airy obfuscation and lofty-sounding jargon do not, by
themselves, create a science—and all too often actually inhibit rational discourse.

Studies have shown that the best programmers are frequently English or music majors. Some
of the best developers around today got into programming when they purchased their first
Amiga computer—an early machine devoted to the creative side of computing. And although
academic programming is generally allied with mathematics departments, there is very little
real relationship between

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xx

math (or science) and programming—just as there is often very little relationship in general
between many other academic studies and the real world.

Consider the primary current computer applications: word processing, database management,
Internet communications, and spreadsheets. Only spreadsheets have much at all to do with
math. Programming can, of course, involve math, but it's rarely central to the programmer's
task. You could write an entire word processing program without even knowing long division,
much less algebra or anything beyond.

And programming obviously isn't a science. Science involves theorizing and controlled
experimentation, behaviors rarely associated with programming. Sure, there's a kind of
experimental hacking that goes on while trying to fix bugs—but that's not scientific
experimentation by any stretch of the imagination. Debugging is much closer to searching for
a lost set of keys than sending a kite up into a thunderstorm.

Programming is basically communication—albeit between humans and machines. But it is a
linguistic and expressive act. It's not exactly rhetorical (we don't need to persuade the
machines, at least not yet). But it's certainly descriptive, grammatical, and fundamentally
communicative.

The two chapters in this book that some will consider ''unscientific" are Chapter 21,
"Designing the User Interface," and Chapter 20, "Fractals: Infinity Made Visible." We agree.
But then we think the entire subject of programming is unscientific, and we're not bothered by
that fact.

Complexity and the Avant-Garde

Most of the remaining topics in this book fall into the second category: topics that are either
too cutting-edge or too complex for inclusion in many books. For example, not much is
written about VB.NET's splendid and extensive security features—even though security is a
primary ongoing challenge for the computing community.

Security-related VB.NET programming is avoided not because the programming involved is
inherently difficult or novel, but rather because the concepts underlying cryptology and other
aspects of security are fundamentally complex. Many computer book authors simply don't
know enough about encryption, for example, to explain its implementation in computer
programming. Fortunately, cryptology has long been a hobby of one of the authors of this
book.

Other topics are perhaps too new to be widely understood or implemented. Asynchronous
programming, Web services, employing Office objects, using reflection, and the new .NET
Compact Framework (how to squeeze programming and I/O into the highly restrictive
platform of small, portable devices such as PDAs and cell phones) all fall into this category.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Several of the chapters in this book, we admit, have been covered fairly extensively in other
books (database programming, debugging, printing), but we included them because we feel
that we have something new to say. For example, we've yet to find any book that correctly
describes how to print hard copy in VB.NET. All the programming examples we've seen
either cut letters in half at the end of lines, or cut lines in half at the end of pages. This doesn't
happen on every line or at the end of every page, but you'll agree that it's pretty bad when it
happens even intermittently. If you've been looking for the solution to this problem, see
Chapter 7.

Chapter 1 is unusual because it tackles an essential, yet widely avoided, question: Why was
Visual Basic .NET designed by C programmers, and what are the implications? It's as if the
Romans had been given the job of rebuilding Thebes—the result might be impressive, but it
certainly wouldn't remain Egyptian.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xxi

Chapter 1 begins like this:

Visual Basic .NET WAS not written by Visual Basic programmers. The entire .NET family of
languages was created by C programmers. C—and its cohort OOP—is an academic language.
Visual Basic is a popular language. These facts have consequences.

The authors of this book are not beholden to any organization. We're not writing for Microsoft
Press, nor are we affiliated with any corporation or school. Indeed, we like to think that we're
not dependent on anyone for our paycheck—other than you, dear reader—and can therefore be
more objective than many of our colleagues.

We can ask heretical questions such as why OOP should be used in all programming situations
as many of its proponents insist. We can question the wisdom of allowing C programmers to
write the narratives and code examples for the Help system in VB.NET. We can wonder why
structures are included in VB.NET if OOP experts insist that you should never use them.

We can freely applaud VB.NET when it improves on traditional VB programming features
(streaming and serialization, for instance), and point out when VB.NET creates needless
confusion. (Some collections in VB.NET are zero-based; some are one-based. And there's no
rhyme or reason involved, no pattern you can discover, no rule you can learn, to deal with this
problem.)

Another benefit of being outside programming and academic officialdom is that we can be
clear. There is a lingo developing around programming, and too much of it appears to serve no
real purpose other than job protection. If others cannot read your source code, or even
understand your comments, then it's likely they'll respect you and you'll keep your job.
Likewise, if you follow the party line and keep your geek-speak up-to-date, you'll be on the
team. So the usual little closed society of a priest class is being built. Remember that only a
short time ago mass was said in Latin, a language that the churchgoers couldn't understand.
And if you visit a college class in music theory or film theory today, you won't comprehend
most of what's being said.

When we do now and then indulge in techie jargon in this book, it's usually to let you know
what's meant by the latest catchphrases. True, the term overloaded signature is used in this
book, but right next to it is the parenthetical explanation (more than one argument list), just so
you'll know what the heck is being discussed. And when terminology, such as strongly typed,
has several different meanings, we point that out to you.

There's one final benefit derived from the authors' status as independent writers, free of any
obligation to particular corporations or institutions: we can be entertaining, or at least less
boring than the average computer book. Academic articles and books, including many
programming books, deliberately avoid amusing or interesting writing. It's thought in some
circles that if your writing isn't obscure or tedious, then you must not be discussing anything
sufficiently serious. We take the position that honest, understandable, direct, and interesting
writing is preferable to the alternative.

Who Should Read This Book, and Why?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This book is intended to provide solutions for programmers who are ready to take the next step
up to more complex, cutting-edge, or sophisticated topics. Chapters 1 and 2 are useful if you're
making the transition to VB.NET from another programming language (such as classic Visual
Basic, versions 6 and earlier).

This book is, we believe, accessible to any intelligent person with programming experience.
We have tried to be clear throughout the book, explaining everything as directly as possible,
regardless of degree of difficulty of the various topics.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 1

Chapter 1
Understanding the .NET Framework
VISUAL BASIC .NET was not written by Visual Basic programmers. The entire .NET family of
languages was created by C programmers. C—and its cohort OOP—is an academic language.
Visual Basic is a popular language.

These facts have consequences. Visual Basic was conceived in 1990 specifically as an
alternative to C. VB was designed as a rapid application-development language—blessedly
free of cant and obscurantism. VB was created especially for the small businessman who
wanted to quickly put together a little tax calculation utility, or the mother who wanted to
write a little geography quiz to help Billy with his homework. VB was programming for the
people. Several hundred thousand people use C; millions use Visual Basic.

As with many cultures—Rome versus Egypt, USA versus France, town versus gown—
programming languages quickly divided into two camps. C and its offspring (C++, Java, C#,
and others) represent one great camp of programmers. Visual Basic is the other camp.
However, .NET is an attempt to merge Visual Basic with the C languages—while still
retaining as much as possible of the famous populist VB punctuation (direct, clear,
straightforward, English-like), syntax, and diction.

Many professors, bless them, thrive on abstraction, classification, and fine distinctions. That's
one reason why VB.NET is in some ways more confusing than necessary. It has many layers
of ''accessibility" (scoping) and many varieties of ways to organize data, some more useful
than others. It has multiple "qualification" schemes; considerable redundancy; single terms
with multiple meanings (strong typing, for example); multiple terms for a single behavior
(Imports versus Import); and all kinds of exceptions to its own rules.

VB.NET, however, is clearly an improvement over earlier versions of VB in many respects.
We must all find ways of moving from local to distributed programming techniques. And
VB.NET is also quite a bit more powerful than previous versions. For example, streaming
replaces traditional file I/O, but streaming can also handle data flowing from several sources—
not just the hard drive. Streaming considerably expands your data management tools. You can
replace a FileStream with a WebResponse object, and send your data to a Web client.

Nonetheless, in the effort to merge all computer languages under the .NET umbrella, VB had
to give up some of its clarity and simplicity. In fact, VB now produces the same compiled
code

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 2

that all the other .NET languages do—so under the hood, there is no longer any distinction to
be made between the two linguistic cultures. It's just on the surface, where we programmers
work, that the differences reside.

OOP itself, like biology, involves a complex system of classification. This means that people
using OOP must spend a good amount of their time performing clerical duties (Where does
this go? How do I describe this? What category is this in? Are the text-manipulation functions
located in the Text namespace, or the String namespace? Does this object have to be
instantiated, or can I just use its methods directly without creating the object first?)

Why Read This Chapter

If you're one of the millions of VB programmers who, like me, came upon VB.NET with the
highly intelligent reaction ''Whaaaaa??!!," this chapter might be of use to you.

I'm not unintelligent, and I'm assuming you're not either. But slogging through the VB.NET
world makes one seem rather slow, especially at first. This chapter gives you some hard-won
advice that can save you considerable confusion.

VB.NET is, of course, far easier to navigate if you have a background in C programming
languages (and its lovely wife, object-oriented programming).

Millions of VB programmers deliberately decided not to use C. That's why we became VB
programmers in the first place. We preferred the power of VB's rapid application development
tools. We didn't care for the reverse-Polish backward syntax, the redundant punctuation (all
those semicolons) and other aspects of C and its daughter languages.

The Internet changed all that—we must develop new skills and adapt to new programming
styles. Leaving the cozy and predictable world of local programming (applications for
Windows, running on a single computer) requires new techniques. You don't have to switch to
C or its ilk, but you do have to expand your VB vocabulary and skills.

Today's programs are sometimes fractured into multiple programlets (distributed applications)
residing in different locations on different hard drives and sometimes even using different
platforms or languages. Web Services are the wave of the future, and this kind of computing
greatly increases the impact of communication and security issues. Not to mention the
necessity of encapsulating code into objects.

So gird your loins or whatever else you gird when threatened, and get ready for some new
ideas. You've got to deal with some different notions.

Each of us (the authors) has written several books on VB.NET in the past few years —
working within the .NET world daily for three years now—and we're still discovering new
tools, concepts, and features. Part of this is simply getting to know the huge .NET Framework,
and part of it is adjusting to OOP and other C-like elements that are now part of VB.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What they say of quantum mechanics applies to OOP: only ten people in the world understand
it well, and nobody understands it completely. So be brave. You can learn some patterns and
rules to help you get results in .NET, and the benefit is that VB.NET is quite a bit more
powerful and flexible than traditional VB. There are considerable rewards for your patience
and efforts.

You'll find ideas in this chapter that will deepen your understanding of the great, vast .NET
environment and framework. You'll find useful information here that will improve your
VB.NET programming—guaranteed. For example: What are structures, and when should you
use them? (They're

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 3

a replacement for classic VB's user-defined types, and you should never use them. OOP
experts say that whenever you're tempted to use a structure, create a class instead—it's more
flexible. Of course other OOP experts disagree, and the squabbling begins.)

Help!

A significant effect of the merging in of VB with C-style languages is that the VB.NET Help
system and documentation were mostly written by C programmers. These people are not
generally writers nor are they very familiar with Visual Basic. That's why you find techno-
speak error messages, convoluted descriptions in the Help system, and other foggy patches.

So, instead of VB's justly acclaimed clarity, we get Help descriptions that sound like they
were written by a barmy IRS bureaucrat. Here's an example:

Changing the value of a field or property associated with any one instance does not affect the
value of fields or properties of other instances of the class. On the other hand, when you
change the value of a shared field and property associated with an instance of a class, you
change the value associated with all instances of the class.

Got it?

Not only is the VB.NET documentation all-too-often puzzling, the fact that C programmers
wrote it means that the descriptions and even the source code examples are often some half-
English, half-C beast.

Many Help source code examples listed as ''VB.NET" versions are, in fact, written by C
programmers. VB programmers must spend the time to translate this faux VB code. It's great
that there is now so much tested, bug-free example code in Help. However, perhaps Microsoft
would be wise to ask experienced VB programmers to go over the pseudo "Visual Basic" code
examples, and translate them into actual VB-style programming.

For example, take a look at the entry in Help for String.IndexOf. If you scroll down the
right pane, you can see all the ways that the sample code is not typical VB code. Many VB
programmers will have to figure out how to actually make this code work. It can't just be
copied and pasted.

VB programmers can be confused by some of the strange punctuation and other odd qualities
of the following, and many other examples you find in Help. Although nominally Visual Basic
source code, too many Help examples are alien in many particulars, as you can see in this
sample code illustrating the IndexOf method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System
Class Sample
Public Shared Sub Main()
Dim br1 As String = _
"0----+----1----+----2----+----3----+----4----+----5----+----6----+-"
Dim br2 As String = _
"0123456789012345678901234567890123456789012345678901234567890123456"
Dim str As String = _
"Now is the time for all good men to come to the aid of their party."
Dim start As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 5

In fact, until VB.NET, the Visual Basic language didn't even permit the use of braces,
semicolons, or brackets. Blessed simplicity, including the avoidance of extraneous junk
punctuation, has always been a hallmark of Visual Basic.

To make this usable, to-the-point, Visual Basic-style sample code, you have to eliminate the
C-flavored elements. What follows is a simplified, and pure-VB.NET, translation of this same
sample. In addition to being written in recognizable VB programming style, it also has the
advantage of focusing on IndexOf, the method being illustrated. The example displayed above
from Help is overly complex: involving a loop, word counting, and one of the less frequently
used of the IndexOf method's over-loaded variations. The idea that the example is supposed to
be demonstrating gets lost in a mess of irrelevancies. To be really helpful to VB programmers,
Help code and Help narrative explanations should be written by a professional
writer/programmer, not simply someone technically competent, with a strong C bias. And the
example code should simply illustrate the method being explained, like this:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Dim s As String = _
"Now is the time for all good men to come to the aid of their party."
Dim found As Integer = s.IndexOf("men")
Console.Write(found)
End Sub

Grappling with Framework Class Descriptions

You have to learn how to translate the class descriptions in the Object Browser, online
documentation, or Help into useable VB code. Sure, there's example code in many Help
entries, but that code all too often doesn't precisely demonstrate the syntax you are looking for
(it was written by C programmers, after all).

Other entries offer no example code at all. There are tens of thousands of members in
VB.NET, each with its own signature (parameter list) or set of signatures (thanks to
overloading). And as you'll see in this chapter, even seemingly similar classes can require
quite different instantiation and different syntactic interactions with other classes to
accomplish a particular job.

You therefore frequently have to read a description in Help, the Object Browser, or other
documentation and then translate that description into executable source code.

Press Ctrl+Alt+J to open the VB.NET Object Browser. Locate System.IO.File, then in the
right pane locate the first version of the Create method, as shown in Figure 1.1. In the lower
pane, you see this information:

Public Shared Function Create(ByVal path As String) As System.IO.FileStream
 Member of: System.IO.File

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 6

Summary:
Creates a file in the specified path.

Parameters:
path: The path and name of the file to create.

Return Values:
A System.IO.FileStream that provides read/write access to the specified file.

Many VB programmers aren't used to having to interpret this kind of information—VB used to
be a simpler language. Now, with VB.NET, it's a new ball game.

You are certain to find yourself often looking at something like the description in Figure 1.1,
and wondering how to change this into source code.

The Hunt for a Grammar

We want to think that there is an underlying set of rules, a grammar, that organizes .NET
source code. We want to learn the rules so we can instantiate objects, and invoke their
methods, without having to continually make educated guesses, then see error messages, then
try again by adjusting the syntax, punctuation, or phrasing. We want to assume that the
grammar of .NET is consistent—so we don't have to struggle time and again with
constructions that follow no particular pattern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 1.1 Often this is all the information you get about how to use a .NET class. Translating this into
useable source code is up to you.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 11

its Sub New is executed automatically. Because constructors can accept arguments, the person
who writes a class can specify which arguments, if any, are required (or optional, in the case
of overloaded constructors).

Assemblies Three Ways

Recall that you needn't use an Imports statement to use objects in the XML namespace or the
data namespace. You do, however, need to use Imports with other namespaces, including quite
commonly used ones such as System.IO. There appears to be no rational reason why certain
assemblies are referenced by default, and others need to be imported. (One clue is perhaps that
nearly any C code you look at always contains #include <stdio.h>, the standard I/O
library.)

Beyond that, there is even a third class of assemblies that cannot be referenced by Imports.
They are included in your projects by choosing Project Add Reference.

Another curiosity. You find one list of default assemblies in the References section of Solution
Explorer, and a slightly different list of assemblies (including the Collections namespace)
when you right-click the name of your project (it's boldface) in Solution Explorer, choose
Properties from the context menu, then click the Imports option in the left pane of the Property
Pages dialog box. You see that only some namespaces here duplicate those in Solution
Explorer. What gives?

Understanding Data Types

Earlier you saw how to use the GetDirectories method of the DirectoryInfo object to obtain a
list of subdirectories:

Dim di As DirectoryInfo = New DirectoryInfo(''c:\")
 Dim dirs As DirectoryInfo() = di.GetDirectories()

Here's how you can use the Directory object to get a list of files. Notice that you use a string
and string array here, rather than DirectoryInfo objects. Also, notice that the Directory object
does not need to be instantiated at all:

Dim s As String() = Directory.GetFiles("c:\")
 Dim s1 As String
 For Each s1 In s
 Console.WriteLine(s1)
 Next

This is the information from the Object Browser, explaining that you need to assign the results
of the GetFiles method to a string array:

Public Shared Function GetFiles(ByVal path As String) As String()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Experienced VB programmers are used to a finite set of variable data types (strings, objects,
and a handful of numeric types). Now, in VB.NET, you must get accustomed to the fact that
everything is an object. Further, some objects must be instantiated before they can be used
(with the New statement), but other objects— viewed by the .NET designers as more "basic"
objects, one assumes—do not need instantiation. The DirectoryInfo object does need
instantiation; the Directory object does not.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 18

If everything in .NET is an object, then everything is—at least abstractly—a data type.
Fortunately, it's not this bad; within a given class, such as Color, there are enumerations that in
themselves aren't, technically, objects. However, most VB programmers are used to just
assigning a simple string (or at least a built-in enum, such as VBBlue) to many different
properties. For example:

Backcolor = ''blue"

Now, in .NET, you must either use Imports to bring in a specialized namespace, or fully
qualify your value:

Me.BackColor = Color.Blue

The System.Drawing namespace is now included in current VB.NET projects by default, so
you don't have to fully qualify this one. The underlying problem here, though, is: How can you
know that there is a Color class, and that it's located in the System.Drawing namespace? How
do you deal with unfamiliar parts of the .NET Framework? Color might be easy enough to
imagine, or you might finally come across example code by using the Help search feature to
locate entries with BackColor =. But how do you deal with more complex situations, such
as the Security namespace? Most books on VB.NET avoid discussing the System.Security
assembly precisely because it is both obscure and massive. This in spite of the fact that
communication and security are the primary issues that distinguish the .NET world from
classical VB programming. Put another way: OOP itself is fundamentally a set of rules
designed to solve communication and, especially, security problems. Code reusability, the
primary justification for OOP, is largely an attempt to enforce communication rules to solve
security problems—though doubtless OOP theorists will consider this a reductive
generalization.

Exploiting the Framework

But back to our regular programming. What are the best strategies for tapping into the
tremendous power (and consequent complexity) of the .NET Framework?

Remember that it's hierarchical. .NET APIs are divided into namespaces. Namespaces contain
a set of related classes. Classes contain methods (and the methods are usually overloaded—
permitting you to perform different, but related, jobs based on what parameters you pass).

Let's try to solve a common problem, to see some tactics you can use to locate the solution.

Assume that you have to parse a string. You've got a comma-delimited string from a use like
"Barry Morgan, 12 Dalton Ln., Akron, OH, 22022" and you want to subdivide it into its
substring parts. You want to create a string array holding each part.

Start by running VB.NET Help, then click the Search tab. Search for parse string. You get 500
hits, including a Dr. GUI article that tells you about the Parse method. Unfortunately, it doesn't
parse, it converts a string into other data types. Somebody incorrectly thinks that "parse"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parse, it converts a string into other data types. Somebody incorrectly thinks that "parse"
means convert. When computer languages are written, the specification committees don't
include any English majors, so we get too many poorly named functions like this one, and too
many nearly unreadable "help" narrative descriptions.

Trying to narrow your search using quotes to look for "parse a string" fails. Let's try the Index
feature.

Click the Index tab in the Help screen and type System.Text (no luck here, unless you want to
enter the complicated netherworld of Regex, which requires even more elaborate code than
using InStr to loop through your string).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 20

Whoever wrote the Help entry for the Split method evidently was unaware of this approach.
The code example employs the bizarre, cumbersome ToCharArray method instead.

Note that VB programmers are unfamiliar with using braces in their programming, but in
VB.NET they can be used to fill an array with values, as this example illustrates. The rest of
the code is straightforward:

Dim delim As Char() = {'',"}
Dim tt As String = "Barry Morgan, 12 Dalton Ln., Akron, OH, 22022"
Dim split As String() 'create string array
split = tt.Split(delim)
For i As Integer = 0 To split.Length - 1
 Console.WriteLine(split(i))
Next

Here's an even more exotic alternative syntax. It combines the declaration of the string array
with the declaration of the character array:

Dim split As String() = tt.Split(New [Char]() {","})

This is exotic to VB programmers partly because it uses brackets in addition to braces—
neither punctuation is used in classic VB. It's also exotic in that a single logical line of code
manages to declare two arrays, and to add a value to the second array.

Whatever. It's fine that there are several ways to create and fill a character array. Just fiddle
around until you come upon a syntax that works.

A Useful Class View Utility

WinCV (Windows Class Viewer) comes with .NET. It offers you yet another view of the
details of every class.

TIP If you're not sure where to begin in WinCV or other Framework references, or if you want
a useful descriptive overview of the available .NET classes, click on the Contents tab at the
bottom of the VB.NET Help window, then follow this path in the tree in the left pane: Visual
Studio .NET\.NET Framework\Reference\Class Library. You'll see all the namespaces there,
and all the classes within them.

To add WinCV to the IDE, choose Tools External Tools and type WinCV into the Title
field. Click the ellipsis ... button next to the Command field. Now find WinCV.exe in this
path: C:\Program Files\Microsoft Visual Studio .NET
2003\SDK\v1.1\Bin\WinCV.exe. (If you haven't upgraded to VS.NET 2003, the location
may be .NET 2002 or simply .NET.)

Choose Project Directory in the Initial Directory field, and click OK to close the Open File
dialog box. WinCV is now available from the VB.NET Tools menu.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 21

A HANDY C# TO VE.NET TRANSLATORA

As you know, unfortunately some .NET Help and reference source code is written in C#
(particularly online examples). However, C# is actually quite a simple language to understand
and to translate into VB.NET. C# shares some of the backwards syntax of other C languages,
and of course all those semicolons—but you can generally switch the C# source code lines
around pretty quickly to get usable VB.NET code. However, if you don't want to bother,
there's a handy translator that takes C# and generates the equivalent VB.NET. Find it at
www.kamalpatel.net/ConvertCSharp2VB.aspx, and the utility is also available with full source
code showing the process and the rules. If you prefer, though, you can just paste some C# and
get the result automatically.

Choose Tools WinCV and then type string in the Searching For box. You now see all the
members of the string class, in a helpful quasi source code format. It's not VB, unfortunately;
it's C#— but if you ignore the useless semicolons ending each line, and make a few other
allowances (such as changing brackets to parentheses), it often provides a better overall view
of a class's members than you get in Help. For example, the entry for the Split method looks
like this:

public string[] Split((char[] separator));
public string[] Split(char[] separator,, int count);

You have to add the object for the method (String.), so after a little VB massaging it actually
should look like this:

String() = String.Split(char() separator)

That's pretty descriptive pseudo-code. The WinCV is good for quick overviews of classes,
their overloaded members, and correct syntax.

A Brief Lexicon

Given that C usage has permeated VB.NET, you might want to memorize the definitions and
comparisons in Table 1.1. You'll come upon them now and then in the .NET documentation,
and it helps to know what terms have shifted meaning. This small list supplements the other C-
derived terms discussed at greater length throughout this chapter. Note that many of these
term-pairs are still used interchangeably.

TABLE 1.1: VB VS. VB.NET TERMINOLOGY

TRADITIONAL VB USAGE .NET

Private or Ppublic variables inside
classes

Fields

DLL, library, or application Assembly

Related DLLs, libraries, or
applications

Namespace (imprecise in size: there can be multiple
namespaces within a single assembly, or a single
namespace can include several assemblies. Namespaces
can even contain other namespaces.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 22

Project (an application and its
dependencies)

Solution (design-time source code) or Assembly (runtime
executable and support). A Solution can contain multiple projects,
in which case you must specify the ''startup project" in the Project
menu.

Classes, arrays, modules,
enumerations, structures,
interfaces, and value types,
collectively.

Types

Code Managed code (runs under the control of the .NET runtime library.
C++ programmers can choose to write unmanaged code.)

DOS Application Console Application

Form1_Load Sub Main

RecordSet DataSet

Fields and records in
databases

Columns and rows in databases

Built-in constants An enumeration (or enum)

User-defined type Structure

Error Exception (or, when working with XML, Fault)

Trapping errors Handling exceptions

Classes are Public by default Classes are Friend by default

Summary

In this chapter I tried to explore and describe ways to successfully approach VB.NET. I
wanted to help you come to grips with this important language, giving you tools and concepts
necessary to master it. Learning to use VB.NET is well worth the effort: VB.NET is quite
powerful and flexible, a significant improvement over traditional VB.

But there is effort required. .NET is a new world. And, alas, Microsoft's documentation for
VB.NET (both online and in the Help system) is mostly written in a language somewhat like
English, and the code examples are usually similar to VB.NET code. Similar, somewhat like,
but...you'll laugh, you'll cry, you'll pull your hair.

All too often the C programmers who wrote the Help descriptions are better programmers than
writers. And they're better C programmers than VB programmers, writing code examples that
can best be described as Javaesque—Visual Basic from an alternative universe. Close, but not
right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nonetheless, adapting to a powerful, new, cutting-edge computer technology requires that you
sacrifice some time and make some effort. I hope that this chapter has given you guidance and
tools that simplify the process. VB.NET—once you're at ease with it—expands your
programming abilities in ways you never imagined.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 23

Chapter 2
New Ways of Doing Traditional Jobs
THIS CHAPTER COVERS VARIOUS techniques that are new in VB.NET and that most
programmers need to know about. For example, we must now move to streaming and
serialization, capabilities that extend the power of traditional data storage and retrieval, and
that address the needs of I/O beyond the local hard drive. These and other important advances
are the topic of this chapter.

Clipboard Access

To retrieve text contents from the Windows Clipboard, you used this code in VB version 6 and
earlier:

Text1.Text = Clipboard.GetText

Now in VB.NET you can bring text in from the Clipboard using this code:

Dim txtdata As IDataObject = Clipboard.GetDataObject()

' Check to see if the Clipboard holds text
If (txtdata.GetDataPresent(DataFormats.Text)) Then
 TextBox1.Text = txtdata.GetData(DataFormats.Text).ToString()

End If

To export or save the contents of a TextBox to the Clipboard, use this code:

Clipboard.SetDataObject(TextBox1.Text)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 24

Working with ''Control Arrays"

When you had several controls of the same type performing similar functions, being able to
group them into a control array was a valuable feature in classic VB, allowing you to
manipulate the group efficiently. Also, a control array was the only way to create a new
control (such as a brand-new TextBox or a new group of buttons) while a program was
running.

Grouping controls into an array lets you manipulate their collective properties quickly.
Because they're now labeled with numbers, not text names, you can use them in loops and
other structures (such as Select Case) as a unit, easily changing the same property in each
control by using a single loop or index-based scheme. Similarly, you can collapse all their
individual Click events into a single, collective Click event.

There were several ways to create a control array, but probably the most popular was to set the
index property of a control during design time. During runtime, you can use the Load and
Unload commands to instantiate new members of this array.

Each control in a control array gets its own unique index number, but they share every event
in common. In other words, one Click event, for example, would be shared by the entire array
of controls. An Index parameter specified which particular control was clicked. So you would
write a Select Case structure like the following within the shared event to determine which
of the controls was clicked and to respond appropriately:

Sub Buttons_Click (Index as Integer)
Select Case Index
Case 1
 MsgBox ("HI, you clicked the OK Button!")
Case 2
 MsgBox ("Click the Other Button. The one that says OK!")
End Select
End Sub

(There is a way to simulate this all-in-one event that handles all members of a control array in
VB.NET. It is described in the following section, "Multiple Handles.")

Control arrays have now been removed from the language. However, in VB.NET you can still
do what control arrays did. You can instantiate controls during runtime, and also manipulate
them as a group. You just use different techniques.

To accomplish what control arrays used to do, you must now instantiate controls (as objects)
during runtime and then let them share events (even various different types of controls can
share an event). Which control (or controls) is being handled by an event is specified in the
line that declares the event (following the Handles command, as you'll see in the next
example). Instead of using index numbers to determine what you want a control to do (when it
triggers an event), as was the case with control arrays, you must now check an object
reference. You are also responsible for creating events for runtime-generated controls. The
Name property can now be changed during runtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WARNING Experienced VB programmers will expect VB.NET to assign names to dynamically
added controls. However, be warned that VB.NET does not automatically assign names to
new controls added at design time. Therefore, the Name property remains blank unless you
specifically define it, as you will do in the following example (textBox1.Name =
"TextBox1")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 28

TIP VB.NET creates the event in the code window for you, if you wish. Your btnSearch doesn't
show up in the Design window, so you cannot double-click it there to force VB.NET to create
a Click event for it. However, you can use the dropdown lists. After you have declared a
control WithEvents (Dim WithEvents btnSearch As New Button()), drop the list in the
top left of the code window, and locate btnSearch. Click it to select it. Then drop the list in the
top right, and double-click the event that you want VB.NET to create for you in the code
window.

TIP Each form has a collection that includes all the controls on that form. You access the
collection, as illustrated previously, using Me.Controls or simply Controls. The collection
can be added to, as shown in the previous example, or can be subtracted from
Me.Controls.Remove(Button1).

Note, too, that the Me.Controls collection also has several other methods: Clear, Equals,
GetChildIndex, GetEnumerator, GetHashCode, GetType, SetChildIndex, ShouldPersistAll,
and ToString. There are also three properties available to Me.Controls: Count, Item, and
IsReadOnly.

Using Arrays

You probably should familiarize yourself with all the new, significant members available in
VB.NET for the collection classes, including the various kinds of arrays.

Arrays can now contain objects (technically, that's all they now contain) and can search and
sort themselves, and the new ArrayList class is especially worthwhile.

Zero-Based Collections (Sometimes)

Arrays are always zero-based in the .NET Framework. In classic VB you could use the
Option Base statement to allow arrays to start with element 1 instead of 0. Option Base
has been deleted from VB.

Therefore, you must wrestle with the artificial distinction between dimension (the size you
declare) and capacity (the number of elements). For decades now, programmers have had to
fiddle with their loop values to fix this silly distinction:

Dim a(3) As String
For i = 0 To a.Length - 1

Because dimensioning this array as 3 actually creates 4 elements, you must therefore subtract
1 from your loop counter.

We humans always count up from 1 when dealing with collections (lists, sets, groups, and so
on). It's natural to our way of describing, and therefore thinking about, numbers. When the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on). It's natural to our way of describing, and therefore thinking about, numbers. When the
first person arrives at your BBQ, you don't say ''Welcome, you're the zeroth one here!" And
when your child is one year old, you don't send out invitations titled "Jimmy's Zeroth Birthday
Party!!" We quite properly think of zero as meaning nothing—absence, nonexistence.

You've doubtless had to fiddle around with this foolishness many times in your programming
career. The old familiar error message, "An unhandled exception of type
'System.IndexOutOfRangeException' occurred...," has been unnecessarily triggered millions
of times. Unnecessarily because mathematical diction, fundamental logic, elementary
grammar, and simple common sense all require that lists begin with the first (not the zeroth)
item. Computer languages, though, are designed by a certain kind of committee—a group that
does not invite language specialists, such as English majors, to the table.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 35

The Flexible ArrayList

The ArrayList, new in VB.NET, offers a variety of helpful features not typical of ordinary
arrays. For one thing, it can dynamically resize itself, so you don't have to resort to ReDim and
other techniques that an ordinary array can demand.

Here's one way to use an ArrayList to add values:

Dim MyArray as new ArrayList
 myArray.Add (''key")
 myArray.Add ("Name")
 myArray.Add ("Address")
Msgbox (MyArray(2))

Both array and ArrayList .NET classes can sort, search, reverse, and otherwise manipulate
their data. The ArrayList, however, takes the idea of an array to new levels. One problem with
arrays is that you can't easily add or delete items. If you want to remove, say, the tenth item in
an array, you must write some code that loops through the array, moving each value down one
in the index list from the tenth item up to the final element.

The ArrayList has built-in facilities to automatically handle any resizing and re-indexing that's
needed if you insert or delete elements.

Put a ListBox and a Button on a form. Then type in the code in Listing 2.6, which illustrates
how you can remove an element by using the RemoveAt method and specifying an index
number.

LISTING 2.6: USING THE REMOVEAT METHOD TO DELETE AN ARRAY ELEMENT
Public Class Form1

 Inherits System.Windows.Forms.Form

 Public arrList As New ArrayList()

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
 arrList.Add("ET")
 arrList.Add("Pearl Harbor")
 arrList.Add("Rain")

 ListBox1.Items.AddRange(arrList.ToArray)

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 37

example with a ListBox and Button, replace the Button's Click event with this code to see how
to bind an ArrayList to a ListBox:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim Monkey As New ArrayList()
 Monkey.Add(''A")
 Monkey.Add("B")
 Monkey.Add("C")
 Monkey.Add("D")
 Monkey.Add("E")
 Monkey.Add("F")
 ListBox1.DataSource = Monkey
 End Sub

Enumerators

You're used to looping with For...Next, While, and other structures, but now Microsoft
encourages us to use enumerators when looping through a collection class. This example
illustrates how to rewrite the previous example to display both elements in the RangeOfArrList
ArrayList:

Dim RangeArrListEnumerator As System.Collections.IEnumerator = _
 RangeOfArrList.GetEnumerator()
 While RangeArrListEnumerator.MoveNext()
 Console.Write(RangeArrListEnumerator.Current)
 Console.WriteLine()
 End While

Using HashTables

The collection class called a HashTable is quite similar to the ArrayList in both design and
features. However, a HashTable permits "strong data typing": You can give each element a
name in addition to its index number.

In some situations, it's easier to work with a collection if each element is labeled. Say your
collection holds the foods eaten by each animal in your private zoo. It's simpler to manage the
data if each element is named after a different animal:

Dim Food As New Hashtable()
 Food.Add("Lion", "Meat")
 Food.Add("Bear", "Meat")
 Food.Add("Penguin", "Fish")
 Console.WriteLine(Food.Item("Bear"))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 38

In this example, the names of the animals can be used as keys to access the elements, instead
of index numbers. Each key must be unique, though the data itself can be duplicated (''meat"
and "meat" in this example).

New Date/Time Techniques

Before VB.NET, the Date function used to give you the current date (for example, 11/29/00).
The Time function used to give you the current time. Now you must use the Today and
TimeOfDay functions instead.

NOTE The old DATE$ and TIME$ functions have been eliminated.

In Visual Basic 6.0 and previous versions, a date/time was stored in a double (double-
precision floating point) format (four bytes). In VB.NET, the date/time information uses the
.NET Framework DateTime data type (stored in eight bytes). There is no implicit conversion
between the Date and Double data types in VB.NET. To convert between the VB6 Date data
type and the VB.NET Double data type, you must use the ToDouble and FromOADate
methods of the DateTime class in the System namespace.

Here's an example that uses the TimeSpan object to calculate how much time elapsed between
two DateTime objects:

Dim StartTime, EndTime As DateTime
Dim Span As TimeSpan
 StartTime = "9:24" AM
 EndTime = "10:14" AM
 Span = New TimeSpan(EndTime.Ticks - StartTime.Ticks)
 MsgBox(Span.ToString)

Notice the Ticks unit of time. It represents a 100-nanosecond interval.

Here's another example illustrating the AddHours and AddMinutes methods, how to get the
current time (Now), and a couple of other methods:

Dim hr As Integer = 2
Dim mn As Integer = 13
Dim StartTime As New DateTime(DateTime.Now.Ticks)
Dim EndTime As New DateTime(StartTime.AddHours(hr).Ticks)
EndTime = EndTime.AddMinutes(mn)
 Dim Difference = New TimeSpan(EndTime.Ticks - StartTime.Ticks)
 Debug.WriteLine("Start Time is: " + StartTime.ToString("hh:mm"))
 Debug.WriteLine("Ending Time is: " + EndTime.ToString("hh:mm"))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 39

 Debug.WriteLine(''Number of hours elapsed is: " + Difference.Hours.ToString)
 Debug.WriteLine("Number of minutes elapsed is: " + _
Difference.Minutes.ToString)

The following sections provide some additional examples that illustrate how to manipulate
date and time.

Adding Time

Here's an example of using the AddDays method:

Dim ti As Date = TimeOfDay 'the current time
 Dim da As Date = Today 'the current date
 Dim dati As Date = Now 'the current date and time
 da = da.AddDays(12) ' add 12 days
 Debug.WriteLine("12 days from now is: " & da)

Similarly, you can use AddMinutes, AddHours, AddSeconds, AddMilliseconds, AddMonths,
AddYears, and so on.

Using the Old-Style Double DateTime Data Type

There is an OA conversion method for currency data types and for date data types. (OA stands
for Ole Automation, a legacy technology that still keeps popping up.) Here is an example
showing how to translate to and from the old double-precision date format:

Dim dati As Date = Now 'the current date and time
Dim da as Date, n As Double
n = dati.ToOADate ' translate into double-precision format
n = n + 21 ' add three weeks (the integer part is the days)
da = Date.FromOADate(n) ' translate the OA style into .NET style
Debug.WriteLine(da)

Use Now, not Today, for these OA-style data types.

Finding Days in a Month

2004 is a leap year. Here's one way to prove it:

Debug.WriteLine("In the year 2004, February has " & _
Date.DaysInMonth(2004, 2).ToString & " days.")
Debug.WriteLine("In the year 2005, February has " & _
Date.DaysInMonth(2005, 2).ToString & " days.")

File I/O (Streaming)

The classic familiar VB file opening syntax is this:

Open filepath {For Mode}{options}As {#} filenumber {Len = recordlength}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Open filepath {For Mode}{options}As {#} filenumber {Len = recordlength}

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 45

Form References: Communication Between Forms

Before VB.NET, you could reference a form's properties in code inside that form by merely
specifying a property (leaving off the name of the form):

BackColor = vbBlue

Or to reference a form from outside that form: If you want to show or adjust properties of
controls in one form (by writing programming in a second form), you merely use the outside
form's name in your code. For instance, in a CommandButton_Click event in Form1, you can
Show Form2, and change the ForeColor of a TextBox on Form2, like this:

Sub Command1_Click ()
Form2.Show
Form2.Text1.ForeColor = vbBlue
End Sub

Now in VB.NET, when you reference a form's properties from code inside the form, you must
use Me:

Me.BackColor = Color.Blue

And to manipulate a form's contents from outside the form: Say that you want to be able to
contact Form2 from within Form1. You want to avoid creating clone after clone of Form2. If
you use the New statement willy-nilly all over the place (Dim FS As New Form2), you'll be
propagating multiple copies of Form2, which is not what you want. You don't want lots of
windows floating around in the user's Taskbar, all of them clones of the original Form2.
Remember that every time you use As New, you instantiate a new object.

Instead, you want to be able to communicate with the single, original Form2 object from
Form1. But how can you do that? How can you create an object variable in Form1 that
references Form2?

One way to do this is to create a public variable in Form1, like this:

Public f2 As New Form2
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 f2.Show()
 f2.BackColor = Color.Blue
End Sub

Form1 is instantiated first when a VB.NET project executes (by default, it is the ''startup
object") in any Windows-style VB.NET project. So, by creating a Public variable that
instantiates Form2 (the New keyword does that), you can then reference this variable (F2 here)
any time you need to manipulate Form2's properties or methods from within Form1. It's now
possible for Form1 to be a client of Form2, in other words.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The problem of communicating from Form2 to Form1, however, is somewhat more complex.
You cannot use the New keyword in Form2 or any other form because that would create a
second Form1. Form1 already exists because it is the default startup object.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 48

 If e.KeyCode = Keys.N And e.Control = True Then
 'they pressed CTRL+N
 searchnext() 'respond to this key combination
 Exit Sub
 End If
End Sub

Loading Graphics with LoadPicture

Before VB.NET, you put a graphic into a PictureBox with this code:

Set Picture1.Picture = LoadPicture(''C:\Graphics\MyDog.jpg")

Now in VB.NET, LoadPicture has been replaced with the following code:

PictureBox1.Image = Image.FromFile("C:\Graphics\MyDog.jpg")

Managing the Registry

Although .NET applications avoid using the Registry, you may still nonetheless need to access
it. Where should a VB.NET programmer store passwords or other customization information
(such as the user's choice of default font size) instead of the Registry that you've used for the
past several years? Cookies? What goes around comes around. You can go back to using good
old once-disgraced .INI files, or similar simple text files (though they can be deleted). They
are, however, quick and easy, and using them avoids messing with the Registry.

In VB6 and before, you could use API commands such as RegQueryValueEx to query the
Registry. Or you could employ the native VB Registry-related commands such as GetSetting,
like this:

Print GetSetting(appname := "MyProgram" , _
 section := "Init" , key := "Locale" , default := "1")

If you must use the Registry, here's how to access it from VB.NET. In VB.NET, you can
query the Registry using the RegistryKey object. Type Listing 2.13 into a button's Click event.

LISTING 2.13: MANAGING THE REGISTRY
Private Sub Button1_Click_1(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim objGotValue As Object
 Dim objMainKey As RegistryKey = Registry .CurrentUser
 Dim objOpenedKey As RegistryKey

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 49

 Dim strValue As String

 objOpenedKey = objMainKey.OpenSubKey _
(''Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings")
 objGotValue = objOpenedKey.GetValue("User Agent"
 If (Not objGotValue Is Nothing) Then
 strValue = objGotValue.ToString()
 Else
 strValue = " "
 End If

 objMainKey.Close()

 TextBox1.Text = strValue

 End Sub

You must also add Imports Microsoft.Win32 up there at the top of the code window
where all those other Imports are. The Microsoft.Win32 namespace contains the Registry-
access functions, such as the OpenSubKey method that you need in this example.

Press F5 to run this example, and click the button. If your Registry contains the same value for
this key as my Registry contains, you should see a result similar to this:

Mozilla/4.2 (compatible; MSIE 5.0; Win32)

Note that the complete name (path) of the entire Registry entry is divided into three different
locations in the example code (they are in boldface): first the primary key, CurrentUser, then
the path of subkeys, and finally the actual specific "name":
objOpenedKey.GetValue("User Agent").

Writing to the Registry

The RegistryKey class includes a group of methods you can use to manage and write to the
Registry. These methods include Close, CreateSubKey, DeleteSubKey, DeleteSubKeyTree,
DeleteValue, Get-SubKeyNames, GetType, GetValue, GetValueNames, OpenSubKey, and
SetValue.

Random Numbers

In VB6 and previous versions, you would generate a random number between 1 and 12 like
this:

X = Int(Rnd * 12 + 1)

Or to get a random number between 0 and 12, you would use this code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

X = Int(Rnd * 13)

You used the Rnd and Randomize functions.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 53

For i = 0 To a.Length - 1
 Debug.WriteLine(i.ToString + '' . + " a(i).ToString)
Next

WARNING Neither the old Rnd function nor the new Random object uses algorithms that are
sufficiently sophisticated to be of direct use in most kinds of cryptology.

SendKeys

You can still use the Shell command to run an application, such as Notepad. Shell works much
as it did in VB6. An associated command, SendKeys, imitates the user typing on the keyboard.
SendKeys works differently in VB.NET. This code will run an instance of Windows's
Notepad, and then "type" This message into Notepad:

Dim X As Object
X = Shell("notepad.exe" , AppWinStyle.NormalFocus)
System.Windows.Forms.SendKeys.Send("This Message")

WARNING If you put this code in a Form_Load event, it will only send the T into otepad (there
are timing problems involved). So, put it into a different event, such as Button1_Click, and
VB.NET will have enough time to get itself together and send the full message.

Serializing

It's easy enough to store a text file. You just save it as Unicode characters, byte-pairs, or
whatever. Simple, consistent variables are easily handled by the streaming techniques
described earlier in this chapter.

When storing a simple integer or string variable, for example, there are only three things to
worry about: the variable's name, its type, and its value. Such simple entities can just be
directly streamed.

However, other kinds of data need to be stored or retrieved. More complicated constructions,
such as arrays or objects, require that you also store an internal organization (the hierarchy, or
other metadata). Such objects are sometimes fairly elaborate. What's more, there's no known
pattern. Classes are defined by programmers. So how can VB.NET know in advance what to
store or retrieve, the way it knows all about storing integers and strings?

The answer to streaming more complicated or unique data constructions is serialization.
Serialization deconstructs a complicated construction into data and metadata that can be
streamed. This deconstruction preserves the internal order of the construction, data types,
scope, assemblies, and other details that must all enter a stream and be saved (or be retrieved).
Serialization can handle objects, arrays, rectangles, and pretty much any other complex data
construction. (I'm using the term construction rather than structure so you won't be puzzled by
the other use of structure inVB.NET.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB.NET includes considerable serialization facilities. You can, for example, pick and choose
which fields in a class you want serialized. To exclude a particular field from serialization, use
the following syntax:

<NonSerialized()> Public Secrets As String

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 57

 Console.WriteLine(d1.Price)
 Console.WriteLine(ar(2))

 End Sub

End Class

Notice that in this example, you created a stream (fs1) and then used it to deserialize both
your Donut structure and the ArrayList. One stream can handle multiple serializations or
deserializations.

Summary

This chapter is a kind of mini-encyclopedia of the primary differences between classic Basic's
popular techniques and the way they're handled—the dissimilar way they're handled—in
VB.NET.

I chose these particular techniques because of their usefulness, and the frequency with which
most programmers use them in their projects, but also because they are handled in what
traditional Basic programmers may consider unusual, novel, or counterintuitive ways. For
example, in .NET setting Properties in Form1 from within the code of Form2 is not
straightforward (this used to be easy).

You should be able to glance through the section titles in this chapter to locate the solution to a
problem that's bothering you. I cover saving and loading data, including new techniques such
as serialization (which saves disparate kinds of data); control arrays and other types of arrays,
and the new methods available for sorting and searching them; date/time manipulations;
random numbers; trapping keypresses; managing the Registry; loading graphics; the new
flexible data binding; and so on. I don't claim that this chapter contains anywhere near the total
list of differences between traditional Basic and VB.NET—only that it's a collection of many
of the more significant, and less obvious, differences.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 59

Chapter 3
Serialization Techniques
IN CHAPTER 2 YOU learned how to read and write basic data types from and to files using
streams. As far as file manipulation goes, Visual Basic got a real facelift. However, most
practical applications don't store simple numeric values and strings to files. They need to store
objects and, quite often, collections of objects. These objects may be built-in objects (such as
Rectangle, Color, and other simple objects) or custom objects. This is where serialization
comes in. Serialization is one of the truly exciting features introduced with the .NET
Framework.

Serialization is the process of converting an arbitrary object, or collection of objects, into a
stream of bytes, suitable for transmission to another process or another computer, or for
persisting to a disk file. In the preceding chapter you learned how to store information to files
using streams. When you use streams to write information to a file, or read it back from a file,
you're responsible for formatting your data and writing them to the file. To read back the data,
you must know what data types you're reading from the file and place them into appropriate
variables.

Serialization goes beyond saving data to a file. It's a mechanism for saving an object in a way
that makes it easy to reconstruct it later using the reverse process, which is called
deserialization. Serializing an object means saving its properties. The serialization process
doesn't persist the definition of an object, just its state. In other words, you can't serialize the
methods of an object. You can serialize the values of its properties, so that you can later
reconstruct an instance of the same object that will be in the same state as the object you
serialized. The application that will deserialize the object must have access to the object's code
(i.e., the class from which the object was instantiated), so that it can recreate the persisted
object. Most importantly, you don't have to specify how each property is serialized. The
serialization classes of the .NET Framework will determine how each data type is serialized
and will read back the values of the serialized properties.

Serialization is not entirely new to the .NET Framework. VB6 programmers are familiar with
the PropertyBag object, which we used to store instances of objects. .NET's serialization
classes are more flexible and powerful and they go beyond the binary format.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 60

How Serialization Works

Let's say you have a class named Person, which stores information about persons (customers,
contacts, and so on). The Person class obviously exposes properties such as Name, Address,
PhoneNumber, and so on. Depending on the application, the Person class may store a person's
date of birth, a customer's credit limit, or just about any property you will need in your code.
For each person you want to manipulate in your code, you'll create an instance of the Person
class and populate this instance with different data. Each instance of the Person class is a
Person object and its state is determined by the values of its properties. To persist an object of
the Person type, you need only save the values of its properties—this is what serialization is
all about. The class may also expose methods that act on the data, but code is not serialized.

To read back the persisted values into the same application, you simply create new instances
of the Person class and populate them with the values of the serialized properties. Once all
properties and fields have been assigned values, you have an object that's identical to the
original one (the object you serialized) and you can call any of the object's methods to
manipulate them.

Assuming that the application that deserializes the object has access to the code of the Person
class, it's almost trivial to serialize and deserialize objects. You create an instance of the
appropriate Serializer class and call its Serialize and Deserialize methods. Serialized objects
can also be used by applications that don't have access to the code of the class that produced
the objects. The remote application can't recreate identical objects, but it can use the serialized
data to reconstruct an object with a similar structure. Of course, the remote application will
never call the methods of the original class, because it can't access them. As you will see, it's
possible to serialize an object in XML format. XML contains a description of the object's
values, making it possible to create a new class with similar properties. For example, the
remote application can create a Customer class, which can read some of the serialized
properties (it can use the Name and Address properties, say, but skip the birth date). When you
serialize objects in XML, the resulting document holds not only data, but its structure as well.
Another application can take advantage of the self-descriptive nature of the XML document
and reuse the data.

Serialization Types

There are three types of serialization: binary serialization, SOAP serialization, and XML
serialization. Binary and SOAP serialization are very similar; XML serialization is a little
different, but it allows you to customize the serialization process. Binary serialization is
performed with the Binary-Formatter class and it converts the values of the object's properties
into a binary stream. The result of the binary serialization is very compact and the
serialization/deserialization process is as fast as it can get. However, binary serialized objects
can be used only by applications that have access to the code of the class that produced the
objects and can't be used outside .NET. Another limitation of binary serialization is that the
output it produces is not human-readable and you can't do much with a file that contains a
binary serialized object without access to the original class's code. Because binary serialization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

binary serialized object without access to the original class's code. Because binary serialization
is very compact and very efficient, it's used almost exclusively to persist objects between
sessions of an application, or between applications that share the same classes. For example,
you can create an ArrayList of Person objects, serialize them to a file and reload the collection
of the serialized objects from the file in a later session of the same application.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 65

The last few statements in the event handler extract the two objects (the Rectangle and Bitmap
object) from the ArrayList and display some of their basic properties. The last statement
retrieves the bitmap stored in the second item of the reconstructed ArrayList, casts it to the
Bitmap type, and then uses it as the form's background image. The code displays the bitmap
on the form to demonstrate that the bitmap was preserved during the serialization process.

BINARY SERIALIZATION PRESERVES TYPE FIDELITY

If you serialize the same ArrayList in SOAP and binary formats, you'll realize that the sizes of
the two files are very different. The file that stores the binary representation is actually much
smaller than the file with the SOAP representation of the same object. The binary file's size is
nearly the same as the image file, with a few dozen more bytes for the Rectangle object. The
SOAP file is nearly twice as large. The difference is not due to any form of compression; the
SOAP file is quite verbose.
This remark brings us to a very important point about the various types of serialization: type
fidelity. Binary serialization preserves type fidelity, because it has stored the bitmap as a GIF
file. The SOAP serialization, on the other hand, has stored the actual bitmap, without the
compression built into the GIF file. If you open the Objects.bin file generated by the
SoapFormatter, you'll see that the image's bytes are encoded in Base64, but the element under
which the bitmap is stored is called ''Bitmap." In other words, the SoapFormatter serialized the
actual bitmap, not the GIF file from which the Bitmap object was constructed.
In most cases, such extreme fidelity won't matter. After all, a bitmap is a bitmap, and as long as
you can reconstruct the image from the serialized data you shouldn't care how the image was
serialized.

An object can be serialized in binary and SOAP format with the same statements. You can
uncomment the statements that refer to the SoapFormatter and comment out the statements
that refer to the BinaryFormatter to test both serialization techniques. Keep in mind that binary
serialization uses the CLR data types and generates the most accurate representation of the
objects. However, it's limited to .NET; you can't use a binary serialized object outside .NET. If
you need to exchange serialized objects with other systems, use SOAP, or XML, serialization.

Creating Serializable Objects

Just about any custom class created in .NET can be serialized, as long as it's marked with the
<Serializable> attribute. Many of the built-in objects are serializable, but not all of them.
Unfortunately, nonserializable .NET classes are not clearly marked as such in the
documentation. As you can understand, all basic data types in .NET are serializable, and so are
some of the collections (arrays and ArrayLists are serializable, but the HashTable isn't). If you
want to serialize an ArrayList with numbers, or strings, you don't have to create a custom
class, or do anything special. You simply call the Serialize method of the appropriate
Serializer class and the collection will be persisted to a stream, which in turn will move the
serialized data to a disk file.

.NET programming means developing and using custom classes. If you want to be able to
serialize your custom classes, all you have to do is prefix their declaration with the
<Serializable> attribute. You don't have to mark any of the class's public fields as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Serializable> attribute. You don't have to mark any of the class's public fields as
serializable, but you can exclude selected fields from the serialization process by marking
them with the <NonSerializable> attribute. Fields

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 79

There's a substantial overhead the first time you create an instance of the XmlSerializer class.
This process, however, isn't repeated during the course of the application. The overhead is due
to the fact that the CLR creates a temporary assembly for serializing and deserializing the
specific type. This assembly, however, remains in memory for the course of the application
and the initial overhead won't occur again. This means that, although there will be an
additional delay of a couple of seconds when the application starts (or whenever you load the
settings), you can persist the class with the application's configuration every time the user
changes one of the settings without any performance penalty.

Custom Serialization

The .NET Framework makes it possible to override the default serialization process and take
complete control of how your objects are serialized and deserialized. You may wish to control
the serialization process if you want to serialize more than just public fields, but not every
aspect of an object. To build classes that control their own serialization, you must first make
sure that they implement the ISerializable interface:

<Serializable()> _
Public Class Employee
 Implements ISerializable

The ISerializable interface contains a single method, the GetObjectData method, whose
signature is the following:

Sub GetObjectData(ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)

The SerializationInfo class exposes the AddValue method, which adds members to the
serialized object. This method accepts as argument a key–value pair, as demonstrated in the
following sample code. The first three fields can be public or private. The last field,
CreationDate, need not even be a member of the class—it's created and populated during the
serialization. The custom deserializer can take this field's value into consideration, or ignore it
completely.

Private Sub GetObjectData(ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)_
 Implements ISerializable.GetObjectData
 info.AddValue(''classField1" , value1)
 info.AddValue("classField2" , value2)
 info.AddValue("classField3" , value3)
 info.AddValue("CreationDate" , DateTime.Now())
End Sub

The custom deserialization process is implemented as an overloaded form of the class's
constructor, which has the following signature:

Friend Sub New(ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 81

You can exploit this information to include additional information with (or exclude
information from) the object you serialize, depending on its context. If the object is being
serialized to a file, for example, you can include a date/time property to indicate when the
object was serialized. Upon deserialization you can extract this value and set the object's
''age." The following constructor serializes an object differently if the serialization process's
destination is a file:

Public Sub New (ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)
 If context.State = StreamingContextStates.File Then
 ' Serialize a date//time member
 Else
 ' Serialize all other fields
 End If
End Sub

Serializing SQL Server Data

Before we end this chapter, we'd like to discuss an interesting topic that combines SQL
Server's support for XML and serialization. SQL Server can return the results of a query in
XML format. The XML document describing the result of a query corresponds to the
serialized version of a custom object and, if we can create a class that matches the schema of
the XML document, we'll be able to deserialize SQL Server's XML response into an instance
of the custom class. In this section we'll describe a technique for moving data out of SQL
Server and into an instance of a custom class, without setting up DataAdapters and populating
DataSets. The custom object will be an object that represents an order, including its header
and its detail lines. The advantage of this approach, as compared to a straight ADO.NET
approach based on DataSets, is that you don't have to worry about related tables and accessing
related rows in DataTable objects. The custom object that represents the order is a business
object that represents one of the entities you work with in your code, and you can manipulate
it through its properties (read the values of an existing order, or create a new order). The
application we'll use to demonstrate this technique is the NWOrders project, which reads
existing orders from the Northwind database and creates new ones using a custom business
object. The application's form is shown in Figure 3.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 3.4 The NWOrders project

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 91

Summary

Serialization is one of the major new components of .NET and it's used heavily throughout the
Framework. Persisting object is not new to .NET, but it's far more flexible and powerful than
the PropertyBag object of VB6. Web Services—the most promising of the .NET technologies
—use SOAP serialization to pass objects between client applications and web servers. SOAP
and binary serialization is also used in remoting to pass objects between remote applications.

Binary serialization is very efficient and very compact, but it's limited within an application
domain, or to applications that share the same classes. XML is verbose and not as fast, but it's
a universal format. Although XML serialization is quite verbose and doesn't preserve type
fidelity, it's ideal for passing hierarchical data between layers of an application, or between
remote systems. A typical example of the type of integration between components you can
achieve with XML was demonstrated in the last section of this chapter, where you saw how to
retrieve XML data out of SQL Server and use it to populate instances of custom classes that
match the structure of the data.

Another advantage of XML serialization is that you can control the serialization process of a
given class with the use of attributes in the class that will be serialized. Finally, XML is the
format in which DataSets are serialized and persisted to the client. In Chapter 19 you'll see an
example of persisting DataSets in XML format at the client. The resulting XML document
describes not only the data, but the changes made to the DataSet as well, and it can be used to
submit the changes to the database.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 93

Chapter 4
Leveraging Microsoft Office in Your Applications
EFFICIENTLY ACCESSING ONE APPLICATION'S features from within another application is a
longstanding goal in the programming community. After all, if you can run a spell-check on
documents within Word for Windows, why can't that same Word spell checker work just as
effectively on documents held anywhere within the computer? Restricting such a useful utility
to only documents within a particular application seems like an unreasonable limitation.

Indeed, the difficulty of communicating data between applications and sharing functionality
was originally one of the primary justifications for object-oriented programming. The idea was
that you should be able to write your programs in ways that permitted the features (objects) in
your applications to be self-contained, reusable, and capable of being consumed by other
objects (either inside or outside your application).

As usual, these noble goals have been less achievable in practice than they seemed in theory.
There's still quite a bit of individuality and idiosyncrasy floating around in the computer
world. The goals of application independence, not to mention platform independence, always
seem to move just a bit out of reach as we approach them.

Nonetheless, Microsoft-designed products such as the Office suite and the .NET languages do
offer a degree of interoperability and free communication between objects. How to understand
the object models and consume methods within .NET and Office applications is the topic of
this chapter. We'll focus on three of the most useful Office products—Word, Outlook, and
Excel—but the techniques described for accessing these applications are applicable to other
Office and Works applications. (Applicable, but requiring the usual fiddling around necessary
to get the qualification and syntax correct for accessing members. Just because nearly all
contemporary computer programs use a print method, for instance, that doesn't mean it's a
universal usage. As you'll see in this chapter, Word and Excel use the term printout.)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 94

Using Word's Features

Before you can access functionality from an Office application, you must reference its object
library. You need a COM wrapper, as they say. For Word, you have to add a reference in your
VB.NET project to—as you might guess—the Word object collection:

1. Start a new Windows-style VB.NET project.
2. Choose Project Add Reference.
3. Click the COM tab in the Add Reference dialog box, then locate the Microsoft Word 10.0

Object Library (your version number may not be 10.0).
4. Double-click this object library, then click OK to close the dialog box and add the

reference.

NOTE At the start of the sections on Outlook and Excel below, you'll find instructions on
referencing their objects.

The following sections describe how to use various handy features of Microsoft Word in your
VB.NET applications.

Spell-Checking

To start things off, let's see how to check spelling in a VB.NET TextBox by borrowing that
capability from Word's spell checker. We'll explore three different ways to accomplish this
goal:

1. Sending TextBox text into a Word document, employing the spell-check dialog box to
interact with the user to fix any spelling problems, then sending the fixed text back to the
TextBox after spell-checking, via the Clipboard.

2. Feeding text directly into the Word spell-check utility and getting back an all or nothing
(yes or no) answer as to whether there were any spelling errors in the string.

3. Same as number 2, except in this case getting back a list of misspelled words, and lists of
alternative spelling suggestions for each misspelled word. With this approach, you can
construct your own VB.NET version of the Word spell-check dialog.

To try the first example (Listing 4.1), start a new Windows-style VB.NET project and add a
TextBox and a Button to Form1, then type this into the Button's Click event.

LISTING 4.1: SPELL-CHECKING A VB.NET TEXTBOX
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim w As Object = New Word.Application 'instantiate a Word app
 w.visible = False 'don't confuse things by showing the app

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim d As Object = w.Documents.Add 'create a word document
 Dim id As IDataObject 'will contain the results sent back from the clipboard

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 109

Using Outlook Objects

One quick way to add an e-mail-reading feature to a VB.NET application is to employ the
facilities in Outlook.

First, use VB.NET's Project Add Reference dialog box to add a reference to the COM
library named Microsoft Outlook 10.0 Object Library. (Your version might not be 10.0.)

The Outlook object hierarchy exposes several ''folder" objects: olFolderCalendar,
olFolderContacts, olFolderDeletedItems, olFolderDrafts, olFolderInbox, olFolderJournal,
olFolderNotes, olFolderOutbox, olFolderSentMail, olFolderTask. If you've worked with
Outlook, you'll notice that these folders correspond to the various utilities and features
available within Outlook.

To access the Outlook folders, you have to instantiate them indirectly by creating a MAPI
message store (like API, only with the term messaging prepended).

Don't bother yourself with the wearisome nonsense that "explains" why you must first create a
special Outlook namespace, then get a MAPI store. You'll add nothing to your understanding
of programming by trying to follow the reasoning for this unique way of accessing Outlook's
object library. Only Outlook does things this freaky way, so no use learning a process that
occurs only once. You wouldn't study mammalian behavior by examining a platypus. Just
copy the code in the examples below and you're home free.

WARNING Before you can test this example code, you must ensure that there's at least one e-
mail message in your Outlook Inbox. Otherwise, the code will fail—I'm not bothering here to
employ a Try...Catch...End Try failsafe error-trapping structure.

Put a TextBox, ListBox, and button on a form, then type Listing 4.13 into the Button's Click
event.

LISTING 4.13: GETTING INBOX E-MAIL MESSAGES
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim o As New Outlook.Application
 Dim MAPI As Outlook.MAPIFolder
 Dim NSpace As Outlook.NameSpace = o.GetNamespace("MAPI")

 MAPI = NSpace.GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)
 Dim it As Outlook._Items = MAPI.Items

 Dim i As Integer, s As String
 Dim m As Outlook.MailItem

 m = it.Item(1)
 s = m.SenderName & ": "& m.Subject 'get the name and topic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s = m.SenderName & ": "& m.Subject 'get the name and topic
 ListBox1.Items.Add(s)
 TextBox1.Text = m.Body 'send the actual message to the TextBox

End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 111

Accessing Excel

Use Project Add Reference, then click the COM tab and add the Microsoft Excel 10.0
Object Library (yours might be 9.0 or some other version number).

As you probably realize by now, if you've read this chapter, your first job when accessing
Excel objects is to declare an application object:

Dim exl As New Excel.Application

Then you contact the primary unit of organization in Excel, the range object (which can be as
small as a single cell or as large as a worksheet). The remaining sections describe how to use
handy features of Microsoft Excel in your VB.NET programs.

Evaluating Math Expressions

One useful feature that Excel has to offer us VB.NET programmers is its ability to evaluate
mathematical expressions. Given that VB.NET includes lots of math functions, such as SIN,
COS, and so on (if you first Imports System.Math), why would you need to use Excel?
For one thing, Excel allows you to submit a string for evaluation, thereby making it relatively
simple to permit users to enter expressions into your application and have them evaluated.

Listing 4.14 shows how you can calculate a SIN in VB.NET, while Listing 4.15 is an example
that uses Excel to evaluate the same expression.

LISTING 4.14: EVALUATING MATH EXPRESSIONS IN VB.NET
Imports System.Math

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim n As Double = 4.3444
 n = cos(n)

 MsgBox(n)

 End Sub

LISTING 4.15: EVALUATING MATH EXPRESSIONS IN EXCEL
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim exl As New Excel.Application

 Dim n As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 117

Summary

In this chapter you saw how to access Microsoft Office applications' features from VB.NET
projects. You saw how to send data to and from Word, Outlook, and Excel. And you explored
various ways to employ the major tools and utilities within Office applications.

First you saw how to reference, then instantiate, Word and exploit its spell-checker utility
three different ways from within VB.NET. Then you saw how to send a fax from VB.NET via
Word's faxing facilities. You learned how to load a document, and get statistics about
documents, such as a word count. You saw how to suppress unwanted dialog box messages,
and how to get a list of files from within directories and their subdirectories.

You explored Word further, seeing how to feed text into documents—including manipulation
such as insertion and replacement—and also how to format and print text from within Word.

Then you learned to use Outlook to access incoming e-mail messages. Finally, you saw how to
employ Excel to evaluate math expressions, print tabular data for reports, and format,
calculate, and read or write .xls files.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 119

Chapter 5
Understanding .NET Security
CONSIDER THE PARADOX IMPLICIT in this chapter: You are about to read details about security
measures in Windows and .NET, but if you can read about it, how can it remain secure?
Shouldn't security rest on secrecy and depend on the fact that people can't buy books
describing precisely how it works?

Well, yes and no. Somebody has to have the keys to Fort Knox. It may as well be you, the
trusted programmer, or trusted IT administrator.

In fact, there are multiple layers of security within today's computer systems and they
generally work on an all-or-nothing premise: all the layers must grant permission to the
agency (consuming caller or user) attempting to try anything potentially dangerous. By
dangerous we usually mean any kind of file access (whether to read private data, to write and
maybe add viruses to files, or to have the ability to reformat drives and so on) or access to the
Registry, to peripherals such as printers, or to the security system itself (where they can fiddle
around and make themselves administrators and fling the doors open).

Security features in .NET are extensive, comprehensive, and powerful. You should familiarize
yourself with them because, as we all know, security is Topic A in many IT departments these
days. Few programmers, though, have much experience with encryption and other security
measures.

In this chapter, you'll learn about the various levels of Windows (generally role-based) and
.NET (generally code-based) security, including aspects of ''trust," the various kinds of
permission management, and the interactions between role-based and code-based permissions.
This subject is quite large, but this chapter is intended to provide you with an overview of the
major tools at your disposal as you attempt to ensure the integrity of your .NET applications—
prevent them from being breached, or from being misused to breach other resources.

NOTE This chapter gets you well on your way down the long road to ensuring system security.
For deeper coverage of the topic, see .NET Development Security Solutions by John Mueller
(Sybex, 2003).

Chapter 6 covers a different aspect of .NET security: encryption and hashing, highly effective
tools for ensuring the integrity of transmitted messages and for protecting privacy.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 120

Security: An Overview

Security features proliferate throughout today's computers. In fact, most anything larger than a
single procedure can have some kind of security feature that can be adjusted by a user, an
administrator, a programmer, or all three groups. As you'll see later in this chapter,
programmers can even use .NET to specify security behaviors for single procedures.

There are all kinds of levels and varieties of security—and some of them conflict with each
other, stepping on each other's toes. You find self-contained security feature sets in
applications such as Internet Explorer, utilities, the operating system, networks, databases and
database languages, servers, Internet applications, languages such as VB.NET and ASP.NET,
IIS settings, and so on.

There's a more-the-merrier quality to current computer security efforts—you find locks and
bolts, checkpoints and identity verifications all over the place. If you've ever lived in New
York or another large city, you probably know someone whose idea of increasing security is
to add yet another deadbolt to the 12 locks they already have on their apartment door. Doors in
big city buildings are like Houdini's escape-proof suit—straps, chains, alarms, sliders, and
what have you.

And if you've ever struggled to get your .NET prototype applications working with a database
or SQL Server, for example, you've entered the security house of mirrors.

Obviously, security isn't something that is designed to be easily circumvented—by definition,
security measures are supposed to be, if not obscure, at least somewhat difficult for the
average user to understand and manipulate. You're not supposed to have a helpful message
box pop up saying ''You need to adjust your logon identity permission level before you can
access this database. To make this adjustment, choose Start Programs Microsoft SQL
Server Enterprise Manager. Expand the Security node, then click Logins to see the list of
users who are permitted to log into SQL Server. If you have this permission, take the
following step"

No, you have to dig around to figure out that in addition to your Windows role (the security
group you belong to, as identified by your logon name), you have another, separate role to
define with SQL Server. If you're told that you don't have permission to create a connection to
a particular database, you have to get down and give yourself permission.

Beyond Windows and SQL Server, there are yet other layers. For example, when VB.NET's
managed code is expected to work with SQL Server, then SQL Server's security apparatus
comes to life and, possibly, denies access on this level. Perhaps you're running an application
that doesn't have permission (or doesn't grant permission). Perhaps a particular file is set to
read-only. The list goes on.

Some security settings are specified by the user, such as adjusting which macros Word allows
to execute, or whether or not Outlook Express warns you about executable attachments to e-
mail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other security settings are under the control of administrators, the IT professionals who look
after the safety of workplace operations. Still other aspects of security are managed by
developers and programmers who can specify various levels of access and permissions right
within their applications' code.

Nearly all of the various types of access security, though, come down to one thing: Who is this
user, and what exactly do they have permission to do? The answers to these questions fall
mostly to what's called role-based security, and the key to role-based security is the
administrator—the person or persons with total access to a computer or network, and the one
who defines everyone else's role (or "level of trust," also known as permissions). Anyone who
can figure out how to gain administrator status can run riot.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 125

mobile code—networked, or web-based applications—can of course be more complex. You
often don't know who's on the other end of an Internet connection, or what hard drive is being
used as the server, or, most important, what methods are being executed against your local
hard drive or network.

However, .NET insists that in all cases, both role-based and code-based security settings must
be satisfied for a particular action to take place. For example, if you attempt to load a file into
a .NET TextBox, several security settings are triggered and all must be satisfied before the file
is loaded. The .NET application's identity is checked; is it from a trusted source? Does this
application have permission (from code-access security settings) to read this file? And does
this user have permission from the Windows security settings to read this directory and this
particular file? If any of these questions are answered No, the file doesn't get into the TextBox.

This last question—Windows permissions—becomes impossible to answer when you're
consuming a remote Web service, for example. Of course the author of the Web service
response doesn't have permission to access your Windows machine at any level. That foreign
person is unknown to your installation of Windows and isn't a member of any group known to
your administrator.

Understanding Code-Access Security

One solution to communication with strangers is to keep them in the lobby and talk to them
through an intercom, or if you're running a gas station, encase your clerks inside bullet-proof
Plexiglas. In other words, fix it so you can communicate with strangers, but don't let them get
next to you physically. Don't let them completely in. This, in essence, is the idea of ''partial
trust," the notion that you keep the stranger at a distance—close enough to talk to, but beyond
the range of a knife or bullet.

Similarly, you can communicate with unknown Internet servers and other strangers by
partially trusting them—letting them near, but not actually in, your system.

The CAS system has been developed to permit you to consume mobile executable code
securely within .NET (or indeed other contexts). In fact, unless you specify otherwise, any
executable coming in from the Internet is by default executed within this "partially trusted"
context. Foreign, unrecognized executables are kept in the lobby by security, so to speak.

One meaning of the term mobile code is distributed code (code not local to an application on
your machine, but rather coming into your machine from the Internet, an intranet, or modules
distributed on separate servers). In other words, it's alien code that resides outside the local
environment. As is usually the case, however, new computer terminology forks rapidly into
more than a single meaning. Mobile is also being used these days to describe portable devices,
specifically PDAs and cell phones (see Chapter 22 for details on programming for these
mobile devices).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scripting was one effort in the past to permit harmless mobile code to execute safely on your
machine. The idea was: We'll take a language like VB and strip it of any methods that can
manipulate the hard drive, the Registry, or other sensitive resources. Then, with this new
"VBScript," people can trust that it's unable to do damage. Alas, this solution, like verification
and other initiatives, was only partially successful. After all, hackers have learned how to
embed executables in strings, and other techniques that make scripts potentially just as
damaging as traditional executables.

Verification slows things down. One type of authentication surprises users with a dialog box
asking them if they trust this Authenticoded site. This not only halts execution, it throws the
responsibility for virus attacks onto the user—many of whom are not equipped to respond
usefully to the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 128

enforces no permissions when native code executes, and SRP enforces none of its permissions
when managed code executes.

If you've never worked with SRP, you can quickly take a look at its capabilities (limited
capabilities, in fact, when compared to the greater range of CAS options). In Control Panel,
open the Administrative Tools icon and choose Local Security Policy. In the left pane of the
Local Security Settings dialog box, open the Software Restriction Policies node and look
around. You can adjust these policies here for this individual machine. For more details on
using this technology to block rogue ActiveX controls, virii, tainted scripting, and other
dangers from unmanaged, alien code execution, see:

http://www.microsoft.com/windowsxp/pro/techinfo/administration/restrictionpolicies/default.asp

Managing .NET Security Policy

Now that you've got an overview of the layers of Windows security and how they interact
with .NET security features, it's time to go down into another dungeon and see how to manage
.NET security itself.

When you fire up an XP or Windows 2000 machine for the first time, it has a generally
predictable set of security policies—the defaults that Microsoft thinks make sense for the
average user. Here's an overview of the default settings for XP machines:

 Code from within the Internet zone (as Windows calls Internet locations) has a restricted
permission level. The default setting for this zone is Medium (see Table 5.1). No code
originating within the Internet is allowed to execute. If your computer or network
requires that this policy be loosened, the administrator must explicitly adjust
permissions. Run Internet Explorer, then choose Tools Internet Options and click the
Security tab in the Internet Options dialog box. Move the slider to see the various
options, and make any adjustments you want by clicking the Custom Level button.

 Code from the restricted sites zone is similarly forbidden from execution. The default
setting for this zone is High.

 Code in the trusted sites zone has fairly limited permissions. The default setting is
basically Low, but Java permissions are adjusted to Medium and unsigned ActiveX
controls can be downloaded.

 Code from your local network (intranet) has certain default capabilities (it can read, but
not write, environment variables), but it is forbidden access to the security system, the
Registry, and so on. The intranet zone includes network paths and any sites that are
bypassed by the proxy server. The default setting for this zone is Medium-Low.

 Code executed from the My Computer zone, however, is unaffected by settings
adjustable from within Internet Explorer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 133

FIGURE 5.6 Use this Security Adjustment Wizard for specific, emergency shutdowns.

Click Next and choose Local Intranet. Move the slider to No Trust. Now let's see Nicky use
his computer to make more mischief. Of course, if you find him using other people's
computers, you'll want to adjust his user policies—and you might just want to get into
Windows role-based settings and tie his hands there as well.

Before concluding this chapter with some suggestions that programmers can use to improve
the security of the applications they write, the following is one final caution for administrators:

Avoid, of course, opening up anyone's quivering, vulnerable hard drive to TotalTrust levels in
the Internet zone (or indeed other zones). You don't want to invite trouble, and Full Trust is
just asking for it because no .NET Framework security tests will be conducted against
executing code from the Internet. Operating system settings will remain in effect, but if any of
them permit trust beyond what you'd allow for trusted local execution—beware. Full Trust is a
broad and dangerous permission. If you're tempted to use this setting, consider instead
modifying the permissions individually using the Trust Assembly Wizard. With that tool you
can more rationally fine-tune permissions. Don't simply blow open all doors by using Full
Trust.

Programming for Security

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programmers don't ordinarily consider themselves on the front line of security. They usually
assume that if they provide relatively bug-free code, they are doing their job. Programmers
make the tools, and it's up to security enforcers (normally IT administrators in offices
throughout the land) to ensure that those tools are used for their intended purposes.

However, .NET offers you, the programmers, the opportunity to take steps to create safer
code. You've already seen some ways to write code that contains some security elements
earlier in this chapter, and ways to employ CAS to increase the safety of your programs. Let's
conclude this chapter with an overview of techniques available to programmers working with
.NET security facilities.

If your .NET application doesn't get called by other code (''consumed," as they say), you can
probably relax and not worry about the security issues. After all, .NET itself automatically
demands permissions for many kinds of sensitive behaviors, and performs a code-access stack
walk to throw exceptions as necessary. You can rest on CAS for many Windows-based
applications.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 136

 ' But remember and beware that any Shared
 ' methods in this class can bypass instantiation
 ' so in the following case, if you must use
 ' Shared, you have to repeat the permission test:
 Public Shared Sub ReadAFile()
 Dim p As New FileIOPermission(PermissionState.Unrestricted)
 p.Demand()
 End Sub

 'The rest of the (not Shared) methods in
 ' this class don't have to test security--
 'they won't even exist if the above constructor test fails.
 Public Function SaveFile() As String
 ' do some I//O here
 End Function

 End Class

Use the Demand method, as illustrated in this code, to make certain that callers are allowed to
access something (in this example, files). Here, before allowing this class to be instantiated,
you demand a security check. The entire call stack is checked and all must have permission. If
there is no security exception thrown, then the Demand is met.

You can use this security check class to test individual methods within the class (as illustrated
by the SaveFile method in Listing 5.2 above), or you could have this class generate a special
key that the caller can use during the entire session with your application.

TIP For simplicity I used FileIOPermission in the example in Listing 5.2; however, note that
the .NET security system automatically demands File I/O permissions (and other, similar
sensitive resource permissions). You don't typically need to write special code for this kind of
thing. However, you can use these techniques to provide additional protection within database
access procedures and other situations.

Summary

In this chapter, you saw the ways that a programmer can address security issues to prevent
hackers from breaching a system via your application, from using your application to access
sensitive resources, and from other kinds of attack.

You saw that application security is divided into two primary levels: role-based (derived from
the user logon) and code-based (derived from assertions or denials made within .NET code
itself).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You saw how Windows built-in permissions groups are accessed and what they mean. Then
code-access security (CAS) was examined, and how it interacts with role-based security
features. You worked with the Framework Configuration tool, and saw how to employ various
of its features to specify how .NET security is enforced. Finally, you explored some of the
ways that you can protect consumed code such as Web services by setting up a permissions
gateway through which the caller(s) must pass.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 139

Chapter 6
Encryption, Hashing, and Creating Keys
THE.NET ENCRYPTION FEATURES are among the most useful of the framework classes,
but are rarely mentioned in books and articles. There's nothing terribly difficult about
employing these classes, but perhaps there are a couple of reasons that most authors avoid this
topic. First, many people are only vaguely familiar with the concepts underlying
cryptography, and some of those concepts can be indeed complex. Second, the best word to
describe the current state of affairs in computer security is probably havoc.

Computer security divides into two primary categories: safety (protection from attack), as
described in the previous chapter, and privacy (concealing information), which is the topic of
this chapter.

Fortunately, there are extremely simple solutions to both of these security dangers. If you are
concerned that a virus might erase your hard drive or otherwise mess up your machine, simply
back up your data frequently (and also make use of the System Restore feature in XP in case
the virus goes after the Registry and other key files, as some do).

If you are concerned that someone might read your private files, simply encrypt them.

All too often, however, these simple security measures are not practical. In many business
situations, the majority of employees are incapable of managing their own backup or
encryption needs. Either the IT department has to intervene, or these processes must be in
some way automated for the ordinary user.

In this chapter you'll see how to use the .NET encryption classes to programmatically encrypt,
decrypt, and manage keys. This can provide the foundation for writing applications that
automate the job of encrypting and decrypting files. You can also use these techniques to build
encryption features into your own programs.

The Main Problem

The primary problem when enforcing workplace security policies is the creation and
management of passwords. A user types in a character-based secret string that can (and
should) contain digits as well. Then that password is usually transformed into an all-digit key
that is used by the computer to encrypt or decrypt a file. In public key encryption systems,
random keys are

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 143

Just send the hash value along with the file and the recipient can hash the file on their end to
see if the hash values match, demonstrating that the file has not been altered during
transmission.

Encrypting

The goal of encryption is to rearrange information so that it makes no sense to an intruder.
Rearrange, not destroy. You don't want to so completely disturb the original information (the
plaintext) that it is impossible to restore. You don't want to reduce the data to a fuming wreck.

However, precisely because the encrypted information (the ciphertext) is restorable, the wrong
people—the intruder—can potentially restore it, read it, and make use of it. Intruder or Eve are
the traditional names for people who intercept messages—Eve for evesdropper.

DES is the most popular strong encryption in use today to encrypt large amounts of data.
Everything from money wire transfers to secret government communications are transmitted
after having been encrypted via DES.

The government went to IBM in the early seventies and asked them to come up with an
encryption standard for government and business communications. The government wanted
the system to be computer-based and impossible to break, and they got their wish in 1976.
Ever since, it's been the standard. Some observers say that DES has been cracked, but others
disagree. In any case, it would require tremendous multi-processing power—many tens of
thousands of personal computers working in tandem—to hope to crack a DES encrypted
message. (Some experts suggest that the government has such power, but prefers to keep DES
the standard because they want to be able to read messages and keep track of things.)

If you feel that your information is likely to draw attention from the government or 90,000
personal computer users who will gang together to focus on your secrets, .NET offers even
stronger encryption functions. You might be particularly interested in the asymmetric public
key system (RSA) described at the end of this chapter. The problem with asymmetric systems
is that they are less efficient, slower. Some people advocate dividing the job into two
processes: Using asymmetric encryption to transmit keys (which are short, compared to the
size of most messages), then using DES to encrypt the messages.

Or, if you just want a beefier version of DES, .NET offers a couple of other algorithms,
including TripleDES. How much slower is TripleDES than DES? Three times. But unless
your messages are huge or your computer is slow, you probably won't be bothered by the
speed issue.

There are many dozens of ways to encrypt files in .NET. Listing 6.3 illustrates one way to
encrypt and decrypt a file using the DES algorithm.

LISTING 6.3: ENCRYPTION AND DECRYPTION A FILE WITH DES
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) Handles MyBase.Load
 encrypt()
 decrypt()
End Sub

Public Sub encrypt()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 151

In this code, you first create a key and an IV, then create a byte array (barray) holding the
plaintext. You use the ComputeHash method to get the hash value of the plaintext. (Notice
that these techniques require lots of byte arrays—so far, you've used four of them.) Then you
use a cryptostream object to encrypt and save the results (the ciphertext) to a file, and then to
append the encrypted hash values to the same file. Both your encryption and decryption
procedures know how many bytes to remove from the end of the file because the hash value
size (in bytes) is available from the SHA1 hashing object. For example, the decryption routine
reads this value from the SHA1's HashSize property:

Dim hashSize As Integer = sha1.HashSize / 8

The results reported from this property are in bits (who knows why?) so you have to divide by
8 to get the actual number of bytes. The answer for SHA1 is 20 bytes.

The Decrypt procedure mostly follows the same steps as the encryption procedure. First you
define a key and vector, then you open the file into a filestream and decrypt it via a
cryptostream, and finally you are ready to test the hash. Recall that the hash values in the
encrypting procedure were calculated only on the plaintext message, not on the entire contents
sent to the file. You cannot get into the house of mirrors that would be created were you to try
to get a hash value of your plaintext+hashvalue.

So, in the decryption procedure you create a byte array (sArray) that holds the entire file
contents (ciphertext+hashvalue). Then you extract the hash value from the message portion of
(sArray.Length - hashSize). In other words, you subtract the length of the hash value
(hashSize) from the size of the byte array.

Next you extract the hash value that was appended to the file, and store those 20 bytes into the
byte array messageHashValue. Finally, you use a loop to compare each byte in the message's
hash value (messageHashValue) to each byte in the hash value computed in the decrypt
procedure (hash Value). If any of the 20 bytes don't match, you alert the user that tampering
occurred and that the ciphertext file's integrity has been compromised.

Asymmetrical Encryption

It's slower, but stronger. Asymmetrical encryption technology was illegal only a few years
ago. The government felt that the bad guys—mobsters, dealers, wheeler dealers, lounge
lizards, Eurotrash, and whatnot—would have a way of communicating that the FBI and others
couldn't monitor. The problem with these laws was the usual one: laws don't deter
lawbreakers.

The law against strong encryption was withdrawn. So now you can go ahead and use the most
advanced encryption, asymmetrical algorithms. They're asymmetrical because the method
used to encrypt is different from the method used to decrypt. It's a little more cumbersome
than symmetrical systems, though, and slower. Because it's slower, you quite frequently find
people using an asymmetric system such as RSA to encrypt the keys, but encrypting the actual
plaintext message with a faster symmetrical system such as DES.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RSA and other asymmetric systems allow quite a bit of information to be public. They're
sometimes even called public key systems. Three elements are permitted to be viewed by
everyone, including any intruders: the enciphering process itself (the algorithm used to
encipher and decipher), the ciphertext message, and a key. With all that information, Eve
should be able to figure out the plaintext, don't you imagine? Guess again.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 158

In a real-life situation, there's no big problem sending the public key or the ciphertext—
capturing them would do an intruder no good, so you don't have to be concerned about their
security. However, the potential weakness in the whole asymmetric system is the
public/private key pair string that the decryptor (recipient) must somehow protect from prying
eyes.

In a temporary session, the recipient can just generate a public/private key pair, and send the
public part to the encryptor. Then the message can be encrypted, sent to the recipient,
deciphered, and all the keys thrown away. But in other situations, keys are used repeatedly.
Perhaps you want to use RSA to encrypt some files and keep those files for future reference.
You must then also keep the private key that decrypts them.

Or perhaps a set of everyone's public keys is published in a list and given to everyone in the
office. Maybe it's inconvenient to change these keys more than every month or so. When
public keys are reused for more than a single session, each recipient must retain the private
key that works with their public key. Actually, retain is probably not the right word; conceal
would be more like it. If a private key isn't kept totally private, the game is over.

If you write applications that employ RSA and you don't want to limit communications to
short sessions, you'll want to add some code to securely persist the private keys. Alas, there is
no feature in .NET that explicitly solves this problem, but you can work with key containers
available via the CryptoAPI.

Summary

In this chapter you entered the secret and, to me at least, fascinating world of hidden
messaging—encryption, the effort to disguise the meaning of text.

It's been thousands of years in the making, but today's cryptographic schemes (several of the
best are available in .NET) no longer rely on the various and fallible historical tricks. A lord
would send a hunter carrying a string of dead rabbits to the next castle in the Middle Ages.
One of those rabbits had a message in its stomach.

In ancient Greece they shaved a guy's head, wrote a message on his skull, then waited for his
hair to grow out before sending him on his way.

Le Roi-Soleil's patsies and minions wrote long letters to each other using lemon juice, which
dries invisibly but can be restored by holding the paper over a candle. These messages were
sent among the chateaux, and as an additional precaution, only every 12th word contained the
true message. Of course, several courtiers lost their heads when they couldn't explain why they
were sending blank pages to each other. Twits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You needn't resort to these ineffectual and messy tactics. As you saw in this chapter, you have
at your command some of today's best cryptographic power tools. Tap into the .NET
Framework's security features and use DES, TripleDES, or ramp up to full RSA protection.
It's more than doubtful that your secrets will be revealed if you hide them inside this
technology.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 159

Chapter 7
Advanced Printing
AMONG THE MOST VISIBLE features introduced to VB.NET are the improved printing and print
previewing mechanisms of .NET. You'll find it very easy to write your own printing routines,
and the same code will produce both printouts and previews. To access the printing
capabilities of .NET, you must use a few new controls. There's no longer a Printer object; you
must use one of the controls that facilitate printing, and we examine these special controls in
depth in the chapter. These controls can't be used to build interfaces; they simply expose the
printing functionality of .NET to your application.

While printing has gotten both simpler and more powerful in VB.NET, the Windows controls
we use to build our interfaces don't support printing. None of the controls that come with
.NET provide a Print method, not even the TextBox control. Most developers will sooner or
later face the problem of generating simple (or not so simple) printouts for their applications,
and they'll have to write their own printing code. The other alternative is to buy a third-party
control that supports printing, which is the suggested course of action if you need to print
formatted text, but most developers will be handling simple printing tasks.

This chapter doesn't contain only advanced printing topics. It starts with an overview of the
printing process in the .NET Framework (a process that's entirely different from the equivalent
VB6 process) and it also covers simple topics such as printing text. The reason we've included
this seemingly trivial topic is that we haven't found a reliable tool for printing text. Even the
TextBox control doesn't provide a Print method, so we felt that a solid explanation of the
process of printing text is in order. And as you will see in the corresponding section, printing
text isn't as trivial as you may have thought. To make the sample code a little more useful,
we've added a Print method to the TextBox control.

Another very common task in business applications is the printing of tabular data. We've
decided to demonstrate this topic by creating a class that can print the contents of a ListView
control.

Printing in .NET

The basic printing component in .NET is the PrintDocument control. To send something to the
printer, you must first add an instance of the PrintDocument control to the project. This
control is invisible at runtime and its icon appears on the Components tray at design time. To
initiate the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 162

NOTE You can use the SetClip method of the Graphics object that represents the page to
impose the margins. This method prohibits printing outside a specified rectangle, and you can
use it to make sure that all graphics elements that fall outside this rectangle are clipped. In
most cases, however, we write code to arrange the graphic elements on the page taking into
consideration the margins. When we print text, for example, we write code to break the lines
when the text reaches the right margin, or start a new page when the text reaches the bottom
of the page.

When the event handler exits, the appropriate graphics commands are sent to the printer and
the page is actually printed. If you need to print additional pages, you set the
e.HasMorePages property to True just before you exit the event handler. This will fire
another PrintPage event. The same process will repeat until all the pages have been printed.
When you're finished, you set the e.HasMorePages property to False, and no more PrintPage
events will be fired. The default value of this property is False, so you need not set it when
you're done printing.

Printer and Page Properties

One of the most common tasks in writing code to generate printouts is to retrieve the settings
of the current printer and page, as they were specified by the user on the PageSetup and
PrinterSetup dialog boxes. The properties specified on these two dialog boxes are reported to
your application through the PrinterSettings and PageSettings objects. The PageSettings
object is a property of the PrintPageEventArgs class, and you can access it through the e
argument of the PrintPage event handler. The DefaultPageSettings property of the
PrintDocument object is also a PageSettings object.

The PrinterSettings object is a property of the PrintDocument object, as well as a property of
the PageSetupDialog and PrintDialog controls. Finally, one of the properties exposed by the
PageSettings object is the PrinterSettings object. These two objects provide all the information
you may need about the selected printer and the current page through the properties listed
next.

The PageSettings Object

The PageSettings object exposes the following properties, which you can use to retrieve the
properties of the current page.

Bounds Returns a Rectangle object that represents the current page. Its dimensions
are expressed in hundredths of an inch. The PageSettings.Bounds property is
equivalent to the MarginBounds property of the e argument of the PrintPage event
handler. The Bounds property doesn't take into consideration the margins specified
by the user on the PageSetup dialog. For a letter-size page the dimensions of this
rectangle are 850×1100, and for an A4 page they are 827×1169.
Color Returns a True/False value indicating whether the current page can print in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Color Returns a True/False value indicating whether the current page can print in
color. You can set this property to determine whether the page should be printed in
color or not.
Landscape Returns a True/False value indicating whether the page should be
printed in landscape or portrait orientation. Use this property to find out the
orientation specified by the user on the PageSetup dialog; setting this property won't
affect the printout, because you still have to provide the appropriate code to print in
landscape orientation (i.e., swap the page's width and height).
Margins Returns a Margins object, which exposes the user-specified margins as
properties (Top, Left, Right, and Bottom). The properties of the Margins object are
expressed in hundredths of an inch.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 164

IsPlotter A True/False value indicating whether the printer is a plotter.
IsValid A True/False value indicating whether the PrinterName corresponds to a
valid printer.
LandscapeAngle Returns an angle, in degrees, by which the portrait orientation
must be rotated to produce the landscape orientation.
MaximumCopies Returns the maximum number of copies that the printer allows
you to print at a time.
MaximumPage, MinimumPage Two properties that return or set the largest and
smallest values the FromPage and ToPage properties can have. Set these two
properties if you want users to select a range of pages on the PageSetup dialog box.
PaperSizes Returns all the paper sizes that are supported by the selected printer.
PaperSources Returns all the paper source trays on the selected printer.
PrinterName Returns or sets the name of the printer to use.
PrinterResolutions Returns all the resolutions that are supported by the selected
printer. This PrinterResolutions property is a collection of PrinterResolution objects
and its members are read-only.
PrintRange Determines the options available to the user on the Page Setup dialog
box for selecting the range of pages to be printed. This property can be set to one of
the members of the PrintPage enumeration (AllPages, Selection, or SomePages) and
it determines which of the page selection options will be enabled on the Page Setup
dialog box. Read the value of this property to find out the type of selection made by
the user on the Page Setup dialog box. If the user has selected a range of pages, use
the FromPage/ToPage properties to find out the numbers of the starting and ending
pages.
SupportsColor Returns a True/False value indicating whether the selected printer
supports color printing.
CreateMeasurementGraphics Returns a Graphics object that represents the page's
drawing surface. We use this object to calculate the dimensions of text when
rendered on the printer with a specific font.

The Printing Dialog Boxes

In addition to the PrintDocument control, there are three more printing controls, which are
visible at runtime as dialog boxes: the Page Setup dialog box, the Print dialog box, and the
Print Preview dialog box. The PageSetupDialog control displays the Page Setup dialog box,
shown in Figure 7.2, which allows users to set up the page (its orientation and margins). This
dialog box returns the current page settings in a PageSettings object. The settings specified by
the user on the Page Setup dialog must be taken into consideration by your application to
produce a printout limited within the page's margins, with the proper orientation, and so on. As
you can see, there aren't many parameters to set on this dialog box, but you should display it
and take into account the settings specified by the user.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 168

Page Layout and Printing

The process of printing is identical to displaying graphics on a Form or PictureBox control.
You can use any of the drawing methods of the Graphics object that represents the page. It's
your responsibility to place the graphics elements on the page and determine when the current
page has been filled and start printing a new page.

The origin of the page is its upper-left corner; the coordinates of this point are (0, 0). The
origin of the printed element is the upper-left corner, too. If you print a string at coordinates
(0, 0) it will be printed just inside the page, but it will be printed in its entirety. If you print the
same string at the lower-left or lower-right corner of the page, nothing will appear on the
printout.

The default unit of the page is a hundredth of an inch (there are 100 units in an inch). A
lettersized page's dimensions are 850×1100. Every professional-looking printout has a
respectable margin on all four edges. Printouts that cover the entire page look very odd—
you've probably never generated such a printout. You can change the default units by setting
the PageUnit property of the Graphics object to one of the members of the
System.Drawing.GraphicsUnit enumeration. Among the members of this enumeration are
Inch, Millimeter, Point, Pixel, Display (1/75th of an inch), and Document (1/300th of an inch).
You can also use your own units by setting the PageUnit property to World.

However, not all printers can cover the entire page. There's a small margin that laser printers
ignore, a very small margin compared to the user-specified margin. The printer's margin is
usually a tenth of an inch. In most cases, we don't care about this margin, because the user-
specified margin is much larger. However, if you plan to create printouts that cover the entire
page, you must take into consideration the printer margin. The printer margin will cause a very
disconcerting problem, namely a discrepancy between the preview and the actual printout. The
monitor has no such margin, so you can preview graphics elements very near the edges of the
page. When the same printout is sent to the printer, the printer margin may affect the
appearance of the printout—it will not be identical to the page's preview on the monitor. Let's
consider the printout of a rectangle that fills the entire page. If you preview the printout you'll
see a rectangle that fills the page as expected. If you send the same document to a laser printer,
the rectangle's origin will be displaced by a tenth of an inch (or so) from the upper-left corner
of the page. The lower-right corner of the page will end up outside the page. If you print a
rectangle that fills the printable area of the page (that is, the entire page excluding the user-
specified margins), the rectangle will be the same, both on the preview pane and the printed
page.

This behavior is caused by the fact that any shape whose origin falls within the printer margin
is displaced slightly. If the element's origin is within the printable area of the page, the element
is not displaced. To handle the printer margin, you can use the RenderingOrigin property of
the Graphics object that represents the page. The RenderingOrigin property exposes the X and
Y properties, which are the coordinates of the top-left point that can be printed on the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE The RenderingOrigin property of the Graphics object is new to version 1.1 of the .NET
Framework. If you're using version 1.0 of the Framework, you can't use this property.

The DrawString and MeasureString Methods

You can use any of the Graphics object's methods to draw shapes, but for business
applications the method you'll be using the most is the DrawString method, which renders
strings in a specified font with a specified brush on the printer's page. Printing text is not a
trivial operation, as you will see

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 174

Else
 strFormat.Alignment = StringAlignment.Center
 e.Graphics.DrawString(''Print Mode", tFont, tBrush, _
 New RectangleF(e.PageBounds.X, 50, _
 e.PageBounds.Width, 100), strFormat)
End If

The last three statements in the PrintPage event handler print three rectangles: a red rectangle
that delimits the printout's margins, a yellow rectangle around the page (from the page's upper-
left corner to the page's lower-right corner), and a gray rectangle around the page's printable
area, which is the entire page minus the printer margins, given by the RenderingOrigin
property. The yellow rectangle doesn't take into consideration the areas of the page that can't
be printed and will not be visible in the preview pane (it will be drawn at the very edge of the
page). If you print the page on a color printer, you'll see that the yellow rectangle doesn't start
at the upper-left corner of the page and is slightly smaller than the page. The three rectangles
are printed with the following statements:

e.Graphics.DrawRectangle(New Pen(Color.Red, 3), _
 New Rectangle(e.MarginBounds.X, e.MarginBounds.Y, _
 e.MarginBounds.Width, e.MarginBounds.Height))
e.Graphics.DrawRectangle(New Pen(Color.Yellow, 3), _
 New Rectangle(0, 0, e.PageBounds.Width, _
 e.PageBounds.Height))
e.Graphics.DrawRectangle(New Pen(Color.Gray, 3), _
 New Rectangle(e.Graphics.RenderingOrigin.X, _
 e.Graphics.RenderingOrigin.Y, _
 e.PageSettings.PaperSize.Width - e.Graphics.RenderingOrigin.X, _
 e.PageSettings.PaperSize.Height - e.Graphics.RenderingOrigin.Y))

The X and Y properties of the RenderingOrigin object are the sizes of the two non-printable
bands at the upper-left corner of the page. There are two equivalent bands at the page's lower-
right corner as well.

You've seen examples of printing simple graphics elements, such as text and rectangles, how
to take into consideration the page's geometry, and how to control the appearance of the
graphics elements on the page, especially the appearance of text. It's time to look at a few
more practical and interesting examples.

Printing Plain Text

Our first real-world example is a Print method for the TextBox control. We're actually
wondering, What good is a TextBox control without a method to print its contents? A
procedure that prints a text segment should be fairly simple, but it's not. As you will see, there
are various parameters you must take into consideration, and a robust text-printing mechanism
is a must-have tool for a developer. Most professional developers will purchase a third-party
tool that can generate elaborate printouts, but you may find a few good uses for a simple text-
printing tool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The TextBox control uses a single font for its text, which simplifies our code immensely. To
demonstrate how to print text with the Framework's printing controls, we'll create an enhanced
TextBox control with a Print and a Preview method. If you were asked to suggest an
enhancement to the TextBox

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 179

Printing Tabular Data

In this section we're going to build another custom control by adding printing capabilities to
the ListView control. The ListView control is a flexible tool for displaying tabular data, but
like all other built-in controls doesn't provide printing capabilities. Another limitation of the
ListView control is that it can't break its contents into multiple lines when displaying data in
detail mode (which is the most common mode in typical applications). Figure 7.8 shows the
test form of the application and a Print Preview window with the control's data. The control's
data will be printed as shown on the preview window. Notice that the long lines that don't fit
in the control's cells are printed on multiple lines.

FIGURE 7.8 Printing tabular data with an enhanced version of the PRNListView control.

The PRNListView control exposes a single method, the Print method. The code picks up the
data as well as the formatting information from the control itself and prepares the printout,
which is displayed in the Preview dialog box first. The user can send the output to the printer
by clicking the Print button on the dialog box's toolbar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the Print method, the control exposes a number of properties that allow you to
customize the appearance of the report. All of the enhanced control's property names start with
the prefix ''Print"; they are as follows:

PrintBorderColor The color of the border around each cell.
PrintColumnPadding The extra space between columns (expressed in pixels).
PrintMaxCellLines The maximum number of lines in each cell. This property
prevents a cell with a lot of text from becoming too tall. Normally, the control fits
the text in its cell by breaking it into multiple lines.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 186

After printing a row, the program draws the horizontal line that separates it from the following
row. The vertical lines are printed last, because we need to know the vertical coordinate of the
last row on the page. The code isn't really complicated, but it's quite lengthy. We've inserted
comments to explain its operation and we hope you'll find these comments useful in
customizing the printing process.

A PrintScreen Utility

The last sample in this chapter is rather odd, in the sense that it uses API calls to capture the
screen (or the current window) and print it. I've received requests from readers in the past
about a simple technique to print a form. Obviously, many VB6 programmers used this
technique in the past and they need a quick mechanism to generate printouts of the current
window. Our recommendation is that you write code to generate proper printouts, as explained
in the preceding sections of this chapter. If you think a screen-printing utility suits you, use the
code of the PrintScreen sample application. Figure 7.9 shows the preview of a screen capture.

While printing the current form in VB6 was trivial, there's no simple mechanism in GDI+ to
capture the screen. The closest we were able to come to a screen-printing utility was to use the
BitBlt GDI32 function. This function can copy the bitmap from any device context onto any
compatible device context. We'll use it to copy the entire screen (or the current window) onto
an Image object, and then we will use the .NET Framework's printing mechanism to send the
bitmap to the printer. The current window is not the active window on the desktop. By
''current window" we mean the form that contains the code. There's no simple mechanism to
capture a keystroke meant for another application, and our code can't print any other window
(the "active" window) on the desktop.

Start a new project, the PrintScreen project, and paste the function declarations from Listing
7.5 at the form's level. These are three API functions that we'll call from within our VB.NET
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 7.9 Printing the screen, or the current window

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 189

LISTING 7.7: THE PRINTBMP() SUBROUTINE
Private Sub PrintBMP()
 PD = New Printing.PrintDocument
 Dim PGSETUP As New PageSetupDialog
 PGSETUP.PageSettings = PD.DefaultPageSettings
 If PGSETUP.ShowDialog = DialogResult.OK Then
 Dim PP As New PrintPreviewDialog
 PP.Document = PD
 PP.ShowDialog()
 End If
End Sub

In the PrintPage event handler we print the bitmap by calling the DrawImage method of the
Graphics object. The code calculates the coordinates of the bitmap's upper-left corner so that it
will be centered on the page (regardless of the margins) and then prints the bitmap, with the
statements of Listing 7.8.

LISTING 7.8: PRINTING A BITMAP CENTERED ON THE PAGE
Private Sub PD_PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles PD.PrintPage
 Dim img As Image = bmp
 Dim X, Y As Integer
 X = Math.Max(0, (e.PageSettings.Bounds.Width - img.Width) / 2)
 Y = Math.Max(0, (e.PageSettings.Bounds.Height - img.Height) / 2)
 e.Graphics.DrawImage(img, X, Y)
End Sub

Notice that this time we retrieve the page's width and height from the PageSettings. Bounds
property and we don't have to worry about the orientation of the page. In Listing 7.2 we used
the DefaultPageSettings property of the PrintDocument object to extract the coordinates and
dimensions of the printable area of the page, and we had to swap the width and height from
within our code to account for landscape orientation.

Summary

In this chapter we thoroughly discussed the printing capabilities of .NET. We've demonstrated
the printing process with practical examples, which you can use in your applications or extend
by adding more features.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 191

Chapter 8
Upon Reflection
REFLECTION IS ONE OF those new technologies that is described in various different ways by
various experts (rather like Web services). It's new, at least, to Visual Basic programmers.

And we cannot pretend that reflection isn't just a little bizarre. Like recursion, it can involve a
kind of self-consumption—an esoteric process. Something about reflection isn't quite normal.

At its most elemental level, reflection means finding out details about the contents of
assemblies during runtime. And, like much in .NET, reflection has its antecedents in the C
language, specifically the Runtime Type Information (RTTI) feature of C++.

Reflection permits you to learn the type, and members, of an object, while a program is
running. But there's more: After you've discovered this information about objects, you can
then do something with your knowledge. You can use reflection to execute the discovered
methods, access discovered properties, pass parameters, and even generate, compile, and
execute new code during runtime.

What Use Is It?

What good is all that? Some cool tricks become possible. For example, with reflection you can
write code that will later (during runtime) consume objects that have not yet been designed. Or
you can defer making the choice of which methods to invoke until runtime.

Sometimes you don't know the context or environment that will be in effect during runtime.
One way to deal with this problem is to use reflection, thereby permitting your code to select
an appropriate method during runtime. Think of this use of reflection as an advanced form of
Select...Case.

Reflection can also be used to build custom object browsers, code–generators, sophisticated
self-commenting code, utilities that examine and secure compiled executables, and advanced,
dynamic debugging tools that facilitate runtime error trapping.

Understanding Types

The target of reflection is usually an entire assembly. The term assembly is new in VB.NET.
It's what was traditionally called an application—a collection of related ''types" and resources
that do a particular job, such as word processing.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 194

Seeing Reflections

Before getting into some additional aspects of reflection, try it in some code. You first must
instantiate a Reflection. Assembly class and also access an existing assembly. There are
several ways to do this (as is usually the case in .NET—you can choose from a variety of
coding styles).

Accessing a Type

Probably the simplest example of reflection is accessing a single type (a class, in this case, and
in most cases). Add a TextBox to a new VB.NET Windows style project, change the
TextBox's MultiLine property to True, delete its default Text property, add a vertical scrollbar,
then type Listing 8.1 in.

LISTING 8.1: A SIMPLE EXAMPLE OF REFLECTION
Imports System.Reflection

Public Class Form1

 Inherits System.Windows.Forms.Form

' Form designer code goes here

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim cr As String = ControlChars.CrLf

 Dim t As Type = GetType(puria)

 TextBox1.Text = _
''Here are the public constructors of the type " & _
t.ToString & cr

 Dim cinfo As ConstructorInfo() = t.GetConstructors((BindingFlags.Public Or_

BindingFlags.Instance))

 Dim m As MemberInfo
 For Each m In cinfo
 TextBox1.Text &= m.ToString &cr
 Next m

 TextBox1.SelectionLength = 0 'turn off the default selection

End Sub

End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 208

 TextBox1.SelectionLength = 0

 End Sub

End Class

Public Class TestClass

 Private Field1 As String = ''5255"
 Private Field2 As String = "Info goes here"

End Class

Executing Discovered Code with CreateInstance and Invoke

It's well and good to be able to thoroughly examine the types, members, and parameters within
an assembly. But reflection has two additional tricks up its sleeve. You can also execute
reflected code during runtime (as illustrated by the following example).

In the example in Listing 8.8, you provide the user with a list of methods in a ListBox. The
user clicks on that list, and you then ask the user to type in the correct parameters required by
the method they chose. Finally, you execute the method.

This illustrates how you can write a program that explores an unknown assembly (unknown at
least to you, the programmer, while writing your code). Your program explores the unknown
assembly, displays its classes and members during runtime, permits a user to choose among
the displayed items, tells them what parameters to pass, and then executes the code from
within the reflected classes.

Listing 8.8 ties together several of the techniques introduced throughout in this chapter. Start a
new VB.NET project and add a TextBox, a label, a ListBox, and a button. Then type this in:

LISTING 8.8: EXPLORING AN UNKNOWN ASSEMBLY
Imports System.Reflection

 Dim t As Type = GetType(TestClass)
 Dim obj As Object = Activator.CreateInstance(t)
 Dim mInfo As MethodInfo
 Dim l As Integer 'number of parameters
 Dim paramInfo() As ParameterInfo
 Dim cr As String = ControlChars.CrLf

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 213

However, imagine my excitement when I discovered the new Parse method. For a moment I
thought my dream had come true and this was the built-in way to parse a string. No. Instead,
they are using the term parse in a way it's never been used in English before. The Parse
method doesn't parse (examine, divide into components); it casts.

Whatever. You can use it to change a string into various numeric data types.

In this example, I merely check for string or int32 types. However, in a real-world application
you would include a Case to handle each possible data type that might be discovered as a
parameter in an unknown assembly.

Each parameter's correct data type is created and added to a parameter array (p) in this loop:

 For Each s In split
 'figure out parameter's variable type
 Select Case paramInfo(C).ParameterType.Name
 Case ''String" 'case sensitive
 p(C) = split(C)
 Case "Int32"
Dim NewInt As Integer = Integer.Parse(split(C)) 'turn string into integer
 p(C) = NewInt
 End Select
 C += 1
 Next s

And, finally, you use the Invoke method to pass the array of parameters (p) to the instantiated
method (obj):

mInfo.Invoke(obj, p)

If there are no parameters to pass to an instantiated method, your job is easier. Just pass
Nothing:

mInfo.Invoke(obj, Nothing)

Emission

If you think reflection has a bit of a Twilight Zone quality to it, just wait until you find out
about its ability to emit code. The Reflection.Emit namespace contains facilities that
permit you to generate code at runtime. Yes, generate code.

It's not VB.NET source code; it's Intermediate Language (IL), so the drawback is that you
have to use a kind of opcode (assembly language) low-level programming. It's so specialized
that few of us are likely to learn the language in order to emit. It features the usual assembly-
language specificity, though in fact most of the instructions in this language should be familiar
to you (the usual features

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 214

of any programming language: looping, branching, moving and editing data, and so on, along
with low-level techniques such as stack management):

ILang.Emit(OpCodes.Ldarg_1) 'load 1 or 0 from the stack
ILang.Emit(OpCodes.Ret)

The .NET compiler translates your VB.NET source code into MSIL (Microsoft intermediate
language), a sort of Esperanto that can be converted to CPU-specific native code later, prior to
execution in a specific environment. The .NET CLR (Common Language Runtime) includes
JIT compilers for every supported environment. MSIL is converted to native code just in time
to be executed.

In addition to MSIL code, emission (like the .NET compiler) also produces associated
metadata—type definitions, signatures (parameter lists) for members, and so on. MSIL code,
combined with its metadata, is sent to a file—a ''portable executable" (PE) file.

Emission is, well, a rather specialized technique, to say the least. (I expect some of you may
even consider it a bit twee.)

You can generate types during runtime using the Builder classes within the Emit namespace.
These classes, including MethodBuilder and AssemblyBuilder, emit MSIL code.

If you are interested in code that generates code, you have to explain to people why. How
would you use it? There are some security applications I can think of (whenever you move
toward greater abstraction, you decrease the number of people who can figure out what you're
doing). Also note that VB.NET itself uses code-generating-code in various ways. You find it
in wizards, in ADO.NET (for example, to transform a DataSet into a serialized XML version),
and in the text processing available via regular expressions, among other locations in the
framework.

If this interests you, you can find many tools (such as the ILDasm, an MSIL Disassembler)
and lots of documentation in the .NET help system and in the SDK. Look in C:\Program
Files\ Microsoft Visual Studio .NET 2003\SDK\v1.1\Tool Developers
Guide\docs\StartDocs.htm. You'll find extensive documentation there covering the
Common Language Infrastructure (CLI), and the huge IL it contains.

Summary

In this chapter you discovered what the technique of reflection does, and how it does it. You
also saw how reflection interacts with security issues and how to manage the results sent back
when reflection is used against various kinds of targets.

You saw how to filter reflections and how to access loaded assemblies. Also covered was the
somewhat perplexing terminology currently in use to distinguish the various kinds of types
(arrays, modules, enumerations, structures, interfaces, and value types). Beyond that, another
level of abstraction and categorization was discussed (the differences between the terms
assembly, solution, project, module, and namespace).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you learned about discovered code, CreateInstance, and Invoke. And the idea of code
emission was discussed. If you suspect that reflection might be a technique of use in your
programming, this chapter's example code and discussions should have provided you with a
good launching pad to further exploration of this intriguing new technique.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 215

Chapter 9
Building Bug-Free and Robust Applications
YOUR BASIC TASK, As a developer, is to write functional, robust applications. To write
functional applications, you must keep the interface as simple as possible, use your common
sense, and listen to the users. If you take the users' comments into consideration while
designing your application's interface, you will produce a functional application. You should
also carefully examine similar applications; keep the good ideas and make sure you don't
repeat the mistakes of others. The design of functional applications can't be taught. If you've
been around in this field for a while, you already know that this is an acquired skill and there's
no substitute for experience. Younger developers tend to make their applications more
complicated than they should, simply because they think that users will appreciate a brilliant
piece of code. It took most of is quite a while to learn how to ''keep it simple."

Writing robust applications, on the other hand, is not as hard. While writing functional
applications is an art, writing robust application is a technique and it can be taught. It takes a
lot of code, but it's well within the average developer's skills. A robust application is one that
will continue its operation under adverse conditions. The most typical such condition occurs
when users supply the wrong data. Users will enter data that defy any logic and your code
should be able to handle them. At the very least, the application shouldn't crash. Your
application may discard some of the user-supplied data, but it shouldn't terminate without a
good indication of what went wrong. If possible, you should give users a chance to correct
their mistakes. At the very least, your application shouldn't terminate without giving users a
chance to save their data.

In this chapter we'll discuss structured exception handlers, which allow you to write robust
applications that execute gracefully even under unforeseen conditions. The goal is to write
applications that can handle everything users throw at them, as well as cope with unexpected
situations beyond the program's control. To handle user errors, we provide extra code that can
handle situations that throw off the "regular" code ("regular" code being all the statements that
process perfect data).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 231

the Common Language Runtime Exceptions section of the Exception window. You can
choose an exception in the upper window of the dialog box and specify how the Debugger will
handle it in two frames near the bottom of the dialog box. The options in the upper frame
determine how the debugger will react to an exception as soon as it's thrown and before your
code is given a chance to handle it through the appropriate exception handler. The options in
the lower frame determine how the debugger reacts when an unhandled exception is thrown.
The options you set in the two frames affect the selected exception, and you can handle
different types of exceptions differently. The option ''Break into the debugger" breaks the
execution of the program as if there were a break point on the statement that caused the
exception. The option "Continue" allows the application to continue its execution. If the
statement that threw the exception is in a structured exception handler, the handler will be
activated. The "Use parent setting" option handles the exception as it would handle an
exception of the parent category (if there is one). Notice that you can add your custom
exceptions to the list of exceptions with the Add button.

FIGURE 9.3 The Exceptions dialog box

If an error occurs in an error handler's code, you can retrieve the statement that caused the
initial error with the InnerException property of the Exception object.

Debugging Techniques

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to handling user mistakes, you must also handle your own mistakes. How many
times did you write code that contains no syntax errors, executes fine, but doesn't produce the
correct results? It's happened to everyone who has written some serious code. Your code
contains logical errors, which you must identify and then fix. When you're dealing with logical
errors, you must step back and reevaluate your algorithm. Make sure that you're using the
proper steps to get to the desired result. The algorithm is usually correct, but in most cases it's
not implemented correctly.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 241

FIGURE 9.8 The Call Stack window

Summary

In this chapter you learned how to write robust applications that can handle user errors or
abnormal conditions that may never occur in the design phase. These conditions cause runtime
exceptions, which you must handle from within your code by inserting the appropriate
exception handlers. A professional-grade application should be robust, which means that you'll
have to write more code to handle exceptions than to actually perform useful tasks.

You also learned the basics of the integrated debugging tools, which allow you to locate logic
errors in your code and make sure that your application works correctly, even in the absence
of exceptions. How many times were you absolutely convinced that your code was correct, but
users discovered bugs in your code? It's been said that if builders built homes like
programmers write code, the first woodpecker that came along would have destroyed our
civilization. On the other hand, we can afford to experiment and make mistakes because our
computers are so fast and there are so many tools to help us write better code.

All debugging tools are based on a simple premise: the code that fails should be executed one
statement at a time and we should be able to examine the effect of each statement. We can
view how each statement affects the variables in its scope, execute statements outside the
application, and monitor the progress of the application.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 243

Chapter 10
Deploying Windows Applications
ONE OF LAST PHASES in an application's development cycle is the deployment process. While
developing, testing, and debugging an application, many developers suddenly realize that they
must deploy their application to a number of workstations. If you don't think of the
deployment process while you're developing your application, you may run into surprises
when you attempt to install the application on another machine. As you code the application,
you make changes to the development environment. You may install a peculiar font (an OCR
font, for example), use icons from the folder in which they exist, install custom components on
the development machine's global assembly cache (GAC), and so on. When the application is
deployed to a target machine, it may not find a drive or folder that existed on the development
machine, or a component that's not installed in the target machine's GAC.

You should always keep in mind that your application will be distributed to other people's
workstations. If you're using icons, for example, place them first in a folder under the project's
Bin folder and then use them. Distribute the folder with the icons along with the application's
executable files, to make sure that your code will find the icons. In addition, you should decide
on your deployment method early in the process and deploy the application to a production
machine from time to time. Production machines are set up differently than development
machines, and you'll be surprised how often an application that works as expected in the
development environment misbehaves when installed on a production machine. The problem
is usually simple to resolve (most often components that have been installed on the
development machine, but not on the target machines), but you shouldn't postpone the
deployment problems to the very end of the cycle.

In this chapter we're going to explore the various deployment techniques for .NET
Windowsbased applications. There are two common deployment scenarios:

 Applications that will be distributed in a corporate environment
 Applications that will be distributed to the general public

Most developers write applications that will be used within their corporation, and we'll focus
on a technique for deploying applications in a fairly controlled, trusted environment. You'll
also learn how to create setup programs to distribute your .NET applications to the public.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 244

Another related topic is that of upgrading applications that have already been installed on the
target computer. Let's say you have written and deployed an application to a large number of
users throughout your corporation. What happens when you need to update the application?
Do you distribute a new setup program and ask your users to run it? It's inevitable that while
some users will be running the new version, others will still be running the old one. If you
upgrade the application (or some of its components) several times, it's certain that most
versions of the application will be in use at your company. We will address the issue of
upgrading an existing application in our discussion.

Installing the .NET Framework Runtime

The client computers to which you're going to deploy your .NET applications must have the
.NET Framework runtime installed. If not, the application won't run. To install the .NET
Framework on the target computer, you must run the Dotnetfx.exe setup program. You can
obtain this file from Microsoft and deploy it with your applications. This file is an installer that
contains the Common Language Runtime and .NET Framework class libraries necessary to
run .NET Framework applications. You can find this file on the Visual Studio CDs (it's on the
.NET Framework SDK CD in the \dotNETRedist directory), or download it from Microsoft at:
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/netdevframework.asp or at
http://www.windowsupdate.com. (Keep in mind that both of these links may be invalid by the
time you're reading this book, so you should search the MSDN site).

Installing the .NET Framework takes a few moments, but it's an unattended process and it will
either install the Framework successfully or will fail and the original computer configuration
will be restored. You can install the .NET Framework on Windows 98 computers and your
applications will also work under this pre-.NET operating system. The next version of the
Windows operating system will come with the .NET Framework preinstalled. This will
simplify the deployment of .NET applications even more (ignoring the fact that we'll have to
deal with updates in the .NET Framework itself).

To install the .NET Framework on a client computer, the user must log on with administrator
privileges. This isn't usually the case in a corporate environment, so it's best to leave this task
to the system administrator, who can install the .NET Framework on all client computers using
the Systems Management Server. You can also install the .NET runtime files silently, along
with your application. The process is described in detail in the documentation (search for the
item Redistributing the .NET Framework).

In the following sections we're going to look at the deployment methods for Windows forms-
based applications, starting with the XCopy method, which is as simple as copying the
executable files from the development machine to the production workstations. This is a very
basic deployment method that can be used with simple applications—and it's a seriously
limited deployment method, because it doesn't allow you to perform custom actions, such as
installing a shortcut on the user's desktop, or a new font on the target computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The deployment method we'll explore in detail is the Internet-based deployment, or no-touch
deployment, which is ideal for corporate intranets. The application's files are copied to a
virtual directory of the web server and users can run the application by pointing their browser
to the application's URL.

The last deployment method is to create a Windows installer package, distribute it to the target
machines, and ask users to run the Setup program, which will install the application and
integrate it

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 245

with the user's environment (create shortcuts, add entries to the Registry, request product
registration, and so on). Programs installed through Windows installer can later be removed
through the Add Or Remove Programs snap-in of the Control Panel.

XCopy Deployment

Once the .NET Framework runtime has been installed on a client computer, you can deploy an
application by copying its files to the client computer. Simple applications consist of just an
EXE file. Large applications may contain DLL files with custom components. The good news
is that you don't have to register the DLLs and worry about versions. The DLLs are copied
along with the EXE and you can have different versions of the same DLL running side-by-
side. Different versions of the same DLL reside in different folders, along with the version of
the application that uses them. You can even install different versions of a DLL in the GAC,
where applications look for a DLL if it's not in their path.

This type of deployment is called XCopy deployment, because the application is installed on
the target machine by simply copying the files in the application's Bin folder (and any
subfolders with custom files that may exist in this folder) to the target computer. No
components are registered and no changes are made to the target computer's file system. To
remove the application, you simply delete the folder and no trace of the application will
remain on the computer—except perhaps for a shortcut the user may have created on the
desktop. You can also install multiple versions of the same application, which can run side-by-
side. Each application folder contains its own DLLs and dependencies and they won't interfere
with one another. The fact that DLLs are treated as application files and need not be registered
at the client computer may bring an end to the situation known in pre.NET days as DLL hell.

If a component is going to be used by multiple applications, we usually place it in the GAC.
To install a DLL in the GAC, open a Command Prompt window, switch to the folder that
contains the DLL, and execute the following statement:

cagutil -i component.dll

To uninstall the same component, call the cagutil with the -u argument. When using XCopy
deployment, it's a good idea to avoid the GAC, because you must remember to install the new
version of each component to each client's CAG. If you decide to create an installer package to
distribute your application, you can automatically install components to the GAC from within
the installation project.

As convenient as this method of deployment may sound, it's not flexible at all, and can't be
used with anything but the simplest projects. You can't even create a shortcut on the target
computer's desktop; users will have to do so manually. If your application needs to install a
component at the GAC, or install a new font to the target computer, then you can't use this
deployment method. You must resort to a setup project that will install the application to the
target computer and perform custom actions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XCopy deployment eliminates the update problems as well. To deploy a newer version on the
client machine, just copy the new files over the existing ones. The next time the user on this
client runs the application, they will see the new version of the application. Of course, if you
copy the files to a different folder, both versions of the application will coexist on the client.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 246

Internet Deployment

This type of deployment is new to .NET and you'll find it extremely convenient if you're
working for a company that uses an intranet. Internet deployment is also known as no-touch
deployment, because you don't have to install the application on the target machines. Users
can connect to a web server and download the application to their workstations, where it will
be executed. It's also known as zero-install and zero-administration deployment, and we'll
explain why immediately.

The problem with installers is that every time we make a change to the application, we must
create a new installation project and redistribute the application to all clients. Deploying an
application to hundreds of user desktops is a nightmare for system administrators, which
explains the popularity of Web applications. Web applications run from a web server, and no
components need be installed on the client computers. However, a browser-based application
can't offer the rich user experience of Windows forms applications. A WebForm can't provide
immediate feedback to user actions as Windows forms can, and WebForms make numerous
trips to the server. With no-touch deployment, we can simply copy the files generated by the
compiler in the application's Bin folder to a virtual folder on the company web server and be
sure that all clients will see the latest version of the application. In short, no-touch deployment
combines the best of Windows forms– and WebForms–based applications. The executables
are downloaded to the client where they're executed, while no components are installed at the
client.

Internet-based deployment eliminates the problem of distributing upgrades. You can simply
replace the original executables on the web server with the newer ones, and the next time a
user connects to the application, they will see the new version. If you're developing an
application in a corporate environment, this type of deployment is your best option, because
you can upgrade your application on all desktops with zero downtime. You'll never have to
ask users to stop their applications and install a newer version. The worst-case scenario is that
you may have to ask users to exit the application and restart it.

To run an application from a web server, users must start their browser and enter the URL of
the application's main executable file on the server. Alternatively, you can create a simple web
page with a hyperlink to your application and ask users to connect to this page's URL. If your
company runs an intranet and users connect to a starting page every morning, you can place
the hyperlink to this page.

Note that users need not start their browser to connect to an application deployed through a
web server. They can create shortcuts to the URL of the application on the desktop and start
the application by double-clicking this shortcut. When the shortcut is double-clicked, the
browser's window comes up for a moment and then the application's form will appear.

With this type of deployment, the application's files are copied to the download cache of the
client, from where they'll be executed. Every time the user starts the application, the CLR
compares the hashcode of the application in the local cache to the hashcode of the application
on the web server. If they're the same, the application is started from the cache. If not, the CLR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on the web server. If they're the same, the application is started from the cache. If not, the CLR
downloads the newer version from the web server to the cache and then executes it. As you
will see, it's possible to download components from within the application, a technique that
allows you to download components on a separate thread while the application is running.
Practically speaking, you aren't going to use this type of deployment unless you know that all
clients have a high-speed connection to the server. This means that new components won't
take long to download to the client, so you expect users to wait for a few moments to
download the newer version of an application (or component) from time to time.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 259

The following code segment shows how to download the NoTouchDeployment project's EXE
file to the client, then extract the application's main form and display it:

Dim appURL As String = ''http://localhost/NWEmployees/NoTouchDeployment.exe"
Dim asm As [Assembly] = [Assembly].LoadFrom(appURL)
Dim formType As Type = asm.GetType("NoTouchDeployment.Form1")
Dim objForm As Object = Activator.CreateInstance(formType)
Dim Form1 As Form = CType(objForm, Form)
Form1.Show()

Notice that the name of the Assembly class is embedded in a pair of brackets, because
"assembly" is a reserved word in VB. Strangely, it's not used, but it's a reserved word. The
assembly could be an EXE or a DLL. What this short code segment demonstrates is how to
start an application from within another application, even though none of the applications lives
at the client.

Deploying with Windows Installer

The last option for deploying .NET applications is the most advanced one and involves the
generation of a setup project, which users must run on the client machines to install the
application. This is also the most professional method of deploying an application, and it's the
only option for distributing an application to the general public. Using the Windows Installer
we can create shortcuts on the user's desktop, add items to the user's Programs menu, provide
custom dialog boxes to customize the installation process, and do a lot more. The setup
program is a bootstrap application that opens an MSI package and installs the application and
its components on the client computer, according to instructions embedded into the package at
design-time.

Creating a simple Windows installer package with Visual Studio .NET is a straightforward
process, because the setup project can be part of the same solution as the application for which
the package is created. In earlier versions of Visual Studio, setup projects were created with a
tool outside Visual Studio. Creating a flexible installation program for a large application may
become quite a task, but at the very least you can design and test the setup project in the IDE
of Visual Studio.

A Windows installer package is a database with all the data needed to install the application.
The information stored in the database remains at the client, and you can run the setup
program again to either repair or uninstall the application. Every application installed at the
client computer with the Windows installer package is assigned an item in the Add Or
Remove Programs snap-in; and this is how users repair or remove applications from their
machines. Figure 10.10 shows the Add Or Remove Programs snap-in window after the
installation of the NWOrder application. If you click the Support information hyperlink, you
will see the SupportInfo window, which is also shown on the same figure. This is the
application for which we'll create a Windows installer package to demonstrate the process of
deploying a Windows application with a setup project.

To demonstrate the process of deploying an application through a Windows installer package,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To demonstrate the process of deploying an application through a Windows installer package,
we'll build a setup project for the NWOrders application. This is one of the sample
applications we'll explore in detail later in this book. The NWOrders application lets you
create orders for the North wind database. Users can specify the products to be added to the
order either by their ID, or by their name. The selected products are added to a ListView
control along with their prices, quantities, and discounts, and the order is committed to the
database when the Save button is clicked. Figure 10.11 shows the main form of the NWOrders
application.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 270

You should experiment a little with the custom dialog boxes to get exactly what you want.
Look up the default appearance of each custom dialog box in the documentation and then
adjust them through their properties. The custom actions you can take based on the user's
choice(s) on these custom dialog boxes are quite limited. Some of the dialog boxes allow you
to start a custom application. The Register User dialog box, for example, has an Executable
property, which you can set to the name of an EXE file. When the user agrees to register the
application, the executable is invoked automatically. The Register User dialog box also
exposes a property named Arguments, which you can set to a string with arguments to be
passed to the executable that will handle the user registration.

Summary

In this chapter you learned the basics of deploying Windows forms applications. The new
deployment technique is the Internet-based deployment, which makes the deployment of
Windows forms applications as simple as the deployment of WebForms applications. With
this type of deployment, nothing is installed at the target machines; applications are
downloaded to the clients from a web server and executed. When the application is upgraded,
the clients will detect the newer versions at the web server and will download them
automatically. Internet-based deployment is also known as no-touch deployment and zero-
install/zero-administration deployment, which indicates the expectations of Microsoft for this
type of deployment.

Internet-based deployment is a very convenient deployment mechanism in corporate
environments, but you have to deal with security issues. As far as the client is concerned, the
application is downloaded from the Internet and as such it will be executed in a context of
seriously limited privileges. Use the Microsoft .NET Framework Configuration to give the
application the proper privileges. If the application doesn't interact with the local resources,
then you don't need to assign additional privileges to the application. Web applications don't
interact with the local computer's resources and you don't have to fiddle with their security
settings. However, if you want to provide a rich user experience by making the most of the
client, you must request that your application is executed with additional privileges. Because
of this, the Internet-based deployment is best suited for applications that are deployed within a
corporation.

The classical deployment method that relies on Windows installer has become a lot more
flexible than those with previous versions of Visual Studio. The setup project is part of the
solution and you can set up the installation actions with point-and-click operation in the IDE.
We've explored the basics of creating Windows setup projects, which should be all you need
to deploy an application within a corporate environment.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 271

Chapter 11
Building Data-Driven Web Applications
THIS CHAPTER COVERS THE primary new tools—especially server-side controls such as the
essential DataGrid—that make creating database-connected web pages a pleasure to program.
If you've struggled with the task of attaching databases to websites in the past, you'll
appreciate how much work .NET's tools and controls do for you, and how quickly you can
build an effective solution.

First you'll read an overview of the important new advances that make .NET Internet-database
programming so much more efficient than previous technologies. Then you'll see how to best
make use of the DataGrid, DataList, and Repeater controls. You'll next see how to handle
post-back and validation. Finally, you'll find out how to send graphics and when you would
perhaps want to revert to old-style HTML controls, rather than the new .NET WebForm
controls. Now, on to the overview of the advantages of .NET's approach to creating database-
driven web pages the easy way.

New Features in ASP.NET

The .NET database features integrate well with its web page features. Both ADO.NET and
WebForms offer high-level tools, rapid application development elements, and programmatic
support for hooking up Internet browsers to databases.

In addition you'll find up-to-date special capabilities, such as the capacity to translate database
tables into XML and vice versa. Life has become much easier for the Internet programmer,
thanks to ADO.NET and ASP.NET.

There's no point in reviewing the mind-numbing struggles of the past few years as developers
wrestled with e-commerce ''solutions" that involved tedious client-side scripting (often either
blocked for security reasons or the victim of browser incompatibilities), ActiveX, JavaScript,
and other attempts to bridge the gap between databases and web pages. ASP.NET gives you a
full server-side language that, along with client-side scripting, security via compiled code, and
other features, makes our work far less wearisome.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 273

The client's browser accepts this composed HTML, of course (though it would likely reject an
executable object, such as a traditional ActiveX control, for security reasons). In this way, a
relatively sophisticated user-interface is created in the client browser—sophisticated compared
to traditional HTML GUI controls such as a Submit button. When the user interacts with their
browser, the results are posted back to the server, which can then send a response to the client.
In this way, rich client controls are made available, in spite of the usual security and
bandwidth problems. The server control solution is effective for most kinds of GUI. Server
controls are also browser agnostic, so the few remaining users of Netscape products can see
the GUI too.

If you have any doubts about the efficacy of server controls, compare the more flexible,
sophisticated visual and user-interaction features of the DataGrid (discussed later in this
chapter) with the rather poor features of the traditional HTML table. If you want to display
data in browsers, the DataGrid is clearly the superior choice.

Displaying Data on a WebForm

For the first example in this chapter, let's see how to use the code-behind feature of the .NET
WebForm to make a connection to a database, then display some of its fields on the client
browser. This example involves no server-side controls; it's simply directly written on the
user's browser with the HTML Response.Write command.

Start a new VB.NET ASP.NET Web Application. Double-click the WebForm to get to the
code-behind window (by default it's named WebForm1.aspx.vb).

Add these two Imports statements to the top of the code window:

Imports System.Data
Imports System.Data.SqlClient
Then type Listing 11.1 into the Page_Load event.

LISTING 11.1: CONNECTING TO A DATABASE
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim conString As SqlConnection = New SqlConnection _
(''Data Source=localhost;Integrated Security=SSPI;Initial Catalog=pubs")
 conString.Open()

 Dim SQLc As SqlCommand = New SqlCommand("SELECT * FROM Authors", conString)
 Dim datReader As SqlDataReader = _
SQLc.ExecuteReader(CommandBehavior.CloseConnection)

 While datReader.Read
 Response.Write(datReader.GetString(1) & ",")
 Response.Write(" " & datReader.GetString(2))
 Response.Write(" --- " & datReader.GetString(3))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 282

 ListBox1.DataSource = MyArray
 ListBox1.DataBind()

 Else ' it is a postback, so process the user's click
 Response.Write(''You clicked: " & ListBox1.SelectedItem.Text)
 End If

 End Sub

Here you only need to fill this ListBox the first time you send the page to the user. So If Not
IsPostBack Then makes this decision. If the user is sending a postback, the ListBox remains
filled, but now you have to react to the user's click.

Validation

Users have been known to enter all kinds of wrong input, including zip codes for area codes,
their date of birth in reverse Polish notation, and their mother's maiden name for their favorite
pet. There's not much you can do to detect that last one—pet names cannot easily be
distinguished from maiden names—but most user input can be screened before adding it to a
database or using it to fulfill a catalog order.

If they're ordering a shirt and they type in 125 as their neck size, you can politely request that
they revise this measurement. If they type in nine digits for an area code, you can respectfully
suggest that they try, try again.

You can validate user input either programmatically or via the new .NET validation controls,
as described in the following sections.

Programmatic Validation

There are various ways to programmatically validate user entries, but one of the most useful
involves Regex, a complex language for various kinds of text management. In general, you
don't want drive yourself barmy by trying to construct regular expressions yourself—there's
nothing regular about them.

However, they can come in handy, so to use them just locate libraries of pre-written
expressions on the Internet, or examples in VB.NET Help. I located the following mind-
bender in Help. It determines whether or not a string is a valid e-mail address. Here's what it
looks like:

"^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([\w-]+\.)+))([a-zA-"
Z]{2,4}|[0-9]{1,3})(\]?)$

See what I mean?

This next example illustrates another way to interact with the user via the middle tier. Add
Imports System.Text.RegularExpressions to the code window. Put a button and a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Text.RegularExpressions to the code window. Put a button and a
TextBox on a WebForm. The user enters an e-mail address in the TextBox, then clicks the
button. Change the Text properties of these controls so they look like this:

TextBox1.Text = "Please enter your email address..."
Button1.Text = "Click to validate"

Then type Listing 11.5 into the button's Click event.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 286

Sending Graphics

You can provide handsome backgrounds or dynamically generated graphs and other quick-
response images using the new Response.Outputstream property. You can use this property to
transmit a variety of different kinds of binary data to the client. In this example, you build a
graphic using the powerful new GDI features in .NET, then you serialize the graphic to the
Stream object returned by the Response.Outputstream property. Listing 11.6 generates the
gradient and the Bezier curves shown in Figure 11.5:

LISTING 11.6: USING RESPONSCE.OUTPUTSTREAM FOR RAPID GRAPHICS
Imports System.Drawing
Imports System.Drawing.Drawing2D

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

'set format
Dim b As New Bitmap(300, 500, Drawing.Imaging.PixelFormat.Format32bppRgb)
 Dim g As Graphics = Graphics.FromImage(b)

 'build gradient
 Dim rect As New Rectangle(0, 0, 300, 500)
 Dim b1 As New LinearGradientBrush(rect, Color.DarkGoldenrod, _
Color.PaleGoldenrod, LinearGradientMode.ForwardDiagonal)
 g.FillRectangle(b1, rect)

 'superimpose Bezier whip curves
 Dim p1 As New Point(54, 12)
 Dim p2 As New Point(212, 122)
 Dim p3 As New Point(134, 129)
 For i As Integer = 10 To 400 Step 100
 g.DrawBezier(Pens.BlueViolet, p1, p2, p3, New Point(i, 500))
 Next i

 'blank current contents and specify jpeg as response type
 Response.Clear()
 Response.ContentType = ''image/jpeg"

 b.Save(Response.OutputStream, Imaging.ImageFormat.Jpeg)

 g.Dispose()
 b.Dispose()
 Response.End()
 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 287

FIGURE 11.5 Send generated graphics or any binary data directly to the client browser.

This technique is not for a typical web page that the user would simply surf to via hyperlink or
such. Just use an Image control for that kind of graphic. Instead, this is a page that is a
response to a user query, and it is dynamically generated—not some graphics file that you're
sending or embedding in a web page. Use this technique to, for example, generate a histogram
out of the sales figures stored in a database. This on-demand graph could be quite useful to the
traveling salesmen in your company: they could see at a glance, on a real-time basis, their
current status relative to their competition. This feature transmits binary data, so it's not
limited to graphics. Indeed, I could send this Word .doc file.

Using HTML Controls

So far you've worked with WebControls in this chapter, but it's possible that in some situations
you might want to resort to the old-style HTML controls located in a separate tab on the
Toolbox. For most situations, the WebControls are preferable, if for no other reason than they

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Toolbox. For most situations, the WebControls are preferable, if for no other reason than they
permit you to easily integrate VB.NET via the code-behind process. Also, if you've ever tried
to manage GUIs within HTML, you'll recall that it's confining, to say the least. All the HTML
controls' functionality is available in equivalent, but usually more powerful and efficient,
WebForm controls (WebControls). The only exception to this is the File Field control, which
you can use to have the client upload a file to your server.

Both WebControls and HTML controls have an attribute collection, but WebControls are
simply far richer than HTML controls. WebControls have a full set of properties and also
feature a consistent and type-safe object model—consistent meaning that if you know how to
set a BorderStyle

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 288

property in one WebControl, you know how to deal with it in all WebControls. WebControls
also sometimes offer high-level abstractions that have no HTML equivalent; the Calendar
control is one example.

HTML controls can be useful, though, if you have to maintain or revise an existing ASP or
HTML page. This approach might be simpler than translating the pages into.NET
WebControlbased WebForms. HTML server-side controls either contains the
runat=''server" attribute or are enclosed with a form element that itself has the runat
server attribute, like this HTML password control:

<form id= "WebForm1" method== "post" runat= "server" >
<input
type=password>
</form>

Should you want to compel an HTML control to execute server-side like a server control,
right-click the control in the design window and choose Run As Server Control. The Button
control, for example, defaults to client-side execution.

Summary

This chapter explored the novel features that ASP.NET and ADO.NET bring to the previously
formidable job of building data-driven websites. The chapter begins with a survey of the
several problems solved by using web pages in concert with server-side controls such as the
powerful, flexible DataGrid. You saw how using server-side controls to compose HTML
pages for transmission to client browsers solves issues as disparate as security and bandwidth.

This chapter describes how to use various WebForm controls such as DataGrid, DataList, and
Repeater. You also saw how to employ templates, deal with postback, and handle validation
(both programmatic and control enforced validating). A technique for efficient graphics
transmission was discussed. Finally, we covered a couple of reasons why—in spite of the clear
superiority of server-side controls—you might want to occasionally revert to using legacy
HTML controls instead.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 289

Chapter 12
Peer-to-Peer Programming
TODAY'S APPLICATIONS ACCESS RESOURCES on remote servers, and the Internet is becoming an
extended network that allows us to reach any computer (almost) as if it belonged to our local
area network. We want to access information wherever it exists—retrieve the most up-to-date
information and process it as needed, and where it's needed. New technologies, such as Web
services, allow us to easily expose information to other systems, or consume information from
remote systems.

Even Web applications are not always limited to a browser connected to a web server. You
can write a Windows application that contacts a web server and downloads one or more files
to process locally. It's also possible to upload files to the web server, as long as you specify the
name of an application that runs on the server and knows what to do with the uploaded files.

The .NET Framework provides a number of tools for exposing objects to remote systems, as
well as for consuming objects on remote systems. In addition to the new tools, Microsoft has
enhanced the traditional tools for peer-to-peer programming. Sometimes we don't need to
expose our data to the world, just to specific remote systems. To enable two computers to talk
to each other, you must use the System.Net namespace, which exposes the required
functionality. In this chapter we explore the System.Net namespace and we show examples of
peer-to-peer programming. You'll see how to write applications that run on two different
computers, contact one another, and execute commands on the remote computer. These
applications are written in pairs and they allow you to determine how the two computers will
exchange information. You can use your own encryption techniques to protect your data, use
custom authentication techniques, and have complete control over the flow of data between
the two machines.

Internet Addressing

Before we start our exploration of sockets and peer-to-peer programming, we'll briefly discuss
the System.Net.Dns class, which simplifies the task of addressing computers on the Internet.
You're probably familiar with the topics of this section, but we'll repeat a few basic terms for
the sake of VB programmers who are new to Internet programming.

Every computer on the Internet is identified by a unique address, known as the IP address. The
IP address is a long number that is written as a group of four numbers, each one in the range of
0

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 292

Aliases property This property returns (or sets) a list of aliases associated with a
host.
HostName property This property returns (or sets) the friendly name of the host.
The System.Net.Dns class exposes a few methods to manipulate computer
addresses, which are:
GetHostByAddress(IPAddress) method This method accepts an IP address as
argument and returns an IPHostEntry object. On my computer, the statement

 Console.WriteLine(GetHostByAddress(''127.0.0.1").HostName)

returned the string "PowerToolkit." The GetHostByAddress method will return a
hostname if the client with the specified address is on the same local network, or if
it belongs to network with a registered name.
GetHostByName(hostname) method This method accepts a hostname as argument
and returns the host's IP address. The following statement will return your
computer's IP address, if you change the hostname to your computer's hostname:

 Console.WriteLine(System.Net.Dns.GetHostByName(_
 "myHost").AddressList(0))

If you're on a local area network and the Internet at the same time, the
IPAddressList array will have multiple elements (multiple IP addresses).
Resolve(hostname) method This method accepts as argument an IP address or a
hostname and returns an IPHostEntry object that represents the host. The argument
can be either a friendly name (like "PowerToolkit" or "www.domain.com") or an IP
address.

Now we can switch our attention to the classes for peer-to-peer programming, starting with the
concept of sockets.

Using Sockets

At the lowest level, network programming consists of programming with sockets. Sockets are
an old concept in network programming and they represent input points at a system, where a
remote system can connect and make requests. There are many types of sockets, but the most
common ones are the Internet sockets, because they deal with Internet addresses. Internet
sockets come in two flavors: UDP (User Datagram Protocol) sockets (also known as Datagram
sockets) and TCP (Transmission Control Protocol) sockets. The difference between the two is
that UDP sockets are connectionless. Every time you need to send data using a UDP socket, a
new connection to the remote machine is established. The connection is closed automatically
when the data arrives at the remote machine. Every package of data is independent of the
others, because it carries in its header all the information needed for its delivery.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TCP sockets require that a link between the two computers be established before they start
exchanging data. The advantage of TCP sockets is that they're more reliable than UDP
sockets. Packets sent through a UDP port may arrive in different order than the order in which
they were sent. Moreover, a UDP packet may be lost without any indication. The sending
machine will not receive a positive or

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 300

 TCPSocket.Close()
 End If
 End If
End Sub

The Socket object exposes asynchronous versions of its methods. They're the BeginListen,
Begin-Accept, and BeginReceive methods, which initiate the appropriate action in
asynchronous mode. You need to implement AsyncCallbacks to intercept and process the
event of the completion of the operation. However, most typical applications use the
TcpListener, TcpClient, and UdpClient classes. These classes abstract the operations of the
two types of connections and simplify coding. However, a basic understanding of sockets and
the basic principles demonstrated in the previous sections are necessary to use the classes that
are specific to a protocol.

Because the TCP protocol is inherently more reliable than the UDP protocol and is also used
more often, we're going to demonstrate how to use the TcpListener and TcpClient classes to
build a chat application.

The TCPChat Application

In this section you'll build a fairly advanced application that allows multiple remote clients to
engage in a chat. Figure 12.3 shows the server and a few clients of the application. Each client
joins the conversation by establishing a connection to the server. Once the client is connected
to the server, it sends messages to the server. The server displays the incoming messages on a
TextBox control on its own interface and then broadcasts them to all clients. Once a message
arrives at a client, it's displayed on a TextBox control, along with the name of the person who
sent the message. As each client establishes a connection to the chat server, it also establishes
a username for the session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 12.3 The TCPChat server and clients

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 308

Interacting with Web Resources

Another group of classes in the System.Net namespace handles the interaction with web
resources. The WebClient class provides the functionality needed by a Windows application to
interact with a web server: retrieve HTML pages or files and upload files to the server. The
WebClient class is very simple and supports synchronous operations only. However, it
abstracts the details of accessing a web server and makes the process of exchanging files with
the web server as simple as reading from, or writing to, a local file. The WebClient class
provides methods for exchanging information with a web server through streams, similar to
accessing local files.

The WebClient class is part of the System.Net namespace, which you must import to your
application. Then you can create instances of the WebClient class and call its methods. A
WebClient object need not establish a connection to the web server explicitly; you just specify
the desired URL when you request a document, or when you want to upload a document from
the local computer. Because of this, using the WebClient class is almost trivial, and its
functionality is exposed through a small number of methods, discussed next:

DownloadData method The DownloadData method downloads data from a web
server and returns them in an array of bytes. The syntax of the method is:

 WebClient.DownloadData(documentURL)

where documentURL is the URI of the document to download. If you're downloading an
existing file, you specify the URI of this file. You can also specify the URI of an ASP
application that generates its output on the fly. The output of the script is transmitted to the
client and you can retrieve it as an array of bytes. The following statements will download the
main page of the Sybex site and store the HTML document in an array of bytes:

Dim wClient As New WebClient
Dim bytes() As Byte
bytes = wClient.DownloadFile(''www.sybex.com")

To convert the byte array to a string, use the members of the System.Text.Encoding class. The
following statement will display the HTML code of this page on a message box:

MsgBox(System.Text.Encoding.UTF8.GetString(bytes))

DownloadFile method The DownloadFile method is similar to the DownloadData
method, but a little more convenient, because it allows you to specify the path of the
file where the data will be stored at the client. The syntax of the DownloadFile
method is:

WebClient.DownloadFile(documentURL, localFileName)

The first argument is the document's URL and the second argument is the path of the local file
where the downloaded data will be stored. The following method will download the main page
of the Sybex site and store it to the specified local file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim wClient As New WebClient
wClient.DownloadFile("www.sybex.com", "C:\DLoads\Data\Sybex.htm")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 317

 txtResponse.AppendText(data & vbCrLf)
 data = RStream.ReadLine
 End While
 wResp.Close()
End Sub

Reading lines off the incoming stream synchronously is not a very efficient process either. The
Stream object exposes the BeginRead/BeginWrite and EndRead/EndWrite methods, which are
very similar to the asynchronous methods of the WebResponse object: they accept a delegate
and they invoke it when the read/write operation has completed. You can edit the code of the
application and make the read operations asynchronous as well.

Summary

The .NET Framework was designed from the ground up with the Internet in mind. It provides
numerous tools that simplify the communication between remote systems, including the all-
new Web services. In addition to the new ways of harnessing the Internet, the .NET
Framework includes the basic classes that expose the traditional functionality of sockets.

In this chapter you've learned the basics of the Socket class, as well as how to use specific
classes to exchange data with the TCP and UDP protocols. These classes are the TCPListener,
TCPClient, and UDPClient classes and they abstract the basic operations you'd have to
perform with traditional sockets to move data between two computers using the TCP and UDP
protocols, respectively. The TCP protocol requires a dedicated connection, and each computer
engaged in the conversation has a distinct role, either as a client or as a server. The UDP
protocol is connectionless, and the computers involved in the conversation are all clients.

You've also learned how to use the WebClient, WebRequest, and WebResponse classes to
interact with web resources from within your code. The WebClient class is the simplest one; it
allows you to exchange data with a web server in a synchronous mode. The other two classes
provide asynchronous methods, which enable you to write functional and responsive
interfaces that interact with remote resources.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 319

Chapter 13
Advanced Web Services
Nobody Yet Knows What the final ratio between web-based computing and local computing
will eventually be. Will it end up 10% local, or even 0% local—with all databases and
computations residing on the Internet with your home and portable devices merely dumb
terminals? Or will the speed, and especially security, advantages of local computing cause a
backlash against the current trend toward distributed computing?

No matter how it turns out, it's clear now that data storage and processing are currently
migrating from local machines to Internet servers. What we used to call personal computing is
mutating into something more like extended computing, with software subscriptions
potentially replacing ownership, remoting replacing self-contained applications, and servers
located whoknows-where replacing your resident hard drive.

And we programmers have to deal with this new .NET world, learning new techniques. For
example, debugging might require that we step through a series of procedures located on
various hard drives around the world. And how do you preserve state in a ''stateless"
environment?

Obviously new communication and security issues arise when you call a procedure across the
world, and wait for the response. If you substitute the words Web for "across the world," and
service for "procedure," you come up with Web service—the idea that a query-response
messaging relationship can be set up between widely distributed computers, and that this
relationship can be both efficient and secure.

That's the hope for Web Services, a novel technology built upon familiar components
(fundamentally, computing is always about data that gets processed, and always will be, no
matter what new communications protocols are invented, or what new names are used for it).

What Are Web Services?

First, how big is a Web service? Some say that Web services can be as large as a full business
solution—a set of applications working together to handle a complete distributed enterprise.

Others say that Web services are small, individual procedures—single functions that accept
some data, process it, and send back a result. We shall see. Currently the term Web service is
used to describe both large and small processing—the essence being that a message is sent
over the Internet to trigger the Web service.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 320

Here is a list of characteristics that define Web services:

 They have no user interface.
 They are published and consumed via a network (the Internet, an intranet, and so on).
They are not localized.

 SOAP and other XML-based technologies send messages using ordinary, plain text.
This, obviously, raises some security issues. Plain text can be read by anyone, and aside
from that, many people mistakenly think that a Web service could not transmit a virus.
Given that firewalls are supposed to pass XML through (it's sometimes simply seen as a
flavor of HTML), Web service communications slide right in. Hackers, though, know
full well that virii executables can be embedded as ASCII strings.

 They are similar to traditional objects (they expose methods and properties, and their
clients consume what they expose). The difference between a classic object and a Web
service is that the latter isn't tightly coupled, doesn't demand that the consumer and
service share the same object model. Instead, XML (and its derivatives) is the shared
language into which members are translated during the request-response
communication.

 They communicate via XML (SOAP variation), theoretically thereby eliminating
language-, and even platform-, dependence. They are not proprietary, like COM objects.
However, the Web service itself is written in a computer language—not XML. XML is
a metalanguage: It can describe language and data, but cannot actually compute. When
the Web service receives the client's request (or the client receives the service's
response), the XML message has been automatically repackaged into an object. If you're
familiar with .NET object-to-XML serialization, you understand that this process is
handled for you—there are built-in .NET serialization features. (You won't have to
handle the serialization process in the Web service examples in this chapter.) Note that
this process is similar to DCOM, but open XML is used to transmit the object rather
than a proprietary format.

Creating a Web Service

In this example you create and test a Web service that requires parameters. You'll pose as the
client to test the service's response. The service exposes a method that accepts a string and
returns the words in it reversed (one two three becomes three two one). Start a new VB.NET
project and double-click the ASP.NET Web Service icon in the New Project dialog box. (If
this type of new project cannot be created, read the VS.NET documentation to find out how to
install IIS.) You'll see a design window for this project, but it's not intended to be used for
visible UI controls such as TextBoxes; rather, it's for adding database-connection controls and
such. Switch to code view.

This line is required:

Imports System.Web.Services

Delete the commented sample code lines and replace them with Listing 13.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 323

Not surprisingly, ASP.NET has facilities for caching data and for allowing you to define how
long it remains cached. Here's how to do it.

Assume that you want to cache the response to your Headlines Web service for a half hour,
then refresh it. If you were providing headline news service that you wanted to update every
half hour, this would be the way to do it.

<WebMethod(Description := ''Number of times this service has been accessed", _
 CacheDuration := 1800, _
 MessageName := "Headlines")> _
 Public Function Headlines() As String

The CacheDuration is expressed in seconds, and in this example, the first time this Web
service is called, the response is calculated and returned to the client, but is also placed into the
cache. For the next 30 minutes, any subsequent calls are not calculated. Instead, the cached
response is merely sent to the clients. Obviously, this technique will often improve response
time and Web service performance.

Consuming a Web Service

In the previous example, you saw how to write and test a Web service. Now let's move to the
other side and see how to consume a Web service.

Later in this chapter you'll see how UDDI, WSDL, and other initiatives facilitate the
publication, discovery, and consumption of Web services. For now, though, let's create a quick
example that illustrates how, from within VB.NET code, you would go about consuming a
Web service. The first step is to add a Web reference to a VB.NET project. For this example,
you'll consume the Web service from within a Windows-style project.

Create a new VB.NET Windows-style project by double-clicking that icon in the New Project
dialog box. Add a TextBox to the form, then choose Project Add Web Reference. You see
what looks like a streamlined browser window (shown in Figure 13.3) where you can search
for Web services and see details about them, such as the parameters they expect when you
submit a message to them for processing.

For this example, you want to contact and consume the Web service you created in the
previous example in this chapter. Click the Web Services On The Local Machine link and
VB.NET will provide you with a list of all the .ASMX files on your machine. Scroll past any
QuickStart or other sample services until you locate Service1 (the default name VB.NET gives
new Web services you write—we didn't change this default name in the previous example).
You also see a path, like this:

http://localhost/services/Service1.asmx

as the "URL" for your service. Just to be sure that you have the correct service, click the
Service1 link, as shown in Figure 13.4, to see that this is the correct service. You should see
this description:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reverses the words in a submitted string

The following operations are supported. For a formal definition, please review the
 Service Description.

ReverseWords

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 325

If you look at the service description, you see the necessary data types and parameters
required: ReverseWords(s As string) As string. This is the right service, so click the
Add Reference button. Look in Solution Explorer to see that your reference has been added.

This reference is similar to the simulation of Internet connections that is used to test ASP.NET
projects and Web services (as in the previous example). The local host refers to your local
machine pretending to be an Internet URL.

Now write the code that consumes a Web service by feeding a parameter to it, then receiving
the response and displaying the result in the TextBox.

Type in the source code shown in Listing 13.2.

LISTING 13.2: CONSUMING A WEB SERVICE
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

Dim WebServiceAnswer As New localhost.Service1

Dim param As String = ''This is my sentence"

TextBox1.Text = WebServiceAnswer.ReverseWords(param)
Me.Text = WebServiceAnswer.Url

End Sub

Press F5 to instantiate a new Service1, then invoke it and pass a parameter. If you have a
firewall, it will probably ask if you want to permit your VB.NET project to "contact the
Internet," or it may ask your permission to let this service connect to local host port 80. You
get back from the Web service this response: sentence my is This.

TIP If you edit a Web service, be sure to right-click localhost in the Solution Explorer, then
choose Update Web Reference in the context menu to rebuild the service.

Preserving State

Like many other Internet communications, Web services are theoretically stateless. Parameters
are passed to the service, but that data is only persisted in memory while the service is
generating a response. After the response is sent, the parameters are discarded. Normally,
details like a client's fax number are not retained by the server. Statelessness is often necessary
—you usually don't have room nor reason to store the number of every visitor to your popular
website.

Some Web services don't need to retain data about the client. There's no need to retain their
zip code after sending a client the local weather report, for instance. But what if you do want
to retain data about certain returning visitors, such as customers, so they don't have to
repeatedly supply you with their fax number every time they place an order?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 326

Using Session State

ASP.NET includes a Session object that can persist data and can make that data global to all
the pages in a given website. To see how to use the Session object, start a new ASP.NET Web
service project and replace the commented green template code with the code in Listing 13.3.

LISTING 13.3: SAVING STATE IN THE SESSION OBJECT
<WebMethod(Description:=''Figures visits.",
enablesession:=True)> Public Function CountVisits() As Integer

 If Session("counter") Is Nothing Then

 Session.Add("counter", 1)
 Else
 Session("counter") += 1
 End If

 Return Session("counter")

End Function

WARNING You must add the Description argument in this method, because the enablesession
argument can't come first in an argument list.

Your session variable named counter tracks the number of times this method is invoked during
a given session. Notice that the name within the parentheses—here, counter—is used as an
ordinary variable name. If you wish, you could get a unique ID from the session object by
changing the declaration, as in

Public Function CountVisits() As String

and then replacing the Return with this line:

Return Session.SessionID

When this Web service is consumed, you get the ID, which looks something like this:

<?xml version="1.0" encoding== "utf-8" ?>
 <string xmlns= "http://tempuri.org/services/Service1"> d2lpzlq5pk1ctnqntwcb4a45
 </string>

Making a Database Connection

Given that most all computer business applications require database connections, you want to
know how to connect a database to Web services. This next example shows you how to make
that connection. The example assumes that you have the Pubs sample databases available on
your hard drive. If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 330

 <job_id>2 </job_id>
 <job_desc>Chief Executive Officer</job_desc>
 <min_lvl>200</min_lvl>
 <max_lvl>250</max_lvl>
 </Jobs>
<Jobs diffgr:id=''Jobs3" msdata::rowOrder= "2">
 <job_id>3</job_id>
 <job_desc>Business Operations Manager</job_desc>
 <min_lvl>175</min_lvl>
 <max_lvl>225</max_lvl>
 </Jobs>

Implementing WSDL

XML attempts to self-describe—to contain both data and information describing that data. To
assist with this difficult job when XML is used to send Web service messages, a new language
named WSDL (Web Services Description Language) was developed. WSDL is an effort to
standardize descriptions of responses, formats, and protocols used during Web service
messaging. WSDL can describe these aspects of a Web service message:

 The address of the Web service
 What kind of processing should be carried out on the data
 The type of exchange (one-way, multicast, response/request, solicit/response)
 The type of data being exchanged between client and server
 The type of message used for input and output (procedure-style or document-style)
 The protocol used to send the message(s)
 Error information

WSDL descriptions are written in XML and are usually placed within an XML schema or set
of schemas. The client and service employ the same schema and agree both on how the client
should format its message and how the Web service should process the data it gets from the
client. In this way, WSDL permits various proprietary models to easily couple, such as COM
or ERP.

WSDL is yet another in the many initiatives designed to promote interoperability. It's called a
"contract" between client and service, and ideally should describe all the information
necessary to permit successful Web service consumption without the need for human
intervention. Alas, this remains more a dream than a practical reality, like other aspects of the
XML program. Nonetheless, WSDL can improve the readability (by humans) of the
interaction between client and service.

Simply put: WSDL describes what kinds of messages a given server accepts, specifying the
format required and the types permitted.

Here are the specific elements of WSDL:

Message Optional, can appear in various places within the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 336

The binding element describes the protocol, any serialization, and encoding for the message
transmission.

The service element concludes a WSDL description, and it provides yet another listing of the
final destination of the client message. A message can move to multiple locations on its trip to
the service, but in the service element is the actual, final address where the Web service itself
is located. However, WSDL descriptions can contain multiple Web services—so consumers
are thus able to select between options (preferring, say, a Web service that returns its response
in pounds rather than dollars).

<service name=''Service1">
 <documentation>Adds or Multiplies to Integers</documentation>
<port name="Service1Soap" binding="s0:Service1Soap">
<soap:address location="http://localhost/xx/Service1.asmx" />
 </port>
 </service>

Seeing SOAP, WSDL, and the Reference Map

You don't have to generate the dependency SOAP, WSDL, and Reference Map files—
VB.NET does this for you when you create a Web service, then add the service to a project.
Nonetheless, you should take a look at them to see the information they contain. In particular,
there's a Reference.vb file that contains information you need to know to consume a Web
service (the parameters it expects, and what it returns), written in familiar VB.NET code.

Use Project Add Web Reference to add a Web service to your current project; for this
example I'll use the ShowJobs service created previously in this chapter.

Now slowly move your mouse pointer across the icons in Solution Explorer's title bar to locate
the one labeled Show All Files. Possibly the icons are not visible, which means you're in a
mode in the IDE that the designers thought wasn't a context in which you'd want to see the
icons (this kind of thing seems a little too helpful to me; what harm is done by leaving these
icons always visible?). To make them visible, click the name of your project (it's the line in
boldface) in Solution Explorer.

Now expand the Web service node (Web References\Localhost). Take a look at the Disco
(discovery) file, then also double-click the WSDL file to see what it looks like for this service.
Disco is Microsoft's alternative to UDDI (or their supplement, you might say). Disco is
supposed to be an easier way to figure out which Web services are available on a particular
server. Where UDDI is an Internet-wide registry, Disco does the same job for smaller, intranet
services.

The Reference.vb file in Solution Explorer can be the most useful to programmers trying to
figure out how to access a Web service (unless the service's own documentation is clear). In
particular, this VB code makes it pretty clear that no parameter is expected, and that a dataset
will be returned from this Web service:

Public Function ShowJobs() As System.Data.DataSet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function ShowJobs() As System.Data.DataSet

UDDI: The Registry

Web services employ SOAP, WSDL, and UDDI. SOAP explains how to use the service (and
possibly additional documentation). WSDL describes the entire transaction between client and
service.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 337

To complete the Web service package, you need UDDI (Universal Description, Discovery,
and Integration) as well. It provides specifications for a directory of Web services. The UDDI
Business Registry (also called UBR and cloud services) is the actual registry where potential
consumers can search through UDDI lists, and where service publishers can register and
describe the Web services they offer. The registry is divided into three sections:

Yellow pages The most abstract layer, simply listing data such as the company's
product or type of business (geologic research, for instance). Think of it as similar
to the phone book yellow pages.
White pages More specific details about a company that is offering a Web service
(addresses, phone numbers, salespersons' contact info, and so on).
Green pages The actual nitty gritty details: specs explaining the Web service itself.
You can put whatever you want in the Green pages, but typically you include the
URI to the address of the Web service, or reference associated SOAP or WSDL
files. (You aren't required to use SOAP here. You can use alternative descriptions.
And, if you wish, you need not include details about your Web service, but instead
simply provide an e-mail address or Web page where customers can look for further
information.

You can browse Microsoft's node of the UDDI Registry, or you can even add your own Web
service to it to test it. To register your own service, choose Help Show Start Page, click the
Online Resources tab, then click the XML Web Services option in the left pane.

You can also use this registry to add Web services to your .NET projects. When you open the
Project Add Web Reference dialog box, you can access UDDIs in several ways (in
addition to the ''local machine" option described previously in this chapter):

Browse UDDI Servers on the Local Network Click this link to see servers in your
LAN that are currently publishing UDDI described Web services.
UDDI Directory With this link you can traverse the Microsoft UDDI Registry and
discover the Web services that have registered on Microsoft's node.
Test Microsoft UDDI Directory Use this link to search for test Web services that
have been posted here, so you can experiment with the Web service technology as a
consumer. You can also use this test directory to register and publish your own Web
services for testing purposes.

For further information on the UDDI Registry in general, look at:
http://www.uddi.org/register.html.

Testing a Published Web Service

If you want to try consuming a Web service that's published on the Internet (written by
someone else), you can give it a try. It's useful practice, to see if you can manage to figure out
someone else's intentions and successfully get back a response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I've looked around and many of the test services listed are either impossible to figure out
without further help from their authors or no longer active at their URL. Nonetheless, you
might find one on your own that you can discover (figure out) and consume (use).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 339

When you press F5 to run the program, you should see an HTML-formatted message, returned
from this Web service, appear in your message box. If this example doesn't work for you, try
other available Web services until you discover one that does work.

Security Considerations

The third oldest profession is security—the attempt to conceal information without actually
destroying it in the process, or the attempt to defend yourself without actually imprisoning
yourself in the process.

These goals—privacy and protection—have been sought since envy became a factor in human
relations. In other words: since Adam's boys. And each time we think we're getting close to an
effective solution, the goal recedes and we realize that the envious are just as clever as the
envied.

Web services are just as vulnerable to security problems as any other technique that involves
Internet messaging. You have the problem that someone might intercept the message and read
it. This can be solved pretty effectively with strong encryption, as described in Chapters 5 and
6. Similarly, the related problem of validation (has someone changed $1000 to $100000?) can
be solved via encryption. If they cannot read the message, they cannot modify it.

The other security issue, authentication, is less easily solved, especially when you consider
that one goal of Web services can be described as letting strangers into your server so they can
execute commands and invoke procedures. That's just the sort of thing that virus protection
software and firewalls are designed to prevent.

HTTP and HTML are supposed to slide into servers right through port 80. Firewalls permit
this because HTTP and HTML transport and express only harmless documents, not
executables.

SOAP, though, extends these capabilities beyond page description and text messages into the
ability of a remote client to invoke procedures and issue commands on the server.

Some experts suggest blocking text/xml content types, or messages with SOAPAction in their
headers, but this throws the babies out with the bathwater. The committees that govern XML
and, by extension, Web services have been trying to come up with practical recommendations.
Likewise, firewall vendors are also seeing what can be done to tell the bad guys from the good
guys. Can the problem of entertaining strangers be solved? Time will tell, but history suggests
that the answer is no. Security can often be strengthened, but never perfected.

Summary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This chapter covers Web services and related technologies. You saw that computing—no
matter how distributed it becomes, and no matter what names they give new technological
twists—always comes down to two things: data and processing. Web services are no different.
True, they send messages via XML, they operate remotely, and they face special security and
communications challenges. But, in essence, they accept a request to process some data, just
like any classic function, utility, or application.

You learned how to write a Web service, how to cache data, and how to consume a Web
service. You also saw how to preserve state using the Session object and how to deal with
database connections.

The chapter concluded with an examination of WSDL, the Web service description language;
XML and SOAP features; and the UDDI registry, the official Universal Description,
Discovery, and Integration registry where you can list your Web services, and locate others'
services, along with descriptions of how to consume them.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 341

Chapter 14
Building Asynchronous Applications With Message
Queues
WHILE MOST PROGRAMMING TASKS are synchronous, there are situations when we must
implement asynchronous systems. An asynchronous system involves two or more computers
that must exchange information, but we can't assume that they're always connected, or that
each system will perform certain tasks in a timely manner. In an asynchronous system, we
should be able to send a request from one computer to another and be sure that the computer
that receives the request will eventually process it. A web server that accepts orders does not
usually process them. The orders are forwarded to another machine to be processed, and this
machine is usually on a different network. The processing of an order may actually involve
communication with a remote system as well (ordering an out-of-stock item from its publisher,
or placing large orders to a warehouse) and it may take a while to complete. The computers
involved in an operation may not be connected at all times, or one of the computers may take a
while to perform a task. The other computers involved in the process shouldn't have to wait for
each task to complete.

In this sense, the architecture just described is that of an asynchronous system. More
specifically, it's a loosely coupled system. In such a system we assume that all resources are
available, but not necessarily at all times. Applications for systems consisting of multiple
computers that communicate with one another are based on a so-called loosely coupled
architecture. In English, this term means that the various components of the system are
connected to one another, but they operate independently of one another and they may
disconnect at any time. This architecture requires a secure, reliable mechanism for the system's
parts to exchange information. This mechanism is provided by the Microsoft Message
Queuing (MSMQ) component, which comes with both Windows 2000 and Windows XP, but
it's an optional component that you will have to install through the Add/Remove Windows
Components tool. The basic functionality of MSMQ is to set up queues, send messages to
these queues, and receive messages from the same queues. Your application will create
messages and send them to a specific queue. After that, MSMQ takes over and makes sure that
the message is delivered to the destination queue. If the message can't be

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 342

delivered, MSMQ can generate an acknowledgment message to indicate that the delivery of
the original message failed.

Consider an application that runs on a salesperson's portable machine. The salesperson should
be able to record orders on the go, but can't assume a connection to a server at the company's
headquarters. The orders should be uploaded to the company's server as soon as possible, so
that they can be processed in a timely fashion. What we just described here is a loosely
coupled system: the order-taking application on the portable computer and the server at the
company work together, but they can't be connected at all times. Data is stored in the portable
machine and is uploaded when the two computers are connected. One of the basic
requirements of a loosely coupled system is that information be safely stored locally until the
two systems are connected and can exchange information. Messaging is an excellent
mechanism for moving information from one machine to another.

As you know, messages are an ideal mechanism for passing information between remote
computers. You can also send messages to a queue on the same computer. A simple technique
to develop multithreaded applications is to create messages that represent specific tasks and
leave them on a queue, rather than process each task. Another application can retrieve the
messages from the queue and perform the task described by each message. This type of
application isn't really a multithreaded application, but it's an efficient mechanism for running
tasks in the background while the front end is free to interact with the user, as long as the tasks
need not communicate with one another. If the number of tasks exceeds the capacity of a
single workstation, you can have multiple workstations process the messages in the queue.

Queues and Messages

A message queue is a structure for storing messages, much like a first in, first out (FIFO)
queue. Messages are stored in the queue according to their priority and the time they arrived.
Messages with the same priority are stored in the queue in chronological order (the order in
which they're received) and are read in the same order. When you read a message, the oldest
message in the queue will be returned. You can change the default order by setting the priority
of the messages you write to the queue. Messages with higher priorities are read before
messages with lower priorities, even if they haven't been in the queue as long. The order of the
messages in the queue is determined by MSMQ and you can't change the order of the
messages in a queue after their arrival.

The messages themselves are serialized objects. Although we can create simple text messages,
we rarely do. We create one or more custom classes that represent physical entities (such as
orders, products customers, and so on) and our messages are instances of these custom classes.
The custom classes must be marked as serializable, so that MSMQ can serialize the
corresponding objects either in binary or XML format. At the receiving end we read a
Message object from the queue, cast it to the appropriate type, and process it in our
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike mail messages, queue messages have a well defined structure, which must be known to
both the sending and receiving end. In effect, they're equivalent to the messages we exchange
through our mail software, but meant to be understood and processed by applications, not
humans. In the same sense, MSMQ is equivalent to a mail client that can send and receive
messages. The queue, finally, is equivalent to a message store.

The process of passing messages between two machines (whether they're mail messages or
MSMQ messages) is inherently asynchronous: the sending machine isn't blocked until the
message

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 347

This form of the Send method sends a simple message to the queue. The first argument is the
message's body and the second argument is the message's label (a string that will be displayed
on the MSMQ snap-in under the Label heading).

To read the message from the queue, call the MessageQueue1 component's Receive method.
This method returns a Message object, which exposes many properties. The Body and Label
properties return the message's body and label, respectively. Enter the following statements in
another button's Click event handler to retrieve the message and display its label and body on
a message box:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button2.Click
 Dim msg As Message
 msg = MessageQueue1.Receive
 MsgBox(msg.Label & vbCrLf & msg.Body)
End Sub

The Receive method retrieves the first message in the queue. Usually this is the oldest
message in the queue, unless the messages have different priorities. Messages with higher
priority are stored ahead of messages with lower priority. You can't set the priority (or many
other properties of a message) with the simple form of the Send method shown here. As you
will see shortly, you must create a Message object, then set its properties, and finally send it
with the Send method. We rarely use this simple form of the Send command; we've only
shown it here to simplify the example.

Even simple text messages are first serialized into XML format before they're written to a
queue. You can read the XML-serialized description of a message with the BodyStream
property of the Message object. The following statements read the XML description of a text
message:

msg = MessageQueue1.Receive
Dim buffer(msg.BodyStream.Length - 1) As Byte
msg.BodyStream.Read(buffer, 0, msg.BodyStream.Length)
Console.WriteLine(System.Text.Encoding.UTF7.GetString(buffer))

The Receive method won't return without reading a message. If the queue is currently empty,
the Receive method will wait until a new message arrives. We describe how the Receive
method is used in the section ''The Message Class," later in this chapter.

The simple code examples we use in the following sections are parts of the SimpleQueue
sample application. This application assumes that the ToolkitQueue private queue exists on the
local machine. Follow the steps outlined in the section "Creating New Queues" to create the
ToolkitQueue on your machine (or edit the properties of the MessageQueue1 object in the
application).

The MessageQueue Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you know how to reference queues, you can use the MessageQueue class's methods to
create new queues, delete existing ones, and find out whether a specific queue exists or not
from within your code. The Exists method of the MessageQueue class returns True if the
queue specified with the argument to the method exists, False otherwise. To create a new
queue, pass its path or format name as argument to the Create method of the MessageQueue
class. The Create method has a second overloaded form

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 349

TABLE 14.1: THE PROPERTIES OF THE MESSAGEQUEUECRITERIA CLASS

FILTER NAME DESCRIPTION

Category The category of the desired queue(s). A queue's category need not be
unique.

CreatedAfter A date that filters out the queues that were created before the specified
date.

CreatedBefore A date that filters out the queues that were created after the specified date.
Label A string that specifies the queue's label. MachineName The computer

name on which the desired queue(s) reside.
ModifiedAfter A date that filters out the queues that have not been modified after the

specified date.
ModifiedBefore A date that filters out the queues that have not been modified before the

specified date.

Another method to retrieve the queues on a computer is to use the MessageQueueEnumerator
class. The GetMessageQueueEnumerator method of the MessageQueue class returns a
MessageueueEnumerator object, which you can use to iterate through all public queues in the
network. This is a typical enumerator that exposes the MoveNext method, which moves to the
next queue, and the Current property, which references the current queue

The MessageQueue classes expose members to send messages as well as retrieve messages
from queues. These methods make use of the Message class, which represents queue
messages. In the following section we'll discuss the Message class and then look at the
methods of the MessageQueue class for manipulating messages.

The Message Class

The other major class of the Messaging namespace is the Message class, which represents
MSMQ messages. You've seen how to send simple messages with the Send method of the
MessageQueue class, but applications exchange information in the form of objects, not strings.
Moreover, the simple form of the Send method we used in our earlier example doesn't allow
you to set the properties of the message: You can't assign a label to the message (a string that
describes the message while it resides in the queue), nor can you change the message's
priority. You should always create Message objects and pass them to the Send method, even if
these objects are strings.

The Message class exposes only properties and no methods. The purpose of this class is to
enable us to manipulate the properties of the messages before sending them to a queue, or read
the properties of messages retrieved from a queue. To send a Message object you must create
an instance of the Message class, populate its properties, and then pass it as argument to the
Send method of the MessageQueue class. The Message class exposes two types of properties:
read-only properties designed to work with incoming messages and read/write properties
designed to work with outgoing messages. To read a message off a queue, you must create a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

designed to work with outgoing messages. To read a message off a queue, you must create a
new instance of the Message class and assign to this object the value returned by one of the
methods that reads messages from a queue.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 358

specified ID. If no related messages exist in the queue, the PeekByCorrelationID method
returns a Nothing value.

There's one simple operation that's fairly expensive in terms of resources, and this is the
counting of messages in a queue. There's no method to return the number of messages in a
queue. You must call the GetAllMessages method, which accepts no arguments and returns an
array with all the messages in the queue, and then examine the array's Length property (or call
its GetUpperBound method). This is a fairly expensive operation and its value is questionable,
because the number of messages in the queue varies all the time. As with all classes that
implement the IEnumerable interface, you should use the appropriate Enumerator to actually
process the messages. If you want to look at the messages and then decide which one to
process, you can call the GetAllMessages method to retrieve a snapshot of the queue and then
retrieve each message you want to process with the ReceiveByID method, or process one or
more of the messages returned by the GetAllMessages method and then remove it from the
queue with the ReceiveByID method. We'll use the GetAllMessages method in the
OrdersServer project later in this chapter to copy all the messages in the queue and allow the
user to view them, move back and forth through them, and select which ones to process. The
processed messages will be removed from the queue with the RemoveAt method.

Acknowledgments and Time-Outs

Sending a message to a remote queue doesn't mean that the message will actually arrive at its
destination. The destination queue may not exist, the computer on which the queue resides
may be disconnected, or the application that sent the message may not have the rights to write
to the specific queue. Even if a message is delivered to the destination queue, we can't be sure
that the message will actually be retrieved from the queue and processed. Sometimes it's
critical that a message is processed within a predefined time interval. If the messages represent
orders, for example, your application should eventually find out which orders were processed
and which not, and take the appropriate action. Delaying the processing of an order for a week
is simply unacceptable.

A robust distributed application should be able to know whether a message has reached the
destination queue and whether it was retrieved from the queue and processed. MSMQ
provides a confirmation mechanism based on acknowledgments. Acknowledgments are
messages that are generated automatically by MSMQ in response to events, such as the arrival
of a message to a queue or the retrieval of a message from a queue. Acknowledgments are not
generated by default; you must request that specific acknowledgments be generated and
forwarded to a specific queue. You can also request positive acknowledgments (signifying the
successful completion of an operation) or negative acknowledgments (signifying the failure of
an operation).

Requesting Message Acknowledgment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To request the acknowledgment of a message, you must first create a queue that will receive
the acknowledgment messages. The queue that will accept the acknowledgment messages is a
regular queue; there's nothing special about messages sent to this queue, except for the fact
that they're generated automatically. To use the acknowledgment queue, you must set certain
properties of the message before you send it. These properties are the AdministrationQueue
property, which determines where the acknowledgment messages are sent, and the
AcknowledgeTypes property, which indicates what

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 373

As you can understand, not all operations can be placed into a transaction. If you're sending a
message to a remote queue, you probably don't want to wait for the message to arrive at the
destination queue (let alone be processed) before you commit the transaction. This is simply a
limitation of loosely coupled systems. Message transactions are not the same as database
transactions. However, there are mechanisms to ensure the integrity of messages, such as
acknowledgments. In the following section we're going to learn yet another mechanism for
message integrity—how to keep copies of the sent messages and process them again if they
can't be delivered.

AUDITING MESSAGES

Transactions are invaluable in designing robust systems. Another technique, perhaps not as
valuable but very useful, is the logging of messages. In addition to sending a message, you can
create a copy of it and send it to a designated queue. If everything else fails, you can at least
recover the message that wasn't delivered (or processed) and repeat it. Under each queue in the
MSMQ snap-in there are two items: the Queue Messages item, where incoming messages are
stored, and the Journal Queue, where MSMQ keeps copies of the outgoing messages. In effect,
journal queues are equivalent to acknowledgment queues, in the sense that they keep track of
the movement of the messages in a specific queue.

Messages are not copied to the corresponding journal queue by default. To create copies of the
messages sent to a specific queue, set the UseJournalQueue property of the MessageQueue
object that represents the queue to True. Every message sent to this queue will be copied into
its journal queue. Earlier in the chapter we showed you how to retrieve acknowledgment
messages from a queue and take appropriate action. A more robust technique is based on a
combination of acknowledgment and journal queues. Let's assume that certain messages, such
as messages about orders, must be processed within an interval of a few hours to a few days. If
the message regarding an order isn't retrieved from its queue within the specified interval, a
negative acknowledgment is sent to an acknowledgment queue (the acknowledgment message
won't be sent unless the sending application has requested message acknowledgment). In
addition, the sending application should also send copies of the messages into a journal queue.
Another application can continuously remove messages from the acknowledgment queue
(presumably, there won't be many messages in this queue) and retrieve their IDs. For every
message that failed to be delivered (or retrieved from its queue), the application can retrieve
the associated message from the journal queue and resend it. Alternatively, you can send it to a
different queue, or log an error message. You can even send a mail message to an operator at
the site that fails to read the messages. The most common scenario for message delivery
failures is that the destination queue has been moved to another computer, or the user
privileges on the remote computer have been altered.

MSMQ won't remove messages from the journal queues. Instead, you must write code to
retrieve the messages of a journal queue using the techniques discussed earlier in this chapter.

Processing Orders with Messages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you have realized by now, working with queues is fairly straightforward. In this section
we'll put together all the information presented so far in the chapter to build a practical
application that uses the MSMQ component. This section's example consists of a client
application that takes orders and submits them to a specific queue and a server application that
retrieves orders from the queue and

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 382

Message Queuing Triggers

One might expect that the MessageQueue class would support events. If a MessageQueue
object could fire an event every time a new message arrives, we'd be able to write simple code
to process messages as soon as they arrive and we wouldn't have to use asynchronous
techniques to read messages from a queue. MSMQ doesn't support events, but you can use the
Message Queuing Triggering service to process messages as soon as they arrive at a specific
queue. This service comes as a component of Windows XP. If you're using Windows 2000,
you can download it from the following URL:

http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp

The setup dialog boxes for the version of Message Queuing Triggering for Windows 2000 are
a little different than the ones for the XP version, and in this section we'll describe the XP
version of the component. You shouldn't have any problem applying your knowledge to
Windows 2000, but bear in mind that the various dialog boxes you'll see while setting up
triggers are different than the ones shown in the figures of this section.

Setting up a trigger for a specific queue is straightforward and you need not write any code.
Actually, you can't set up triggers from within your code, but you should expect a new class in
the next version of the .NET Framework that exposes the functionality of the Message
Queuing Triggering component. The process of setting up a trigger for a queue involves two
items:

Rules A rule determines the conditions under which the trigger will be fired. By
default, triggers are fired every time a new message arrives at the queue to which
the trigger is attached, but you can request that triggers are fired only when certain
conditions are met. For example, you can request that a trigger is fired only if the
message's label contains (or doesn't contain) a string, the message's priority is
greater (or smaller) than a specific value, and so on.
Actions Actions are programs that process the message that caused the trigger to be
fired. There are two types of actions, or equivalently two ways to process a
message. You can either start an executable (an EXE file) or a call a method of a
COM object (a DLL file). The program is started automatically by the trigger every
time the conditions specified by the corresponding rule are met. It's also possible to
pass one or more arguments to the program that services the trigger, such as the
message's ID or label, the date and time it was sent or has arrived at the queue, and
so on.

Once you've created a set of rules and their corresponding actions, you can create triggers.
Each trigger is unique to a specific queue, but it can deploy any of the existing rules. New
triggers are created by combining one or more rules and assigning the trigger to a specific
queue. The same rules can be reused in as many triggers as you need.

Defining Rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first step in creating a trigger is to define the rule(s) that will be used by the trigger.
Expand the Message Queuing Triggers item in the MSMQ snap-in, right-click the Rules item
and select New Rule. You'll be prompted to enter a name and a description for the rule,
shown in Figure 14.8. Let's call our trigger NWOrderRule. We'll create a trigger to signal the
arrival of a new message at the NWOrders queue.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 388

To test the application, you must first create the OrderTrigger trigger. This trigger is attached
to the NWOrders queue and its ''Message processing type" setting should be Peeking. Its rule
is the NWOrderRule, which has no conditions (it's fired every time a new message arrives at
the NWOrders queue) and its action is the ProcessOrders.exe application. Check the box
"Interact with the desktop" on the Rule Action tab of the NWOrderRule rule's property pages,
so that the console window will appear on your desktop and you'll be able to interact with it.
Figure 14.12 shows the Rule Action tab for the NWOrderRule, as well as the Parameters
window.

FIGURE 14.12 Setting up the NWOrderRule rule for the OrderTrigger trigger

Assuming that you've set up the OrderTrigger trigger in the MSMQ snap-in, switch to the
ProcessOrders project and build it. This project isn't meant to run on its own, because it should
be called by a trigger, which is also responsible for passing the appropriate arguments to the
application as command-line arguments. Switch to the DisconnectedOrders project and create
a new order. As soon as the new order message is written to the NWOrders queue, the
OrderTrigger will be fired, which in turn will invoke the ProcessOrders console application.
You will see a console window that looks like the window of Figure 14.13. The data shown in
this window correspond to those in the order shown on the form of the DisconnectedOrders
project of Figure 14.14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

In this chapter you learned how to build applications running on loosely coupled systems.
Large systems may involve computers that are not part of the same local area network, and we
can't assume that all the computers we need to access are always online. To pass information
from one system to another in a reliable, fail-safe way, we use messages.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 391

Chapter 15
Practical ADO.NET
ADO.NET, MICROSOFT'S LATEST DATA access technology, is the evolution of ActiveX Data
Objects (ADO). ADO.NET was designed from the ground up for distributed architectures, so
that it can fit nicely in a networked world. The basic premise is that clients are not constantly
connected to a data source. There has to be a convenient mechanism to store the data at the
client, process them locally, and submit the updates to the database. This mechanism is the
DataSet, which is something like a lightweight, in-memory database. A DataSet is a data
structure for storing related tables, and it offers developers a relational view of the data.

ADO.NET is ideal for distributed, disconnected applications, but it's just as good for
client/server applications and multi-tier connected applications. A thorough explanation of the
architecture of ADO.NET and its classes would require another book, and there are many
books on the topic. In this chapter you'll find an overview of the basic classes of ADO.NET
and explanations of the techniques we'll use to build a few practical applications in Chapter
18. Our goal is to show you how to write practical data-driven Windows applications with
functional, user-friendly interfaces.

As you might expect, Visual Studio .NET supports two approaches for building data-driven
applications: a visual approach, which relies heavily on data-binding and wizards, and the
programmatic approach. We'll focus on programming the ADO.NET classes. Data binding is
convenient for building prototypes, but you can't expect to build professional data-driven
applications with data-binding and point-and-click operations.

Accessing Databases

The basic tasks in working with databases are to establish a connection to a database, execute
commands against the database, and move data to the client, where they'll be processed. The
commands we execute may update some tables in the database and not return any data to the
client (except for the number of rows that were affected by the command), or retrieve data and
move them to the client. The ADO.NET architecture is based on a few fundamental classes
that encapsulate these actions. The Connection class provides the functionality to establish a
connection to a database, the Command class provides the functionality to execute a command
against the database, and the DataSet class provides a convenient mechanism for storing data
at the client. The

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 409

The Command Class

The Command class allows you to specify the command you want to execute against the
database, set its parameters (if any), and finally execute the command. So far you've seen how
the DataAdapter interacts with the database with the commands that were generated by the
wizard. The advantage of the DataAdapter is that it knows how to prepare the parameters of
each command, execute it against the database, and populate a DataSet with the results. In this
section you'll learn how to set up custom commands from within your code and execute them
outside the context of the DataAdapter. The commands you can execute against a database are
SQL statements (queries) and stored procedures. The CommandText property stores the SQL
statement, or the name of the stored procedure, that will be executed against the database. The
CommandType property specifies the type of the command, and its value is one of the
members of the CommandType enumeration:

StoredProcedure The command is the name of a stored procedure.
Text The command is an SQL statement.
TableDirect The command is the name of a table. When the command is executed,
it will retrieve all rows and all columns of the specified table. This member can be
used only with the OLE DB data provider. You can retrieve the join of multiple
tables by setting the CommandText property to a comma-delimited list of table
names.

Once the Command object is configured, you can call one of the following methods to execute
the command against the database:

ExecuteNonQuery This method is used to execute action queries; it returns the
number of rows affected by the query.
ExecuteScalar This method is used to execute a query and returns the first row of
the first column in the resultset. This value is returned by a selection query and it's
usually an aggregate value, or the result of some calculations. Note that the method
doesn't return the return value of a stored procedure. To read the return value, you
must set up an output parameter for the stored procedure's return value.
ExecuteReader This method executes a selection query and returns a DataReader
object. This object is similar to a StreamReader, in that you can use its methods to
read consecutive rows in the resultset and their columns.
ExecuteXmlReader This method executes a selection query and returns an
XmlReader object. The query should return its data in XML format, by using the
FOR XML clause of the SELECT statement. The XmlReader allows you to read the
elements and attributes of the XML document returned by SQL Server.

As you can see, the Command object doesn't provide any methods for filling DataSets. We use
the Command object to execute action queries against the database and retrieve the number of
rows that were affected. You can also use its ExecuteReader method to retrieve the results of a
selection query and use them to populate a custom structure at the client. Strictly speaking, it's
possible to use the ExecuteReader method to populate a DataTable manually, but there's no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

possible to use the ExecuteReader method to populate a DataTable manually, but there's no
reason on earth to do it. The DataAdapter is much more efficient in filling DataTables. The
use of the DataReader class with the ExecuteReader method is demonstrated in the section
''Using the DataReader," later in this chapter.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 415

This query will return two cursors, one with the selected rows of the Products table and
another one with the selected rows of the Suppliers table. While you can't use this batch query
to populate a DataSet with two tables (you must set up two different DataAdapters, one for
each table, and call their Fill method), you can retrieve the rows from both tables with a
DataReader object. You start reading rows as usual. When you reach the end of the first
cursor, call the DataReader's NextResult method to move to the following cursor:

Do
 While RDR.Read()
 ' statements to process the rows of the current cursor
 End While
While RDR.NextResult() ' skip to next cursor, if there is one

The first time through the outer loop, the inner loop reads the rows of the Products table.
When the NextResult method is called, you're into the second cursor and the inner loop is
executed again, this time reading the rows of the Suppliers table.

Working with DataSets

Now that you know how to contact a database and execute commands against it, we can
examine the DataSet object in detail. This is the main object of ADO.NET and this is where
most applications store data at the client. The DataSet is made up of DataTable objects; there's
one DataTable for each one of the tables involved in the query. The DataTable objects are
made up of DataColumn and DataRow objects. The DataColumn objects specify the structure
of the table, and the DataRow objects contain the rows of the table. You can also establish
relations between the tables in the DataSet; these relations are represented with DataRelation
objects.

As you already know, we use DataAdapters to fill DataSets. It's possible to create a DataSet
and also fill it from within your code, but this isn't common. Most often, DataSets are
generated at design-time and populated at runtime with the DataAdapter's Fill method. These
DataSets are called typed DataSets, because they know about the structure of the data they
store. Notice that only DataSets created at design time are typed. This happens because the
IDE generates a class behind your back to encapsulate the data and the basic operations you
can perform on the data. A DataSet generated at runtime won't expose the names of its tables
as properties and it won't provide methods that are specific to your data (such as the
FindByCustomerID method, or the IsUnitPriceNull property) for example).

By the way, if you want to see the code of the class that implements a typed DataSet, click the
Show All Files button at the top of the Solution Explorer window and then expand the file
named after the DataSet (its extension is XSD). Under this file you'll see two more files, which
are normally hidden, and they're both named after the DataSet. Double-click the file with
extension VB and you'll see the code of the class that implements the typed DataSet. Figure
15.9 shows a section of the DSProducts.vb class, which is part of the NWProducts project. As
you can see, there's nothing complicated or magic about typed DataSets. They're implemented
with code that some of us might have written to simplify the process of coding large projects,
only this code was generated by a wizard. Normally, you'll never have to see the auto-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only this code was generated by a wizard. Normally, you'll never have to see the auto-
generated code, unless you want to add a few members that are specific to an application.
Even so, you should implement these members in a separate class, because every time you
redesign the DataAdapter and re-generate the DataSet, this class is auto-generated.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 428

Insert and Update Operations

One of the most important topics in database programming is the commitment of the changes
made at the client back to the database. The changes involve edited rows, which must update
the underlying rows in the table, new rows, which must be inserted into the underlying table,
and deletions, which must remove the corresponding rows from the underlying table. There
are basically two modes of operation: single updates and multiple updates. A client application
running on a local area network as the database server can (and should) submit changes as
soon as they occur. If the client application is not connected to the database server at all times,
then changes may accumulate at the client and be submitted in batch mode when a connection
to the server is available.

From a developer's point of view, the difference between the two modes is how you'll handle
update errors. If you submit individual rows to the database and the update operation fails, you
can display a warning and let the user edit the data again. You can write code to restore the
row to its original state, or not. In any case, it's fairly easy to handle isolated errors. If the
application submits a few dozen rows to the database, several of these rows may fail to update
the underlying table and you'll have to handle the update errors from within your code. At the
very least, you must validate the data as best as you can at the client before submitting them to
the database. No matter how thoroughly you validate your data, you can't be sure that they
will be inserted into the database successfully.

Another factor you should consider is the nature of the data you work with. Let's consider an
application that maintains a database of books and an application that takes orders. The book
maintenance application handles publishers, authors, translators, and other data. All users who
are entering and correcting titles are working with the same table of authors. If you allow them
to work in disconnected mode, the same author name may be entered several times, as no user
can see the changes made by any other user. The result is that several rows in the Authors
table refer to the same author. This application should be connected: every time a user adds a
new author, the table with the author names in the database must be updated, so that other
users can see the new author. The same goes for publishers, translators, topics, and so on.

The order-taking application can safely work in a disconnected mode, because orders entered
by one user are not aware of, and they don't interfere with, the orders entered by another user.
You can install the client application on the notebooks of several salespersons so they can take
orders on the go and upload them when they establish a connection between their notebook
and the database server (which may happen when they return to the company's offices).
There's a small implication here, namely the stock. If you can't make a sale unless the items
are in stock, things get quite complicated; the order-taking application can't run in
disconnected mode. Incidentally, this is one of the most complicated types of projects you
may run into and we will not discuss it in this book. The solution is dictated by the business
rules and, in most cases, it's non-trivial.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The order-taking application can be used in a disconnected mode, because each order contains
existing products and there will be no update errors. The worst that can happen is that a
product's price will change. In this case, a business rule determines whether the sale is made
with the old price, or whether the customer should be contacted and confirm the revised price.

Updating the Database with the DataAdapter

The simplest method of submitting changes to the database is to use each DataAdapter's
Update method. At the beginning of the chapter we discussed how to submit changes to the
database and

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 440

Of course, a real application shouldn't allow the user to enter invalid data in the first place.
We're going to build a practical interface for entering orders and invoices in Chapter 18. The
example we just finished was merely meant to demonstrate the basic principles of performing
multiple updates in the context of a transaction using a DataAdapter.

Summary

In this chapter, which is one of the longest ones on the book, we've explored the basic objects
of ADO.NET. The Connection object establishes a connection to the database, through which
we can submit and execute commands against the database. The commands to be executed
against the database are represented by Command objects. A Command object is assigned the
SQL query to execute against the database, as well as the necessary parameters. To actually
execute the query, you must call one of the Execute methods of the Command object. Action
queries return a single value, which is the number of rows affected by the query. Selection
queries return a DataReader object, which you can use to read the values retrieved from the
database serially.

You can also use DataAdapter objects, which move data into a client DataSet. Most of the
applications you'll write will make use of the DataSet object, which can store sections of
database tables and maintain relations between them. The DataSet knows how to submit
changes to the database, and you can use it at the client as an in-memory database. As you
have seen, DataAdapters and DataSets are classes generated for you at design time. These two
classes expose most of the functionality you need for typical business applications. You have
also seen how to use these classes to perform the basic data operations, from retrieving a
table's rows to performing transactional updates.

In this chapter we used the DataGrid control to view and edit our data. Practical applications
aren't built around the DataGrid control, however. They use interfaces based on regular
Windows controls and they contain quite a bit of code. In Chapter 18 you're going to see
several examples of practical user interfaces, which are based on Windows controls and make
use of the objects discussed in this chapter.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 441

Chapter 16
Building Middle-Tier Components
IN THIS CHAPTER WE'LL discuss the concepts of distributed architecture and the role of
components and multiple tiers in developing data-driven applications. We'll focus on the drift
from client/server architectures to multi-tier architectures and we'll present a few simple
examples to demonstrate the principles of middle-tier components and how to deploy them on
a remote server.

We'll also discuss how to use existing COM components (including ActiveX controls) and
COM+ applications with .NET clients. Every corporation has made an investment in COM
components, which you aren't going to throw away. Whether these components you've
developed as recently as a year ago can be called ''legacy" components is a different story.

Finally, we'll show you how to deploy .NET components on remote servers and allow clients
to request their services over the network, or the Web. We'll touch the subjects of Web
services and remoting, which are central in deploying business components in a distributed
environment.

From Client/Server to Multiple Tiers

The dominant architectural model for data-driven applications today is the client/server model.
Most applications written today in small business environments are based on the client/server
model and most VB6 developers are quite familiar with it. The client/server model distributes
the processing on two layers: the database, which is a powerful machine running the database
management system, and the clients (Figure 16.1). The program running on the client is
responsible for interacting with the user: it accepts user input, validates it, and makes requests
to the server. When the server sends the data, the client application presents it to the user,
using a rich Windows interface.

The advantage of this architecture is that the workload is distributed on two different layers.
The database server is optimized for performing queries against a database. The basic
requirements of the database server are very fast disk systems (usually RAID systems) and
large (to enormous) amounts of memory. The clients need not be nearly as powerful: a regular
workstation will do. The application running on the client is either a Windows application (in
which case the client is called rich client, to indicate that the client application can exploit all
the resources of the client

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 449

You may notice that all the work is done by the GetItemDiscount stored procedure. This
means that we can change our discount policy by editing the stored procedure at the database
server, without even looking at the middle-tier component's code. This is an added bonus for
the specific application, but you can't count on this. A complicated business rule may require
quite a bit of code in the middle tier, and you can't always implement business rules at the
database level. When this is possible, you can simplify deployment even further (no need to
touch the application's code, just change the stored procedure at the database). However, you
shouldn't place an additional burden on the server just to avoid the deployment of a new
component. In our example, the rule requires the execution of a non-trivial query against the
database and we can't avoid it.

Remoting the Business Logic

As we mentioned, one of the benefits of building components, especially in large applications,
is that we can deploy them on a single server (or a small number of servers) and service a large
number of clients. The servers on which the components reside are called application servers
and they're fast machines, usually connected to a database server through a high-speed link.
The application server is where the business logic is executed. If your corporation changes a
business rule, you can revise one or more components and install them on the application
server, and all clients will see the new component the next time they request it. It's not
uncommon for the application and database servers to be hosted on the same machine. When
the system is overloaded, you can add application and database servers as needed. It's not a
trivial task, but this is the way to build a highly-scalable application. Scalable applications are
written so that they can be spread over multiple servers. You can add multiple application
servers to scale out the business components, as well as database servers to scale out the
database. With some form of load-balancing software, client requests are directed to the least
loaded server at the time.

Another good reason for building components that can be executed remotely is that not all
components may reside on your corporation's servers. Today's applications may need to work
with resources outside a corporation's environment. Consider a Web application that accepts
orders and calculates shipping costs. To calculate the shipping cost, you may have to connect
to the database of the shipping company and interact with a component that can calculate the
cost of a shipment, given its source and destination, and the weight of the goods to be shipped.
You may also wish to display the progress of the shipping, if this information is available from
the shipping company. Many online stores display the progress of the shipment online. This
information comes from the shipping company, not from the merchant's database. The
merchant's system requests this information from the shipper and displays it for its own
customers.

Given the need for remoting components and different systems to talk to one another, we'll
explore .NET's techniques for invoking components on remote systems. The two techniques
are Web services and remoting. Web services are simple to set up; remoting can be
substantially more difficult, but ultimately faster and more flexible. Web services are actually
based on remoting, but they hide many of the underlying details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First, we're going to host the business component on the web server and expose it as a Web
service. All the clients on the network will call the Web service to retrieve the discount. Then
we'll use remoting to access the middle-tier component on an application server.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 465

This is how you can use a COM component in your .NET applications, regardless of whether
it's a legacy component you developed with VB6 or a third-party control. The source code is
not required and you don't have to create the interoperability layer yourself; instead, the IDE
will create it as needed and will also copy it to the project's output directory. This means that
interop assemblies will be distributed with the project's setup application.

TIP The CLR can determine the dependencies of your code on COM components and include
them automatically in the project's output when you build the application's setup program (the
MSI package, as discussed in Chapter 10). However, it can't determine the dependencies of
the COM component. If the COM component has dependencies of its own, you must add them
to the project's output manually.

Using COM+ Applications in .NET

In many situations, middle-tier components are distributed to the production environment as
COM+ applications. A COM+ application runs as a Component Service: that is, the
component is hosted by the Component Services on an application server and any number of
client machines can contact the server and request an instance of the component. There are
many benefits to this approach, especially for large-scale applications. COM+ applications can
be used to create objects that run on the application server, not on the client. They can
participate in transactions and, most importantly, you can maintain a pool of objects on the
server to service a large number of clients.

Let's start by reviewing the process of creating a COM+ application with VB6. First, you
create a class as usual. The class's compiled code, which is a DLL, can be installed on an
application server as a COM+ application. This is done with the help of the Component
Services Explorer (or the Component Services console). You simply create a new COM+
application and add the new component (the DLL) to the application. The COM+ application
can be configured easily from within the Component Services Explorer. You can specify
whether the component will run at the server or the client, whether the component will
participate in transactions, and whether the component can be pooled. You can also determine
who can access the component. All these operations take place through a point-and-click
interface, and you don't have to modify the DLL's code or the application that uses it.

Once the COM+ application has been installed and configured, you create a proxy for the
clients. The Component Services Explorer will export the application into an MSI package,
which you distribute and install at the clients. The MSI package will install a proxy for the
actual COM+ component at the client. The proxy appears at the client as a new COM+
application and any application on the client can contact it. However, you can't set the
component's properties through the proxy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What does it take to use an existing COM+ application in a .NET client application? Basically,
once the proxy has been installed on the client machine, you can add a reference to the COM+
proxy as we demonstrated in the preceding section. The IDE will create an interop assembly,
which will be included in the .NET project. Let's look at the process by building a simple
application. For the example of the following section we'll assume that you have VB6 installed
on your system, which you'll use to create a COM component. If not, you can copy the sample
DLL that's included in the zip file with this chapter's projects.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 473

Run the application and click the button. Ten seconds later you will see a message box with
your computer's name. After that, the message box will pop up within a second after you click
the same button. The object is pooled and need not be created again. If you remove the
ObjectPooling attribute from the class's definition, recompile the component, and run the test
project again, every time you click the button you'll wait for 10 seconds before seeing the
message box on your desktop. Notice also that regardless of whether the component runs as a
server or library application, the objects you create are pooled automatically.

Summary

In this chapter we discussed the importance of the middle-tier component in designing scalable
applications. Middle-tier components are used commonly with large applications, because
they simplify the tasks of maintaining and deploying the revised applications. Reinstalling a
client application to a large number of workstations can be quite a task and any technique to
simplify this task is welcome.

The maintenance of a large application is also greatly simplified if the application is built with
components, because the middle tier can be revised independently of the presentation tier and
be deployed on selected servers rather than on every client. If you choose to post the middle
tier on a web server and expose its functionality through Web services, you can build both
Windows and web clients that exploit the functionality of the middle tier to access the
database, regardless of the actual location of the database. The clients will never interact with
the database directly, and the objects of the middle-tier component abstract the view of the
database at the presentation tier's level.

Finally, you learned how to use existing COM components with .NET clients, as well as how
to develop serviced components in .NET. Serviced components provide the functionality of
COM objects, such as automatic transactions, role-based security, and object pooling, which is
new to VB developers.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 475

Chapter 17
Exploring XML Techniques
IT'S SAID THAT .NET rests on XML, meaning that in the .NET world, XML is the data storage
and transmission technology of choice. The XML classes built into the .NET Framework are
gathered into these primary categories:

XmlDocument for editing XML (part of Microsoft's implementation of DOM)
XmlReader for reading and searching (part of Microsoft's SAX)
XmlWriter for saving
XmlSchema creating and managing XSD schemas
XmlValidatingReader validation
XmlTransform executing XSL transformations
XpathNavigator applying Xpath queries

There are several auxiliary technologies that expand and assist XML. For instance, XML, like
HTML, can use Cascading Style Sheets, or the even more advanced styles technology called
XSL, which can reorder, or add and delete, tags and attributes.

XML rests on two main APIs:

 DOM (Document Object Model)
 SAX (Simple API for XML)

Each has its uses. DOM needs an entire XML document to sit in memory while DOM
processes it (DOM is therefore capable of random-access processing). DOM is preferred for
editing XML. SAX works serially on an XML stream, and is preferred for reading or
searching.

This chapter covers a variety of XML tools and features that every .NET programmer needs to
understand, exploring the first four of the primary categories listed at the opening of this
chapter.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 476

Choosing SAX

DOM can be used right along with SAX, if you wish, but normally you select the set of tools
appropriate to the job at hand. SAX is best for searching, particularly simple searches or when
large documents are involved. DOM is best for tasks involving document modification, or
when the task is complex (for instance, when you are dealing with internal cross-reference
structures such as ID and IDREF).

DOM builds a verbose, navigable tree structure in memory—it even adds a type description
for each node. If you're merely interested in reading through a large XML document, you
normally wouldn't want to hand it over to DOM. But do remember that you can use the
technologies together. You could emit a SAX stream from a DOM tree, or ask SAX to build a
DOM tree.

Let's take a look at how SAX works first because it's the simpler of the two technologies.

Copying the Sample File

Before going further, you should now copy a sample XML file to your C:\ drive. Several
examples in this chapter require this XML document.

As with the famous Pubs and Northwind sample databases, Microsoft offers a sample XML
file for you to experiment with. Included with Visual Studio is a file in the Help system you
should now save to your hard drive. Save it in a file named books.xml on your C:\ drive. Use
the VB.NET Help Search feature (click the Search tab at the bottom of the Help window) and
search for:

<author>Gambardella, Matthew</author>

You see an entry titled Sample HTML File For XML Data Islands. Copy it to Notepad. The
data you want begins with the usual ?:

<?xml version=''1.0"?>
<catalog>

and it ends like this:

 </book>
</catalog>

Using SAX

To see how to access a SAX stream in .NET, start a new VB.NET Windows-style project,
then type in the code in Listing 17.1.

LISTING 17.1: ACCESSING A SAX STREAM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Xml

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Xreader = New XmlTextReader("c:\books.xml")
 Dim ele, att As Integer, m As String

 While Xreader.Read()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 478

NodeType The type of the current node (using the XmlNodeType constants —see
''Xml-NodeType enumeration" in Visual Studio Help).
Prefix The namespace prefix of the node.
Value The text value of the node.

Note that the XMLTextReader's Read method maintains a pointer within the streaming
document, keeping track as the nodes flow by, leaping from node to node. At each leap, you
have the opportunity to query the current node, using the Reader's properties and methods,
such as the HasAttributes property used in this example.

You can stream XML in from a variety of sources, including a URL, like this:

Dim Xreader = New XmlTextReader(http://www.myplace.xml")

If you are one of those who are simply determined to avoid Microsoft technology, you will
want to find and use other versions of SAX (and what are you doing reading this book?).

A primary distinction between classic SAX parsing and the Microsoft XMLReader is that
SAX pushes the events into your source code, meaning that you are notified each time a node
is read by the parse. The XMLReader pulls the XML in, offering you a bit more flexibility.
For one thing, with the XMLReader you can rather painlessly access multiple input streams
Another signal advantage of the XML Reader is that it includes Skip and MoveToContent
methods, so you can locate nodes of interest to you more quickly. It's similar to random-
access, albeit forward-only.

Deeper into DOM

The DOM is a way for programs to read and write to XML, adjusting the style, content, and
structure of the XML file.

The original DOM specification is not itself a library of functions. It's merely a collection of
interfaces. Interfaces are often used when a committee is concerned that a set of class and
member names be standardized and enforced. XML DOM is a list of words, and you (or any
other programmer) can create the source code that actually makes the interfaces do their jobs.
However, I suspect you'll simply want to join the crowd and use Microsoft's version of the
DOM.

The Microsoft .NET implementation of the DOM specification closely follows the official
W3C DOM interfaces. The .NET XMLNodeList and XMLDocument classes—and related
classes—offer both the fundamental and extended technologies specified by W3C. If you've
worked with W3C DOM, you'll find its .NET implementation very familiar and easy to use.
What's more, you will surely appreciate the additional features available in .NET that make
working with XML both easier and less error-prone.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DOM can be viewed as an interface to the many proprietary APIs and XML data
structures, making it possible for a programmer to work with standard DOM interfaces rather
than having to study proprietary APIs.

For example, Ford and GM may use different APIs to handle their XML needs, but with
DOM, a programmer can move from GM to Ford and still count on a known, abstract interface
that will work with either the Ford or GM APIs. In other words, DOM is a linguistic
convention.

Also supporting XML are XML schemas, which assist programmers in defining their own,
proprietary XML structures. Schemas, including one proposed by Microsoft, ultimately go
beyond

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 480

Using Namespaces in XML

XML namespaces help prevent ''collisions" that can happen when attribute names or tags are
identical if a document contains multiple markup vocabularies (more than one namespace).
They are similar to .NET namespaces. This works in XML because each namespace is given a
unique number. Commonly, a different URL (Uniform Resource Identifier) is assigned to each
namespace. By definition and design URLs are unique—there's only one possible number for
each URL anywhere in the world of the Internet. Sometimes a URN (Uniform Resource
Number) is used instead. In either case, the number is unique and prevents collisions of the
names you use in different vocabularies.

You can either come right out and explicitly name an XML namespace within your XML
code, or you can allow the parser to assume the namespace implicitly, by omitting it from your
code.

Explicit Declaration

Just as with variables in VB6 and earlier, you can either explicitly declare an XML namespace
or let it happen implicitly. Explicit declarations keep things straight if your node contains
elements from more than one namespace. You use a shorthand name for the namespace that
you use as a prefix (like an alias) to specify which namespace an element belongs to.

<mo:film xmlns:mo="urn:FilmSociety.com:FilmData"
 xmlns:directors="urn:CinemaHistory.com:Directors">
 <mo:name>Annie Hall</mo:name>
 <directors:director>Woody Allen</directors:director>
</mo:film>

xmlns is the attribute used to declare a namespace and at the same time to specify a prefix that
represents the namespace. In the example above, we defined a prefix (mo) that represents the
namespace identified by the unique value of "urn:FilmSociety.com:FilmData" and also
declared a second namespace ("urn:CinemaHistory.com:Directors") and assigned the word
directors as its prefix. Then the mo prefix indicates that the name element belongs to the
"urn:FilmSociety.com:FilmData" namespace.

Next the directors prefix specifies that the director element belongs to the
"urn:CinemaHistory.com:Directors" namespace. In this way, you can freely employ elements
from different namespaces, and not have to worry that you'll run into duplicate (therefore
ambiguous) element names. With the prefixes, there will never be confusion if more than one
element has the same name.

Implicit Declaration

Implicit declaration means that all the elements inside the element's scope belong to the same
namespace (so a prefix is not needed). You accomplish explicit declaration by simply leaving
out the prefix when you declare the namespace, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<film xmlns="urn:FilmSociety.com:FilmData">
 <name>Annie Hall</name>
 <star>Diane Keaton</star>
 </film>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 481

The Explosion of Schemes

As you probably guessed, the extensibility of XML is a two-edged sword. Allowing everyone
to create their own tag vocabulary (element and attribute names) and data structures has
resulted in many thousands of unique, proprietary XML vocabularies.

In the early 80s, an intriguing language named Forth fascinated many programmers. It
permitted a crude form of inheritance and polymorphism.

Using Forth was similar to Lego and transformer toys where a robot can be changed into a
truck, and a truck can be built up until it becomes a city. Essentially, the Forth language was
open and protean: You took the core language and modified it until it transformed into an
application. Each Forth application was merely the core language itself, but renovated and
expanded until it became functional, specialized, and unique.

The problem was that each application contained many unique statements that only the
programmer could understand (if even he or she could figure it out after a few weeks passed).
Also, programmers tended to quickly customize the language in other ways, creating their own
personal (and incompatible) version of string manipulation, data shorthand, and other language
components.

Linux aficionados call this effect forking. By this they mean that an IT department can lose
control of a Linux-based project because it's all too easy to create forks in the code base.
Precisely because the central source code is open to anyone's fiddling, the fundamental core
(code base) of Linux can divide into incompatible code bases which cannot ever be reconciled.

This effect is not accidental or rare. Forking becomes a tree of forks rather rapidly. Indeed,
forking always seems to happen to languages such as Forth, and operating systems such as
BSD (now we have multiple forks: NetBSD, FreeBSD, OpenBSD and so on). XML
(supposedly standardized) itself is forking rapidly into incompatible versions for bankers,
bakers, and candlestick makers. Efforts are made to enforce conformity on extensible
languages (there are XML standards committees; Linus Torvald's and Alan Cox's attempt to
act as a central authority for adding and accessing the Linux kernel, and so on). Nonetheless,
these efforts at keeping open source languages and platforms closed are oxymoronic. They
have always failed in the past. Despite heavy breathing on the part of the techie crowd, and
quite a bit of positive publicity in the press, Forth rapidly disappeared.

Every organization left to build its own set of XML structures and tags generates a new XML
language, unique to itself. All these new languages share the XML punctuation and syntax
rules (in effect, they share the XML interface), but the actual vocabulary is special to each
implementation.

How you navigate unique XML structures, what the tags mean, the hierarchy, the
relationships, the diction—all this can differ among the many thousands of versions of XML
schema currently being invented by disparate organizations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft, and others, have proposed sets of rules, schemata. One such initiative is Microsoft's
biztalk, a site that attempts to gather information about XML, XSL and other data models used
by all those thousands of organizations. See www.biztalk.org for further details.

Now let's turn our attention to XSD, Microsoft's choice for the building blocks for schemas.
As you'll see, XSD is uniquely suited to representing data sets, and to translating database
tables into XML and vice versa.

Understanding XSD

Visual Studio.NET focuses on XSD rather than DTD or other alternatives. So we'll take a brief
look at what you can do with XSD.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 487

Programmatic XML

In .NET, an XML document can be loaded using the Load method (you pass an argument
describing the source, which can be a disk file, a stream, an XMLReader, or a TextReader
object). Or you can use the LoadXML method to load a literal string, or string variable, into
your document.

Start a new VB.NET Windows project, and add these namespaces:

Imports System.Xml
Imports System.Xml.Xsl

To see how to create an XML document, then load a literal string into it, type in the code in
Listing 17.3.

LISTING 17:3 LOADING A LITERAL STRING INTO AN XML DOCUMENT
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim XMLdoc As XmlDocument

 Try

 XMLdoc = New XmlDocument
 XMLdoc.LoadXml(''<Cookie>
<Name>Francine Cerance</Name></Cookie>")
 Console.WriteLine(XMLdoc.DocumentElement.OuterXml)
 Console.WriteLine(XMLdoc.DocumentElement.InnerXml)

 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 End Sub

Here's the result when this code is executed:

<Cookie><Name>Francine Cerance</Name></Cookie>
<Name>Francine Cerance</Name>

To see how to load XML from a file, make the following change to the previous example.
Change LoadXml to Load, and replace the string argument with the path to an XML file:

XMLdoc.Load("c:\books.xml")

Press F5 and you'll see two long lines of data in the Output window. The only difference
between these lines is that the first line includes the <catalog> tags because it displays the
outer XML.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 493

FIGURE 17.1 The program atomizes an XML document into its smallest components.

XML and DataSets

Among the most useful aspects of XML in .NET is its interchangeability with DataSets. In this
section you see how to create an XML schema that becomes a DataSet, then connect it to a
DataGrid, and save or load this schema and the associated data.

Start a new VB.NET Windows-style project. Choose Project Add New Item, then double-
click the XML Schema icon in the dialog box. The Toolbox is now filled with the Tinkertoys
you can use to build a schema. Double-click the Element icon in the Toolbox. A graphic
appears in the design window, ready for you to define the structure (add attributes, for
example). Each element in this kind of XML schema is the equivalent of a table in a database
or DataSet.

Add several attributes to your element by dragging attribute icons from the Toolbox and
dropping them into the element box graphic. You can adjust the data type in the right column
of the element box by clicking, then dropping a list of available types. You can rename the
attributes by clicking them, then typing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right-click the background of the design window and choose Generate DataSet from the
context menu. Now click the Form1.vb [Design] tab to display your project's form. Click the
Data tab on the Toolbox and double-click the DataSet icon. The Add DataSet dialog box
opens with the name of your schema already displayed in the dialog box by default.

Click the Windows Forms tab on the Toolbox and add a DataGrid by double-clicking its icon.
If you haven't experimented with it, the DataGrid is an excellent, flexible user-interface device
for database work. In the Properties window, set the DataGrid's DataSource property to
XmlSchema11.element1.

Now add some source code to permit you to persist and retrieve DataSets stored as XML files.
Add two buttons to your form, then type Listing 17.7 in.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 495

Then click the Save button and take a look at the file that VB.NET has saved:

<XMLSchema1 xmlns=''http://tempuri.org/XMLSchema1.xsd">
 <element1 FirstName="Danny" attribute2= "Prior" attribute3= "12" attribute4= "23" />
 <element1 FirstName="Hoda"
attribute2="Macksoof" attribute3= "55" attribute4="-4" />
 <element1 FirstName="Soledaa" attribute2="Nussy"
attribute3="-2" attribute4="-5" />
</XMLSchema1>

This isn't your father's database. Stop the program, then run it again and click the Load button
to populate the DataGrid.

Persisting with SOAP

Persisting arrays and collections (and arraylists, hashtables, what have you)—as well as
objects, structures and so on—can be conveniently handled by an XML daughter technology,
SOAP. You use the SoapFormatter to create or load an XML file that contains both the
structure of the collection and its data. This technique draws upon the .NET serialization
capability and is illustrated in Listing 17.8.

TIP XML serialization ignores any private fields (binary serialization saves both private and
public fields).

WARNING To use XML serialization, you must choose Project Add Reference, then scroll
down the list of "components" and add
System.Runtime.Serialization.Formatters.Soap to your project. Oddly, some
namespaces (mercifully only a few) must be added in this way—as a "reference"—to a project
rather than employing the usual Imports statement. The distinction between which
namespaces are imported and which assemblies must be added as "references" escapes me. It
perhaps reveals which technologies were added to .NET late in the game. After you finish this
step, you'll see the System. Runtime.Serialization.Formatters.Soap reference in
the Solution Explorer, and you're ready to roll.

LISTING 17.8: PERSISTING TYPES VIA XML SERIALIZATION
Imports System.IO
Imports System.Runtime.Serialization.Formatters
Imports System.Runtime.Serialization.Formatters.Binary

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Arr(2), ArrNew(2) As String

 Arr(0) = "This test"
 Arr(1) = "continues until"
 Arr(2) = "it finishes."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 503

 Console.WriteLine(c1.FirstName)
 Console.WriteLine(c1.LastName)
End Sub
Sub deser_UnknownElement(ByVal sender As Object, ByVal e As XmlElementEventArgs)
 MsgBox(e.Element.Name & '' is not recognized. Deal with it. The problem is
in line number " & _
e.LineNumber & " in the XML source file.")
End Sub

Notice that when you execute this program, the Output window displays the LastName, but
not the FirstName (which was ignored in the input stream). Also, you can use the
ObjectBeing-Deserialized property of the XmlElementEventArgs object to identify which
object instantiated by your application is having the problem.

More Interchangeability

As you see in various examples in this chapter, XML is pervasive in .NET. You can quickly
design an XML schema, then transform it into an ADO.NET DataSet structure with a click of
the mouse (see the section titled "XML and DataSets" earlier in this chapter).

In various other contexts in .NET you also see XML popping up here and there—and often
you need not do anything yourself because .NET creates the XML or schemas all by itself.

How easy is it to transform XML data (as opposed to a schema) into a database-style data
table? As easy as clicking a Data tab in the VB.NET IDE. Try it.

Choose File Open File in VB.NET. Locate and load the sample XML file,
c:\books.xml. You see a formatted view of the XML. Now click the Data tab at the bottom
of the .NET IDE window. The XML is automatically translated into an editable data table, as
shown in Figure 17.3:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 17.3 .NET transforms XML into a DataSet with the click of a button.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 504

Can you go the other way? Create a DataSet, then change it into XML? Sure. Build a dataset
from the Pubs sample database by adding an OleDbDataAdapter from the Toolbox to your
form, then follow the instructions provided by the Data Adapter Configuration Wizard. Then
right-click the OleDbDataAdapter icon on your form and choose Generate Dataset.

Click the DataSet1.xsd tab at the top of the Design window to see your new DataSet. Click the
XML tab at the bottom of the Design window to see its XML version, as shown in Figure
17.4:

FIGURE 17.4 It's easy to go the other way: From database table to XML.

Summary

In this chapter you saw how to manage XML-based programming, starting with the
differences between, and uses for, DOM and SAX, the two primary APIs supporting XML.

You explored XML namespaces, schemas, and XSD along with XML data types. Then you
went on to manipulate XML features programmatically, recursively walking nodes and
transforming data into XML and back from XML into data again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you learned how to employ serialization to persist data two ways: via SOAP and via
simpler, more streamlined, XMLSerializer techniques. And you saw the uses, and limitations,
of self-description during deserialization.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 505

Chapter 18
Designing Data-Driven Windows Applications
IN CHAPTER 15 WE discussed the architecture of ADO.NET and the classes that make up
ADO.NET. So far we've shown you simple examples to demonstrate the basic operations you
can perform with the ADO.NET objects, and the interfaces of these sample applications were
based on the DataGrid control. The DataGrid control is not the be-all-and-end-all of your data
display requirements. For one thing, it's almost impossible to edit a DataGrid control without
reaching for the mouse, and a basic requirement for many applications is that they be used
with the keyboard only. Another limitation of the DataGrid control is that it doesn't support
the functionality of the ComboBox control, which is frequently used as a lookup tool. If you
search the Internet for tips on using Windows controls, you'll find numerous resources on
adding functionality to the DataGrid control. Our tip is to not use a control for a purpose for
which it wasn't designed.

Real-world applications are based on interfaces built with regular Windows controls—data-
binding is not a developer's first choice. In this section you'll learn how to build functional,
userfriendly applications with regular Windows controls. You'll also learn how to build
navigational tools that allow users to quickly locate the desired rows. A navigational tool
based on a couple of buttons that take the user to the next or previous row is simply
unacceptable. In this chapter we'll describe a couple of functional navigational models that you
can use with your applications.

We'll start this chapter with a quick overview of data-binding and then we'll present a few
typical data-driven applications. The applications of this chapter contain quite a bit of code,
but these aren't simple applications. We'll explain their architecture and then we'll look at the
code. We suggest that you download the projects from the book's website and open them in
the Visual Studio IDE. The projects are well documented and you'll find it easy to understand
their code.

Data-Binding

Data-binding is a mechanism for mapping selected columns of a DataTable to a control
property, which is usually the Text property. When a control is bound to a column, the
column's value is displayed automatically on the control. As you move through the rows of the
DataTable, the property changes value to reflect the value of the bound column in the current
row. If the control's text is

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 506

edited, the new value replaces the column's value in the DataSet. A data-bound control is in
effect a window for viewing and editing a specific column in the DataTable.

In most cases we bind the control's Text property, but there are other properties you can bind
to a data source, such as the Tag property. To set the data-bound properties of a control,
expand its Data-Bindings section in the Property Browser, select one of the data-bound
properties, and set it to the appropriate column name. You will notice that the properties listed
in the DataBindings section do not have unique names; you will see a Text property, a Tag
property, and so on. In the DataBindings section, you bind the values of these properties to a
data field. The properties by the same name that appear outside the DataBindings section can
be set to static values as usual.

Some of the Windows controls can be bound to columns and display all the rows in the table.
The ListBox and ComboBox controls, for example, can be populated with the rows of a table
and display a specific column. These controls are used almost exclusively as lookup tools on
data entry forms, and you'll see several examples of this technique in the following sections.
It's possible to populate a ComboBox control with the rows of the Categories table, for
example and bind the control to the CategoryID field of the Products table. As a result, every
time you move to another row in the Products table, the current product's category name will
appear on the control. To change the category of the current row, you simply select another
category name on the control.

Data-binding is not new to ADO.NET.Data-binding was available with earlier versions of
ADO, but it has never been a real developer's tool. You will see how to use data-binding to
build a functional viewing and editing interface for the Products table, but most of the
examples aren't based on data-binding. We'll discuss the relevant topics as we go through the
examples.

The NWProducts Application

Our first example is a typical application for viewing and editing a table with products. You've
seen how to display the Northwind Products table's rows on a DataGrid control and how to
submit to the database the changes made to these rows by the user with the DataAdapter
object. In this chapter we're going to build a functional and intuitive interface for viewing and
editing the rows of the Products table.

The basic requirement of this application is that we shouldn't have to download the entire table
to the client: in a production database the Products table is quite large. This application will be
used by multiple users on a local area network, and they should be able to see each other's
changes. If we give each user a copy of the table, multiple users may edit the same line.
Moreover, there will be a lot of conflicts we'd have to reconcile as we submit the changes to
the database. We'll build a connected application that submits the changes to the database as
soon as they occur.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another important aspect of the application is the navigational model. Even if the rows of the
Products table are copied to a DataSet at the client, we should provide a mechanism for users
to locate a desired product quickly and conveniently. Dumping all the product names on a
ListBox control may work with a small table, but it's a totally impractical approach for a
production database with many thousands of products. Moreover, we'll allow users to locate a
product with several criteria, and not just the product's name. We'll allow users to select a
product by its name, its category, or its supplier, on a separate form.

The Products table is related to the Categories and Suppliers tables. Obviously, we can't
display category and supplier IDs on our interface; we must retrieve and display each
product's category and

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 507

supplier name on the form. When users edit a product, they should be able to select a category
and a supplier by name from a list. To facilitate this operation, we'll download the tables with
the categories and suppliers to the client. We're assuming that these two tables aren't edited
frequently and users will almost always find the desired category and supplier in a DataSet at
the local machine.

The Application's Interface

The application's main form is shown in Figure 18.1. Users can select the product to view or
edit on the form shown in Figure 18.2. This form is invoked when users click the button with
the question mark on the application's main form. On the Product Search Form users can select
a product by name, by category, or by supplier. To view the products in a given category, or
the products by a given supplier, they can simply select the desired category or supplier on the
appropriate ComboBox control. Every time users select another item on either list, the
corresponding products are displayed on a ListView control at the bottom of the form. To
select products by name they must enter part of the product's name in the top TextBox control
and press Enter.

The matching products are displayed on a ListView control at the lower half of the form,
where users can double-click a product's name, or press Enter, to view the selected product's
details on the program's main form. The auxiliary form will close and the selected product's
fields will be displayed on the main form. While viewing products, the controls on the main
form are locked. The Edit button unlocks the controls for editing and it also changes the
background color of the various controls on the form to indicate that the controls can be
edited. The editing process must end with the OK or Cancel button. While editing, users are
not allowed to select another product.

FIGURE 18.1 Editing the Products table with the NWProducts application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 18.2 Locating the product to view or edit with the NWProducts application

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 516

first instance of the application and try to retrieve the new product. You can search for it by
name, category, or supplier. If the new category doesn't appear in the ComboBox of the
auxiliary form, close the auxiliary form and open it again. The application will fail to load the
selected row, because it violates the DataSet's referential integrity. This will activate the Catch
clause of the structured exception handler shown in Listing 18.3, and the application will
silently reload the Categories and Suppliers DataTables.

You can't delete any products from the database, because they're all referenced by one or more
rows of the Order Details table. You will be able to delete a row in the DataSet, but the update
operation will fail. Start two instances of the application and add a new product using one of
two windows on the desktop. Then select this product in both instances of the application.
Delete the product in one instance of the application, and then edit it in another instance of the
application. The deletion will succeed, but the edit operation will fail, because the application
can't find the row in the Products table and update it. When you click the OK button for the
first time, the changes will be submitted to the database. When you click the OK button of the
other instance of the application, the update operation will fail. You must cancel the edits and
reload the same product row to see the current values of the row in the database. This happens
because the DataAdapters were configured for optimistic concurrency. If you turn off
optimistic concurrency, then all changes will be written to the database, overwriting changes
made by other users.

An Invoicing Application

A very common task in business applications is a program for entering orders and invoices.
All invoicing applications are based on a grid control, where the user can enter, as well as edit,
the items. If you attempt to build an interface for an invoicing application with the DataGrid
control, you'll end up writing a lot of code to add functionality that's not natively supported by
the control. A basic requirement of an invoicing application is that it should provide full
keyboard support. Can you imagine a cashier at the Wal-Mart using the mouse? Of course,
Wal-Mart doesn't use Windows workstations at their registers, and there's a very good reason
for this: they want the lines to move fast. Editing the contents of a DataGrid control is
practically impossible without the mouse. However, we've seen many similar applications that
allow users to enter orders/invoices by editing a grid control. To better understand the
requirements of such an application, consider how cashiers at large department stores work:
most of the time they scan barcodes. They don't touch their keyboards, except to print the
reciept. When the scanner fails to read, the cashier enters the barcode manually. If the barcode
can't be read at all, they can search by a product code that's printed on the label.

The Application's Interface

Short of building a custom control or buying a third-party control, your best bet for building
an invoicing application is to base it on a ListView control. The ListView is a non-editable
grid; the editing of the data should take place on a few controls outside the grid, and the
ListView control should be used for displaying the invoice's rows. The form shown in Figure
18.3 is our idea of a functional invoicing interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 535

The automated discount calculations impose another limitation on the design of the
application's interface. The original NWOrders application allows you to switch tabs and
select another customer even after adding detail lines to the order. We can't have this
flexibility when the discount policy is based on the customer. To prevent users from selecting
a new customer after having entered detail lines with discounts for another customer, we
disable the Order Header tab. Another approach would be to allow users to select another
customer and recalculate the discounts for the detail lines on the Order Detail tab.

The Relations Application

The Relations project demonstrates how to present related data on a Windows form. As you
should guess, we're not going to use the DataGrid control, despite the fact that it's been
designed to display related tables. The major disadvantage of the DataGrid as a data
presentation tool is that it doesn't allow users to view the hierarchy of the data. The DataGrid
control displays one level of data at any one time. Besides, users must select the relation they
want to view on the control—certainly not the friendliest approach. We must give credit to the
designers of the controls for the fact that the DataGrid can display any DataSet. A well-crafted
application is very specific as to the data it handles and you can't expect a general tool to
accommodate your needs as nicely as a custom solution. And this is what we'll do in this
project: we'll write an interface that allows users to select a product from a list and see the
customers who purchased the specific product, in how many of their orders it has appeared,
and the total number of items of the same product each customer has ordered. The
application's form is shown in Figure 18.6.

FIGURE 18.6 The Relations project displays sales data about each product.

The Application's Architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the application's form is loaded, all the data are loaded into the ProductSales DataSet. In
a real application you should provide an interface that enables users to limit the selection. For
example, select orders placed in a time interval, the orders of customers from a specific
country, and so on. The tables of the Northwind database are very small and we've chosen to
download all their rows to the client.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 539

The listing is a bit lengthy because it calculates totals, formats the cells of the ListView
control, and so on. We'll focus on the statements that navigate through the hierarchy of the
DataSet's rows. When the user selects an item in the list, the following actions are performed
from within the control's SelectedIndexChanged event handler:

1. The detail lines that refer to the selected product are copied from the Order Details
DataTable into an array of DataRow objects with the DataTable's Select method:

DetailRows = _
 ProductSales1.Order_Details.Select(''ProductID = " & productID)

The DetailRows array contains all the rows of the Order Details DataTable that refer to the
product whose ID we passed to the Select method as argument.

2. The program creates a new DataTable, the OrdersTable, with the same structure as the
original Orders DataTable of the DataSet. This DataTable will store all the rows of the
Orders DataTable that correspond to the details selected in step 1. The following
statements iterate through the rows of the DetailRows DataTable, retrieve the order to
which the detail belongs, and add it to the OrdersTable DataTable. The GetParentRow
method accepts as argument the name of the relation between the Order Details and
Orders tables.

For Each DetailRow In DetailRows
 OrderRow = DetailRow.GetParentRow("OrdersOrder_Details")
 OrdersTable.Rows.Add(OrderRow.ItemArray)
Next

3. The OrdersTable DataTable now contains the orders that include the product selected on
the ListBox control. Another loop iterates through the rows of this DataTable and
displays them on the ListView control. In addition, it keeps track of the number of orders
placed by each customer and the total amount spent by each customer for the selected
product.

4. To retrieve the customer name from each order, the program calls the FindByCustomerID
method of the Customers DataTable, passing as argument the customer's ID with the
following statements. The CustomerRow variable is of the ProductSales.CustomersRow
type.

CustomerID = OrderRow.Item("CustomerID")
CustomerRow = _
 ProductSales1.Customers.FindByCustomerID(CustomerID)

The remaining statements populate the ListView control, calculate the totals, and perform
other straightforward tasks.

The Relations project demonstrates an interesting alternative to the DataGrid control for
building interfaces that display related data. It involves quite a bit of code, as opposed to the
DataGrid, but you have absolute control over the appearance of the data and you can display
all the levels of your data hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Relations1 Project

Figure 18.7 shows an application that maps more complicated relations on a ListView control.
The Relations1 project maps the publishers of the Pubs database, along with their titles and
each title's

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 542

 LI = New ListViewItem()
 LI.Text = '' "
 Next
 Next
End Sub

The outer loop adds a new item for each publisher in the publishers table. Then it retrieves all
the books under the current publisher by calling the GetChildRows method of the DataRow
object that represents the current publisher. The selected titles are stored in an array of typed
DataRow objects.

The first nested loop iterates through the titles and retrieves each title's entries in the
titleauthor DataTable. These entries, which are pairs of title/author IDs and correspond to
the authors of the current title, are stored in the TitleAuthorRows array. The last nested loop
goes through these rows and retrieves the authors of the current title by calling the
GetParentRows method of the current TitleAuthorRow object.

The code also keeps track of the changes in the publisher name and title, so that it can add
each publisher's first title next to the publisher name, but not repeat the same publisher name
until it runs into a new publisher. The same is true for titles: titles with multiple authors appear
only once, but each author is added to the ListView control as a separate item. You can open
the Relations1 project in the Visual Studio IDE and go through its code, which contains quite
a few comments, which are not shown in Listing 18.23.

Summary

In this chapter we've shown a few practical data-driven applications. The DataGrid control is
not the utlimate tool for displaying data—in fact it's not even the most appropriate control for
building data-driven interfaces. Typical business applications use the same controls used to
build any other type of interface.

Some of the more advanced and richer Windows controls, such as the ListView and TreeView
controls are not even data-bound. However, it's fairly straightforward to populate them with
data from a DataSet, as you have seen in the examples of this chapter. The DataGrid control is
a very convenient tool for developers, because it allows you to quickly view the contents of a
DataSet, but it's not the most suitable control for building intuitive interfaces for end users.
The ListView control is ideal for displaying data. In Chapter 7 we developed a custom control
that inherits from the ListView control and can also print its contents. You can combine this
custom control with the techniques of this chapter to build even more functional interfaces.

You've also seen an example of a data-driven application that makes use of a middle tier
component to simplify the deployment of the application. The middle tier component was
implemented as part of the application, but we discussed in Chapter 14 how to deploy middle
tier components as COM+ applications, web services or remotable components.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 543

Chapter 19
Working with Regular Expressions
THIS CHAPTER DEALS WITH a classic and very popular topic in computer science, regular
expressions. Regular expressions are supported in the .NET Framework by the
System.Text.RegularExpressions, which we'll discuss here, along with a few practical
examples. Regular expressions are strings that match patterns of text. They consist of
characters and digits, some of which have special meaning. The asterisk, for example, means
any number of characters and the period means any single character. The expression ''.*"
(without the quotes, of course) means any character, any number of times. Regular expressions
are not the same as the wildcard characters you use to match file patterns. The expression ".*"
has a totally different meaning as a regular expression than it has as a file-matching
specification. As a regular expression, it matches an entire line of text, or the entire text.

A regular expression allows you to search for general text patterns, instead of literals. The
IndexOf method of the String class searches for a specific string in a longer one. The IndexOf
method (the InStr() function works the same way), locates exact instances of the string you
specify as argument. When you use regular expressions, you can specify a pattern such as all
e-mail addresses or all dollar amounts in the text. If the text contains product codes that have a
specific pattern, like XX-NNN-X, where Xs are uppercase letters and Ns are digits, you can
locate all product codes in a single sweep through the text with the help of the appropriate
regular expression.

Regular expressions are an extremely powerful tool in text processing. The
System.Text.RegularExpressions class abstracts a very powerful engine for matching regular
expressions against arbitrary text. All you have to do is specify the regular expression and the
text to be searched and then call a method to retrieve the matches. The RegularExpressions
class makes it very easy to locate any pattern in a text, as long as you can construct the
appropriate regular expression. Writing the correct regular expression is not trivial, but this is
something you get used to. Besides, a simple search on the Internet will return many regular
expressions for common patterns such as e-mail addresses, IP addresses, phone numbers, and
so on.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 544

Writing Regular Expressions

Before examining the methods of the RegularExpressions class and how to program it, we'll
review the process of building regular expressions. To experiment with regular expressions as
you read through the material of this tutorial, use the RegExEditor application, which is
described later in this chapter. This application, shown in Figure 19.1, is a simple text editor
that supports the usual editing operations (copy/cut/paste); its Find command allows you to
search with regular expressions as well as literals. The regular expression in the Search For
box of the Find & Replace dialog box locates words that begin with "t," followed by three
characters (any three characters) and ending with the character "e."The \w construct in the
regular expression is a so-called metacharacter that matches a word character (everything
except spaces and punctuation symbols). This metacharacter is followed by a count in curly
brackets. The subexpression \w{3} stands for three consecutive word characters. The \b
construct is another metacharacter that matches word boundaries. By placing the \b
metacharacter at the beginning and the end of the regular expression, we specify that the
matches should be complete words. If you're totally unfamiliar with regular expressions you
may find them quite odd, but don't give up yet. We'll explore all metacharacters in the
following sections, starting with the simpler ones and progressing to more complicated ones.

You can also use the RegularExpressions project to experiment with regular expressions. This
project demonstrates a few of the more advanced topics, such as using groups in the regular
expressions and performing replace operations using regular expressions. You can also use it
with simple regular expressions such as the ones we'll build in the following sections. Enter
the regular expression to match against the text in the upper TextBox control (Search Pattern
box) and the text to be searched in the large TextBox control (Text box), then click the Find
First Match button to locate the first match. After that, keep clicking the Find Next Match
button to locate the next match in the text. Each time a match is found, the matched text will
be highlighted on the control with the text. For the time being, you can ignore the Replace
Pattern box and the Replace Matches button, as well as the Groups box at the bottom of the
form. We'll look at the function of these two buttons later in the chapter, when we'll discuss
replacement operations with regular expressions. The Groups box contains the matches of
complicated regular expressions that contain groups, which we'll cover later. Simple regular
expressions, like the ones we're going to discuss in the introductory sections, contain a single
group and a single capture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 19.1 Matching regular expressions with the RegExEditor project

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 547

If the letters (or numbers) are consecutive, you can use the range operator and specify the first
and last letter in the range. The following expression matches all uppercase characters:

[A-Z]

while the following matches all numeric digits:

[0-9]

The expression [1357] means any of the digits ''1", "3" or "5" or "7."

ISBNs are made up of 9 numeric digits followed by a check digit, which can be either a
numeric digit or the character X. The following expression locates ISBN values in the text (but
it doesn't validate their check digit, of course):

[0-9]{9}[0-9X]

This pattern instructs the regular expression engine to locate 9 numeric digits followed by
another numeric digit, or the character X. The expression [0-9]{9} means 9 digits. The next
character can be either a digit or the letter X.

Notice the content of the second pair of square brackets: it matches a character in the range 0–
9, or the character "X." Digits are so common that there's a special metacharacter for them.
This is the \d metacharacter. The following regular expression will also locate ISBNs in a
text:

\d{9}[\dX]

This expression will match all runs of 10 digits in the text, even if they're part of a very large,
unformatted number. If the text contains the number 390102188541, then the previous regular
expression will report the first 10 digits as a match. To avoid erroneous matches, we must also
use the \b metacharacter, which specifies the beginning or the end of a word. Our final regular
expression for locating ISBN values is:

\b\d{9}[\dX]\b

There's quite a bit about regular expressions and we'll return to the topic of building regular
expressions shortly, but first we'll take a closer look at the RegularExpressions class. This
class belongs to the System.Text namespace and it exposes all the functionality you'll need to
use regular expressions in your .NET applications.

The RegularExpressions Class

Now that you have a general idea of what regular expressions are and how to locate general
patterns of text, we can explore the basic functionality of the RegularExpressions class. To
exploit the functionality of regular expressions in your code, you must import the
System.Text.RegularExpressions class to your project:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Text.RegularExpressions

and then create an object of the RegEx type:

Dim RX As Regex

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 558

The Elements of a Regular Expression

In this section we'll go though the various metacharacters you can use in building regular
expressions and look at numerous examples. This is a more formal treatment of regular
expressions and, unlike in the introduction of the chapter, we've organized the metacharacters
according to their function.

Characters and Metacharacters

Regular expressions are made up of regular characters (they match the same characters in the
text), metacharacters, and special symbols. Metacharacters are regular characters prefixed by
the slash character. The character ''w" in a regular expression will match the same character in
the text. If you prefix it with a slash, you turn it into a metacharacter: the \w metacharacter
will match any word character. The "d" character will match the same character in the text, but
the \d metacharacter will match a digit. The \W and \D metacharacters will match any non-
word character and any non-digit character, respectively. Some symbols also have special
meaning in a regular expression. The period matches a single character (any character,
including the space) in the text and the square brackets are used to declare a range of
characters. To match any of these symbols in the text, you must prefix them with the slash.

The simplest regular expression you can build is a regular string. The Match method will
locate all the instances of the regular expression in the text, as if you were using the InStr()
function, or the IndexOf method of the String class. If you use the string "Basic" as a regular
expression, you will locate all instances of the word "Basic" in the text. By default, the search
is case-sensitive. If you turn on the IgnoreCase option, you will also locate all instances of the
words "BASIC," "basic," and so on.

To specify a more general pattern, you must include one or more metacharacters in the regular
expression. One of the most common metacharacters of regular expressions is the period,
which matches any character. The asterisk is another metacharacter that matches the preceding
pattern any number of times. The expression .* will locate entire sentences in the text, because
the period doesn't match the newline character.

If you want to treat any of the metacharacters in the regular expression as regular characters,
you must "escape" them with a slash. To locate a period followed by an asterisk in the text,
use the following regular expression:

\.*

In the following sections you will find descriptions of all metacharacters used in building
regular expressions, and examples to demonstrate their usage.

Single Character Metacharacters

A very common metacharacter in building regular expressions is the \w symbol, which means

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A very common metacharacter in building regular expressions is the \w symbol, which means
a "word character." Use this metacharacter to specify a character in a word and exclude spaces
and punctuation. The period metacharacter matches any character, including spaces and
punctuation symbols. The \w metacharacter matches word characters only. The pattern

...ce

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 567

LISTING 19.8: THE REPLACE ALL BUTTON'S CODE
Private Sub bttnReplace_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnReplace.Click
 If chkRegEx.Checked Then
 Dim searchOptions As RegexOptions
 searchOptions = RegexOptions.Multiline
 If Not chkCase.Checked Then
 searchOptions = searchOptions Or RegexOptions.IgnoreCase
 End If
 RegEx = New System.Text.RegularExpressions.Regex(_
 searchWord.Text, searchOptions)
 Dim selStart As Integer = EditorForm.txtBox.SelectionStart
 Dim replacementText As String
 replacementText = RegEx.Replace(_
 EditorForm.txtBox.SelectedText, _
 replaceWord.Text, _
 System.Text.RegularExpressions._
 RegexOptions.Multiline)
 EditorForm.txtBox.SelectedText = replacementText
 EditorForm.txtBox.Select(selStart, replacementText.Length)
 EditorForm.txtBox.ScrollToCaret()
 Else
 If EditorForm.txtBox.SelectedText <> '' " Then
 EditorForm.txtBox.SelectedText = replaceWord.Text
 End If
 End If
 bttnFindNext.PerformClick()
End Sub

You can experiment with the RegExEditor project, or even use it as a starting point for a
highly specialized editor. Let's move on to some more advanced topics in regular expressions.

Advanced Topics in Regular Expressions

So far you've learned the basics of regular expressions. The metacharacters and symbols
you've seen so far are adequate for many practical applications, but there are more topics to
explore in regular expressions.

First, we'll examine the grouping of matches in a regular expression. A lengthy regular
expression can be broken into simpler ones, which you can refer to later in the same regular
expression. Being able to refer to previous matches allows you to perform very powerful
searches (such as locating repeated words in a text).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 579

In the replacement string we'll make use of the two grouped subexpressions in the regular
expression. The following replacement pattern will place each key and each value in square
brackets and each pair on a separate line:

[$1] : [$2]

You must also press the Enter key once at the end of the replacement string. If not, each
key/value pair won't be printed on a separate line. You must also make sure that there's no
newline character at the end of the search pattern. The text after replacing all instances of the
search pattern with the replacement string is shown next. The text contains the same data as
the original document, but it appears in a nicer format (see Figure 19.7):

[value1] : [34]
[value2] : [405]
[value3] : [4534]
[value4] : [45]
[value5] : [3334]
[value10] : [-4554]
[value11] : [3904]
[value12] : [456]
[value13] : [5564]

FIGURE 19.7 Cleaning a data file with a regular expression that captures all the instances of the same
pattern in the text

The RegularExpressions Project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we can examine the code of the RegularExpressions project, which you can use to
experiment with regular expressions, or process long text files using regular expressions. In
the Search Pattern box you enter a regular expression that determines the matches you want to
locate in the text, which is entered in the Text box (just copy the text you want to search and
paste it in the Text box). Then you can click the Find First Match and Find Next Match
buttons to locate the matches in the text.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 582

 End Try
 If txtReplace.Text.Trim <> ''" Then
 txtText.Text = RX.Replace(txtText.Text, txtReplace.Text)
 Else
 Dim MatchEval As New MatchEvaluator(AddressOf UCaseEvaluator)
 txtText.Text = _
 RX.Replace(txtText.Text, txtPattern.Text, MatchEval)
 End If
End Sub

The Visual grep Project

One of the classic (and most popular) tools of the Unix operating system is the grep utility,
which searches text files with regular expressions. Even though it's spelled in lowercase, it
stands for General Regular Expression Parser. The application's interface is shown in Figure
19.8. I've actually tried to emulate the look of the old monitors by using shades of green on the
visual interface of the application, but you may find them objectionable.

The Visual grep project is a visual adaptation of the grep utility. It allows you to select any
number of text files on your drive and apply a regular expression against them. The names of
the selected files appear in the ListBox control at the top of the form and you can add/remove
files with the Add and Remove buttons. Once you've selected the files you want to process,
you can type a regular expression, or select one of the predefined regular expressions by
clicking the button with the ellipses. A dialog box, shown in Figure 19.9, will pop up; here
you can select a regular expression by its description and click the OK button to paste the
regular expression that corresponds to the selected description onto the appropriate box on the
application's main form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 19.8 Using the Visual grep project to locate e-mail addresses with a regular expression

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 588

Summary

This concludes our overview of regular expressions. You have enough information about
building regular expressions and using them to perform powerful searches in large text files,
but there's more to regular expressions. The details can get hairy, but, fortunately, for most
practical applications you won't need extreme knowledge of regular expressions. Regular
expressions are an inherently difficult topic that is very popular among computer science
majors and Unix programmers. However, they are very interesting and should be explored
further. We should mention here that Perl (Practical Extraction and Report Language) is based
on regular expressions and was designed around them. With Perl you can embed regular
expressions in your code just like variables. The If statements of Perl are very compact, but
really awkward to understand. If there's a write-only language, this should be Perl. Yet it's
quite popular.

You should perform some searches on very large text files (using either of the applications
discussed in this chapter) to get an idea of how efficient the RegularExpressions class's code
is. Of course, regular expressions aren't the bread and butter of a typical developer, but some
tasks can be simplified enormously with the functionality of the RegularExpressions class.
You will find this class especially useful if you're interested in language statistics (distribution
of word count versus their length, words that contain specific letter combinations, and so on).
Project Gutenberg at www.gutenberg.net is a great resource for text files representative of the
English language: It provides thousands of free electronic versions of classic literature.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 589

Chapter 20
Advanced Graphics
ONE OF THE MOST interesting aspects of a programming language is graphics. The graphics
engine of .NET is the Graphics Device Interface (GDI+). GDI+ is part of the Windows XP
operating system that provides support for two-dimensional vector graphics, imaging, and
typography. GDI+ is the successor to the Windows Graphics Device Interface (GDI), but it's
more than an improved version of GDI; it's a new optimized graphics engine with many new
features. We looked at GDI+ in Chapter 7, where we discussed the new printing techniques of
.NET. In Chapter 7 we focused on a few methods we use to generate business graphics: how
to print text, how to create reports with tabular data, how to draw lines and frames. In this
chapter, we'll explore methods for manipulating individual pixels on a bitmap.

To demonstrate the advanced graphics methods of this chapter, we'll build two very different
applications, one for plotting functions and one for generating fractals. The first application is
a custom control that will plot any user-supplied two-dimensional function. In the process
you'll also learn how to evaluate math expressions at runtime. The PlotControl custom control,
which you'll build in the following section, allows you to set the properties of the plot (the
range of values over which the function will be plotted, the axis titles, the style and color of
the plot, and more) and you can incorporate it into your applications to give them plotting
capabilities.

PERSISTENT DRAWING

According to the documentation, you should insert your graphics statements into the
OnPaint event, which is fired every time a form (or control) must be redrawn by
Windows. In effect, this technique redraws your graphics elements every time a
segment of the window is uncovered, or when the window is resized. The graphics
you generate from within the OnPaint event are not persistent: they're redrawn on
the form or control as needed.
A complicated drawing, such as the drawings we'll develop in this chapter, may
involve a large number of calculations. If you create your graphics from within the
OnPaint event handler, the calculations will be repeated every time the form is
refreshed. As a result, the refresh operation won t be instant. To avoid this
unnecessary delay, you can create persistent graphics by drawing on a bitmap object
and then displaying this bitmap. The bitmap need not be refreshed and the form that
contains it is redrawn instantly. In the examples of this chapter we'll create persistent
graphics by drawing on a bitmap, which is the background image of a Form, or
PictureBox control.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 590

The second application is a fractal generator. Fractals are a special type of function plotting;
instead of a simple curve, fractals fill the space with intricate patterns of startling beauty. The
fractal generator is not a practical application in a strict sense, but it's a fun application you can
use to experiment with fractals.

The PlotControl

Our first sample application is a custom control for plotting two-dimensional functions, as
shown in Figure 20.1. Figure 20.1 shows a test form that uses the PlotControl. The control,
which takes up the upper part of the form, displays the plot of the two functions specified in
the TextBox controls near the bottom of the form. To create a plot, you set the control's
properties and then call the Plot method.

Create a new solution in Visual Studio and add two projects to it: a Windows Control Library
(the PlotControl project) and a Windows project (the TestProject). The Windows project is the
test project for the control. The PlotControl is a compound custom control that contains a
PictureBox control, where the function plots and the grid are drawn. The titles and the axis
numbers are printed on the control itself. The PictureBox control is anchored at all four sides
and the bands around it, where the elements of the plot are drawn, have fixed sizes. In our
code we set up two Graphics objects for drawing. The G Graphics object represents the surface
of the control. This is where we'll draw the axis titles and numbers, and the G object is created
with the following statements:

Dim bmp As Bitmap
bmp = New Bitmap(Me.Width, Me.Height)
Me.BackgroundImage = bmp
Dim G As Graphics
G = Graphics.FromImage(bmp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 20.1 Using the PlotControl in a test application

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 602

DEALING WITH SINGULARITIES

One issue that deserves attention is the handling of singularities. Singularities are
points at which a function can't be calculated. Consider the function Cos(X) / X.
This function can be plotted in any range that doesn't contain the point 0. If you
attempt to calculate the function at X = 0, the result is an undefined number (NaN).
If you run into a singularity, you can either ignore it and continue, or abort the
process and inform the user that the function can't be plotted. In our code, we abort
the process.
However, it's possible to skip the singularity, even though it's included in the range
of X values. If the size of the PictureBox control is 200 pixels and you're plotting a
function in the range from –2 to 2, you'll be calculating the function at increments of
4 / 200, which is 0.02. The points at which the function is calculated are : –2, –1.98,
–1.96, and so on up to –0.02, 0, 0.02. When you attempt to calculate the function at
point 0, you'll run into a singularity. If the PictureBox control's width were 285
pixels, however, the step along the X axis would be 4 / 285, or 0.014035087. The
function will be evaluated at the point –0.00701754 and then at 0.00701754. The
function can be evaluated at both points and the singularity has been skipped with
no special effort on our part. Usually, it's the responsilibity of the user to avoid
singularities in the range of X values and specify a meaningful X range for the plot.

In the second half of this chapter we're going to look at fractals. Fractals are special plots that
aren't plotted with curves; instead, they fill the space with intricate patterns.

A Fractal Generator

People who start playing around with fractals sometimes get hooked. Fractals are like alien
worlds—obviously different from things we see in nature, yet also somehow familiar. You can
zoom into a fractal endlessly, producing fascinating variations of color, texture, and shape.
And what you see as you take this tour somehow looks not only natural, like a cabbage or a
tree, but also mysterious enough to earn fractals their reputation as the most complex objects
in all math.

In this section we're going to demonstrate how you can generate fractals in VB. Beyond that,
we'll also attempt to explain to nonmathematicians the strange numbers and odd dimensions
that produce fractals. Mathematicians like fractals because they produce images of often
startling beauty. Most mathematical formulae, when plotted, result in wave-like lines, arcs,
and other visually simple—really rather boring—geometric designs. Fractals, by contrast,
yield extremely complex, lacy, colorful patterns that hover just beyond symmetry. You never
really see the same thing twice, though at first you might think so. Fractals often imitate the
patterns found in nature—those produced, say, when a coastline erodes, or when an octopus
grows a tentacle.

What Is a Fractal?

One way of describing a fractal is the adventures of a small number on the complex plane. A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One way of describing a fractal is the adventures of a small number on the complex plane. A
fractal is a peculiar and very dense ''graph" generated by a mathematical process. Although the
resulting images are literally infinitely complex, the underlying algorithms are short and rather
simple. When you want to see relationships between numbers—to see mathematical
expressions—you can put them into a kind of grid called a plot. The coordinates of this space
are arbitrary—that is, you can set up the marks to be large enough to embrace whatever
expression you are trying to make visual. You saw how to scale the plot of an arbitrary
function to fill a given area in the example of the first part of the chapter.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 620

experiment with the sample applications and discover other values of the Cx and Cy
parameters that yield rich, colorful Julia shapes). Note, however, that most numbers you enter
randomly will produce uninteresting fractals, and that your numbers must be between –2 and
+2. Also remember that often the most elegant pictures result from zooming into the initial
Julia fractal six or eight times.

 1. Cx=–0.754 Cy=0.049
 2. Cx=–0.744 Cy=0.097
 3. Cx=–0.736 Cy=0.097
 4. Cx=–0.756 Cy=0.097
 5. Cx=–0.743 Cy=0.097
 6. Cx=–0.766227 Cy=0.096990
 7. Cx=–0.9 Cy=0.12
 8. Cx=–0.745429 Cy=0.113008
 9. Cx=–1.0300 Cy=-0.9200
 10. Cx=0.320 Cy=0.043
 11. Cx=0.3080 Cy=0.46
 12. Cx=–1.330 Cy=0.043
 13. Cx=–0.16 Cy=1.32
 14. Cx=–1.8 Cy=–1.67

Complex Number Operations

Most readers are not likely interested in the details about addition and multiplication of
complex numbers. So, we left this discussion for the end of the chapter. For the intrepid, here
are the three basic complex number operations: addition, subtraction, and multiplication.
Complex numbers are actually pairs of numbers (the real and imaginary parts) that are handled
separately. The sum of two complex numbers is another complex number, whose real number
is the sum of the real parts and whose imaginary part is the sum of the imaginary parts of the
operands.

Adding and Subtracting Complex Numbers Here are the formulae for adding and
subtracting complex numbers:

 (a + ib) + (c + id) = (a + c) + i(b + d)
 (a + ib) – (c + id) = (a – c) + i(b – d)

or

 (a, b) + (c, d) = (a + c, b + d)
 (a, b) – (c, d) = (a – c, b – d)

And here are some examples of addition and subtraction of complex numbers:

 (3 + i7) + (–2 + i2) = (1 + i9) also: (3, 7) + (–2, 2) = (1, 9)
 (3 + i7) – (–2 + i2) = (5 + i5) also: (3, 7) – (–2, 2) = (5, 5)

Multiplying Complex Numbers To multiply two complex numbers, we form all four
products:

 (a + ib) * (c + id) = a*c + ib*c + ia*d + ib*id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (a + ib) * (c + id) = a*c + ib*c + ia*d + ib*id

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 622

Summary

In this chapter we discussed some advanced graphics topics by means of two demonstration
applications: a practical application for plotting 2-dimensional functions and a ''fun"
application that generates fractals. While building the plotting application you learned how to
build GraphicsPath objects and how to apply transformations to graphics elements before
rendering them in the drawing surface. You also learned how to calculate arbitrary math
expressions at runtime with the MSScript ActiveX control.

The second sample application of this chapter was a simple fractal generator that produces
startling fractal images. This application generates the fractals by painting one pixel at a time.
The calculation of each pixel's color involves some math, which isn't beyond the grasp of the
average developer. You can enhance the fractal generator in many ways and the most
challenging aspect of the application is the design of a palette for coloring the fractals.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 623

Chapter 21
Designing the User Interface
IF YOU'RE LIKE MANY programmers, you ask your spouse or a friend if this tie goes with that
suit. You leave it up to someone else to select colors, patterns, and designs. In other words,
you don't have much experience with visual design.

Fear not. In this chapter you'll find some guidelines for good Windows design. Talented
designers at various software companies have spent lots of time developing these concepts in
the past decade. You can see the results by comparing the uninviting flat gray appearance of
early Windows applications with the sleek, sculpted, dimensional look that has become the
standard in recent versions of Windows, especially XP.

Many studies have demonstrated that how a program looks influences how it's used, and also
how it's rated. The most obvious example is grouping a set of related radio buttons into a
single GroupBox. This cues the user that these buttons are mutually exclusive choices, making
the user's life easier. There are many other examples. User-interface design is a surprisingly
highly developed set of techniques and suggestions, some rather subtle. Surprising, given that
it's only a decade old (nobody counts pre-Windows DOS UI theory as significant anymore—
for the same reason that automakers no longer take into account the features of the horse-
drawn carriage).

Making Applications Look Reliable

We'll explore a variety of techniques you can use to make your VB programs look better. At
first we'll work with tools that VB provides—the BackgroundImage property of forms and of
a few controls. Then we'll go beyond what VB provides, demonstrating how to do pretty much
anything visual that you want to do. You've seen commercial software with slick lighting
effects, fade transitions, embossed and shadowed text, sliding panels, opacity, and all the rest.
In this chapter you'll see how to accomplish those tricks and other effects. But before going
further, we've got to finish dealing with the fundamental question some of you are doubtless
asking: Why bother?

A pretty form is more than merely a desirable luxury. If your work looks coordinated,
polished, and professional on its surface, people will think it is equally solid on the inside.
They will trust it more. Study after study has demonstrated that handsome men or beautiful
women are far more likely to be believed than plain people. That's why grifters, lounge
lizards, and con artists of all stripes are usually physically attractive. It's also why so many
companies pay huge sums to improve their logo, and millions to get movie stars to recommend
their products.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 626

USING FOCUS GROUPS TO PRODUCE VISUAL GUIDELINES

Microsoft and others have conducted many focus groups, testing tens of thousands
of people, and have found that certain design elements result in the most efficient
form organization and most visually appealing ''looks." One finding that might
surprise you: Choose icons with relatively subtle coloring when designing your
application. Too many bright tiny icons are annoying and clutter the screen.
If you've never studied, or even thought about, pictorial design, here's your chance.
VB, and Windows, offer rich graphics possibilities. Computing is becoming
increasingly, even relentlessly, visual. (This trend will not stop until computer
programs are photo-realistic, until a telephone icon looks like a 3D hologram of a
telephone, and until multimedia is so common that the distinction between
computers and television disappears. So prepare yourself. Programming now
requires that at least someone involved has a visual sense.)
Design is not just a matter of making things look better—it's also a matter of user-
comfort, efficiency, and, ultimately, a quality that distinguishes professional from
amateur programming. How things look and feel is a big part of how easily they are
used. Ergonomics matters. And ergonomics is, in part, visual.
Visual design and decoration have not traditionally been part of a programmer's job
description. But computing is increasingly graphical, and will never revert to the
text-based interface typified by the beloved but infamous black DOS screen with its
white words. The computer console is as dead as the floor-standing radio.
These days you must communicate with the user via graphics—even sometimes via
video—as well as with text. Fortunately there are guidelines and conventions you
can learn. Explaining these conventions, and providing hints about design, is the
purpose of this chapter.

In the best-designed applications, some visual conventions include placement of the Close or
Exit buttons in the lower right, a gray (or at least not white) background, related controls
grouped into zones separated by frames, and so on. If one of your Visual Basic forms has its
BackColor set to white, is unzoned, and locates the Exit Button on the left, your application
will slow users down. It will confuse them because it's both homely and, in a bad sense,
unique. Users are simply not familiar with odd design elements. There are conventions to
Windows (form) design. Users might not know why, but they will be uncomfortable using
your program.

Windows Conventions

There are several graphics conventions to which virtually all Windows programs now submit.
Your programs should too. The most important of those are explained in the following
sections.

The Metallic Look

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First, many Windows programs still aspire to look "metallic," though various "themes" are less
severe and involve earth tones and other color schemes. You can achieve the metallic look by
building highlights and shadows into controls, such as buttons, and by using a metallic
gradients for backgrounds to your forms and other elements. (For an explanation
demonstrating how to create gradients, see the section titled "Metallic Shading" later in this
chapter.)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 635

Metallic Shading

One of the best ways to avoid dull-looking forms is to use gradient metallic shading. It's subtle
and conservative enough for any business application, yet considerably more attractive than
plain gray.

You can create gradients with Adobe's Photoshop, Corel's Picture Publisher, or most any
photo-retouching program. Here's how to do it.

The best metallic gradient is a gradual shift between two shades: white and the typical
Windows gray (the light gray often used as shading on windows and controls).

You can use the code in Listing 21.4 to add the top-left to lower-right metallic gradient to a
form, as shown in Figure 21.10.

LISTING 21.4: CREATING METALLIC CRADIENTS
Imports System.Drawing
Imports System.Drawing.Drawing2D

Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

 Dim g As Graphics = Me.CreateGraphics

 'coordinates for both the gradient and the fillRectangle routine:
 Dim x As Integer = Me.Width
 Dim y As Integer = Me.Height

 Dim lgBrush As New LinearGradientBrush(_
 New Point(0, 0), New Point(x, y), _
 Color.White, Color.FromArgb(190, 190, 190))

 'linGrBrush.GammaCorrection = True 'smooth the transition
 g.FillRectangle(lgBrush, 0, 0, x, y)

End Sub

To draw gradients on buttons and such, you either can create a gradient the button's size in a
graphics program (including caption), then import the graphic into the button's Image
property, or you can use this code:

Dim g As Graphics = Button1.CreateGraphics
 Dim x As Integer = Button1.Width - 3
 Dim y As Integer = Button1.Height - 3

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 636

 Dim lgBrush As New LinearGradientBrush(_
 New Point(1, 1), New Point(x, y), _
 Color.White, Color.FromArgb(190, 190, 190))

 g.FillRectangle(lgBrush, 0, 0, x, y)

Notice the adjustments, in boldface (–3 and so on), that permit the button's frame to show.
You want to put the gradient only on the button surface, not cover up the shading around its
edges.

TIP You may want to add additional special effects to your forms, such as custom buttons
(perhaps round), lights that dim and fade, drop shadowing, neon, 3D, animation, sculpted
labels, and other effects. Use graphics programs to create these effects, then import them into
the form's and controls' BackgroundImage or Image properties. Use a Timer, for example, to
occasionally display a reflection like those in Figure 21.10, then hide it by setting the
PictureBox containing it toVisible = False.

FIGURE 21.10 Using a variety of different gradient effects add solidity and sophistication to your
applications. Notice that the background on this form is, itself, a gradient.

Sliding and Fading Transitions

Applications with multiple forms benefit from animated transitions. Just as it can be annoying
if a movie jumps abruptly from one scene to another—simply slapping a new scene on top of
the current one—so too will your projects look more professional if there's a visual transition
between your forms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a user clicks a button to bring up Form2, you can slide it over from the side, or down
from the top, like a garage door. Or you can use the classic fade: the new form gradually
appears as if from out of the mist, replacing the current form.

In the past, computer video was too slow for fades (though it could cope with slides). Also,
there was no built-in facility for adjusting opacity as there is now, the form's Opacity property
(alas, there's no such property yet for individual controls—they all fade along with their parent
form).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 641

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Timer1.Enabled = True
End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick

 Panel1.Left += 2

 'stop when it hits the correct position
 If Panel1.Left >= X Then Timer1.Enabled = False

End Sub

When you run this, you see the panel slide in and take its correct position. Adjust the step size
(+–2) to fiddle with the granularity; it's unlikely that you can lower the timer's Interval enough
to speed things up as much as you'd like to, so you have to accept some granularity. However,
a step of 4 isn't noticeable, and 12 is probably too fast for you.

Try dropping panels or other controls down from the top; slipping them in, then back out when
the user is finished with them; sliding more than one control at a time; and so on.

Summary

This chapter covers one of the most overlooked aspects of program design—the design itself,
properly so called; the actual look of the finished application. Among the issues considered in
this chapter are metallic surfaces, fonts, layering, light sources, depth, framing, shading,
gradients, and transitions.

If you think the design job is best left to the art department, either you work for a very large
company (with enough cash to hire application-design specialists with Windows ergonomics
experience) or you're trying to avoid what is partly a programmer's responsibility. You, the
programmer, are often the best person to advise which controls should be grouped together,
and how the various windows in your application interact (and therefore what kinds of
transitions should link them), and other graphics issues.

At the very least, the programmer or programming team should participate in meetings with
the art department—if there is one—to ensure that purely visual considerations aren't
overriding logical groupings or Windows conventions. And if there is no art department, that's
all the more reason for programmers to refer to this chapter's suggestions before considering
an application finished. Oh, and one more thing: Take a good look at Word or the Visual
Studio IDE and make sure that your Cancel, OK, and other buttons are in the same location as
theirs on your forms; make sure that your toolbars look like theirs; ensure that your menus are
located where theirs are, and so on. Microsoft has spent loads of money testing their designs,
so if you follow their conventions you won't go far wrong.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 643

Chapter 22
Using the .NET Compact Framework and Its
Emerging Technologies
PEOPLE WANT TO REMAIN connected to the Internet—and to their computer applications and
files—no matter where they are. The current buzzword is mobile computing. This phrase has
several meanings, but the one we're focusing on in this chapter is: How to squeeze
programming and I/O into the highly restrictive platform of small, portable devices like PDAs
and cell phones.

This chapter offers you an overview of the technologies and tools available to the VB.NET
programmer who wants to extend their programming skills into the mobile arena. We'll
explore the ways that .NET addresses the needs of users and programmers within the
limitations imposed by mobile devices: as you'll see, this is truly computing lite.

Writing programs that will work on a cell phone is a bit like traveling back in time about
twenty-five years to the day when personal computing was just getting started. Processor
speeds were much slower than today's desktop machines enjoy. You had very little memory to
work in, so you had to be careful and conserve this precious resource by avoiding such
memory-hungry luxuries as graphics. And there was another reason to avoid graphics: You
had to deal with I/O constraints such as low-resolution, black and white, text-based screens,
and little, if any, mouse capability. Although most early computers were more restrictive (32K
RAM was considered a lot of memory), today's mobile devices are nonetheless significantly
less powerful than today's personal computers. The mobile platform demands a different kind
of communication with the user.

The .NET Framework is designed for desktop computing, and to run on servers managing
Internet sites. The .NET Framework runtime is large; it simply cannot fit within the memory
available to mobile devices. The solution: a new framework, the .NET Compact Framework, a
condensed, stripped-down version.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 644

What's Eliminated?

To get a sense of the limitations you must work within when programming under the Compact
Framework (CF), consider the Button control. If you look in Help under ButtonBase members,
you see the properties and methods available to the base class from which various button-like
controls inherit (RadioButton, CheckBox, Button). In the list of members, you see 68 total
properties, but only 25 of them are described as ''Supported by the .NET Compact
Framework."

You find that properties such as AllowDrop are unavailable (dragging and dropping cause
difficulties, serious bandwidth problems, if the mobile client expects to see an animated
illustration as they drag). Also unavailable are TabIndex, Image, Dock, FlatStyle, and others.
Here's a list of the properties supported for Button controls running on the CF:

BackColor BindingContext Bottom
Bounds Capture ClientRectangle
ClientSize ContextMenu Controls
DataBindings Enabled Focused
Font ForeColor Height
Left Location Parent
Right Size Text
Top TopLevelControl Visible
Width

Output Lite

Writing for mobile devices presents several problems to a programmer. For one thing, PDAs
and phones vary widely in their screen resolutions, color capabilities, input technology, and so
on. Some mobile device programming platforms have "solved" this incompatibility issue by
stripping down the features to the lowest common denominator. But clearly someone owning a
nice color PDA doesn't want their applications in black and white.

Microsoft addresses this issue by promising to provide class libraries for the .NET Compact
Framework that will target the capabilities of types of devices as well as individual models.
There's only so much you can do with this approach, however. For example, when you're
creating a word processor application for a color-capable screen, you make design decisions
differently than you would for a black and white screen. You employ different visual cues
than you do with the more restrictive environment of a black and white screen.

Solving the Connectivity Problem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With mobile computing there's another major issue a programmer faces: where should the
actual programming execution take place? In the mobile device, in the server communicating
with it, or shared between the two locations? And, if shared, should the client mobile device
remain in continuous contact with the server during application execution? This is one aspect
of what's called the connectivity problem.

The connectivity problem was solved by ASP.NET and ADO.NET—information to be
detached from databases, for instance, and sent as an HTML package to users' browsers. This
way, a continuous

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 645

connection between client browser and server (or database) was not necessary. This
decoupling of the remote user from the server is also a feature that distinguishes the CF from
other mobile-computing platform initiatives, such as WAP (Wireless Application Protocol, a
UNIX-derived standard for Internet communications and telephony on pagers, PDAs, two-
way radios, cell phones, and other wireless devices). With the CF, you, the programmer, can
balance the advantages, and the mix, of server-side versus client-side code execution. Also,
one doesn't foresee the CF attempting to service pagers or two-way radios. Their I/O
limitations are just too severe.

Security is also superior on the CF because it's managed code, and it has access to the various
Code Access Security strategies described in Chapter 5.

When you program for the CF you benefit from many of the familiar and useful tools in the
justly praised .NET IDE. You can also write your code in VB.NET or C# (the two languages
currently supported in the CF). On the minus side, because the CF is a subset of the full .NET
Framework, many tools and many language features are available to you, but some are not. If
you've ever programmed with VBScript or other script versions of languages, you understand
that limitations are built in.

The single most significant advantage of using the .NET CF, however, is that you can leverage
your knowledge of how to write VB.NET programs, and how to use the .NET IDE tools, when
programming for mobile devices. Most of the familiar features and techniques—ADO.NET,
ASP.NET, security classes, and so on—are right there at your disposal, ready to be applied to
the new and sometimes challenging task of creating mobile applications.

Using the Simulator

Within VB.NET 2003 is a facility for designing and testing CF applications. It roughly
simulates the user experience of running your application, similar to the way that ASP.NET
applications can be previewed in the Internet Explorer browser during development by
pressing F5 to execute them. This simulation is a way for you to test the functionality of your
application, but it cannot replicate how your application will actually look on mobile devices.
In fact, it will look different on different devices. In any case, you can get the I/O sketched in,
and the logic working and tested. Then you can switch to emulation, or actual testing on target
devices for any final tweaking.

Try it out. Choose File New Project then double-click the ASP.NET Mobile Web
Application icon in the New Project dialog box, as shown in Figure 22.1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 22.1 This icon is your gateway to building and modeling a PDA or cell phone application.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 647

Use the Toolbox to add a second form to your page. Note that forms are controls on the
toolbox in CF applications. The traditional ASP.NET form (which represents a browser
window), and the traditional Windows form (which represents a window) are not used here.
The form in CF is merely a unit of organization, a way of grouping controls, a container for
code. Forms reside within a Page object.

Add a Link control to Form1 and change its NavigateURL property to #Form2. You'll find
this option and any other application targets listed in the dropdown list in the Properties
window.

Now put a Label control on Form2 and change its Text property to ''You've arrived!" Press F5
and click the Link in Form1. You should see the You've arrived! message appear,
demonstrating that you indeed navigated to Form2.

CF Forms offer several novel properties you should know about. There's a Method property;
isn't it wonderful that a property is named method? Programmers have been driven barking
mad by less. Anyway, the "Method property" describes the HTTP request—either Get or, the
default, Post. The Action method can be an absolute or relative URL to which the form must
submit a Get or Post, but it defaults to an empty string causing it to post back to the URL from
which the form itself came. The PageCount tells you how many pages the form has when
paginated, and the CurrentPage gives you the index of the current page. The PageStyle
property includes a set of other properties such as color, text font, alignment, and so on, which
you can use to customize the defaults used for pagination (the styles used for NextPage Text
properties and such).

A Form's Deactivate event triggers when a new form becomes active via programming, or
when the user navigates to a different form via a link.

More New Features

Now look at the Toolbox. You'll see some interesting controls available in no other Toolbox
but the CF's: Form, PhoneCall, List, SelectionList, Object List, DeviceSpecific, and
StyleSheet.

The new TextView control offers automatic pagination (within the text it displays). However
the Form's Paginate property must be set to True for this to work.

The Image control has a tricky job because of the wide range of graphics capabilities of the
various mobile devices. If you want to ensure the best experience for your users, you should
choose images conservatively (make them rather simple and recognizable). Remember you're
likely up against screens as small as 94×72 pixels in cell phones. Also you must tailor your
image formats specifically to the various devices you're targeting using the device filters.
Some devices will want .jpg and others some different graphics file format. .JPG is requested
by Pocket Internet Explorer, for example, but WAP devices want a format you've perhaps
never heard of called .wbmp. WAP also supports a .png format (Portable Network Graphics).
.GIF is also popular. You just have to use a format translator (found in many graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.GIF is also popular. You just have to use a format translator (found in many graphics
programs) to create the various files in the various formats. PaintShop Pro, for example,
supports .png, but I couldn't find any support for .wbmp.

Just as e-mail and instant messaging users resort to emoticons and other crude symbols instead
of graphics, mobile devices often include a set of symbols, clipart, icons, cartoons, or glyphs
representing common graphics ideas such as lightning storms. You can employ these to liven
up your output. Resources are available online and you can locate them by searching for the
device you're targeting. You use the ImageURL property and specify symbol:nnnnn with
nnnnn being a code or code word, such as symbol:cloudy.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 652

FIGURE 22.5 Bind mobile List controls to arrays or other data sources.

Mobile Security

As you can imagine, sending information over the air is even less secure than sending it over a
LAN, cable, or phone line. When you're exchanging messages wirelessly using cell phones or
PDAs, you might as well consider yourself a radio station.

You can, of course, encrypt sensitive data, and you should. As described in Chapter 6, .NET
includes several powerful encryption routines that can easily be added to your programs to
ensure your privacy. As for authenticating callers, you'll find the following authentication
section in the Web.config file:

<!-- AUTHENTICATION
 This section sets the authentication policies of the application.
Possible modes are ''Windows","Forms","Passport" and "None"
 "None" No authentication is performed.
 "Windows" IIS performs authentication (Basic, Digest, or Integrated
Windows) according to its settings for the application. Anonymous access must be
disabled in IIS.
 "Forms" You provide a custom form (Web page) for users to enter their
credentials, and then you authenticate them in your application. A user credential
token is stored in a cookie.
 "Passport" Authentication is performed via a centralized authentication
service provided by Microsoft that offers a single logon and core profile services
for member sites.
 -->

ASP.NET relies on cookies when performing form-based authentication, so you should
probably avoid this approach (so many mobile devices don't support cookies). For details
about the features of Windows-based authentication, see Chapter 5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify user names, roles (such as administrator), and other modes of access such as
passport. IIS stands guard in front of the localhost (Web simulator) or the Web itself in a
deployed mobile application. You can use IIS's Internet Services Manager in Control Panel's
Administrative Tools folder to modify security policies rules.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 654

Debugging via Tracing

Debugging a mobile application is similar to the techniques you can use in traditional
Windows applications, and is particularly like debugging ASP.NET applications. You'll be
able to resort to many of your usual practices and strategies, and many of the usual VB.NET
debugging tools. See Chapter 9 for an in-depth discussion of various approaches to debugging.

However, mobile and ASP.NET applications do offer their own peculiar challenges. In this
section, we'll take a close look at the tracing feature, which can be especially useful in a
distributed programming context such as mobile applications where you have to deal with
execution shared between a server and client.

To set a trace, adjust the line in the Web.config file so it sets the Trace to True and
pageOutput to True (so the trace won't be sent into a file, a log in your mobile application's
root directory named trace.axd).

 <trace enabled=''true" requestLimit="10"
 pageOutput="true" traceMode="SortByTime" localOnly="true" />

The pageOutput trace will be appended to your output page in Internet Explorer, as shown in
Figure 22.8:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 22.8 For the most complete report on your application's behavior, request a trace.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 656

If you want your custom message to really stand out in the trace listing, substitute
Trace.Warn for Trace.Write. Tracing can be a special tool when debugging because of the
wealth of information it provides, and because it shows you a complete list of all the steps that
took place during execution, their order, and their duration.

Tracing tells you these primary facts:

 How long each step takes in milliseconds (you can quickly see if there are any
significant delays, or use this information to optimize your application)

 Which processes executed
 Any error messages, and specific details about these errors
 Custom trace messages you insert, along with variable values if you wish to add them
(illustrated above)

 Details about variables used in the project
 Specifications about the containers and controls on each page
 Specifications about when requests happened

Trace Information Sections

When you request a trace you see six major divisions, but the Trace Information section is
most often the most useful information. The Request Details section simply identifies the
HTTP request type and other data about the request such as the type of character encoding
(usually Unicode), when the request was made, and so on. The Control Tree lists server
controls that may be on your page, and also lists child controls. If you're tracing an ordinary
ASP.NET page, you would see a Cookies Collection section, but this isn't displayed for a
mobile application. Instead, you see a Session State section that displays the Session ID. The
Headers Collection zone lists the HTTP headers that your server sent to the client device. In
ordinary ASP.NET applications, this section also includes cookie information. Finally, the
Server Variables section describes your server in considerable detail, identifies quite a bit
about the state of your server—its URL, connection type, and so on.

Providing Friendly Error Messages

You always want to avoid frightening your users with lengthy, technical error messages such
as Object Not Found or Stack Collapse. They'll think their PDA is broken, or their phone is
about to explode. Never underestimate the confusion and fear that the average person
experiences after punching some buttons on a high-tech device. If anything unusual happens,
many of them think they must have accidentally entered the activation code.

In ordinary Windows applications, you can intercept error messages and, instead of letting
users see them, substitute your own user-friendly descriptions displayed in message boxes.
MsgBox doesn't work in ASP.NET applications, though. You have to employ a different
tactic. Find this section in Web.config :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- CUSTOM ERROR MESSAGES

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 658

FIGURE 22.9 Some users would panic if this appeared on their cell phone.

FIGURE 22.10 Rather than the default messages, intercept errors and show users something they can
understand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Press F5 and VB.NET will choke on the MsgBox, causing an error and displaying your
custom message page rather than the default page.

Device Specificity

Although word wrapping, color rendering and other features of display devices are generally
automatically handled for you on most mobile devices, you must sometimes perform the old is
it Internet Explorer or is it Netscape? branching within your code. Of course Netscape is all
but dead now, but varying kinds of mobile operating systems—and varying display
capabilities, input keys, and hardware features—are still alive and well. The differences
between Palm and Pocket PC systems aren't trivial, not to mention the variations of output you
can expect between phones and PDAs.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 660

Similarly, some devices offer more room for text than others, and so on. You sometimes want
to be able to send different sources to different devices or models. You accomplish this by
defining device filters, then doing a kind of elaborate, roundabout Select Case or If Then
comparison. Why this simple, common computing act of branching has to be made elaborate
and unique for mobile computing programming I can't say. My guess is that this new
technique probably fits in better with the invisible structures deep within .NET, and it also
allows for protocols such as querying devices, asking them to tell you details about their
capabilities. You can also deal with multiple devices by setting up a filter system. My only
problem with this is that we all know how to use Select Case and If Then, so why set up
method testing? It's sure inconvenient for us programmers up on the higher levels where
everyday coding goes on.

And, if you're not yet convinced that new technologies often hand us totally unnecessary extra
debugging worries, note that in VB.NET variable names, property names, and values are not
case-sensitive. We VB.NET programmers are proud that our language doesn't introduce
burdens like case-sensitivity into the language. But, alas, when you compare property values
in these mobile-project filters (unless they're Boolean where True and true do match), the
values are case-sensitive. Here's yet another exception to the traditional rules for you to
memorize, or suffer later from confusing bugs in your code.

Using Emulators

You can roughly design your mobile application's user interface, and write your code-behind
programming to get the kinks worked out, all as described above using Internet Explorer as the
target ''device." However, before deploying a mobile application, you'll doubtless want to test
it with real PDAs or cell phones. But do you have to buy dozens of cell phones and PDAs?
One easy way to test your mobile applications is to use emulators that, via software, mimic the
I/O facilities and behaviors of a particular device.

Custom Device Emulators

You can search the Internet for devices and their emulators. Most device manufacturers make
emulators available for your use. Microsoft, for example, offers an emulator for the Pocket PC
from:

http://microsoft.com/downloads/details.aspx?FamilyId=9996B314-0364-4623-9EDE-
0B5FBB133652&displaylang=en

The entire download is an SDK with which you can create and test applications using the
"eMbedded" C variations or VB.NET in Visual Studio .NET 2003. After you compile your
mobile application, you type your application's start page URL into the emulator.

You can find some of the most popular emulators at these locations:

YoSpace This is the place to start:www.yospace.com. They offer multiple, simultaneousWAP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

YoSpace This is the place to start:www.yospace.com. They offer multiple, simultaneousWAP
emulations, including a variety of models and manufacturers. You can emulate Sony, Nokia,
Motorola, Siemens, and others all at once without having to switch among various emulation
environments.

Ericsson http://www.ericsson.com/mobilityworld/sub/open/index.html

Go.America (includes BlackBerry devices)
http://www.goamerica.net/partners/developers/index.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 663

Firewall feature. If you still cannot connect to the emulator for testing, try the usual new-
technology problem-solving tactics: Search Google Groups or MSDN, post a message on
.NET user groups, or throw up your hands.

Summary

This chapter begins by exploring the limitations you'll face when writing programs for mobile
devices—primarily PDAs and cell phones today, but who knows what tomorrow has to offer?
The .NET Compact Framework is a condensed, stripped-down version of the familiar .NET
Framework you're used to. You'll face memory and processor speed restrictions that you don't
face when writing VB.NET applications for full-size desktops and portables.

But the most severe challenge is I/O. The keyboard on portable devices (if any) is pretty
difficult to type on (so you'll want to help your users by avoiding typed input whenever
possible). And the screen is very, very small. It may not even have color. How do you handle
the screen compatibility problem? Programs are designed differently for black and white
screens versus color.

You also saw that quite a few control properties aren't available in the Compact .NET
Framework. Microsoft isn't, however, blind to these problems. For one thing, they've designed
libraries specific to individual brands, and even individual models of mobile devices.

The solutions to the connectivity problem (should the connection persist throughout the
session?) and security issues were discussed. Then you saw how to use the built-in mobile
device simulator, how to navigate between forms, and some new features on the Toolbox
when you're working with the .NET IDE within the template that Microsoft has named the
ASP.NET Mobile Web Application.

You saw how to write source code for a mobile application, how to display lists in various
ways, how to employ tracing during debugging, how to intercept error messages and replace
them with your own, user-friendly versions, and how to use emulators so you don't have to go
to the trouble of connecting to an actual mobile device during program development.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 665

Index
Note to the reader: Throughout this index boldfaced page numbers indicate primary
discussions of a topic. Italicized page numbers indicate illustrations.

Symbols

* (asterisk), in regular expressions, 543, 558
. (period), in regular expressions, 543, 545, 558
? (question mark), as metacharacter, 560
| (pipe symbol), for alternation in regular expressions, 563–564

A

Abort method, of MessageQueueTransaction class, 371–372
aborting transaction, 437
Accept method, of Socket class, 298
AcceptChanges method, of DataSet, 420, 425–426
AcceptTcpClient method, 302
AcknowledgeTypes property, of message, 358, 359, 360, 363
acknowledgments for queued messages, 358–373, 361

fault tolerance and load balancing, 366–370
processing, 361–366
requesting, 358–361
retrieving for specific message, 350
timeout, 359
transactional messages, 371–373

action queries, 407
executing, 409

Activator class, CreateInstance method of, 211
ActiveX controls, use with .NET clients, 462–465
ActiveX Data Objects. See ADO.NET
Add Dialog dialog box, 268, 268
Add method, of Rows collection of DataTable, 419
Add New Project dialog box (Visual Studio), 261, 261

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add Or Remove Programs snap-in, 259, 260
Add Project Output Group dialog box, 263–264, 264
Add Reference dialog box, 63
Add Web Reference dialog box, 456, 456
AddDays method, of DateTime class, 39
AddHours method, of DateTime class, 38
addition of complex numbers, 620
AddMinutes method, of DateTime class, 38
AddOrder method, in middle tier, 446
AddressFamily enumeration, 293
AddressList property, of IPHostEntry class, 291
AddValue method, of SerializationInfo class, 79
AdministrationQueue property, of message, 358
administrator, and security, 120, 122
ADO.NET

accessing databases, 391–415
Command class, 409–415
Connection class, 402–403
DataAdapter class, 404–408
Visual database tools, 392–402

DataSets, 415–427
accessing tables, 416–417
adding and deleting rows, 419–420
binding to DataGrid control, 277–278
creation, 395–396
DataViews, 426–427
locating rows, 420–421
multiple tables for, 396–400
navigation, 421–426
null values, 418–419
rows, 417–418
viewing, 396

Insert and Update operations, 428–440
DataAdapter for transactions, 436–440
DataAdapter to update, 428–430
Identity columns, 430–436

Advanced SQL Generation Options window, 407, 407
aesthetics, xix–xx
alerts, suppressing, 100
Aliases property, of IPHostEntry class, 292

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Alignment property, for string printing, 169, 171
All Code membership condition, 256
AllDBNull property, of DataColumn class, 417
AllowSelection property, of PrintDialog control, 166
AllowSomePages property, of PrintDialog control, 166
AlternatingBackColor property, of DataGrid control, 281

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 667

attributes in XML
data types for, 483
deleting, 488

<AttributeType> element (XML), 483
auditing messages in queues, 373
authentication, 339

in .NET Compact Framework, 652
Authenticode, 121
Author property, of Setup Project, 266
authorization, of user for database connection, 402–403
AutoGenerate Columns property, of DataGrid control, 280
AutoIncrement property, of DataColumn class, 417, 431
Automatic Transaction Processing service, 468
autopostback attribute, for ListBox control, 281
Autos window for debugger, 238, 239
AxisNumberColor property, 592
AxisNumberFont property, 592
AxisTitleColor property, 592
AxisTitleFont property, 592

B

backreferences, in regular expressions, 571–572
BaseURI property, of XMLReader object, 477
BasicSerialization project, 61–65, 62
batch mode for database updates, 428
batch query, 414
beep, metacharacter for, 560
Begin method, of MessageQueueTransaction class, 371–372
BeginGetResponse method, of HttpWebRequest object, 315
BeginReceive method, for messages in queues, 356
BeginTransaction method, of Connection object, 436
bell, metacharacter for, 560
binary file

for application configuration files, 76
deserialization into ArrayList collection, 64

binary serialization, 60

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of ArrayList collection, 62–64
for messages in queues, 352
and type fidelity, 65

BinaryFormatter class, 60, 61
Serialize method, 63

BinaryReader, 44
BinaryWriter, 44
Bind method, of Socket class, 294
binding

array to SelectionList control, 651
controls to DataTables, 509

Binding element in WSDL, 331
BindingFlags, 195–198
BitBlt GDI32 function, 186, 187
bitmaps

capturing window or desktop to, 188
for persistent graphics, 589
printing centered, 189

biztalk (Microsoft), 481
Blackberry devices, emulators, 660
Body property, of Message object, 347
body text, font for, 625
boldface in user interface, 627
boolean value type, 14
Bounds property, of PageSettings object, 162
braces ({}), 4

to fill array with values, 20
Break Condition window, 238, 238
breakpoints for debugging, 237–238

and display, 240
BreakPoints window, 238
Browse With dialog box, 662
business logic, 442, 443

remoting, 449–461
business rules, 443–445

adding to middle tier, 532–535
business tier. See middle tier component
BusinessLayer class

converting to Web service, 450–457
GetItemDiscount method, 533

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetItemDiscount stored procedure, 534
remoting, 458–461

BusinessLayer project, 450–457
buttons

depth for, 628
etched text on, 625
in .NET Compact Framework, 644–645

byte, 14
byte arrays

converting strings to, 311
converting to string, 308
for DES, 145

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 668

C

C programming language, 1, 2
C# programming language, translating to VB.NET, 21
Cab Project, as New project option, 261–262
cagutil command, 245
Call Stack window, debugging with, 240, 241
CancelEdit method, 421
CanDuplex property, of PrinterSettings object, 163
Capacity property, of ArrayList, 36
capacity, vs. dimension, 28
capturing

errors, 217
matches for regular expressions, 573

multiple captures, 573–575
carriage return, metacharacter for, 560
CAS (code-access security), 124, 125–128

config files, 127
case sensitivity

in .NET Compact Framework, 660
in regular expressions, 545, 577

caspol.exe, 129, 252
Catch statement, 217, 218
Category property, of MessageQueueCriteria class, 349
cell phones. See also mobile computing

emulators, 660–663
centering when printing bitmap, 189
char value type, 14
character counting

to fit in rectangle, 178
in Word document, 106

characters in regular expressions, 558
escaping metacharacter to treat as, 563
ranges of, 559–560

chat. See TcpChatClient application; TcpChatServer application
ChatClass, 301, 302–303

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChildKeyConstraint property, of Relation class, 431
ciphertext, 143
classes, 14, 18

in .NET Framework, XML, 475
converting to Web service, 450
descriptions, 5–6
in DOM (Document Object Model), 479
searching for members or data, 207–208
viewer for, 20–21

ClassSerializer project, 66, 66–71
Book class, 67–70
deserializing individual objects, 71
serializing individual objects, 70–71

Clear method, of DataAdapter, 404
CLI (Common Language Infrastructure), 214
client computer

installing .NET Framework on, 244
storing data on, 412

client/server architecture, 441, 442
Clipboard

code to access, 23
for spell–check, 95

ClipBounds property, of Graphics object, 173
closed schema model, 485
closing connection, 402
cloud services, 337
CLR. See Common Language Runtime (CLR)
code

access to, 134
demanding permission through, 257
to implement typed DataSet, 415, 416
reuse by components, 444

code access permissions, 251–257
code-access security, 124, 125–128

config files, 127
Code Access Security Policy Tool, 129, 252
code-behind window, of WebForm, 273
Collate property, of PrinterSettings object, 163
collections

for controls, 28

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zero- vs. one–based, xxi
collisions, namespaces to avoid, 193, 480
color

for fractals, 614–615
in user interface, 627

Color class, 18
Color property, of PageSettings object, 162
column headers, printing, 185
ColumnName property, of DataColumn class, 417
Columns collection, 417
COM+ applications, 465–473

COMPlus component, 466–467
exporting proxy, 467–468

COM+ Component Install Wizard, 467

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 670

custom objects, in middle tier, 444
CustomValidator control, 283

D

Data Adapter Configuration Wizard, 394, 394
data binding, 36–37, 505–506
data display on WebForm, 273–283

connecting to database, 273–274
DataGrid control, 276–281
DataList control, 275
detecting postback, 281–282
Repeater control, 276
templates, 275

Data Encryption Standard (DES), 142, 143
encrypting and decrypting file with, 143–145

data entry, 216
to robust applications, 215
validation, 282

Data Link Properties dialog box, 392–393, 393
data types, 11–18

color as, 17–18
mixing in single stream, 55–56
strong typing and mismatch, 17
in WSDL, 332
in XML, 483–486

data validation, 225. See also validation
DataAdapter class (ADO.NET), 404–408

configuration, 393–394
for transactions, 432–440
Update method, 400, 404, 425, 428–430

database. See also ADO.NET
connection, 392–393

in client/server model, 442
immediate update of, 508
insert and update operations, 428–440

DataAdapter for transactions, 436–440

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataAdapter for updating, 428–430
Identity columns, 430–436

SQL connection to, 273–274
update frequency, 408
Web services connection to, 326–330

database server, 441
DataColumn objects, 415, 417
Data.DataException, 227
Data.DBConcurrencyException, 227
DataGrid control, 276–281

AlternatingBackColor property of, 281
AlternatingItemStyle property of, 281
appearance of, 278–280, 279
AutoGenerate Columns property, 280
binding DataSet to, 277–278, 396, 399
detecting postback, 281–282
formatting, 401–402
limitations, 505

on hierarchy display, 535
mouse and, 516
specifying behaviors, 278

DataList control (ASP.NET), 275
DataReader class (ADO.NET), 392, 412, 413–415
DataRelation objects, 421
DataRelations project, 422–424, 423
DataRow objects, 415, 417–418
DataRowState enumeration, 424, 425
DataRowVersion enumeration, 425
DataSet class (ADO.NET), 391–392
DataSets, 415–427

accessing tables, 416–417
adding and deleting rows, 419–420
binding to DataGrid control, 277–278, 396
converting to XML, 504, 504
converting XML to, 503, 504
creation, 395–396
DataViews, 426–427
editing with constraints, 421
HasErrors property of, 429
locating rows, 420–421

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiple tables for, 396–400
navigation, 421–426
null values, 418–419
to pass data between tiers, 444
rows, 417–418
typed vs. untyped, 416
updating database from, 400–402
viewing, 396
and XML, 493–495

DataSource property, for binding controls, 509
Data.SqlClientSqlException, 227
Data.SqlTypes.SqlTypeException, 227
DataTable objects, 415, 416–417

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 672

DisconnectedOrders application, 374, 374–375
discount policy component, in middle tier, 447–449
DiscountServer project, 458–461
DisplayName property, for binding controls, 509
distributed applications, 2. See also middle tier components
distributed code, 125
DivideByZeroException, 226
division by zero, 234
DLL files, and XCopy deployment, 245
DnsPermission code access permission, 252
documentation. See help
Documentation element in WSDL, 331
DocumentElement property, 489
documents collection, and Word object model, 104
documents, loading into TextBox, 99–100
DOM (Document Object Model), 475, 478–479

classes, 479
Dotnetfx.exe setup program, 244
dotted-quad notation, 290
double-sided printing, printer support for, 163
double value type, 14
Download method, of WebClient class, 311
DownloadData method, of WebClient class, 308, 311
DownloadFile method, of WebClient class, 308
downloading. See also Internet-based deployment process

assemblies on demand, 258–259
documents with WebClient, 311–312

DrawRectangle method, 161
DrawString method, 161, 168–169
Duplex property, of PrinterSettings object, 163
duplicate entries, preventing, 16
duplicate rows in invoice, combining, 531–532
Dynamic Host Configuration Protocol (DHCP), 290

E

e-mail addresses, regular expression for, 568

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

e-mail messages, getting from inbox, 109–110
ECMAScript member of RegExOptions enumeration, 549
Edit Relation dialog box, 398, 398
editing row in DataTable, 418
ElementName property, of XmlElement, 74
elements in XML, deleting, 488–489
<ElementType> element (XML), 484
embossed frames, 632–633
emulators in mobile computing, 660–663

Pocket PC in Visual Studio, 661, 661–662
problems, 662–663

enablesession argument, in WebMethod element, 326
encryption, 143–151

in .NET Compact Framework, 652
asymmetrical, 151–158
DES (Data Encryption Standard), 143–145
hashing with, 147–151
initialization vectors for DES, 146–147
key length, 147

End, 4
end of file, determining, 41–42
end of line, metacharacter for, 562
End Try statement, 217
EndGetResponse method, 315
enterprise level for security policy, 251
enterprisesec.config file, 127
EnterpriseServices class, 470
enum value type, 14
enumerations

AddressFamily enumeration, 293
CommandType enumeration, 409
DataRowState enumeration, 424, 425
DataRowVersion enumeration, 425
DataViewRowsStates enumeration, 427
Keys enumeration, 47
modifying member names, 75
reflection and, 205
RegExOptions enumeration, 549
SocketType enumeration, 294
StreamingContextState enumeration, 80

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enumerators, 37
EnvironmentPermission code access permission, 252
EOF property, 41
equality, 14–16

vs. identity, 13
Equals method, 12–13
ergonomics, 626
Ericsson, emulators, 660
error messages, 3

''The application attempted to perform an operation
not allowed by the security policy", 250, 250
"login failed", from MSDE, 329

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 673

in .NET Compact Framework, 656–658, 658
from object instantiation, 8
''Object reference not set to an instance of an object", 8, 19
"Overload resolution failed because no accessible 'New' accepts this number of
arguments", 9
"permission denied", from MSDE, 329
"An unhandled exception of type 'System.Runtime.InteropServices.COMException' ...",
95
from validation controls, 284
ValidationSummary control, 284

errors. See also structured exception handling
in database update process, 429
preventing, 225
in programming, 232–236

escape, metacharacter for, 560
escape velocities, and color, 614–615
escapees, from Mandelbrot Set, 608, 612
escaping metacharacters, in regular expressions, 563
etched frames, 632–633
EventLogPermission code access permission, 252
events

adding to runtime–created controls, 26–27
handling multiple controls with single, 27–28

Everything permission set, 251
evidence, 251
Excel, 111–116

evaluating math expressions, 111–113
pretty printing, 113
retrieving data, 115–116
sending data to, formatting, calculating and saving, 113–115

Exception class, 218, 225–228
exception handling. See also structured exception handling for regular expressions, 548
Exceptions dialog box (Debugger), 230–231, 231
executables

compiled for release, 232
partial trust of, 125

Execute method, of Command class, 410–411

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ExecuteNonQuery method, of Command class, 409
ExecuteReader method of Command class, 409

DataReader object from, 414
ExecuteScalar method, of Command class, 409, 412–413
ExecuteXmlReader method, of Command class, 409
executing code, discovered through reflection, 208–213
Execution permission set, 251
Exists method, of MessageQueue class, 347
explicit declaration of XML namespace, 480
Explicit option for module, 232–233
ExplicitCapture member of RegExOptions enumeration, 549
exporting

proxy, 467–468
TextBox content to Clipboard, 23

F

fading transitions in user interface, 637, 637–640
fault tolerance, in MSMQ, 366
fax, Word's Wizard to send, 98
fields

in database, setting to null value, 401
excluding from serialization, 53

file stream, for DES, 145
File System editor, 262, 263–266
File Types editor, 262
FileDialogPermission code access permission, 252
FileGet command, 41–42
FileIOPermission code access permission, 252
filenames, filling ListBox with, 101–102
FileNotFoundException, of Open method, 220
files

Directory object for getting list, 11
finding, using Word objects, 100–102
hashing, 142–143
input/output, 39–44. See also streaming

determining end, 41–42
reading, 40–41
writing, 42–44

loading assembly from, 201–203

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loading from assembly, 200–201
reading attributes of, 224
as Response object arguments, 272
runtime errors when opening, reading and writing, 219–224

Open method exception handling, 219–221
size in binary vs. SOAP serialization, 65
tampered, 142
on target computer, setup project impact on, 262

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 674

FileSearch method, 101
FileStream object

constructor, 9
instantiating, 7
Read method of, 221

Fill method, of DataAdapter, 395, 415
filter

for DataView object, 426
for e-mail messages, 110
for reflection results, 195–198

Finalize method, 12
Finally clause, 219
Find method, of DataView object, 427
FindBy method, of DataTable object, 420
finding files with Word objects, 100–102
FindRows method, of DataView object, 427
firewall, 339

serialization and, 61
fixed IP address, 290
FlatStyle property, of buttons, 628
focus group, for user interface guidelines, 626
folders, adding items to user's, 267
font, for TextBox control, 174
Font property, 175
FontBold off, as user interface convention, 627
FontName property, of TextBox control, 625
For statement, declaration included within, 116
FOR XML AUTO clause, 82, 83
foreign keys, rules on changing, 431
forking, 332, 481
Form1_load event, 4
FormatFlags property, of StringFormat object, 169
FormatName property, of remote queue, 343
formatting

DataGrid control, 401–402
Word for manipulating, 102–104

formfeed, metacharacter for, 560

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

forms, 193
adding controls at runtime, 25–27
collections, for controls, 28
communication between, 45–46
KeyPreview property of, 187
KeyUp event handler of, 187
for mobile computing, 646–647

Forth, 481
fractal generator, 602–620
fractals, 590

coloring, 614–615
explained, 602–606
exploring, 616–620
Julia Sets, 609, 612, 612–616, 613, 619–620

programming, 613–614
Mandelbrot Set, 605, 607, 607–612, 617–619

programming, 608–612
transformation process, 604–605

complex numbers in, 605–606
zoom operation on, 616

frames in user interface, 630–634
multiple, 634, 634

Framework Configuration tool, 129–133, 130
Adjust Security option, 132–133
New and Open options, 131
Reset All option, 132

Friend modifier, 80
FromOADate method, of DateTime class, 38
FromPage property, of PrinterSettings object, 163
FromXMLString method, 157
Full Trust, 133
FullReachQueue member of AcknowledgeTypes enumeration, 359
FullReceive member of AcknowledgeTypes enumeration, 359
FullTrust permission set, 251
FunctionColors collection, in PlotControl application, 592
FunctionLineWidths collection, in PlotControl application, 592
functions

calculating path, 597–598
calculating Y axis range, 594
evaluating at runtime, 593–595

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

singularities, 602
Functions collection, in PlotControl application, 592
FunctionStyles collection, in PlotControl application, 592

G

GAC (global assembly cache), 243
installing DLL in, 245

genericerror.aspx file, for custom error messages, 657

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 675

GenericPrincipal class, 122
GetAllMessages method, 358
GetAssembly method, 198
GetAttributes method, of File class, 224
GetBytes method, of System.Text.Encoding.ASCII class, 311
GetChanges method, of DataTable object, 425
GetChildRows method, of DataRow object, 422
GetDC function, 187
GetDirectories method, of DirectoryInfo class, 11
GetFiles method, 11
GetHashCode method, 12, 16
GetHostByAddress method, of IPHostEntry class, 292
GetHostByName method

of Dns class, 291
of IPHostEntry class, 292

GetItemDiscount method
of BusinessLayer component, 447–448

testing, 454, 455
GetItemDiscount stored procedure, 448–449
GetLowerBound method, of Array class, 34
GetMessageQueueEnumerator method, 349
GetObjectData method, of ISerializable interface, 79–81
GetPrivateQueuesByMachine method, 348
GetProductByID method, in middle tier, 446
GetProductsByName method

in middle tier, 446
limiting number of rows returned, 456

GetPublicQueues method, 348
GetPublicQueuesByCategory method, 348
GetPublicQueuesByLabel method, 348
GetPublicQueuesByMachine method, 348
GetRequestStream object, 314
GetResponseStream method, of WebResponse object, 314
GetString method, of System.Text.Encoding.ASCII class, 311
GetType method, 12, 16, 205

to instantiate assembly, 198
global assembly cache (GAC), 243

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

installing DLL in, 245
global variables, 15
Go.America, emulators, 660
GoTo statement, 224
gradient brush, 173
gradient metallic shading, 635
grammar, 6–11
graphics, 589

file format for mobile computing, 647
LoadPicture to load, 48
sending, 286–287, 287

Graphics Device Interface (GDI+), 589
Graphics object

ClipBounds property of, 173
PageUnit property, 168
for printing, 168
SetClip method of, 162

Graphics property, of PrintDocument object, 160
GraphicsPath object, 591
greedy regular expressions, 561
greedy subexpression, metacharacter for, 578
grep utility (Unix), 582
GridColumnStyle property, 401
grids, drawing on PictureBox control, 598–602
<group> element (XML), 486
grouping in regular expressions, 568–573, 569
groups, 122
GUIDs (globally unique identifier)

and Identity columns, 431
for messages in queues, 345, 350

GUIDs (globally unique identifiers), 419

H

hackers, 134, 320
handled exceptions, 216
handles, 46–48

key press detection, 47–48
runtime, 47

Handles command, 27–28

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hardware, errors from, 216
HasAttributes property, of XMLReader object, 477
HasErrors property, of DataSet object, 429
Hash membership condition, 256
hashcodes, 16

for password, 77
hashing, 140

with encrypting, 147–151
files, 142–143
passwords, 140–142

hashtables, 37–38
HasMorePages property, 162

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 676

HasValue property, of XMLReader object, 477
header of column, printing, 185
headlines in applications, sans serif font for, 627
help, 3–5, 18
''high encryption pack", 140
Hit Count property, for debugging, 237
HKEY_LOCAL_MACHINE\Software\[Manufacturer] key, 267
HostName property, of IPHostEntry class, 292
hostnames, 290
HTML (Hypertext Markup Language), from server controls, 272–273
HTML controls, 287–288
HttpWebRequest class, 314
HttpWebResponse class, 314, 315

I

Icon property, for application shortcut, 266
icons, 624
ICryptoTransform object, 146
ID property, of Message class, 350
Identity columns, 430–440

in DataSet, 419
and GUID (globally unique identifier), 431

identity, vs. equality, 13
idref data type in XML, 483
IgnoreCase member of RegExOptions enumeration, 549
IgnorePatternWhiteSpace member of RegExOptions

enumeration, 549
Image control, in .NET Compact Framework, 647
Image object, copying screen onto, 186
ImageURL property, 647
imaginary number, 603–604
imperative code access, 124
implicit declaration of XML namespace, 480
importing

API functions, 187
data from Excel, 116

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

namespaces, 193
Imports statement

for ASP.NET Web application, 273
need for, 11
for remoting project, 460
for security examples, 140
for serialization, 54
for XML, 487

Index property
of control, 24
of Match class, 550

IndexOf method
help sample code, 3–4
of String class, 543

IndexOutOfRangeException, 29
infinity, 234

testing for, 235–236
inheritance, 12
inherited controls, appearance of, 176
initialization, 30
initialization vectors for DES, 146–147
InnerException property, 225
INSERT statement (SQL), 405

DataAdapter task for, 404
InsertAfter method

in Word object model, 104
for XML elements, 489

InsertAt method, of Rows collection of DataTable, 421
InsertBefore method, for XML elements, 489
InsertCommand property, of DataAdapter, 404, 435
InstalledPrinters method, of PrinterSettings object, 163
installing .NET Framework runtime, 244–245
instantiation

of FileStream object, 7
of objects, 8

integers, 14
IntelliSense list, 105
interfaces, 14, 193

in DOM specification, 478
Intermediate Language (IL), 213

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet addressing, 289–292
Internet-based deployment process, 246–259

assembly download on demand, 258–259
code access permissions, 251–257
preparation, 247–249
running application, 257–258
Windows application deployment on Web server, 249–250

Internet Explorer, security settings, 122
Internet Information Services snap-in, 249
Internet permission set, 251

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 677

Internet sockets, 292
Internet zone, permissions for code from, 128
interoperability, 93
intranet zone, 128
InvalidCastException, 227
invoicing application, 516–535

architecture, 518–525
interface, 516–518, 518

Invoke method, 213
IOException

of FileStream.Read method, 221
of Open method, 220

IO.InternalBufferOverflowException, 227
IO.IOException, 227
IP addresses, 289–290

for local computer, 291
IPAddress class, 291
IPCONFIG utility, 290, 290
IPEndPoint class, 291
IPHostEntry class, 291
Is comparison operator, 13
ISBN values, regular expression for, 577
IsContactNameNull method, for typed DataSet, 418
IsDefault property, of XMLReader object, 477
IsDefaultPrinter property, of PrinterSettings object, 163
IsEmptyElement property, of XMLReader object, 477
ISerializable interface, 79
IsInfinity method, 235–236
IsNaN method, 235–236
IsNegativeInfinity method, 236
IsNull method, of DataRow object, 418
IsNullable property, of XmlElement, 74
IsolatedStorageFilePermission code access permission, 252
IsPlotter property, of PrinterSettings object, 164
IsPositiveInfinity method, 236
IsValid property, of PrinterSettings object, 164
Item property, of DataRow object, 417

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

iteration through rows of DataSet, 417

J

journal message queues, 343
referencing, 345–346

Julia Sets, 609, 612, 612–616, 613, 619–620
programming, 613–614

Just In Time Activation (JITA), 468
Just In Time (JIT) compilation, 121

K

key distribution center, 152
key length, 140
key transfer, 152
KeyChar property, 47
KeyPreview property, of forms, 187
Keys enumeration, 47
KeyUp event handler, of forms, 187
Kind property, of PaperSize object, 163

L

label for queue, 345
Label property

of Message class, 347, 350
of MessageQueueCriteria class, 349

landscape mode, 113
Landscape property, of PageSettings object, 162
LandscapeAngle property, of PrinterSettings object, 164
laser printers, minimum margin, 168
LastIndexOf method, of Array class, 34
Launch Conditions editor, 262
layering, as user interface convention, 627
layers, vs. tiers, 443
Length property, 29

of Match class, 550
library application, creating, 466
License Agreement dialog box, 269
lighting in user interface, 628–629

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LineAlignment property, for string printing, 169
LineLimit property, for string printing, 171
List controls, for mobile computing, 650–651
ListBox control

autopostback attribute for, 281
binding to columns, 506
filling with filenames, 101–102
SelectedIndexChanged event handler, 537–539

Listen method, of Socket class, 297, 298
ListenClass, 301
ListView control

adding print capabilities, 179, 179–186
handling user actions on, 527–528

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 678

for invoicing application, 516–517
relations mapped on, 539–542, 540

load balancing, in MSMQ, 367–370
load-balancing software, 449
LoadFrom method, of Assembly class, 203, 258
LoadPicture method, 48
local area network, IP address on, 290
local computer

IP address for, 291
queues on, 348–349

LocalIntranet permission set, 251
LocalName property, of XMLReader object, 477
Locals window for debugger, 238
localSocket object, 297
locked rows in database

from pessimistic concurrency, 408
for transactions, 436

logical errors, 231, 237–240
''login failed" error message, from MSDE, 329
logon dialog box, for mobile computing, 653, 653
lookahead assertions, 575–578

metacharacters for, 578
lookbehind assertions, 575–576

metacharacters for, 578
loosely coupled system, 341, 342

M

machine level for security policy, 251
MachineName property, of MessageQueueCriteria class, 349
macros in Word, to view VB code, 103–104
MailItem objects, 110
MajorGridWidth property, in PlotControl application, 592
MajorXTicks property, in PlotControl application, 592
MajorYTicks property, in PlotControl application, 592
managed code, 121, 462
Mandelbrot Set, 605, 607, 607–612, 617–619

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programming, 608–612
ManufacturerURL property, of Setup Project, 266
MarginBounds property, of PrintDocument object, 160
margins, 161

minimum for laser printers, 168
Margins property, of PageSettings object, 162
Match class, properties, 550
Match method, of RegEx class, 551–552
Matches method, of RegEx class, 548, 550–551
MatchEvaluator function, 553
MatchEvaluator project, 554–557, 555
math

Excel to evaluate expressions, 111–113
overflow exception in calculation, 218
and programming, xx
transformations, 604–605

Math object, 15
Max method, 15
MaximumCopies property, of PrinterSettings object, 164
MaximumPage property, of PrinterSettings object, 164
MaxLength property, of DataColumn class, 417
Me, 45

Me.Controls collection, 28
MeasureString method, 169–170, 185
MeasureString property, 175
MemberAccessException, 227
MemberwiseClone method, 12
MemoryStream, 61
Merge Module Project, as New project option, 261
Message class, 349–358

creating and sending messages, 352–358
deleting messages, 357
with MessageEnumerator class, 355
peeking at messages, 357–358
properties, 350–351
reading messages, 354–355
retrieving messages asynchronously, 356–357

Message element in WSDL, 330
Message property, of Exception class, 218, 225
message queues, 342–347

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

acknowledgments and time-outs, 358–373
auditing messages, 373
fault tolerance and load balancing, 366–370
processing acknowledgment messages, 361–366
requesting acknowledgment, 358–361
transactional messages, 371–373

creating, 344–345
deleting, 345
processing orders with messages, 373–381, 374

committing order to database, 380–381
deleting order and related message, 381

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 680

ModifiedAfter property, of MessageQueueCriteria class, 349
ModifiedBefore property, of MessageQueueCriteria class, 349
modules, 193, 205

creating, 46
month, number of days in, 39
mouse, and DataGrid control, 516
MoveNext method, of MessageEnumerator class, 355
MS Sans Serif, 627
MSDE (Microsoft SQL Server 2000 Desktop Engine), potential problems, 329
MsgBox command, 17
MSIL (Microsoft Intermediate language), 214
MSMQ. See Microsoft Message Queueing (MSMQ) component
MSMQLoadBalancing project, 367–370

BalancedQueue setup, 368
enumerating messages, 369
random message creation, 369

MSScript control, 593
multi-tier architecture, 442, 443. See also middle tier components

for invoicing application, 518–519
Multiline member of RegExOptions enumeration, 549
multiplication, of complex numbers, 620–621
My Computer zone, code executed from, 128

N

Name property
changing, 24
of XMLReader object, 477

Namespace property, of XmlElement, 74
namespaces, 18, 193

accessing compatibility, 201–202
added automatically as default, 7
adding as reference, 495
in XML, 480, 487

NaN (not a number), 234, 235
testing for, 235–236

navigation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataSets, 421–426
in mobile computing, 646–647

negative lookahead, 575
negative lookbehind, 576
NegativeReceive member of AcknowledgeTypes enumeration, 359
nesting TextBoxes, 625
.NET applications, COM component use with, 461–467
.NET Compact Framework, 643

case sensitivity in, 660
code-behind programming, 648–649
debugging via tracing, 654–656
device specificity, 658–660
emulators, 660–663
friendly error messages, 656–658, 658
limitations, 644–645
List controls, 650–651
new features, 647–651
security, 652–653
simulator, 645–647

mobile form, 646
navigation to second form, 646–647

.NET Configuration snap–in, 253, 253–257

.NET Framework, 1
class descriptions, 5–6
data types, 11–18
exploiting, 18–20
grammar, 6–11
help, 3–5
installing runtime, 244–245
security features, 121–122
WinCV (Windows Class Viewer), 20–21
XML classes in, 475

.NET Framework Samples Database, installing, 327

.NET Security Policy management, 128–133
NETConfigFiles project, 76–79, 78
Netscape products, 273, 658
New keyword, 7

need for, 8
New Project dialog box, 645
NewGuid method, of Guid class, 419

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newline, metacharacter for, 560
Next method, of system.random object, 51–52
NextDouble method, of system.random object, 51–52
NextMatch method, of RegEx class, 551–552
NextMatch property, of Match class, 550
no-touch deployment. See Internet–based deployment process

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 681

nodes in XML document
adding to XML document, 489–490
recursive walk through, 491–492, 493

NodeType property, of XMLReader object, 478
Nokia, emulators, 661
non–greedy regular expressions, 561
None member

of AcknowledgeTypes enumeration, 359
of RegExOptions enumeration, 549

Northwind database, establishing connection, 403
NoSupportedException, of FileStream.Read method, 221
NotAcknowledgeReachQueue member of

AcknowledgeTypes enumeration, 359
NotAcknowledgeReceive member of AcknowledgeTypes

enumeration, 359
NotFiniteNumberException, 226
Nothing permission set, 251
NoTouchDeployment project, 248–249
NotSupportedException, of Open method, 220
null values

in DataAdapter, 406, 418–419
setting database field to, 401
in XML format, 85

numbers
random, 49–53
real and imaginary, 603–604
undefined, 234

testing for, 235–236
NWOrders project, 81, 81–90

AddDetailLine stored procedure, 524–525
AddHeader stored procedure, 524
adding business rule, 532–535
code, 525–532
committing order to database, 88–90, 530–531
creating and serializing new order, 86–87
deserializing XML into custom class instance, 87–88
deserializing XML representing order, 90

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetProductById stored procedure, 523
GetProductsByName stored procedure, 524
OrderClass class, 519–525
ReadOrder stored procedure, 89–90
ReduceRows subroutine, 531–532
setup project for, 259–260
user interface, 445

NWProducts application, 506–516
architecture, 508–510
code, 510–516
code of search form, 514–515
concurrency handled by, 515
interface, 507, 507–508

O

OAEP, 157
Object Browser, 6

opening, 5
translating information in, 8, 8

object pooling, 469, 469–470
implementing, 470–473

''Object reference not set to an instance of an object" error message, 8, 19
object type, 16
ObjectList control, for mobile computing, 651
objects

accessing members, 10
instantiation, 45
in Microsoft Outlook Library, 109
reflection to learn about, 191
serialization, 59

Office applications, 109–110. See also Excel; Word
Ole Automation, 39
OleDbDataAdapter class (ADO.NET), 392
OleDbPermission code access permission, 252
one–way functions, 154
OnError statement, Resume, 224
OnPaint event, 589
OOP (object oriented programming), 2
Opacity property, of forms, 636, 638

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Open method, exceptions, 219–220
OpenRead method, of WebClient class, 309
Openwave, emulators, 661
OpenWrite method, of WebClient class, 309
optimistic concurrency, 407, 516
Option Base statement, 28, 29
OR Boolean operator, for DataView object, 426
order processing with messages, 373–381, 374

committing order to database, 380–381
deleting order and related message, 381
message retrieval from queue, 378–379
order preparation, 375–377

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 682

origin of graph, relocating, 595–596
origin of page, 168
outgoing queues, 343–344
Outlook, 109–110
Output window for debugging, 239–240
Outputstream property, of Response object (HTML), 286
OverflowException, 226

in math calculation, 218
overhead, in serializing and deserializing, 79
''Overload resolution failed because no accessible 'New' accepts this number of arguments"

error message, 9

P

padding algorithm in encryption, 157
page layout for printing, 168–174

DrawString method, 168–170
PrintTests project, 170, 170–174

Page Setup dialog box, 164–165, 165
PageSettings object, 162–163

Page Setup dialog box to display current settings, 164, 165
PageSettings property, of PrintDocument object, 160
PageUnit property, of Graphics object, 168
paging, DataGrid support, 276
PaintPixel() function, 615–616
PaperName property, of PaperSize object, 163
PaperSize property, of PageSettings object, 163
PaperSizes property, of PrinterSettings object, 164
PaperSource property, of PageSettings object, 163
PaperSources property, of PrinterSettings object, 164
paragraphs.Item collection, 106
Parameter object, for SQL commands, 410
parent class, 12
Parse method, 213
parsing, 212
passwords

hashing, 140–142

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as security problem, 139–140
PathTooLongException, of Open method, 219
PDAs. See also mobile computing

emulators, 660–663
Peek method, 41

of MessageQueue class, 357–358
PeekByCorrelationID method, 357
peer-to-peer programming, 289

sockets, 292–300
UDP (User Datagram Protocol), 295–297

performance
open transactions and, 408
verification and, 125

PerformanceCounterPermission code access permission, 252
period (.), in regular expressions, 543, 545, 558
Perl (Practical Extraction and Report Language), and regular expressions, 587
"permission denied" error message, from MSDE, 329
permission sets

built-in, 251
creating and configuring, 253–257

permissions
demand to test caller level, 135–136
.NET settings, 121

persistence
in drawing, 589
of object, 60. See also serialization

pessimistic concurrency, 408
PEVerify, 121, 121
PictureBox control

axes numbering for tick marks, 599–600
drawing grids on, 598–602
in PlotControl application, 590
titles, 601

plaintext, 143, 320
printing, 174–178, 175

PlotControl application, 590, 590–602
members, 591–598

PlotTitle property, in PlotControl application, 592
PlotTitleColor property, in PlotControl application, 592
PlotTitleFont property, in PlotControl application, 592

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Poll method, of socket, 295
pool of objects for reuse, 469–470

implementing, 470–473
PooledServer project, 470–473

testing, 472–473
portrait mode, 113
ports, 294

for UDP connection, 297
portType element in WSDL, 331
PortType section, of WSDL document, 335–336

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 684

enumerating messages, 369
random message creation, 369

NETConfigFiles project, 76–79, 78
NoTouchDeployment project, 248–249
NWOrders project, 81, 81–90

AddDetailLine stored procedure, 524–525
AddHeader stored procedure, 524
adding business rule, 532–535
code, 525–532
committing order to database, 88–90, 530–531
creating and serializing new order, 86–87
deserializing XML into custom class instance, 87–88
deserializing XML representing order, 90
GetProductById stored procedure, 523
GetProductsByName stored procedure, 524
OrderClass class, 519–525
ReadOrder stored procedure, 89–90
ReduceRows subroutine, 531–532
setup project for, 259–260
user interface, 445

NWProducts application, 506–516
architecture, 508–510
code, 510–516
code of search form, 514–515
concurrency handled by, 515
interface, 507, 507–508

PlotControl application, 590, 590–602
members, 591–598

PooledServer project, 470–473
testing, 472–473

PrintTests project, 170, 170–174
ProcessOrders console application, 385–388
ReadWriteFile project, 219–224
RegExEditor project, 564–567

Find & Replace dialog box, 564–567
RegularExpressions project, 544, 545, 579–582

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Relations application, 535, 535–539
architecture, 535–536
code, 536–539

Relations1 project, 539–542
RemoteOrders application, 460
SimpleQueue project, 362–363

processing acknowledgment messages, 365–366
TcpChat application, 300, 300–307

TcpChatClient application, 305–307
MessageArrived event, 307

TcpChatServer application, 301–305
ChatClass, 302–303
listening for requests on separate thread, 303

TCPServer project, 297–298
Transaction project, 430, 431, 432–436
UDPClient application, 296–297
UDPServer application, 295, 295–296
Visual grep project, 582, 582–587

properties
of forms, 45
public, reflection to report on, 197
serialization for saving, 60
of Setup Project, 265–266

proxy
exporting and testing, 467–468
between managed and unmanaged code, 462

proxy server, 290
public key encryption systems, 139–140, 151, 153

code for encryption and decryption, 154–156
managing keys, 158

public properties, reflection to report on, 197
public queues, 343

referencing, 345
public variables, to reference form, 45
Publisher membership condition, 256
Pubs sample database, connection to, 327
punctuation symbols, printing, 178
purging message queues, 345

Q

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quantifiers, in regular expressions, 546, 560–562
Query Analyzer window, 82
Query Builder, 394
query, to retrieve order information in XML format, 82–83
question mark (?), as metacharacter, 560
queued components, 469
queues. See message queues
Quick Watch window for debugger, 238

R

random generator seeding, 50–52

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 686

Relations application, 535, 535–539
architecture, 535–536
code, 536–539

Relations property, of DataSet, 421
Relations1 project, 539–542
relationships between tables, 397–398
Release mode, 232
ReleaseDC function, 187
remote systems

accessing, 289
invoking components on, 449

RemoteOrders application, 460
remoting BusinessLayer class, 458–461
Remove method, of Rows collection of DataTable, 419
RemoveAt method, 35–36

of Rows collection of DataTable, 419
RemovePreviousVersion property, of Setup Project, 266
RenderingOrigin property, of Graphics object, 168
repeated words, removing, 571
Repeater control, 276
Replace method, of RegEx class, 552–557

MatchEvaluator project, 554–557
replacement

with regular expressions, 553
grouped matches, 569–573

of text, 106–107
replication of public queues, 343
RequestLimit attribute, in Web.config file, 655
RequiredFieldValidator control, 283
resolution of printer, 163
Resolve method, of IPHostEntry class, 292
Response object (HTML)

arguments for, entire files as, 272
Outputstream property, 286
Write command, 273

restricted sites zone, 128
RetrieveByCorrelationID method, 357

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reverse engineering, 134
Reverse method, 34
rich client, 441–442

vs. Web applications, 457
RichTextBox control for Visual grep project, 585

formatted text in, 587
RightToLeft member of RegExOptions enumeration, 549
Rivest, Shamir, and Adleman. See RSA (Rivest, Shamir, and Adleman) encryption system
Rnd function, 49
role–based security, 120, 122, 469
Rollback method, of Transaction object, 437
root element, changing name, 76
Row property, of DataTable object, 425
rows in database, 417–418

adding and deleting in DataTable, 419–420
deleting, 405
limiting selection, 405
search for, 420–421

RowStateFilter property, for DataView object, 427
RSA (Rivest, Shamir, and Adleman) encryption system, 151–158

how it works, 153–156
RSACryptoServiceProvider object, 156
rules

grammar, 6–11
for message queue triggers, 382–384, 383

runtime
adding controls to form at, 25–27
DataSet generated at, 415
evaluating functions at, 593–595

runtime-callable wrapper (RCW), 462
runtime errors, 232

''Failed to enable constraints...", 398–399
when opening, reading and writing files, 219–224

Open method exception handling, 219–221
runtime handles, 47
Runtime.Serialization.SerializationException, 227

S

sa account, 403

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sans serif font, 625
for headlines, 627

Save method, of XMLConfiguration class, 76–77
SaveFileDialog control, 43–44
SAX (Simple API for XML), 475

choosing, 476–478
Scale property, of Parameter object, 410
schemas in XML, 329, 478–479, 481–486

data types, 483–486
extending, 484–486

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 689

security, 120
serialization of data, 81–90

SqlClientPermission code access permission, 252
SqlDataAdapter class (ADO.NET), 392
SqlDbType property, of Parameter object, 410
StackOverflowException, 228
StackTrace property, of exception objects, 225, 226
Start method, of TCPListener class, 302
start of line, metacharacter for, 562
StartChat method, 301, 304
StartListening method, 301
startup object, default, in Visual Basic, 4
state, preserving in Web services, 325–326
State property, of rows in DataSet, 424
statelessness, 325
static methods, 15
Status property, of MessageQueueTransaction class, 371–372
step into when debugging, 239
step over when debugging, 239
stored procedures

CommandText property to store, 409
executing, 411–412
for item discount, 534
in NWProducts application, 508

Stream object, ReadLine method of, 311
streaming, 1, 39–44

mixing data types in same, 55–56
to write to file, 43

StreamingContextState enumeration, 80
StreamReader object, ReadToEnd method of, 42
Strict option for module, 232–233
String class, IndexOf method of, 543
StringFormat object, 169, 172
strings, 14–15

converting byte arrays to, 308
converting to byte arrays, 311
DrawString method for printing, 168–169

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

empty, in database, 401
Excel to evaluate math expressions as, 111–112
listing methods for, 19
Word for formatting, 102–104

strong name, creating, 470
Strong Name membership condition, 256
strong typing, 17–18, 37
structure value type, 14
structured exception handling, 63, 216–231

bypassing error handlers, 230–231
error prevention, 225
Exception class, 225–228
Finally clause, 219
ReadWriteFile project, 219–224
resuming failed statements, 224–225
sections of code, 217
throwing custom exceptions, 228–230

Sub. See constructors
Sub Main, 4
subdirectories, process to get list, 10
subtraction of complex numbers, 620
Success property, of Match class, 550
SupportPhone property, of Setup Project, 266
SupportsColor property, of PrinterSettings object, 164
SupportUrl property, of Setup Project, 266
suppressing messages, 100
symmetric encryption routine, 142
syntax errors, 232, 233
System namespace, 4, 7
System.Data namespace, 7
System.Drawing namespace, 7, 18
System.IO namespace, 11
System.Messaging.MessageQueue class, 345
System.Net namespace, 289
System.Net.Dns namespace, 289, 291
System.Object class, 12
System.Random object, 50
System.Runtime.Serialization class, 61
System.Runtime.Serialization.Formatters.Soap, as reference, 495
System.Security.Principal namespace, 122

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Text.Encoding class, 308
System.Text.Encoding.ASCII class, 311
System.Type class, 192
System.Windows.Forms namespace, 7
System.XML namespace, 7
System.Xml.Serialization namespace, 72

T

tab, metacharacter for, 560
tables in database. See also DataTable objects

multiple, for DataSet, 396–400

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 690

TableStyles property, of DataGrid control, 401
tabular data, printing, 179–186
target computer, setup project impact on file system, 262
TargetSite property, of exception objects, 225
TCP (Transmission Control Protocol)

classes to exchange data, 307
server, sending message to, 299–300
sockets, 292, 294, 297–300

TCPChat application, 300, 300–307
TcpChatClient application, 305–307

MessageArrived event, 307
TcpChatServer application, 301–305

ChatClass, 302–303
incoming messages, 305
listening for requests on separate thread, 303

TCPServer project, 297–298
templates, for Webform controls, 275
testing

for infinity, 235–236
proxy, 467–468
regular expressions, 571
transactional updates, 439–440
for undefined numbers, 235–236
Web services, 321, 337–339

Text property, of control, binding, 506
TextBox controls

exporting content to Clipboard, 23
loading Word document into, 99–100
nesting, 625
Print method, 174–178, 175
and printing, 159
spell-checking contents, 94

TextView control, in .NET Compact Framework, 647
threads

background on client chat application, 305–306
for chat programs, 301

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Throw method, 229
Ticks, 38
tiers, vs. layers, 443
time, calculating elapsed, 38
Time function, 38
TimeOfDay function, 38
timeout, for queued message acknowledgment, 359
TimeSpan object, for Receive and BeginReceive methods, 356
TimeToBeReceived property, of Message class, 351, 360
TimeToReachQueue property, of Message class, 351
tlbimp.exe tool (Type Library Importer), 462
Today function, 38
ToDouble method, of DateTime class, 38
ToPage property, of PrinterSettings object, 163
ToString method, 12, 16, 112
trace, to debug mobile application, 654–656
Transaction object, 436
Transaction project, 430, 431, 432–436
transactional messages, 343, 371–373
transactions

DataAdapter class for, 432–440
implementing optimistic concurrency with, 408
testing updates, 439–440

transformation matrix, in GDI+, 596
Translate method, of world coordinate system, 595–596
Transmission Control Protocol (TCP) sockets, 292, 294
trap doors, 153–154
triggers for message queues, 382–388

defining, 384–385
ProcessOrders console application, 385–388
rules, 382–384, 383

Trimming property, of StringFormat object, 178
TrimToSize method, of ArrayList, 36
TripleDES, 143
trusted sites zone, 128
Try statement, 217
type, 56
type size, user interface convention for, 627
typed DataSets, 415

table names as properties, 416

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

types
binary serialization and, 65
direct contact with specific, 206–207
and reflection, 191–192, 205–206

Types element in WSDL, 331
TypeText method, 106

U

UBound function, 29
UDDI Business Registry (UBR), 337
UDDI (Universal Description, Discovery, and Integration), 336–337

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 691

UDP (User Datagram Protocol) sockets, 292, 294, 295–297
UDPClient application, 296–297
UDPServer application, 295, 295–296
UIPermission code access permission, 252
UnauthorizedAccessException, of Open method, 220, 222
''An unhandled exception of type

'System.Runtime.InteropServices.COMException' ..."
error message, 95

unhandled exceptions, 216
Universal Description, Discovery, and Integration (UDDI), 336–337
Unix, grep utility, 582
UnknownAttribute event, when deserializing XML stream, 501–502
UnknownElement event, when deserializing XML stream, 501–502
unmanaged code, 462
Update method, of DataAdapter, 400, 404, 425, 428–430
UPDATE statement (SQL)

from DataAdapter configuration wizard, 406
DataAdapter task for, 404

UpdateCommand property, of DataAdapter, 404
UpdateRule property, 431
upgrading applications, 244

Internet-based deployment and, 246
UploadData method, of WebClient class, 309–310
UploadFile method, of WebClient class, 310
uploading documents, with WebClient, 312–313
UploadValues method, of WebClient class, 310
URL membership condition, 256
URLs (Uniform Resource Locators), for namespaces, 480
UseDeadLetter Queue property, of Message class, 351
User Datagram Protocol (UDP) sockets, 292, 294, 295–297
user interface

DataGrid control and, 396, 399
fading transitions, 637, 637–640
focus group for guidelines, 626
metallic shading, 635–636, 636
reliability of applications, 623–626, 624
slide transitions, 640, 640–641

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

slide transitions, 640, 640–641
Windows conventions, 626–634

depth, 627–628
FontBold off, 627
framing, 630–634
layering, 627
light from upper left, 628–629
metallic look, 626–627
sans serif font for headlines, 627
type size, 627
zones, 629

User Interface Editor, 262, 267–270
user level for security policy, 251
users, 122
User's Programs Menu, adding application to, 267

V

validation, 282–285
in ASP.NET, 282–285

controls, 283–285
programmatic, 282–283

controls, 283–285
of data, 225
programmatic, 282–283

ValidationSummary control, error messages, 284
Value property

of Match class, 550
of Parameter object, 410
of XMLReader object, 478

value types, 14
ValueMember property, for binding controls, 509
variables

displaying, 17
forcing declaration, 232–233
initialization, 30
public, to reference form, 45
scope of, 239

Variants, 17
velocity of escape, and fractal color, 614–615
verification

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of method argument lists, 121
and performance, 125

Version property, of Setup Project, 266
vertical alignment of string, 169
views, for table editing, 426
Visual Basic

beginnings, 1
changes for .NET, 1–2

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 692

inflation, 192
terminology changes for VB.NET, 21–22
Word macros to view, 103–104

Visual Basic .NET, translating C# to, 21
Visual grep project, 582, 582–587
Visual Studio .NET

to create connection strings, 403
creating Windows installer package in, 259, 261–262
DataAdapter configuration, 393–394
database connection, 392–393
DataSet creation, 395–396
multiple tables, 396–400
Pocket PC emulator, 661, 661–662

problems, 662–663
updating database, 400–402
viewing DataSet, 396

void, 15

W

WAP (Wireless Application Protocol), 645
Watch window for debugger, 238
Web applications, 246

for database client, 442
vs. rich client applications, 457

web page, for connecting to application, 258, 258
web resources, 308–317
web server

downloading document from, 315
user download of application from, 246
Windows application deployment on, 249–250

Web services, 2
adding to project, 336
caching data, 322–323
characteristics, 319–320
consuming, 323–325, 324
converting BusinessLayer class to, 450–457

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

creating, 320–323
first line, 322
making database connection, 326–330
middle tier component as, 247
preserving state, 325–326
referencing, 456–457
security, 339
testing, 321, 337–339
UDDI (Universal Description, Discovery, and Integration), 336–337
XML Dataset, 327–328, 328

Web Services Description Language (WSDL), 330–336
complex types, 333–335
Enum translated into SOAP and WSDL, 334–335
PortType section, 335–336
Reference Map, 336
SOAP, 333
viewing, 331–332

Web Setup Project, as New project option, 261
web sites, C# to VB.NET translator, 21
WebClient class, 308

to download documents, 311–312
Web.config file

authorization section for mobile computing, 653
changing for remoting, 459–460
for custom error messages, 656–657
device specificity, 659
RequestLimit attribute in, 655
to set trace, 654

WebForm data display, 273–283
connecting to database, 273–274
DataGrid control, 276–281
DataList control, 275
detecting postback, 281–282
Repeater control, 276
templates, 275

<WebMethod> attribute, 450
WebPermission code access permission, 252
WebRequest object, 314–315
WebResponse object, 315–317
WebResponse stream, 61

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

white space, in regular expressions, 560
WinCV (Windows Class Viewer), 20–21
Windows

application deployment on Web server, 249–250
security, 120
user authentication, 403
user interface conventions, 626–634

depth, 627–628
FontBold off, 627
framing, 630–634
layering, 627
light from upper left, 628–629

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 693

sans serif font for headlines, 627
type size, 627
zones, 629

Windows 98, installing .NET Framework on, 244
Windows Class Viewer. See WinCV (Windows Class Viewer)
Windows controls

binding to columns, 506
data to populate, 412

Windows Explorer, security settings, 122
Windows form, related data on, 535–539
Windows installer

creating in Visual Studio .NET, 259, 261–262
deployment process with, 259–270, 260

File System Editor, 263–266
installer package creation, 261–262
Registry Editor, 267
shortcut creation, 266–267
User Interface Editor, 267–270

Windows Server 2003, Software Restriction Policies, 122
Windows XP

default security settings, 128–129
Graphics Device Interface (GDI+), 589
Message Queuing Triggering service, 382
Software Restriction Policies, 122

WindowsIdentity class, 122–123
WindowsPrincipal class, 122–123
Wireless Application Protocol (WAP), 645
WithEvents, in declaration, 28
Word

fax sending, 98
feeding individual strings and specialized formatting, 102–104
finding files, 100–102
IntelliSense list, 105
loading documents, 99–100
printing features, 107–108
replacing text, 106–107

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sending text to VB.NET from, 106
spell-check, 94–98

passing text directly, 96
retrieving misspelled word list, 96–98
for VB.NET TextBox, 94–95

text manipulation and insertion, 104–106
word character, metacharacter for, 544, 546, 558–559
word count, 100
Word object model, 104
WordWrap property, 175, 178, 178
WorkingFolder property, for application shortcut, 266
worksheet object in Excel, 115
workstations

access by multiple to same queue, 370
authentication for database connection, 402–403

world coordinate system, Translate method of, 595–596
wrapper, 52

COM, 94
Write command, of Response object, 273
WriteLine method, of Debug class, 240
writing files, 42–44
WSDL (Web Services Description Language), 330–336

X

XAxisTitle property, in PlotControl application, 592
XCopy method, 244
XMax property, in PlotControl application, 592
XMin property, in PlotControl application, 592
XML. See also SAX (Simple API for XML)

for application configuration files, 76
classes in .NET Framework, 475
controlling output, 73–76
converting DataSet to, 504, 504
converting to DataSet, 503–504, 504
database results as, 329–330
and DataSets, 493–495
DOM (Document Object Model) and, 475, 478–479
interchangeability, 503–504
namespaces in, 480

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

persistence with SOAP, 495–503
persisting instance of AppConfig class in, 77
programmatic, 487–492

edit and save, 488–490
recursive walk through nodes, 491–492

query to retrieve order information in, 82–83
restoring instance of AppConfig class from, 77
SAX (Simple API for XML), 476–478
schemas, 481–486

data types, 483–486
XSD, 481–482

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 694

specifications, 332
for Web services, 320
WSDL descriptions in, 330

XML Dataset, 327–328, 328
XML document. See also elements in XML

adding node, 489–490
loading literal string into, 487

XML (SOAP) serialization, 55, 60–61, 72–76, 495–503
deserialization trapping, 501–503
mixing and matching types, 497–501

reading mixed data, 499–501
queued message in, 353–354

XmlAnyAttribute property, 73–74
XmlAnyElements attribute, 74
XmlArray attribute, 74
XmlArrayItems attribute, 74
XmlAttribute attribute, 74, 75
XmlAttributes class, 73
XmlChoiceIdentifier attribute, 74
XMLConfiguration class, Save method, 76–77
XmlDefaultValue attribute, 74
XmlElement attribute, 74
XmlEnum attribute, 74, 75
XmlIgnore attribute, 74
xmlns attribute, 480
XMLReader object, 477
XmlRoot attribute, 74
XmlSerializer class, 61, 72, 500–501

deserializing XML stream, 501–502
XmlText attribute, 74
XmlType attribute, 74
XPathNavigator API, 477
XSD, 481–482

command-line tool, 83–86

Y

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

YAxisTitle property, in PlotControl application, 592
YoSpace, 660

Z

zero, division by, 234
Zone membership condition, 256
zones, as user interface convention, 629
zoom operation, on fractals, 616

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 10

Figure 1.3 illustrates how you must look in two locations in the Object Browser to find details
about the process of getting a list of subdirectories:

FIGURE 1.3 You must look at both the New and GetDirectories methods in the Object Browser to figure
out how to employ this technique.

And even after you figure out how to use New to instantiate a DirectoryInfo object, and how
to use GetDirectories, you still don't have enough information to know how to make these two
objects (the DirectoryInfo object and the separate array of DirectoryInfo objects) work
together. Thank goodness there's sample code illustrating how to get directories. By the way,
to see the results, you can reuse the DirectoryInfo object di to iterate through the array:

For Each di In dirs
 Console.WriteLine(di)
Next

Why Two Ways?

Why, then, these two different ways of accessing objects' members? One requiring New
(instantiating the object), the other not requiring instantiation?

Dim fstream As FileStream = File.Create(''c:\myfilex.tst")
Dim dirI As DirectoryInfo = New DirectoryInfo("c:\")

Some objects, such as the ArrayList, can be instantiated either way:

Dim ara As ArrayList

or

Dim ara As New ArrayList

In VB6 and earlier versions, the As New command meant something different than it does
now in .NET. In older versions of VB, when you declared an object variable using As New, it
was "autoinstancing"— meaning that it isn't instantiated until used later in the code
somewhere. In .NET the object is instantiated as soon as the line with the Dim statement
executes. No delayed instantiation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About Constructors

A constructor is a Sub (a method) that executes when a new instance of its class is instantiated,
hence the name of a constructor method is always New. In other words, when you instantiate a
class,

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 100

In this example, you use the RecentFiles collection of the application object to load the most
recent file, then copy it to the TextBox via the Clipboard. In addition, you get the Name
property of this file and display it in the form's title bar.

NOTE The Documents collection within the Word application is 1-based, so there is no
documents(0).

GETTING A WORD COUNT

Writers need to know many words they've written—a typical computer book page has about
175 words, so you know the size of your chapters, and the entire book, if you count words.
However, you cannot use the Word Count feature in Word for text copied and pasted from a
VB.NET TextBox—you always get too many words in the count (because of CRLF
formatting, I suspect). To make this work, you'd have to strip off the formatting codes before
copying the text to the Clipboard. If you're going to this much trouble, just count the words by
counting the space characters in your TextBox.Text.

Here's code you can use, however, if you want to count words in a .doc file (not
TextBoxcopied text):

Dim w As Object = New Word.Application
Dim d As Object = w.Documents.Add
MsgBox(''Wordcount: " & d.Words.Count)

SUPPRESSING MESSAGES

If, however, this most-recent file is currently open in Word, you'll get a dialog box asking if
you want to see a read-only version. You cannot suppress this dialog because it's a
fundamental security alert, but most messages—modal or not—can be suppressed by setting
the WdAlertLevel to wdAlertsNone, like this:

Dim w As Object = New Word.Application
w.DisplayAlerts = Word.WdAlertLevel.wdAlertsNone

The other possible settings for this property are wdAlertsAll (the default) and
wdAlertsMessageBox, which displays only message boxes, not other types of alerts.

Finding Files

Here's a way to locate all files in a particular path, including subdirectories. This would be
useful if you wanted to activate Word after selecting a particular .doc file to work on. If you've
ever tried to code this kind of thing yourself, you probably realize that recursion is your most
efficient approach, and recursion is not for the faint of heart. The technique illustrated here in
Listing 4.6 works just as well, and is quite a bit easier on the programmer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 101

LISTING 4.6: LOCATING FILES
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim w As Object = New Word.Application
 w.visible = False

 Dim id As IDataObject

 Dim s, t As String
 Dim cr As String = ControlChars.CrLf

 Try
 With w.FileSearch
 .FileName = ''*.doc"
 .LookIn = "C:\Book VB Power Toolkit"
 .SearchSubFolders = True
 .Execute()
 For Each s In .FoundFiles
 t &= s & cr
 Next
 End With

 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try

 TextBox1.Text = t

 End Sub

Here you use the FileSearch method, filtering with the .doc extension and searching
subfolders. The FileSearch returns a FoundFiles collection (of strings) through which you can
iterate to build the list of filenames you display in the TextBox. You could easily replace the
TextBox with a ListBox, allowing the user of your VB.NET application to choose which file
to edit.

Listing 4.7 gives the changes (shown in bold) to use an ArrayList to fill a ListBox with all the
.doc files.

LISTING 4.7: FILLING A LISTBOX WITH FILENAMES
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim w As Object = New Word.Application

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 102

 w.visible = False

 Dim s As String
 Dim t As New ArrayList
 Try
 With w.FileSearch
 .FileName = ''*.doc"
 .LookIn = "C:\Book VB Power Toolkit"
 .SearchSubFolders = True
 .Execute()
 For Each s In .FoundFiles
 t.Add(s)
 Next
 End With

 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try

 ListBox1.Items.AddRange(t.ToArray)
End Sub

Feeding Individual Strings and Specialized Formatting

Although VB.NET includes a useful RichTextBox control, it's not nearly as capable as Word
when you want to adjust formatting, employ templates, adjust typeface colors, and do other
specialized kinds of text manipulation. Rather than reinvent the wheel when you need to
manage specific aspects of your text, go ahead and dump it into a Word document, then you're
free to save it as a .doc file with most imaginable kinds of formatting.

In this example (Listing 4.8), you feed some separate strings into Word from VB.NET,
adjusting their formatting on-the-fly. This technique could also be a way of parsing and
formatting the text in a TextBox, or you could provide a set of several TextBoxes—some for
headlines, some for body text, and so on. In this way, the user could specify aspects of the
formatting themselves (along with RadioButtons for whatever options you wanted to allow
them to specify: color, font size, italic, and so on).

Combine this technique with the printing code (demonstrated in the next section) and you've
got a pretty powerful adjunct amplification to VB.NET's intrinsic word processing
capabilities.

LISTING 4.8: FORMATTING TEXT
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim w As Object = New Word.Application

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 103

 w.visible = False
 Dim d As Object = w.Documents.Add

 With w.Selection
 .Font.Italic = True
 .Font.Size = ''11" 'specify absolute size
 .font.name = "Arial"
 .TypeText("This is italic, size 11.")
 .TypeParagraph() 'carriage return

 .Font.Size = "24"
 .font.name = "Times New Roman"
 .Font.Italic = False
 .Font.Color = Word.WdColor.wdColorBlue
 .TypeText("This is quite large (24 pt. absolute), Roman, and blue.")
 .TypeParagraph()

 .Font.Color = Word.WdColor.wdColorBlack
 .Font.Underline = True
 .Font.Size = w.Selection.Font.Size - 10
 .TypeText("Now black, underlined, and decrease the point size by 10.")
 End With

 Try
 d.SaveAs("c:\test.doc")
 Catch ex As Exception
 MsgBox("Failed to save document: " & ex.Message)
 End Try

 w.Quit()

End Sub

This is entirely programming, no VB.NET controls involved. Notice that you can specify
various aspects of the text formatting—color, font name, font size, underlining, and so on. In
each case, you're employing the Selection object of the Word application object (the selection
here is the entire document, but you can specify a selection of paragraphs, words, or individual
characters if you wish). The TypeText method is used to send a string into the document and
the TypeParagraph method simulates pressing the Enter key to move to a new paragraph.

If you're unsure how to write the code to invoke a style, template, or formatting command in
Word's VBA language, just record a new macro and apply the styles you're interested in, using
the menus and toolbars. Then choose Tools Macros Edit to see what the VBA code is.
Translating VBA into VB.NET source code isn't terribly difficult. Fiddle around until it
works.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 104

Here's an example of a Word macro employing italics, a headline style, and a color applied as
Word recorded the keystrokes. You can ignore the MoveLeft and other positioning
commands; just look for the VBA formatting. Replace the := symbols with =, and make minor
adjustments such as changing wdToggle commands to assignments (such as .Font.Italic
= True), or necessary qualifications such as prepending Word.WdColor. to color
specifications.

Sub Macro6()
'
' Macro6 Macro
' Macro recorded 7/10/2003 by Richard Mansfield
'
 Selection.TypeText Text:=''This is my text."
 Selection.MoveLeft Unit:=wdCharacter, Count:=4, Extend:=wdExtend
 Selection.Font.Italic = wdToggle
Extend:=wdExtend
 ActiveDocument.Styles.Add Name:="Heading 3 Char" , Type:= _
 wdStyleTypeCharacter
 ActiveDocument.Styles("Heading 3 Char").LinkStyle = "Heading 3"
 Selection.Style = ActiveDocument.Styles("Heading 3 Char")
 Selection.MoveRight Unit:=wdCharacter, Count:=2
 Selection.Font.Color = wdColorAqua
End Sub

THE WORD OBJECT MODEL

If you've written or edited macros, you've had experience with the Word object model and with
VBA, the version of Visual Basic designed for use with application macros. Working with this
object model gives you insights into how to consume features in other Office and other
Microsoft applications, such as those found in Works. At the top of the Word object hierarchy
is the application object. And beneath that is the documents collection, just as if you started
Word running, then opened one or more documents underneath the application.

Text Manipulation and Insertion

The Word InsertAfter method works with a selection object (or range object) in Word (see
Listing 4.9). It appends text, as you might guess, and it extends the selection as well. The
selection object contains a contiguous block of text, but there can be multiple range objects,
specifying blocks of text here and there throughout the document. Adjusting the range doesn't
affect any selection that's in effect. Other than this distinction, the range and selection objects
expose much the same functionality and behave in much the same ways. There's also an
InsertBefore method to prepend text.

It's useful to specify ranges or selections primarily because other objects, such as the
paragraph or word, do not expose all the functionality of the range and selection objects. You
can specify a range by providing a paragraph number within the document (it's not possible to
adjust the text of a paragraph object to make it bold, for example—you must first identify a
range).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 105

LISTING 4.9: SPECIFYING RANGES
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim w As Object = New Word.Application
 w.visible = True

 Dim d As Object = w.Documents.Add

 With w.Selection
 .TypeText(''This is the first paragraph.")
 .TypeParagraph()
 .TypeText("This is the second.")
 End With

 Dim range As Word.Range = d.paragraphs(2).range
 range.Font.Bold = True

 w.quit()

 End Sub

USING THE INTELLISENSE LIST

When working with Word's VBA language in the VB.NET IDE, you'll likely notice that you
don't have the advantage of statement completion or other useful IntelliSense features.
However, if you precede a method name, for example with Word., you'll then see an
IntelliSense list of the possible members for the Word object. Here's an example that brings up
the IntelliSense list:
Dim range As Word.
As soon as you type the period following Word, you'll see the IntelliSense list, as shown in the
following illustration (then typing r moves you to that alphabetic location within the list):

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 106

You can also specify a range by starting and ending character:

Dim range As Word.Range = d.range(2, 13)

Unfortunately, character counting in a Word document is zero-based, even though the
document collection and other collections are one-based. Just another of those funny little
inconsistencies.

You can send text from VB.NET into a Word document by using the TypeText method as
illustrated in the previous section. You can get text from a Word document into VB.NET by
using the document.range method (there are other ways as well). Listing 4.10 shows how to
get a substring, and a full paragraph, back from a Word document.

LISTING 4.10: SENDING TEXT FROM WORD INTO VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim w As Object = New Word.Application
 w.visible = True

 Dim d As Object = w.Documents.Add

 With w.Selection
 .TypeText(''This is the first paragraph. And we want to ensure that you
read it completely.")
 .TypeParagraph()
 .TypeText("Remember the Maine!")
 End With

 Dim range As Word.Range

 MsgBox(d.range(0, 12).text)
 MsgBox(d.range.paragraphs.Item(1).range.text)
 w.quit()

 End Sub

Notice that the paragraphs.Item collection is one-based, not zero-based.

Replacing Text

It can be useful to automate the process of searching and replacing. For example, if your
company changes its name from LocalShop to WorldDomination, you could go through entire
folders of .doc files or templates, replacing the old name with the new one throughout all the
documents. This might also be useful following a divorce or other adjustments in life. (To see
a technique that quickly provides

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 107

you with all the .doc files in a given path, including subdirectories, see the section earlier in
this chapter titled ''Finding Files.")

Assuming that you have a .doc file named test.doc in your C:\ folder, and that this
document includes the term LocalShop here and there, Listing 4.11 demonstrates how to
automate the process of searching for LocalShop and replacing it with WorldDomination.

LISTING 4.11: SEARCHING AND REPLACING
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim w As Object = New Word.Application
 w.visible = False

 w.Documents.Open("c:\test.doc")

 'point the document object to the opened document
 Dim d As Word.Document = w.activedocument

 Dim r As Word.Range

 d.Content.Find.Execute(FindText:= "LocalShop", _
 ReplaceWith:= "WorldDomination",-
 Replace:= Word.WdReplace.wdReplaceAll)
 While d.Content.Find.Execute(FindText:=" ", _
 Wrap:= Word.WdFindWrap.wdFindContinue)
 d.Content.Find.Execute(FindText:= " ", _
 ReplaceWith:=" ", _
 Replace:=Word.WdReplace.wdReplaceAll, _
 Wrap:=Word.WdFindWrap.wdFindContinue)
 End While
 w.Documents.Item(1).Save()
 w.Documents.Item(1).Close()
 w.quit()

 End Sub

Borrowing Word's Printing Features

Just as the previous examples illustrate how you can considerably improve VB.NET's built-in
text formatting and manipulation capabilities, you can also improve VB.NET printing by
borrowing from Word's more advanced features.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 108

Printing in Word is achieved through a document's Printout method. This method has 19
properties, all of which you can set, but most of which you can leave set to their defaults (all
are optional). The properties are:

Background Append, Range OutputFileName
From To Item
Copies Pages PageType
PrintToFile Collate FileName
ActivePrinterMacGX ManualDuplexPrint PrintZoomColumn
PrintZoomRow PrintZoomPaperWidth PrintZoomPaperHeight

This next example illustrates how to print and set properties. In this case, we'll specify that we
want printing done in the background, appending to any existing job, and specifying that we
want two copies. To set a particular property, you must include all preceding properties, or at
least insert a comma if you want to leave a property set to its default. In other words, we need
all these commas in order to let Word know that we're specifying the eighth parameter, copies:
d.PrintOut(True, True, , , , , , 2).

Put a TextBox and button on a form, then type Listing 4.12 into the button's Click event.

LISTING 4.12: PRINTING AND SETTING PROPERTIES
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim w As Object = New Word.Application
 w.visible = False

 Dim d As New Word.Document
 d = w.documents.add

 d.Range.InsertAfter(TextBox1.Text)

 Try
 d.PrintOut(True, True, , , , , , 2) 'do two copies
 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try
 d.Close(Word.WdSaveOptions.wdDoNotSaveChanges)

 w.quit()
 End

End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 110

After a bizarro, though necessary, set of objects are instantiated in the first five lines, you
finally get the one object you're really interested in, the MailItem object. With it you can
access quite a bit of information about each message. In this example, you display the
SenderName, Subject, and Body—the primary data. However, if you wish, you can also
display a variety of other properties of each MailItem, including Attachments,
AutoForwarded, CreationTime, Importance, ReadReceiptRequested, Recipients, Size, and
VotingOptions. There are a couple dozen other, more arcane, properties as well. If you wish,
you can use this same technique to explore and display the messages in the other folders, such
as the Outbox.

This example displays only the first e-mail message, but it's easy to use this same code to see
all Inbox messages. To employ this technique in a finished application, use this loop to get the
entire collection of Inbox e-mail messages:

For i = 1 To it.Count

Then you can display the actual message (m.Body) for whatever message header the user
clicks in the ListBox.

You can also use the various properties as a way of filtering the messages: show all between
certain dates, show all from a certain sender, and so on. To do that, you employ the Restrict
method of the InBox.Items collection. You build a filter string used as the argument for the
Restrict method. For example, to see only those messages from Mary Stuart, you build the
string using SenderName, one of the properties of the MailItem object:

Dim MyFilter As String = ''[SenderName]='Mary Stuart'

And you then use that string as an argument (here the variable it represents the MAPI Items
collection—see the previous example code):

It = InBox.Items.Restrict(MyFilter)

You can use other MailItem properties, such as SentOn. In that case, your filter argument
requires the ToShortDateString method of the .NET DateTime object, like this:

Dim d As DateTime = Now
Dim s As String = d.ToShortDateString
Dim MyFilter As String = "[SentOn] <= 's'

In this case, you've defined your filter as "before now," which would not exclude any
messages. However, you can combine the usual comparison operators >, <, and so on to create
whatever date filter you wish. What's more, you can combine various filters, such as
requesting to see all messages from Mary Stuart sent before last Christmas, or between last
Christmas (the start date of the date range would employ the > operator, meaning "greater than
Dec. 25, 2002) and New Year's Day (this would employ the < operator). Just concatenate the
filter strings: MyFilter &= "[SentOn] <= 's', for instance. You could permit the user to choose
the date range with a DateTime Picker Control, then translate its Value property using the
ToShortDateString method. Or let the user type in a date, as a string in the format: 7/16/2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 112

 n = exl.Evaluate(''COS(4.3444)")

 exl.Quit()

 MsgBox(n)

End Sub

Notice the important difference between these two examples: Both evaluate the expression,
but one takes a string, the other a numeric variable. The Excel version accepts a string version
of the problem, evaluates it, and returns the result as a floating-point variable. This is why you
can simply put up a TextBox for the user to type in an expression, which is then sent to Excel
as a string. By contrast, the pure VB.NET code cannot evaluate a string. Instead, you must
submit a floating-point number to the VB.NET COS function.

Let's expand the previous example for a moment. Put two TextBoxes, two Labels, and a
button on a form. Then type Listing 4.16 into the button's Click event.

LISTING 4.16: PERMITTING USERS TO INPUT EXPRESSIONS, THEN EVALUATING
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim exl As New Excel.Application

 Dim n As Double

 n = exl.Evaluate(TextBox1.Text)

 TextBox2.Text = n.ToString

 exl.Quit()

End Sub

Press F5 to execute this code, then type in an expression (notice that the SIN and other
methods are not case-sensitive). When you click the Evaluate button, the results are displayed.
A key to understanding why all this matters is the .ToString method. It's easy and painless to
convert a numeric variable to a string—you just attach. ToString as illustrated in this example.
However, there is no .ToDouble that translates a string variable into a double-precision
floating point variable. But the really difficult job—which Excel's Evaluate method nicely
solves—is translating sin(2/1)/cos(12.2)+(2+3.21/12)/2 into

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 113

a format that VB.NET can analyze. Sure, the .NET Math namespace understands sin and cos.
What .NET cannot do is evaluate a complicated expression such as the one shown in Figure
4.1.

FIGURE 4.1 Borrow Excel's expression evaluation abilities to permit users to enter math expressions into
your VB.NET applications.

You might think that you can write a Select Case structure that could translate a complex
expression from a string to a format that VB.NET would understand. I imagine it's possible,
but once you start trying to deal with the complexities of nested expressions, operator
precedence, and other factors, you'll be happy to just feed a string to Excel and get back the
result instantly. After all, one of Excel's specializations is translating user input, so why should
you tackle that gruesome job in VB.NET? The evaluate capability is just sitting there in Excel
waiting for you to utilize it.

Pretty Printing

Formatting and printing tables of data can be another daunting task facing a VB.NET
programmer. There are various controls, such as the powerful DataGrid, that display tabular
information effectively on screen. But what about sending nice-looking tables to a printer?
You can't just dump the screen contents to the printer; the aspect ratio is different. Reports are
usually printed in what's called portrait mode (8 1/2×11 aspect ratio), but computer screens are
nearly the opposite aspect ratio and can be called landscape mode (wider than they are high).

Creating reports on hard copy is a fairly common task. Do you want to struggle in VB.NET
with this job, or just turn the task over to Excel, with its specialized formatting and printing
routines? Excel won't always do the best possible job, but with some fiddling, you can often
get superior printouts. To print an Excel worksheet, use this code:

Dim exl As New Excel.Application
Dim w As New Excel.Worksheet
w = exl.Workbooks.Add.Worksheets.Add
w.PrintOut()

Notice the unusual printout method rather than the far more common print.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sending Data to Excel, Formatting, Calculating, and Saving

If you need to fill an Excel worksheet with data, format cells, force calculations on data, or
save a worksheet, the following example illustrates how to accomplish all four tasks. Type
Listing 4.17 into the Form_Load event.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 114

LISTING 4.17: EXPORTING DATA, FORMATTING, CALCULATING, AND SAVING USING EXCEL
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim exl As New Excel.Application
 Dim w As New Excel.Worksheet
 w = exl.Workbooks.Add.Worksheets.Add

 'select and format titles
 w.Range(''A1:E1").Select()
 With exl.Selection.Font
 .underline = True
 .Size = 13
 .Name = "Arial"
 End With

 ' create data
 With w
 .Cells(1, 1).Value = " Bob "
 .Cells(1, 2).Value = " Sandy "
 .Cells(1, 3).Value = " Jane "
 .Cells(1, 4).Value = " Snapper (Johnson)"
 .Cells(1, 5).Value = " Sales Force Total"
 .Cells(3, 1).Value = 25000
 .Cells(3, 2).Value = 42000
 .Cells(3, 3).Value = 37000
 .Cells(3, 4).Value = 6890
 End With

 ' Have the fifth column calculate the total of the first four columns
 w.Cells(3, 5).Value = "=Sum(A3:D3)"

 ' Make numeric data smaller
 w.Range("A3:E3").Select()
 With exl.Selection.Font
 .Size = 10
 .Name = "Arial"
 End With

 'this next formatting should be done after the cells
 'are filled with their data:
 w.Range("A1:E1").Select()
 With exl.Selection
 .Columns.AutoFit() 'make the columns wide enough

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 115

 'center the headers
 .HorizontalAlignment = Excel.XlHAlign.xlHAlignCenter
 End With

 w.PrintOut()

 'save it to disk
 Try
 w.SaveAs(''C:\temp.xls")
 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try

 exl.Workbooks.Close()

End Sub

Managing an Excel worksheet object is similar to the way you manage a Word doc when
using the range object. After creating the Excel object, and a worksheet within it, you describe
the formatting for the top row of cells (the cells that will contain your column headers). You
want them underlined and rather large.

Next you specify that same row of header cells that you fill with descriptive strings. Notice
that when referring to the cells within a range you use the format A1:E1 (as you would when
specifying a range within Excel itself). This is the same format you use to specify calculations,
such as =SUM(A3:D3). However, when referring to the cells collection when you're adding
data to them, cell A1 becomes instead .Cells(1, 1).

You also add the numeric data for the row representing the sales figures, but in the final
column of the sales figures, you specify a calculation that adds all the previous cells in that
row: w.Cells(3, 5).Value = "=Sum(A3:D3)".

After that, you specify that the numeric row is 10 point, somewhat smaller than the header
row's font size. And you ensure that the headers are readable by using the AutoFit method of
the Columns collection to widen the columns as necessary to display the text. Finally, you
center the text within the header row using Excel.XlHAlign.xlHAlignCenter.

At the end, you print your data to the printer, save the file, and close the workbooks.

WARNING Don't use the Quit method—it leaves an instance of Excel running in the
background.

Retrieving Data from Excel

You may find yourself wanting to import data from an Excel worksheet into a VB.NET
project. Use the previous example to create an Excel worksheet located at "C:\temp.xls" as
your source of data, and type Listing 4.18 into the Form_Load event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 116

LISTING 4.18: IMPORTING DATA FROM AN EXCEL WORKSHEET
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim exl As New Excel.Application
 Dim w As New Excel.Worksheet
 w = exl.Workbooks.Open(''C:\temp.xls"). _
Worksheets.Item(1)

 exl.Range(" A1:E3 ").Select()

 'create an object to hold the imported data
 Dim r As Excel.Range = exl.Selection

 Dim s As String
 For i As Integer = 1 To 3 'requires VB.NET 2003
 For j As Integer = 1 To 5
 s = r(i, j).value
 TextBox1.Text &= s & vbTab
 Next
 TextBox1.Text = TextBox1.Text & vbCrLf
 Next

 exl.Workbooks.Close()

 TextBox1.SelectionLength = 0 'turn off the selection

 End Sub

After using the Open method to access the Excel data file, you select the range within this
worksheet that contains data. The next line defines an object to hold the data in one chunk
(similar to the way that an array holds tabular data). Then you assign the current selection (the
range) to the range object so the data is actually now in VB.NET and available for picking off
in the usual way, via a nested loop.

Notice the declaration included within the For statements (For I As Integer). This
shortcut is a new feature available only in VB.NET 2003. The loops pluck each data value
from the range object, one at a time, and do some simple formatting with the tab and CLRF
constants. After closing Excel, you then turn off the TextBox selection. This strange artifact—
automatically selecting text added to a TextBox—is an undesirable side effect in VB.NET.
You just have to set the SelectionLength property to 0 to turn it off.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 118

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 12

One clue about why the Directory object doesn't need to be instantiated is this description in
the Object Browser:

Public NotInheritable Class Directory
 Inherits System.Object

The Directory object is low-level, like the Integer object—so you can just use it without
instantiation. The clue? It's that this Directory class inherits right from the essence, the very
heart of the .NET Framework, the base class System.Object. By contrast, the DirectoryInfo
class inherits from a derived class (System.IO.FileSystemInfo):

Public NotInheritable Class DirectoryInfo
 Inherits System.IO.FileSystemInfo

About System.Object

The term base class is a bit too modest for System.Object; it's actually the mother of all .NET
classes. They all derive from System.Object, at least implicitly. System.Object does not inherit
from any deeper object—and it's the only class in the entire measureless .NET Framework that
is not inherited. It's the .NET equivalent of the big bang.

Remember that .NET, unlike various C languages, does not permit multiple inheritance.
(Being able to inherit from more than one parent class has been the source of a great number
of bugs for C programmers, who already have enough to worry about without adding this
extra source of confusion.)

Other than System.Object, all other classes in .NET inherit from one (and only one) parent
class. However, a parent class can inherit from its own parent class, and so on up the line.
Ultimately, at the end of the line, sits System.Object.

This is why when you look at the methods for any object in .NET, you always find at least the
same six methods—Equals, GetHashCode, Finalize, MemberwiseClone, GetType, and
ToString— no matter what other methods a class might have. Where do they come from?
System.Object, of course. What do they do?

Object types are called self-describing, like so many other current programming elements—
notably XML and its many offspring, and .NET assemblies with their metadata. Several of the
six primary object methods serve the purpose of describing the object.

MemberWiseClone

MemberWiseClone and Finalize are Protected, and can thus be accessed only from a child
class. Finalize, in fact, does nothing because it's overridden when inherited.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MemberWiseClone creates a ''shallow copy" of the instance (the object). That means it copies
the non-static fields in the object. However, it does initialize the clone's variables (fields) and
properties. This works fine if the instance contains only value types, but if you want to, you
can override this method and define your own method of cloning your object.

Equals

Equals tells you whether two object variables point to the same object. The .NET compiler
doesn't permit you to use = (lest you get confused and think the result means equality in the
sense that there

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 121

.NET's Strong Features

Although .NET was conceived and built several years before the recent ''security initiative"
was launched at Microsoft—pushing security issues to the fore of the company's focus—.NET
is nonetheless filled with security features built into the .NET Framework and the overall
.NET design. In a sense, .NET has absorbed some security features that used to be part of the
operating system. This is yet another aspect of the "platform independence" that .NET claims.

.NET offers settings of considerable specificity for various types of permissions.
Administrators can define with great precision which applications can do what (an application
might be permitted to delete files, for example, but not access the Internet, or vice versa).
Many sensitive OS elements can be specified on an application-by-application basis. By
modifying configuration files, administrators can specify exactly what a .NET application is
able to do.

What's more, .NET security features are abstracted from the OS in yet another way: the .NET
security model is not tied to any particular version of Windows.

Other improvements include built-in self-checking features. Each .NET component is
automatically scanned to ensure that its code has not been tampered with (modified, appended
to, or otherwise disturbed) in any way. Optionally, you can employ Authenticode and digital
signatures with your .NET applications to provide users with a measure of comfort, knowing
that you are likely who you say you are and that your .NET applications can be trusted.

Also, Just In Time (JIT) compilation cooperates with the metadata available in various ways in
a .NET assembly (all the dependency files that, collectively, make up an application). This
cooperation permits .NET to verify each method's argument list and ensures that no wayward
memory access is taking place (the classic cause of GPFs). This verification is, however,
optional. It does slow things down a bit during an application's startup, so administrators are
permitted to switch it off if desired.

You, an application's designer, and administrators might find it useful to run .NET
applications through a utility named PEVerify (PE for portable executable). It reports whether
or not a .NET application has passed the verification test. If it does pass, administrators can
flip the switch bypassing the startup verification process. Look for PEVerify in \Program
Files\Microsoft Visual Studio .NET 2003\SDK\V1.1\Bin. The results of an
executable that passes are shown in Figure 5.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 5.1 Use this utility to verify that a .NET application is type safe and won't otherwise cause a
GPF.

If you write your applications in VB.NET, you can be sure they're type safe unless you're
fiddling around with some arcane, old-style API calls. However, administrators might well be
interested in verifying the safety of .NET applications.

Traditional compiled code is unmanaged, meaning that it runs free of oversight—in the native
language. Managed code, executables produced by .NET, run under the direction of the .NET
CLR (Common Language Runtime). Security improvements result when managed code is thus
observed and supervised during its execution, and its behaviors can be governed. In other
words, executables can be managed by a system of permissions.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 122

You may be surprised to learn that the CLR looks at each method being executed—a file-save
method, for instance. Is this .NET application permitted to save a file to the hard drive? To
actually execute the file-save method, the CLR examines three kinds of permissions: role-
based, identity, and code access. Let's look at role-based security first. (XP and Windows
Server 2003 both include special code-access security features called Software Restriction
Policies, which work with unmanaged code. These features are described later in this chapter.)

Users and Groups

Most OS security under Windows is role-based. Essentially there's a list of danger spots (the
Registry, file access, security settings, disk reformatting commands, and such) and a list of the
computer's users with various levels of permission granted to each user. Interestingly, every
single file on the hard drive is assigned a security descriptor. Certain roles (or groups) such as
administrators are permitted wide access. Other roles, such as guests, have highly restricted
permissions. Individual users can be assigned to one or more groups to define their
permissions. As a result, certain kinds of code, as well as certain OS features, cannot be
executed by certain users.

Administrators can also adjust system object security settings using various utilities—even
Internet Explorer and Windows Explorer can be used to adjust file and folder access levels.

This approach combines the classic role-based approach (does the administrator give Susan
permission to delete files?) with classic code-based security (does the administrator give code
located in the ''Intranet Zone" permission to delete files?).

On XP systems, go to Control Panel Administrative Tools Local Security Policy. In
the tree choose Local Policies User Rights Assignment (to define group behaviors, such as
whether Users and Power Users are permitted to back up files, change the clock, and so on). If
you're not able to see these options, you're not an administrator and don't, yourself, have
permission to manipulate others' permissions and behaviors.

The Principal

Role-based security creates a profile of permissions for each user, often by assigning the user
to a particular "group," which is defined as allowed to do certain things, and prohibited from
doing other things. Special groups (Administrators, for example) may have everything-level
permission—they can view all logs, reformat hard drives, and so on.

.NET uses what it calls a "principal" object that behaves like a proxy for each user and
interacts with "identity" objects that the runtime employs as a way of telling users apart. In the
System .Security.Principal namespace you find both Windows principals (the
WindowsPrincipal class), which map directly to existing Windows groups, as well as user's
membership in those groups.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition, this same namespace includes the GenericPrincipal class, which manages the
.NET-specific role-based security. You can also have your .NET applications specify custom
principals as well.

Try this code (Listing 5.1), which illustrates two objects you can examine—the
WindowsIdentity and the WindowsPrincipal—and then manage behaviors on a custom basis.

LISTING 5.1: EXAMINING WINDOWSIDENTITY AND WINDOWSPRINCIPAL
Imports System.Security.Principal
Imports System.Threading

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 123

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim myDomain As AppDomain = Thread.GetDomain()

 Dim p As WindowsPrincipal

 myDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal)

 p = CType(Thread.CurrentPrincipal, WindowsPrincipal)

 Console.WriteLine(p.Identity.Name.ToString())

 Dim WinRoles As Array = [Enum].GetValues(GetType(WindowsBuiltInRole))
 Dim rName As Object

 For Each rName In WinRoles
 Try
 If p.IsInRole(CType(rName, WindowsBuiltInRole)) Then
 Console.WriteLine(''The current user is in the " & _
rName.ToString & " group.")
 Else
 Console.WriteLine("The current user is NOT in the " & _
rName.ToString & " group.")
 End If
 Catch
 Console.WriteLine("No specification for the role " & rName.ToString)
 End Try
 Next rName

End Sub

For example, if executing Listing 5.1 reveals that this user is a member of the Administrator
group, then you would permit them to view a secret log. Otherwise, your application would
not take that action. Or you might disable some buttons on your user-interface form based on
the security level permitted the current user. Are they forbidden to use the printer (not a
member of Print-Operator group)? Disable the Print button in that case.

Alternatively, you can get some information from the WindowsIdentity object, or pass that
object to the WindowsPrincipal object:

Dim w As WindowsIdentity
w = w.GetCurrent
MsgBox(w.Name & "Is this person a member of the guest group? " & w.IsGuest)
Dim p As WindowsPrincipal = New WindowsPrincipal(w)

In either case, you can get the user's name and the various groups (and therefore permissions)
to which the user belongs.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 124

Code-Access Security

Code-access security (CAS) grants or refuses permissions based not on the identity of the user
but rather on the identity (or authenticity) of code or assemblies. Where does the code come
from? What permissions does this code have? Typically, code access refers to a situation
where one application is attempting to consume an object located in a different application, or
exposed as a Web service method, for example. It means that code (as opposed to a particular
user) is attempting to access your application or one of its public members.

The answer to ''Does this code have permission to consume me?" can be provided by hashing
(see Chapter 6 for demonstrations and details on this technique), or by the URL identifying the
assembly's origin, by digital signatures, or by other means of verification.

However, CAS does not ignore or violate any role-based security settings. If some outside
agency does not have permission from Windows security to delete a file, nothing in CAS can
grant that permission and override Windows itself.

As with role-based security, administrators specify CAS permissions, and base these
permissions on known origin of the assembly. If the origin is suspect, access can be denied to
various system resources.

Code-access security allows you to specify which resources can be accessed by a particular
body of code. It allows you to specify, for example, that an entire class refuses file access (no
matter what the caller's permission levels), by adding an attribute, like this:

Imports System.Security.Permissions
<FileIOPermissionAttribute(SecurityAction.Deny)> Public Class MyNewClass
End Class

You can use code access in another way, as well. The previous example is called declarative
because you add an attribute to the declaration of an assembly, class, or member. There are a
slew of attribute classes in addition to the FileIOPermissionAttribute used above.

Alternatively, code-access security can be enforced via what's called the imperative mode,
which is used for members only, not entire assemblies or classes. To employ this approach,
instantiate an object from one of the permission classes and then call one of its action methods.
Use code like this for the imperative approach:

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
 Dim p As New FileIOPermission(PermissionState.Unrestricted)
 p.AllLocalFiles = FileIOPermissionAccess.AllAccess
 End Sub

Everyone Must Agree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Security is relatively straightforward for traditional single-machine applications, such as a
word processing program that you install from a CD on your personal computer. Security for
distributed or

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 126

dialog box query. They just guess, balancing their fear of virus infection against their need for
whatever mobile service they're about to permit entry.

Let's face it—our local hard drive is no longer our primary source of data, nor in the future is it
likely to remain even the primary source of executables. Your machine is susceptible to many
sources of intrusion, including e-mail, subscription applications, Web services, automated
updating, and so on.

Recall that most computer security tactics depend on identification: Does the user's logon ID
match the password? Does the user belong to a group with permission to delete files? Does
this incoming code originate from a trusted source? And so on.

How, then, can unidentified incoming code be safely executed, even when no logon/password
or permission level has been established between the remote server and your computer?

.NET's answer to this question is CAS, providing several levels of trust (just as the Windows
system offers various groups different levels of access to vulnerable resources). One useful
aspect of CAS is that before you distribute your application or publish it as a service, you can
specify which behaviors your code is permitted to carry out (can it delete a file?). If you say
no to file deletion, then any attempt to delete a file from within your application violates the
CAS protection and indicates that your application code has been infected with a virus. It's as
if you tell a customer: I'm sending a messenger to see you, but she won't ask to come into your
apartment. If she does, she's an impostor, so lock her out.

To summarize, CAS does the following:

 Lets administrators map permission levels to code groups
 Examines each assembly and gives or withholds permission (looking at both permissions
allowed by the local security policies and permissions the code itself requests)

 Specifies individual permissions or sets of permissions that relate to system resources
 Allows your .NET source code to ask for permissions—those it must have, those it
would like to have, and those it should never request (unless it's been invaded by a virus)

 Allows you to specify within your .NET code that any callers have a digital signature, or
make it otherwise known that they possess specified permissions levels

As you see, CAS involves cooperation between you, the creator of a VB.NET application, and
the end user or administrator. (Remember, too, that Internet Explorer contains its own group of
security settings—and that by default, mobile code is enabled in IE.)

Administrators must be aware that several levels of permissions interact—it may be necessary,
for example, to adjust CAS-level settings, Windows security policy, and browser settings for
even a simple activity such as file reading via mobile code. If any of these layers of security
refuse permission, the file reading cannot take place.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Administrators must usually modify these various security settings on an application-by-
application (or mobile code source) basis. If the administrator wants to increase trust levels for
a particular application or mobile source, there are usually several locations where that trust
specification must be adjusted. Recall that Windows security settings cannot be overridden by
any CAS settings. Both must offer permission for any behavior that they both govern
(commonly, access to hard drives or other storage media, printers, and the Registry).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 127

CAS Config Files

CAS looks for its security settings in three files containing XML documents, but, as you might
suspect, you have to be an administrator to modify these files (you should probably take steps
to ensure that power users cannot modify them). The files represent the settings for the user,
the machine, and the enterprise. Let's go down into the dungeons where the secrets are kept.
Find the machine level file here:

Windows\Microsoft.NET\Framework\v1.1.4322\CONFIG\security.config

The version number portion of the path can differ (v1.1.4322 in this example path), and your
Windows directory might also have a different name. But you'll find it. Look at the file to see
the various settings. The enterprise file is in the same path and is named
enterprisesec.config. The user file can be found in this path for NT, Windows 2000 and
XP:

Documents and Settings\Your User Name\Application data\Microsoft\CLR security
config\ v1.1.4322\security.config

For Windows 95 and 98:

Windows\Your User Name\CLR security config\ v1.1.4322\security.config

The Your User Name location is the name you log onto the computer with.

TIP These files can be accessed via the .NET Framework Configuration Tool described later
in this chapter.

Descriptors

Technically, the OS builds a security descriptor for each new system object (folders, files,
printers, and so on) that's created. This descriptor is just a little array of permission switches:
the ACE (access control entry) permission lists the user's access permissions regarding the
object, including whether this user can delete, modify, read, or change the owner of, the
object. The most significant permission list in a security descriptor is the DACL, Dynamic
Access Control List. It lists permissions governing access to the object.

When a VB.NET application is executed, both CAS and DACL settings must agree on various
permissions. Put another way, DACL must permit your .NET application's assembly, and the
user executing your application, to, say, access a particular folder or file.

Software Restriction Policy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may have heard about Windows's Software Restriction Policies (SRP), available in
Windows Server 2003 (formerly known as Windows .NET Server) and Windows XP. This is
yet another set of locks on the door. With it, administrators have the ability to specify code-
identity-based policies, which are separate from any role-based policies in effect.

You might think: What, another layer of code-based security for .NET assemblies or
applications? Fortunately, SRP is mutually exclusive with .NET CAS. In other words, if CAS
is in effect, SRP is turned off. And vice versa. CAS works only with managed code (running
under the .NET Common Language Runtime). SRP turns on only when unmanaged native
code is executing. CAS

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 129

TABLE 5.1: XP CODE EXECUTION SECURITY PERMISSIONS

BEHAVIOR HIGH MEDIUM MEDIUM-
LOW

LOW

Download Signed ActiveX Controls Disable Prompt Prompt Enable

Download Unsigned ActiveX Controls Disable Disable Disable Prompt

Run ActiveX Controls and Plug-Ins Disable Enable Enable Enable

Initialize and Script ActiveX Controls
Not Marked as Safe

Disable Disable Disable Prompt

File Download Disable Enable Enable Enable

Font Download Prompt Enable Enable Enable

Access Data Sources Across Domains Disable Disable Prompt Enable

Allow Meta Refresh Disable Enable Enable Enable

Display Mixed Content Prompt Prompt Prompt Prompt

Don't Prompt for Client Certificate Disable Disable Enable Enable

Drag and Drop or Copy and Paste
Files

Prompt Enable Enable Enable

Installation of Desktop Items Disable Prompt Prompt Enable

Launching Programs or files in an
IFRAME

Disable Prompt Prompt Enable

Navigate Subframes Across Different
Domains

Disable Enable Enable Enable

Software Channel Permissions High Safety Medium
Safety

Medium
Safety

Low Safety

Submit Non-Encrypted Form Data Prompt Prompt Enable Enable

Userdata Persistence Disable Enable Enable Enable

Active Scripting Disable Enable Enable Enable

Allow Paste Operations Disable Enable Enable Enable

Allow Paste Operations via Script Disable Enable Enable Enable

Scripting of Java Applets Disable Enable Enable Enable

Now it's time to turn our attention from this code-access security overview and see how to use
some important security tools.

Using the Framework Configuration Tool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Administrators can use various tools provided with .NET to manipulate security policies. The
.NET Framework Configuration Tool is an MMC snap-in; the Code Access Security Policy
Tool is a utility named caspol.exe.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 13

are two distinct objects but they have identical members and are otherwise identical internally,
including their data-clones, in other words). You use Equals, like this:

Dim obj1 As New Object
Dim obj2 As New Object
obj1 = obj2
If obj1.Equals(obj2) Then MsgBox(''They are the same.")

When a class inherits an object type, the Equals method is supposed to be overridden. You
provide a custom method to determine equality. Similarly, you should override the
GetHashCode method to ensure it remains consistent when two objects are equal.

Testing for equality can be tricky in computer programming because the idea of "equality"
(two objects holding an equal value, such as 2.114) can be confused with "identity" (two
object variables pointing to the same object). The Equals method simply compares pointers,
but many classes over-ride this method to force it to compare values (for example, the Integer
class Equals method tells you whether two integer variables contain the same number).

ReferenceEquals

The System.Object type includes an additional equality testing method named
ReferenceEquals. It returns True if the two object variables being compared refer (point to an
identical address in memory) to the same object. ReferenceEquals cannot be overridden.
(Think of ReferenceEquals as doing the job of the traditional Is comparison operator in classic
VB.)

For example:

Dim l As Object
Dim m As Object
Dim n As New Object
 Console.WriteLine(Object.ReferenceEquals(l, m))
 m = n
 Console.WriteLine(Object.ReferenceEquals(m, n))
 Console.WriteLine(Object.ReferenceEquals(l, m))

results in:

 True (both refer to nothing—they are object variables but don't point to any object yet).
This can be very confusing because these are two different object variables, yet they
return equality.

 True (both m and n refer to the actual object n.N is an object because you instantiated it
with the New command).

 False (l remains an object variable that has not been pointed to any object).

(Notice the unusual use of the term Object in Object.ReferenceEquals. Where is this Object
ever instantiated so that you can use it in your source code? It's not. It's just there! Fortunately,
this syntax is extremely rare in VB.NET programming.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 130

In Control Panel, open Administrative Tools, then double-click Microsoft .NET Framework
1.1 Configuration (or it will be 1.0 if you don't have the latest version of .NET).

This tool contains a considerable collection of features for specifying how .NET security is
enforced (and for manipulating most other configurable aspects of .NET). For example,
choose the Applications node at the bottom of the tree and click the Add An Application To
Configure link; you'll see a list of .NET applications that have been executed on this machine,
as shown in Figure 5.2.

For an example of specifying particular permission sets (role-based) for users, click
Everything under User, then click the Change Permissions link and you'll see the Create
Permission Set dialog box shown in Figure 5.3.

FIGURE 5.2 Manage elements of individual .NET applications using this dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 5.3 Build your own .NET permission configuration with this dialog box.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 131

Or expand the Runtime Security Policy node and then expand the Enterprise, Machine, or
User policy nodes, and you'll see how to manipulate permission sets, code groups, or policy
assemblies.

If an administrator wants a simpler, though less specific, approach to specifying role-based
policies, choose Microsoft .NET Framework 1.1 Wizards in the Administrative Tools dialog
box in Control Panel. Then double-click the Adjust .NET Security icon and follow the
instructions the wizard gives you, as shown in Figure 5.4:

Return now, though, to the options available to you in the .NET Configuration 1.1 dialog box.
Right-click the Runtime Security Policy node, as shown in Figure 5.5:

NEW AND OPEN OPTIONS

The New and Open options are for testing policy settings, so you can see the effects without
actually committing to the policy. Perhaps you want to build a policy on your computer, then
when you've perfected it you can deploy it across your intranet. Or you want to view and test
previously saved policy files, or try out some new policies. For whatever reason, the New and
Open options permit you to experiment without necessarily committing the changes.

You can create a new policy and try out any of the adjustments available for .NET assembly
security, then right-click the Runtime Security Policy node, as shown in Figure 5.5, and
choose Evaluate Assembly to test your adjustments and see if there are any effects on one of
your .NET applications (assemblies) that is affected by the adjustment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 5.4 Administrators can adjust .NET security policies using this dialog box.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 132

RESETTING

You can choose the Reset All option (shown in Figure 5.5) to restore the default policies,
which are primarily defenses against code coming in from outside the local machine (Internet
or intranet). In case you decide that it's easier to modify existing custom policies than to start
over from scratch with the defaults, it's a good idea to first save the current policies before
choosing to reset.

ADJUSTING SECURITY

The Adjust Security option (shown in Figure 5.5) allows you to make large-scale adjustments
(as opposed to the more detailed changes you can make to specific sources or assemblies). Use
the Security Adjustment Wizard to make global adjustments to all assemblies from an entire
zone (such as the local computer zone or the intranet zone).

This Wizard is also good for quick responses to sudden security problems. You can use it to
slam some doors shut globally until you can ferret out the source of the problems.

Say, for example, that there's a wacky hacker in your office. You don't know who is peeping
into other people's files (is it Nicky? probably) but you're not yet positive that it's Nicky who's
been telling everyone details about the list of salaries that he found by running an application
located in accounting. You do need to take action before locking the suspect in a room with
the personnel director and the bright lights.

Run the Security Adjustment Wizard and slam Nicky's intranet freedoms shut temporarily.
You can do this by changing all code interactions from the intranet for Nicky's computer (and
leave the rest of the office's computers alone). Start the Wizard by right-clicking the Runtime
Security Policy node, as shown in Figure 5.5. Choose Adjust Security, then you see the
Wizard as shown in Figure 5.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 5.5 Choose several options from the Runtime Security Policy node.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 134

However, you may want to beef up security in your Web services and other Internet/intranet-
based applications. You may want to build in additional demands for validation, verification,
permissions, trust-levels, or authentication.

The danger spots if you're exposing your code to strangers are the openings, the places where
outsiders are allowed in. Just as you want to guard against entry via windows and doors in a
house, you want to prevent outsiders from misusing exposed methods in your code. You have
to also watch out for incoming data streams, network connections or other locations where
outsiders are allowed in, and are therefore sources of possible attack. Here are some ideas to
consider when writing a .NET program that you want to assure your customers is as safe as
you can make it:

Assume that your source code either will be directly available to the intruder or can be reverse
engineered. Don't, for example, embed secret keys—they likely won't be very secret. Also,
don't think that you've successfully ''hidden" security defenses within your code by making
them obscure, convoluted, or disguised.

You should take these measures—obscuration and disguise are important security techniques.
Make things as difficult as you can for hackers. Just don't rely on these tactics alone. There are
too many ways that an outsider can get hold of source code (the company is sold, consultants
request the code, someone carelessly leaves it lying around, and so on). Many security
problems are caused by insiders—disgruntled workers, or people who are fired. Also, what
you might think is a difficult, tricky maze can often be quickly solved by outsiders using
special tools that can provide them with lists of threads and call stacks instantly. Consider this:
Most people think that mazes are difficult to solve, but they actually aren't. All you have to do
to get through any maze is to always turn left at every junction. (You could always turn right,
as well, but the point is to consistently make the same turn.)

Also assume that hackers will test your public interface, rattling away at the bars on your
windows to see if anything comes loose. For example, you shouldn't assume that they'll
employ your methods by following the rules. Unexpected behavior is their stock in trade.

Some experts suggest that you always start off declaring all your members (properties,
methods, and so on)—and, indeed, entire classes—Private. Only later, and only when
compelled by the necessities of the communication needs of your application, should you
extend the members' and classes' scope to Friend or, if absolutely necessary, Public. If, for
example, a property must be exposed, don't make the property variable itself public. Instead,
force outsiders to pass through property procedures to get to the variable:

Private m_title As String
Public Property title() As String
 Get
 Return m_title
 End Get
 Set(ByVal Value As String)
 m_title = Value
 End Set
End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ensure—as much as possible—that incoming data is not going to foul things up. You can do
this in several ways: by insisting that the identity of the sender be verified via digital
signatures or other hashing, by verifying that the data is in the correct format (and otherwise
trustable), and by refusing

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 135

to accept input from any but expected sources. For example, in Windows, administrators can
specify read-only for certain files or directories—and you can take advantage of this fact to
prevent people from tampering with your incoming data. And, of course, watch any incoming
code especially carefully.

Finally, you can employ the built-in .NET CAS features to insist that a caller pass a test before
you allow them to employ a sensitive feature in your application. This test might be that they
provide a password, that they have a particular permission, or that they otherwise authenticate
themselves.

You could demand this test (which throws a security exception if the condition is not met—if
the caller doesn't have the specified permission) at the very beginning of your application's
execution path, during initialization. In that way, it functions as a kind of logon demand. Or
you could demand the test at key points within your classes or methods. Listing 5.2 is an
example.

LISTING 5.2: USING DEMAND TO TEST CALLER PERMISSION LEVEL
Imports System.Security.Permissions

Public NotInheritable Class SecurityCheck

 'instantiation of this class will require that they pass
 ' a parameter to the Sub New below (because THIS constructor is private)
 Private Sub New()
 End Sub

 'This is the only way the caller can instantiate this class:

 Public Sub New(ByVal password As String)

 'You can demand a particular password here, if you wish,
 'though this is minor protection given that source code is
 'where you would store the validation of this password.

 'Here next you validate the permission level of the
 ' caller (and any callers of the caller)
 'If the caller does not have unrestricted File I/O
 ' permissions, an exception is thrown here
 'during instantiation and this SecurityCheck object is never created.

 Dim p As New FileIOPermission(PermissionState.Unrestricted)
 p.Demand()

 ' Now we 've checked the caller (and all their callers too)
 ' have the necessary permission, we can get on with the
 ' business of setting up the database connection and other
 ' housekeeping tasks.
 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 137

Hackers try to accomplish two primary goals: mess things up using virii (or worms or other
variations on virii), or peep at private information to learn secrets. This chapter dealt with the
features that .NET has built in as defenses—and steps a programmer can take—to try to thwart
hackers from achieving their first goal.

In the next chapter, you'll learn to employ the other great aspect of security: hiding data and
protecting privacy via encryption. The .NET Framework offers you several quite powerful
encryption engines. Some of these technologies were not even legal only a few years ago;
they're so effective that the U.S. government banned them for fear that it couldn't eavesdrop on
the bad guys' wicked messages and nasty plots. Chapter 6 provides you with code you can
plug into your applications to add functionally unbreakable cryptologic protection for any
secrets you, or your customers, might have.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 138

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 14

The Main Point about Equality

If you need to test for value equality, you can rely on the = test in most ordinary programming.
To test for reference equality (two object variables point to the same object), you can use the
ReferenceEquality method. Take a look at this code:

Dim a As Object = 1
Dim b As Object = 2
 If a.Equals(b) Then MsgBox(''a.Equals b")
 'a = b
 If Object.ReferenceEquals(a, b) Then MsgBox("a.ReferenceEquals b")

If you run this you see no message box. Object a holds a value of 1 and object b holds 2, so
they are not "value equal." (If a = b Then would also fail.)

Remove the ' comment from a = b and you've assigned a to point to (to reference) the same
object as b, so the ReferenceEquals message box is displayed.

Change object a to = 2 and the value equals (.Equals) message box is displayed because now
the values held in these two objects are identical.

Note that in .NET objects are of two primary types: value and reference. Value types tend to
be simple and small (all the numeric types are value types: integers, byte, char, single, double,
boolean, decimal). Enum and structure are also value types. Value types execute faster.

When value types are compared for equality, the actual values (323 versus 62, for example)
are compared. When reference types are compared for equality, only the addresses (pointers)
where the objects sit in memory are compared. A reference equality means that two object
instances (two different object variables that point to an instantiated object) point to the same
object. It's like having two names for the same thing: President and Bush.

Reference types are larger and more complex: classes (and interfaces), arrays, and strings are
all examples of reference types.

As usual, these classifications are important because you sometimes need to know the
distinction between reference equality and value equality when you're writing a program. Also
as usual, there is an exception. Strings are technically reference types but in practice they
behave as value types: copying a string copies the actual string in memory (the value) not
merely the reference (the pointer to an address). And when you test for the equality of strings,
you are testing them as if they were value types—in other words, if two different strings hold
the same value, they return True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll be delighted to know that the experts have a term describing this hermaphroditic
behavior on the part of .NET strings: If a reference type now and then acts like a value type
(as strings do), then that type is said to possess "value semantics." Strings are technically
reference types, but in practice they behave as value types. Fun, isn't it? Merrily we go along
classifying this and that, happy little biologists that we are! Then we see a platypus laying an
egg. Reality, like programming linguistics, always seems to have a way of messing up our neat
little categories.

Technically, strings do not derive from System. Value Type, and they are also technically
passed by reference when used as an argument in a function (you don't see this, though; it all
goes on in some

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 140

automatically generated for you by the RSA encryption algorithm, as you will see later in this
chapter. With that approach, your only problem is guarding the keys from prying eyes.

.NET cryptography includes sophisticated hashing functions. Hashing produces a unique value
from a set of bytes. Hashing can be used to uniquely identify messages and various other
objects. For example, a hash value for an assembly provides a unique ID number that can be
used to prevent name-space collisions. Hash values can be used instead of digital signatures to
authenticate information.

For our purposes, hashing can be used to translate a user's password into a unique key to be
used for certain kinds of encryption and decryption. A hash value is extremely sensitive—
changing merely a single bit in the source bytes results in a totally different hash value. Take,
for example, the different hash values for hand and hang:

hand 150,33,162,68,164,71,236,116,149,152,248,50,117,96,255,134,9,94,44,38
hang
130,78,230,138,140,129,113,112,135,212,49,214,107,110,250,168,182,49,71,205

As you can see, changing a single character vibrates through the entire structure, affecting
everything. Even changing a single bit would have an extensive effect on the result. This
effect is quite useful because it makes deducing the original submitted bytes from the output
hash value extremely difficult. And you don't want intruders deducing your password should
they come upon your hash value.

Here are the Imports statements you need for the examples in this chapter:

Imports System.Security.Cryptography
Imports System.Text
Imports System.IO

If you want to use the strongest encryption offered by .NET, you must have the ''high
encryption pack." If you have XP, Internet Explorer 5.5 or later, or Windows 2000 with
Service Pack 2, then high encryption is already in your operating system. Otherwise,
download it from the Microsoft website. Without this update, key lengths are restricted. Key
length plays a big part in how secure encryption systems can be.

NOTE For many years the government attempted to prevent strong encryption algorithms from
public use, on the theory that criminals and foreign agents would be able to communicate free
from government eavesdropping. However, restrictions were eventually lifted, hence the
strong encryption pack from Microsoft.

Hashing a Password

And here's a function (Listing 6.1) that returns a 20-byte array containing a hash value for
whatever password you provide to it:

LISTING 6.1: GETTING A HASH VALUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim k() As Byte 'hold the returned hash value (20 bytes returned)
 k = makehash("morph")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 141

 'display the hash value:
 For i As Integer = 0 To 19
 Console.Write(k(i) & '',")
 Next

End Sub

Public Function makehash(ByVal password As String) As Byte()

 ' Byte array to hold password
 'the size of this array affects the hash value
 Dim arrByte(password.Length - 1) As Byte

 'translate password into a byte array of ASCII values:
 Dim AscVals As New ASCIIEncoding
 Dim i As Integer = 0
 AscVals.GetBytes(password, i, password.Length, arrByte, i)

 Dim hashSha As New SHA1CryptoServiceProvider
 'Get the hash value of the password
 Dim arrhash() As Byte = hashSha.ComputeHash(arrByte)
 Return arrHash

End Function

Notice that it does matter what size byte array you feed into the ComputeHash method.
Trailing spaces count. The strings "hope" and "hope " return different hash values.

Also, no matter what or how many source bytes you feed to a hash function, it always returns
a predetermined number of bytes for its hash value. You can stream an entire file or a large
assembly into a hash function, not merely a little password. But if you use the SHA1
algorithm, you always get back 20 bytes as your hash value, no matter how large the file you
feed in. Here are the classes you can use in .NET to get hash values, along with number of
bytes returned as the hash value:

Class name Hash Value Size in Bytes
SHA1CryptoServiceProvider 20
SHA256Managed 32
SHA384Managed 48
SHA512Managed 64
MD5CryptoServiceProvider 16

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 142

Nearly everyone, including banks and the government, uses the SHA1 version, and we'll stick
with it in this chapter as well. Although you get 20 bytes from SHA1, you need not use them
all when providing a key to an encryption/decryption function, but in general the longer the
password and key the more secure the encryption becomes. However, you must provide an
identical hash value, the same number of bytes (the first eight, for example), to both the
encryption and decryption functions. This requirement applies to what is called a symmetric
encryption routine, which is the first type of routine we'll deal with in this chapter. It's called
DES (Data Encryption Standard) and is a famous and frequently used contemporary
encryption system.

The versions of SHA that offer larger values are designed to provide protection against brute
force attacks (a computer speeding through all possible keys, until one of them unlocks the
cipher-text). Roughly speaking, brute force attacks require exponentially greater time for each
bit you grow the key. A key of eight bits, for example, requires 28, but a key of nine bits
requires 29.

Hashing a File

One security danger is tampering. Someone might intercept a transmitted file or e-mail
message and change it. For example, they might grab their bank account file and change a
$100 deposit into a $100000 deposit. One way to ensure that no one has tampered with a file
or other message is to create a hash value for that file.

Hashing a file provides you with a kind of super checksum—remember, if even a single bit is
altered in the file, the file's entire hash value will then be quite different. Add some zeros to a
deposit and the file's hash value will be very different.

You can stream a file into the ComputeHash method. Listing 6.2 shows how.

LISTING 6.2: COMPUTING A HASH VALUE FOR A FILE
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim objFilename As FileStream = New FileStream(''c:\test.txt",
FileMode.Open, _
FileAccess.Read, FileShare.Read)
 Dim hashSha As New SHA1CryptoServiceProvider

 'Get the hash value of the file
 Dim arrhash() As Byte = hashSha.ComputeHash(objFilename)

 'display the hash value:
 For i As Integer = 0 To 19
 Console.Write(arrhash(i) & ",")
 Next

 objFilename.Close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 144

 'define an 8-byte key
 Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}

 'define an IV
 Dim Vector() As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

 'Create a file stream
 Dim fs As New FileStream(''c:\testFile.txt", _
FileMode.Create, FileAccess.Write)

 'create a byte array holding the message:
 Dim barray As Byte() = (New UnicodeEncoding).GetBytes _
("Marva Johnson writ into the stream..")

 Dim des As New DESCryptoServiceProvider
 'stuff the key & IV
 des.Key = k
 des.IV = Vector

 Dim desencrypt As ICryptoTransform = des.CreateEncryptor()

 'create a cryptostream, specifying DESencrypt
 ' as the transform (the encrypting scheme)
 Dim cryptostream As New CryptoStream _
(fs, desencrypt, CryptoStreamMode.Write)

 'save the encrypted file to the hard drive
 cryptostream.Write(barray, 0, barray.Length)

 cryptostream.Close()

End Sub

Public Sub decrypt()

 'define an 8-byte key
 Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}

 'define an IV
 Dim Vector() As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

 Dim des As New DESCryptoServiceProvider
 'stuff the key & IV
 des.Key = k

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 145

 des.IV = Vector

 'NOW BRING IT BACK IN AND DECRYPT IT

 'create the input file stream
 Dim fs As New FileStream(''c:\testFile.txt", FileMode.Open, FileAccess.Read)

 'create a decryptor from the crypto service provider
 ' (uses same key assigned earlier)
 Dim desdecrypt As ICryptoTransform = des.CreateDecryptor()

 'create a cryptostream for reading the file in, and decrypt its contents.
 Dim cryptostreamDecrypt As New CryptoStream _
(fs, desdecrypt, CryptoStreamMode.Read)

 'display the result
 MsgBox(New StreamReader _
(cryptostreamDecrypt, New UnicodeEncoding).ReadToEnd())

End Sub

Both the encrypt and decrypt procedures here are similar (DES is a symmetrical cryptographic
algorithm, after all). First you must create a couple of byte arrays to hold the key and
initialization vector (described below). For ordinary DES, the default size for both of these
arrays is eight bytes.

You're also going to use two types of streams, a regular file stream (fs here) and a
cryptostream that "wraps" around the filestream, thereby enciphering the stream. This use of
streams prevents you from having to actually store the plaintext on a disk file where it
becomes vulnerable to intruders. If you first store a plaintext on a hard drive in order to
encrypt it, even if you delete it when you're finished, the data is usually still there. All deleting
does is to remove the file's entry in the file allocation table. Even moderately sophisticated
intruders have no problem reading hard drives without benefit of the allocation table.

Of course, many times you'll find it a practical necessity to store plaintext on hard drives.
Nonetheless, cryptostreams and memorystreams offer you the option of operating on byte
arrays in volatile memory, for example, rather than committing your secrets to a disk file.
Instead you can just stream the output to the input of some other object.

In the above example, the plaintext is never committed to the hard drive, residing only in the
source code in this byte array:

'create a byte array holding the message:
Dim barray As Byte() = (New UnicodeEncoding).GetBytes("Marva Johnson writ into the
stream..")

After creating this byte array, you create a DES CryptoServiceProvider object and assign your
key and IV (initialization vector) to it. If you omit either the key or IV assignments, they are
concocted for you by the CryptoServiceProvider (the key and vector will contain random
values). If you are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 146

sending a message or storing a ciphertext (as here), you need to use the same key and
initialization vector for both the encrypting and decrypting processes. For example, if you
omit specifying the IV during decryption, a random IV will be supplied and as a result the first
four bytes of the restored plaintext will be wrong.

Finally, you define an ICryptoTransform object that embodies both encryption and decryption
methods and which contains the information about the key, the IV, and the encryption process
(DES here), as shown in Listing 6.4. You use this object with a cryptostream class and your
filestream (in this example) to actually encrypt the plaintext being streamed. Note that if you
didn't specify a filestream (fs) when defining the cryptostream, the cryptostream's Write
method wouldn't write to disk. The target could just as easily be a memorystream, for
example, rather than a filestream.

LISTING 6.4: USING A CRYPTOSTREAM
Dim desencrypt As ICryptoTransform = des.CreateEncryptor()

 'create a cryptostream, specifying DESencrypt
 ' as the transform (the encrypting scheme)
 Dim cryptostream As New CryptoStream _
(fs, desencrypt, CryptoStreamMode.Write)

 'save the encrypted file to the hard drive
 cryptostream.Write(barray, 0, barray.Length)

 cryptostream.Close()

The cryptostream object's constructor takes these arguments:

CryptoStream (Stream argument, ICryptoTransform transform, CryptoStreamMode mode)

The mode can be either read or write. When you press F5 to run this example, you get back
the original plaintext about Marva, but all that resides on the hard drive is the ciphertext

Understanding Initialization Vectors

The DES and other symmetrical encryption systems chain blocks of plaintext, and each block
provides a kind of feedback to the subsequent block in the chain. In other words, if you change
Marva to Darva, some or all subsequent bits that follow in the message will be affected by this
change. In DES, for example, the plaintext is broken up into eight-byte groups, or blocks,
which are each then manipulated as individual units. However, what about the first block? It
has no preceding block to provide the feedback needed to distort it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An initialization vector provides a fake block that gives simulated feedback to the first real
block of plaintext. All you need to remember, though, is not to use something plain and simple
as your initialization vector (such as all 1s). Instead, employ something that has a randomness.
Also, it's actually not important that you try to hide the IV from intruders. You can send it just
as it is to the recipient of your encrypted message (don't do this with your key, though—that
must remain secret).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 147

In the previous example (Listing 6.4), both the sender and recipient of the encrypted message
knew the IV (it can be hard-wired into the encryption/decryption software, for example, as it is
in the example). However, you could also permit it to be randomly generated by .NET (simply
don't assign an IV to the CryptoServiceProvider object, as with des.IV = Vector in the
example). If you don't assign an IV, one is randomly generated for you. However, if you take
this approach, you must prepend or append the IV to the message prior to transmission. Then
the recipient software strips off the IV, assigns it to the CryptoServiceProvider object, and
decrypts the rest of the ciphertext message.

Discovering Key Sizes

You cannot feed in just any size key to the .NET encryption routines. Each has a default size
(the largest size that particular algorithm permits), but you can set alternative, shorter key sizes
if you must. DES defaults to an 8-byte, but the Rijndael algorithm wants 16-, 24-, or 32-byte
keys.

If you need to find out which key sizes are required, just query the LegalKeySizes property.
You can request MinSize (the smallest permitted), the MaxSize (largest), or the SkipSize (the
increment). SkipSize tells you of any sizes available between the minimum and maximum
sizes. For instance, the SkipSize for the Rijndael algorithm is 8 bytes, hence the sizes 16, 24,
and 32. Note that the results are returned in bits, not bytes.

Here's how to query key sizes:

'create the TripleDES object
Dim des As New TripleDESCryptoServiceProvider()
Dim fd() As KeySizes
fd = des.LegalKeySizes() 'tells you the size(s), in bits
MsgBox(''minsize = "& fd(0).MinSize & Chr(13) & _
"maxsize = " & fd(0).MaxSize & Chr(13) & _
 "skipsize =" & fd(0).SkipSize)

Run this code and you get: 128, 192, 64. Here are the key sizes for the .NET symmetric
algorithms:

Algorithm Permitted Key Sizes Default
DES 64 bits 64
TripleDES 128, 192 bits 192
RC2 40–128 bits 128
Rijndael 128, 192, or 256 bits 256

Hashing while Encrypting

Encrypting your message keeps Eve the intruder from reading your secrets. But what prevents
her from modifying your message? How do you ensure the integrity of your transmission?
How do you know that you received what was sent?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recall that this tampering problem can be solved via hashing, and if you wish you can
combine hashing with encryption right in the same streaming operation. Here's an example. If
a single character

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 148

''r" in the ciphertext file is changed to "s," in "Marva Johnson writ into the stream.." the
resulting deciphered plaintext can look like this:

Marv hnsûn writ into the stream..

Mangled, but not destroyed. However, other situations demand that you do more than merely
eyeball a received message for oddities like this. After all, wire transfers, among other
messaging, demand accuracy and authentication. What's more, humans are often simply not
involved in the process of receiving encrypted messages, so there would be nobody there to
notice the strange word Marv hnsûn. Usually an encrypted message isn't actually read by a
human; instead, some software receives and processes the transmitted message. Hashing's the
answer because it immediately and accurately sets off an alarm if data has been tampered with,
no matter how slightly.

Listing 6.5 is a modification of the encrypt/decrypt source code used in a previous example in
this chapter that combines the cryptographic process, along with a hashing process, to ensure
both the privacy (encryption) as well as the integrity (hashing) of the message.

LISTING 6.5: COMBINING HASHING WITH CRYPTOGRAPHY
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 encrypt()
 decrypt()
End Sub

Public Sub encrypt()

 'define an 8-byte key
 Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}
 'define an IV
 Dim Vector() As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

 'Create a file stream
 Dim fsOUT As New FileStream("c:\testFile.txt", _
FileMode.Create, FileAccess.Write)

 'create a byte array holding the plaintext message:
 Dim barray As Byte() = (New UnicodeEncoding).GetBytes _
("Marva Johnson writ into the stream.")

 '******* GET THE HASH VALUE OF THE PLAINTEXT BYTE ARRAY:
 Dim sha1 As SHA1 = sha1.Create()
 Dim hashValue() As Byte = sha1.ComputeHash(barray)

 Dim des As New DESCryptoServiceProvider
 'stuff the key
 des.Key = k
 des.IV = Vector

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 149

 Dim desencrypt As ICryptoTransform = des.CreateEncryptor()

 '********* SAVE ciphertext and hashvalue
 'create a cryptostream, specifying DESencrypt
 ' as the transform (the encrypting scheme)
 Dim cryptostream As New CryptoStream(fsOUT, desencrypt,
CryptoStreamMode.Write)

 'save the CIPHERTEXT to the hard drive
 cryptostream.Write(barray, 0, barray.Length)

 'append the hash value
 cryptostream.Write(hashValue, 0, hashValue.Length)
 cryptostream.Close()
 fsOUT.Close()

End Sub

Public Sub decrypt()

 'define an 8-byte key
 Dim k() As Byte = {12, 13, 44, 22, 21, 44, 22, 128}

 Dim des As New DESCryptoServiceProvider

 'define the IV
 Dim Vector() As Byte = {2, 4, 46, 141, 8, 5, 99, 2}

 'stuff the key and IV
 des.Key = k
 des.IV = Vector

 'NOW BRING THE MESSAGE BACK IN AND DECRYPT IT

 'create the input file stream
 Dim fs As New FileStream(''c:\testFile.txt", FileMode.Open, FileAccess.Read)

 'create a decryptor from the crypto service
 ' provider (uses same key assigned earlier)
 Dim desdecrypt As ICryptoTransform = des.CreateDecryptor()

 'create a cryptostream for reading the file in, and decrypt its contents.
 Dim cryptostreamDecrypt As New CryptoStream _
(fs, desdecrypt, CryptoStreamMode.Read)

 'put the whole message into "m"

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 15

dark recess of the .NET netherworld). Up in the sunlight where we programmers reside,
strings are pretty much always treated just as if they were value types. For example, like all
other ''objects" passed as parameters in VB.NET, when you write any function, VB.NET fills
in ByVal automatically by default for every and any item in your function's argument list.

WHAT'S SHARED, WHAT'S STATIC?
Why don t you have to instantiate a Math object before using its methods, such as Abs or Max?
The actual answer is: just because.
But here's the technical rationale: You've probably seen the term static (or class member) used
with some methods in the documentation for C#, C++, and all the other C family of languages.
In VB.NET this same trick is achieved by using the Shared command.
Ordinarily, if you want to use a method of an object you have to instantiate the object first.
However, methods (or events, properties, or fields) declared as Static (in C languages) or
Shared in VB.NET can be "invoked on a class" (translated: used in your programs) without
your having to actually create an instance of that class. What? How can a property or method
be usable without any instance of its object? Isn't that rather similar to the idea of global
variables? Global variables so enrage professors of OOP that they've been known to shout
"Verboten!" and slap their pointer against the blackboard so hard it breaks.
One example of a Shared method is the Max method. It tells you which number is larger than
another. Sure, Max is a method of the Math class, but you don't have to instantiate a Math
object in order to use the Max method. No. It's one of those privileged "shared" (AKA static)
methods, so you can just use it in your code directly. C languages use the term instance to refer
to methods (or other members) requiring that you must first instantiate their object before
you're allowed to use the functionality of the members. We're figuring out what goes where,
aren't we? Isn't clerical work fun?

[Visual Basic] Overloads Public Shared Function Max(Byte, Byte) As Byte
[C#] public static byte Max(byte, byte);

You can't instantiate a Math object even if you wanted to. It's Private. This won't work:
Dim ma As New System.Math

You must instead just directly use the Math.Max method:
Dim x As Integer = 2 : Dim y As Integer = 4
MsgBox(Math.Max(x, y))

Shared members are an exception to the OOP rule that you're supposed to instantiate an object
before you can actually, you know, use it.

Into the Void: While we're on the topic of C terminology, what does the term
void mean? You see it quite often in the VB.NET documentation, though it's
not part of the VB language. If you see Public Static Void, don't be
alarmed. Void is just C#, which means: nothing is returned from this
procedure. In other words, the procedure is what we VB programmers would
call a Sub (as opposed to a Function). There's no returned value, for example:
Public Static Void Delete(string path).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 150

 Dim m As String = New StreamReader _
(cryptostreamDecrypt, New UnicodeEncoding).ReadToEnd()

 'now test the hash

 ' compute the hash value of everything but the hash in ms
 Dim sha1 As SHA1 = sha1.Create()
 'figure out the bytes needed
 Dim hashSize As Integer = sha1.HashSize / 8

 'create byte array and fill with the entire
 ' restored plaintext plus the hash values
 Dim sArray As Byte() = (New UnicodeEncoding).GetBytes(m)

 'calculate the hash value of the entire message
 ' (to compare with the transmitted one ''messageHashValue")
 Dim hashValue() As Byte = sha1.ComputeHash(sArray, 0, sArray.Length -
hashSize)

 Dim messageHashValue(hashSize - 1) As Byte
 Dim ms(sArray.Length - 1)

 'extract the appended hash value from the message array
 Array.Copy(sArray, sArray.Length - hashSize, messageHashValue, 0, hashSize)
 Array.Copy(sArray, 0, ms, 0, sArray.Length - hashSize)

 'compute plaintext
 Dim s As String = " Restored Plaintext Message:"
 For i As Integer = 0 To ms.Length - 1 Step 2
 s &= Chr(ms(i))
 Next i

 'compare hashValue and msHashValue

 For i As Integer = 0 To hashSize - 1

 If messageHashValue(i) <> hashValue(i) Then
 MsgBox("There has been an intrusion."& _
"The hash values are not identical."& s)
 Exit Sub
 End If

 Next
 MsgBox("The file has not been tampered with." & s)

End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 152

The RSA system (named after its creators, Professors Rivest, Shamir, and Adleman) uses a
particularly clever encryption process. RSA uses two keys, one of which is made public. This
is the first time in the entire history of cryptography that two different keys are used, one for
enciphering (the public key) and a different one for deciphering (the private key). Until the
RSA system was first suggested in the late seventies, no one had imagined that the key used to
decipher could be anything other than the key used to encipher (or at least a version of that
key).

For example, it seems essential that if the encipherment process involves moving, say, the
third character to the end of the message—then the decipherment process must move the last
character to the third position, to restore the plaintext. Another odd quality of the RSA system
is that it does not employ either substitution (use x to mean the letter f, for instance) or
permutation (switch the third character with the last character, for example). These are the two
classic encryption processes. Instead, RSA enciphers using purely mathematical manipulations
of the characters.

With the public-key RSA system, everyone knows the key that is used to encipher a message.
Everyone on your network usually has access to a list of everyone else's public key. And if an
outsider gets hold of this list, no harm done. Public keys do Eve no good. The second key, the
one that deciphers the message, is kept private, known only to the person receiving the
message (it's not even known to the person enciphering the message—all they need is your
public key). Hundreds of different people could use your public key to encipher plaintext and
send the resulting ciphertext messages to you. Then you use your secret key to decipher all
those messages. One implication of this system is that you need not exchange secret keys with
any of your communicants. Probably the single greatest weakness of traditional symmetric
systems (including DES) is that both the encipherer and decipherer must know the secret key.
So how do you transmit this secret key between these two people? You could encipher the
secret key, but that doesn't solve the problem, just moves things back one step—you'd still
have to exchange another key to unlock the enciphered first key.

The problem of key transfer is similar to the problem of transmitting the plaintext message:
just how do I get the key from me to you?

Managing traditional paired (symmetric) keys introduces a nasty clerical problem, too. How
do you provide key pairs for all people in a typical office? Each pair of people must have
different keys (otherwise they could all read each other's messages). And if your office is
networked, you have to generate many more keys than the simple number of people on the
network. Because each communicating pair requires its own unique key, if you have 150
people you have to provide 11,175 unique keys. There are that many possible pairs of
communicants in a network of 150 people. Obviously this isn't practical.

Several solutions have been developed to deal with this problem. One solution employs a key
distribution center in which a DES key for each person is saved on the network in a central,
secure repository. When Alice wants to send a ciphered message to Bob, a temporary DES
session key is generated, then the temporary key is itself enciphered using Alice's stored key
and the result is sent to Alice. Likewise, the temporary key is enciphered using Bob's stored
key and the result sent to Bob. When each temporary key arrives at its destinations, it is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

key and the result sent to Bob. When each temporary key arrives at its destinations, it is
deciphered by both Alice and Bob. Now both communicants have the same key, which is then
used to encipher and decipher the message.

If you encrypt multiple messages using the same key, you weaken the encryption system.
Using a key distribution center makes it easy to generate a temporary key for each new
message, and also avoids giving an Eve cryptanalyst the advantage of having several messages
enciphered with a single key. Another obvious benefit of dynamic key generation is that even
if an intruder were to somehow

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 153

get hold of a key, this still wouldn't lead to a major breach in security. Only a single message
or session is compromised. These temporary keys are sometimes called session keys because
they are used for a single communication session, then discarded.

But the best solution to the key problem is the public key method, because you neither have to
transmit a secret key between two parties nor generate a unique key for each communication.
If your network has 150 people, for example, you need to generate only 300 keys, one public
key and one private key for each member of the network.

The public and private keys work together to unlock a message, like the way you open your
safe deposit box by inserting two keys: you insert your key and the teller inserts the bank's
key.

Public key encryption is deep and strong. The plaintext is quite gone. The RSA public key
system works because some kinds of math operations are very easily accomplished in one
direction, but functionally impossible in the other direction.

Let's quickly generate an actual public key using the RSA algorithm (which produces an XML
string containing the key):

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim rsa As RSACryptoServiceProvider = New RSACryptoServiceProvider

 Dim publicKeyOnly As String = rsa.ToXmlString(False)

 Console.WriteLine(publicKeyOnly)
End Sub

The result I get is this:

<RSAKeyValue>
<Modulus>qJ9CevDiMmPsMHzkb1AmWc5s0j/+Zsv+mrMZskmJ/VXl9b/Tgb96mR0tm5moSeChY8ISF2ou3F
5fXvE4qax9OJaC8fbZfgf8WA9dPTm6J6CuYRlHb03QD5uFV/ATZ2T8SLu0XkzwThuS2PngyojKIm+AQjYhl
23t7bfmMEkwtvs=
</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>

Your result will differ. The key is randomly generated. The RSA system permits keys to be
anywhere between 384 to 16,384 bits in 8-bit increments. However, the default key size is
1,024 bits.

How RSA Works

RSA depends on a math operation that is in a category called trap doors. They are named after

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RSA depends on a math operation that is in a category called trap doors. They are named after
the trick doors in the floor of a theatre stage through which Hamlet's ghost, for example, can
slowly rise up through the fog. To the actor below stage waiting for his entrance, the elevator
lift and the hinges and sliders make it quite obvious where the trapdoor is in the stage floor.
However, to people onstage, the door is barely visible—it blends into the floor around it.

The idea of a trap door mathematical process is that some things can be easily accomplished in
one direction, but are very difficult, if not practically impossible, to reverse. It's easy, for
example, to

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 154

run a tree through a chipper and reduce it to sawdust. It's impossible to restore the tree from
that pile of sawdust and chips. Trap door processes are also called one-way functions.

RSA employs the trap door involved when two very large prime numbers are multiplied.
When you multiply two large prime numbers, it is very hard to figure out which primes were
multiplied if all you have is the result of the multiplication.

When the numbers involved are small, of course, it's not hard at all to figure out which two
primes were multiplied. Consider the number 15. It's pretty easy to figure out that 3 and 5 are
the primes multiplied to get 15. But with large primes it's essentially impossible to figure out
the factors.

The system works because when you multiply one prime by another prime, the resulting
number cannot be produced by multiplying any other pair of primes. Therefore, there is only
one possible pair of primes that, when multiplied, can produce this particular result. It is not
practical—takes way too much time—to factor the result of multiplied primes to figure out
which pair of prime numbers were multiplied to produce that result. The public key is the
result of this multiplication of large primes. Only one person, the recipient of the message,
knows the correct private key, and that private key is the two primes that were multiplied to
produce the public key.

NOTE Theoretically, someone brilliant or lucky could figure out an algorithm that would
factorize the public key into its prime factors with reasonable efficiency (in other words, would
get the private key prime factors before the universe ends). So far, however, nobody has.
Estimates are rough, of course, but current brute force attempts to crack 1,024-bit long RSA
private keys require around 90 million Mips-years. Mips means a million processor
instructions per second. Imagine what a Mips~year must represent. Perhaps if quantum
computing is achieved, or some new Fermat works out a mathematical solution to the
factorizing problem, we'll have to come up with a better system than RSA. For now, it works.

The code in Listing 6.6 encrypts a message using RSA, then decrypts it.

LISTING 6.6: ENCRYPTION AND DECRYPTION USING THE PUBLIC KEY SYSTEM
Imports System.Security.Cryptography
Imports System.Text

 Dim xmlKeys As String 'holds the public and private keys
 Dim xmlPublicKey As String 'holds the public key only

 'holds plaintext, then the encrypted version (in the encryptRSA procedure)
 Dim plainTextinBytes As Byte()

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 'generate public and private keys
 Dim rsa As New RSACryptoServiceProvider

 'save both public and private keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'save both public and private keys

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 155

 ' in global variable for use in decryption procedure
 xmlKeys = rsa.ToXmlString(True)

 'save only public key for use in encryption procedure
 xmlPublicKey = rsa.ToXmlString(False)

 encryptRSA()
 decryptRSA()

End Sub

Private Sub encryptRSA()

 Dim rsa As New RSACryptoServiceProvider

 'import public key:
 rsa.FromXmlString(xmlPublicKey)

 Dim message As String = ''Drastic weather changes experienced in 1915"

 'turn message into a byte array:
 plainTextinBytes = (New UnicodeEncoding).GetBytes(message)

 'PlainTextinBytes.Length = 86 bytes going into the encryption
 Try
 ' Encrypt
 plainTextinBytes = rsa.Encrypt(plainTextinBytes, False)
 Catch e As CryptographicException
 MsgBox(e.ToString)
 End Try

 'PlainTextinBytes.Length = 128 bytes after encryption

 'see it enciphered:
 For i As Integer = 0 To plainTextinBytes.Length - 1
 Console.Write(Chr(plainTextinBytes(i)))
 Next i

 Console.WriteLine()
End Sub

Private Sub decryptRSA()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 156

 Dim rsa As New RSACryptoServiceProvider

 'import the keys from the XML string global variable
 'this recreates an identical RSA object to
 ' the one used to create the keys (in the Form_Load event above)
 rsa.FromXmlString(xmlKeys)

 Dim decryption As Byte() = rsa.Decrypt(plainTextinBytes, False)

 'see it deciphered:
 For i As Integer = 0 To (decryption.Length - 1) Step 2
 Console.Write(Chr(decryption(i)))
 Next i

End Sub

Here's how this example works. To simulate the relationship between the encryptor and
decryptor, I set up two global variables to hold the keys. The decryptor (the person who
receives the RSAencrypted ciphertext message) needs to know both the public and private
keys. The encryptor knows only the public key.

An RSACryptoServiceProvider object can either generate or import just the public key, or the
public/private key pair. It creates a public key when you execute the ToXMLString method
with its argument set to False. It creates a public/private key pair when that argument is set to
True. When you execute the FromXMLString method, you cause an
RSACryptoServiceProvider object to make a clone of the RSACryptoServiceProvider object
that originated the keys.

Recall that when using DES or other symmetrical algorithms, you can specify the key by
simply making up a value, translating it into a byte array, then assigning that array to the Key
property of the DES object. However, with the RSA system, you must do a little more key
management. First, the decryptor (the person receiving the ciphertext) generates a
public/private key pair using the ToXmlString method. This pair works together, and only
these two values will work together. When generated, the keys are in a string in XML format.
The public key of this pair is, you guessed it, made public. It's perhaps listed in a file or
otherwise published. The encryptor (the person sending the message) gets a copy of the
decryptor's public key. The encryptor then imports this public key into the RSA object,
thereby permitting the RSA object to correctly encrypt the message.

Encrypting and Decrypting using RSA

Here are the steps taken in Listing 6.6 to ''pass" the public key to the encryptor (message
sender), retain the public/private key pair by the decryptor (message receiver), encrypt, and
finally decrypt the message:

1. The decryptor (recipient) generates a public/private key pair (put into an XML string)
with this code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim rsa As New RSACryptoServiceProvider
 xmlKeys = rsa.ToXmlString(True)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 157

2. The decryptor saves this XML string (xmlKeys) for later use when the ciphertext is
received.

3. The decryptor generates a public-key-only XML string using this code:

 xmlPublicKey = rsa.ToXmlString(False)

4. The decryptor sends the public key to the encryptor. The encryptor needs only the public
key to accomplish the encryption. The encryptor assigns (imports) the public key (an
XML string) to the encryptor's RSA object, using the FromXmlString method:

 Dim rsa As New RSACryptoServiceProvider

 'import public key:
 rsa.FromXmlString(xmlPublicKey)

5. The encryptor now uses the public key to translate a byte array containing the plaintext
message into a byte array holding the encrypted message:

 plainTextinBytes = rsa.Encrypt(plainTextinBytes, False)

The False argument when you use this Encrypt method specifies which padding
algorithm you want to use (padding is necessary because the RSA algorithm wants
specific-sized blocks to work with—so random numbers are generated by the
RSACryptoServiceProvider object when you use the Encrypt method). A more
recent, but some say compromised, padding technique, OAEP, is used if you set the
Boolean flag to True. I set it to False to use the older but tried-and-true PKCS#1
v1.5 (Public Key Cryptography Standards) padding. Whichever padding you
choose, be sure that you use it for both the encryption and decryption (set the flag
argument the same way). Note that OAEP only works under XP.

6. The encrypted byte array is sent to the decryptor (recipient).
7. The decryptor creates a new RSACryptoServiceProvider object, but ensures that it's a

clone of the one that generated the public/private key pair. This cloning takes place if the
public/private keys held in the XML string are fed to the new
RSACryptoServiceProvider object using the FromXMLString method:

 Dim rsa As New RSACryptoServiceProvider

 rsa.FromXmlString(xmlKeys)

8. Now the decryption can take place:

 Dim decryption As Byte() = rsa.Decrypt(plainTextinBytes, False)

And you've got the original plaintext restored in a byte array.

In the example code, the ciphertext is displayed in the output window (it blows up to 128
bytes after the padding). Then after the decryption, the restored plaintext is sent to the output
window. To simulate the transmission of the public key from the decryptor to the encryptor—
and the transmission of the ciphertext from the encryptor to the decryptor—I just use a couple
of global variables in this example code. Also, I persist the public/private key needed by the
decryptor in another global variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 16

When you run across strings and objects behaving strangely, just relax. The string and object
types—I'm not talking here about every kind of object, but rather the actual object type, as in:
If Object.ReferenceEquals(a, b) Then—are special. They are exceptions to the
''reference type" rules. They are treated differently by .NET. They are called "built-in
reference types" and this means they are supposed to behave more like the good old built-in
integers and booleans and other familiar data types. (But don't be fooled; the built-in object
type is a pretty odd bird.) Speaking of odd birds, consider the Shared member, described in the
sidebar titled "What's Shared, What's Static."

GetHashCode

GetHashCode returns a number unique to the object. Think of it as a kind of GUID, a
computergenerated number intended to uniquely identify a particular object. The .NET
hashcode for the string "Helen," for example, is always 222703087, but the hashcode for
"Helex" is 222703097. Store "Helen," however, in two separate string variables and you get
the same HashCode (as you should). Some books claim that different objects containing the
same value result in different hashcodes. This is incorrect; sometimes you get the same
hashcode, sometimes not.

Hashcodes are used two ways in .NET. A simple hashcode such as the one generated for
Helen can be used as a unique index number to check for duplicate values when an object is
added to a collection or hash table. This is useful to prevent duplicate entries, which are
forbidden in a primary key field, for example. Unfortunately, though, the GetHashCode
method as implemented in System.Object is relatively useless because unpredictable.

In general, inheriting classes override this GetHashCode method, and also override the Equals
method at the same time. Not only can they thereby provide more useful hashcodes, but can
simultaneously ensure that objects that are equals also return the same hashcode.

A more sophisticated hashing algorithm is used in the .NET Security assembly, and it can be
used quite effectively to generate unique keys from text passwords. This use of hashing is
explored in Chapter 6.

GetType

The GetType method returns a data or object type. .NET maintains metadata (information
about information, like the signs in a bookstore categorizing the books: Philosophy, Cooking,
and so on). In a .NET assembly, each object is stored with a description of its nature and
relationships. GetType can be used in your programming if you need to figure out the type of
an object:

Dim xn As Type = s.GetType

For additional information on how to use GetType in reflection—a technology that takes
advantage of metadata—see Chapter 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToString

The final fundamental method inherited from System.Object is ToString, and you know what
that does. Often overridden, ToString is also automatically invoked behind the scenes when
you use common commands such as Console.WriteLine or MsgBox.

ToString transforms some objects' names or qualifications into strings so they can be seen in
message boxes or in the output window or otherwise viewed. I say some objects because in
certain situations, ToString is optional. Read on.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 160

printing process, you call the PrintDocument object's Print method, which doesn't produce any
output but raises the PrintPage event. This is where you must insert the code that generates
output for the printer. You can use any drawing methods of the System. Drawing class to
generate the graphics elements on the page. The current page is printed when the PrintPage
event handler terminates. The following statement initiates the printing; it's usually placed in a
button's or a menu's Click event handler:

PrintDocument1.Print

To experiment with simple printouts, create a new project, place a button on the form, and add
an instance of the PrintDocument object to the project. Then enter the previous statement in
the button's Click event handler. After calling the Print method, the
PrintDocument1_PrintPage event handler takes over. The signature of the PrintPage event
handler is shown next:

PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles PrintDocument1.PrintPage

The second argument exposes all the properties you need to access the printer. The Graphics
property represents the printer's page, which is where your output will be sent. The
MarginBounds property contains information about the printable area of the page (basically,
the user-specified margins, which you must take into consideration in your printing code) and
the PageSettings property contains information about the page you're printing on (the size of
the page, its orientation, margins, and so on). The properties of the PageSettings object include
the PrinterSettings, which is another object that contains information about the printer—the
settings specified by the user on the Printer Setup dialog box. You'll see how to use these
properties, and how to display the corresponding dialog boxes, shortly. But first, let's generate
a simple printout. Start a new project, place a button on the form, and then drop an instance of
the PrintDocument control on the form. In the button's Click event handler, enter the following
statements:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 PrintDocument1.Print()
End Sub

The code that will generate the printout must reside in the PrintDocument object's PrintPage
event handler. The statements shown in Listing 7.1 will print a rectangle that encloses the
printable area of the page and a short string within the rectangle. Insert them in the PrintPage
event handler, then run the application and click the button to generate the printout.

LISTING 7.1: A VERY SIMPLE PRINTOUT
Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles PrintDocument1.PrintPage
 Dim G As Graphics = e.Graphics
 Dim X, Y, W, H As Integer
 X = e.MarginBounds.X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 X = e.MarginBounds.X
 Y = e.MarginBounds.Y

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 161

 W = e.MarginBounds.Width
 H = e.MarginBounds.Height
 G.DrawRectangle(Pens.Blue, New Rectangle(X, Y, W, H))
 Dim prnFont As New Font(''Comic Sans MS", 36, FontStyle.Regular)
 G.DrawString("Printing with VB.NET", prnFont, _
 Brushes.Green, 150, 300)
 G.DrawString("Sample Printout", _
 New Font("Verdana", 16, FontStyle.Regular), _
 Brushes.Gray, 10, 10)
End Sub

The PrintPage event handler shown in the listing produces the page shown in Figure 7.1. The
first statement creates a Graphics variable and stores there the Graphics object that represents
the printing surface. The following few statements extract the origin and the dimensions of the
printable area of the page. These settings are retrieved from the MarginBounds property of the
PrintPageEventArgs argument of the event handler. The default margins are one inch on
every side; you'll see shortly how you can allow users to specify different margins with the
Page Setup dialog box.

The DrawRectangle method draws the rectangle that encloses the printable area of the page.
The dimensions of the rectangle are specified in the default units of the printer's Graphics
object, which are hundredths of an inch. The DrawString method draws a string with the
specified brush and the specified font. The first call to the DrawString method prints a string
within the page's margins, while the second call to the same method prints a string outside the
margins. You can draw anywhere on the Graphics object, regardless of the margins. It's your
responsibility to impose the margins and make sure that your graphics elements are limited
within the area of the MarginBounds property. The syntax of the drawing methods is the same,
whether you're drawing on a PictureBox control or printing on a page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 7.1 The output of the sample code, shown at 50% of its actual size

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 163

PaperSize Returns a PaperSize object that represents the size of the paper in the
selected bin. The paper's dimensions are the same as the ones returned by the
Bounds property. In addition to the dimensions of the paper, the PaperSize object
exposes two more interesting properties, the Kind and PaperName properties. The
Kind property returns a member of the PaperKind enumeration (Letter, B5
Envelope, etc.), while the PaperName property sets or returns the name of the paper
for custom sizes.
PaperSource Returns a PaperSource object that represents the currently selected
tray on the printer. For printers with a single tray, the PaperSourceName property of
the PaperSource object is ''Auto Sheet Feeder."
PrinterResolution Returns a PrinterResolution object that represents the printer's
resolution. The X and Y properties of the PrinterResolution object return the current
horizontal and vertical resolutions respectively in dots per inch. The Kind property
of the PrinterResolution object exposes in turn several properties, including the
Low, Medium, High, Custom, and Draft properties.
PrinterSettings Returns a PrinterSettings object that represents the properties of the
printer. Use this property to read the properties set by the user on the Printer Setup
dialog box, or set the same properties from within your code. The properties of the
PrintSettings object are described in the following section.

The PrinterSettings Object

The PrinterSettings object exposes the following properties, which you can use to retrieve the
properties of the current printer.

InstalledPrinters A method that retrieves the names of all printers installed on the
computer, as well as the names of any remote printers to which the computer has
access. The same printer names also appear in the Print dialog box, where the user
can select one of the available printers.
CanDuplex A read-only property that returns a True/False value indicating whether
the printer supports double-sided printing. This feature won't affect your printing
code; you'll print the pages as usual and the printer will print them on the
appropriate side of each page.
Collate Another read-only property that returns a True/False value indicating
whether the printout should be collated or not. This setting entails no changes in
your code.
Copies A numeric property that returns, or sets, the requested number of copies of
the printout.
DefaultPageSettings The PageSettings object that returns, or sets, the default page
settings for the current printer. We usually assign the PageSettings property of the
Page Setup dialog box to the DefaultPageSettings property of the PrintDocument
object.
Duplex The property that returns or sets the current setting for double-sided
printing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FromPage,ToPage The printout's starting and ending pages, as specified in the
Print dialog box by the user.
IsDefaultPrinter Returns a True/False value indicating whether the selected printer
(the one identified by the PrinterName property) is the default printer. Note that
selecting a printer other than the default one in the Print dialog box doesn't change
the default printer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 165

FIGURE 7.2 The Page Setup dialog box

To display this dialog box, drop the PageSetupDialog control on the form and then call its
ShowDialog method. Before showing this dialog box, you must set the PageSettings property.
You can create a new PageSettings object, set its properties, and then assign this object to the
PageSettings property of the PageSetupDialog control. We usually assign to this property the
DefaultPageSettings property of the PrintDocument object. After the user closes the Page
Setup dialog box with the OK button, assign the control's PageSettings object to the
DefaultPageSettings object of the PrintDocument object, to make the user-specified settings
available to our code. Here's how we usually display the dialog box from within our
application and retrieve its PageSettings property:

With PageSetupDialog1
 .PageSettings = PrintDocument1.DefaultPageSettings
 If .ShowDialog().DialogResult = OK Then _
 PrintDocument1.DefaultPageSettings = .PageSettings
End With

The PrintDialog control displays the standard Print dialog box, shown in Figure 7.3, which
allows users to select a printer and set its properties. If you skip this dialog box, the output will
be sent automatically to the default printer and the default settings of the printer will be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 7.3 The Print dialog box

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 166

The printer selected on this dialog box automatically becomes the active printer; you don't
have to insert any code to switch between printers. In addition to listing the available printers,
this dialog box allows the user to specify the range of pages to be printed and the number of
copies. Skipping a number of pages is straightforward—you simply perform all the
calculations, but you skip the statements that actually print on the page. This means that
printing just the last page of a document will take as long as printing the entire document. If
your report is made up of a fixed number of rows per page, you can easily skip a number of
pages by ignoring the number of rows that will fit in the first so many pages (e.g., if you're
printing 25 rows per page, you can skip the first three pages by simply ignoring the first 75
rows).

Some of the options on the Print dialog box are not enabled by default. In the Print Range
zone section, only the All option is enabled. To allow the user to print the currently selected
section of the document, set the control's AllowSelection property to True. Likewise, to enable
the Selection option, set the control's AllowSomePages property to True. Another interesting
property of the PrintDialog control is the ShowNetwork property, which determines whether
the dialog box allows the user to select a non-local printer (a printer connected to a different
computer on the network). The following statements display both the Print and Page Setup
dialog boxes. All print range options on the control are enabled, and the Page Setup dialog box
is displayed only if the Print dialog box is closed with the OK button. If the Page Setup button
is also closed with the OK button, the program starts printing by calling the Print method of
the PrintDocument object.

PrintDialog1.PrinterSettings = _
 PrintDocument1.DefaultPageSettings.PrinterSettings
PrintDialog1.AllowSelection = True
PrintDialog1.AllowSomePages = True
If PrintDialog1.ShowDialog = DialogResult.OK Then
 PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
 If PageSetupDialog1.ShowDialog = DialogResult.OK Then
 PrintDocument1.DefaultPageSettings = _
 PageSetupDialog1.PageSettings
 PrintDocument1.Print
 End If
End If

To summarize, before displaying the Print dialog box, you must set the PrinterSettings
property. Unless you want to create a new PrinterSettings object, you will assign the
DefaultPageSettings. PrinterSettings property of the PrintDocument object to the
PrinterSettings property of the PrintDialog control. Likewise, before showing the Page Setup
dialog box, you must set its PageSettings property to the DefaultPageSettings of the
PrintDocument object. When the Page Setup dialog box is closed, we retrieve the settings
specified by the user on this control and assign the control's PageSettings property to the
PrintDocument object's DefaultPageSettings property.

The third of the printing controls is the PrintPreview control. The Print Preview dialog box
displays a preview of the printed document. This dialog box exposes a lot of functionality and
allows users to examine the output, and, when they're happy with it, they can send it to the
printer. The PrintPreview dialog box, shown in Figure 7.4, is made up of a preview pane, in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printer. The PrintPreview dialog box, shown in Figure 7.4, is made up of a preview pane, in
which you can display one or more pages at the same time at various magnifications, and a
toolbar. The buttons on the toolbar allow you to select the magnification, set the number of
pages that will be displayed on the preview pane, move to any page of a multi-page printout,
and send the preview document to the printer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 167

FIGURE 7.4 The Print Preview dialog box

Once you've written the code to generate the printout, you can easily direct it to the
PrintPreview control. You don't have to write any additional code; just place an instance of the
control on the form and set its Document property to the PrintDocument control on the form.
Then call the control's ShowDialog method, instead of the PrintDocument object's Print
method:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

After the execution of these two lines, the PrintDocument object takes over. It fires the
PrintPage event as usual, but it sends its output to the preview dialog box, and not to the
printer. The dialog box contains a Print button, which the user can click to send the document
being previewed to the printer. The exact same code that generated the preview document will
also print the same document on the printer.

The PrintPreview control will save you a lot of paper and toner while you're testing your
printing code, because you don't have to actually print every page to see what it looks like.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printing code, because you don't have to actually print every page to see what it looks like.
The same PrintPage event handler of the PrintDocument object will generate both the actual
printout and the document preview. In other words, you don't have to duplicate code. If the
user is satisfied with the appearance of the printout, they can click the Print button at the top of
the PrintPreview control to send the document to the printer. The Print Preview option adds a
professional touch to your application; there's no reason why you shouldn't add this feature to
your projects. In the examples in this section, we'll use this control to display the printouts on
the screen.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 169

shortly, and we'll review the basic methods for printing strings in the following section. The
simplest form of the DrawString method accepts as arguments the string to be printed, a Font
and a Brush object that determine how the string will be rendered on the Graphics object, and
the coordinates of the string's upper-left corner:

Graphics.DrawString(str, tFont, tBrush, X, Y)

Some overloaded forms of the DrawString accept an additional argument, which is a System.
DrawString.StringFormat object. The StringFormat object sets the alignment, rotation, and a
few more properties that determine the appearance of the string. To print a string at a specific
location on the page and specify a different alignment, use the following statements:

Dim strFormat As New System.Drawing.StringFormat()
strFormat.Alignment = StringAlignment.Far
e.Graphics.DrawString(str, pFont, pBrush, _
New RectangleF(100, 200, 150, 50), strFormat)
e.Graphics.DrawRectangle(pPen, New Rectangle(100, 200, 150, 50))

Change the Alignment property of the strFormat variable to print the same string in the
same rectangle with different alignments. The last statement prints a rectangle that outlines the
area in which the string will appear.

If the rectangle specified in the DrawString method isn't tall enough for the entire string, then
the string will be printed partially, as shown in the last box of the first column in Figure 7.5.
Notice that only part of the string is printed (and you can't tell how many lines of text are
missing). To prevent a line from being partially printed, set the FormatFlags property of the
StringFormat object to StringFormatFlags.LineLimit, as shown in the following statement:

strFormat.FormatFlags = StringFormatFlags.LineLimit

This flag will cause the DrawString method to print only as many lines of text as can fit in
their entirety in the specified rectangle. We'll use this property to prevent the partial printing of
the last line on a page.

The StringFormat property has a few more interesting settings. The Alignment property
determines the horizontal alignment of the string and its settings are the members of the
StringAlignment enumeration: Far (right aligned), Center, and Near (left aligned). The
LineAlignment property determines the vertical alignment of the string, and its settings are
also the members of the StringAlignment enumeration. The member Far causes the string to be
aligned at the top of the corresponding rectangle, while the Near member causes the string to
be aligned at the bottom of the corresponding rectangle.

To fully control the appearance of the text on the page, you need to know the arrangement of
the text in a rectangle. If you're printing plain text, this rectangle is the entire page, minus the
margins. If you're printing a tabular report, this rectangle is the cell in which the text must fit.
In other words, you need to know how the DrawString will break the specified string into
multiple text lines. We usually know the width of the rectangle in which the text will appear,
but we need to calculate the height of the rectangle. The MeasureString method accepts the
same arguments as the DrawString method, but it doesn't print anything. Instead, it reports the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same arguments as the DrawString method, but it doesn't print anything. Instead, it reports the
number of characters that will fit in the specified rectangle and the number of text lines that
will fit vertically in the rectangle. The simplest syntax of the MeasureString method is shown
next:

Public Function MeasureString(str, fnt) As SizeF

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 17

Strong Typing Weakens

For a decade, many VB programmers used a quick debugging technique of printing variables
directly on a form to see their values. This convenience is missing in VB.NET (you can't print
on a form with a simple Print command). Instead, to see variables you have to use either a
MessageBox or Console .Writeline to see results in the Output window. This has resulted in
some modifications to the strict rules governing the message box.

People were getting a little annoyed at having to type MessageBox.Show (x.ToString)
each time they were debugging and wanted to see this variable x. So MessageBox was
shortened to MsgBox, the Show was omitted, and, after a while, even the ToString method
was dropped. Now you can use the shorthand version: MsgBox(x).

As you see, VB.NET is gradually abandoning some of the more onerous rules demanded by a
strict adherence to what they call strong typing.

Is Color a Data Type?

Yes. Each time you work in an area of .NET that you've not previously dealt with (or that
you've forgotten), you'll nearly always find yourself butting up against the problem of syntax
and data typing. You see ''cannot be converted" or "reference not set" or a handful of other
error messages over and over.

THE VARIOUS MEANINGS OF STRONG TYPING

The phrase strong typing is used in several different ways in computer programming literature.
It sometimes means using descriptive strings as the keys in a collection, rather than using index
numbers.
In other places, you'll see strong typing described as the enforcement of a rule that each
element in a collection be of a specific data type, not a generic "object" type..NET Framework
collections in fact do include only object types, on the lowest level. And you can add anything
to your collections, which is a useful freedom. But you are urged by OOP professors to
"strongly type your collections." Don't just add objects and only objects. They point out that it
prevents someone ignorant of your collection's purpose from adding, say, an automobile type
to a collection of fresh fruit types (which could cause errors). However, it seems to me that this
is actually a non-problem if you simply follow the usual OOP practice of always validating
incoming data. Still other OOP experts say that a fundamental virtue of strong typing is that
type mismatch errors are trapped during compilation rather than later at runtime. This claim
ignores the fact that the only time some outsider is submitting objects to your class is during
runtime.
Here's yet another, similar meaning of strong typing in the literature. It means that if you
always be sure to declare your data types, you avoid errors in VB.NET. In earlier versions of
VB you could leave the type ambiguous by using the Variant, or by implicit declaration (you
never actually declare the variable's type, you merely use it in code by assigning a value to it—
VB then interprets what kind of number it is, or if it's a string). Now, in .NET, you cannot use
Variants, nor can you implicitly declare (you can turn Option Explicit off if you wish).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variants, nor can you implicitly declare (you can turn Option Explicit off if you wish).
Nonetheless, you can be ambiguous by declaring a variable as an object type (and since
everything is an object, this is similar to declaring a Variant). However, you're urged not to do
this for three main reasons: to permit IntelliSense lists, to allow type checking during
compilation (so certain kinds of incorrect data type usage are prevented), and to speed up
compilation.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 170

FIGURE 7.5 The output of the PrintTests project in preview mode

The two arguments are a string and the font in which it will be rendered. The MeasureString
method returns a SizeF object with the horizontal and vertical dimensions of the rectangle that
encloses the printed string. This form of the method doesn't break the string into multiple lines,
unless the string contains newline characters.

There are many more overloaded forms of the method. The following is the most commonly
used one:

Public Function MeasureString(str, fnt, lRect, _
 sFormat, chars, lines) As SizeF

The lRect argument is a SizeF structure that specifies the rectangle in which the string must
fit and the sFormat argument is a StringFormat object that determines how the string will be
printed. The method's return value is the rectangle that encloses the string when it will be
rendered in the specified font. We usually set the lRect argument to the desired width and a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rendered in the specified font. We usually set the lRect argument to the desired width and a
large height, and the method returns the exact number of lines of text needed to fit the text in
the rectangle's width. The last two arguments are reference arguments, and they return the
number of characters and the number of lines that fit into the specified rectangle. This
overloaded form of the method is used to fill a page with text. We pass the entire string to be
printed and the dimensions of the printable area to the method as arguments. The
MeasureString method returns the number of characters that will fit on the page. Then we
remove these characters from the beginning of the string and we continue with the next page.
The process is actually a little more complex than this; we'll describe it in detail in the section
''Printing Plain Text," later in this chapter.

THE PRINTTESTS PROJECT

In this section we'll exercise the basic methods for printing text on a page. The PrintTests
project is a single form with a button that generates the page shown in Figure 7.5. The
project's code prints a

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 171

short string with different alignments and orientations. It also prints a string that indicates
whether the printout is displayed in a preview pane or has been sent to the printer (it's useful
sometimes to know whether the user is previewing the printout or actually printing it). At the
bottom of the page, it prints another string on a background filled with a gradient.

The following statements print a string centered in a rectangle with dimensions (150×50). The
first rectangle on the page was generated with the following statements:

Dim strFormat As New System.Drawing.StringFormat()
strFormat.Alignment = StringAlignment.Center
e.Graphics.DrawRectangle(pPen, New Rectangle(100, 200, 150, 50))
e.Graphics.DrawString(str, pFont, pBrush, _
 New RectangleF(100, 200, 150, 50), strFormat)

The second and third rectangles in the first column are printed with similar statements; only
the setting of the Alignment property of the strFormat object changes. The last rectangle
shows what will happen if the rectangle isn't large enough for the string you want to print in it.
The code makes use of the LineLimit property, as shown in the following statements:

strFormat.Alignment = StringAlignment.Center
' Comment out this statement to see how it affects the printout
strFormat.FormatFlags = StringFormatFlags.LineLimit
e.Graphics.DrawRectangle(pPen, New Rectangle(100, 500, 150, 30))
e.Graphics.DrawString(str, pFont, pBrush, _
 New RectangleF(100, 500, 150, 30), strFormat)

The problem with the rectangles in the first column is that the rectangle doesn't exactly
enclose the string. The rectangle's height is set to a rather arbitrary value. If we calculate the
height of the rectangle, we'll be able to draw a rectangle that exactly encloses the text. Notice
that this isn't necessary, because we usually don't draw the enclosing rectangle around strings,
unless we print tabular reports made up of rows and columns.

To print the string's enclosing rectangle, we must first specify the width of the rectangle and
then calculate the height of the rectangle by calling the MeasureString method. The
MeasureString method will fit the text in the specified rectangle and will return the number of
lines of text. Each line's height depends on the font in which the text will be rendered and is
given by the GetHeight method of the Font object. The first of the following statements calls
the MeasureString method, passing as arguments a Font object and a Size object representing
the dimensions of the rectangle in which the text should fit. The height of the rectangle is set
to a large value. The MeasureString method will set the argument's chars and lines to the
number of characters and number of text lines that will fit in the rectangle. Then we use this
value to find out the exact height of the rectangle in which the text will fit:

e.Graphics.MeasureString(str, pFont, _
 New SizeF(500, 100), strFormat, chars, lines)
Dim strHeight As Integer = pFont.GetHeight(e.Graphics) * lines

The height variable is the height of a rectangle with the specified width (500 units, which is
5 inches, in the case of the example) that exactly encloses the string. The string to be printed is
broken

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 172

into multiple text lines automatically. The next step is to print the string in the specified area
and then draw the rectangle that encloses the text:

e.Graphics.DrawRectangle(pPen, New Rectangle(500, 200, strHeight, 100))
e.Graphics.DrawString(str, pFont, pBrush, _
 New RectangleF(500, 200, strHeight, 100), strFormat)

The strFormat argument is a StringFormat object that gives you more control over the
appearance of exactly how the string will be rendered. The Alignment property of the
StringFormat object specifies the alignment of the text, and its value can be one of the
members of the StringAlignment enumeration: Center, Far, and Near. The most interesting
property of the StringFormat object is the FormatFlags property, which is also an object; it
exposes (among others) the following properties: DirectionRightToLeft, DirectionVertical,
NoWrap, and LineLimit. The first two properties determine the horizontal and vertical
direction of the text. They're both Boolean values, and their default value is False. The
NoWrap property disables the wrapping of text when set to True. The LineLimit property
should be set to True if you don't want partial lines to be printed when the text doesn't fit
entirely in the specified rectangle.

The first boxed string in the second column is printed in a rectangle with a width of 100 units
(1 inch) and the necessary height. The rectangle's height is calculated with the help of the
MeasureString method and it exactly encloses the string. Here are the statements that print the
top boxed string in the second column.

strFormat = New System.Drawing.StringFormat()
strFormat.FormatFlags = StringFormatFlags.DirectionRightToLeft
e.Graphics.MeasureString(str, pFont, New SizeF(100, 800), _
 strFormat, chars, lines)
Dim strHeight As Integer = pFont.GetHeight(e.Graphics) * lines
e.Graphics.DrawRectangle(pPen, New Rectangle(500, 200, 100, strHeight))
e.Graphics.DrawString(str, pFont, pBrush, _
 New RectangleF(500, 200, 100, strHeight), _
 strFormat)
e.Graphics.DrawEllipse(New Pen(Color.Green, 3), _
 New Rectangle(495, 195, 10, 10))

You can achieve the same effect by setting the Alignment property of the strFormat object to
StringAlignment.Far.

The second boxed string in the second column was printed with similar statements, only this
time we've specified the DirectionVertical option with the following statements:

strFormat = New System.Drawing.StringFormat()
strFormat.FormatFlags = StringFormatFlags.DirectionVertical

Printing vertically is equivalent to rotating the text. The alignment of the text is left to right,
but the DrawString method starts printing the text from the bottom of the corresponding
rectangle. You can experiment with different settings of the strFormat variable to see how
they affect the way text is rendered on the page.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 173

To print the rectangle with the gradient at the bottom of the page, we must first create a
gradient brush with the following statements:

Dim p1 As New Point(e.MarginBounds.X, 0)
Dim p2 As New Point(e.MarginBounds.Width + e.MarginBounds.X, 0)
Dim color1 As Color = Color.Aquamarine
Dim color2 As Color = Color.DarkMagenta
Dim grBrush As New _
System.Drawing.Drawing2D.LinearGradientBrush(p1, p2, color1, color2)

The points, p1 and p2, are the two ends of the gradient (in effect, the extent of the gradient)
and the two colors are the gradient's starting and ending colors. These variables are used in the
definition of the brush's gradient. The following statement draws a rectangle filled with the
grBrush brush:

e.Graphics.FillRectangle(grBrush, _
 New RectangleF(e.MarginBounds.X, 850, _
 e.MarginBounds.Width, 100))

The rectangle's left edge is at the left margin of the page and the rectangle's width is equal to
the width of the printable area of the page. To draw the string on top of the gradient, we create
a solid white brush and then call the DrawString method passing the string to be printed, the
font in which the string will be rendered, the wBrush solid brush, and the same rectangle. To
center the string both vertically and horizontally in the gradient's rectangle, we had to set both
the Alignment and Line Alignment properties of the StringFormat object:

strFormat.Alignment = StringAlignment.Center
strFormat.LineAlignment = StringAlignment.Center

The string was printed on top of the gradient with the following statement:

Dim wBrush As New SolidBrush(Color.White)
e.Graphics.DrawString(''Title on Gradient", tFont, wBrush, _
 New RectangleF(e.MarginBounds.X, 850, _
 e.MarginBounds.Width, 100), strFormat)

The last few statements in the PrintPage event handler determine whether the printout is sent
to the printer or is previewed. When the output is sent to the printer, the ClipBounds property
of the Graphics object represents the rectangle of the page. When the output is sent to the
Preview control, the same property represents a virtual drawing surface with a width and
height that exceed 23,000 inches. The code examines the value of the
e.Graphics.ClipBounds.Width property and, if it's larger than 100,000 units, prints the string
"Preview Mode." Otherwise, it prints the string "Print Mode."

strFormat = New StringFormat()
tFont = New Font(tFont.Name, 24, FontStyle.Bold)
tBrush = Brushes.LightGray
If e.Graphics.ClipBounds.Width > 1000000 Then
 strFormat.Alignment = StringAlignment.Center
 e.Graphics.DrawString("Preview Mode", tFont, tBrush, _
 New RectangleF(e.PageBounds.X, 50, _
 e.PageBounds.Width, 100), strFormat)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.PageBounds.Width, 100), strFormat)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 175

control, most of you would suggest a method to print the control's contents. This is what we're
going to do in this section: we'll create a new control that inherits from the TextBox control
and implements two new methods, the Print and Preview methods.

Both methods will print the control's contents taking into consideration the current setting of
the Font and WordWrap properties. If the WordWrap property is False, the method will print
each paragraph on a single line. It will start printing at the left margin and it will chop the text
beyond the page's right margin. If the control's WordWrap property is True, the code is a bit
more complicated. It must break the text into multiple lines at word boundaries and stop at the
bottom of the current page, also at a word boundary. We take advantage of the MeasureString
property to find out how many characters can be printed on each page, then print so many
characters and continue with the remaining text on the next page. We must also make sure that
the last line of text isn't partially printed. Figure 7.6 shows the code of the application in
preview mode.

FIGURE 7.6 Printing the contents of the TextBox control

The sample project is called DemoControl. We'll create a custom control that provides the
same functionality as the TextBox control, plus a custom method for printing its text. The
Solution consists of two projects: a custom control and a test project. To use the custom
control in your projects, add a reference to the DLL that will be created in the custom control's
project Bin folder to any other project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The custom control's code is fairly straightforward. Name the custom control PRNTextBox
and a new class by that name will be created automatically. Then insert the following
statement, right after the Class's definition:

Inherits System.Windows.Forms.TextBox

This statement tells the compiler that our custom control should include all the functionality of
the built-in TextBox control. Then add the following declarations to create an instance of the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 176

PageSetupDialog control (we want to prompt users to set the page properties), an instance of
the PrintPreview control (so that we can preview the text as it will be printed), and an instance
of the PrintDocument object (we need this control to generate the printout). Notice that you
can't create instances of these controls by dropping them onto the form, because you have no
access to the UserControl object that represents an inherited control. In other words, you can't
change the appearance of an inherited control with visual tools.

Friend PPView As New PrintPreviewDialog()
Friend PSetup As New PageSetupDialog()
Friend WithEvents PD As System.Drawing.Printing.PrintDocument

So far we've created the infrastructure for printing. The next step is to define the Print and
Print-Preview methods. The reason we're adding two methods is that we don't want to bring up
the preview window every time the users wants to print. Using the two methods, we allow the
developer to determine whether the printout should be previewed or sent directly to the
printer. The application that uses this control may have both a Print and a Preview command
under the File menu, as do most applications that generate printouts.

The last step is to implement the PrintPage event handler of the PrintDocument object. Listing
7.2 shows the code of the event handler, which we'll explain in detail.

LISTING 7.2: PRINTING THE CONTENTS OF A TEXTBOX CONTROL
Private Sub PD_PrintPage(_
 ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles PD.PrintPage
Static currentChar As Integer
Static currentLine As Integer
Dim txtFont As Font = Me.Font
Dim txtH, txtW As Integer
Dim LMargin, TMargin As Integer
' The dimensions of the printable area of the page
With PD.DefaultPageSettings
 txtH = .PaperSize.Height - .Margins.Top - .Margins.Bottom
 txtW = .PaperSize.Width - .Margins.Left - .Margins.Right
 LMargin = PD.DefaultPageSettings.Margins.Left
 TMargin = PD.DefaultPageSettings.Margins.Top
End With
e.Graphics.DrawRectangle(Pens.Blue, _
 New Rectangle(LMargin, TMargin, txtW, txtH))
' If landscape orientation, swap width and height
If PD.DefaultPageSettings.Landscape Then
 Dim tmp As Integer
 tmp = txtH
 txtH = txtW
 txtW = tmp
End If

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 177

' linesperpage is the number of lines per page
Dim linesperpage As Integer = CInt(Fix(txtH / txtFont.Height)) - 1
' R is the rectangle in which the text should fit
Dim R As New RectangleF(LMargin, TMargin, txtW, txtH)
Dim fmt As New StringFormat(StringFormatFlags.LineLimit)
If Not Me.WordWrap Then
 Dim i As Integer
 For i = currentLine To Math.Min(currentLine + linesperpage, _
 e.Lines.Length - 1)
 e.Graphics.DrawString(Me.Lines(i), txtFont, Brushes.Black, _
 New RectangleF(LMargin, _
 TMargin + txtFont.Height * (i - currentLine), _
 txtW, txtFont.Height), fmt)
 Next
 currentLine += linesperpage
 If i >= Me.Lines.Length Then
 e.HasMorePages = False
 currentLine = 0
 Else
 e.HasMorePages = True
 End If
 Exit Sub
End If
fmt = New StringFormat(StringFormatFlags.LineLimit)
Dim lines, chars As Integer
e.Graphics.MeasureString(Mid(Me.Text, currentChar + 1), txtFont, _
 New SizeF(txtW, txtH), fmt, chars, lines)
If lines = linesperpage Then
 If Me.Text.Substring(currentChar + chars, 1) <gt; '' " And _
 Me.Text.Substring(currentChar + chars, 1) <> vbLf Then
 While chars > 0 AndAlso _
 Me.Text.Substring(currentChar + chars, 1) <> AndAlso _
 Me.Text.Substring(currentChar + chars, 1) <> vbLf
 chars -= 1
 End While
 chars += 1
 End If
End If
e.Graphics.DrawString(Me.Text.Substring(currentChar, chars), _
 txtFont, Brushes.Black, R, fmt)
currentChar = currentChar + chars
If currentChar < Me.Text.Length Then
 e.HasMorePages = True
Else
 e.HasMorePages = False
 currentChar = 0
End If
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 178

The event handler starts by calculating the printable area of the page and the left and top
margins. If the user has requested a landscape orientation, the code swaps the page's width and
height. Then it starts generating pages. If the WordWrap property of the TextBox control is set
to False, the program prints one line at a time in a rectangle that fits a single line of text
vertically, and doesn't care about long lines that won't be printed entirely on the page.

If the WordWrap property is set to True, the code calls the MeasureString method to find out
how many characters will fit in a rectangle equal to the printable area of the page (the size of
the page minus the margins specified by the user on the Page Setup dialog box) and prints so
many characters in this rectangle. Then it subtracts the number of characters printed on the
current page from the total number of characters left to be printed and examines whether there
are more characters to be printed. If we're done, the code sets the HasMorePages property to
False and exits. If not, it sets the same property to True and exits. In the next invocation of the
PrintPage event handler, it prints another page and continues until the entire text is printed.

The code that implements the Print method is straightforward. For each page, it creates a
rectangle equal to the printable area of the page and fills it with text. If the control's Wrap
property is set to False, the Print method prints one line at a time regardless of the line's
length. Notice that the DrawString method uses a StringFormat property with its FormatFlags
property set to LineLimit. This setting prevents the DrawString method from partially printing
the last line on the page. One disadvantage of the MeasureString method is that it doesn't take
into consideration word boundaries. We don't want to break the last word on the page, so the
program backtracks from the last character reported by the MeasureString method until it finds
a space or a newline character. The last line is broken at this character, so the new page will
start at a word boundary. Tabs are not treated as white space; only newline and space
characters are. Punctuation symbols follow the previous word. This is a very important detail,
which you should handle in your text printing code.

Figure 7.7 shows a detail of the program's printout, when printed with the WordWrap property
set to False. Notice that the lines that can't fit across the page are truncated at a word boundary
and an ellipsis is added after the last visible word to indicate that some text is missing. The
breaking of the word and the insertion of the ellipsis are handled automatically with the
Trimming property of the StringFormat class, which is set to the value
StringTrimming.EllipsisWord. See the members of the StringTrimming enumeration for
other possible settings of the Trimming property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 7.7 Printing with the WordWrap property set to False

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 180

PrintReportTitle The report's title.
PrintReportDate A Boolean property that determines whether the date will be
printed at the top of each page.
PrintPageNumbers A Boolean property that determines whether a page number
will be printed at the top of each page.
PrintTitleSmallFont, PrintTitleLargeFont The font settings that will be used to
print the report's title (large font) and the date/numbers (small font).
PrintTitleColor The color of the report's title.

The code of the Print method displays the PageSetup dialog box, then passes the
PrintDocument object to the Document property of the PrintPreview control and calls its
ShowDialog method to initiate the printout. Listing 7.3 shows the Print method's code.

LISTING 7.3: INITIATING THE PRINTOUT OF THE PRNLISTVIEW ITEMS
Public Sub Print()
PD = New Printing.PrintDocument
 PSetup.PageSettings = PD.DefaultPageSettings
 PSetup.ShowDialog()
 PWidth = PD.DefaultPageSettings.PaperSize.Width
 PHeight = PD.DefaultPageSettings.PaperSize.Height
 ' cellWidth and cellHeight are the width and height
 ' of the current subitem s cell
 X = PD.DefaultPageSettings.Margins.Left
 Y = PD.DefaultPageSettings.Margins.Top
 If PD.DefaultPageSettings.Landscape Then
 Dim tmp As Integer
 tmp = PWidth
 PWidth = PHeight
 PHeight = tmp
 End If
 PageWidth = PWidth - _
 (PD.DefaultPageSettings.Margins.Left + _
 PD.DefaultPageSettings.Margins.Right)
 PageHeight = PHeight - _
 (PD.DefaultPageSettings.Margins.Top + _
 PD.DefaultPageSettings.Margins.Bottom)
 PPView.Document = PD
 X = PD.DefaultPageSettings.Margins.Left
 Y = PD.DefaultPageSettings.Margins.Top
 PageNo = 0
 PPView.ShowDialog()
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 181

The code that implements the various properties is trivial and we need not show it here. All
properties are stored in private variables, which are used by the PrintPage event handler's
code, which does all the work. Before looking at this code, let's discuss a few global variables.
These variables must maintain their values between successive invocations of the PrintPage
event handler. They are as follows:

Private X, Y As Integer
Private Ytop As Integer
Private PWidth As Integer
Private PHeight As Integer
Private PageNo As Integer
Private cellWidth, cellHeight As Integer

X and Y are the coordinates of the current cell; they're updated after printing a cell, or after
switching to another row of cells. CellWidth and CellHeight are the dimensions of the
current cell. The width of the current cell is determined by the width of the corresponding
column of the ListView control, and the height of the current cell is determined by its contents
and the setting of the PrintMaxCellLines property. The width of a printed column is
proportional to the width of the corresponding column of the control, but not equal. The code
maintains the relative widths of the columns, but it also fills the page (minus the margins, of
course). PWidth and PHeight are the dimensions of the page; the code subtracts the
appropriate margins from these two variables to calculate the printable area of the page.
Finally, the PageNo variable stores the number of the current page.

The variables PD (a PrintDocument object), PSetup (an instance of the PageSetup dialog box)
and PPView (an instance of the PrintPreview dialog box) are declared on the form level with
the following statements:

Friend PPView As New PrintPreviewDialog
Friend Psetup As New PageSetupDialog
Friend WithEvents PD As System.Drawing.Printing.PrintDocument

Finally, the PageWidth and PageHeight variables are also declared at the form level as
integers, because they're used throughout the code.

Listing 7.4 shows the code of the PrintPage event, which generates the printout one page at a
time.

LISTING 7.4: GENERATING THE LISTVIEW CONTROL'S PRINTOUT
Private Sub PD_PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles PD.PrintPage
 PageNo += 1
 PageWidth = PWidth - _
 (PD.DefaultPageSettings.Margins.Left + _
 PD.DefaultPageSettings.Margins.Right)
 PageHeight = PHeight - _
 (PD.DefaultPageSettings.Margins.Top + _
 PD.DefaultPageSettings.Margins.Bottom)
 X = PD.DefaultPageSettings.Margins.Left

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 182

 Y = PD.DefaultPageSettings.Margins.Top
 Static startItem As Integer
 Dim ColWidths(Me.Columns.Count - 1) As Integer
' calculate the width of each column and the total width of the grid
 Dim i As Integer, totWidth As Integer
 For i = 0 To Me.Columns.Count - 1
 ColWidths(i) = Me.Columns(i).Width
 totWidth = totWidth + ColWidths(i)
 Next

 PrintPageHeader(e.Graphics)
 Dim R As Rectangle, RF As RectangleF
 Dim caption As String
 Dim titleFont As Font = Me.Font
 Dim itemFont As Font
 Dim titleBrush As New SolidBrush(Color.Black)
 Dim itemBrush As System.Drawing.Brush
 itemBrush = Brushes.Black
 Dim borderPen As New Pen(_borderColor, 1)
 Dim txtWidth As Integer
 Dim fmt As New StringFormat
 fmt.Trimming = StringTrimming.EllipsisCharacter
 Dim txtSize As SizeF
 For i = 0 To Me.Columns.Count - 1
 caption = Me.Columns(i).Text
 cellWidth = Convert.ToInt32(ColWidths(i) * _
 (PageWidth - (Me.Columns.Count - 0) * _
 _ColumnPadding) / totWidth)
 txtSize = e.Graphics.MeasureString(caption, titleFont)
 txtSize.Height = Math.Min(txtSize.Height, _
 titleFont.GetHeight(e.Graphics) * _maxCellLines)
 cellHeight = Convert.ToInt32(txtSize.Height)
 R = New Rectangle(X, Y, cellWidth + _ColumnPadding, cellHeight)
 e.Graphics.DrawRectangle(borderPen, R)
 RF = New RectangleF(X + _ColumnPadding, Y, cellWidth - _
 _ColumnPadding, cellHeight)
 Select Case Me.Columns(i).TextAlign
 Case HorizontalAlignment.Center _
 : fmt.Alignment = StringAlignment.Center
 Case HorizontalAlignment.Left _
 : fmt.Alignment = StringAlignment.Near
 Case HorizontalAlignment.Right _
 : fmt.Alignment = StringAlignment.Far
 End Select
 e.Graphics.DrawString(caption, titleFont, titleBrush, RF, fmt)
 X = X + cellWidth + _ColumnPadding
 Next
 Dim itm, sitm As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 183

 Y = Y + cellHeight + VSpacing
 Dim SF As SizeF

' Now iterate through a number of items and print them.
' The exact number of items that will be printed varies,
' depending on the height of each cell. Some of the items/subitems
' may not fit on a single line
' The index of the last item printed is stored in the startItem static
' variable, so that printing will resume with the following item the
' next time the PrintPage event is fired
 fmt.Trimming = StringTrimming.EllipsisCharacter
 For itm = startItem To Me.Items.Count - 1
 X = PD.DefaultPageSettings.Margins.Left
 Dim tallestCell As Integer = 0
 For sitm = 0 To Me.Items(itm).SubItems.Count - 1
 caption = Me.Items(itm).SubItems(sitm).Text
 cellWidth = Convert.ToInt32(ColWidths(sitm) * _
 (PageWidth - Me.Columns.Count * _
 _ColumnPadding) / totWidth)
 ' itemFont is set to the font used to render
 ' the corresponding subitem on the control
 itemFont = Me.Items(itm).Font
 SF = New SizeF(cellWidth, 100)
 txtSize = e.Graphics.MeasureString(caption, _
 itemFont, SF, fmt)
 ' keep track of the tallest cell in the current item
 txtSize.Height = Math.Min(txtSize.Height, _
 itemFont.GetHeight(e.Graphics) * _maxCellLines) _
 + VSpacing
 If txtSize.Height > tallestCell Then tallestCell = _
 Convert.ToInt32(txtSize.Height)
 ' print the subitem with its original alignment
 ''' NOTE: The following statement won't work !!!
 ''' fmt.Alignment = Me.Columns(sitm).TextAlign
 ''' The Alignment property of the StringFormat object
 ''' doesn t have the same settings as the ListViewItem
 ''' object s TextAlign property.
 Select Case Me.Columns(sitm).TextAlign
 Case HorizontalAlignment.Center _
 : fmt.Alignment = StringAlignment.Center
 Case HorizontalAlignment.Left _
 : fmt.Alignment = StringAlignment.Near
 Case HorizontalAlignment.Right _
 : fmt.Alignment = StringAlignment.Far
 End Select
 RF = New RectangleF(X + _ColumnPadding, Y, cellWidth - _
 _ColumnPadding, txtSize.Height - VSpacing)
 e.Graphics.DrawString(caption, itemFont, itemBrush, RF, fmt)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 184

 X = X + cellWidth +_ColumnPadding
 Next
 Y = Y + tallestCell + VSpacing
 If PD.DefaultPageSettings.Landscape Then
 e.Graphics.DrawLine(New Pen(_borderColor), _
 PD.DefaultPageSettings.Margins.Left, _
 Y, PD.DefaultPageSettings.Margins.Left + _
 PageWidth, Y)
 Else
 e.Graphics.DrawLine(New Pen(_borderColor), _
 PD.DefaultPageSettings.Margins.Left, _
 Y, PD.DefaultPageSettings.Margins.Left +_
 PageWidth + 1, Y)
 End If
 ' start a new page is the current row's cells exceed
 ' 95% of the page's printable area
 If Y > 0.95 * (PHeight - _
 PD.DefaultPageSettings.Margins.Bottom) Then
 ' now print the vertical lines
 X = PD.DefaultPageSettings.Margins.Left
 For i = 0 To Me.Columns.Count - 1
 e.Graphics.DrawLine(New Pen(_borderColor), X, _
 Ytop, X, Y)
 cellWidth = Convert.ToInt32(ColWidths(i) * _
 (PageWidth - Me.Columns.Count * _
 _ColumnPadding) / totWidth)
 X = X + cellWidth +_ColumnPadding
 Next
 ''''' draw the last vertical line
 e.Graphics.DrawLine(New Pen(_borderColor), X, _
 Ytop, X, Y)
 ' and the bottom horizontal line
 e.Graphics.DrawLine(New Pen(_borderColor), _
 PD.DefaultPageSettings.Margins.Left, Y,_
 PD.DefaultPageSettings.Margins.Left +_
 PageWidth, Y)
 e.HasMorePages = True
 startItem = itm + 1
 Exit Sub
 End If
 Next
 ' draw the grid of the last page,, which is usually smaller than
 ' the other pages
 X = PD.DefaultPageSettings.Margins.Left
 For i = 0 To Me.Columns.Count - 1
 e.Graphics.DrawLine(New Pen(_borderColor), X, Ytop, X, Y)
 cellWidth = Convert.ToInt32(ColWidths(i) * (PageWidth - _
 (Me.Columns.Count - 0) * _ColumnPadding) / totWidth)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 185

 X = X + cellWidth +_ColumnPadding
 Next
 e.Graphics.DrawLine(New Pen(_borderColor), X, Ytop, X, Y)
 e.Graphics.DrawLine(New Pen(_borderColor), _
 PD.DefaultPageSettings.Margins.Left, Y, _
 PD.DefaultPageSettings.Margins.Left +_
 PageWidth - _ColumnPadding, Y)
 e.HasMorePages = False
 ' This is a static variable and won't be reset automatically
 startItem = 0
End Sub

The listing is fairly lengthy, but straightforward. The first For ...Next loop retrieves the
widths of the control's columns and stores them in the ColWidths array. It also stores the total
width of the columns in the totWidth variable. Each printed column's width is calculated
with the following statement (sitm is the order of the columns):

cellWidth = Convert.ToInt32(ColWidths(sitm) * _
 (PageWidth - Me.Columns.Count * _
 _ColumnPadding) / totWidth)

The width of the printed column is proportional to the width of the corresponding control's
column, but we make sure that the printed columns fill the page.

For each new page, the code prints the report's title, the date, and the page number. Then it
prints the header of each column (the headers are picked from the control's Columns
collection). After printing the headers, the code iterates through the control's items. It uses the
SubItems collection to read each cell's contents and the Columns collection to read each cell's
alignment. The font for each row is read from the Items collection. The code assumes that the
subitems are rendered in the same font as the first column (you can change this behavior by
reading the Font property of each element in the SubItems collection).

The most interesting part of the code is the statements that calculate the height of each cell,
shown next:

txtSize = e.Graphics.MeasureString(caption, itemFont, SF, fmt)
txtSize.Height = Math.Min(txtSize.Height, _
 itemFont.GetHeight(e.Graphics) * _maxCellLines) _
 +VSpacing
If txtSize.Height > tallestCell Then tallestCell = _
 Convert.ToInt32(txtSize.Height)

The program calls the MeasureString method to retrieve the necessary height of the cell in
which the text must fit (the cell's width is known). Then it updates the tallestCell variable,
which stores the height of the tallest cell in the row. The code will advance by so many units
before printing the next row—if there's room for another row on the page. Once the current
cell's width and height are known, the code prints the cell's text in a rectangle specified by the
current cell's origin and its dimensions.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 187

LISTING 7.5: IMPORTING API FUNCTIONS IN .NET APPLICATIONS
Private Declare Function BitBlt Lib ''gdi32" Alias "BitBlt" _
 (ByVal hDestDC As Integer, ByVal x As Integer, _
 ByVal y As Integer, ByVal nWidth As Integer, _
 ByVal nHeight As Integer, ByVal hSrcDC As Integer, _
 ByVal xSrc As Integer, ByVal ySrc As Integer, _
 ByVal dwRop As Integer) As Integer

Private Declare Function GetDC Lib "user32" Alias "GetDC" _
 (ByVal hwnd As Integer) As Integer

Private Declare Function ReleaseDC Lib "user32" Alias "ReleaseDC" _
 (ByVal hwnd As Integer, ByVal hdc As Integer) As Integer

The BitBlt function accepts as arguments a handler to the destination device context (hDestDC
argument) and an argument to the source device context (hSrcDC argument) and copies the
bitmap (or part of it) of the source device context to the destination device context. The
remaining arguments determine what part of the destination device context will be filled and
what part of the source device context will be copied. The arguments x, y, nWidth, and
nHeight determine the area to be copied, while the arguments xSrc and ySrc determine the
origin of the source bitmap to be copied. The two bitmaps can't have different dimensions. The
GetDC function retrieves a handler to the device context of the control specified by its
argument and the ReleaseDC function releases this handler.

To use the two API functions explained here, you must write some code to capture two
designated keystrokes. In our sample code we'll use the keystroke Ctrl+P to print the entire
form, and the keystroke Alt+P to print the current form. Set the form's KeyPreview property to
True and enter the following statements in the form's KeyUp event handler:

Private Sub Form1_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles MyBase.KeyUp
 If e.KeyCode = Keys.P And e.Alt Then
 bmp = CreateScreenshot(captureArea.Form)
 PrintBMP()
 End If
 If e.KeyCode = Keys.P And e.Control Then
 bmp = CreateScreenshot(captureArea.Screen)
 PrintBMP()
 End If
End Sub

The CreateScreenShot() function, whose code is shown in Listing 7.6, accepts as argument a
constant that determines what part of the screen we want to capture (the current form or the
entire

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 188

screen) and returns the corresponding bitmap. Once we have the bitmap, we call the
PrintBMP() function to print the same bitmap. The bmp variable is declared at the form's level,
so that it can be accessed by all procedures.

LISTING 7.6: CAPTURING A WINDOW OR THE DESKTOP TO A BITMAP
Function CreateScreenshot(ByVal Capture As captureArea) As Bitmap
 Dim Rect As Rectangle
 If Capture = captureArea.Form Then
 Rect = New Rectangle(Me.Left, Me.Top, Me.Width, Me.Height)
 Else
 Rect = Screen.PrimaryScreen.Bounds()
 End If
 Dim gDest As Graphics
 Dim hdcDest As IntPtr
 Dim hdcSrc As Integer

 Dim screenBMP As New Bitmap(Rect.Right, Rect.Bottom)
 gDest = gDest.FromImage(screenBMP)

 hdcSrc = GetDC(0)
 hdcDest = gDest.GetHdc
 If Capture = captureArea.Form Then
 BitBlt(hdcDest.ToInt32, 0, 0, _
 Rect.Width, Rect.Height, hdcSrc, Me.Left, Me.Top, SRCCOPY)
 Else
 BitBlt(hdcDest.ToInt32, 0, 0, _
 Rect.Right, Rect.Bottom, hdcSrc, _
 Screen.PrimaryScreen.Bounds.Left, _
 Screen.PrimaryScreen.Bounds.Top, SRCCOPY)
 End If
 gDest.ReleaseHdc(hdcDest)
 ReleaseDC(0, hdcSrc)
 Return screenBMP
End Function

The CreateScreenShot() function accepts a single argument, which is a member of the
CaptureArea custom enumeration (its members being Screen and Form). It defines a rectangle
that encloses the specified area to be captured and then uses the BitBlt() subroutine to capture
this rectangle into a bitmap with the proper dimensions. This bitmap is the function's return
value.

The PrintBMP() subroutine, shown in Listing 7.7, displays the Page Setup dialog box and then
initiates the printing.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 19

Try System.String. Nothing. Try leaving out System: Typing String. (don't forget the dot.)
displays a nice list of all the methods you can use with strings. The IndexOf method looks
promising at first glance. It's the replacement for InStr, and it does locate substrings, but it still
forces you to write a messy loop. Isn't there any way to just pass a delimited string to a
function and get back an array of the pieces? Doesn't this function exist?

How about String.Parse? No such entry. Keep looking. What about String.Split? Eureka. Help
describes it like this: ''Identifies the substrings in this instance that are delimited by one or
more characters specified in an array, then places the substrings into a String array." This near-
English sentence might be describing what we're after. Unfortunately there's no mention here
of the actual, necessary word parse, but .NET Help is being improved all the time. Eventually,
it may even become nearly understandable. One always hopes.

.NET has only been out three years. Perhaps someday they'll have the wisdom to get an actual
writer to rewrite the Help descriptions. If so, the Search feature will be more useful than it is
today, when searching for parse results in dozens of hits for the completely unrelated task of
type conversion.

Between WWII and 1980 you would buy a transistor radio and get an instruction manual with
sentences like this: "Press top button on the bottom of our most handy top. Not blue. Then
pause fine. Happy you luck! Now hear song fast everywhere!" It only took the typical Asian
electronics manufacturer three decades before grasping the value of hiring a $14,000-a-year
copy editor who knows English to review equipment manuals for correct English.

The syntax for Split is displayed like this:

Overloads Public Function Split(_
 ByVal ParamArray separator() As Char _
) As String()

So you have to pass an array of Chars specifying your delimiter(s), and it returns a string
array. You may or may not know how to build an array of characters. Again you have to
search around. You might think you can create the array, create a char variable holding your
comma, then assign the variable to the array, like this:

Dim c As Char = ","
Dim delim As Char()
delim(0) = c

You get the famous "no object" error message from the compiler: "Object reference not set to
an instance of an object." Oh well. No point trying to figure out why you cannot just create
and declare an array, then fill it with values. When you come upon this kind of problem, try
other syntaxes, or hope there's some example code in Help.

Another way to solve this problem is fairly strange, too. You create a string, then change it
into a char type using the ToCharArray method:

Dim delimStr As String = ","
Dim delim As Char() = delimStr.ToCharArray()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim delim As Char() = delimStr.ToCharArray()

Why there is a ToCharArray method, but no ToStringArray method, is anybody's guess.

The most straightforward way to solve the problem of adding values to a char array is to just
Dim the char array, and initialize it with the comma directly:

Dim delim As Char() = {","}

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 190

To print in .NET, use the PrintDocument control, which generates output for the printer. To
present a preview of the printout, just assign the PrintDocument object to the Document object
of the PrintPreview control. The code you'll write is identical, regardless of whether the output
is printed or previewed. The PrintDocument object fires the PrintPage event every time a new
page is started. In this event's handler, you must insert the code that will generate your
printout. Every time you fill a page, you exit this event handler and the printout will be sent to
the printer. If you want to print additional pages, just set the HasMorePages to True.
Otherwise set it to False.

The two examples in this chapter are two custom controls, which expose the same
functionality as the TextBox and ListView controls, respectively, and add a Print method. The
Print method of the custom TextBox control prints the control's text, while the Print method of
the custom ListView control prints the control's items. Both methods take into consideration
the control's properties that may affect the printout.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 192

Alas, the word type itself is used in a new way in VB.NET as well. It's used the way C
programmers prefer to use it—and now we must also use it that way. As you know, in .NET
pretty much everything that is in existence at runtime is an object. Similarly, the term type
includes pretty much every programming building block available during design time. Type is
a larger category than class because a class is a type, but so are arrays, modules, enumerations,
structures, interfaces, and value types.

The System.Type class includes quite a few features you can employ to enumerate a specific
type's members: events, properties, methods, and fields. System.Type also includes
capabilities that modify a specific type's properties and fields, as well as dynamically
executing methods.

Getting a Grip on Assemblies

Assemblies also include information about objects' members: fields, properties, events,
methods, and parameters. Physically, on the hard drive, an assembly is quite similar to the
traditional ''compiled" VB application (such as a DLL or EXE file, or a set of them working
together). But an assembly also contains information about the application that would have
previously been put into the Windows Registry or a COM type library. Assemblies contain
"self-describing" metadata, security information, the name and version of the assembly, the
"culture," a list of dependency files (bitmaps, other libraries such as needed DLLs, schemas,
whatever).

THE INFLATION AND BIFURCATION OF VISUAL BASIC

Where would we be without constantly shifting diction in computer languages? VB continues
the inflation that started in VB version 4 several years ago—when the language first began the
explosion from its original modest 300+ commands to what are now tens of thousands of
classes, and many more tens of thousands of often overloaded members within those classes.
One side effect of this inflation is that part of our programming time is spent merely trying to
wrestle with the language's classification system. Like biologists, we must try to deal with
many nested categories—containers within containers. For example, a line of code describing a
single object might require four or five "qualifiers" separated by dots, like this:
Reflection.Assembly.GetAssembly(Me.GetType())
And, instead of the earlier simplicity of programming like this:
ListBox1.AddItem(n)
.NET usually requires additional qualification:
ListBox1.Items.Add(n)
Biology, with its focus on categorization, isn't considered the most sophisticated branch of
science. Math is. You can visualize the varying degrees of scientific rigor illustrated by this
story: A biologist, a physicist, and a mathematician were traveling through Scotland by train
and saw a black sheep in a meadow. "All sheep in Scotland are black," concluded the
biologist." "No," said the physicist, "all we can say is that one sheep in Scotland is black." The
mathematician said, "All we can say is that one sheep in Scotland is black on one side."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In spite of the bifurcation and inflation that Visual Basic has undergone, few programmers can
cling to earlier, simpler versions of VB. If nothing else, the bandwidth-restricted, security-
conscious programming techniques demanded by the Internet (not least of which is
statelessness) require that the language, and its practitioners, adapt.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 193

An assembly contains within it both the usual information about a project (the properties of a
form, for example) and metainformation (information about information), plus esoterica, such
as methods used primarily by the VB.NET runtime and normally kept hidden from the
programmer (GetActiveControl or ResetForeColor, for example).

The relationship between the terms assembly, solution, project, module, and namespace is
rather slippery. But you may as well learn about these containers. At the lower level in this
system of categorization, you have modules (traditionally used in VB as places to put global
variables or functions) and forms. Forms are technically referred to as modules (how's that for
confusing?), specifically form modules. Next up in the system is the project, which is a
container for one or several related modules and their dependencies (a project is often the
entire application—there are no additional projects). Higher still is the entire solution (an
assembly) that can have one or more projects within it.

Containers within Containers

So, a given assembly (application) can contain multiple projects, and each project can contain
multiple modules. Now for the really slippery part: namespaces. They are not so much an
actual programming container as they are a convenience, a shorthand to permit programmers
to avoid having to fully qualify methods, enumerations, and other features made available to a
programmer. Namespaces are also a way to avoid collisions. A ''collision" occurs when two
types share the same name. For example, two functions might both be named FactorIt, but
might do completely different jobs and require different parameters. An error is thrown if
names collide within a given namespace, or if you have two namespaces with colliding names.
This alerts you that you must qualify the names to avoid the collision. By qualifying
(specifying which namespace you intend), you solve the problem of duplicated type names.

When you import a namespace, you are specifying a group of related classes—such as the
System. Reflection namespace that contains 133 classes (along with those ghostly class
"sketches" called interfaces)—that collectively make up the reflection technology.

In any case, think of a namespace as a fairly flexible rubber band that you can use to tie
together related classes. Flexible because namespaces can be huge (spanning multiple
modules) or, by contrast, quite small (a single module can contain many namespaces, if you
wish it so). You, of course, can create namespaces in your source code as a way of
subdividing it. You can also reference external class libraries by using the Imports command.
What you cannot do is use the same name for a method or other type twice in the same
namespace.

Security Issues

You may have noticed that security problems are at the root of many contemporary computing
problems—not to mention that security issues often cause programming difficulties. In fact,
some argue that OOP itself is primarily an attempt to increase security.

Those hackers are having much more of an impact than is commonly acknowledged.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Security also underlies many aspects of .NET programming. The metadata in an assembly
explains each type, and all the members, within that assembly. An assembly also includes a
public key—much like authentication technology used with e-mail and file transmission. This
key is examined by .NET to discover whether or not the assembly has been tampered with,
either by a disk accident or by an evildoer. In addition, assemblies' components can contain
various permissions levels—just as you can grant sharing and grouping permissions within the
Windows world, you can also thus secure and manage access to your projects.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 195

Class puria

 Private mXX As String

 'a couple of overloaded constructors
 Sub New(ByVal initValue As String) 'let them pass a string
 MyBase.New()
 mXX = initValue
 End Sub

 Sub New(ByVal sa As Single) 'or let them pass a single
 MyBase.New()
 mXX = sa
 End Sub

 Public ReadOnly Property TheID()
 Get
 TheID = mXX
 End Get
 End Property

 Public Function SendBak() As String
 Return mXX.ToString
 End Function

End Class

BINDINGFLAGS

The BindingFlags are a way you can filter the results. You can divide members into
instance or static categories. Here, by mixing two flags together with Or you get both instance
and public constructors.

BindingFlags can be used when retrieving other reflected data, such as PropertyInfo, for
example. There are a variety of BindingFlags in the enumeration, but here are the most
useful for reflected properties:

 DeclaredOnly
 FlattenHierarchy
 IgnoreCase
 IgnoreReturn
 Instance
 NonPublic

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 196

 Public
 Static

If you are interested in seeing all the properties, for example, you could use this list of flags:
Dim cinfo As ConstructorInfo() =
t.GetConstructors((BindingFlags.Instance Or _ BindingFlags.NonPublic
Or BindingFlags.Public))

These flags will give you all properties (public, protected, private, and instance). Here is a list
of the methods of the Type class that permit you to filter data by using the BindingFlags:

 GetMembers
 GetEvents
 GetConstructor
 GetConstructors
 GetMethod
 GetMethods
 GetField
 GetFields
 GetEvent
 GetProperty
 GetProperties
 GetMember
 FindMembers

In the previous example, you have created a class with overloaded constructors. You use
reflection to access your class puria and report back what constructors it uses. When you run
this example, your TextBox reports:

Here are the public constructors of the type Reflect1.puria
Void .ctor(System.String)
Void .ctor(Single)

Ignore that Void , it's C#. What you're interested in is the details that tell you this class has two
constructors, one accepting a string and the other accepting a single. First you get the type,
then you get the constructorinfo.

What makes this technique more useful is using it against an assembly or class that isn't visible
in your code window. In other words, you don't really need to use reflection on puria here;
after all, you wrote it, and you can sit there and read it—so you already know what
constructors it has and their argument lists.

But let's assume you don't know the details about an object, or that you can't easily read them.
Ignore for now that you could use IntelliSense or the object browser to find out details about
objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 197

in various assemblies. Assume you want to find out the constructors for the System.Timespan
class. Edit this line:

 Dim t As Type = GetType(System.TimeSpan)

Then rerun the program to get this result, showing that this class has four possible
constructors: Here are the public constructors of the type System.TimeSpan

Void .ctor(Int64)
Void .ctor(Int32, Int32, Int32)
Void .ctor(Int32, Int32, Int32, Int32)
Void .ctor(Int32, Int32, Int32, Int32, Int32)

Of course, constructor information isn't the only data you can request from reflection on a
type. You can also extract properties, methods, events, and fields, using the following objects
associated with the Type object respectively: PropertyInfo, MethodInfo, MemberInfo, and
FieldInfo.

To see public properties, enter:

Dim t As Type = GetType(puria)
 TextBox1.Text = ''Here are the properties of the type "& t.ToString & cr
Dim cinfo As PropertyInfo() = _ t.GetProperties((BindingFlags.Public Or _
BindingFlags.Instance))

which results in this answer:

Here are the properties of the type Reflect1.puria
System.Object TheID

Or if you run this example using the TimeSpan class as your target of reflection, you get this
result:

Here are the properties of the type System.TimeSpan
Int64 Ticks
Int32 Days
Int32 Hours
Int32 Milliseconds
Int32 Minutes
Int32 Seconds
Double TotalDays
Double TotalHours
Double TotalMilliseconds
Double TotalMinutes
Double TotalSeconds

As you can see, this reflection technique begins to show promise. You could select during
runtime from among these various properties. And the same dynamic runtime decisionmaking
is possible with the methods of a class. Use this:

 Dim Minfo As MethodInfo() = t.GetMethods((BindingFlags.Public Or
BindingFlags.Instance))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 198

to get this result:

Here are the methods of the type System.TimeSpan
Int32 CompareTo(System.Object)
Int32 GetHashCode()
Boolean Equals(System.Object)
System.String ToString()
Int64 get_Ticks()
Int32 get_Days()
Int32 get_Hours()
Int32 get_Milliseconds()
Int32 get_Minutes()
Int32 get_Seconds()
Double get_TotalDays()
Double get_TotalHours()
Double get_TotalMilliseconds()
Double get_TotalMinutes()
Double get_TotalSeconds()
System.TimeSpan Add(System.TimeSpan)
System.TimeSpan Duration()
System.TimeSpan Negate()
System.TimeSpan Subtract(System.TimeSpan)
System.Type GetType()

Accessing the Current Project's Assembly

In the following example, you load the assembly of the currently running VB.NET project:

 Dim a As Reflection.Assembly
 a = Reflection.Assembly.GetAssembly(Me.GetType())

NOTE You can either continue with the above sample code or start a new VB.NET application.

Notice that you use the GetAssembly method, in concert with the GetType method of the form
object, to instantiate this assembly. You can also use Load or LoadFrom methods of the
assembly class, as later examples illustrate further on in this chapter.

Replace the code in the previous example with this:

Imports System.Reflection

 Dim cr As String = ControlChars.CrLf

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim a As Reflection.Assembly
 a = Reflection.Assembly.GetAssembly(Me.GetType())

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 199

 AddText(''Module: " & a.GetModules()(0).Name)
 AddText("///////")
 AddText("Type: " & a.GetTypes()(0).Name)
 AddText("///////")
 Dim T As Type = a.GetTypes()(0)
 Dim Enumerator As IEnumerator = _
 T.GetMethods.GetEnumerator
 AddText("Methods:................")
 While (Enumerator.MoveNext)
 AddText(CType(Enumerator.Current, MethodInfo).Name)
 End While
 AddText("Fields:.................... ")
 Dim FEnumerator As IEnumerator = T.GetFields.GetEnumerator
 While (FEnumerator.MoveNext)
 AddText(CType(Enumerator.Current, FieldInfo).Name)
 End While
End Sub
Private Sub AddText(ByVal s As String)
 TextBox1.Text &= s & cr
End Sub

You see the name of your project (module), the type of Me (the current object, Form1),
followed by a lengthy list of methods—most of which are kept invisible to programmers in the
normal course of programming in VB.NET. Reflection, however, goes deep into an assembly
(an application) and returns with all the metadata. In this example, there are no fields, so that
loop returns no results.

If you want to see the static (shared) members, use this set of bit codes:

((BindingFlags.Static Or BindingFlags.NonPublic Or BindingFlags.Public))

To see instance members, use this argument:

((BindingFlags.Instance Or BindingFlags.NonPublic Or BindingFlags.Public))

Accessing a Loaded Assembly

You can also use the GetType method an alternative way. What if you want to access an
assembly that is referenced in your current solution, such as System.XML or System.Data?

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 200

In this example, you provide a known type as an argument of GetType, which then
automatically gives you access to that type's entire assembly. In this next example, you use
GetType to load the System.Data assembly by providing the DataRow class as your argument.

Add a ListBox to the previous example's form and replace the code in the previous example
with Listing 8.2.

LISTING 8.2 ACCESSING A KNOWN TYPE
Dim cr As String = ControlChars.CrLf

 Dim a As System.Reflection.Assembly
 Dim t As Type() 'array to hold all the types (classes mostly)

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 a = GetType(System.Data.DataRow).Assembly

 t = a.GetTypes

 Dim re As Integer = t.Length
 TextBox1.Text = ''There are " & re & types in " & a.FullName & cr & cr

 Dim i As Integer

 For i = 0 To re - 1
 ListBox1.Items.Add(i + 1 & ". " & t(i).ToString)
 Next i
End Sub

Loading a File from an Assembly

To get a file within an assembly, you can use the technique illustrated in Listing 8.3. Here the
contents of the file are displayed in a hex block.

LISTING 8.3: ACCESSING A FILE FROM INSIDE AN ASSEMBLY
Imports System.Reflection

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 201

 Dim f As String

 Dim a As Reflection.Assembly

 a = Reflection.Assembly.GetAssembly(Me.GetType())

 Dim St As IO.FileStream = _
 a.GetFiles()(0)

 Dim L As Integer = St.Length

 Dim Arr(L) As Byte

 St.Read(Arr, 0, L)

 Dim I As Integer

 For I = 0 To L - 1
 f &= Hex(Arr(I))
 Next

 TextBox1.Text = f

End Sub

Loading an Assembly from a File

You can, of course, query the types within an assembly. The code example in Listing 8.4
illustrates two techniques:

 How to fill an array that holds all the classes (types) within an assembly, and display
them

 How to load an assembly from a hard disk file (the previous examples in this chapter
have accessed already-loaded assemblies that were part of the currently executing
project)

Here you access the Microsoft.VisualBasic ''compatibility namespace" (used to permit certain
elements of traditional VB6 source code to work within a .NET project).

See the notes below concerning how to figure out the path to the assembly. You will likely
need to replace the argument for the LoadFrom method with the path that works on your
system—shown in the following code in boldface. The validation key can differ, and even the
path might be different as well.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 202

LISTING 8.4: VIEWING THE COMPATIBILITY NAMESPACE
Imports System.IO
Imports System.Reflection
Imports Microsoft.VisualBasic

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim cr As String = ControlChars.CrLf

 Dim a As System.Reflection.Assembly
 Dim t As Type() 'array to hold all the types (classes mostly)

 Try
 a = System.Reflection.Assembly.LoadFrom _
(''c:\windows\assembly\gac\microsoft.visualbasic\ _
7.0.5000.0__b03f5f7f11d50a3a\microsoft.visualbasic.dll")
 t = a.GetTypes
 Catch ex As FileNotFoundException
 TextBox1.Text = "Cannot find file for assembly"
 Return
 Catch ex As TypeLoadException
 TextBox1.Text = "Cannot load types"
 Return
 End Try

 Dim re As Integer = t.Length
 TextBox1.Text = "There are " & re & " types in " & a.FullName & cr & cr

 Dim i As Integer

 For i = 0 To re - 1
 TextBox1.Text &= i + 1 & "." & t(i).ToString & cr
 Next i

 TextBox1.SelectionLength = 0 'turn off the default selection
End Sub

The .NET assemblies are held in the Windows\Assembly folder (and elsewhere). However,
you cannot directly access the assemblies by using a simple path string such as this:

System.Reflection.Assembly.LoadFrom("c:\windows\assembly\ microsoft.visualbasic")

Instead, you must use a fully qualified path (which doesn't appear in Windows Explorer):

c:\windows\assembly\gac\microsoft.visualbasic\ _
7.0.5000.0__b03f5f7f11d50a3a\microsoft.visualbasic.dll

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 203

To get the exact format for any .NET assembly that you want to work with using the
Assembly. LoadFrom method, you can usually add an Imports statement to a VB.NET project,
press F5 to execute the project, then look for (and copy) the line that Invokes the assembly in
the Output window.

When you run this project, you'll see the results displayed in Figure 8.1:

FIGURE 8.1 Getting a list of all the types in an assembly isn't difficult.

The LoadFrom method of an assembly object takes a string path as its argument, and loads the
file. This is how you can access assemblies that are not currently loaded within the now-active
VB.NET solution.

Getting the Methods in a Class

Modifying Listing 8.4, you can display all the methods within any given type using an
enumerator. Add a ListBox to your form, then use the code in Listing 8.5. (Remember to
replace the argument for the LoadFrom with the path that works on your system. The
validation key can differ, and even the path might be different as well.)

LISTING 8.5: VIEWING A TYPE'S METHODS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim cr As String = ControlChars.CrLf

 Dim a As System.Reflection.Assembly
 Dim t As Type() 'array to hold all the types (classes mostly)

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 204

 Try
 a = System.Reflection.Assembly.LoadFrom(''c:\windows\assembly\gac\ _
microsoft.visualbasic\7.0.5000.0__b03f5f7f11d50a3a\microsoft.visualbasic.dll")
 t = a.GetTypes
 Catch ex As FileNotFoundException
 TextBox1.Text = "Cannot find file for assembly"
 Return
 Catch ex As TypeLoadException
 TextBox1.Text = "Cannot load types"
 Return
 End Try

 Dim re As Integer = t.Length
 TextBox1.Text = "There are" & re & " types in " & a.FullName & cr & cr

 Dim i As Integer

 For i = 0 To re - 1
 ListBox1.Items.Add(i + 1 & ". " & t(i).ToString)
 Next i

 TextBox1.SelectionLength = 0 'turn off the default selection

 End Sub

 Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged
 TextBox1.Clear()

 TextBox1.Text = "Methods of " & t(ListBox1.SelectedIndex).ToString & cr

 Dim Enumerator As IEnumerator = _
 t(ListBox1.SelectedIndex).GetMethods.GetEnumerator

 While (Enumerator.MoveNext)
 TextBox1.Text &= CType(Enumerator.Current, MethodInfo).Name & cr
 End While

 End Sub

When you run this example, click in the ListBox on the VisualBasic.Financial class to see all
its methods. You probably recognize them from earlier versions of VB.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 205

More about Types

The classification system you're used to as a .NET programmer (the nested classification:
assembly/module/class/enum, for example) breaks down somewhat when you use reflection.
An enum is considered a type, even when that enum resides within another type.

For example, if you create a module in your project that looks like this:

Module convertsomething

 Function ReturnMoney(ByVal × As String) As Decimal

 Return CDec(×)

 End Function

 Public Enum Weeks
 FirstWeek = 1
 SecondWeek = 2
 ThirdWeek = 3
 FourthWeek = 4
 End Enum

End Module

Then you use GetTypes to extract the types from within your entire project (the assembly
containing your whole VB.NET solution):

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
 Dim a As System.Reflection.Assembly
 Dim cr As String = ControlChars.CrLf

 a = GetType(Reflect1.convertsomething).Assembly

 Dim t As Type

 For Each t In a.GetTypes

 TextBox1.Text &= t.Name & cr

 Next

 End Sub

You may be surprised to see that the enum, which appears to be on the same level (within the
same container, the module) as the function ReturnMoney, isn't in fact on that level at all. It's
considered on the same level as its container (the module Convertsomething) and the Form1
class.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 206

Here's the result you get when you iterate through the types in the solution assembly; the types
discovered are the module, the enumeration within that module, and the form class:

convertsomething
Weeks
Form1

Accessing Specific Members

As you doubtless noticed, when you get an assembly's types (or members) using one of the
Get methods (such as GetTypes or GetConstructors) you use an array to hold the information:

 Dim cinfo As ConstructorInfo()

But is there a way to directly access a specific type or member from a class or assembly? You
bet. During runtime, you may need a way to quickly access an array of reflection data (you
could iterate through the array, but it's faster to use a direct access method—particularly if the
assembly is huge and contains many hundreds of types, for example).

Assume you have a class named TestClass with two constructors, and you are interested in
retrieving only the constructor that accepts two strings. You can pass an array with two strings
to the GetConstructor method, as illustrated in this example. You can, of course, also use the
other Get methods. This example (Listing 8.6) illustrates how to get a specific method from a
class using GetMethod.

LISTING 8.6: DIRECTLY CONTACTING A TYPE
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim t() As Type = {GetType(String), GetType(String)}
Dim cInfo As ConstructorInfo = GetType(TestClass).GetConstructor(t)

 MsgBox(cInfo.ToString)

Dim mInfo As MethodInfo =

GetType(TestClass).GetMethod(''SendBak")

 MsgBox(mInfo.ToString)

 End Sub

End Class

Public Class TestClass
 Public Sub New(ByVal s As String)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 207

 End Sub

 Public Sub New(ByVal s As String, ByVal s1 As String)

 End Sub

 Public Function SendBak() As String
 End Function

End Class

Searching for Members or Data

You can search through a class's members, looking for specific information, such as the name
of methods, fields, and such, or the data in a field.

In Listing 8.7, you access the data within the fields in a class. This technique can be used to
locate a specific member or datum.

LISTING 8.7: LOCATING MEMBER DETAILS
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

Dim cr As String = ControlChars.CrLf

 Dim mInfo As MemberInfo()

 Dim FInfo As FieldInfo

 Dim tc As New TestClass

 mInfo = tc.GetType.FindMembers(_
 MemberTypes.Field, BindingFlags.NonPublic Or _
 BindingFlags.Instance, Nothing, Nothing)

 TextBox1.Text = ''Data in fields within" & tc.ToString & cr

 For i As Int16 = 0 To mInfo.Length - 1

 FInfo = CType(mInfo(i), FieldInfo)

 TextBox1.Text &= FInfo.ToString & "contains this data: "
 TextBox1.Text &= FInfo.GetValue(tc) & cr

 Next

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 209

 'illustrates how to permit the user to select from various methods
 'at runtime, then provide any necessary parameters
 'and execute the chosen method

 Label1.Text = ''Click one of the methods in the ListBox to select it."

 'display the methods in the TestClass

 Dim Enumerator As IEnumerator = t.GetMethods.GetEnumerator
 While (Enumerator.MoveNext)
 ListBox1.Items.Add(CType(Enumerator.Current, MethodInfo).Name)
 End While

 End Sub

 Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

mInfo = t.GetMethod(ListBox1.SelectedItem.ToString)

 paramInfo = mInfo.GetParameters() 'get the parameters of the method

 l = paramInfo.Length - 1

 Dim m As String = "The pararmeters you must pass to this method are:"

 For j As Int16 = 0 To l
 m &= paramInfo(j).ParameterType.ToString & ", "
 Next j

 Label1.Text = "This method requires" & l + 1 & _
" parameter(s) which you must supply. " & m & _
" so, please type the parameter(s) into the TextBox," & _
 separated by commas. When finished, click the button.

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 210

 'Provide all parameters
 Dim p(paramInfo.GetUpperBound(0)) 'set p to contain paraminfo

 Dim delimStr As String = ''," : Dim delimiter As _
Char() = delimStr.ToCharArray()

 Dim tt As String = TextBox1.Text
 Dim split As String()
 split = tt.Split(delimiter)

 Dim C As Integer
 Dim s As String

 For Each s In split

 'figure out parameter's variable type
 Select Case paramInfo(C).ParameterType.Name

 Case "String" 'case sensitive

 p(C) = split(C)

 Case "Int32"

 Dim NewInt As Integer = Integer.Parse(split(C)) _
'turn string into integer

 p(C) = NewInt

 End Select

 C += 1
 Next s

 mInfo.Invoke(obj, p)

 End Sub
End Class

Public Class TestClass

 Public Sub narz(ByVal YourFirstName As String, ByVal YourLastName As String)
 MsgBox("Hi!" & YourFirstName & " " & YourLastName)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 211

 End Sub

 Public Sub AddFive(ByVal YourAge As Integer)

 MsgBox(''In five years you will be " & YourAge + 5)

 End Sub

End Class

Right off the bat you reflect a type variable (a class named TestClass) and instantiate that class
in the variable obj. You use the CreateInstance method of the Activator class:

Dim t As Type = GetType(TestClass)
Dim obj As Object = Activator.CreateInstance(t)

This happens to be a local assembly that is actually running while the CreateInstance method
instantiates a TestClass object. However, if you want to instantiate a COM object from an
assembly in a file, you use the CreateComInstanceFrom method. Or, to create a .NET object
from an assembly in a file, use the CreateInstanceFrom method.

In addition to defining obj as an instance of the TestClass class, you create several other
form-level variables so they will have the scope to be accessed from the Form_Load event as
well as button and ListBox events.

Code in the Form_Load event sets things up for the user. You fill the ListBox with the name
of each method in the type t. You access the enumerator of the GetMethods method, then use
it to step through the methods and list their names in the ListBox.

In this chapter, however, I've used several looping techniques to manipulate or extract
reflected data: For...Next based on a Length property, For...Each based on MemberInfo
objects:

Dim m As MemberInfo
 For Each m In cinfo

For...Each based on the collection of types within an assembly:

Dim t As Type
 For Each t In a.GetTypes

In any case, Microsoft currently advises using enumerators for looping, whenever possible.

After the ListBox is filled, the user clicks one of the methods listed there and its parameters
(their number and data types) are described in the label.

As soon as a method is clicked, you use the GetMethod method to assign the selected method
from the t class and store it in a methodinfo class.

mInfo = t.GetMethod(ListBox1.SelectedItem.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mInfo = t.GetMethod(ListBox1.SelectedItem.ToString)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 212

Then you extract metadata (all the parameters in this case) from the selected method. These
parameters are held in the paramInfo array:

paramInfo = mInfo.GetParameters() 'get the parameters of the method

The length of this array (less one, as is so often necessary) is assigned to the variable l. It will
be used in several loops in this project. You then create a string to inform the user how many
and of what type the necessary parameters are.

After the user types the parameter or parameters into the TextBox, he or she clicks the button.
Now you must parse the parameters that the user typed. Before VB6 this required the usual
parsing tedium—having to adjust the start and length information that you provide to the
SubString method. You had to fiddle with parameters and multiple strings, like this:

Dim c, c1 As Integer, tArray(l) As String
Dim tt As String = TextBox1.Text
Dim tz As String = tt
For i As Integer = 0 To l
 c1 = tt.IndexOf('',")
 If c1 = -1 Then tArray(i) = tt : Exit For
 tz = tt.Substring(c1 + 1, tt.Length - c1 - 1)
 tArray(i) = tt.Substring(c, c1)
 tt = tz
Next i

Over the years I've wished that VB had a parse function to which you passed a string, and a
delimiter (such as ","), and that the function returned an array of substrings. Fortunately, in
VB6, the Split method was added to the string object. Now, instead of the messy code above,
you can use this much simplified version of parsing:

 Dim delimStr As String = "," : Dim delimiter As Char() _
= delimStr.ToCharArray()
 Dim tt As String = TextBox1.Text
 Dim split As String()
 split = tt.Split(delimiter)

Then you use Select...Case to figure out the data types of each parameter in the parameter
array. Reflection presents you with an unusual job: you may have to translate a string data
type into other data types. Normally, you think of coercing (or casting, as they prefer to call it)
such as using CInt.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 216

Another related issue is that of debugging applications. No amount of error-handling code will
do you any good if your application is producing wrong results, or contains syntax errors.
Errors, or bugs, in our code are not always obvious, and any non-trivial application contains
quite a few of them—just check out the number of ''fixes" and "patches" for major commercial
applications. Debugging is the most important part of coding an application, and all modern
development environments, such as Visual Studio, provide numerous tools to assist you in
locating problems in your code and fixing them. The bulk of this chapter is devoted to the
debugging tools of Visual Studio.

Structured Exception Handling

A good deal of the code we write handles errors. It shouldn't come as a surprise, but more than
half of a professional application's code validates data and handles possible errors. Most of the
errorhandling code we write will never be executed. Users aren't expected to enter a discount
percentage that exceeds 100%, or a future birth date. This isn't supposed to happen and it may
never happen. However, you must validate the discount's value from within your code and not
proceed with your calculations until the user supplies a valid value. Or, even worse, attempt to
calculate the age of a person with a future birth date. We should make a very important
distinction here. A valid value is not necessarily the correct value, but there's nothing you
can do about that.

NOTE Exception is the latest term for errors. For years, we used to fix errors in our code and
handle runtime errors. Obviously, error is not the best term for describe something that occurs
in our code, so a new, less embarrassing term was invented.

Consider an application that performs static calculations. The individual parameters supplied
by the user may be correct, but when they're combined, the calculations may fail (i.e., the
calculations may produce results that don't make sense). No parameter is in error; they're
incompatible with one another. For example, they may result in a division by zero, the
calculation of the square root of a negative value, and so on. Our task is to detect from within
our code any incompatibilities, or anomalies, in the data and allow users to revise it, rather
than allow the application to crash. The situation we just described can't be handled with data
validation. We'll discover a problem with our data only after we attempt to use it in some
calculations.

Another type of error you can't prevent with data validation are those caused by the hardware
itself. The disk may be full when you attempt to save a large file, or the drive you're accessing
may be disconnected. When your application runs into a situation like this, it should be able to
detect the error and handle it. To handle errors that surface at runtime, we use structured
exception handlers. Exceptions that are handled from within the application's code are called
handled exceptions and they result in robust applications. Exceptions that are not handled from
within your code are called unhandled exceptions and they lead to program crashes (in effect,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

within your code are called unhandled exceptions and they lead to program crashes (in effect,
it's the CLR that handled these errors in a rather crude manner). Figure 9.1 shows the result of
an unhandled exception. After you close this message, the application will terminate. Figure
9.2 shows a message box displayed from within an error handler. Any user can understand this
error message and the program will most likely give the user a chance to specify a different
path, instead of crashing. This type of error can be easily avoided by using a File Open dialog
box, which forces the user to select an existing file, but you get the idea.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 217

FIGURE 9.1 Unhandled exceptions lead to program crashes.

FIGURE 9.2 A robust application handles exceptions from within its code.

A structured exception handler contains two sections of code: the actual code that will always
work under perfect conditions (the strictly ''application code," so to speak) and another section
of code that will be activated if something goes wrong in the first section. First, you must
identify the sections of code that may throw an exception. The code that opens a file, for
example, is a prime candidate for error handling. A file on a CD can't be opened for writing,
and a file on a network drive may not be available at all times. These are error situations that
can't be prevented. All you can do is capture the error the moment it occurs and keep it from
crashing the application. To capture an error, we embed sections of our code in a structured
exception handler, which has the following form:

Try
 'Code that may cause a run-time error
Catch ex As exception
 'Code to handle the error
Finally
 'Code to do any final clean up.
End Try

Only the Try and End Try statements are mandatory, but you'll rarely write code that doesn't
use the Catch statement. The Catch statement accepts as argument an object that represents an
exception. This argument can be a specific exception (like an overflow exception) or a generic
exception. The simplest form of the statement is the following, which catches all possible
exceptions and handles them with the same handler:

Try
 'one or more statements
Catch ex As Exception
 MsgBox("An error occurred, program will terminate!" & _
 vbcrlf & ex.Message)
 End
End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The error handler shown here terminates the application. At the very least, you must prompt
the user to save any open document. We usually terminate the execution of the procedure that
contains the exception, but we don't terminate the application.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 218

All objects that represent exceptions derive from the Exception class, and the .NET
Framework provides many types of exception objects. We'll look at the Exception object and
the most common types of exceptions in the following section. In this section we're going to
use the Exception class's Message property, which returns a description of the error.

You can also include multiple Catch statements to catch, and handle, different types of errors.
A section of code that performs math calculations may generate an overflow exception. While
an overflow is the most likely type of exception for a code segment that performs math
calculations, we can't ignore all other types of exceptions. The following structured exception
handler shows how to catch specific exceptions and handle them individually, as well as how
to handle all other types of exceptions:

Try
 ' statements
 ValidResult = True
Catch OFexception As OverflowException
 MsgBox(''An overflow occurred")
 ValidResult = False
Catch Ex As Exception
 MsgBox(ex.Message)
 ValidResult = False
End Try

The code sets the ValidResult Boolean variable to a True/False value to indicate whether the
operations completed successfully or not. When you use multiple Catch blocks in your code,
you must order them from the most specific to the least specific. If you don't, the most general
(less specific) exception will be caught first and the code that handles the more specific
exceptions will never be executed. A code segment that writes to a file may run into many
different exceptions. Some of the errors you should handle individually are the following:

 File can't be written to
 User has no permission to write to the file
 May run out of disk space
 Other generic errors (disk failure, removal of the media, and so on).

You will see shortly the code that opens a file for reading and writing and how it handles all
errors. Another form of the Catch clause allows you to specify conditions, which limits its
scope and allows us to handle exceptions conditionally: if the specified condition isn't met, the
Catch clause isn't activated. If you want to handle an exception differently when the value of a
variable is negative than when the value of the same variable is zero or positive, use an
exception handler with the following structure:

Try
 ' statements
Catch Ex As Exception When runningTotal < 0
 ' handle exception for negative values
Catch Ex As Exception
 ' handle same exception for all other values
End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Try

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 219

The Finally Clause

The statements in the Finally clause are executed regardless of which of the two blocks of the
Try statement, the Try or Catch block, was executed. This is where we insert any clean-up
code. The following statements execute a command against a database. The CMD object
represents an SQL command and the CN object represents a connection to the database that
has already been established successfully. The connection must be closed regardless of
whether the command was executed successfully or not. If you close the connection in the
Catch clause, the connection will not be closed if the command is executed successfully. If
you insert another call to the Close method at the end of the structured exception handler, you
may get another error, outside the handler. If the connection is closed in the Catch clause and
you attempt to close it again after the exception handler, you'll get an error to the effect that
you're attempting to close a connection that's already closed. By inserting the call to the Close
method in the Finally block of the statement, we make sure that the connection is always
closed. Notice that the code examines the Connection object's State property to make sure it
doesn't attempt to close an already closed connection, because this would throw another
exception.

Try
 CMD.ExecuteNonQuery
Catch Ex As Exception
 MsgBox Ex.Message
Finally
 If Not cn.State =ConnectionState.Closed then
 CN.Close
 End If
End Try

The ReadWriteFile Project

In this section we'll implement two structured error handlers to deal with runtime errors that
may occur while opening, reading from, and writing to files. First, we must determine the
operations that may throw exceptions at runtime. We'll use the Open method of the File class
to open a file for reading. The file's name will be supplied by the user through the FileOpen
common dialog box. If you look up the Open method in the documentation, you'll find a list of
all the exceptions this method may raise; they're listed in Table 9.1.

TABLE 9.1: THE EXCEPTIONS OF THE OPEN METHOD

EXCEPTION CONDITION

ArgumentException The path argument is a zero-length string, contains only
white space, or contains one or more invalid characters as
defined by InvalidPathChars.

ArgumentNullException The path argument is a null reference (Nothing in Visual
Basic).

ArgumentOutOfRangeException The value of the mode argument is invalid.

PathTooLongException The specified path, filename, or both exceed the system-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined maximum length. For example, on Windows-
based platforms, paths must be fewer than 248 characters,
and filenames must be fewer than 260 characters.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 220

IOException An I/O error occurred while opening the file.

DirectoryNotFoundException The specified path is invalid, such as being on an unmapped drive.

UnauthorizedAccessException The path specified is a directory, or the calling application does not
have the required permission to write to, or read from, the file.

FileNotFoundException The file specified in path was not found.

NotSupportedException The path is in an invalid format.

Some of these errors can be easily prevented; we can easily make sure that the path is not an
empty string and the file is opened in a valid mode. Since we're using the OpenFile built-in
dialog box, these errors will never occur. However, another application might read the file's
name from another source (such as a text file) and it may run into a bad file/path name.

The statements in the Try clause of the sample code in Listing 9.1 attempt to open a file for
reading. If any of the Open method's possible exceptions occurs, the program displays a
warning and exits the procedure, without opening the file.

LISTING 9.1: HANDLING EXCEPTIONS WITH THE BASIC FILE I/O OPERATIONS (1)
Private Sub bttnFileIOExceptions_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnFileIOExceptions.Click
Dim FName As String
Dim txt As String
 OpenFileDialog1.CheckFileExists = True
 OpenFileDialog1.CheckPathExists = True
 OpenFileDialog1.Filter = ''Text Files|*.txt"
 Dim stream As FileStream
 If OpenFileDialog1.ShowDialog = DialogResult.OK Then
 Try
 'Dim ex As New System.IO.DirectoryNotFoundException
 'Throw ex
 FName = OpenFileDialog1.FileName
 stream = File.Open(FName, FileMode.Open)
 Catch authorizationException As UnauthorizedAccessException
 MsgBox("The file is read-only")
 Exit Sub
 Catch excptnDirectory As System.IO.DirectoryNotFoundException
 MsgBox("Specified directory not found")
 Exit Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 221

 Catch excptnFile As System.IO.FileNotFoundException
 MsgBox(''Specified file not found")
 Exit Sub
 Catch IOExcptn As System.IO.IOException
 MsgBox("Couldn't open the file")
 Exit Sub
 Catch excptn As Exception
 MsgBox("Failed to open file." & vbCrLf & excptn.Message)
 Exit Sub
 End Try
 Dim b As Byte
 Dim buffer(stream.Length - 1) As Byte
 Try
 stream.Read(buffer, 0, stream.Length)
 Catch excptnIO As System.IO.IOException
 MsgBox("Error in reading file")
 Exit Sub
 Catch excptnNotSupported As System.NotSupportedException
 MsgBox("Can't read from file")
 Exit Sub
 Catch excptn As Exception
 MsgBox("The following error occurred while reading" & _
 vbCrLf & Excptn.Message)
 Finally
 stream.Close()
 End Try
 txt = UTF7.GetString(buffer)
 Console.WriteLine(txt)
 End If
End Sub

All errors are fatal and we exit the subroutine. In the following section, we'll discuss a
technique for repeating operations that failed.

If the file is opened successfully, the program attempts to read its contents into an array of
bytes using the FileStream object's Read method. This method may throw several exceptions,
which are listed in the Read method's entry in the documentation. The two most likely ones
are the IOException and the NotSupportedException. The IOException exception occurs when
the operating system can't read from the file (either because it's locked by another user or
because the media is bad) and the NotSupportedException exception occurs when we attempt
to perform an illegal operation on the file (such as moving to the beginning of a forward-only
stream). The structured error handler handles these two exceptions separately, and then it
handles all other exceptions. In the Finally clause we close the Stream.

The first two statements in the Try clause are commented out. You can insert statements to
throw exceptions in your code to test your error handler. Declare variables to represent an
exception type and use them to throw any exception with the Throw method.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 222

The code for writing to a file is a little more challenging. The user may select a read-only file,
and this is an exception we can handle from within our handler. If you attempt to open a read-
only file for writing with the Open method, the UnauthorizedAccessException exception is
thrown. In this exception's handler, you can verify that the file is read-only and prompt the
user to reset the file's read-only attribute. If the user agrees to change the read-only attribute,
the code executes the Open method again. Notice the nested exception handler embedded in
the UnauthorizedAccessException Catch clause. This handler takes care of any exceptions
thrown by the statements that call the SetAttributes and Open methods. Listing 9.2 shows the
complete code for a very simple operation. As you can see, the core of the code consists of a
few statements (the statements that open the file and write a string to it). The remaining
statements handle possible errors and make the program easier to use.

LISTING 9.2: HANDLING EXCEPTIONS WITH THE BASIC FILE I/O OPERATIONS (2)
Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button2.Click

 Dim path As String
 Dim FS As FileStream
 Dim cException As ArgumentNullException
 Dim RepeatOperation As Boolean = True
 While RepeatOperation
 RepeatOperation = False
 If SaveFileDialog1.ShowDialog <> DialogResult.OK Then
 Exit Sub
 End If
 Me.Refresh()
 path = SaveFileDialog1.FileName
 Try
 FS = File.Open(path, FileMode.OpenOrCreate)
 Catch exPath As PathTooLongException
 MsgBox(''Invalid path name")
 RepeatOperation = True
 Catch exPath As DirectoryNotFoundException
 MsgBox("The folder you specified does not exist")
 RepeatOperation = True
 Catch exFile As FileNotFoundException
 MsgBox("The file you specified does not exist")
 RepeatOperation = True
 Catch exArgumentNull As ArgumentNullException
 MsgBox("You have not specified the file to open")
 RepeatOperation = True
 Catch AccessException As UnauthorizedAccessException
 Dim reply As DialogResult
 If File.GetAttributes(path) And _
 FileAttributes.ReadOnly = FileAttributes.ReadOnly Then
 reply = MsgBox("File is read-only. Reset it?",_
 MsgBoxStyle.YesNo)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 223

 If reply = DialogResult.Yes Then
 Try
 File.SetAttributes(path, _
 File.GetAttributes(path) And _
 (Not FileAttributes.ReadOnly))
 FS = File.Open(path, FileMode.OpenOrCreate)
 Catch ex As Exception
 MsgBox(''Could not reset read-
only attribute!")
 Exit Sub
 End Try
 End If
 Else
 MsgBox("Can t access file!")
 Exit Sub
 End If
 Catch GeneralException As Exception
 MsgBox(GeneralException.Message)
 Exit Sub
 End Try
 End While

 Dim b(1024) As Byte
 Dim temp As UTF8Encoding = New UTF8Encoding(True)
 Dim buffer() As Byte
 Try
 buffer = System.Text.Encoding.UTF8.GetBytes(_
 ("Write this string to the file")
 FS.Write(buffer, 0, buffer.GetLength(0))
 Catch exUnsupported As NotSupportedException
 MsgBox("The stream doesn't supported the requested operation")
 Exit Sub
 Catch IOExc As IOException
 MsgBox("Error writing to file." & vbCrLf & _
 "Please make sure the file isn't " & _
 "read-only and the disk isn't full")
 Catch GeneralExc As Exception
 MsgBox("Error in application")
 Exit Sub
 Finally
 FS.Close()
 End Try
 MsgBox("Data saved successfully")
End Sub

Our error-handling code doesn't do a lot, except for displaying specific error messages that
will help the user understand the condition that prevented the successful completion of the
operation. However, the Catch clauses can be as complicated as you can make them.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 224

To read the attributes of a file, use the GetAttributes method; to set an attribute, use the
SetAttributes method of the File class. Both methods may throw exceptions, which you should
handle with a nested error handler. In the UnauthorizedAccessException handler's code we
attempt to reset a read-only file. If the operation succeeds, we repeat the statements that write
a string to the file. If the file's read-only attribute can't be reset (this will be the case for a file
on a CD), the subroutine is terminated.

Resuming Statements that Failed

The unstructured error-handling techniques of VB6 are supported by VB.NET, but you
shouldn't use them. The error-handling mechanism of VB6 relied on the GoTo statement,
which is considered bad technique. Use too many error handlers in a procedure and you won't
be able to read your own code. There's one feature of the On Error statement you'll miss,
however, and this is the Resume statement. In an error handler, you can attempt to fix the error
that prevented a statement from completing successfully and then repeat the offending
statement by calling the Resume statement. If a statement that attempts to write to a file fails
because the media is read-only (a CD drive, for example), you can display a message to the
user, give the user a chance to select another path, and repeat the statement.

Structured exception handlers don't provide an equivalent mechanism, so you'll have to resort
to the GoTo statement. Let's consider a code segment that attempts to open a connection to a
database. The operation may fail because the client computer has no access to the database
server, or because the connection string is invalid. If you can't establish a connection to the
database, you should probably terminate the application. You can't expect an end user to
supply a valid connection string, but let's look at a technique that allows us to repeat a
statement that failed to execute.

The following code segment attempts to open a connection. If the operation fails, the code
prompts the user as to whether it should repeat the operation. If the user chooses to repeat the
operation, the program prompts for a new connection string. End users shouldn't be allowed to
edit connection strings, but you can give your users a chance to check their computer's
connection to the local network, or otherwise troubleshoot the problem. There's not much you
can do from within your application's code, but you may wish to repeat the operation, rather
than terminating the application.

repeatOperation:
Try
 CN.ConnectionString = txtConnString.Text
 CN.Open()
Catch ex As ArgumentException
 Dim reply As MsgBoxResult
 reply = MsgBox(''Could not open Connection" & vbCrLf & _
 ex.Message & vbCrLf & "Retry?", MsgBoxStyle.OKCancel)
 If reply = MsgBoxResult.OK Then
 Dim ConnString As String = _
 InputBox("Please enter a different" & _
 "connection string", , txtConnString.Text)
 txtConnString.Text = ConnString
 GoTo repeatOperation
 Else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 225

 Throw ex
 End If
Catch ex As SqlClient.SqlException
 Throw New Exception(ex.Message)
End Try

The setting of the ConnectionString property is read from a TextBox control. The code catches
the ArgumentException exception, which is thrown when the setting is incorrect, and then
prompts the user about the action to be taken. If the user decides to repeat the operation, the
code will execute the GoTo statement to transfer control to the Try statement. Should the
operation fail again, the process is repeated.

If the user can't troubleshoot his or her connection to the database server, the program throws
an exception, which must be intercepted and handled by the calling procedure. The most
reasonable course of action for this type of problem is to terminate the execution of the
application.

The Exception Class

The Exception object represents an exception; there are different exception classes for
different exceptions, all deriving from the Exception class. Each exception object provides
information about a specific exception. The Message property is a string with the exception's
description. The InnerException property is an Exception object that represents an exception
thrown while an error handler was in effect. If an exception occurs in an exception handler's
code, the Message property describes the current error, while the InnerException property
represents the error that activated the error handler. The Source property is another string with
the name of the object that caused the exception or the name of the assembly where the
exception occurred. Finally, the StackTrace property holds a stack trace, which is a list of all
the called methods preceding the exception and the line numbers in the source file(s). The
TargetSite property returns the name of the method that threw the current exception.

AN OUNCE OF PREVENTION

Preventing errors is even better than catching them. Sometimes we can eliminate all sources of
error by validating the data we'll use in our calculations. Let's say you're calculating loan
payments, which depend on the loan's amount, the interest rate, and the loan's duration. Instead
of embedding all the calculations in a structured exception handler, you can examine the values
of the loan's parameter loan before you perform the calculations. If you make sure that the
interest rate is a value between 1 and 20 (or 0.01 and 0.2, depending on how the interest rate
should be expressed) and that the loan's amount and duration are positive values of a
reasonable size, then you can perform the calculations. Data validation is extremely important
and you should always validate the data you're going to process. Sometimes invalid data may
not cause runtime exceptions, but they will certainly produce incorrect results. Your loan
payment calculation routine may very well accept a negative interest rate, but what does this
really mean? No bank will ever pay you to get a loan. If you validate your data, you can
display descriptive error messages to the user and help them correct their mistakes as early as
possible. A structured exception handler may display a very generic message, but your code
that validates individual values will provide very specific descriptions for all possible errors.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 226

If the exception isn't handled in the subroutine where it occurred, you can still recover the line
that caused the exception through the StackTrace property. The StackTrace property is a long
string that contains the chain of procedure calls all the way from the start of the application to
the procedure that threw the exception. A typical value of the StackTrace property is the
following:

at Exceptions.Form1.Proc2() in
 C:\Toolkit\CH09\Exceptions\Form1.vb:line 168
at Exceptions.Form1.Proc1() in
 C:\Toolkit\CH09\Exceptions\Form1.vb:line 147
at Exceptions.Form1.Button1_Click(Object sender, EventArgs e) in
 C:\Toolkit\CH09\Exceptions\Form1.vb:line 139

This information isn't of much use to your code; you can view the chain of procedure calls to
the offending procedure in the Call Stack window, which is discussed shortly. However, it can
be of great help in troubleshooting applications that have already been deployed. You can
dump this information to a file before you quit the application and use this file's contents as
your starting point when you're called to service your application at the customer's site.

To better handle exceptions from within your code, you should catch specific exceptions
whenever possible, rather than a generic exception. But how do we know in advance all
possible exceptions that a certain statement may cause? When an unhandled exception is
thrown, a message box with the exception's description pops up. The description includes the
type of the exception (System.OverflowException, or ArgumentException, and so on). You
can force the most common exceptions and see their types. You can also look up the names of
the methods you call in the Try block in the online documentation and find out the types of
exceptions each method can cause. Your effort should be aimed toward the elimination of
conditions that will lead to an exception. When this isn't possible, you should catch different
types of exceptions and handle them separately. The following are some of the most common
exceptions, which are represented by individual objects that derive from the Exception class.
We list first a general class and its descriptions, followed by more specific classes that
represent specific exceptions of the same type. An ArgumentException exception is thrown
every time you call a method with an argument that doesn't match the argument list of the
method. An exception of this type may be caused because one of the arguments is null
(Nothing in VB), because you've specified more arguments than the method accepts, or
because you've specified an enumeration member that doesn't exist. These three exceptions are
represented by the classes listed in the Derives classes under the ArgumentException entry.

ArgumentException Represents the exceptions that occur when one or more of the
arguments passed to a method is not valid.

Derived classes ArgumentNullException, ArgumentOutOfRangeException,
ComponentModel.InvalidEnumArgumentException

ArithmeticException Represents errors resulting from invalid arithmetic, casting,
or conversion operations.

Derived classes DivideByZeroException, NotFiniteNumberException,
OverflowException

ArrayTypeMismatchException Represents the exception thrown when you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ArrayTypeMismatchException Represents the exception thrown when you
attempt to store a value of the wrong type to an array element.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 227

Data.DataException Represents exceptions generated by the ADO.NET
components—the ReadOnlyException exception, for example, which derives from
the DataException class and represents the exception that's thrown when a
statement attempts to set the value of a read-only field.

Derived classes Data.ConstraintException,
Data.DeletedRowInaccessibleException, Data.DuplicateNameException,
Data.InRowChangingEventException, Data.InvalidConstraintException,
Data.InvalidExpressionException, Data.MissingPrimaryKeyException,
Data.NoNullAllowedException, Data.ReadOnlyException,
Data.RowNotInTableException, Data.StringTypingException,
Data.TypedDataSetGeneratorException, Data.VersionNotFoundException

Data.DBConcurrencyException Represents exceptions that occur during update
operations, due to concurrency violations.
Data.SqlClient.SqlException Represents the exceptions returned by SQL Server
during the execution of a query or stored procedure. You should catch the
SqlException exception when you call one of the Command class's Execute
methods.
Data.SqlTypes.SqlTypeException Represents exceptions that occur when you
attempt to assign a value of the wrong type to a field or parameter.
Drawing.Printing.InvalidPrinterException Represents exceptions that occur
when you attempt to access a printer using invalid settings.
InvalidCastException Represents exceptions that occur during invalid casting or
conversion operations.
IO.InternalBufferOverflowException Represents the exception that occurs when
a file buffer overflows.
IO.IOException Represents an I/O exception. There are several specific I/O errors,
which are represented by classes deriving from the IOException class.

Derived classes IO.DirectoryNotFoundException, IO.EndOfStreamException
IO.FileLoadException, IO.FileNotFoundException IO.PathTooLongException

MemberAccessException Represents an exception that occurs when you attempt to
access a class member that doesn't exist.

Derived classes FieldAccessException, MethodAccessException,
MissingFieldException, MissingMemberException, MissingMethodException

RankException Represents the exception that occurs when you pass an array with
the wrong number of dimensions to a method.
Runtime.Serialization.SerializationException Represents exceptions that occur
during the serialization or deserialization process.
Security.Cryptography.CryptographicException Represents exceptions that
occur during cryptographic operations.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 228

Security.XmlSyntaxException Represents an exception that's thrown when parsing
an XML document that contains syntax errors.
StackOverflowException Represents the exception that's thrown when the
execution stack overflows because of too many nested method calls (usually in
recursive procedures).

An application should also include a handler for all exceptions that aren't handled in their
respective procedures. Since unhandled exceptions propagate upward in the call stack, you can
catch them all at the beginning statements of the application. To include an exception handler
for all unhandled exceptions, start the application with the Run method, as shown in the
following code segment:

Sub Main()
 Try
 System.Windows.Forms.Application.Run(New Form1())
 Catch ex As SqlClient.SqlException
 MsgBox(''SQL server responded with the following message:" & _
 ControlChars.CrLf & ex.Message & ControlChars.CrLf & _
 "Application will terminate!", _
 MsgBoxStyle.Exclamation, "Error!")
 Catch ex As Exception
 MsgBox("APPLICATION ERROR ! " & vbCrLf & _
 ex.Message & vbCrLf & ex.StackTrace())
 End Try
End Sub

The code shown here handles two types of exceptions: the ones thrown by SQL Server (the
SqlClient class) and general exceptions. When exceptions are caught at this level, it's too late
to do anything about them, so you should include error handlers in your procedures, as close
to the source of the error as possible.

The generic exception handler shown here can be used as a logging tool. For example, you can
dump the call stack to a file and then examine this file to find out where the exception
occurred and the exception's type.

Throwing Custom Exceptions

While it's relatively easy to handle errors in an application's code (after all, your code can
interact with the user), things are very different when you write your own components. When
you write a class, for example, you may run into a situation that can't be handled from within
the class's code. In this case, you must throw an exception from within your class's code and
let the calling application handle it. If the arguments passed to a function that performs a series
of calculations, for example, are invalid, there's not much we can do in our code. We can't
interact with the user, because the component may be running on a remote machine or a web
server. What good are error messages displayed on the application server's monitor? They will
remain there indefinitely, since no user will see them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The solution is to throw an exception from within our code. The arguments themselves need
not be invalid; just their combination results in an impossible situation. Consider a class that
exposes a number of properties that must be set before calling a method that acts on these
properties. If the calling application attempts to call the method without setting the properties
first, the method must pass some information back to the calling application. The most robust
technique of passing error

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 229

information back to the calling application is to throw an exception. As you will see, you can
throw a generic exception or a custom exception. A custom exception is an object that inherits
from the ApplicationException object and may convey additional information to the calling
application, besides an error message.

To raise an exception in a class, use the Throw method followed by an Exception object. The
simplest method of passing an Exception object to the application that uses your custom class
is to create an Exception object by calling its constructor. The Exception object's constructor
accepts as argument a string, which is a description of the error. The following statement will
cause an exception when executed:

Throw New Exception(''Age can't be negative")

The description of the error should be as specific as possible, and different conditions should
produce different errors.

Consider the BDate property, which stores a person's birth date. Obviously, the birth date can't
be a future date, so we insert some validation code in the Property procedure's code:

Public Property BDate() As Date
 Get
 Return _BDate
 End Get
 Set(ByVal Value As Date)
 If DateDiff(DateInterval.Year, Now, value) > 0 And _
 DateDiff(DateInterval.Year, Now, _PersonBDate) < 100 Then
 _BDate = Value
 Else
 Throw New Exception("Invalid date of birth")
 End If
 End Set
End Property

You can also define your own exceptions with a class that inherits from the
ApplicationException class. Your class should contain three constructors—one without
arguments, one with a description, and one with a message and another exception object. Let's
implement a custom exception for the BDate property, the AgeException class. Listing 9.3
shows the implementation of the AgeException class.

LISTING 9.3: DEFINING A CUSTOM EXCEPTION
Public Class AgeException
 Inherits ApplicationException

 Public Sub New()
 End Sub

 Public Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 230

 Public Sub New(ByVal message As String, ByVal inner As Exception)
 MyBase.New(message, inner)
 End Sub
End Class

Now we can revise our BDate property's code and raise an exception of the AgeException
type, when an attempt is made to set this property to a future date, as shown in Listing 9.4.

LISTING 9.4: THROWING A CUSTOM EXCEPTION
Public Property BDate() As Date
Get
 Return _BDate
End Get

Set(ByVal Value As Date)
 If DateDiff(DateInterval.Year, Now, value) > 0 And _
 DateDiff(DateInterval.Year, Now, _PersonBDate) < 100 Then
 _BDate = Value
 Else
 Throw New AgeException(''Invalid date of birth")
 End If
End Set

The last constructor of the custom Exception class allows you to pass the exception raised in
the class to the calling application. The following structured exception handler may appear in
a class's code and catches any error that occurs in the Try block. Instead of handling the error
in your class's code, you can pass the exception to the calling application by passing it as
argument to the CustomException class's constructor:

Try
 'statements
Catch Exc As Exception
 Throw New customException("Error in XXX class", Exc)
End Try

Bypassing Error Handlers

Structured error handlers are powerful tools in designing robust applications, but they
introduce problems in debugging code. When an exception occurs, the handler takes over and
you don't know the exact statement that caused the exception (unless the exception handler
includes a single executable statement, which isn't very common). You can configure the
Debugger to break on all errors, even if they're handled by a Catch statement. Certain
exceptions may be handled silently, and you won't even know that they occurred.

To configure the Debugger, open the Debug menu and select the Exceptions command to see
the Exceptions dialog box, which is shown in Figure 9.3. As a VB.NET developer, you're
interested in

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 232

VB projects can be executed in one of two modes, as you already know—Debug mode and
Release mode. When an application is compiled in Debug mode, the executable contains
debugging information and is not optimized for speed. When you're ready to release the
project, you can switch from Debug to Release mode and recompile. An executable compiled
for release contains no debugging code and is optimized for speed. To change the execution
mode, open the project's Property Pages and select the Configuration tab under Configuration
Properties, as shown in Figure 9.4.

FIGURE 9.4 Setting the project's execution mode

Developing means testing and debugging. To aid debugging, Visual Studio provides a number
of tools that we're going to explore in this section. The universal debugging tool is single-step
execution: we execute one statement at a time and break to see the values of the variables,
make sure that the statement produced the correct result, and continue by executing the next
statement. You can also change the values of the variables to force an error condition and see
how your code handles it. Before exploring the tools for debugging an application, let's
discuss for a moment the type of errors that can occur in the process of coding an application.

Types of Programming Errors

Programming errors fall into three categories: syntax errors, runtime errors, and logic errors.
Runtime errors are the errors that can't be prevented at design time; they must be handled with
structured exception handlers, as we discussed in the first part of this chapter.

A syntax error is caught by the editor as you type and there's no excuse for syntax errors in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A syntax error is caught by the editor as you type and there's no excuse for syntax errors in
your code. As soon as you type a statement that contains a syntax error, the editor will
underline the statement in error with a red wiggly line. If you rest the cursor on top of the
statement in question, a description of the error will appear in a ToolTip box, as shown in
Figure 9.5. The most common syntax error is calling a function with the wrong number of
arguments, or arguments of the wrong type. To make the most of the editor's ability to catch
syntax errors, you must turn on the Explicit and Strict options in every module.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 233

FIGURE 9.5 Syntax errors are caught by the editor as you type.

When the Explicit option is on, every variable must be declared. If you attempt to use a
nondeclared variable, the editor will catch it as soon as you type it. When the Strict option is
on, variables must be of specific types, and you can't rely on the compiler's ability to cast a
variable's type according to the context in which it's used. If you got accustomed to using
variables as you need them with earlier versions of Visual Basic, it's never too late to kick the
habit. Let's see what the Strict and Explicit options can do for us. Turn off the Explicit and
Strict options by inserting the following two statements at the top of the form's code window:

Option Explicit Off
Option Strict Off

Then insert the following statements in a button's Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim a As Integer
 Dim b As Integer
 b = 9999.999
 a = Convert.ToInt64(b ˆ 3)
 MsgBox(a)
End Sub

OK, it's rather unlikely that you'll attempt to assign a double value to an integer variable in
such a short procedure, but if this were a long procedure, the declaration of the variables might
be at the beginning of the procedure's code, and when you enter the actual statements the
declaration might not be in view. It's not the most uncommon type of error.

When the procedure is executed, an overflow will occur and the program will crash. You can
use a structured exception handler in your code, which will prevent the program from
crashing, but the result is probably incorrect. Do we really want to convert the result, which is
a double value, to an integer?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Turn on the Explicit and Strict options. As soon as you do so, the last two statements will be
underlined by the editor. The editor is warning you that you can't convert a double to an
integer (for the first statement) and a long value to an integer. As soon as you realize that the
two statements are in error, you will revise your code accordingly. If you start coding with the
Strict option turned off and you turn it on after you've written a bit of code, the editor will
catch many conversion errors.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 234

INFINITY AND OTHER ODDITIES

VB.NET can represent two very special values, which may not be numeric values themselves
but are produced by numeric calculations. They're the NaN (not a number) and Infinity. If
your calculations produce a NaN or Infinity, you should confirm the data and repeat the
calculations, or give up. For all practical purposes, neither NaN nor Infinity can be used in
everyday business calculations. However, statements that produce these two values do not
throw exceptions. If a NaN value is produced in your calculations, all following statements
will produce NaN values as well. You may discover that something went wrong in your
calculations, but not discover it for many statements—or even another procedure—after the
line that produced the first NaN value. These two values must be handled carefully from
within your code, so let's take a closer look at the mechanisms for handling NaN and Infinity
values.

FROM VB6 TO VB.NET
VB.NET introduces the concepts of an undefined number (NaN) and infinity to Visual Basic.
In the past, any calculations that produced an abnormal result (i.e., a number that couldn't be
represented with the existing data types) generated runtime errors. VB.NET can handle
abnormal situations much more gracefully. NaN and Infinity aren't the type of result you d
expect from meaningful numeric calculations, but at least they don't produce runtime errors.

Some calculations produce undefined results, such as infinity. Mathematically, the result of
dividing any number by zero is infinity. Unfortunately, computers can't represent infinity, so
they produce an error when you request a division by zero. VB.NET will report a special
value, which isn't a number: the Infinity value. If you call the ToString method of this value, it
will return the string ''Infinity". Let's generate an Infinity value. Start by declaring a Double
variable, dblVar:

Dim dblVar As Double = 999

Then divide this value by zero:

Dim infVar as Double
infVar = dblVar / 0

and display the variable's value:

MsgBox(infVar)

The string "Infinity" will appear on a message box. This string is just a description; it tells you
that the result is not a valid number (it's a very large number that exceeds the range of numeric
values that can be represented in the computer's memory). Another calculation that will yield a
non-number is when you divide a very large number by a very small number. If the result
exceeds the largest value that can be represented with the double data type, the result is
Infinity. Declare three variables as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim largeVar As Double = 1E299
Dim smallVar As Double = 1E-299
Dim result As Double

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 235

The notation 1E299 means 10 raised to the power of 299, which is an extremely large number.
Likewise, 1E-299 means 10 raised to the power of –299, which is equivalent to dividing 10 by
a number as large as 1E299. Then divide the large variable by the small variable and display
the result:

result = largeVar / smallVar
MsgBox(result)

This time the result will be Infinity, not NaN. If you reverse the operands (that is, you divide
the very small by the very large variable), the result will be zero. It's not exactly zero, but the
double data type can't accurately represent numeric values that are very, very close to zero.

NaN is not new. Packages such as Mathematica and Excel have been using it for years. The
value NaN indicates that the result of an operation can't be defined: it's not a regular number,
not zero, and it is not Infinity. NaN is more of a mathematical concept, rather than a value you
can use in your calculations. The Log() function, for example, calculates the logarithm of
positive values; the logarithm of a negative value does not exist. If the argument you pass to
the Log() function is a negative value, the function will return the value NaN to indicate that
the calculations produced an invalid result.

The result of the division 0 / 0, for example, is not a numeric value. If you attempt to enter the
statement ''0 / 0" in your code, however, VB will catch it even as you type and you'll get the
error message "Division by zero occurs in evaluating this expression." To divide zero by zero,
set up two variables as follows:

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
MsgBox(result)

If you execute these statements, the result will be a NaN. Any calculations that involve the
result variable (a NaN value) will yield NaN as a result. The statements:

result = result + result
result = 10 / result
result = result + 1E299
MsgBox(result)

will all yield NaN. If you make var2 a very small number, like 1E-299, the result will be zero.
If you make var1 a very small number, then the result will be Infinity.

For most practical purposes, Infinity is handled just like a NaN. They're both numbers that
shouldn't occur in business applications, and when they do, it means you must double-check
your code, or your data. They are much more likely to surface in scientific calculations, and
they must be handled with the statements described in the next section.

Testing for Infinity and NaN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To find out whether the result of an operation is a NaN or Infinity, use the IsNaN and
IsInfinity methods of the single and double data type. The integer data type doesn't support
these methods,

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 236

even though it's possible to generate Infinity and NaN results with integers. If the IsInfinity
method returns True, you can further examine the sign of the Infinity value with the
IsNegativeInfinity and IsPositiveInfinity methods.

In most situations, you'll display a warning and terminate the calculations. The statements of
Listing 9.5 do just that. Place these statements in a Button's Click event handler and run the
application.

LISTING 9.5: HANDLING NAN AND IDFINITY VALUES
Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
If result.IsInfinity(result) Then
 If result.IsPositiveInfinity(result) Then
 MsgBox(''Encountered a very large number. Can't continue")
 Else
 MsgBox("Encountered a very small number. Can't continue")
 End If
Else
 If result.IsNaN(result) Then
 MsgBox("Unexpected error in calculations")
 Else
 MsgBox("The result is : " & result.ToString)
 End If
End If

Listing 9.5 will generate a NaN value. Change the value of the var1 variable to 1 to generate a
positive infinity value, or to –1 to generate a negative infinity value. As you can see, the
IsInfinity, IsPositiveInfinity, IsNegativeInfinity, and IsNaN methods require that the variable
be passed as argument, even though these methods apply to the same variable. An alternate,
and easier to read, notation is the following:

System.Double.IsInfinity(result)

This statement is easier to understand, because it makes it clear that the IsInfinity method is a
member of the System.Double class. If you change the values of the var1 and var2 variables to
the following and execute the application, you'll get the message "Encountered a very large
number":

var1 = 1E+299
var2 = 1E-299

If you reverse the values, you'll get the message "Encountered a very small number." In any
case, the program will terminate gracefully and let you know the type of problem that prevents
further calculations.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 237

Dealing with Logic Errors

Logic errors are the result of poor design or bad programming practices. A program that
contains logic errors doesn't always crash; it usually produces incorrect results. Actually, your
program will produce the correct results most of the time and may produce incorrect results
every once in a while. To discover logic errors in your code, you must test it thoroughly. If a
logic error goes undetected, it will eventually cause problems to the users (it will also harm
your image as a developer).

We know our code contains logic errors if it doesn't produce the expected results. The
universal debugging tool is to execute your code one statement at a time and examine the
values of the variables, verify that program's control flow, and so on. In this mode of
execution, the CLR executes one statement and stops. While no code is executed, you have at
your disposal several windows, where you can interact with the CLR.

BREAKPOINTS

To discover an error in your application's logic, you can execute one statement at a time and
then examine the values of the various variables. If everything looks correct, you continue by
executing the next statement, and so on until you discover a statement that doesn't work as
expected: it produces the wrong result, uses an un-initialized variable, etc. To interrupt the
execution of your code, set a breakpoint at the statement where you want the program to halt
its execution by clicking in the left border of the editor, in front of the desired statement.
Breakpoints are indicated by brown dots; you can remove a breakpoint by clicking the dot
again. Breakpoints can be set at executable statements. For example, you can't set a breakpoint
at a Dim statement (unless it's followed by an initialization statement, which makes it an
executable statement). If you attempt to set a breakpoint at an invalid location, the IDE will
warn you and will reject the action.

Then you can start the application as usual, by pressing F5 or selecting Start from the Debug
menu. The Start Without Debugging command, whose shortcut is Ctrl+F5, ignores the
breakpoints. As soon as the breakpoint is reached, the program will halt and you'll be taken to
the editor's window, where the statement with the breakpoint is highlighted in yellow. The
statement hasn't been executed yet. You can hover the pointer over the names of the variables
you're interested in and examine their values. To execute this statement press F10. The
statement will be executed and the program will break again on the following statement. You
can also press F5 to continue the execution of the application normally.

Breakpoint Properties

In a large application you may hit a breakpoint many times before you discover an abnormal
condition. A problem may surface during the last iteration of a loop, for example. You may
also notice that an error occurs when a certain variable becomes negative. To handle similar
situations efficiently, you can set two properties, the Hit Count and Condition properties. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hit Count property determines how many times a breakpoint must be hit before execution
breaks. If the breakpoint is in a loop that executes 1,000 times and you suspect that the code
fails during the last iteration, you can set the Hit Count property of the breakpoint to 998. The
program's execution will halt only the last time through the loop. The Condition property is an
expression that determines whether the breakpoint is hit or skipped.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 238

All breakpoints are listed in the BreakPoints window, along with their properties. To view this
window, open the Debug menu and select Windows BreakPoints. As you add breakpoints
in your code, their definitions appear in the BreakPoints window. To set a condition for a
breakpoint, select it first and click the Properties button on the BreakPoints window's toolbar.
The Break Condition dialog box will appear; here you can set a condition, like the one shown
in Figure 9.6. Then you can specify when the program will break: either when the condition
becomes true, or when the condition changes values. The condition may contain multiple
variables, such as:

BaseValue < 0 And (iCounter > 9 Or partialSum > 1000000)

FIGURE 9.6 Setting the properties of a breakpoint

USING THE DBEBUGGER'S WINDOWS

Once you've set the proper breakpoints in your code, you can start executing the program in
Debug mode. The program will halt as soon as it hits the first breakpoint. The line at which the
program stopped is highlighted. This is the next statement that will be executed when you
continue the program's execution. At this point you can examine the values of the variables in
the Autos window, which is shown in Figure 9.7. This figure shows the code window at the
location of the breakpoint and the Autos window. To view this window, open the Debug menu
and select Windows Autos.

The Autos window contains a list of all the variables in the current statement and allows you
to change the value of any of them. You can use this feature to cause an exception, for
example, and see how the exception handler works. You can press F10 to execute the current
statement and stop at the next one, or press F5 to continue the program's execution normally.
However, you can't edit the code and continue, as you're probably used to doing in VB6.

Another helpful window is the Locals window, which is similar to the Autos window but
displays the local variables (the variables that are valid in the current scope). As statements are
executed, the contents of the Locals and Autos windows change to reflect the current settings
of the corresponding variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Watch window is similar to the Autos window, only here you add variables at will. While
at breakpoint, right-click on any of the procedure's variables and select Add Watch. The
variable will be added to the current Watch window. There are several Watch windows. Add
variables to each one of them as needed and then open the appropriate Watch window with the
Debug Window Watch command.

Another related window is the Quick Watch window, which is the quickest method to view a
variable's contents. It's no different than the Watch window, but it allows you to view a
variable or two occasionally without changing the contents the Watch windows.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 239

FIGURE 9.7 The Autos window displays the values of the variables used in the current statement.

To step through your code, use the buttons of the Debug toolbar. The Start button starts the
execution of the application and the Stop Debugging button ends the debugging session. The
Step Into button executes the current statement and selects the next statement to be executed.
Keep clicking this button to execute one statement at a time and at the same time view the
values of the variables in the Locals window. A common debugging technique is to calculate
the values of certain variables manually and then verify that our code has generated the same
values. If not, we know the statement that produces the error.

The Step Over button treats a section of code as a single statement. This section of code is
usually a function or subroutine that has been debugged and is not part of the problem. Click
the Step Into button to execute isolated statements, and when you reach the statement that calls
the procedure you can click the Step Over button. The procedure's code will be executed at
once and the debugger will stop at the following executable statement.

Sometimes we test a section of code, or a function, thoroughly and we assume that it will
always work. The well-tested code may fail when it's incorporated into a larger program. The
source of this behavior may be a form-level variable. To simplify debugging, try to minimize
the scope of your variables. Variables should be invisible outside the section of code that uses
them, so that they won't inadvertently affect unrelated parts of code. Function arguments
should be passed by value, and rarely by reference. If a function changes the value of a
reference variable, it may affect the code following the statement that called the function.
Even a thoroughly tested and debugged function may cause problems to a larger module if it
acts on reference variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last button on the debugger's toolbar is the Step Out button, which executes the remaining
statements in a function at once and breaks at the statement following the point where the
function was called. All these buttons are enabled while you work in Debug mode.

THE OUTPUT AND COMMAND WINDOWS

The two most basic debugging tools are the Output and Command windows. Most of us insert
statements in our code to print diagnostic messages, which appear on the Output window. In
the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 240

Command window, which is activated when a breakpoint is hit, you can execute statements
and request, or set, the values of the variables in scope. For example, you can examine the
values of the variables involved in the following statement and verify manually that the
statement, as coded, produced the correct result. You can even copy a statement from the code
window into the Command window and execute it. If the statement throws an exception, you'll
see the description of the exception in the Command window, but the execution of the
application won't be terminated. You can change the value of one or more variables and
proceed. If you need to change the statement, however, you must interrupt the program's
execution.

To send messages to the Output window, use the Debug.WriteLine method (or the
Console.WriteLine method). Inserting WriteLine statements in our code is a crude form of
debugging, but it works. The messages allow us to quickly isolate the section of the code
where the problem lies and take it from there. Another quick and dirty debugging technique is
to insert statements that display messages on message boxes. The advantage of using the
MessageBox statement is that it suspends the execution of the application, without hiding the
user interface. If you want to see how a statement affects the user interface, you can display a
message box before and after the statement in question and examine the changes in the form.
This technique works well with graphics applications. Note that every time a breakpoint is hit,
the form becomes invisible and you can only work with the code window.

THE CALL STACK WINDOW

Another important debugging tool is the Call Stack window. This window shows the path of
the application from procedure to procedure and you can see not only where the exception
occurred, but also how the application got there. Many exceptions occur in procedures, and
they don't occur every time. A procedure may work fine most of the time and fail only when
it's is called from a specific statement in another procedure. To debug this type of problem,
you should be able to backtrace the path of execution and find out how the procedure was
called. You may discover in the procedure's code that one of the arguments has the wrong
value, for example. This bug can't be fixed from within the procedure's code; you need to find
out the statement that called the procedure and examine the code leading to this statement.
This, in turn, may entail backtracing the call to this procedure until you find out the statement
that's responsible for setting a variable to a value that causes a problem down the road.

The information in the Call Stack window shown in Figure 9.8 tells you the following: The
program stopped at line 148, which is in the Proc2() procedure. Proc2() was called from
within the Proc1() procedure's code, by the statement in line 141. Finally, Proc1() was called
from within the Button1_Click procedure, which is a button's Click event handler. Double-
click any of the lines in the Call Stack window and the editor will select the corresponding
statement in the code window and highlight the statement in green. As you backtrace the
sequence of calls that lead to the breakpoint, you can examine the values of the arguments of
the various calls. In many cases it's not a procedure's code that causes an exception, but the
arguments passed to the procedure. Being able to monitor the values of the arguments passed
to each procedure will assist you in locating the source of the problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To debug large applications, you must understand how structured exception handling works in
nested procedures, as any application of a respectable size is made up of a large number of
procedures. When a procedure is called from within a Try block, the structured exception
handler is in effect. If the procedure has its own error handlers, they will be activated
accordingly. When an unhandled exception occurs in a procedure, the error propagates up in
the chain of procedures until an exception handler is found. If no exception handler is found,
the application will crash.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 242

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 247

Theoretically, it's possible for an Internet-deployed application to run offline, but we never do
that. Typical business applications connect to databases and they need to be online. Users may
be able to start an application offline from the local cache, but they will run into problems as
soon as they attempt to access a database or any other resource on the server.

Preparing for Internet-Based Deployment

To demonstrate Internet-based deployment, we've developed a simple application, whose main
form is shown in Figure 10.1. When the form is loaded, the code behind it populates a DataSet
with the rows of the Employees table of the Northwind database. The DataSet is bound to a
DataGrid control, which allows the user to edit the table. To commit the changes to the
database, the user can click the Save Changes button. The Export To XML button persists the
DataSet to an XML file on the client machine, and the third button on the form exercises the
members of a custom class.

FIGURE 10.1 The NoTouch-Deployment application manipulates a DataSet with employees.

The DataSet with the employee data was created at design time and is a typed DataSet. What
happens to a SqlConnection that's set up at design time when the application is deployed to a
client? Basically, you have two options: either make sure that the same database exists at the
target machines, or store the connection string to a configuration file and read it from there
every time the application starts. If the database is deployed to a different server, or the user's
credentials must be modified, an administrator can distribute a new configuration file, or
instruct users to edit it. Alternatively, you can store the configuration files to a server, so that
administrators can edit them at a single location yet the configuration file will affect all the
clients on the local network. Since Internet deployment is used almost exclusively to distribute
applications to clients within corporations, you can expect that the clients will have access to
the same database servers as the web server. You can also count on a system administrator to
distribute and configure the application at the clients.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To make the most of this type of deployment, you should implement a middle tier component
as a Web service and install it on the same server from which the application is downloaded to
the client machines. The application can be deployed easily on a web server: the users see a
Windows forms application and the data access takes place through components that reside on
the web server. Changing a business component doesn't entail any changes to the presentation
tier (the Windows forms downloaded to the client), and the application can be accessed by
users on the same network, or through the Internet.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 248

One of the limitations of the current version of Internet-deployed applications is that they can't
access a Web service that resides on a web server other than the one you used to deploy the
application.

Let's return to our sample application. Listing 10.1 shows the code behind the application's
buttons. When the form is loaded, the Employees DataSet is populated. Users can edit the data
on the DataGrid control and the Export To XML button saves the DataSet's contents to an
XML file. The Save Changes button submits the changes to the database by calling the
DataAdapter's Update method. The code doesn't handle update errors gracefully, but our goal
is to demonstrate how to deploy the application, not how to use the ADO.NET objects.

LISTING 10.1: THE CODE OF THE NOTOUCHDEPLOYMENT PROJECT
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Employees1.Clear()
 DAEmployees.Fill(Employees1, ''Employees")
End Sub

Private Sub bttnExport_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnExport.Click
 Dim FS As FileStream
 Try
 FS = New FileStream("C:\EmployeeData.xml", _
 FileMode.OpenOrCreate, FileAccess.Write)
 Catch
 MsgBox("Could not write to file EmployeeData.xml")
 Exit Sub
 End Try
 Try
 Employees1.WriteXml(FS)
 Catch ex As Exception
 MsgBox(ex.Message)
 Exit Sub
 Finally
 FS.Close()
 End Try
End Sub

Private Sub bttnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSave.Click
 Try
 DAEmployees.Update(Employees1)
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 249

End Sub

Private Sub bttnClass_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnClass.Click
 Dim C As New ClassLibrary1.Class1
 MsgBox(''The GetQuote method returned " & C.GetQuote("ABC").ToString)
End Sub

The project contains a custom class, which will allow us to experiment with the deployment of
DLL files. Add a new Class Library project to the solution, and place a single class to the
project, the Class1 class:

Public Class Class1
 Public Function GetQuote(ByVal stockID As String) As Decimal
 Dim rnd As New System.Random
 Return Convert.ToDecimal(rnd.NextDouble + 5)
 End Function
End Class

The Test Class button on the application's main form calls the GetQuote method of the Class1
class and displays the return value on a message box. This value should be a decimal number
in the range of 5 to 6. Class1 is the simplest class you can imagine and it exposes a single
method. Note that it's implemented as a separate project of the same solution. If you add the
class to the same project, it will be included in the same executable file as the main
application. By implementing the class in a project of its own, a DLL will be added to the
application, which must be deployed along with the main EXE file. As you will see, if we
revise the class's code we can simply copy the DLL to the application's virtual folder and all
clients will see the new version of the DLL.

It may not be clear at this point why we included all these operations. The sample application
will be downloaded from a web server, and as such it will be executed in a context of seriously
limited privileges. To persist the DataSet to an XML file, the application needs write-access to
the client computer's file system. To update the local database, the application needs access to
the database. None of these rights is granted by default to an application that's downloaded
from a web server, and we'll see how to grant additional access rights to the application at the
client.

Deploying a Windows Application on a Web Server

Let's deploy the application. First, we must create a virtual directory at the local web server to
host the application. Open the Internet Information Services snap-in (Control Panel
Administrative Tools) and locate the default web server. Add a new virtual directory by
selecting New Virtual Directory from the Default Web Server item's context menu. Name
the new virtual directory NWEmployees and set it to the NWEmployees folder under the web
server's root folder (if this folder doesn't exist, create it). Then build the application, switch to
the application's Bin folder, copy all the files and paste them into the new IIS virtual folder.
That's all it takes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 25

Here's an example showing how you can add new controls to a form while a program is
running. Start by adding a Button to a form.

Let's assume that the user clicked a button asking to search for some information. You then
create and display a TextBox for the user to enter the search criteria, and you also put a label
above it describing the TextBox's purpose, as shown in Listing 2.1. Type this into the Button's
Click event:

LISTING 2.1: GENERATING CONTROLS AT RUNTIME
Public Class Form1

 Inherits System.Windows.Forms.Form

 Dim WithEvents btnSearch As New Button()

Private Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click
 Dim textBox1 As New TextBox()
 Dim label1 As New Label()

 ' specify some properties:
 label1.Text = ''Enter your search term here..."
 label1.Location = New Point(50, 55) 'left/top
 label1.Size = New Size(125, 20) ' width/height
 label1.AutoSize = True
 label1.Name = "lable1"

 textBox1.Text = ""
 textBox1.Location = New Point(50, 70)
 textBox1.Size = New Size(125, 20)
 textBox1.Name = "TextBox1"

 btnSearch.Text = "Start Searching"
 btnSearch.Location = New Point(50, 95)
 btnSearch.Size = New Size(125, 20)
 btnSearch.Name = "btnSearch"

 ' Add them to the form's controls collection.
 Controls.Add(textBox1)
 Controls.Add(label1)
 Controls.Add(btnSearch)

'display all the current controls

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 250

To run the application, start Internet Explorer and enter the following URL in the Address
box:

127.0.0.1/NWEmployees/NoTouchDeployment.exe

Notice that the URL contains the name of an EXE file, which is the application. This file will
be downloaded and executed at the client. As soon as the application files are downloaded to
the client and the application starts, the CLR will attempt to run it. When the first dialog box
appears, you'll see an odd icon (a very large icon) on top of it, as shown in Figure 10.2. This
icon warns the user that the application runs in a partially trusted context and some of its
functionality may be disabled due to security restrictions. The icon is exceptionally large and
you can't miss it.

FIGURE 10.2 Applications deployed through a web server run by default in a context of reduced
privileges.

The .NET Framework allows users and administrators to specify the privileges for each of the
.NET applications they download from a web server. Without some special action by the user,
applications downloaded from a web server can do very little. The CLR basically protects
users from running a seemingly harmless application that may ruin their computer. If users
know what they're doing, they will assign the proper rights to trusted sites and specific
applications. .NET applications are deployed on intranets, and there are many mechanisms for
identifying the trusted sites and assigning increased privileges to specific applications.

If you continue with the application's execution, when the code in the auxiliary form's Load
event handler attempts to read the employees from the Northwind database, the message box
shown in Figure 10.3 will appear. This message box tells you that the application attempted to
use a member of the System.Data namespace, but the operation was not allowed by the client
computer's security policy. Every time the application runs into an operation that can't be
completed successfully, a similar message box appears.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 10.3 This message box appears when the application attempts to access a database on the client
computer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 251

Code Access Permissions

The Common Language Runtime grants permissions to an application based on information it
collects about the application, which is referred to as evidence. To collect evidence about an
application, the CLR determines a number of factors, such as whether the site from which the
application was downloaded is trusted or not, the zone of the corresponding site (was it the
Internet, or the local intranet), the publisher's assembly, and more. Once the CLR has gathered
all available evidence, it assigns permissions to the application. Of course, you can interfere
with this process and specify custom security settings for an application.

The permissions granted to an assembly are based on the target computer's security policy.
The security policy maps sets of permissions to applications, using the evidence of the
application. To enable an Internet-deployed application to run on your machine, you create a
set of permissions that are required for the application to run and then associate these
permissions with certain types of evidence. For example, you may determine that only
applications published by a specific manufacturer, or applications coming from certain URLs,
have the right to create new files, or delete existing ones. In general, you can create many
combinations of evidence and privileges, but the process is quite involved for an end user.
That's why Internet deployment is ideal for corporations, where application settings can be
controlled by an administrator, and not for the general public, even though it's quite possible to
distribute applications from a web server to anyone with a reasonably fast Internet connection.

Security policy can be configured at the enterprise, machine, and user level. The enterprise
level describes the security policy for the entire enterprise and is stored in an XML file, whose
path is config\enterprisesec.config. The machine level describes the security policy
for all applications on the local machine and is stored in the XML file
config\security.config. Finally, the user level describes the security policy for the user
running the application and is stored in a third XML file, at the path Application
Data\Microsoft\CLR Security Config\vXXX \security.config , where XXX is
the version of the Framework.

A permission set is a collection of named permissions; there are several built-in permission
sets for the most typical situations. These built-in permission sets are shown in Table 10.1.

TABLE 10.1: BUILT-IN PERMISSION SETS

NAME DESCRIPTION

Nothing No permissions are given to the application in this permission set, not even the
right to execute.

Execution The application is allowed to execute, but has no access to the machine's
resources.

FullTrust The application is given unrestricted access to all resources on the machine.
This set's permissions can't be modified, because you may disable crucial
system applications, which run under this permission set.

Everything The application is given unrestricted access to all resources of the machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet The application is given the default privileges of an Internet application.

LocalIntranet The application is given the default privileges of an intranet application.

SkipVerification The application is not verified.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 252

The permissions we assign to a permission set are called code access permissions (what type
of operations do we permit the downloaded code to perform). There are several code access
permissions you can grant (or deny) to an application, and most permissions have attributes.
Table 10.2 shows the available permissions.

It is also possible to define custom permission sets. The .NET Framework Configuration tool
provides a wizard to help you create a permission set. Alternatively, you can create an XML
file that defines the permission set and add it to the policy using the caspol command line
tool. This is how an administrator would apply a permission set to a large number of clients.

TABLE 10.2: CODE ACCESS PERMISSIONS

PERMISSION DESCRIPTION

DirectoryServicesPermission Controls access to Active Directory classes.

DnsPermission Controls access to DNS servers on the network.

EnvironmentPermission Controls access to individual environment variables.

EventLogPermission Controls access to event log services.

FileDialogPermission Allows read-only access to files that have been selected by
the interactive user in an Open dialog box.

FileIOPermission Controls access to individual files and directory trees.

IsolatedStorageFilePermission Controls access to the isolated storage file system. Isolated
storage provides a unique file system for an assembly.

IsolatedStoragePermission Controls access to the isolated storage.

MessageQueuePermission Controls access to Microsoft Message Queue (MSMQ).

OleDbPermission Controls access to databases using OLE DB drivers.

PerformanceCounterPermission Controls access to performance counters.

PrintingPermission Controls access to printers.

ReflectionPermission Allows access to view assembly metadata using
Reflection.

RegistryPermission Controls access to the Registry.

ServiceControllerPermission Controls access to Windows services.

SecurityPermission Controls the use of the security infrastructure itself.

SocketPermission Allows making or accepting connections on a transport
address.

SqlClientPermission Controls access to SQL databases.

UIPermission Controls access to user interface functionality such as
clipboard, user input, and so on.

WebPermission Controls access to Internet resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 253

You may wonder why we should prevent an application downloaded from a web server from
printing (the PrintingPermission code access permission). After all, the user determines when
the application will print and what it will print, right? Not quite so. If you give an application
unrestricted access to printers, the application may submit printouts to a remote printer, at a
competitor's headquarters. The designers of .NET have taken into account all possible security
breaches and implemented the appropriate security checks (until someone discovers how to
harm your computer through a seemingly harmless operation, of course).

As a developer, you must create a list of permissions required by your application and
distribute it to the clients. Even better, you can provide an XML file with the required
permissions and distribute this file, which administrators can use to configure the client
machines' code access permissions.

CREATING AND CONFIGURING PERMISSION SETS

To assign the proper code access permissions to an application loaded to the target machine
from a web server, you must use the .NET Configuration snap-in. Open the Administrative
Tools folder in the Control Panel and double-click the Microsoft .NET Framework X
Configuration shortcut, where X is the version of the .NET Framework for which the
application was written (since you can have multiple versions of the .NET Framework running
in parallel). The window of the snap-in is shown in Figure 10.4.

Expand the Permission Sets item under the Machine branch of the snap-in. Here you see a list
of predefined permission sets that you can assign to an application. The FullTrust permission
set, for example, is used with applications installed by the administrator on the local machine.
The Internet permission set is used with Internet applications; it grants very few privileges to
applications. Let's create a permission set for the applications downloaded from a web server,
the NoTouch-Permissions set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 10.4 The .NET Configuration snap-in

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 254

Right-click the Permission Sets item and select New from the context menu. The Create
Permission wizard will start, and its first window is the Identify The New Permission Set
window, where you can enter the name and description of a Permission Set, or import a
permission set from an XML file. As you know, permission sets can be persisted in XML
files, which you can pass to system administrators to configure the client computers for your
application.

Then click the Next button to see the Create Permission Set window, where you can assign
permissions to the new set, as shown in Figure 10.5. The left list contains the available
permissions, and you can select any of them and move them to the Assigned Permissions list,
which contains the current set's permissions.

FIGURE 10.5 Assigning permissions to a permission set

Every time you select a permission from the left list and add it to the set's permissions, a
dialog box comes up with specific attributes of the selected permission. Let's start by adding
the SQL Client permission. Select it with the mouse and click the Add button to add it to the
list of the set's permissions. The Permission Settings dialog box for the SQL Client permission
will appear, as shown in Figure 10.6. You can grant an assembly the permission to access SQL
Server through ADO.NET, or permission to access SQL Server without any restrictions. Even
though it appears that the first option would be adequate for our sample application, you must
check the radio button Grant Assemblies Unrestricted Access To Microsoft SQL Servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our sample application also needs permission to access the client computer's file system.
Select the File IO permission from the left list and add it to the set. The Permission Settings
dialog box for the File IO permission is shown in Figure 10.7. You can grant the assemblies
that will run under the specific permission set unrestricted access to the entire file system, or
specify certain paths and the type of access for each path, as you can see in Figure 10.7. Let's
give our permission set unrestricted access to the client computer's file system.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 255

FIGURE 10.6 Setting the attributes of the SQL Client permission

FIGURE 10.7 Granting FileIO permissions

We've created a new permission set for an application that will be downloaded from a web
server, so let's assign it to the sample application. Expand the Code Groups item and you'll see
the All Code branch, which contains the various zones from which an application may come:
My_Computer_Zone, LocalIntranet_Zone, Internet_Zone, Restricted_Zone, and
Trusted_Zone. Add a new code group for the application that will be deployed from a specific

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Trusted_Zone. Add a new code group for the application that will be deployed from a specific
directory of the web server. Right-click the All_Code item and select New. You will see the
Create Code Group wizard, which will take you through the steps of setting up a new code
group. On the first window you can specify the name of the new code group and its
description, or import a code group from an XML file.

Click the Next button to see the Choose A Condition Type window, where you'll specify a
membership condition (see Figure 10.8). An assembly must meet the specified membership
condition to be assigned the group's permissions; there are many types of conditions, as shown
in Table 10.3.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 256

TABLE 10.3: MEMBERSHIP CONDITIONS

CONDITION TYPE DESCRITPION

All Code This membership condition is true for all assemblies (not the most
practical setting).

Application Directory This membership condition is true for all assemblies in the same
directory (or a child directory) of the running application.

Hash This membership condition is true for a specific assembly whose
hash code matches the hash code specified on the dialog box.

Publisher This membership condition is true for an assembly that has been
digitally signed with a certificate that matches the one specified on
the same dialog box.

Site This membership condition is true for all assemblies that come from
a specific site. The site is specified by its URL on the same dialog
box.

Strong Name This membership condition is true for all assemblies with a strong
name that matches the one specified on the same dialog box.

URL This membership condition is true for all assemblies that originate
from the specified URL.

Zone This membership condition is true for all assemblies that originate
from the specified zone.

Select the URL condition on the ComboBox control and set the URL to
http://127.0.0.1/NWEmployees/*. This means that all applications in the
NWEmployees virtual folder will belong to the same code group and they will be granted the
permissions of the NoTouchDeployment set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 10.8 Setting a Member ship Condition for a new code group

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 257

Click the Next button again to see the last window of the wizard, where you're prompted to
specify the code group's permission set (or create a new one). Click the radio button Use
Existing Permission Set and select the NoTouchPermissions Permission Set. This is all it takes
to create a new code group and assign to it a specific permission set. However, specifying the
proper permissions is not a simple task and you can't count on end users to determine an
application's permissions on their own.

DEMANDING PERMISSIONS THROUGH YOUR CODE

You can demand a specific permission from within your code before attempting to execute a
statement that may fail due to lack of proper permissions. To demand a specific permission,
create an object that represents the desired permission and call its Demand method. The
statements that attempt to open a file for writing, for instance, could be written as:

Dim perm As New FileIOPermission(FileIOPermissionAccess.Write, filePath)
Try
 perm.Demand()
 FS = New FileStream(filePath, FileMode.OpenOrCreate, _
 FileAccess.Write)
Catch securityExcptn As SecurityException
 Console.WriteLine(_
 ''Application was not granted access to file " & filePath)
 Exit Sub
End Try

Running the Application

The application's executables are downloaded to the client and are stored in the download
cache. This is where the CLR looks for the files every time you start the application. However,
it compares their versions to the versions of the files at the server and if it discovers a newer
version of a file, it downloads it to the cache and then uses it. Start the NoTouchDeployment
project from within your browser and click the Test Class button. You will see a value
between 5 and 6 on a message box. Then switch to Visual Studio and change the statement
that generates the random value to:

Return Convert.ToDecimal(rnd.NextDouble + 10)

Compile the class and copy the new DLL from the application's Bin folder to the application's
virtual folder on the web server. Switch to the running application and click the Test Class
button. You still get a value between 5 and 6, because the new DLL hasn't been downloaded
to the client yet. To force the new version of the DLL to be downloaded to the client, close the
browser and start it again. Connect to the application's URL and when the main form appears,
click the Test Class button. This time you'll get a value in a different range, indicating that the
DLL was downloaded automatically by the browser. You can also test the application from a
workstation other than the one on which the web server is running. If you do, you will notice a
small delay every time the application's files on the web server are updated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that users need not start their browser to connect to an application deployed through a
web server. They can create a shortcut to the URL of the application on their desktop and start
the application by double-clicking this shortcut. When the shortcut is double-clicked, the
browser's window comes up for a moment and then the application's starting form appears.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 258

You can also design a web page that the user can open to connect to your application on the
web server, as shown in Figure 10.9. This is a very simple page, but you can add all the
elements you can put on a web page to make it more attractive.

The HTML code of the page shown in Figure 10.9 is shown next. Just replace the URL of the
hyperlink's target with the URL of the application on your company's web server:

<HTML>
<center>
<h1>No Touch Deployment Demo</h1>
</center>
<h3>Click

here

to start the NoTouchDeployment application.</h3>
</HTML>

Users can save the application's EXE on their hard drives. If they open the page with the
hyperlink to the application with their browser, right-click the hyperlink, and select Save
Target As, the application's EXE will be copied on the local drive, in a path selected by the
user on an OpenFile dialog box. This action will download the main EXE file to the client, but
not any of the other executables. These other executable files will be fetched from the web
server when you run the application.

FIGURE 10.9 A simple web page to start the application

Downloading Assemblies on Demand

One last option with Internet-deployed applications is to download an assembly from within
the application's code, as needed. The assembly could also be downloaded on a separate
thread, while the user works with other parts of the application. To download an assembly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

thread, while the user works with other parts of the application. To download an assembly
from within your code, use the LoadFrom method of the Assembly class, which accepts as
argument the URL of the assembly on the web server and returns an Assembly object. Once
the assembly has been downloaded to the client, you can extract any part of the assembly and
use it in your code. For example, if the assembly contains a form you can extract the
appropriate object, cast it to the Form type, and use it in your code as if it were part of the
EXE on the local computer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 26

 Dim i As Integer, n As Integer
 Dim s As String
 n = Controls.Count

 For i = 0 To n - 1

 s = Controls(i).Name

 Debug.Write(s)

 Debug.WriteLine(''")

 Next

 End Sub

 Private Sub btnSearch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSearch.Click

 MsgBox("clicked")

 End Sub

 End Class

When adding new controls at design time, you want to at least specify their name, size, and
position on the form—especially their Name property. Then use the Add method to include
these new controls in the form's controls collection.

Here's how to go through the current set of controls on a form and change them all at once.
The following example turns them all red:

n = Controls.Count
For i = 0 To n - 1
 Controls(i).BackColor = Color.Red
Next

Of course, a control without any events is often useless. To add events to runtime-created
controls, you must add two separate pieces of code. First, up at the top (outside any procedure,
because this declaration cannot be local), you must define the control as having events by
using the WithEvents command, like this:

Dim WithEvents btnSearch As New Button()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 260

FIGURE 10.10 Windows installer packages create an entry in the Add Or Remove Programs snap-in.

FIGURE 10.11 The NWOrders application for entering new orders to the Northwind database

The NWOrders application uses ADO.NET to access the database, and it expects to find the
database on the target computer. You can store the connection string to a configuration file so
that administrators can change it. The code of the project is discussed in detail in Chapter 19.
In this chapter we'll simply create a setup project for the application and use it to install the
application on a client computer.

Let's start by outlining the application's architecture. The application has a single form, which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's start by outlining the application's architecture. The application has a single form, which
is shown in Figure 10.11. This form, and the code behind it, is the application's presentation
tier: it interacts with the user and uses middle tier components to retrieve product prices, as
well as to submit new orders to the database. The application's middle tier consists of two
classes, the OrderClass and the BusinessLayer classes. The OrderClass class provides all the
functionality needed to interact with the database, with the exception of the component that
retrieves product prices. The BusinessLayer class is a ''true" business layer, in that it calculates
the price of a product when sold to a specific customer. The actual sale price is the product's
retail price minus a discount that depends on the number of items of the same product sold to
the same customer. This component is downloaded to the client, but it could have been
implemented as a Web service and be installed on a remote machine. In our example, both
classes belong to the application's namespace.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 261

Copy the NWOrders project from the folder with the projects of Chapter 19 to a new folder
and open it with Visual Studio. We're going to add a setup project to the solution. The setup
project is no longer an external component. It's a Visual Studio project, and you can include it
in the current solution. When you run the setup project in the IDE (with the commands Install
and Uninstall of the setup project's context menu), the application is installed on your machine
and you can easily test the steps of the installation, make sure that it creates the appropriate
shortcuts, copies the auxiliary files (if any) to the application folder, and so on.

Creating a Windows Installer Package

To add a setup project to your solution, open the File menu and select Add Project New
Project; the Add New Project dialog box will appear (see Figure 10.12). Click the Setup And
Deployment Projects in the Project Types box and you will see the five setup and deployment
projects available with Visual Studio, which are the following:

FIGURE 10.12 Selecting a setup project's type

Setup Project This project type creates a Windows installer package (an MSI
package) and a bootstrap application that installs the application. Applications
installed through setup projects are installed by default in the target computer's
Program Files folder and can be later removed through the Add Or Remove
Programs snap-in. This is the type of setup project we'll explore in this section.
Web Setup Project This project type creates a Windows installer package, similar
to the Setup Project type, but it installs a Web application to the web server's virtual
directory. Web applications are usually deployed with a simple copy operation.
Besides, there's no real need to install Web applications on a large number of
clients, so we won't discuss Web Setup projects.
Merge Module Project This project type creates merge modules, which contain the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Merge Module Project This project type creates merge modules, which contain the
files making up a specific component. Merge modules are usually included in other
setup projects. The MDAC component, for example, is packaged as a merge
module, so that it can be included in the setup project of any application that
depends on MDAC.
Cab Project This project type creates CAB (cabinet) files. Cabinet files may
contain any number of files; they're compressed to reduce the amount of data to be
downloaded to the client.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 262

Cabinet files are often used to package components, and users can choose to install individual
components at the target machine.

Setup Wizard This is a wizard that takes you through the steps of creating setup
projects of the other four types.

Select the Setup Project template and make sure the Add To Solution button is checked.

NOTE In Visual Studio 2003, this button was eliminated and the new project is always added
to the current solution.

The IDE will add a few standard items to the project, as shown in Figure 10.13. On the
designer's surface of the setup project you see a simplified view of the target computer's file
system. Basically, a setup program modifies the target computer's file system by installing
files and other items (shortcuts). While you design the setup program you specify how it will
affect the target computer's file system, and this is what you do on the design surface with
visual tools: you specify which files will be copied where, indicate the components to be
registered, create shortcuts on the desktop, and so on.

To view all the items of the target computer that you can affect from within your setup project,
right-click the setup project's name in the Solution Explorer and select View. This command
leads to a submenu with the following items. Each item leads you to a different editor, which
has the same name as the command.

NOTE The word editor is not part of the command, but it describes the window to which each
command leads.

File System editor This is your view of the target computer's file system. You can
add items under most folders of the target computer's file system.
Registry editor This is a simple tool that allows you to add keys to the target
computer's Registry. These keys can then be read by the application's code.
File Types editor This is a simple tool that allows you to establish associations
between your application and files with a specific extension.
User Interface editor This tool allows you to specify the interface of the setup
program by adding custom dialog boxes to perform actions that are specific to your
application's setup program. To customize the setup program's interface, you can
add one or more of a number of predefined dialog boxes. However, you can't
include your own dialog boxes; you must use one or more of the predefined ones
and customize their captions. You can't change their appearance.
Custom Actions editor This tool is intended for advanced setup projects; it allows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Custom Actions editor This tool is intended for advanced setup projects; it allows
you to perform custom actions, depending on whether any of the following events is
fired: Install, Commit, Rollback, and Uninstall. The custom actions are usually
performed by separate EXEs, which are invoked automatically when (and if) the
corresponding event is fired. A server application's setup program, for example,
may automatically start an executable to create a new database upon successful
completion of the application's setup.
Launch Conditions editor This tool allows you to define the conditions that must
be met at the target machine before the application is installed. For example, you
can specify that the application is installed only if the target machine runs under
Windows 2000.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 263

FIGURE 10.13 Working with a view of the target computer's file system

Using the File System Editor

The most important editor is the File System editor, which allows you to specify what will be
installed on the target machine and where each item will be installed. At the very least, you
must specify the project items that will be copied to the target computer. At the very least, we
must copy the application's executable files (EXEs and DLLs). These files constitute the
project's output. Rightclick the setup project and from the context menu select Add. You will
see another menu with the following items, which represent the items you can add to the setup
project:

Project Output Use this option to add to the setup program the project's executable
files: the EXE and DLL files generated by the compiler. Every setup project should
contain at least the output of another project.
File This option leads to a File Open dialog box, where you can locate and select
any file to add to the setup program. The files you add to the setup project will be
simply copied to the target computer. They are usually auxiliary (images, icons,
XML configuration files, and so on).
Merge Module Use this option to select a Merge Module on the local machine and
include it in the setup program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assembly Use this option to select one of the assemblies installed on the
development machine and include it to the setup project.

Right-click the Application Folder item under the File System On Target Machine branch and
from the shortcut menu select Add Project Output. A new dialog box will appear, shown
in Figure 10.14, where you can select the project whose output you want to include in the
setup program. The ComboBox control at the top of the Add Project Output Group dialog box
contains the names

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 264

of all projects in the solution (except for the setup project, of course). Select the desired
project on the ComboBox control. The outputs of the selected project are displayed on a
ListBox control and you can select the desired output (which is usually the Primary Output).
The Configuration ComboBox control in the middle of the dialog box lets you select the
project's configuration: whether it's the Debug or Release configuration of the project. The
default selection is (Active), which is the configuration of the project when you built it for the
last time.

The item ''Primary output from NWOrders (Active)" will be added under the setup project in
the Solution Explorer's window. A dependency is also picked up, namely the Framework
redistributable (dotnetfxredistr_x86.msm). Our sample project's custom classes are
implemented in the same project, so the project's output is a single EXE file. If the classes
were implemented as separate projects, the corresponding DLL would have been included in
the project's output.

FIGURE 10.14 The Add Project Output Group

The project's dependencies will be detected automatically for you, including their own
dependencies and so on. These files will be automatically added to the project's Detected
Dependencies list. If you can be sure that certain of the dependencies already exist at the target
computer, you can omit them by selecting the Exclude command from the appropriate item's
context menu. If an application is deployed and a dependency is missing, the application may
be useless. More often than not, developers don't exclude any of the dependencies. The MSI
file may be larger than it should be, but the deployed application will always work.

The other types of output you can select from a given project are the following:

Primary Output The EXE and DLL files generated by the compiler for the selected
project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Localized Resources The DLL that contains resources specific to a locale.
Debug Symbols A file with debugging information, created when a project is
compiled in Debug mode (a file with extension PDB). This file is used when the
application is executed in the context of a debugger.
Common Files The content files (HTML, images, sounds, and so on), used only
with ASP applications.
Source Files The project's source files (we usually don't distribute the application's
source code).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 265

As soon as you add the primary output of the NWOrders project to the setup project, the
names of these files will be added under the Detected Dependencies item of the Solution
Explorer. The IDE will pick any dependencies of these files and add them to the setup
project's output automatically. If you don't want to include one of the selected dependencies
(because you know that a component has already been installed), you can right-click its name
in the Solution Explorer window and select Exclude from the shortcut menu. You can also
select Refresh from the Detected Dependencies item's context menu to force the IDE to re-
evaluate the dependencies.

You're ready to build the setup project and deploy your application to another computer. The
setup project, however, will use mostly defaults, which isn't what users expect from a
professional setup application. You can test the setup application right in the IDE by selecting
the Install and Uninstall commands of the setup project's context menu. Actually, you should
run the installation project at this point and print the various dialog boxes that appear during
the installation project. Then you can use these printouts as you explore the properties of the
setup project and understand better how to customize the appearance of the dialog boxes that
appear during the setup.

If you build the entire solution, the process will take a while because the setup project must be
built as well. However, you can build each of the applications separately. To see the
compiler's output, switch to the setup project's Bin folder and you'll find there three items:

Setup.exe A bootstrap program that installs the application
SetupNWOrders.msi The MSI file (a Windows installer file) that contains all the
data needed to install, fix, and remove the application from the target computer
Setup.ini The application's INI file

These three files must be distributed to every computer on which the application will be
installed. Users can install the application by running the Setup.exe program.

The windows displayed during the installation process are very simple. The first window
welcomes the user to the application's setup and waits for the user to click the Next button.
The following window suggests the path of the folder where the application will be installed.
Users can accept this location, or click the Browse button to select another folder. The Next
button on this window takes you to the Confirm Installation window, where users must click
Next to start the installation. The process takes a few moments; when the application's
installation completes, users are informed of the completion of the installation and are
prompted to close the wizard's last window. You will see later in this chapter how to
customize the dialog boxes that appear during the application's setup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you start the Add Or Remove Programs utility in the Control Panel, you will see that your
application has been installed on the target machine. Users can use this tool to repair or
uninstall the application. Locate the application's entry in the Add Or Remove Programs tool's
window and you'll see two buttons: Change and Remove. The Change button leads to a dialog
box, which gives users the option to repair the installation by writing the original files on top
of the existing ones, or to remove it. The Remove button removes the application from the
target machine. You should always remove an application before installing a newer version.

THE SETUP PROJECT'S PROPERTIES

Each setup project has a few basic properties, which you can set in the Properties window if
you select the name of the Setup project in the Solution Explorer's window. These properties
identify the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 266

manufacturer of the application and determine some basic characteristics of the setup
application, such as whether it should detect and remove an earlier version of the same
application. The most important properties of the setup project are the following:

Author Set this property to the name of the company (or individual) that developed
the application; its default value is the same as the Manufacturer property's value.
Description Set this property to any helpful message about the application.
Manufacturer A string with the application's manufacturer. This setting is used by
MSI to create the name of the default folder during installation, so you must set it to
a value that users can easily associate with your application.
ManufacturerURL This is your company's URL, which is displayed as a hyperlink
on the product's support page.
SupportPhone This is the phone of a telephone support department for the
application.
SupportUrl This is the URL of the application's support website.
Version This is the version number of the Windows installer package.

These settings are used to compose the Support Info window, which is shown in Figure 10.10.
To see this window, start the Add Or Remove Programs tool from the Control Panel, select the
SetupNWOrder entry, and click the Click Here For Support Information hyperlink, also shown
in Figure 10.10.

There are two more interesting properties of the setup project, which determine to some extent
the behavior of the setup program, and they are the following:

DetectNewerInstalledVersion This property is True by default; it tells the
Windows installer to detect any newer version of the same application that has
already been installed and, if it finds one, prevent the installation of the older
version.
RemovePreviousVersion Set this property to True if you want the setup program to
remove an older version of the application (if one exists) and then install the newer
version.

Creating Shortcuts

A simple task common among nearly all setup programs is the creation of a shortcut to the
application on the user's desktop. To create a shortcut from within your setup application, click
the Application Folder item in the File System editor and in the pane with this folder's
contents, right-click the target file (Primary Output From NWOrders). One of the commands
of the context menu is the Create Shortcut To Primary Output From NWOrders. Select this
command and a new shortcut will be created. Change the shortcut's name to ''Shortcut to
NWOrders" and then drag the shortcut and drop it on the User's Desktop item on the File
System pane. The installation program will create a shortcut to the application's EXE file and
place it on the user's desktop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you look at the properties of the newly created shortcut, you'll see two particularly
interesting ones. The Icon property lets you set the icon that will appear on the user's desktop
and the Working-Folder property is the application's working folder. These are two basic
properties you set every time you create a shortcut on your desktop.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 267

The User's Programs Menu item represents the user's programs menu; you can add a new
menu item for your application. You can place your application directly on the user's menu, or
create a subfolder with a descriptive name that will contain the application. Right-click the
User's Programs Menu item in the File System editor and from the shortcut menu select Add
Folder. A new folder will be created under the selected item; rename it to VBToolkit. Right-
click the new item and from the context menu select Add Project Output. When the
application is installed, a new item will be added to the user's programs menu, and the
application's EXE will be added under this item. If you're installing multiple applications with
the same setup program, place their EXEs in the same item of the user's programs menu.

You can also handle the special folders on the user's file system. Right-click the item File
System On Target Machine and you will see a list of special folders, from which you can
select one. These special folders are listed next:

Common Files Folder Fonts Folder Program Files Folder
System Folder User's Application Data Folder User's Desktop
User's Favorites Folder User's Personal Data Folder User's Programs Menu
User's Send To Menu User's Start Menu User's Startup Folder
User's Template Folder Windows Folder Global Assembly Cache

Folder
 Custom Folder

You can add items to any of these folders. To install a font at the target computer, for example,
place the font into the target computer's Fonts Folder. If you want your application to run
every time the computer is started, place the EXE file in the user's Start Menu.

The Registry Editor

Use the Registry Editor to add keys and values to the target computer's Registry. When you
open the Registry Editor on the designer surface, you will see the organization of the Registry,
but you can only access the HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE
branches of the Registry. The key HKEY_LOCAL_MACHINE\Software\[Manufacturer] key
is created by default, but it hasn't been assigned a value yet. The [Manufacturer] key will be
replaced by the value of the Manufacturer property of the setup project when the setup
application is executed at the target machine.

Adding new keys is straightforward. Right-click the desired branch in the left pane of the
Registry pane and from the context menu select New Key. The new key will be named New
Key #1; you can change this name to anything. To set the key's value, right-click the key's
name and from the shortcut menu select a value type: String value, Environment String value,
Binary value, or DWORD value.

Using the User Interface Editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A setup program has a simple user interface, which consists of a number of dialog boxes that
guide the user through the installation process. It's possible to add custom dialog boxes to the
interface, and this is done through the User Interface editor. Unfortunately, you can't create
your own forms and include them in the project's UI.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 268

To view the User Interface editor, switch to the Solution Explorer's window and select View
 User Interface Editor from the setup project's context menu. On the designer's surface,

you'll see a tree view of the dialog boxes that will appear on the user's desktop during the
installation, in the order in which they will appear. Each dialog box usually has a few
properties that you can use to customize the dialog box's appearance.

To add a new dialog box, right-click the designer and select Add Dialog. The dialog box of
Figure 10.15 will appear, where you see the available dialog boxes. If you double-click one of
these dialog boxes, a new item will be added to the tree with the installation application's user
interface.

To customize the setup program's interface, set the properties of the dialog boxes. Select each
dialog box on the left pane and look up its properties. Most dialog boxes have very few
properties, such as the bitmap that will be displayed on them and a copyright warning.

To add a custom dialog box to the user interface, select one of the steps in the installation
process (Start, Progress, End) and from its context menu select Add Dialog. The Add Dialog
box that will appear contains a number of predefined dialog boxes. Most of them are made up
of a small number of radio buttons, check boxes, and text boxes, as shown in Figure 10.16.
Unfortunately, you can't edit these dialog boxes; you can't even view them at design time. You
can only set their properties and view them while the application is actually being installed. To
see what each custom dialog box looks like before using it in your project, look it up in the
documentation.

FIGURE 10.15 Use one or more of these dialog boxes to customize the setup project's UI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 10.16 Getting user data during installation through a custom dialog box

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 269

Some of the custom dialog boxes are quite simple. The License Agreement dialog box
displays the application's license agreement (which is a text file) and the usual ''I Agree" and
"I Don't Agree" radio buttons. If the user doesn't check the Agree radio button, the installation
process is aborted.

Let's add a custom dialog box to our sample setup application. We'll add a dialog box with two
radio buttons that will prompt the user to specify whether the project's source files should be
installed or not. Select the dialog box with the two radio buttons and then set the new dialog
box's properties as follows:

Property Setting
BannerText Installation Options
BodyText Install Source Files?
Button1Label Include Source Files
Button1Value 1
Button2Label Skip Source Files
Button2Value 2
ButtonProperty SOURCEFILES
DefaultValue 1

The names of the properties are self-explanatory. The ButtonProperty property is a basically a
variable name, which is set to the value of the checked radio button. This value is used by
another part of the setup program to control an action. In our case we'll use the input provided
on the custom dialog box to determine whether the source files will be installed or not. Figure
10.16 shows what the custom dialog box looks like during the application's installation.

Switch to the File System editor and add the application's source files to the setup project's
output. From the Application Folder item's context menu select Add Project Output, and
when the Add Project Output Group dialog box appears, select the Source Files item. This
action will cause the source files to be included in the package and a new item will be added to
the Application Folder of the target machine.

To install the source files conditionally, based on the user's selection on the custom dialog
box, open the Property Browser of the item that represents the source files and locate the
Condition property. This property determines the condition that must be met for the selected
component to be installed. Set the Condition property of the Source Files From NWOrder item
to:

SOURCEFILES = 1

The application's source files will be copied by the installation program to the target
computer's application folder if the user checks the Include Source Files radio button on the
custom dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the custom dialog box contains check boxes, you must take into consideration that users
may check multiple check boxes. Each check box has a CheckBoxValue property, whose
value is either Checked or Unchecked. The Condition property in this case should be set to a
logical expression such as:

CheckBox1Value = Checked And CheckBox2Value = Unchecked

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 27

Then, in the location where you want to provide the code that responds to an event, type the
following:

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click
 MsgBox(''clicked")
End Sub

This event code is indistinguishable from any other "normal" event in the code. Notice that
unlike the all-in-one event shared by all the controls in the entire control array in VB6,
VB.NET expects you to give each newly created control its own name and then use that name
to define an event that uses "Handles" Name.Event, as illustrated by the Click event for
btnSearch in the previous example.

Multiple Handles

If you're wildly in favor of the all-in-one event, you can do some curious things in VB.NET
that permit it. Listing 2.2 is an example that handles the Click events for three different
controls by declaring their names following the Handles command.

LISTING 2.2: HANDLING MULTIPLE CONTROLS WITH A SINGLE EVENT
Private Sub cmd_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdOK.Click, cmdApply.Click, cmdCancel.Click
 Select Case sender.Name
 Case "cmdOK"
 'Insert Code Here to deal with their clicking the OK button
 Case "cmdApply"
 'Insert Code Here for Apply button clicking
 Case "cmdCancel"
 'Insert Code Here for Cancel button clicks
 End Select
 End Sub

In addition to the multiple objects listed after Handles, notice another interesting thing in this
code. There's finally a use for the sender parameter that appears in every event within
VB.NET. It is used in combination with the .NAME property to identify which button was, in
fact, clicked. This event handles three Click events. Sender tells you which control raised
(triggered) this event at any given time. In most VB.NET code, the Sender object is the same
as both the name of the event and the name following the Handles:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
 MsgBox(sender.Name)
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 272

You'll find a variety of interesting and helpful new tools and techniques available to you in
ASP.NET. If you're familiar with ASP, or its best-forgotten predecessors, you're likely to be
delighted with what ASP.NET can do for you, and what it allows you to do in your code. For
example, here's a simple bit of code that tests whether a client's browser permits VBScript
execution, among other things, by using the Browser property of the HTTPRequest class, like
this:

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Request.Browser.JavaScript Then
 Response.Write(''Accepts JavaScript")
 End If
 If Request.Browser.VBScript Then
 Response.Write("
Accepts VBScript")
 End If
 Dim s As String = Request.Browser.Browser
 Response.Write("
Browser:" & s)
 s = Request.Browser.Version
 Response.Write("Version" & s)
 End Sub

Sending Entire Files

In ASP.NET, you can provide entire files as arguments to the Response object. If you have a
text file you want to slap onto the user's browser, simply provide its filepath on your server,
like this:

 Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
 Dim s As String = "C:\test.txt"
 Response.WriteFile(s)
 End Sub

Note also that when a web page is requested, its ASP.NET file (.aspx) is compiled into a
temporary .dll that is used for subsequent requests. Clearly this approach improves scalability,
security, and overall performance. Best of all, you, the programmer, don't have to do anything
about it. It all happens behind the scenes, like so many aspects of ASP.NET and ADO.NET—
that's why I said that these technologies are high-level. You forget about lots of messy details,
and write your instructions using abstract, powerful commands.

Using Server Controls

Also new in .NET are server controls, or as they're sometimes called, server-side controls. As
their name suggests, these controls reside on the server, but they "compose" a plain-vanilla
HTML page that is sent to the client. The code-behind page is also composed into HTML, if
necessary, which is why you sometimes see HTML formatting instructions mixed in with
traditional VB.NET, such as "
".

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 274

 Response.Write(''
 ")
 End While

 datReader.Close()
 conString.Close()
End Sub

Try running this example by pressing F5. You should see the results shown in Figure 11.1.

FIGURE 11.1 A database's contents directly displayed in the client browser

If you get an error message, such as "This page cannot be displayed," "Permission denied," or
"Login failed," the attempted connection to the sample database "Pubs" probably failed to
connect. Perhaps you never installed the sample database, or you don't have a version of
SQLServer running, or your level of permissions hasn't been properly set to access the data or
to use the SQLServer. To solve these and other possible problems, look at the various
suggestions in Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code in this example is essentially the same as you would use in an ordinary Windows
application to connect to a database and get data via a query. The only really unusual aspect is
the "
," the HTML line break command, and the Response.Write to print strings on the
client's browser.

Now let's look at several excellent ASP.NET controls that you can use to quickly and
effectively create database-driven web pages.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 275

The DataList, Repeater, and Templates

The DataGrid and other WebForm controls are quite an improvement over traditional HTML
tables and other HTML GUI effects—an improvement for both the user and the programmer.
The programmer has far less work with server-side WebForm controls, and the results are
superior.

The DataList is a somewhat less advanced form of DataGrid. The DataList is also similar to
the Repeater control discussed later, but the DataList offers a default format and some tools
you can use to specify how the data will be displayed. However, as with the Repeater, there's
no support for paging.

The DataList is somewhat less powerful than the DataGrid. You can manipulate several of the
DataList's properties by adjusting templates for such elements as header, footer,
AlternatingItem, EditItem, Item, SelectedItem, and Separator. The only required template is
the Item. In addition, you can specify how the display is built visually by setting
repeatcolumns, repeatdirection (vertical, horizontal), and repeatlayout (flow, table).

The DataGrid includes all eight templates; the DataList includes all except the PagerTemplate;
the Repeater doesn't have the Pager, SelectedItem, or EditItem templates.

TEMPLATES

Templates are used with DataGrid, DataList, and Repeater controls, but only the Repeater
requires that you use a template. A template is a collection of HTML elements (including as
well any controls you place into those elements) that collectively define, at least in part, the
appearance and behavior of a control that contains the template. One way to use a template is
to allow it to specify the appearance of every row in a DataGrid (templates can repeat within
their container control).

It's easy to confuse templates with styles because both perform essentially the same jobs and
do it in similar ways. However, styles generally describe such properties as FontSize and
colors, and can override the defaults for these types of properties in a given control.
Templates, by contrast, define such features as headers, alternating items in a table or list,
separators, and so on.

You can create and modify templates using XML declarations in .aspx files via the
<template> element. Or you can use the Edit Template feature, described in the following
section.

THE DATALIST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Put a DataList control on a WebForm. The control's icon itself has a description telling you to
right-click the icon. Choose the Edit Template option. You can manipulate templates to
specify what additional controls are included in the DataList, as well as adjusting the
appearance of the dividers, header, footer, and individual cells. You can also add any
ASP.NET control you wish to a template.

Select the ItemTemplate area in the DataList (you may have to left-click this area in the icon
repeatedly until you see the insertion cursor blinking). Double-click a TextBox in the Toolbox.
Now you've done it; the client will now view a TextBox in each item displayed in the
DataList. Now select the AlternatingItem Template area and add a TextBox there as well, but
change this TextBox's Back-Color property to light blue.

Go ahead and put a TextBox in the currently selected item, changing its BorderStyle to inset
and the BorderColor to red, and type the words Edited Here in the Edited Item area. You can
if you wish add other controls (except timers and such) to the template. Now right-click the
DataList icon again and choose End Template Editing.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 276

THE REPEATER

The Repeater control is simpler than the DataGrid or DataList. For one thing, it's read-only. It
also doesn't have any built-in visual structure and it also requires a template. It's possible to
use it via template adjustments for various list formats: numbered, bullets, tabs, and so on.
When you add a Repeater control to a WebForm, you're told to go to HTML view and do the
editing there. There is no default formatting, no RAD or visual tools to assist you in creating
the format. It's all totally up to you; you have to type in any templates by hand in the HTML
editor.

Drop a Repeater control onto an empty WebForm, then switch to the HTML code window.
Move the element's end tag (</asp:Repeater>) down several lines so you have some room
to add a couple of templates.

Now type in the following boldface templates:

<%# Container.DataItem(''au_lname") %>
<%# Container.DataItem("au_fname") %>

That's the format you use to bind each item template to the container (WebForm page) data
source. Each field must be specified by name for each item, as illustrated in the code above.
And you have to use the code-behind window to bind the repeater to a data store:

Dim ds As DataSet = New DataSet
 Dim pubConn As SqlConnection = _
New SqlConnection("DataSource=localhost;Integrated Security=SSPI;Initial Catalog=pubs")
 Dim selectCMD As SqlCommand = _
New SqlCommand("SELECT * FROM Authors", pubConn)
 Dim da As SqlDataAdapter = New SqlDataAdapter
 da.SelectCommand = selectCMD
 pubConn.Open()
 da.Fill(ds, "Authors")
 pubConn.Close()
 Repeater1.DataSource = ds
 Repeater1.DataBind()

Using the DataGrid

The DataGrid is the most powerful of the three data-related WebForm controls. It has all the
features available to the DataList control (discussed later), but also supports paging and
sorting. All three data-related controls—DataGrid, DataList, and Repeater—are based on
templates that you can customize. Templates, too, are discussed later.

You can dump a table or other data into the DataGrid and format it as you wish. Here's a
simple example that displays the same authors table used in the previous example. By leaving
the DataGrid's

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 277

AutoGenerateColumns property to the default True, the data table you specify as the
DataSource simply flows into your grid all by itself, complete with headers.

From the WebForms tab on the Toolbox, drag a DataGrid to the WebForm. Then, using the
same Imports statements as in the previous example, type Listing 11.2 into the Form_Load
event.

LISTING 11.2: FLOWING DATA INTO A DATAGRID
Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim conString As String = _
''Data Source=localhost;Integrated Security=SSPI;Initial Catalog=pubs"
 Dim con As New SqlConnection(conString)
 Dim cmd As New SqlCommand("select * from Authors", con)

 con.Open()

 Dim dReader As SqlDataReader = _
cmd.ExecuteReader(CommandBehavior.CloseConnection)

 DataGrid1.DataSource = dReader
 DataGrid1.DataBind()
 dReader.Close()
 con.Close()

 End Sub

The DataSet object is useful when you're permitting the client to update your database. If you
merely want a read-only set of data, use the faster DataReader as in the previous example.

There are usually several ways to accomplish a given task in .NET, so here's an alternative
way (Listing 11.3) to fill the DataGrid by creating a DataSet, filling it with the table, then
binding the DataGrid to the DataSet.

TIP You could also bind to one of the tables in the DataSet collection:Tables(0).

LISTING 11.3: BINDING A DATASET TO A DATAGRID
Dim ds As DataSet = New DataSet

 Dim pubConn As SqlConnection = _
New SqlConnection("Data Source=localhost;Integrated Security=SSPI;Initial Catalog=pubs")

 Dim selectCMD As SqlCommand = _
New SqlCommand("SELECT * FROM Authors", pubConn)

 Dim da As SqlDataAdapter = New SqlDataAdapter

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 278

 da.SelectCommand = selectCMD

 pubConn.Open()

 da.Fill(ds, ''Authors")

 pubConn.Close()

 DataGrid1.DataSource = ds
 DataGrid1.DataBind()

SPECIFYING BEHAVIORS

The DataGrid permits you to define five different types of columns for different jobs. You can
also permit paging, define borders, and specify sorting and other facets of the grid's behavior.
Click the ellipsis next to the Columns collection in the properties window (or right-click the
DataGrid itself and choose Property Builder) and you'll see a dialog box pop out where you
can specify these behaviors.

MAKING PRETTY

The previous examples can use some fixing up. They work fine, but to make them appear nice
to the user, add some color and reduce the point size of the font. Click the HTML tab on the
design window and add the boldface lines below to the description of the DataGrid:

 <form id=" Form1" method="post" runat="server" >
 <asp:DataGrid id="DataGrid1" style="Z-INDEX:
101; LEFT: 208px; POSITION: absolute; TOP: 88px"
 runat="server" Width="680px" Height="400px"
 BackColor="#ddffff"
 BorderColor="darkblue"
 Font-Name="Arial"
 Font-Size="8pt"
 CellPadding="2"
 CellSpacing="1"
 HeaderStyle-BackColor="a0b0c0">
</asp:DataGrid></form>

TIP You may have problems when pasting code into the HTML window; you may get all kinds
of strange additional text. If you see this happening, just delete the problem code from the
HTML window, then recopy it and paste it into Notepad.That will strip off any extraneous
codes and give you raw text when you copy and paste it from Notepad to the HTML window.

By making the adjustments, you change the results from the crowded, hard-to-read version in
Figure 11.2.

After you add the boldface formatting adjustments in the previous example, the design shown
in Figure 11.3 is more professional and makes customers more likely to trust your company
and its products.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 279

FIGURE 11.2 BEFORE: Without formatting attributes, the browser does its best to fit everything in, but
the result is a bit of a jumble.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 11.3 AFTER: A few formatting instructions and the results are easier to read and more
professional.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 280

You can create additional useful effects, helping make the grid more readable. The DataGrid
in the examples in this chapter has not been bound to a data store until runtime. For this
reason, the Properties window cannot be used during design time to adjust headers and data
using the Columns collection. You must make these adjustments programmatically.

This next example illustrates how to first set the DataGrid's AutoGenerate Columns
property (also known as an attribute, if you're in an XML mood). When you make this change,
the grid will not automatically display a table's column names (the field names) and the rows
of data. Make this change in the properties window.

Now, type in this HTML code (in boldface) to specify how you want the data displayed:

<asp:DataGrid id=''DataGrid1" autogeneratecolumns="False" style== Z-INDEX: 101; LEFT:
 76px; POSITION: absolute; TOP: 36px runat="server"
 Width="243px" Height="280px">
<AlternatingItemStyle BackColor="#FFE0C0"></AlternatingItemStyle>
<ItemStyle BackColor="#C0C0FF"></ItemStyle>
<Columns>
<asp:BoundColumn HeaderText="Name"
 DataField="ContactName" ItemStyle-Font-Size="14"></asp:BoundColumn>
<asp:BoundColumn HeaderText="Title"
 DataField="ContactTitle" ItemStyle-Font-Size="11"></asp:BoundColumn>
<asp:BoundColumn HeaderText="City" DataField="City"
ItemStyle-Font-Size="11"></asp:BoundColumn>
<asp:BoundColumn HeaderText="Phone Number"
DataField="Phone" ItemStyle-Font-Bold="True"></asp:BoundColumn>
</Columns>
</asp:DataGrid>

As you see, you can use this technique to freely manipulate which columns are displayed
(DataField), the header names, font size, boldface, and many other properties of each column.
Before running this example, try using a different sample database just for practice. Try the
Northwind sample. To do that, make these changes to the previous example code:

Initial Catalog=Northwind
FROM Customers
da.Fill(ds, "Customers")

Press F5 to see the adjustments you made to the format of the individual columns.

TIP You'll find a variety of predesigned quality formats for the DataGrid that you can add
with a click of the mouse. Just right-click the DataGrid on the design window, choose Auto-
format from the context menu, then select a format.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 281

FURTHER ADJUSTMENTS

You can make further changes to improve the readability of a DataGrid. Try now changing the
Alternating BackColor property so that every other row is displayed in the new color. The
AlternatingItemStyle property's BackColor property (yes, properties can have their own
properties) remains the default color, making the table easier to read. Use the properties
window to change the AlternatingItemStyle's BackColor property and you can see the results
in the design window immediately.

Detecting Postback

When information comes from the client back to your server, it's known as postback. What,
for example, happens when a client clicks one of the items in your DataGrid or a ListBox?
Perhaps the user wants to view details about the clicked data? Or wants to order it from your
catalog? In any case, you often will need to respond on the server to a user action.

As you know, an HTML page is composed on your server based on what's in the Page_Load
event (shown in the previous examples in this chapter), then sent to the client. How, though,
can you respond to a user clicking in their browser? How does this information get to your
server, and how can you respond to it and send back a new, composed HTML page?

Here's an example. Remove the DataGrid from the previous example and replace it with a
ListBox from the WebForms tab of the Toolbox. You're going to print a message at the very
top of the user's browser, so in your WebForm make sure that the ListBox has been dragged a
few inches down from the top of the page to leave some room for the printing.

Now you have to add an autopostback attribute to the HTML code defining the ListBox. Click
the HTML tab at the bottom of the design window and add this code shown in boldface:

<asp:ListBox id=''ListBox1" autopostback="true"
 style="Z-INDEX: 101; LEFT: 216px;
 POSITION: absolute; TOP: 160px" runat="server" "Width"="248px"
Height="320px"></asp:ListBox>

Alternatively, you can adjust this property in the Properties window.

In your code you check the IsPostBack property to see if this is the first time the client is
viewing this page (IsPostBack = False) or whether the client has sent a message back and
you may want to respond to that message. Type Listing 11.4 into the Form_Load event:

LISTING 11.4: DETECTING POSTBACK
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)Handles MyBase.Load

 If Not IsPostBack Then

 Dim MyArray As New ArrayList

 MyArray.Add("Mary")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MyArray.Add("Mary")
 MyArray.Add("Had")
 MyArray.Add("A")
 MyArray.Add("Little")
 MyArray.Add("Lamb")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 283

LISTING 11.5: INTERACTION VIA THE MIDDLE TIER
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim s As String = Request.Form.Item("TextBox1").ToString

 Dim r As String = Regex.IsMatch _
(s, ("^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|
(([\w-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$"))

 If r = True Then "correct email format
 s &= "
 is a correct email address. Thank you!"

 Else
 s &= "
 is not a correct email address."& _
 Please retype it and click the button again."

 End If
 Response.Write(s)

 End Sub

Validation Controls

In addition to programmatic validation, you can use the new .NET validation controls. Here's
an example. Add a RangeValidator control to your WebForm. Then add a TextBox, a label,
and a button. Select the RangeValidator control in the design window and enter the following
values in the RangeValidator's Properties window: Maximum Value: 39, Minimum Value: 3,
ErrorMessage: Your number must be between 3 and 39, ControlToValidate: TextBox1, Type:
Integer.

Here is a description of the job performed by each validator:

RequiredFieldValidator Ensures that the user fills in a required entry.
RangeValidator Tests for upper and lower boundaries and data type. Can specify a
range of dates or an alphabetic range as well as numeric.
CompareValidator Tests against a property value in a different control on the
page, a value from a database, or a literal. You use the comparison operators for this
test: >, =, and so on.
RegularExpressionValidator Tests against a given regular expression.
CustomValidator Allows programmatic testing. Specifies a procedure that
validates the input (either client-side or server-side).

In the following sections we describe in detail the two most important validation controls: the
RangeValidator and the RegularExpressionValidator.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 284

THE RANGEVALIDATOR

Change the Label's ID property to lblResponse. Double-click the button to get to its Click
event in the code-behind window and type this in:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
 RangeValidator1.Validate()
 If Page.IsValid = True Then
 lblResponse.Text =''Your entry is valid"
 End If
End Sub

Notice the strange double reference following the Handles command: both the Click and
Validate events are handled by this procedure. The Validate method of the RangeValidator
control is first fired, and then the Page object's IsValid property is tested. If it's True (meaning
that the user entered a valid number), you display a message in your label telling the user they
did well. If the user types in a number that's out of range (such as 2 or 55), the
RangeValidator's ErrorMessage property is displayed instead. Go ahead and press F5 and see
the effect of entering valid and invalid numbers.

Perhaps you're thinking "What the heck? Why not just write the following code in the button's
Click event?"

If CInt(TextBox1.Text) < 3 Or CInt(TextBox1.Text) > 39 Then
 Response.Write("Must be between 3 and 39")
End If

This would work, but you get more flexibility using validation controls, and when you have to
validate more than one control on a page it's efficient to use a validation control. Also,
validation controls give you the ability to check either individual data (individual TextBox
entries, for instance, using RangeValidator1.IsValid) or the validity of the entire page at
once (using Page.IsValid). You can also specify the text, location, and appearance of error
messages generated by the validation controls. Finally, and perhaps best of all, the validation
process is adaptable and decides for itself whether it can run as a client-side script (if the
browser permits this) or, if necessary, on the server. You, the programmer, need not intervene
in this process. The best efficiency is achieved automatically.

If you want to consolidate error messages, the ValidationSummary control displays any error
messages from all validation controls on a given WebForm. You can choose to display these
messages via a message box, or as above directly in the browser.

Warning: All the validation controls check data only if there is some. In other words, an empty
TextBox is not validated (put another way, the empty response is treated as valid). This could
cause problems unless you add a RequiredFieldValidator control to ensure that the tested
control isn't empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have to add a separate validation control for every input control you want to validate.
During postback, the page object sends the text to the validation control that has its
ControlToValidate property set to a particular TextBox or other control.

However, it's possible to point more than one validation control to a single TextBox (or other
control). Perhaps you must ensure both a correct range as well as ensuring that the TextBox is
not empty. In that case, you would set the ControlToValidate properties of both a
RangeValidator and a RequiredFieldValidator to point to that TextBox.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 285

THE REGULAREXPRESSIONVLIDATOR

What, though, should you do if you want to allow more than a single valid pattern? How about
these two valid zip code patterns: 14486 or 14486-6303? In this case, you don't add multiple
validation controls; instead, use the RegularExpressionValidator and specify that two valid
patterns are permitted. The RegularExpressionValidator compares what the user enters against
a Regex pattern and can be used for various common situations such as e-mail address, social
security number, credit card number, zip code, phone number, and so on. Also, the
programmer can specify two or more acceptable patterns simultaneously.

A set of commonly used Regex expressions are included with the
RegularExpressionValidator. In the properties window, click the ellipsis next to the
ValidExpression property and you'll see the handy Regular Expression Editor dialog box, as
shown in Figure 11.4.

FIGURE 11.4 With this editor, the problem of figuring out several common Regex expressions is solved.

Now you can just select it, rather than having to construct (0\d{1,4}-|\(0\d{1,4}\) ?)?
\ d{1,4}-\d{4} as the correct validation pattern match for Japanese phone numbers.

The page object sends data to a validation control for testing, and that control then checks the
input and sets a property specifying whether or not the test passed. In the example above, the
IsValid property of the page object is tested to see if it's set to True or False. If you have
multiple validation controls on a given page, and any them rejects some data, the
Page.IsValid property will be set to False. For this reason you normally first test the
Page.IsValid property in your code, then if it turns out to be True, you can just accept the
user's input without further testing.

If the Page.IsValid property tests False, you would probably want to figure out which
validation controls are individually set to False:

If RangeValidator1.IsValid = False Then

Or you can loop through the Validators collection, like this:

x = page.validators(0).IsValid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that some validation controls test more than a single factor at a time. This example
RangeValidator tests both for a range and that the data type is an integer:

<asp:RangeValidator id=''RangeValidator1"
 style="Z-INDEX: 105; LEFT: 640px; POSITION: absolute; TOP: 304px"
 runat="server" Width="136px" Height="80px"
 ErrorMessage="Boo Boo!" MaximumValue="3" MinimumValue="39"
Type="Integer"></asp:RangeValidator>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 29

Making this problem even more annoying is the fact that not all collections in .NET begin
with zero; some collections begin with one! You have to memorize the various exceptions to
the rule, or more likely, you just have to add fudge factors when the old
IndexOutOfRangeExeception pops up now and then in your code.

You can use the UBound function (or the Count property of an ArrayList) to get the accurate
highest element number:

UBound(myarray)

Or you can use the Length property to find out how many actual elements are in the array, like
this:

myarray.Length

In this next example, the UBound function returns 10, but the Length property is 11:

Dim MyArray(10) As String
 Console.WriteLine(''UBound is: " & UBound(MyArray))
 Console.WriteLine("Length Property is: " & MyArray.Length)

The Option Base 1 statement was made available in earlier versions of VB precisely to
repair the absurdity of zero-based collections.

Nonetheless, the .NET Common Language Specification requires zero-based arrays. The zero-
based array is one example of how .NET requires VB to conform to the way the C language
and its offspring—C++, C#, Java, and so on—have always done things. In my view, it would
have been better to add a commonsensical one-based lower boundary to collections in .NET
(and to force the C-type languages to get logical) than to make VB.NET use zero-based
collections (with some annoying exceptions).

The zero-based annoyance can be found in various areas of .NET. For example, the following
VB6 function returns ABC because when you specify that you want the string starting at the
first character (,1), you mean the first character—A in this case:

Dim x As String
x = Mid("ABC", 1)
MsgBox(x)

When you run this example, you get ABC as you would expect.

Now, what do you suppose happens when you use the equivalent VB.NET function
Substring and specify 1 as the first character?

Dim x As String = "ABC"
MsgBox(x.Substring(1))

Perhaps you're not stunned, but I was. When I first tried this example, I thought I was saying
to VB.NET that I wanted a string starting at the first character (1), which would give me back
ABC. Nope. You get BC. In VB.NET, this (1) actually means (2). The string that is returned

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ABC. Nope. You get BC. In VB.NET, this (1) actually means (2). The string that is returned
to you starts with the second character, even though you used (1) in the source code. This
bizarre phenomenon, they tell me, is deliberate, by design, and, in some way, good. How it's
good escapes me.

When ergonomics is, at long last, introduced into computer-language design, we'll get rid of
inane, human-unfriendly usages like the zero-based set. All collections should begin with 1,
obviously. Why should we have to memorize exceptions to a rule that is a very bad rule in the
first place?

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 290

to 255, such as 192.140.39.101. This is known as dotted-quad notation. When you connect to
the Internet through an Internet Service Provider (ISP), your computer is assigned an IP
address automatically by the ISP. This address remains the same for the duration of the
session; the next time you connect to the Internet, you get a new IP address. It is possible to
request a fixed IP address from your ISP, and more and more people have a fixed IP address
on the Internet. Having a fixed IP address means that people can always find you by your IP
address.

To find out your computer's IP address, connect to the Internet as usual and then run the
IPCONFIG utility, which is shown in Figure 12.1. Open the Start menu, select Run, and enter
CMD in the dialog box that will pop up. When the command prompt window appears, type
IPCONFIG /all and press Enter.

FIGURE 12.1 The IPConfig utility

In addition to their IP address, computers on the Internet have friendly names too, which are
known as hostnames. You can find your computer's name in the Network Identification tab of
your computer's Properties dialog box. If you're on a network with a registered domain name,
your computer's friendly name is something like name.domain.com, where name is your
computer's name and domain.com is the company's domain name. Users on a network with
its own domain don't need fixed IP addresses, because their hostnames are unique.

Beyond the IP address you're assigned by your ISP when you connect to the Internet, your
computer has another IP address on the local network (if you're on a local area network). The
local network IP address was assigned to each computer on the local network by the
administrator, or by a special program that runs on a server and assigns an IP address to each
computer as they're turned on. This is what the DHCP (Dynamic Host Configuration Protocol)
utility does; it assigns a unique IP address to each workstation of the network, as they connect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you're on a corporate network, you probably get on the Internet via a proxy server. The
proxy server is an intermediary computer between the computers on the local network and the
Internet. All the computers on the local network access the Internet through the proxy server.
In addition, the proxy server can protect the local network from outside attacks.

It's also possible to share a fast Internet connection among multiple computers on the network
by sharing one computer's Internet connection (the computer that's connected to the Internet
through a DSL or an even faster line). No matter how you connect to the Internet from a local
network, your computer has an IP address for the Internet, and another one for the local
network. You can connect

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 291

to other clients on the same local network with either IP address, or simply with the client's
host-name. Users on the Internet can connect to your computer only if they know the IP
address assigned to your computer when you connected to the Internet. Of course, knowing a
computer's address on the Internet doesn't mean that you can do anything more than request a
connection to it. Whether you will actually connect and see its resources depends on the
remote computer's security settings. The classes we'll discuss in this chapter enable two
computers to communicate with one another on a specific port. The computer that accepts the
request will decide whether to honor the request or to reject it. An application should be
running on both machines that will monitor the specific port to which the other computer is
sending information.

Finally, there's a special IP address that identifies the local computer, and it's 127.0.0.1. This
address refers to the local computer (the computer on which the program is running),
regardless of whether the computer is on the Internet, a local area network, or both. You will
use this address to test all applications presented in this chapter if you're using a stand-alone
computer.

To deal with Internet addresses, the .NET Framework provides the System.Net.Dns class,
which exposes several methods. All methods of this class make use of the IPAddress and
IPHostEntry classes. The two classes are similar and they allow you to discover IP addresses
from hostnames, or hostnames from IP addresses. The IPAddress class represents IP addresses
and the IPHostEntry represents a remote host. To create an IPAddress object, call the class's
constructor passing as argument an IP address in long format, or an array of 4 bytes whose
values correspond to the four groups of a dotted-quad address.

To create an IPHostEntry object we usually call the GetHostByName method of the Dns class,
passing as argument the name of the remote host:

Dim remoteHost As IPHostEntry = Dns.GetHostByName(www.servername.com)

Then you can use the remoteHost object's properties and methods to retrieve information
about the remote host. The most important member of the IPHostEntry class is the AddressList
property, which is an array of IP addresses to which the server responds. Most servers are
associated with a single IP address, but some servers may respond to multiple addresses.

Another interesting class is the IPEndPoint class, which represents a specific port on a specific
server (an IP address and a port number). Two applications running on remote computers that
talk to each other use two IPEndPoint objects to bind a socket to a specific port on the remote
computer. The following statements create an IPEndPoint object that represents a specific port
on the local machine. The first statement creates an IPHostEntry object, the IPHost variable
that represents the local machine. The second statement retrieves the IP address associated
with the local host (127.0.0.1) and combines it with a port number to create an IPEndPoint
object:

Dim IPHost As IPHostEntry = Dns.Resolve(''localhost")
Dim IPEP As New IPEndPoint(IPHost.AddressList(0), 5001)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first 5,000 ports are reserved, but you can use any port number after 5000. The IPHost-
Entry class exposes the following properties:

AddressList property This property returns (or sets) a list of IP addresses
associated with a hostname, which is passed to the method as a string. This property
returns an array of addresses, should the host have multiple addresses. You can't set
the address of the local client, but you can create an IPHostEntry that represents a
remote computer and sets its AddressList property.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 293

negative acknowledgment about the successful delivery of the packet. TCP connections, on
the other hand, will verify the successful delivery of each and every packet and they will
retransmit it in case of delivery failure. As a rule of thumb, the UDP protocol is used to
transmit small packets in situations where reliability is not of critical importance. The TCP
protocol has a significant overhead and is used in applications that transfer large packets of
data. You can use the UDP protocol and still implement your own mechanism to confirm the
arrival of each packet at its destination.

To create a socket, you must use the Socket class's constructor, which accepts three
arguments:

Dim listener As new Socket(AddressFamily, SocketType, ProtocolType)

We call the instance of the Socket class listener, because we'll use it to listen to incoming
requests on a specific port. The AddressFamily argument determines the type of address the
socket is bound to and its value is a member of the AddressFamily enumeration. For a
complete listing of the members of the AddressFamily enumeration, see the documentation.
Table 12.1 lists the most common address types.

TABLE 12.1: SELECTED MEMBERS OF THE ADDRESSFAMILY ENUMERATION

MEMBER NAME DESCRIPTION

AppleTalk AppleTalk address

Atm ATM services address

DecNet DECnet address

Ecma European Computer Manufacturers Association (ECMA) address

InterNetwork Address for IP version 4

InterNetworkV6 Address for IP version 6

Ipx IPX or SPX address

Irda IrDA address

NetBios NetBIOS address

Sna IBM SNA address

Unix Unix local to host address

In this chapter we'll use only the InterNetwork type for our examples. This type of address is
used by the Internet Protocol (IP) and represents dotted quad addresses, such as
192.168.0.100. In the future, it's likely that InterNetworkV6 addresses will dominate, as we're
running out of IP version 4 addresses. The best approach is not to specify the type of the
address, but start with the actual address and request its type.

The second argument is the type of the socket, which is a member of the SocketType
enumeration, shown in Table 12.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 294

TABLE 12.2: THE SOCKETTYPE ENUMERATION

MEMBER DESCRIPTION

Dgram Supports short messages that do not require a dedicated connection (UDP
protocol); should be used with relatively small messages.

Raw Supports the implementation of custom communication protocols; you're
responsible for forming the IP headers of the packages.

Rdm Supports messages that do not require a dedicated connection. Rdm (Reliably-
Delivered Messages) messages arrive in the order in which they were sent and
the sender is notified if messages are lost.

Seqpacket Supports messages that require a dedicated connection. It's a reliable two-way
transfer of byte streams across a network.

Stream Supports messages that require a dedicated connection (TCP protocol).

Unknown Specifies an unknown Socket type.

For UDP sockets you'll set the socket's type to Dgram, and for TCP sockets you'll set the
socket's type to Stream.

The last argument is the protocol that will be used by both the local and remote application
and its value is a member of the SocketType enumeration, which includes 15 members. In this
chapter we'll use the Udp and Tcp members, which correspond to a socket type of Dgram and
Stream, respectively.

Once you've set up a socket, you must bind it to a specific port. Any remote application that
needs to talk to your application must send its requests to this port, using the same protocol as
the socket. To bind a socket to a port, use the Socket class's Bind method, which accepts as
arguments an IP address and the port number. When accepting requests, the IP address is that
of the current machine. The port must be any free port's number. Port 80, for example, is used
for HTTP requests. The first 5,000 port numbers are reserved (not that they're used, of course),
so we'll use port numbers starting with port number 5001. The following statements bind the
listener socket to the localEP endpoint:

Dim localEP As new IPEndPoint(IPAddress.Any, 5001)
listener.Bind(localEP)

The localEP variable represents an IP addressable destination and is constructed by
specifying the current machine's IP address and a port number. The Any member of the
IPAddress enumeration indicates that the server should listen for client requests on all network
interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UDP and TCP sockets are used differently, so we'll demonstrate their use (and their
differences) with two similar examples. We're going to build two pairs of applications that
exchange information. The UDPServer and UDPClient applications exchange information
through UDP classes, while the TCPServer and TCPClient applications exchange information
through the TCP class. The first couple of examples are very simple: the client sends data to
the server, which simply receives it and displays it.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 295

In real life, both computers need to send and receive data at the same time. This exchange of
data must also takes place asynchronously. We'll show you how to build a chatting application
toward the end of the chapter, but we'll start with a simpler example that will help you
understand the basics of socket programming.

Using UDP Sockets

To enable two applications to talk to one another through the UDP protocol, you must create
two UDP sockets. Then you bind them to a specific port on the local machine. This is the port
to which they'll be listening for incoming requests. In other words, each application will use
the other application's port to send requests. Once the two applications start listening to their
designated ports, they can send messages to one another. To simplify the discussion, we'll
assume that the first application sends data to the other (the UDP client) and the second
application (the UDP server) reads the incoming data and displays them to the user.

To send a message, the client must call the Send method of the Socket class passing as
argument an array of bytes that holds the data to be transmitted and the destination. This
operation can be executed synchronously, because it doesn't take long (unless the remote
server isn't accepting requests, of course). The server is a bit more complicated, because we
can't call a synchronous method and then wait for some data to arrive. There are two methods
to accept incoming data with the UDP protocol without freezing our application's interface
until some data arrives at the port: by starting a new thread that listens for incoming messages
or by calling the socket's Poll method, which waits for a specified number of microseconds
and then returns a True/False value to indicate whether there are data to be read. To actually
read the data, we use the Receive method of the socket. The Receive method reads all the data
waiting at the specified port and returns them in an array of bytes.

Start a new project, the UDPServer project, and place a TextBox and a Button control on the
form, as shown in Figure 12.2. The TextBox is where the incoming messages will be
displayed.

FIGURE 12.2 The UDPServer application receives messages from the UDPClient application and
displays them on a TextBox control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then import the following namespaces to simplify your code:

Imports System.Net
Imports System.Net.Sockets

The button on the form creates a Socket object that listens for requests to a specific port.
Listing 12.1 is the code behind the Start Listening button.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 296

LISTING 12.1: THE UDPSERVER APPLICATION'S CODE
Dim listener As New Socket(AddressFamily.InterNetwork, _
 SocketType.Dgram, ProtocolType.Udp)
Private Sub bttnListen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnListen.Click

 Dim localEP As New IPEndPoint(IPAddress.Any, 5001)
 listener.Bind(localEP)
 While True
 If listener.Poll(1000, SelectMode.SelectRead) Then
 Dim bytesToRead As Integer = listener.Available
 Dim buffer(bytesToRead) As Byte
 listener.Receive(buffer, bytesToRead, SocketFlags.None)
 Dim message As String = _
 System.Text.Encoding.ASCII.GetString(_
 buffer, 0, bytesToRead)
 If (message.ToUpper = ''QUIT") Then
 Exit While
 Else
 Console.WriteLine(message)
 TextBox1.AppendText(message & vbCrLf)
 End If
 End If
 Application.DoEvents()
 End While
 listener.Close()
 Application.Exit()
End Sub

To terminate the session, the client must send the string "QUIT." The server has no way to
terminate the session, because it's not sending anything to the client. You can shut down the
server, but this won't even cause a runtime exception at the client. The client will happily
continue to send messages to the server, which will never see them or acknowledge them.

Notice that the server application uses an endless loop to monitor for incoming requests and
that it calls the DoEvents method to give the UI a chance to react to user events. Later in this
chapter, you'll see how to monitor for incoming messages from within a separate thread.

Let's switch to the UDPClient application. Since the UDP protocol doesn't require a dedicated
connection, we simply establish a connection to the remote server and send a message. Listing
12.2 shows the code behind the Send Message button. The Send Message button is the default
one on the form. You can send the message by hitting Enter at the end of each line.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 297

LISTING 12.2: THE UDPCLIENT APPLICATION'S CODE
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSend.Click
 Dim RemoteServerName As String = ''localhost"
 Dim message As String = TextBox1.Text
 Dim localSocket As New Socket(AddressFamily.InterNetwork, _
 SocketType.Dgram, ProtocolType.Udp)
 Dim localEP As New IPEndPoint(IPAddress.Any, 5002)
 localSocket.Bind(localEP)
 Dim buffer() As Byte = _
 System.Text.Encoding.ASCII.GetBytes(message)
 Dim ServerAddress As IPAddress = _
 Dns.Resolve(RemoteServerName).AddressList(0)
 Dim remoteEP As New IPEndPoint(ServerAddress, 5001)
 localSocket.SendTo(buffer, 0, buffer.Length, _
 SocketFlags.None, remoteEP)
 localSocket.Close()
 TextBox1.Text = ""
End Sub

The client starts by creating a socket, the localSocket object, which it will use to send data
to the server. The localSocket object is bound to port 5002 of the local computer. Notice
that you must change the value of the RemoteServerName variable to the name of the
machine on which the server is running, if you're testing the applications on two different
machines. Then it creates a new IPEndPoint object, the remoteEP variable, that represents the
remote port. This variable is passed as argument to the SendTo method of the local socket to
transmit the data to the server.

In summary, the server application listens at a specific port for incoming requests, from any
address on port 5002. The client creates a socket and uses it to send data to the client. Since
we're using the same computer for both the server and the client, the client and server sockets
are bound to two different ports. The client needs to know the port to which the server is
listening and send the messages there. If sent to another port, the server will never receive the
messages.

Using TCP Sockets

With TCP you must first establish a link between the two computers. This link must remain
alive during the session and all messages sent to the other machine must go through this link.
To exchange data with a remote computer using the TCP protocol, both the client and server
applications must create a new socket and bind it to a port. You already know how to do this.
Then you must call the Listen method of the server's Socket object to start listening to
incoming requests.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the two applications, run the TCPServer project and click the Start Listening button on
the form. This will cause the server to start listening for incoming requests. Start the client
application and click the button Establish Connection To Server to create a link to the
designated port on the remote server. Then start typing messages in the TextBox control of the
client application and press Enter to transmit each message to the server.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 298

The code behind the Start Listening button on the form of the TCPServer project is shown in
Listing 12.3. First, we create an IPEndPoint to represent the port at which the program will
listen for incoming data. Then we create the TCPServer socket, bind it to this IPEndPoint,
and call the Listen method of the Socket object. The Listen method accepts as argument the
maximum number of requests that may be pending. This argument lets you specify the number
of requests that can be queued while the socket accepts a request, and its value is usually an
integer from 1 to 5.

At this point the server is ready to accept a connection request from a client with the Accept
method. The Accept method of the Socket class accepts a connection request on a specific
port. The method doesn't authenticate the requests; it simply accepts the first request that
arrives at the port from any client. It's your responsibility to pass authentication information to
the server from the client.

LISTING 12.3: THE TCPSERVER APPLICATION'S CODE
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim IPHost As IPHostEntry = Dns.Resolve(''localhost")
 Dim IPEP As New IPEndPoint(IPHost.AddressList(0), 5001)
 Dim TCPServer As New Socket(ipEP.AddressFamily, _
 SocketType.Stream, ProtocolType.Tcp)
 TCPServer.Bind(IPEP)
 TCPServer.Listen(2)
 Dim msgSocket As Socket = TCPServer.Accept()
 Console.WriteLine("Server accepting TCP requests")
 Dim DataIn(8192) As Byte
 Dim bytesRead As Integer
 While True
 Application.DoEvents()
 Try
 bytesRead = msgSocket.Receive(DataIn)
 Catch exc As Exception
 Console.WriteLine(exc.Message)
 End Try
 If bytesRead > 0 Then
 Dim message As String = _
 Encoding.Unicode.GetString(DataIn, 0, bytesRead)
 If message.ToUpper = "QUIT" Then
 TCPServer.Close()
 End
 Else
 Console.WriteLine(message)
 TextBox1.AppendText(message)
 End If
 End If
 End While
 msgSocket.Close()
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 299

The server's interface will freeze until a request from a client arrives, because the Accept
method is synchronous. Once the incoming request has been accepted, the code enters an
infinite loop, where it keeps calling the Receive method to read data sent by the client. The
Receive method is also synchronous, so the server application's interface will freeze until a
message arrives from the client. The server application's interface will be updated every time a
new message is received. The program prints the incoming messages on a TextBox control, as
well as on the Output window. The client application declares a Socket variable at the form
level, because it must be accessed from two different procedures: the procedure that
establishes a connection to the server and the procedure that sends data to the server.

Dim TCPSocket As Socket

The code behind the ''Establish Connection to Server" is shown in Listing 2.4. The code
creates an IPEndPoint to represent a specific port on the remote server and then uses it to
construct a Socket object, the TCPSocket object. The Socket class's Connect method
establishes a connection to the remote server. This is another synchronous method, which is
usually called from within a separate thread.

LISTING 12.4: THE TCPCLIENT APPLICATION'S CODE
Private Sub bttnConnect_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnConnect.Click
 Dim ipe As New IPEndPoint(_
 Dns.Resolve("localhost").AddressList(0), 5001)
 TCPSocket = New Socket(ipe.AddressFamily, _
 SocketType.Stream, ProtocolType.Tcp)
 Try
 TCPSocket.Connect(ipe)
 bttnConnect.Enabled = False
 Catch exc As Exception
 Console.WriteLine(exc.Message)
 End Try
End Sub

To send a message to the server, the client application calls the Socket class's Send method,
passing as argument an array with the bytes to be sent to the server. This method is called
every time the user presses Enter in the TextBox control on the top of the form, as shown in
Listing 12.5.

LISTING 12.5: SENDING MESSAGES TO THE TCPSERVER
Private Sub TextBox1_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles TextBox1.KeyUp
 If e.KeyCode = Keys.Enter Then
 Dim buffer As Byte() = Encoding.Unicode.GetBytes(TextBox1.Text)
 TCPSocket.Send(buffer)
 If TextBox1.Text.ToUpper = "QUIT" Then

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 30

Initialization

In VB.NET you can assign a value to a variable when you declare it. This is referred to as
using ''initializers":Dim s As String = "This". This same feature is available to arrays,
but you must use braces:

Dim MyArray() As String = {"Clark", "Lois Lane", "Jimmy"}

You can't specify an upper boundary when initializing array values in this fashion. The () must
be left empty, as this example illustrates.

Arrays of Objects

All data in .NET are technically objects. Also, you can create an array of objects (in this way
you can store different data types within the same array). To create an object array, you first
declare an object variable, then instantiate each object in the array. The example in Listing 2.3
creates an array holding six book objects.

LISTING 2.3: CREATING AN ARRAY OF OBJECTS
Public Class Form1

 Inherits System.Windows.Forms.Form

 Dim arrBook(6) As Book 'create the array object variable

(Windows Form Designer generated code)

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim i As Integer

 'instantiate each member of the array:
 For i = 0 To 6
 arrBook(i) = New Book()
 Next

 ' set the two properties of one of the array members
 arrBook(3).Title = "Babu"
 arrBook(3).Description = "This book is large."

 Dim s As String = arrBook(3).Title
 Console.WriteLine(s)

 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 301

Both the server and the client applications use threads to perform the operations that would
normally freeze the UI. The server uses two threads that run in the background: one that
listens for incoming requests and another one that monitors the designated port for incoming
requests. The client application uses a background thread to monitor for incoming messages.
Basically, all the operations on the server take place in the background from within threads,
while the clients run a single background thread each to monitor incoming messages from
other users. New messages are sent by the client in the foreground thread.

To test the TCPChat application, start the TCPChatServer and click the Start Listening button.
The server application is ready to accept requests. Then start one or more instances of the
TCPChatClient application. The TCPChatClient application will prompt you to specify a
username by which you'll be known to the other users. The name should be unique, but the
application won't reject duplicate names. You can add the appropriate code to the server
application to reject connection requests if the client name is not unique.

The TCPChatServer Application

The server application uses two classes that implement the two different threads: the
ListenClass, which exposes the StartListening method, and the ChatClass, which exposes the
StartChat method. The two methods are the procedures that run in separate threads. In
addition, the two classes provide a number of properties that allow them to exchange
information with the main application and one another. They also raise events to notify the
application about the connection of a new user (the Connected event of the ListenClass class
and the LineArrived event of the ChatClass class). Listing 12.6 shows the implementation
of the ListenClass.

LISTING 12.6: THE LISTENCLASS OF THE TCPSERVER APPLICATION
Class ListenClass
 Public client As TcpClient
 Public Event Connected(ByVal tcpClient As TcpClient)
 Public localListener As TcpListener

 Public Sub StartListening()
 If localListener Is Nothing Then
 localListener = New TcpListener(Dns.Resolve _
 (''localhost").AddressList(0), 5001)
 End If
 localListener.Start()
 client = localListener.AcceptTcpClient
 Console.WriteLine(localListener.LocalEndpoint)
 RaiseEvent Connected(client)
 End Sub

 Public Sub StopListening()
 localListener.Stop()
 End Sub
End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 302

The StartListening method sets up the localListener object, which is a TCPListener object.
To create this object, it passes to its constructor the address of the remote host and the remote
host's port that will be used to intercept incoming requests (port 5001). Don't forget to change
the name of the ''localhost" host if you plan to deploy the server application on a different
computer.

To start listening for incoming requests, the TCPListener class provides the Start method,
which doesn't require any arguments. This is equivalent to the Listen method of the Socket
object. Then the code calls the AcceptTcpClient method, which is synchronous and accepts a
request from a client. The AcceptTcpClient method returns a TcpClient object, which is stored
in one of the ListenClass class's public properties. The same object is passed to the main
application as argument of an event handler. As soon as the server accepts a client request, it
fires the Connected event.

As you can see, the StartListening method accepts a single request and then exits. In the code
that handles the Connected event (which you'll see shortly), we start another instance of the
same thread, which keeps listening for the next client request.

The ChatClass class is a bit more involved, because it doesn't simply accept a request. The
StartChat method keeps monitoring each client stream for incoming data. Listing 12.7 shows
the implementation of the ChatClass.

LISTING 12.7: THE CHATCLASS OF THE TCPCHATSERVER APPLICATION
Class ChatClass
 Public clientStream As NetworkStream
 Public clientStreams As New ArrayList
 Public Event LineArrived(ByVal UserID As Integer, _
 ByVal txtLine As String)
 Public Event ConnectionClosed(ByVal clientID As Integer)

 Public Sub StartChat()
 Dim line As String
 Dim buffer(9999) As Byte
 Dim iClient As Integer
 For iClient = 0 To clientStreams.Count - 1
 Dim user As Integer = iClient
 Dim i As Integer = 0
 Try
 If iClient < clientStreams.Count Then
 While clientStreams(iClient).DataAvailable
 buffer(i) = clientStreams(iClient).ReadByte
 i += 1
 End While
 If i > 0 Then
 line = System.Text.Encoding.UTF8. _
 GetString(buffer, 0, i)
 RaiseEvent LineArrived(user, line)
 If line.ToUpper = "QUIT" Then
 RaiseEvent ConnectionClosed(iClient)
 Exit For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 303

 End If
 End If
 End If
 Catch exc As Exception
 RaiseEvent ConnectionClosed(iClient)
 MsgBox(''Connection closed" & vbCrLf & exc.Message)
 Exit Sub
 End Try
 Next
 End While
 End Sub
End Class

Each client is assigned a NetworkStream object when it connects to the server. This stream is
used to exchange data with the specific client. The StartChat method monitors the
NetworkStream object associated with each client. If there are data to be read (the
DataAvailable property is True), it reads them one byte at a time with the ReadByte method.
For each line of text that arrives from a client, the method raises the LineArrives event. We
pass the name of the user who sent the message and the message itself to the main application
through the arguments of this event.

When the server is started, you must click the StartListening button on the application's form.
This button's code starts the StartListening method of the ListenClass class in a separate
thread, as shown in Listing 12.8:

LISTING 12.8: LISTENING FOR REQUESTS ON A SEPARATE THREAD
Private Sub bttnStartListening_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnStartListening.Click
 Dim TSThread As Thread
 TSThread = New Thread(AddressOf LC.StartListening)
 TSThread.Priority = ThreadPriority.Normal
 TSThread.Start()
End Sub

When a client request is accepted by the server, the Connected event is fired. In this event's
handler we read the name of the user at the client (the first line transmitted by the client is a
username), and we create a new Participant object and add this object to the
Participants collection. The Participant object is an instance of a custom class that
holds information about a chat participant; its definition is as follows:

Public Class participant
 Public Name As String
 Public ClientStream As NetworkStream
End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 304

For each participant we store a name and a NetworkStream object that represents the stream of
the client. We'll use this stream to send data to the specific participant. After creating a
Participant object, the code starts the StartListening method again on a new thread to listen
for additional client requests and the StartChat method (on a separate thread) to monitor for
incoming messages. The code that handles the Connected event is shown in Listing 12.9.

LISTING 12.9: HANDLING THE CONNECTED EVENT
Private Sub LC_Connected(ByVal client As TcpClient) Handles LC.Connected
 Dim remoteClient As TcpClient
 remoteClient = client
 Dim CThread As New Thread(AddressOf CC.StartChat)
 CC.clientStream = LC.client.GetStream
 ' Read client's name
 While Not CC.clientStream.DataAvailable
 End While
 Dim i As Integer
 Dim buffer(99) As Byte
 While CC.clientStream.DataAvailable
 buffer(i) = CC.clientStream.ReadByte
 i += 1
 End While
 ' Create a new participant
 Dim p As New participant
 p.Name = System.Text.Encoding.UTF8.GetString(buffer, 0, i)
 p.ClientStream = CC.clientStream
 participants.Add(p)
 ' Add new participant's stream to CC object (ChatClass's instance)
 CC.clientStreams.Add(CC.clientStream)
 txtMessages.AppendText(''User " & p.Name & _
 " joined the chat" & vbCrLf)
 ' Start the thread that receives and broadcasts messages
 If participants.Count = 1 Then CThread.Start()
 ' Start the StartListining procedure in a new thread
 ' to monitor the port at which clients make requests
 chatThread = New Thread(AddressOf LC.StartListening)
 chatThread.Priority = ThreadPriority.Normal
 chatThread.Start()
End Sub

Once the thread of the StartChat method is up and running, the server application listens for
incoming messages. Notice that the StartChat method is called only once; only one instance of
the method is needed to monitor messages sent by any client, because the messages arrive to
the same port on the server, no matter which client sent them. The CThread thread is started
only if the number of participants is 1. This condition may become true as users leave the chat
session, so you'll

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 305

probably need a more reliable technique to find out whether an instance of the StartChat
method is already running (you could use another global variable, for example). The StartChat
method raises the LineArrived event every time a new message arrives, and this event is
handled by the main application with the code shown in Listing 12.10:

LISTING 12.10 HANDLING INCOMING MESSAGES AT THE SERVER
Private Sub CC_LineArrived(ByVal userID As Integer, _
 ByVal message As String) _
 Handles CC.LineArrived
 txtMessages.AppendText(message & vbCrLf)
 Dim buffer() As Byte
 ' Extract the sender's name
 Dim senderName As String = _
 CType(participants(userID), participant).Name
 Dim P As participant
 buffer = System.Text.Encoding.UTF8.GetBytes(senderName & _
 ''> " & message)
 For Each P In participants

 P.ClientStream.Write(buffer, 0, buffer.Length)
 Next
End Sub

The event handler of Listing 12.10 is straightforward: it iterates through the members of the
Participants collection and sends the same message to all clients. Because we maintain a
NetworkStream object for each participant, we call the stream object's Write method to
broadcast the message to the clients.

The TCPChatClient Application

The client part of the TCPChat application is the TCPChatClient application. This application
monitors a specific port on the local computer for incoming messages by running a
background thread that monitors a specific port. The code uses the ChatClass class as the
TCPChatServer application and starts the StartChat method in a background thread from
within the form's Load event handler, which is shown in Listing 12.11.

LISTING 12.11: STARTING THE BACKGROUND THREAD ON THE CLIENT APPLICATION
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 Dim remoteEP As IPEndPoint
 Try
 remoteEP = New IPEndPoint(_
 Dns.Resolve("localhost").AddressList(0), 5001)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 306

 client.Connect(remoteEP)
 Catch exc As Exception
 MsgBox(''Chat server not found, application will terminate." & _
 vbCrLf & exc.Message)
 End
 End Try
 clientWStream = client.GetStream
 CC.clientStream = clientWStream
 ' Prompt the user for a name that will be used
 ' to identify the current client in the chat
 Dim userName As String
 userName = InputBox("Enter the name with which " & _
 "you want to participate in the chat")
 Me.Text = "CLIENT " & userName
 ' Transmit the user's name to the server.
 Dim buffer() As Byte
 buffer = System.Text.Encoding.UTF8.GetBytes(userName)
 CC.clientStream.Write(buffer, 0, buffer.Length)
 ' and start a new thread in the background to monitor
 ' for messages sent by the chat server
 CThread = New Thread(AddressOf CC.StartChat)
 CThread.Priority = ThreadPriority.Normal
 CThread.Start()
End Sub

The client variable is a TCPClient object that's declared at the form's level with the
following statement:

Dim client As New TcpClient

This object is used to establish a connection to the server. The connection is established when
the client object's Connect method is called. The Connect method accepts as argument an
IPEndPoint object that represents the chat's port on the remote computer. As soon as the
connection is established, the client program prompts the user for a name, with which the user
will participate in the chat. The TCPChat application doesn't check the user's name. You can
improve the application by adding some code at the client to reject connections without a
unique username. When a client attempts to connect with a name that's already in use, the
server application could send a specific string to the client application (a string like "Non-
unique name") and terminate the connection. The client application should detect the rejection
and prompt the user for another username.

After sending the user's name to the server, the client is ready to engage in a chat. It does so by
starting the StartChat method in a background thread. Every time a new message arrives from
the server, the StartChat method fires the MessageArrived event. This event's handler is
trivial; it simply displays the new message on the application's main form. The
MessageArrived event's handler is shown in Listing 12.12.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 307

LISTING 12.12: HANDLING THE MESSAGEARRIVED EVENT
Private Sub MessageArrived(ByVal message As String) _
 Handles CC.LineArrived
 ' New message arrived, display it
 txtParticipants.AppendText(message & vbCrLf)
End Sub

The two projects that make up the TCPChat application demonstrate how to use the TCPClient
and TCPListener classes to enable two computers to talk to one another with the TCP
protocol. To summarize, here are the steps for exchanging data using the TCP-related classes
of the .NET Framework.

On the server:

1. Create a TcpListener object and associate it with the port to which the clients will
connect. Then call the TcpListener object's Start method.

2. To accept a new request, call the TcpListener method's AcceptTcpClient method, which
returns a TcpClient object. Then call the TcpClient object's GetStream method to create a
NetworkStream object, from which you can read the incoming messages or send
messages to the specific client.

3. To find out if a NetworkStream object contains data, use the DataAvailable property. If
this property is True, call the Read or ReadBytes method to read the data from the
stream.

4. To send data to a client, call the Write or WriteBytes method of the same NetworkStream
object, passing as argument an array of bytes with the data to be transmitted.

On the client:

1. Create a new TcpClient object and call its Connect method to establish a connection to
the remote server. The Connect method accepts as argument an IPEndPoint object that
represents the port at which the remote server is listening. Then call the TcpClient
object's GetStream method, which returns a NetworkStream object.

2. Call the NetworkStream object's Write or WriteBytes method to send data to the client
that corresponds to the NetworkStream object.

3. Monitor the same stream to find out if new data has arrived from the server. If the
DataAvailable property is True, use the same stream object's Read or ReadBytes method
to read the data sent by the server.

This concludes our discussion of strictly peer-to-peer programming. In the second half of this
chapter we're going to explore a few more classes of the System.Net namespace, which allow
you to interact with web resources. As you will see, a browser is not the only way for a
Windows client to contact a web server. You can write Windows applications that contact
applications running on a web server and request, or upload, data.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 309

OpenRead method The third method for downloading data from a web server
returns a Stream object, which you can use to read data just as you would with a
local file. Once the Stream object has been created, you can use its Read methods to
retrieve the data. The syntax of the OpenRead method is:

WebClient.OpenRead(documentURL)

The return value of the OpenRead method must be assigned to a Stream object:

Dim wClient As New WebClient
Dim webStream As Stream = wClient.OpenRead(''142.18.191.10/File.html")

After that, you can use the Stream object's reading methods to read the data, one line at a time
or the entire document. This method is convenient when you're downloading binary data, such
as images. Note that none of the three methods for downloading data will return until the
entire document has been downloaded.

There are also methods to upload a file to a web server. Of course, the methods for uploading
a file aren't of much use on their own. You need a program at the receiving end to intercept the
data and process them. The methods for uploading data to a web server are the following:

OpenWrite method The OpenWrite method creates a Stream object that acts like a
channel between your application and the web server. Once the Stream object is in
place, you can use its Write methods to upload data. The simplest form of the
OpenWrite method accepts a single argument, the URI of the resource that will
accept the uploaded file:

WebClient.OpenWrite(URI)

A second overloaded form of the method allows you to specify the method to be used for
sending the data to the server; its value can be the "POST" or "GET" string:

WebClient.OpenWrite(URI, method)

The following statements create a Stream object for a specific document on a web server:

Dim wclient As New WebClient()
Dim outStream As Stream = wclient.OpenWrite(uri, "POST")

To send a short string to the web server, use a statement like the following:

outStream.WriteLine("Data from a client")
outStream.WriteLine("End of data")
outStream.Close

You must not forget to close the stream, because this is how the server knows that the client is
done uploading data.

UploadData method The UploadData method sends an array of bytes to the web
server and returns another array of bytes with the server's response (if any).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WebClient.UploadData(URI, data)
WebClient.UploadData(URI, method, data)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 31

End Class

Public Class Book
 Private _Title As String
 Private _Description As String

 Public Property Title() As String
 Get
 Return _Title
 End Get
 Set(ByVal Value As String)
 _Title = Value
 End Set
 End Property

 Public Property Description() As String
 Get
 Return _Description
 End Get
 Set(ByVal Value As String)
 _Description = Value
 End Set
 End Property

End Class

Array Search and Sort Methods

Happily, .NET arrays have search and sort methods. This example illustrates both methods.
The simplest syntax for sorting is:

Array.Sort(myArray)

And for searching:

anIndex = Array.BinarySearch(myArray, ''Penni Goetz")

Try this next example (Listing 2.4) to see results in TextBox1.

LISTING 2.4: SEARCHING AND SORTING AN ARRAY
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim myarray(4) As String

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 310

The first argument is the URI of the resource that will accept the data. The second argument of
the send overloaded form is the name of the method to be used for uploading the data (''GET"
or "POST"). The last argument of both forms of the method is an array of bytes with the
information to be uploaded.

UploadFile method The UploadFile method is a convenient method for uploading a
file to the web server. Its syntax is:

WebClient.UploadFile(URI, path)

where the first argument is the URI of the resource that will receive the file and the second
argument is the path of the local file that will be uploaded. Like the other two methods for
uploading data, the UploadFile method returns an array of bytes with the server's response (if
any). An overloaded form of the method accepts another argument that specifies the method
that will be used to transmit the file to the server, and it's the following:

WebClient(URI, method, path)

UploadValues method This method uploads a collection of name/value pairs to the
web server and returns an array of bytes with the server's response (if any). To call
this method you must first create a NamedValueCollection collection with the name
and value pairs you want to upload and pass it along with the URI of the resource
that will receive the data on the server. This is similar to submitting a form with
several fields to the server (each field's name is the corresponding control name and
its value is the data entered by the user). The syntax of the method is:

WebClient.UploadValues(URI, data)

To upload a collection of three named values, use the following statements:

Dim data As New NameValueCollection()
data.Add("First Name", Joe)
data.Add("Last Name", "Doe")
data.Add("EMail", "user@domain.com")
Dim wClient As New WebClient()
WebClient.UploadValues("192.210.27.119", data)

The UploadValues method has no equivalent download method; it's used to submit a virtual
form to the web server. You can find out the names of the controls on a form and then submit
this form to the server from within your application using the UploadValues method. You can
create numerous combinations of data from within your code and submit them quickly to the
server, as opposed to filling out the form manually. Consider a site that prompts the user for a
zip code and returns the temperature for the corresponding area. You can quickly retrieve the
temperatures throughout the country, without entering each zip code on a form and submitting
the form manually every time. Just call the same ASP application that the original web
application calls using the UploadValues method to pass a different zip code every time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All three methods for uploading data return an array of bytes with the server's response. This
response can be used as a confirmation of the successful completion of the operation. The
methods are synchronous, which means that your application will appear to be busy while it's
downloading or uploading data. As you have noticed, the data are transmitted as arrays of
bytes (unless you're

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 311

uploading a local file, or downloading directly to a local file, of course). To convert strings to
byte arrays (or byte arrays into strings), you must use the methods of the
System.Text.Encoding.ASCII class. The System.Text.Encoding class contains a number of
useful classes, such as the Unicode, UTF7, and UTF8 classes, which handle Unicode, UTF7,
and UTF8 characters, respectively. All of these classes expose the same methods, so we'll
present the methods of the System.Text .Encoding.ASCII class.

To convert a string to an array of bytes and vice versa, use the following two methods:

GetBytes method Call the GetBytes method to convert a string to an array of bytes.
It accepts as argument a string and returns an array of bytes. The following
statements convert a string variable (the cmdString variable) to a series of bytes and
store them in the buffer array:

Dim cmdString As String = ''Uploaded Filename"
Dim buffer() As Byte
System.Text.Encoding.ASCII.GetBytes(cmdString)

GetString method Likewise, the GetString method converts an array of bytes to a
string. This method accepts as arguments an array of bytes and returns a string:

System.Text.Encoding.ASCII.GetString(buffer)

We're showing here the simplest form of both methods. The GetBytes and GetString methods
are overloaded, and you can look up the other forms of the methods in the documentation.

Downloading Documents with WebClient

To download a document from a web server, create an instance of the WebClient class and
call its Download method, passing as argument the URI of the resource you want to download.
The resource can be a filename or the name of an executable (an ASP application) that
generates data on the fly. The following statements request the main page of a website and
display it on a TextBox control. What you will see on the control is the page's HTML code.
The file need not be an HTML page; you can specify any document's URI with the argument
of the DownloadData method. The document's contents will be returned in an array of bytes,
as shown in the following code segment:

Imports System.Net
Imports System.Text
Dim WClient As New WebClient()
Dim remoteUrl As String = "http://www.sybex.com"
Dim buffer As Byte() = WClient.DownloadData(remoteUrl)
TextBox1.Text = Encoding.ASCII.GetString(myDataBuffer)

The DownloadData method is synchronous: the application's interface will freeze until the
entire document has been downloaded to the client. Of course, you can execute this method on
a thread so that the interface will remain responsive. Even so, the data doesn't become
available before the last byte has been downloaded to the client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you would rather download one line at a time and process the lines as they arrive, you can
create a Stream object with the OpenRead method and use the Stream object's ReadLine
method, as shown in the following code segment:

Dim WClient As New WebClient()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 312

Dim WStream As Stream = WClient.OpenRead(''http://www.sybex.com")
Dim SR As New StreamReader(WStream)
Dim txtLine As String
txtLine = SR.ReadLine
While Not txtLine Is Nothing
 Application.DoEvents
 TextBox1.AppendText(txtLine & vbCrLf)
 txtLine = SR.ReadLine
End While
WStream.Close

Finally, you can download the data directly to a file with the DownloadFile method. This
method accepts two arguments, the URI of the document to be downloaded and the path of the
file where the data will be stored. The following statements will download the HTML code of
the Sybex main page and store it to the C:\SYBEX.HTML file:

Dim fileName As String = "C:\SYBEX.HTML"
Dim WClient As New WebClient()
WClient.DownloadFile ("http://www.sybex.com", fileName)

Uploading Documents with WebClient

Uploading a file doesn't mean that it will also be saved somewhere on the server's file system.
Quite the opposite. When you upload a file, you also need a Web application running on the
server, which will intercept the file and process it. The address to which the document will be
uploaded (the destination URI) is actually the URI of an application that can process the
incoming data.

If the data you want to upload resides in a file, you can upload the entire file with the
UploadFile method, which accepts three arguments: the destination URI, the method to be
used for upload, and the path of the file to be uploaded. The method that will be used for
uploading the data is a string argument and its value can be either "POST" or "GET." The
POST method allows you to upload a larger amount of data, but both methods are limited
when it comes to really long files.

To experiment with file uploading, you must create a client application that will upload some
information to the server, as well as a Web application that will accept the data on the server.
Start Visual Studio and create a new Web application, the GetFile project. Then enter the
statements in Listing 12.13 in the WebForm's Load event handler:

LISTING 12.13: AN ASP.NET APPLICATION TO ACCEPT DATA UPLOADED BY A WEB CLIENT
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim str As IO.Stream
 str = Request.InputStream
 Dim strLen As Integer = CInt(str.Length)
 Dim buffer(strLen) As Byte
 str.Read(buffer, 0, strLen)
 Response.Write("You submitted " & buffer.Length.ToString & _
 " bytes of data")
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 313

This Web application retrieves the data submitted by the client, stores them to an array of
bytes, and returns a string with the length of the array. This is the server's response and we'll
use it in our client application to verify that the operation has completed successfully.

Then switch to the WebForm's HTML tab and delete everything except for the header of the
page:

<%@ Page Language=''vb" AutoEventWireup="false" Codebehind="WebForm1.aspx.vb"
Inherits="GetFile.WebForm1"%>

Our application shouldn't have a visible interface, because we want to contact it remotely from
within our client and upload the file. Now you can compile the project and contact it from a
client. Create the appropriate EXE file with the Build GetFile command of the Build menu.
Then start a new instance of Visual Studio, create a Windows application, and place the
statements in Listing 12.14 behind a button's Click event handler:

LISTING 12.14: UPLOADING A FILE TO A WEB SERVER
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim URI As String = "http://127.0.0.1/GetFile/WebForm1.aspx"
 Dim myWebClient As New WebClient()
 Dim fileName As String = "c:\products.xml"
 Dim buffer As Byte() = myWebClient.UploadFile(URI, "POST", fileName)
 MsgBox(System.Text.Encoding.ASCII.GetString(Buffer))
End Sub

If you run the Windows project and click the button on the form, the specified file will be
submitted to the GetFile.aspx application and a few moments later you will see the server's
response on a message box. The application running on the server doesn't process the data, but
you can edit the code to perform any type of processing, or store the buffer array to a file on
the server. It's a matter of writing simple VB code, as you would do for a Windows
application.

You can also use this technique to pass serialized objects to the server. Let's consider a
Windows application that accepts orders and stores them into instances of the Order class. If
the application needs to send a copy of each order to a remote system, you can serialize the
order objects into a MemoryStream and then submit this stream to an ASP application running
on a web server. The ASP application should have access to a copy of the class from which
the objects are derived and deserialize the stream into instances of this class. Of course, there's
a better method to pass serialized objects to a server application, using a message queue
(message queues are discussed in detail in Chapter 14). When this is not possible, or desirable,
it's almost trivial to write a server and a client application that exchange serialized objects
using the WebClient class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WebClient class is fairly straightforward to work with and should be used with simple
applications that don't require extensive interaction between the client and the server. For more
demanding applications, you can use the WebRequest and WebResponse classes, which are
discussed next.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 314

The WebRequest and WebResponse Classes

Using the WebClient to exchange files with a web server is almost trivial, but the operation is
synchronous: once you start reading the incoming stream (or sending the outgoing stream),
your application will freeze until the entire document has been moved. The .NET Framework
provides the WebRequest and WebResponse objects, which are more flexible and allow
asynchronous transfers.

Behind the scenes, the WebClient class uses the WebRequest and WebResponse classes to
connect to the remote server and retrieve its response. The WebClient class is used for very
simple applications and textbook examples. Any real application that needs to access
resources on the Internet should use these two classes and their descendants. One very good
reason for using the WebRequest and WebResponse classes is that the WebClient class's
methods are synchronous—you can't use them to download, or upload, a resource
asynchronously. You can always use the WebClient class from within a separate thread, but as
you will soon see, the WebRequest and WebResponse classes have built-in asynchronous
capabilities.

The WebRequest andWebResponse classes are abstract classes and can't be used directly in
your code. They abstract the operations of connecting to a server and requesting resources.
The two descendant classes that are implemented in the .NET Framework are the
HttpWebRequest/HttpWebResponse classes, which we use to access resources with the
http:// URI scheme, and the FileWebRequest/FileWebResponse classes, which we use to
access resources with the file:// URI scheme. In the section we'll discuss in detail the
HttpWebRequest and HttpWebResponse classes.

To access a web page (or any document that can be returned by a web server) with the
WebRequest class's members, create an instance of the WebRequest class by calling its Create
method, whose syntax is:

HttpWebRequest.Create(URI)

where the URI argument is a string representing the document's URL. This method returns a
WebRequest object; you can use it to set the properties of the connection, or call its
GetResponse method to retrieve a WebResponse object. The WebResponse object represents
the response of the server to the client. Its GetResponseStream returns a Stream object, which
you can use to read the data sent by the server. The following statements establish a
connection to a remote server and read the specified document (the main website page of this
book's publisher):

Dim URI As Uri = New Uri(''http://www.sybex.com")
Dim wReq as HttpWebRequest = HttpWebRequest.Create(URI)
Dim wResp As HttpWebResponse = wReq.GetResponse()
Dim InStream As Stream = wResp.GetResponseStream()
Dim reader As StreamReader = New StreamReader(InStream, Encoding.ASCII)
Dim HTMLdoc As String = reader.ReadToEnd()
Console.WriteLine(respHTML)
wResp.Close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wResp.Close()

Notice that the HttpWebResponse object created by the GetResponse method must be closed,
or else you won't be able to make additional requests using this object.

To upload data to a server, call the GetRequestStream object and then use the Stream class's
methods to write data onto the stream. The data will be uploaded to the remote server, where
they

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 315

must be processed by a Web application (or by a plain old ASP application). The following
statements upload a local file to a remote web server:

Dim Data() As Byte
'statements to populate Byte array
Dim wReq As HttpWebRequest = _
 HttpWebRequest.Create(''http://127.0.0.1/GetFile.aspx")
wReq.Method = "POST"
wReq.ContentLength = Data.Length
Dim OutStream As Stream = wReq.GetRequestStream()
OutStream.Write(Data, 0, Data.Length)
OutStream.Close()

The two classes are straightforward to use and we'll look at an example in a moment. To
complete this introduction to the basic members of the two classes, we should discuss the
methods that provide asynchronous support. They're the BeginGetResponse and
EndGetResponse methods. The BeginGetResponse accepts two arguments: a callback delegate
and an object containing information about the request. The syntax of the BeginGetResponse
method is:

HttpWebResponse.BeginGetResponse(callback, state)

where callback is a delegate to the subroutine to be called when the HttpWebResponse
object is available and state is an object variable (you can store in it information you want to
pass to the delegate). The BeginGetResponse method returns an IAsyncResult object, which is
a reference to the asynchronous request.

In the callback delegate, you must call the EndGetResponse method explicitly. Once the
HttpWebResponse object that represents the server's response becomes available, you can call
its GetResponseStream method to retrieve the Stream object with the server's data. The
delegate is the address of a subroutine that accepts a single argument, which is the object
returned by the BeginGetResponse method. Reading the data from the remote server is also a
potentially slow process (the server may take a while to respond, or the client's connection to
the server may be slow). This operation can also be performed asynchronously with the
BeginGetRequestStream and EndGetRequestStream objects.

THE WEBREQUEST PROJECT

To demonstrate the members of the WebRequest and WebResponse object, we've designed a
simple application that downloads a document from a web server using these two classes (see
Figure 12.4). As you know, downloading a file from a remote server is a slow process and we
can't allow the interface of our application to stop responding while the client computer waits
for the server to start submitting data. This example demonstrates how to contact a web server
and request a document asynchronously.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Asynchronous Request button calls the HttpWebRequest.BeginGetResponse method,
which initiates the asynchronous download of the document specified with the Create method.
This method accepts as argument a delegate, which is the address of the subroutine that must
be invoked as soon as the server starts transmitting the document. The code behind the
Asynchronous Request button is quite simple, as shown in Listing 12.15.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 316

FIGURE 12.4 The WebRequest demonstrates how to contact a web server asynchronously.

LISTING 12.15: DOWNLOADING A FILE ASYNCHRONOUSLY WITH HTTPWEBREQUEST
Private Sub AsynchronousDownload(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnAsynch.Click
 Dim WReq As HttpWebRequest = HttpWebRequest.Create(txtURL.Text.Trim)
 Dim ReqCallback As New AsyncCallback(AddressOf RequestComplete)
 WReq.BeginGetResponse(ReqCallback, WReq)
End Sub

The RequestComplete() subroutine is an asynchronous callback and it accepts a single
argument, which is of the IAsyncResult type (see Listing 12.16). This argument basically
identifies the asynchronous operation that completed its execution. In the RequestComplete
subroutine's code you must call the EndGetResponse method, passing the same argument that
was passed to the RequestComplete subroutine by the system. The EndGetResponse method
returns an HttpWebResponse object, just like the GetResponse method. Once the instance of
the HttpWebResponse object has been created, you can use it to read the document, either in
its entirety or one line at a time.

LISTING 12.16: THE REQUESTCOMPLETE DELEGATE
Private Sub RequestComplete(ByVal ar As System.IAsyncResult)
Dim webGet As HttpWebRequest = CType(ar.AsyncState, HttpWebRequest)
Dim wResp As HttpWebResponse
Dim RStream As IO.StreamReader
 wResp = CType(webGet.EndGetResponse(ar), HttpWebResponse)
 RStream = New IO.StreamReader(wResp.GetResponseStream)
 Dim data As String = RStream.ReadLine
 While Not data Is Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 318

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 32

 myarray.SetValue(''one", 1)
 myarray.SetValue("two", 2)
 myarray.SetValue("three", 3)
 myarray.SetValue("four", 4)

 Dim cr As String = vbCrLf 'carriage return
 Dim show As String

 Dim i As Integer

 For i = 1 To 4
 show = show & myarray(i) & cr
 Next

 TextBox1.Text = show & cr & cr & "SORTED:" & cr

 Array.Sort(myarray)

 show = ""
 For i = 1 To 4

 show = show & myarray(i) & cr

 Next

 Dim anIndex As Integer

 anIndex = Array.BinarySearch(myarray, "two")
 Dim r As String = CStr(anIndex)

 show += cr & "The word two was found at index number " & _
r & within the array"

 TextBox1.Text += show

 show =""

 For i = 1 To 4

 show = show & myarray(i) & cr

 Next

 TextBox1.Select(0, 0) 'turn off selection

 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 321

LISTING 13.1: BUILDING AND TESTING A WEB SERVICE
<WebMethod()> Public Function ReverseWords(ByVal s As String) As String

 Dim delimStr As String = '' "
 Dim delimiter As Char() = delimStr.ToCharArray()
 Dim split As String() 'string array
 split = s.Split(delimiter)

 split.Reverse(split) 'reverse the array

 s = " "

 For i As Integer = 0 To split.Length - 1
 s &= split(i) & " "
 Next

 Return s

 End Function

Also, it's nice to include some metadata, describing the service, so add a description attribute
(shown here in boldface):

 <System.Web.Services.WebService
 (Description:= "Reverses the words in a submitted string" ,_
 Namespace:= "http://tempuri.org/services/Service1")> _
 Public Class Service1

Press F5. Internet Explorer (or your default browser) starts. You see the description attribute
displayed first when you attempt to consume this service, as shown in Figure 13.1:

FIGURE 13.1 This display is the first step when testing a Web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 322

Click the Service Description link to see all the metadata and the structure of a SOAP Web
service message. XML files that support the messaging between client and Web service are,
fortunately, handled automatically for you. ASP.NET deserializes the incoming SOAP
message into a usable object that your Web service can react to. Likewise, after your Web
service's response message object is composed, it is serialized into a SOAP message, then sent
back to the consumer of your service.

Now click the Back button to return to your service's main test page, and click the
ReverseWords link in Internet Explorer, type in some words and submit the words (click
Invoke). You see the returned string, reversed and in boldface, as shown in Figure 13.2:

FIGURE 13.2 Your Web service consumed, by you.

The first line of a Web service begins with <WebService(Namespace:=
''http://tempuri.org/")>, an element that specifies that this class is special; it's a Web
service. The arrow < > symbols have been used in computer programming to delimit HTML
elements. (You can actually leave out the WebService element; ASP.NET looks at the
filename extension .ASMX, and knows this is a Web service. Nonetheless, as you saw in the
previous example, you can make use of the attributes of this element, such as the Namespace
and the Description attributes.

<WebService(Description:="Provides the current date and time" ,
Namespace:= "http://tempuri.org/")> Public Class Service1

The <WebMethod()> element isn't optional. It specifies that a function belongs to a Web
service. A Description attribute can be added to the WebMethod element. As you see, a Web
service's source code blends HTML qualities such as attributes and elements along with
typical VB.NET source code.

Caching Web Service Data

Computing often differs only in its terminology from traditional information handling.
Consider the school nurse who keeps a stack of flu information sheets right on her desk during
flu season, rather than having to waste time going to the file cabinet for a sheet each time a
student comes in hacking and wheezing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

She calls it keeping something close at hand; we call it caching.

Clearly, if you run a quote-of-the-day service, you don't keep today's quote in a remote
database and fetch it each time a client asks for it. Or if your Web service provides this week's
sale items list, you don't regenerate that list for each request. Instead, in these and many
similar scenarios, you want to gather the data only once a day (or week or whatever), then
hold the data in quick, local memory rather than searching for and extracting it for each
response.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 324

FIGURE 13.3 Use this ''browser" to discover Web services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 13.4 Here's a list of Web services on a local computer.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 327

you don't see the Pubs database listed under SQL servers in VB.NET's Server Explorer, you
need to install the samples that come with VB.NET. To do that, perform the instructions in the
following section.

Using the Pubs Sample Database

Here's how to get a connection to the Pubs sample database so you can experiment with the
examples in this and other chapters in this book.

Choose Start Programs Microsoft .NET Framework SDK Samples and QuickStart
Tutorials. Follow the steps to install the .NET Framework Samples Database. If the
installation fails, double-click the SQL Server icon on your tray at the bottom of the Windows
desktop, then click the red button to stop SQL Server from running. Rerun InstMSDE.exe.
Then reboot your computer to restart SQL Server.

After installing the sample database, you have to create a connection to it. Expand the Data
Connections node in Server Explorer and see if there's a connection to Pubs. If not, you can
create the connection by right-clicking Data Connections in Server Explorer and selecting Add
Connection from the context menu. Follow the steps in the Data Link Properties dialog box.
Click the Provider tab and choose Microsoft OLE DB Provider For SQL Server in the list box.
Click Next and open the list under Select Or Enter A Server Name. Choose your SQL Server's
name. Click the radio button next to Use Windows NT Integrated Security. Drop the list under
Select The Database On The Server. Choose Pubs. Then close the dialog. With this data
connection, you can experiment with various ways to bind controls to databases, to test
database access within Web or Windows applications, and to access databases
programmatically.

Getting an XML Dataset

Now you can try connecting your Web service to a database and extracting a dataset from it.
Start a new Web service project by choosing File New Project, then double-clicking the
ASP.NET Web Service icon in the New Project dialog box.

You need these Imports statements, so type them into the code window:

Imports System.Web.Services
Imports System.Data.SqlClient

In this example, you get information from the database and send it back to the client, and by
happy ''coincidence," the dataset is already packaged in XML, ready for platform-independent
consumption.

Listing 13.4 is the code to type in to create your service (you add what's shown in boldface).

LISTING 13.4: CONNECTING TO A DATABASE

<WebService(Description:="Provides a list of jobs from the Pubs database"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<WebService(Description:="Provides a list of jobs from the Pubs database"
Namespace:="http://tempuri.org/")> Public Class Service1

 Inherits System.Web.Services.WebService

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 328

Web Services Designer Generated Code

 <WebMethod()> Public Function ShowJobs() As DataSet
 Dim connPubs As New SqlConnection(''server=localhost;Initial Catalog=pubs;
 Integrated Security=SSPI")
 Dim Datacmd As New SqlDataAdapter("select * from Jobs", connPubs)
 Dim ds As New DataSet()
 Datacmd.Fill(ds, "Jobs")
 Return ds
 End Function
End Class

Press F5, click the link to your Web service in Internet Explorer, then click the Invoke button
to see the results, as shown in Figure 13.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 13.5 This is an ADO .NET dataset in XML format, with nested elements representing the fields
in each record.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 329

Potential Problems with MSDE

It's easy to get messed up when working with MSDE (Microsoft SQL Server 2000 Desktop
Engine, the decapitated version of SQL Server that ships with .NET). It's decapitated because
it doesn't include the usual SQL Server tools, such as Enterprise Manager (which can be
necessary if you need to adjust permissions and other security features for MSDE). Many
programmers have gotten error messages when trying to use code, like the previous example,
that attempts to use SQL Server (MSDE version). The usual error messages are ''permission
denied" or "login failed."This can occur for various reasons. If you have this problem, right-
click your Inetpub directory in Windows Explorer and select the Security (or Sharing And
Security) option. Check to ensure that you haven't set up prohibitive security barriers for these
directories. Also use Server Explorer in VB.NET to see if the Pubs database (or whatever
you're trying to connect to) actually exists within the data connections you've defined. You
may have to create a new data connection, reinstall the sample databases, or replace this
reference to localhost:

 Dim connPubs As New SqlConnection("server=localhost;Initial Catalog=pubs; _
Integrated Security=SSPI")

With a the name of your computer\data connection, such as:

Dim connPubs As New SqlConnection("server=DELL\NetSDK;Initial Catalog=pubs; _
Integrated Security=SSPI")

As a last resort, you can sometimes solve MSDE problems by downloading and installing the
latest version of MSDE, or you can install the trial version of SQL Server itself at
http://www.microsoft.com/sql/evaluation/trial/2000/default.asp.

Looking at the Results

Take a look at the XML message returned in this example. The data is extracted from the Pubs
database, then transformed into XML format (elements are created to hold each record, with
other elements delimiting each field). Notice that the XML is divided into two main sections.
First, the schema (structure) describes each field and some details about it, such as its data
type:

<xs:element name="Jobs" >
<xs:complexType>
<xs:sequence>
 <xs:element name="job_id" type== "xs:short" minOccurs== "0" />
 <xs:element name="job_desc" type== "xs:string" minOccurs== "0" />
 <xs:element name="min_lvl" type== "xs:unsignedByte" minOccurs== "0' />
 <xs:element name="max_lvl" type== "xs:unsignedByte" minOccurs== "0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After this you find the dataset itself, containing the records and their data. Aren't you happy
that ASP.NET generates HTML, XML, SOAP, and other such files for you? Working with
WebForms and Web services would indeed be dreary if we had to generate these verbose
structures ourselves:

<Jobs diffgr:id="Jobs2" msdata::rowOrder= "1">

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 33

The SetValue method in this example allows you to add or replace an item anywhere within
an array by specifying the index number (however, the index number will be off by 1, thanks
to the zero-base problem described earlier in this chapter):

myarray.SetValue(''one" , 2)

The Sort method is overloaded with eight variations, including one that sorts only a subset of
the array.

Array.Sort(myarray, StartIndex, LengthOfSubset)

Customized Sorting

Here's a useful technique. You can sort one array based on the elements in another array. This
lets you devise your own sorting rules, a technique that comes in handy more often than you
might think.

Here's an example. You have a single-dimension array containing first names and last names:
Mary Jones, Bob Smith, and so on. You can't sort this array by the last names, by a simple sort
command. They would be sorted by first name instead.

The solution is to create a second array that holds only the last names, sort it and at the same
time sort the original array in tandem. Listing 2.5 is an example.

LISTING 2.5: SETTING YOUR OWN CUSTOM SORTING RULES
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim cr As String = vbCrLf 'carriage return

 Dim myarray(5) As String
 Dim lastnames(5) As String

 myarray(0) = "Monica Lewis"
 myarray(1) = "Georgio Apples"
 myarray(2) = "Sandy Shores"
 myarray(3) = "Dee Lighted"
 myarray(4) = "Andy Cane"
 myarray(5) = "Darva Slots"

 TextBox1.Clear()

 'create an array of the last names:

 Dim i As Integer
 Dim x As Integer
 Dim s As String

 For i = 0 To UBound(myarray)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 331

Documentation Can be included wherever you want inside the WSDL. It's like a
comment in an ordinary computer language, explaining to humans what's going on.
Definitions The root element of any WSDL. Ordinarily this element includes a
declaration of the namespaces used in the WSDL area.
Types An XML schema that defines the types used by the messages defined in the
document.
portType Describes a collection of operation elements, which themselves specify
the input/output message defining the operation.
Binding Specifies the protocol, bindings for HTTP, SOAP, GET, and POST, and
MIME.
Service Lets the client know the address where it can send messages to the Web
service. Normally this maps a set of bindings for a single portType, specifying the
URL of the Web service.

Viewing WSDL

To peruse an example of a WSDL contract, start a new VB.NET ASP.NET Web service–style
project. Add a Description attribute to the line just beneath the Imports statement, like this:

<System.Web.Services.WebService(Description:= ''Adds or Multiplies two Integers.",
Namespace:= "http://tempuri.org/WebService2/Service1")> _

Then replace the green commented lines with the two functions shown in Listing 13.5.

LISTING 13.5: EXAMINING WSDL CONTENT
<WebMethod(Description:="Please supply two Integers for addition")>
 Public Function AddThem(ByVal n As Integer, ByVal n1 As Integer) As Integer

 Return n + n1

 End Function

 <WebMethod(Description:="Please supply two Singles for Division")>
 Public Function DivideThem(ByVal n As Single, ByVal n1 As Single) As Single

 Return n / n1

 End Function

Press F5 to run the Web service. After Internet Explorer displays the Web service, you can see
its WSDL content by clicking the Service Description link. At the top you see a list of
namespaces, and namespace abbreviation definitions that are employed throughout the entire
document to specify the various schema. For example, here the abbreviation's in xmlns:s=
"http://www.w3.org/2001/XMLSchema" is identified. Then, later, in the <types> block, the
abbreviation is used to specify the schema location: <types> <s:schema
elementFormDefault="qualified".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 332

The targetNamespace specifies a container namespace (a more general one) that all
components of the element (<definitions> in this example) belong to. In other words, all
names declared in this document belong, in this example, to your Web service at ''tempuri"
(your computer's internal site). This is, in effect, the URL of the Web service.

The types include Types, Messages, and PortType sections within the WSDL section, each
describing various data content of the Web service message. The actual <Types> element
specifies the variable types used in the Web service (parameters passed to functions, and the
type passed back in the response). The permitted data types and details about them are
described by XML schemas referred to via the URIs, or, optionally, they can be described
other ways.

In our example, the AddThem method takes two integers as arguments, and returns an integer
in what WSDL calls the AddThemResponse and AddThemResult.

Notice in the WSDL code that each variable type is qualified by the abbreviation s:
("type="s:int"). The s: was defined previously in the WSDL as the abbreviation for the
URI of the schema where the data types are defined. However, if you get curious and try to go
there with your browser, you'll find that the "open source" is closed. You have to provide
passwords and logon names to get in—presumably those in the know decided that this XML
data type information required security. Some speculate that the schemas are still under
"review" by committee members and thus are not for public consumption at this time. Others
say that some academic interests are competing with each other. In any case, you may be
refused entry. If you're not a member of the W3C, you might be able to join and get a
password!

Following the Types section comes the Messages area, which is more abstract a description of
your methods than in the Types area (no data types are defined here):

<message name="AddThemSoapIn">
 <part name="parameters" element== "s0:AddThem" />
 </message>
<message name="AddThemSoapOut">
<part name= "parameters" element="s0:AddThemResponse" />
</message>

Each <part> element here represents a parameter coming in to the Web service, or a value sent
back as a response. The data type of each <part>, confusingly named the "element" attribute,
either can be a type named in the Type area of the document or can be found in a schema (an
XSD base type, a SOAP-defined type, or a WSDL-defined type).

As you would expect, the "specifications" for XML and daughter "languages" like WSDL and
SOAP are in constant flux, and suffer from debate and bifurcation (what open-source people
like to call forking). Just as there are thousands of specific, mutually exclusive,
implementations of XML currently competing, at least four different data type schemas
currently hang around as the "official" one. A new data type list floats up on average about
once a year. In some cases, the schema version is identified by its year in the URI, such as this
version from 2001:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xmlns:s= "http://www.w3.org/2001/XMLSchema"

If you're deeply interested in seeing a complicated set of suggested data types, take a look at
the specifications (or recommendations, as some XML committee members prefer you say) at
these locations:

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 333

SOAP Too

In addition to the WSDL, you get this SOAP version of the same Web service, thanks to
.NET. Listing 13.6 gives the SOAP request and response for your DivideThem method.

LISTING 13.6: SEEONG THE SOAP
POST /xx/Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: ''http://tempuri.org/xx/Service1/DivideThem"

<?xml version="1.0" encoding==" utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <DivideThem xmlns="http://tempuri.org/xx/Service1">
 <n>float</n>
 <n1>float</n1>
 </DivideThem>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding=="utf-8"?>
<soap:Envelope xmlns:xsi= "http://www.w3.org/2001
/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">[
 <soap:Body>
 <DivideThemResponse xmlns="http://tempuri.org/xx/Service1">
 <DivideThemResult>float</DivideThemResult>
 </DivideThemResponse>
 </soap:Body>
</soap:Envelope>

Complex Types

In addition to the simple variables you've seen so far, you can also use enums, structures, and
other complex types. Listing 13.7 is an example.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 334

LISTING 13.7: EMPLOYING COMPLEX TYPES
Public Structure ThisType
 Public ID As Integer
 Public LastName As String
 Public Money As Single
 Public PersonalityFlaws As String
 End Structure

 <WebMethod()> Public Function Test(ByVal s As String) As ThisType
 Dim TT As New ThisType

 TT.ID = 12422
 TT.LastName = ''Floriasta"
 TT.Money = "12.22"
 TT.PersonalityFlaws = "cheap as a ten-cent cigar " & s

 Return TT

 End Function

Here's part of the resulting SOAP that .NET generates to describe the structure:

<CountCharsResult>
 <ID>int</ID>
 <LastName>string</LastName>
 <Money>float</Money>
 <PersonalityFlaws>string</PersonalityFlaws>
</CountCharsResult>

As you see, our VB.NET data type Single has been mapped to the SOAP Float type. Although
XML and daughters are said to be "language independent," what this often means in practice
is that the preferred language dominates. What's the preferred language by people in academia
and therefore on XML committees? C, C++, and daughter languages. Float is a C data type.

Listing 13.8 shows how an Enum in translated into SOAP and WSDL.

LISTING 13.8: USING ENUMS
Public Enum DaysOfTheWeek
 Sunday
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
 End Enum

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 335

 <WebMethod()> Public Function Test() As DaysOfTheWeek

 Dim e As New DaysOfTheWeek
 Return e

End Function

This translates into the following SOAP:

<soap:Body>
 <TestResponse xmlns= ''http://tempuri.org/xx/Service1"<
 <TestResult>Sunday or Monday or Tuesday or Wednesday
 or Thursday or Friday or Saturday</TestResult>
 </TestResponse>
</soap:Body>

and the following WSDL, in its Type section:

<s:simpleType name="DaysOfTheWeek">
<s:restriction base="s:string">
 <s:enumeration value="Sunday" />
 <s:enumeration value="Monday" />
 <s:enumeration value="Tuesday" />
 <s:enumeration value="Wednesday" />
 <s:enumeration value="Thursday" />
 <s:enumeration value="Friday" />
 <s:enumeration value="Saturday" />
</s:restriction>
</s:simpleType>

PortType

The PortType section of a WSDL document is yet another abstraction of the Web service
being contracted.

<portType name="Service1Soap">
<operation name="Test">
 <input message="s0:TestSoapIn" />
 <output message="s0:TestSoapOut" />
 </operation>
 </portType>

PortType describes incoming and outgoing parameters, and additional optional
documentation, function names, or other data the author of the Web service might want to
include. Think of this section as specifying the interfaces that are exposed. This can
encompass more than a single message exchange. Also note that changes you make to the
message element can cause changes in both the PortType and binding elements as well. Use as
many portType elements as you want. This is a way to describe overloaded functions, for
example.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 338

Here's one published service that worked. Start a new VB.NET Windows-style project and
choose Help Show Start Page. Click the Online Resources tab, then click XML Web
Services in the left pane. Leave the UDDI Production Environment radio button selected, then
drop the list box under Category and choose Miscellaneous. Click the Go button. A list of
available Web services appears. Locate the Quote of the Day service, shown in Figure 13.6.

Click the Add As Web Reference To Current Project link. The Solution Explorer now contains
a Web Reference to this URL: com.gotdotnet.www. You use that address to create your
Imports statement. Go to the code window now and type this Imports statement:

Imports WindowsApplication1.com.gotdotnet.www.Quote

If your project name isn't WindowsApplication1, replace that with your project's name. Here's
the code you use to access this Web service:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim cService As New com.gotdotnet.www.Quote

 Dim s As String

 s = cService.GetQuote()

 MsgBox(s)

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 13.6 This UDDI Registry contains published services you can experiment with.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 34

 s = myarray(i)
 x = s.IndexOf('' ") find blank space
 lastnames(i) = myarray(i).Substring(x) 'get last name
 TextBox1.Text += lastnames(i) & cr
 Next

 TextBox1.Text += cr & "Sorted by last name:" & cr

 myarray.Sort(lastnames, myarray)

 For i = 0 To UBound(myarray)
 TextBox1.Text += myarray(i) & cr
 Next

 TextBox1.Select(0, 0) 'turn off selection
End Sub

Many Properties and Methods

In VB.NET, arrays have many members. There are several members unique to the array class
(reverse, GetUpperBound, and so on). The simplest syntax for the reverse method reverses all
the items in an array, like this:

Array.Reverse(myarray)

Or to reverse only a subset of items within the array, here the reversing begins with the item at
index number 1 and reverses three items:

Array.Reverse(myarray, 1, 3)

Here is a list of all the public properties of the array class: IsFixedSize, IsReadOnly,
IsSynchronized, Length, Rank (number of dimensions), SyncRoot.

Here are the public methods: BinarySearch, Clear, Clone, Copy, CopyTo, CreateInstance,
Equals, GetEnumerator, GetHashCode, GetLength, GetLowerBound, GetType,
GetUpperBound, GetValue, IndexOf, Initialize, LastIndexOf, Reverse, SetValue, Sort,
ToString.

LastIndexOf searches an array (or a portion of an array) for a value, and returns the index of
the final (highest) occurrence of that value. Alas, the index is off by one. GetLowerBound is a
rather odd method because every array in VB.NET must have a lower bound of zero.
GetLowerBound is vestigial, left over from an original plan to permit us programmers to
specify a lower bound other than zero. There seems to be a political fight going on somewhere
—two camps continuing to dispute over the base issue. The .NET Framework does support
adjustable lower bounds for arrays, but you aren't supposed to mess with them. You're not
permitted to create instances of the array class, then adjust the lower bound. As the VB.NET
help documentation says on this topic: "Users should use the array constructs provided by the
language."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 340

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 343

reaches the destination queue. The message can be sent directly to the remote queue (if it's
possible), sent to a node between the local machine and remote computer where the
destination queue resides, or stored at the local machine and be delivered when the computer
is connected to a network. In any case, sending a message does not block the local machine.
The source and destination computers need not be on the same network, and it's possible that
messages will be routed through intermediate computers. MSMQ guarantees the delivery of
the message. If the message can't be delivered for any reason, MSMQ can generate automatic
acknowledgment messages. Let's start with an overview of the tools for creating and
administering queues and then we'll see how to send and receive messages.

Types of Queues

There are several types of queues you can install. At the highest level, queues can be classified
as private and public. A private queue is available only on the machine on which it was
installed, but can be accessed by applications running on a remote machine, as long as the
applications know the queue's name. Public queues are replicated through the network and
applications can access the public queue at their site. It doesn't make any difference on which
machine a public queue resides, because they all contain the same messages. Any message
written to a public queue is replicated to all other public queues with the same name by
MSMQ without any programming effort on your behalf.

In addition to private and public queues, there are two more types of queues: system queues
and outgoing queues. The system queues are maintained by the system; there are three types
of system queues:

 Journal messages
 Dead-letter messages
 Transactional dead-letter messages

Journal messages store copies of the messages you send to a private or public queue. On the
sending computer, only a single queue is required for all messages sent from that computer.
On the receiving computer, a separate queue with journal messages is created for each
individual queue, which keeps copies of the messages removed from that queue.

Dead-letter messages store copies of messages that couldn't be delivered successfully.
Transactional messages that couldn't be delivered successfully are stored as transactional
dead-letter messages. A message is not considered successfully delivered if it expires before
its delivery (the expiration interval is specified by the application that sends the message). If a
message expires before its delivery, its copy is stored in the queue with the dead-letter
messages of the computer on which the message expired.

One last category of queues are the outgoing queues. When you send a message to a queue
that's not reachable at the time, the message is stored in an outgoing queue. Outgoing queues
are created automatically by MSMQ under the Outgoing Queues folder; there's one outgoing
queue for each remote queue to which your application has attempted to send a message. The
outgoing queues are named by the corresponding remote queue's FormatName property and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outgoing queues are named by the corresponding remote queue's FormatName property and
they store the messages sent to the remote queues. The messages in the outgoing queues will
be delivered to the proper remote queue automatically as soon as the local computer is
connected to the network. Notice that outgoing queues are not permanent; once the messages
in an outgoing queue are delivered, the queue itself is

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 344

removed. It will be created again when MSMQ needs to temporarily store some messages that
can't be delivered to the remote queue.

Messages aren't written to disk by default. This indicates that MSMQ was designed on the
premise that messages will be read and processed (and therefore removed from the queue) as
soon as possible. Even if the computer is shut down properly, the contents of the queues will
disappear. You can change the default behavior by setting the Recoverable property of a
message before sending it to a queue. Normally, messages will be read off the queue as soon
as they arrive. If it's crucial that no message is lost, you should set the Recoverable property of
the messages you send to the queue to True. This is especially advisable for messages that will
be relayed to a remote system. These messages are stored to the local machine until they can
be delivered to their destination, or to another node on the route to the destination computer.

Creating New Queues

Before you can work with a queue you must create it. There are two methods to create new
queues: You can create (and administer) queues with visual tools in Visual Studio's IDE, or
with the MSMQ Microsoft Management Console (MMC). By the way, it's possible to create,
as well as administer, queues programmatically from within your application, as you will see
later in this chapter.

To follow along, create a new queue with the MMC snap-in. Open the Administrative Tools
folder in the Control Panel and start the Computer Management snap-in. Expand the branch
Services And Applications and then expand the Message Queuing branch under it. You will
see four folders that correspond to the various types of queues you can create and use:
Outgoing, Private, Public, and System queues. Under each folder you'll find a number of
queues. Under each queue there are two items: Queue messages and Journal messages. These
two items contain the messages send to the specific queue and copies of them. As messages
are being processed, they're also removed from their queues, except for journal messages,
which remain in their corresponding queues. You will not see any messages in the outgoing
and public queues unless you have configured the corresponding queues.

To create a new private queue, right-click the Private Queues folder and, from the context
menu, select New Private Queue. You'll be prompted to enter the name of the new queue,
which has the prefix "private$," as you can see in Figure 14.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 14.1 Creating a new queue with the Message Queuing MMC snap-in

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 345

The new queue has no messages and you can't add messages using visual tools. You can only
delete a queue, or purge its messages (if it has any). There's no mechanism for deleting
isolated messages. The Purge command in the context menu of the Queue Messages item will
remove all the messages from the queue. Even though there are no messages in the new queue,
you can see the names of the basic properties of each message; they're the headers of the
columns in the right pane of the Computer Management window. Each message has a label
(optional), a priority, and an ID. The ID is a GUID (globally unique identifier) and it's made
up of a unique identifier for the queue and a sequence number for each message in the queue.
In the following sections we'll discuss methods of referencing existing queues and creating
new ones programmatically.

Administering Queues

The basic class for administering and using queues is System.Messaging.MessageQueue. This
class contains members that allow us to explore existing queues and create new ones, as well
as send and receive messages.

NOTE To access the functionality of the MSMQ component from within your VB applications,
you must first add a reference to the System.Messaging component (use the Project Add
Reference command in the IDE). Then import the System.Messaging namespace to your
application so that you won't have to fully qualify each member of this class.

To reference a queue, you can use the queue's path, label, or format name. The queue's
pathname is a combination of the name of the computer on which the queue resides and the
name of the queue. If the queue is public, use the following pathname form:

computer_name\queue_name

If the queue is private, you must insert the string Private$ between the computer name and the
queue name:

Computer_name\private$\queue_name

If the queue is on the local machine, you can use the following pathname:

.\private$\queue_name

The queue's format name is a string that resembles a ConnectionString and contains
connection details as well as the queue's pathname. The following is the format name of a
queue on the PowerToolkit machine:

DIRECT=OS:PowerToolkit\private\order_queue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last method is to use the queue's label. Each queue can have a label, which you assign to
the queue by setting its iabel property from within your code, or through the MSMQ snap-in.
If you specify a label that's not unique, a runtime exception will be thrown. Each queue has a
unique identifier (a GUID value), which you can also use to reference the queue. This
identifier is assigned to the queue when it's created by the system.

Journal queues must be accessed with a different notation. Journal queues that are specific to
private or public queues are referenced by the name of the queue they refer to and the suffix
Journal$. Let's say the orders queue receives messages about orders. You can associate a
journal queue with the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 346

orders queue and request that copies of all messages sent by the orders queue are stored in
the journal queue associated with the orders queue. This queue is private and can be
referenced with the following path:

ComputerName\Orders\Journal$

The server's journal queue can be accessed with the following pathname:

ComputerName\Journal

as there's only one journal queue for the server.

In this chapter you'll learn how to access and configure message queues from within your
applications. We'll discuss the topic of programming against the MSMQ objects in detail in
the following sections, but let's start with a quick overview of the basic VB code for sending
and receiving messages. The simplest method of adding a reference to a queue to your
application is through the Server Explorer window. Start Visual Studio, switch to Server
Explorer, expand the Servers branch, and select the server on which the desired queue is
installed. If the name of the server doesn't appear in the Servers branch, right-click the Servers
item and select Add Server from the context menu. Under the selected server's name you will
see the Message Queues item. Expand this item, select the desired queue, and drop it on the
project's form. A new component will be added to the form, the MessageQueue1 component.
Select the new component, and in the Properties window you will see the queue's properties,
as shown in Figure 14.2. The Path property is one of them; this property identifies the queue
by its FormatName. We'll discuss the queue's properties in the following sections. You can
refer to the selected queue in your code as MessageQueue1. You can also create new queues
in the Visual Studio IDE by selecting the Create Queue command from the Private Queues or
Public Queues item of the Server Explorer.

Let's experiment with the new queue. Add a button to the form of the current project and enter
the following code in its Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 MessageQueue1.Send(''The message's body" , "Simple Message")
 MsgBox("Message written to queue " & _
 MessageQueue1.QueueName & " successfully")
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 14.2 Setting a queue's properties in the IDE

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 348

that accepts a second argument, which is a Boolean value that determines whether the new
queue will be transactional or not. We'll discuss transactional queues later in this chapter. The
Delete method accepts as argument a queue's format or pathname and deletes the specified
queue. The following statements demonstrate how to create the orders private queue, if it
doesn't already exist:

Dim Msq As New MessageQueue
Dim queuePath As String = " .\private$\orders"
If Not Msq.Exists(queuePath) Then
 Try
 Msq.Create(queuePath)
 Catch
 MsgBox("Could not create queue")
 End Try
End If

Exploring a Computer's Queues

To explore the queues on the local computer (or any other computer on which you have the
necessary rights to manipulate queues), you can use the following methods. All methods listed
here return an array of MessageQueue objects and each element of the array references a
specific queue:

GetPrivateQueuesByMachine This method accepts a string argument, which is a
computer's name, and returns an array with references to each private queue on that
machine. You can use the appropriate member of the array to reference a specific
queue in your code.
GetPublicQueues This method returns all the public queues on the network. An
overloaded form of this method accepts as argument a string, which you can use to
specify the criteria for selecting the desired queues. This argument is a property of
the MessageQueueCriteria class, and you can combine multiple criteria with the
And operator. The criteria available for filtering queues are properties of the
MessageQueueCriteria enumeration and they're shown in Table 14.1.
GetPublicQueuesByCategory This method returns all the public queues that
belong to the category specified with its argument. To use this method you must
first assign a category to your queue's Category property. The category has the
structure of a GUID but it need not be a real GUID, nor is it unique.
GetPublicQueuesByLabel This method returns all the public queues that have the
label specified with its argument.
GetPublicQueuesByMachine This method returns all the public queues that reside
on the machine specified with its argument.

The GetPublicQueues method accepts an argument that filters the desired queues. The filtering
expression is a property of the MessageQueueCriteria class; the properties of this class are
shown in Table 14.1. You can combine multiple filters with the And operator.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 350

Message Properties

The Message class exposes the following properties, which apply to individual messages.
Some of them are trivial, while others are not as simple to use. We'll use many of these
properties in our sample applications, later in the chapter. In the following paragraphs we list
the most important properties.

PRIORITY

Messages are sent to the destination queue with a default priority. Messages with the same
priority are stored in the queue in chronological order. You can set a message's priority with
the Priority property of the Message class, so that messages with higher priority are stored in
front of messages with lower priority, regardless of the order in which they arrive to the queue.
The Priority property's value can be a member of the MessagePriority enumeration: Highest,
Very High, High, AboveNormal, Normal, Low, VeryLow, and Lowest. The default
priority is Normal, which corresponds to the numeric value 3 you see on the MSMQ snap-in.

LABEL

Messages can have a label, which is displayed in the Label column of the MSMQ snap-in. If
you don't specify a label, an empty string is displayed in this column. The Label property
characterizes either the message or the application that sent it and need not be unique.

ID

Each queue gets a unique value as soon as it's created, which is a GUID string. When a
message arrives at the queue it gets its own unique ID, which is the queue's GUID followed by
an Identity value (a value that behaves just like the Identity column of a SQL Server table; its
value keeps increasing with each incoming message, even after purging the queue). We don't
usually retrieve messages by their IDs, because we simply don't know the IDs of the messages
in a queue. There's one exception: related messages carry the ID of the parent message and we
can use a message's ID to retrieve the related messages. We can obtain the ID of the original
message either when we create it or when we read it from the queue.

Acknowledgment messages are related to a specific message; we can use the MessageQueue
object's ReceiveByCorrelationID method to retrieve the acknowledgment messages for a
specific message. This message's ID is passed to the ReceiveByCorrelationID method as
argument and the method returns one or more related messages (if they exist). Later in this
chapter, you'll see how this method is used to retrieve acknowledgments for a specific
message.

We can also retrieve messages by their IDs when we just peek at the messages in the queue
and want to process one of them. Once a message has been processed, you must always
retrieve it from the queue. If not, the message will be processed again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIP The ID of a message has the form {GUID}\number, and it looks something like this:
{051C9A20-9A39-4696-AE8B-04A9C1C87BD5}\6721
This is what you see in the MSMQ snap-in and this is what you get when you retrieve the ID
property of a Message object. To retrieve a message by its ID, however, you must strip the
curly brackets and pass to the appropriate method an ID like this:
051C9A20-9A39-4696-AE8B-04A9C1C87BD5\6721

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 351

TIMETOREACHQUEUE, TIMETOBERECEIVED

The Time ToReachQueue property is a TimeSpan object that represents the maximum amount
of time allowed for the message to reach the destination queue. The TimeToBeReceived
property is also a TimeSpan object that represents the maximum amount of time allowed for
the message to be retrieved from the destination queue. Normally, the setting of the
TimeToBeReceived property should be longer than the Time ToReachQueue property. If not,
the Time ToBeReceived property takes precedence.

If the interval specified by the Time ToBeReceived property expires before an application had
a chance to remove the message from the destination queue, MSMQ discards the message, but
not without an indication. If the message's UseDeadLetterQueue property is True, the message
is sent to the dead-letter queue. If you specify an interval for retrieving the message from the
queue, you should also set the UseDeadLetterQueue property to True. Leave this property set
to False for messages that should be processed within a certain interval and ignored after that.

When sending critical messages, you should set up an acknowledgment mechanism. You can
request MSMQ to send a negative acknowledgment message back to the sending application if
the message is not retrieved in the specified time interval by setting the message's
Acknowledge Type property. You can also request a positive acknowledgment for the
successful arrival of the message at the destination queue, or its removal from the destination
queue. You'll learn how to request acknowledgments for your messages in the following
section.

RECOVERABLE

The Recoverable property determines whether the delivery of a message is guaranteed. By
setting the property to True (its default value is False), you cause the message to be stored
locally at every step along its route to the destination computer. By default, messages are
stored in memory, which means that MSMQ was designed on the premise that messages
should be retrieved from their queues as soon as possible. Even messages sent to a private
queue of the local computer are stored in memory. As a result, even when you shut down the
computer normally, the messages that haven't been processed yet will be lost. It's a good
practice to set the Recoverable property to True before sending a message.

MESSAGEQUEUE.DEFAULTPROPERTIESTOSEND

By default, the MessageQueue object's Send method doesn't send all the properties of a
message. You can specify the properties to be sent along with the message by setting the
appropriate properties of the Message object. Alternatively, you can use the MessageQueue
class's DefaultPropertiesToSend property to set the properties to be sent for all messages to the
queue represented by the MessageQueue object. You do so by setting the appropriate member
of the MessageQueue object's DefaultProperties ToSend property. If you want all messages
sent to the Orders queue to be acknowledged, you can set the Acknowledge Type and
AdministrationQueue members of the DefaultPropertiesToSend property, as shown in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AdministrationQueue members of the DefaultPropertiesToSend property, as shown in the
following code segment (the Q and ackQ variables reference valid queues):

Q.DefaultPropertiesToSend.AcknowledgeType = AcknowledgeTypes.FullReceive
Q.DefaultPropertiesToSend.AdministrationQueue = ackQ
Q.DefaultPropertiesToSend.Priority = MessagePriority.Highest

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 352

Creating and Sending Messages

To send a message to a queue, you must first obtain a reference to the desired queue by
creating a new MessageQueue object. The name of the queue can be passed as argument to the
MessageQueue class's constructor, as shown here:

Dim orderQ As MessageQueue
orderQ = New MessageQueue(".\private$\Orders")

The next step is to tell MSMQ about the objects we're going to send to the queue. We do so by
creating a formatter, which determines how objects will be serialized before they're sent to the
queue. You must obviously use the same formatter to properly deserialize the objects at the
destination queue. It's possible to send messages of different types to the same queue, so you
start by creating an array of Type objects, one element for each type you want to send to the
queue. The Orders queue will receive objects of the Order type only, so the array will contain
a single element:

Dim targetTypes() As Type
targetTypes(0) = GetType(Order1)

where Order1 is an instance of the Order class. Finally, we pass the targetTypes array to
the constructor of the XmlMessageFormatter class and we assign the new
XmlMessageFormatter object to the Formatter property of the MessageQueue object that
represents our queue:

msgQ.Formatter = New XmlMessageFormatter(targetTypes)

If the targetTypes array contains multiple types, the formatter will pick the proper type for
each message sent to the queue. If you send to the queue a message of a type other than the
one(s) specified in the XmlMessageFormatter object, a runtime exception will be raised.

You can also serialize messages into a binary format before sending them to the queue. In this
case, you'll have to create an instance of the BinaryMessageFormatter class and use it in the
place of the XmlMessageFormatter class. If you choose to use a binary serializer, don't forget
to add the <Serializable> attribute to the definition of the class(es) that represent the
object you'll send to (or read from) the queue. All classes can be serialized in XML format by
default, but this isn't true for binary serialization. Binary serialized messages are more
compact, but you can't read their bodies in the MSMQ snap-in. In this chapter we'll use the
XmlMessageFormatter.

To send Message objects to a queue, use the Send method and pass as arguments a reference
to the object you want to send to the queue and its type:

msgQ.Send(obj, objType)

If you have a class that represents orders, the Order class, you can send objects of the Order
type to the queue with a statement such as:

msgQ.Send(order1, "Order")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msgQ.Send(order1, "Order")

The following class represents simple orders; we'll use instances of this class to store orders.
The Order class's Details property is an array of OrderDetail objects, and each OrderDetail
object has fields for each order detail item:

Public Class Order
 Public ID As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 353

 Public orderDate As Date
 Public CustomerID As String
 Public Details() As OrderDetails
End Class
Public Class Details
 ProductID As Integer
 Price As Integer
 Qty As Integer
End Class

In our code we can create and initialize an Order object with statements such as the following
(the order contains two detail lines):

Dim O As New Order
O.ID = 1000
O.orderDate = #9/15/2004#
O.CustomerID = ''ALFKI"
Dim details(1) As Order.OrderDetails
Details(0) = New OrderDetails
Details(0).Product = 27
Details(0).Price = 25.93
Details(0).Qty = 14
Details(1) = New OrderDetails
Details(1).Product = 6
Details(1).Price = 46.85
Details(1).Qty = 6
O.Details = Details

Then we can send this message to the Orders queue using the XmlMessageFormatter.
Assuming that MSG is a Message variable and MSQ a properly initialized MessageQueue
variable, the following statements will send the message to the queue referenced by the MSQ
variable:

MSG.Body = O
MSQ.Send(MSG)

The message is serialized into XML format and written to the queue, and here's what the order
looks like:

<?xml version="1.0"?>
<Order xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ID>0</ID>
 <orderDate>2003-05-14T00:00:00.0000000:00</orderDate>
 <CustomerID>AFLKI</CustomerID>
 <Details>
 <OrderDetails>
 <ProductID>27</ProductID>
 <Price>25.93</Price>
 <Qty>14</Qty>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 354

 </OrderDetails>
 <OrderDetails>
 <ProductID>6</ProductID>
 <Price>46.85</Price>
 <Qty>6</Qty>
 </OrderDetails>
 </Details>
</Order>

You will see the code that reads the XML description of the message's body in the following
section, where we discuss how to retrieve messages from a queue.

The messages written to a queue must be retrieved and processed by another application. To
read messages from a specific queue, the application should know the type of objects stored in
the queue. Again, you must create the appropriate XmlMessageFormatter object and assign it
to the Formatter property of a MessageQueue object that references the specific queue:

Dim targetTypes(0) As Type
targetTypes(0) = GetType(Order1)
msgQ.Formatter = New XmlMessageFormatter(targetTypes)

Once the MessageQueue object has been set up, you can read messages off the queue either
synchronously or asynchronously. The Receive method returns the first message in the queue;
this is the oldest of the messages with the highest priority in the queue. The same message is
also removed from the queue, and the next time you call the Receive method it reads the next
message. If the queue is empty, the Receive method will wait until a message becomes
available. The Receive method's purpose is to continuously monitor a queue and return a
message as soon as one arrives at the queue. The following loop keeps reading messages off a
queue:

While True
 newOrder = orderQ.Receive()
 ProcessOrder(newOrder)
End While

This loop is quite impractical, as you need a mechanism for terminating it when there are no
longer messages to be read. If there are no messages in the queue, the Receive method waits
until one arrives—and freezes the application's interface. One overloaded form of the Receive
method accepts a second argument, which is a TimeSpan object. The Receive method waits
for as long as specified with the TimeSpan argument for a message to arrive in the queue and
reads it. If the queue isn't empty, the Receive method returns the first message in the queue
immediately, of course. If the specified interval expires and no new message arrives at the
queue, the Receive method throws a runtime exception. Listing 14.1 shows a simple technique
for reading all the messages in a queue:

LISTING 14.1: READING MESSAGES SYNCHRONOUSLY
While True
 Try
 newOrder = orderQ.Receive(New TimeSpan(0,0,1))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 355

 Catch ex As Exception
 Console.WriteLine(''Processed all messages in queue")
 Exit Sub
 End Try
 ProcessOrder(newOrder)
End While

The newOrder variable is a Message variable. Before you can use the object retrieved from
the queue, you must cast it to the appropriate type. There's an even better method of reading
the messages of a specific queue: using an enumerator. The MessageEnumerator class
encapsulates all the functionality you need to peek at or retrieve the queue's messages, and it's
discussed next.

USING THE MESSAGEENUMERATOR CLASS

The best technique for reading messages off a queue is to create an Enumerator object that
iterates through the messages in the queue. The MessageEnumerator class exposes the
MoveNext method, which positions the enumerator to the next message (there's no
MovePrevious method; the MessageEnumerator provides forward-only access to the messages
of a queue). When you create a MessageEnumerator on a queue, it's placed right before the
first message, so you must initially call the MoveNext method to land to the first message. The
current message is returned by the Current property of the enumerator and is not removed
from the queue. To remove a message from the queue, call the RemoveCurrent method. The
Reset method, finally, resets the enumerator right before the first message in the queue.

The following statements form the core of a routine that iterates through all messages in a
queue. MSQ is a properly initialized MessageQueue object:

Dim MSG As Message
Dim QEnum As Messaging.MessageEnumerator
QEnum = MSQ.GetEnumerator
While QEnum.MoveNext
 MSG = QEnum.RemoveCurrent
 ' PROCESS CURRENT MESSAGE,
 ' WHICH IS REPRESENTED BY THE MSG VARIABLE
End While

You can have multiple applications reading messages off the same queue with a
MessageEnumerator. The MoveNext method retrieves the next available message from the
queue, and multiple enumerators don't interfere with one another. If new messages are added
to the queue, they will be picked by the enumerator as they become available.

WARNING When you read a message from a queue you must also process it. If you retrieve a
message and fail to process it, the message will be lost. On the other hand, if you process the
message and fail to retrieve it from the queue, the same message will be processed again.
MSMQ will acknowledge positively all messages retrieved from the queue and the application
that requested the acknowledgment will assume that the message has been processed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 356

RETRIEVING MESSAGES ASYNCHRONOUSLY

The second method of reading messages off a queue is asynchronous: If no message is
available we don't wait for one to arrive. Yet new messages are processed as soon as they
arrive. To receive asynchronously, use the BeginReceive method. This method initializes a
receive operation and fires the ReceiveCompleted event when the next message is read. The
MessageQueue object that references the queue you want to read from must be declared at the
form's level and with the WithEvents keyword:

Dim WithEvents MSQ as MessageQueue

To read messages asynchronously, you set up the MSQ object by setting its Formatter
property and then call its BeginReceive method, as shown in Listing 14.2.

LISTING 14.2: RETRIEVING MESSAGES ASYNCHRONOUSLY
Dim MSQ As MessageQueue
MSQ = New MessageQueue(".\private$\orders")
Dim targetTypes() As Type
targetTypes(0) = GetType(Order1)
msgQ.Formatter = New XmlMessageFormatter(targetTypes)
msgQ.BeginReceive()

The BeginReceive method doesn't return a Message object; it simply initiates the reception of
a message. When the message becomes available, the ReceiveCompleted event is fired. In this
event's handler you must call the EndReceive method to acknowledge that you've read the
message, then process it, and finally call the BeginReceive method again to initiate the process
of reading the next message in the queue, as shown in Listing 14.3.

LISTING 14.3: PROCESSING THE RECEIVECOMPLETED EVENT
Private Sub msgQ_ReceiveCompleted(ByVal sender As Object, _
 ByVal e As System.Messaging.ReceiveCompletedEventArgs)_
 Handles msgQ.ReceiveCompleted
 Dim msg As Message = msgQ.EndReceive(e.AsyncResult)
 dim newOrder As Order = CType(msg.Body, Order)
 ProcessOrder(newOrder)
 msgQ.BeginReceive
End Sub

Both the Receive and BeginReceive methods accept an optional parameter, which is a
TimeSpan object. This argument determines how long the method should wait for a message
to arrive at the queue, if the queue is empty at the time the method is called. If you don't
specify a timeout interval, both methods will wait for a message. This is not a problem for the
asynchronous method, but the synchronous Receive method will block the application until a
message arrives to the queue.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 357

The last statement in the ReceiveCompleted event handler calls the BeginReceive method to
continue monitoring for new messages. To terminate the asynchronous operation, you can call
the EndReceive method but not call the BeginReceive method again.

When the specified interval expires and there's no message to be read in the queue, the
Receive method throws a runtime exception. The BeginReceive method won't throw an
exception; it simply won't fire the ReceiveCompleted event. We usually specify a timeout
interval with the Receive method, but not with the BeginReceive method. Just bear in mind
that the timeout interval of the Receive method doesn't mean anything on its own; the method
throws an exception when the timeout interval expires, which means that you must embed the
Receive method into a structured exception handler.

DELETING MESSAGES

Once a message has arrived at a queue, you can't edit it. This would be like editing an
incoming message with your mail client application. The operation you can perform on a
message besides retrieving it from the queue is to delete without processing it. To delete a
message, call the MessageQueue class's Delete method. This method accepts a single
argument, which is the path of the queue, and doesn't return any value. It simply deletes the
top message in the queue. If the queue is empty, the method simply returns. The Delete
method is an instance method and you can call it without first creating a MessageQueue object
(that's why it expects the queue's path as argument). The following statements are equivalent:

MSQ.Delete(MSQ.Path)
System.Messaging.MessageQueue.Delete(path)

where MSQ is a properly initialized MessageQueue variable and path is a string variable that
represents an existing queue's path.

PEEKING AT MESSAGES

In addition to retrieving messages from a queue, you can also peek at a message without
removing it from the queue. To peek at a message, use the Peek method of the MessageQueue
class. The Peek method returns a copy of the first message in the queue, but it doesn't remove
the message from the queue. The Peek method doesn't accept any arguments and returns a
Message object. Its behavior is similar to that of the Receive method: If the queue is empty,
the Peek method will wait for a new message to arrive and freeze the application. You can
pass to the method a TimeSpan object that represents the time interval it should wait for a
message to arrive. If no message arrives in the specified interval, a runtime exception is
thrown. Finally, you can peek at the top message asynchronously with the BeginPeek method,
which is identical to the BeginReceive method. The difference is that when peeking at the
queue, the message is not removed from the queue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to peeking at the first message in the queue, you can peek at any message in the
queue with the PeekByID method, regardless of the message's order in the queue. This method
expects a message ID as argument. We hardly ever know the message's ID, because this ID is
generated by the system when a message is created. You can also peek at messages related to
another message with the PeekByCorrelationID method. This method, like the
RetrieveByCorrelationID method, accepts a message ID as argument and returns a collection
of messages that are related to the message with the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 359

events will cause a message to be sent to the acknowledgment queue. These events include the
arrival of a message at its destination queue, the retrieval of a message from the destination
queue, and so on.

Messages are not acknowledged instantly. A message sent to a remote queue may take quite a
while to reach its destination. If the local machine is not connected to the network, or the
destination queue is not available at any time, a message may take hours or days to be
delivered. Waiting for an acknowledgment that may or may not arrive is not an option either.
When we request an acknowledgment for a message, we also specify a time interval. If the
operation completes within the specified interval, a positive acknowledgment is generated. If
not, a negative acknowledgment is generated.

You can set a time-out for two operations: the delivery of a message to the destination queue
and the retrieval of the message from the queue. The fact that a message regarding an order
has reached its queue successfully isn't valuable information, because the message may not be
read from the queue. If such a message remains unread in the queue for too long, the order
should probably be canceled. To set the two time-out intervals, set the properties
TimeToReachQueue and TimeToBeReceived of the appropriate Message object. Both
properties' value is a TimeSpan object that represents the interval in which we want the
operation to complete successfully. If the message is not delivered (or received) within the
specified interval, the message is removed from its current queue and the appropriate negative
acknowledgment is sent to the specified queue.

In addition, you must specify the type of action that will be acknowledged with the
AcknowledgeTypes property. The AcknowledgeTypes property can be set to one of the
members of the AcknowledgeTypes enumeration, which are listed in Table 14.2.

TABLE 14.2: THE MEMBERS OF THE ACKNOWLEDGETYPES ENUMERATION

MEMBER NAME DESCRIPTION

FullReachQueue A positive acknowledgment is created if the message reaches
the destination queue successfully, and a negative
acknowledgment if the message fails to be delivered within the
specified interval.

FullReceive A positive acknowledgment is created if the message is
retrieved from the destination queue within the specified
interval, and a negative acknowledgment otherwise.

NegativeReceive A negative acknowledgment is created if the message fails to be
received from the queue. Note that peeking at a message does
not remove it from the queue.

None No acknowledgment message is created.
NotAcknowledgeReachQueue A negative acknowledgment is created if the message does not

reach the queue before the specified interval expires.
NotAcknowledgeReceive A negative acknowledgment is created if the message is not

received before the specified interval expires.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PositiveArrival A positive acknowledgment is created when the original
message reaches the queue.

PositiveReceive A positive acknowledgment is created when the message is
received successfully.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 36

 arrList.RemoveAt(1)
 ListBox1.Items.Clear()
 ListBox1.Items.AddRange(arrList.ToArray)

 End Sub
End Class

Notice that you don't have to use For...Next or other loop code to feed the datafrom an
array to a ListBox. Instead, you can simply slap it in with the ListBox's AddRange method. Or
you could bind the data in an array directly to a ListBox (a technique illustrated later in this
chapter).

You can, alternatively, simply specify an element's contents as another way of removing the
element. Replace the line in boldface in the example above with the following line:

arrList.Remove(''Pearl Harbor")

In this and other ways, the ArrayList sits somewhere between the limited, classic array and
features more traditionally found in database management.

Because an ArrayList is dynamic—reallocating memory as needed when you add items to it—
you need not worry about making such adjustments. However, you can set an ArrayList's
Capacity property explicitly if you wish, and you can freely resize an ArrayList at any time by
changing this Capacity property. If you don't expect to add any more new elements to an
ArrayList, you can free memory by using the TrimToSize method.

Mass Manipulation

An ArrayList can manipulate a range of its elements en masse by appending, inserting,
reading, or removing the range all at once. This example reads a range (replace the code in the
previous example's Button1_Click event with this):

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim RangeOfArrList As ArrayList = arrList.GetRange(0, 2)
 ListBox1.Items.Clear()
 ListBox1.Items.AddRange(RangeOfArrList.ToArray)
End Sub

Here the GetRange method specifies (start index, number of elements in range). Then that
range is copied into a new ArrayList named RangeOfArrList.

Data Binding

You can now bind DataGrids, ListBoxes, and most other controls to an array, HashTable, or
other collection. Prior to .NET you could only bind to a database or a recordset. Using the
previous

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 360

You can combine multiple types of acknowledgments with the Or operator. For example, you
can set the Acknowledgment Types property to:

PositiveArrival Or PositiveReceive

to indicate that a positive acknowledgment should be generated when the message arrives at
the destination queue, as well as when the message is retrieved from the queue. Assuming that
the MessageQueue1 component represents a valid message queue, the statements of Listing
14.4 send a message to a local queue and request a positive acknowledgment for the event of
the arrival of the message to the destination queue and a negative acknowledgment if the
message isn't retrieved within 10 seconds of the moment it was sent. Just add a new button to
the form of the test project you're using and enter the statements shown in Listing 14.4 in its
Click event handler.

LISTING 14.4: SENDING A MESSAGE WITH AN ACKNOLEDGMENT REQUEST
Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button3.Click
 Dim msg As New Message
 msg.Body = "Message to be acknowledged"
 msg.Label = "ACK Message"
 msg.AdministrationQueue = New MessageQueue(".\private$\ackQueue")
 msg.AcknowledgeType = AcknowledgeTypes.FullReachQueue Or _
 AcknowledgeTypes.NegativeReceive
 msg.TimeToBeReceived = New TimeSpan(0, 0, 10)
 msg.Recoverable = True
 MessageQueue1.Send(msg)
End Sub

This button sends a simple message to the queue represented by the MessageQueue1
component and requests an acknowledgment. Since the message is sent to a local queue it will
arrive at the destination queue, but it will not be retrieved from the queue. The arrival of the
message should be acknowledged with a positive acknowledgment message and the retrieval
of the message with a negative acknowledgment message, 10 seconds later. You can change
the setting of the Acknowledge Type and theTimeToBeReceived properties to experiment
with the various acknowledgment types. Figure 14.3 shows the contents of the ackQueue
local queue, which stores the acknowledgment messages, after a sending a few messages. As
you can see, positive acknowledgment messages are indicated by a little green arrow at their
lower left corner while negative acknowledgment messages are indicated by a red arrow at the
same location. Under the Class heading of the snap-in, you can view a short description of the
acknowledgment message ("The message reached the queue" for positive acknowledgments
and "The time-to-be-received has elapsed" for negative acknowledgments). Negative
acknowledgment messages have a body, which is the body of the message that either failed to
arrive at the destination queue or wasn't read by an application at the destination queue.
Positive acknowledgment messages don't have a body. Acknowledgment messages are not
removed automatically from their queues.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 361

FIGURE 14.3 Viewing acknowledgment messages with the MSMQ snap-in

Notice that you don't have to set the Acknowledge Types property of each message you send.
You can specify the settings of all messages sent to a specific queue with the
DefaultProperties ToSend property of the MessageQueue object that represents the destination
queue. This way you can use even the simple form of the Send method to send your messages
and still take advantage of the acknowledgment features of MSMQ. The following code
segment requests the same acknowledgment type as we did in the preceding example, only
this time through the DefaultProperties ToSend property:

With msgQ.DefaultPropertiesToSend
 .AdministrationQueue = New MessageQueue(".\private$\ackQueue")
 .AcknowledgeType = AcknowledgeTypes.FullReachQueue _
 Or AcknowledgeTypes.FullReceive
End With
msgQ.Send(_
 "Please acknowledge the arrival and retrieval of this message")

Processing Acknowledgment Messages

For an acknowledgment message to be of any use, the application that requested it must
receive it and take the appropriate action. Unlike regular messages, acknowledgment messages
have no body. Instead, they expose a number of other properties, such as the SentTime
property (the date and time the message was sent), the MessageType property (the message's
type), and many more. These properties, however, are not received automatically by the
Receive method. You must set the appropriate member of the MessageReadPropertyFilter
property to True for each property you want to read. To read the values of the SentTime,
MessageType, and DestinationQueue properties, you must use a few statements like the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MessageType, and DestinationQueue properties, you must use a few statements like the
following:

With Q.MessageReadPropertyFilter
 .SentTime = True
 .MessageType = True
 .DestinationQueue = True

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 362

End With
Dim msg As Message
msg = Q.Receive

where Q is a properly initialized MessageQueue object that represents a specific queue.

The Read Top Acknowledgment Message button on the form of the SimpleQueue application
reads the first message in the ackQueue queue, and its Click event handler is shown in Listing
14.5:

LISTING 14.5: PROCESSING AN ACKNOWLEDGMENT MESSAGE
Private Sub bttnTopAckMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnTopAckMessage.Click
 Dim Q As New MessageQueue(".\private$\ackQueue")
 Q.MessageReadPropertyFilter.SenderId = True
 Q.MessageReadPropertyFilter.Id = True
 Q.MessageReadPropertyFilter.SentTime = True
 Q.MessageReadPropertyFilter.MessageType = True
 Q.MessageReadPropertyFilter.DestinationQueue = True
 Dim msg As Message
 msg = Q.Receive
 TextBox1.Clear()
 TextBox1.AppendText(_
 "SENDER ID: " & _
 System.Text.Encoding.Unicode.GetString(msg.SenderId) & _
 vbCrLf)
 TextBox1.AppendText("MESSAGE ID: " & msg.Id.ToString & vbCrLf)
 TextBox1.AppendText("TIME SENT: " & msg.SentTime & vbCrLf)
 TextBox1.AppendText("MESSAGE TYPE: " & _
 msg.Acknowledgment.ToString & vbCrLf)
End Sub

Reading the top message off an acknowledgment queue is not a very useful operation. In most
cases we want to read the acknowledgment(s) generated for a specific message. We do so by
calling the ReceiveByCorrelationID method passing the ID of the original method as
argument. This method will retrieve the acknowledgment messages generated for a specific
message, identified by its ID. If no acknowledgment message has arrived for the specified
message, the ReceiveByCorrelationID method will throw a runtime exception.

Use the SimpleQueue project to write a few messages to theToolkitQueue queue. The Send
Message & Request Acknowldgment button sends simple messages and stores their IDs to the
CorrelationIDs ArrayList. This ArrayList is declared on the form's level, so that all event
handlers can access it. The code behind the Send Message & Request Acknowledgment button
is shown in Listing 14.6. It basically creates a new Message object, sets its
AdministrationQueue, Acknowledge Type, and Time ToBeReceived properties, and sends the
message. In addition, it saves the ID of this message to the CorrelationIDs ArrayList, so that it
can later retrieve the acknowledgment messages associated with this message.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 363

LISTING 14.6: REQUESTING ACKNOWLEDGMENT FOR A NEW MESSAGE
Private Sub bttnMsgAcknowledge_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnMsgAcknowledge.Click
 Dim msg As New Message
 msg.Body = "Message to be acknowledged"
 msg.Label = "ACK Message"
 msg.AdministrationQueue = New MessageQueue(".\private$\ackQueue")
 msg.AcknowledgeType = AcknowledgeTypes.FullReachQueue Or _
 AcknowledgeTypes.NegativeReceive
 msg.TimeToBeReceived = New TimeSpan(0, 0, 10)
 msg.Recoverable = True
 msg.AttachSenderId = True
 MessageQueue1.Send(msg)
 CorrelationIDs.Add(msg.Id)
 TextBox1.Clear()
 TextBox1.AppendText(_
 "The following message was written to the queue: " & vbCrLf)
 TextBox1.AppendText("ID " & msg.Id & vbCrLf & _
 "BODY " & msg.Body & vbCrLf)
 TextBox1.AppendText(">>> ACKNOWLEDGMENT REQUESTED <<<")
End Sub

The AcknowledgeType property in the sample application is set to request a negative
acknowledgment for a delivery failure and a positive acknowledgment of a successful delivery
to the destination queue. In other words, we request an acknowledgment message for two
events: the successful arrival of the message to the destination queue (FullReachQueue) and
the failure to retrieve the message from the queue (NegativeReceive). The time-out interval for
the message's receipt is set to 10 seconds. You can experiment with other types of
acknowledgments by changing the setting of the AcknowledgeType property.

The acknowledgment message(s) will be delivered to the queue specified by the
Administration-Queue property. These messages, however, are not regular messages; they
have no body. Open the MSMQ snap-in and create the ackQueue private queue. Then start
the Simple Messages application and click the button Send Message & Request
Acknowledgment a few times. Each time, a new message will be sent and a positive
acknowledgment message will arrive at the ackQueue. The acknowledgment message's size is
zero bytes. However, it has an ID and its Class property is the string "Message reached
queue." This message will arrive almost instantly, because the MessageQueue1 queue is on
the local computer. Ten seconds later another message will arrive, this time a negative
acknowledgment message ("Time to be received timed out"), indicating that the message
wasn't retrieved from the destination queue within the specified interval. Figure 14.3 shows
the contents of the ackQueue queue after sending a few messages with acknowledgment
requests.

Now click the Read Top Acknowledgment Messages to read the first message in the
ackQueue queue. The Retrieve message won't retrieve much information from the queue,
because acknowledgment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 364

messages have no body (if you select a message in the ackQueue queue and look at its
properties, you'll see that the Body tab of the property pages is empty). To specify the
properties of the message to be read, you must set the MessageReadPropertyFilter property of
the MessageQueue object that represents the queue with the acknowledgment messages.
Listing 14.7 shows the code behind the button that retrieves the top acknowledgment message
in the queue.

LISTING 14.7: RETRIEVING AND PROCESSING AN ACKNOWLEDGMENT MESSAGE
Private Sub bttnTopAckMessage_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnTopAckMessage.Click
 Dim Q As New MessageQueue(".\private$\ackQueue")
 Q.MessageReadPropertyFilter.SenderId = True
 Q.MessageReadPropertyFilter.Id = True
 Q.MessageReadPropertyFilter.SentTime = True
 Q.MessageReadPropertyFilter.MessageType = True
 Q.MessageReadPropertyFilter.DestinationQueue = True
 Dim msg As Message
 Try
 msg = Q.Receive(New TimeSpan(0, 0, 1))
 Catch ex As Exception
 TextBox1.AppendText("Couldn't read any acknowledgment messages")
 Exit Sub
 End Try
 TextBox1.Clear()
 TextBox1.AppendText("SENDER ID: " & _
 System.Text.Encoding.Unicode.GetString(msg.SenderId) & _
 vbCrLf)
 TextBox1.AppendText("MESSAGE ID: " & msg.Id.ToString & vbCrLf)
 TextBox1.AppendText("TIME SENT: " & msg.SentTime & vbCrLf)
 TextBox1.AppendText("MESSAGE TYPE: " & _
 msg.Acknowledgment.ToString & vbCrLf)
End Sub

After reading the acknowledgment message, the code prints the values of certain properties of
the message on a TextBox control.

Retrieving individual acknowledgment messages isn't a common practice. It's more practical
to keep track of the IDs of all messages sent through a queue and after a while retrieve the
acknowledgment messages for each ID. This is a task you can perform at the end of the day,
or even use timers to signal to your application the expiration of each message. Let's assume
that each message sent to a specific queue must be retrieved from its destination queue within
48 hours. You can program a Timer to fire an event after 48 hours and a few minutes. This
event should also report the message ID for which the event is fired; in the event's handler,
you can retrieve the acknowledgment message for the specific ID. If no negative
acknowledgment message is found in the acknowledgment queue, you

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 365

know that the message has been retrieved from the destination queue and you need not take
any special action. We're assuming that most messages will be delivered successfully, so we
request negative acknowledgments for the messages that were not delivered successfully.

Another technique for processing acknowledgment messages is to request negative
acknowledgments only and write a loop that runs in the background and retrieves messages
from the acknowledgment queue continuously. For every negative acknowledgment, you must
take the appropriate action (repeat the message, log an error entry, send the same message to
another queue, and so on).

The Process Acknowledgment Messages of the SimpleQueue application retrieves from the
ackQueue queue the messages associated with the ID of each of the sent messages. The code,
shown in Listing 14.8, iterates through the IDs of the messages it has sent to the
MessageQueue1 queue. At each iteration it retrieves the acknowledgment message associated
with a specific message ID (all the IDs correspond to messages sent by the application with
the Send Message & Request Acknowledgment button).

The acknowledgment message is classified according to the value of its Acknowledgment type
and displayed on the TextBox control at the bottom of the form. Notice that the
ReceiveByCorrelationID retrieves a single acknowledgment message, while the queue may
contain up to two acknowledgment messages for each regular message. You must either edit
the code to retrieve all the messages specified with a particular ID, or edit the code that
generates the messages and request a single acknowledgment. We usually request a negative
acknowledgment for messages that weren't retrieved from the destination queue within the
specified time interval.

LISTING 14.8: PROCESSING THE ACKNOWLEDGMENT MESSAGE
Private Sub bttnAckRead_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnAckRead.Click
 Dim Q As New MessageQueue(".\private$\ackQueue")
 Q.MessageReadPropertyFilter.SenderId = True
 Q.MessageReadPropertyFilter.Id = True
 Q.MessageReadPropertyFilter.SentTime = True
 Q.MessageReadPropertyFilter.MessageType = True
 Q.MessageReadPropertyFilter.DestinationQueue = True
 Dim msg As Message
 Dim id As String
 TextBox1.AppendText(Now.TimeOfDay.ToString)
 For Each id In CorrelationIDs
 Try
 msg = Q.ReceiveByCorrelationId(id)
 Select Case msg.Acknowledgment
 Case Acknowledgment.ReachQueue
 TextBox1.AppendText(vbCrLf & "MESSAGE " & id & _
 " reached destination queue")
 Case Acknowledgment.Receive
 TextBox1.AppendText(vbCrLf & "MESSAGE " & id & _
 " received")
 Case Acknowledgment.ReachQueueTimeout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 366

 TextBox1.AppendText(vbCrLf & _
 ''MESSAGE " & id & _
 " timed out (did not reach destination queue")
 Case Acknowledgment.ReceiveTimeout
 TextBox1.AppendText(vbCrLf & "MESSAGE " & id & _
 " timed out (not received)")
 End Select
 Catch ex As Exception
 TextBox1.Clear()
 TextBox1.AppendText("No acknowledgment for message " & _
 id & " found" & vbCrLf)
 TextBox1.AppendText(ex.Message)
 End Try
 Next
End Sub

Fault Tolerance and Load Balancing

MSMQ provides two more features, which aren't quite obvious and haven't been sufficiently
stressed in our discussion: fault tolerance and load balancing. Messages are guaranteed to be
delivered to the destination queue, even if there's no connection at the time they're created. If a
message can't be delivered to the remote machine at the time of its creation (the moment the
Send method is executed), it's written to an outgoing queue on the local machine. Messages in
the outgoing queues will be sent to their respective queues as soon as this become possible—
that is, as soon as the local machine establishes a connection to the remote machine. You don't
have to do anything about the messages in the outgoing queues, because MSMQ will transmit
them automatically. Of course, you must not forget to set the Message object's Recoverable
property to True, so that the message is actually written to disk, rather than saved in memory.
This ensures that the messages will remain in the outgoing queues even after you turn off the
local computer.

Messages may even be routed to other nodes between the local machine and the remote
computer. This is the case with public queues, which may reside on a different domain of the
network. MSMQ routes the messages to their destination and the local machine may not have
direct access to the destination queue. In short, messages will be delivered to their destination
unless it's physically impossible (if the remote machine doesn't exist, for example, or if the
remote queue has been renamed).

Even if the delivery of a message can't take place within a specified time interval (which is
specified by the sending application), MSMQ detects the condition and generates the
appropriate acknowledgment messages, provided that the sending application has requested
the generation of acknowledgment methods. MSMQ is a reliable robust mechanism for
exchanging messages between two computers, and it exhibits the fault tolerance necessary in
building loosely coupled applications. In other words, MSMQ won't drop any messages, no
matter what. Whether a message can't be delivered to another local queue on the same network
because the sending application doesn't have permission to write to this queue, or a message
can't be delivered to a remote computer because the two machines can't establish a connection
to one another, you can write applications to handle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 367

the messages that failed to be delivered and/or processed. All the functionality you need is
exposed by MSMQ through a simple object model, which you already know how to program
against.

The second feature of MSMQ is load balancing. You can have multiple applications reading
messages off a queue. Each time an application requests a message from the queue, the
message is passed to the application and removed from the queue. MSMQ doesn't actually
balance the messages among multiple applications, but you can run the same instance of the
same application on multiple machines and each application will retrieve and process a
number of messages without interfering with the other applications. In effect, this is a form of
load balancing. You can even use the MessageEnumerator class to create a dynamic view of
the queue. As messages are added to the queue, or removed from the queue, the enumerator is
adjusted accordingly. This is possible because the enumerator always gets the next message
from the queue. The enumerator doesn't know which is the next message until it's requested to
read it from the queue. Only then does it pick the message from the queue and present it to the
application.

But why should we have multiple applications processing the same queue's messages? The
applications are reading messages of the same type and will most likely update the same
database, or perform identical actions. There may be situations in which a single application
can't process all the messages within a reasonable time interval. Let's say you have a
commercial site on the Web. The site, which may actually reside on an ISP's machines, logs
all orders into a queue. It could be a queue on the same machine as the web server, or on one
of the servers on your company's network. Once an order arrives at your company, it must be
processed. This means that it must be entered into an order-tracking system. It's very likely
that you will have many people processing the orders. Depending on the address of the
customer, you may process different orders at different locations. In any case, the orders need
not be moved from the queue into your order-tracking system by a single machine. Every
workstation that runs the order-tracking application can read messages off the queue and log
them into a local database. An order read at a specific warehouse will most likely be processed
locally. If not, it will probably be forwarded to another warehouse through a different queue.
The idea is that a queue's messages need not be processed from a single workstation. Any of
the available workstations can process any order—as long as two or more workstations don't
read the same order from the queue. If you make sure that messages are removed from the
queue as they're read, then no two applications can read the same message.

Let's look at a simple application that reads messages off a queue in a load-balanced manner.
We'll write a single application and then run many instances of it to simulate a scenario in
which multiple workstations read messages from the same queue. You can run multiple
instances of this application on the same machine, or copy the executable on multiple
workstations on your network and run them. Under test conditions, all workstations will
process approximately the same number of messages. In a production environment, the least
loaded workstations will process more messages than the more loaded workstations.

Figure 14.4 shows several instances of the MSMQLoadBalancing project. The Add Messages
To Queue button adds 50 new messages to the LoadBalancedQueue queue of the local

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To Queue button adds 50 new messages to the LoadBalancedQueue queue of the local
machine. You can click this button on any of the running instances of the application to add
messages to the queue. The Retrieve Messages From Queue button reads messages off the
same queue, one at a time. We've inserted a three-second delay between reading messages to
simulate some computational load. The messages are simple strings and the application just
reads them from the queue. A real message will take a few moments to a few seconds to be
processed.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 368

FIGURE 14.4 Consuming a queue's messages from within multiple clients

Let's look at the application's code. When the form is first loaded, the program creates a
reference to the LoadBalancedQueue queue. If the queue doesn't exist, the program creates it
with the statements of Listing 14.9:

LISTING 14.9: CREATING AND SETTING UP THE BALANCEDQUEUE
Private Sub Form1_Load(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 If MessageQueue.Exists(".\private$\BalancedQueue") Then
 MQ = New MessageQueue(".\private$\BalancedQueue")
 Else
 MQ = MessageQueue.Create(".\private$\BalancedQueue")
 End If
 Dim types(0) As Type
 types(0) = GetType(System.String)
 MQ.Formatter = New XmlMessageFormatter(types)
End Sub

The MQ variable is a form-level MessageQueue variable, which must be accessed by the
procedures that read and write to the queue. We use an XmlFormatter so that we can later read
the message's Body property. The messages written to the queue are simple strings. Listing
14.10 shows the code behind the Add Messages To Queue button:

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 369

LISTING 14.10: CREATING RANDOM MESSAGES
Private Sub bttnAddMessages_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnAddMessages.Click
 Dim msg As Message
 Dim i As Integer
 For i = 1 To 50
 msg = New Message(''A simple text message " & i.ToString)
 msg.Label = "BalancedQueue Message"
 MQ.Send(msg)
 Next
 MsgBox("50 new messages added to BalancedQueue")
End Sub

The code so far is fairly trivial. Let's look at the code that reads the messages off the queue.
The code creates an enumerator to access the messages in the queue, the QEnum variable. Then
it iterates through the elements of the enumerator with a While loop and removes the top
message from the queue. Each message's ID and body are printed on the TextBox control at
the bottom of the form. Between messages, the code calls the main thread's Sleep method to
simulate a three-second delay, as shown in Listing 14.11:

LISTING 14.11: ENUMERATING THE MESSAGES IN A QUEUE
Private Sub bttnReadMessages_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnReadMessages.Click
 Dim MSG As Message
 Dim QEnum As Messaging.MessageEnumerator
 QEnum = MQ.GetEnumerator
 Dim nMessages As Integer
 While QEnum.MoveNext
 MSG = QEnum.RemoveCurrent
 System.Threading.Thread.CurrentThread.Sleep(3000)
 nMessages += 1
 Label2.Text = "Read " & nMessages.ToString & "messages so far"
 TextBox1.AppendText(MSG.Id & vbTab & MSG.Body & vbCrLf)
 Application.DoEvents()
 End While
 TextBox1.AppendText("No messages left in the Queue!" & vbCrLf)
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 370

To see how the load is balanced among multiple instances of an application, compile the
project and minimize (or close) the Visual Studio window. Then locate the executable file in
the project's Bin folder and start several instances of it. Click the Add Messages To Queue
button on one of the forms on the desktop to add 50 new messages to the queue. A message
box will pop up to confirm the operation, and then you can click the Retrieve Messages From
Queue button on all the forms. All applications will be reading messages off the queue using
an enumerator, and each enumerator will return the top message from the queue to its
application. The enumerators do not interfere with one another and allow multiple applications
to process messages from the same queue. A single instance of the application that processes
the messages may not be able to keep up with the incoming flow of messages, but you can run
multiple instances of the same application on multiple workstations to process the messages of
a queue in a timely manner.

A single instance of the application would read 50 messages in 150 seconds, because of the
three-second delay between messages. Three instances of the same application will process the
same 50 messages in one-third of the time, because the Sleep method doesn't keep the
processor busy. It has the same effect as running each instance of the application on a separate
machine. By the way, we could have implemented the same application with threads, but this
would have added a substantial complexity to the code, which would obscure the point we're
demonstrating. Besides, there would be no performance benefit, because all the threads would
be running on the same computer. By allowing multiple workstations to access the same
queue, we can actually reduce the total time needed to process all the messages.

The call to the DoEvents method in the code gives the processor a chance to update the
TextBox control and allows you to switch to another instance of the application and start
reading messages before the current application processes all the messages in the queue. You
can use the Add Messages To Queue button on any of the forms on the desktop to add
messages to the queue. No matter which instance of the application adds them to the queue,
the messages will be processed by all applications in a load-balanced manner.

You can stop any instance of the MSMQLoadBalancing application. As long as there are
running instances of the application, they will keep processing the messages in the queue. As
you can see, a simple message-processing application based on the Messaging class is both
load-balanced and fault-tolerant. The beauty of implementing messaging applications is that
these two features are available for free. No special code is required and there's no
performance penalty. The applications that read the messages need not be aware of one
another and need not communicate with one another. You can think of MSMQ as a very
simple form of multithreading. Let's say you need to perform a number of different tasks. If
you can implement a class that describes each task, you can then create instances of this class,
put them in a queue, and have multiple applications read the messages and take the appropriate
action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The applications that retrieve messages from a queue are called server applications, while the
applications that put messages in a queue are the client applications. You may find it odd,
since the server application is usually the unique one that processes requests from multiple
clients. In the context of MSMQ, the client applications leave messages to a queue, to be
processed by one or more server applications.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 371

Transactional Messages

In addition to moving messages around in a robust manner, MSMQ can send and receive
multiple messages in a transactional mode. If one of the messages involved in the transaction
fails, then all the messages will be rolled back: the sent messages will not be allowed to appear
in their destination queues and the read messages will be placed back in their corresponding
queues.

To send and receive transactional messages, you must first create a new queue and, when
you're prompted to enter the queue's name in the Queue Name dialog box, check the box
Transactional (see Figure 14.5). You can create a transactional queue with the Create method
of a MessageQueue object by specifying an additional argument after the queue's name. This
argument is a Boolean value that determines whether the new queue will be marked as
transactional. The simple form of the Create method creates non-transactional queues. To find
out whether an existing queue is transactional or not, examine the value of the Transactional
property of the MessageQueue object that represents the specific queue.

FIGURE 14.5 Creating a transactional queue

Transactional queues can only send transactional messages and an attempt to send a non-
transactional message through a transactional queue will cause an exception. Likewise, any
attempt to send a transactional message through a non-transactional queue will also cause an
exception. It's possible to send a non-transactional message through a transactional queue, as
long as you use the form of the Send method that specifies the context of a transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You will also have to insert a few additional statements in your code. First, you must create a
MessageQueueTransaction object. This object must be passed as argument to all Send and
Receive methods that will participate in the transaction. There are two more methods that can
participate in transactions: the ReceiveByID and the ReceiveByCorrelationID methods. To
specify that the action performed by the corresponding method is part of a transaction, you
simply pass an additional argument, which is an instance of the MessageQueueTransaction
class.

The MessageQueueTransaction class exposes three methods for controlling a transaction: the
Begin method, which marks the beginning of a transaction, the Commit method, which
commits a transaction, and the Abort method, which aborts a transaction. When a transaction
is aborted, any messages sent or received are rolled back. When messages are sent as part of a
transaction, the messages aren't visible at the destination queue, nor do they generate any
acknowledgment messages, until

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 372

the transaction is committed. Listing 14.12 demonstrates the basic steps in sending messages
in the context of a transaction. We're using the simple form of the Send method, but you can
replace it with a few statements that create a new Message object and send it.

LISTING 14.12: SENDING TWO MESSAGES IN A TRANSACTION
Dim MTX As New MessageQueueTransaction()
Dim MQ As New MessageQueue(".\private$\TrxOrders")
MTX.Begin()
Try
 MQ.Send("The first message in the transaction", msgTx)
 MQ.Send("The second message in the transaction", msgTx)
 MTX.Commit()
Catch
 MTX.Abort
Finally
 MQ.Close
End Try

Implementing transactions with MSMQ isn't much different than implementing database
transactions. In addition to the three basic methods for controlling the transaction, the
MessageQueue-Transaction class exposes the Status property, which returns the current status
of the transaction. This property can return one of the members of the
MessageQueueTransactionStatus enumeration, which are the following: Initialized (the
transaction object has been created, but no message has been sent, or read, in the context of
this transaction), Pending (the transaction is still in progress), Committed (the transaction
has completed successfully), and Aborted (the transaction has been aborted).

To demonstrate the use of transactional queues, we'll use the order tracking system as an
example. The computer that receives the orders creates a message for each order and sends it
to a queue. Another application, running on a different, possibly remote, computer reads the
messages off the queue and processes them. The application that reads the messages off the
queue may log an entry or send a confirmation message to the customer. Without transactions,
it's possible to read the message off the queue but fail to log the appropriate entry. Another
fairly common situation is to send the same message to two different queues. You could send
the order to a warehouse to process it, as well as to another computer at the headquarters.
MSMQ allows you to wrap the submission or retrieval of multiple messages in the context of a
transaction with a few additional statements.

You can also use transactions as you read messages from a queue. You can start a transaction
before retrieving a message and commit it after its successful processing. If the processing
fails for any reason, you can abort the transaction and return the message to the queue. You
must add statements to your code to handle this situation, because it's likely that the same error
will occur the next time the application attempts to process the same message. For example,
you can insert a few statements that will move the message to a different queue, create a
different message and send it to the machine where the message originated, and so on.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 374

processes them. The orders aren't uploaded in real time, but only when the client computer has
access to the server's queue. Until then, orders are stored in a local queue, the Outgoing queue,
whose messages will be automatically uploaded to the remote queue. You can have multiple
instances of the client application, all sending messages to the same queue.

In Chapter 18 we're going to build an application for entering orders into the Northwind
database. The application will allow the user to enter the details of an order on a ListView
control and then commit the entire order to the database. In this section we'll present a
variation of the application that doesn't commit the orders to the database. Instead, it serializes
each order into a new message and sends it to the NWOrders queue of the local machine.
We'll also write an application that retrieves the orders from the queue and processes them (it
simply commits the orders to the database). Figure 14.6 shows the DisconnectedOrders
application that creates the orders and Figure 14.7 shows the OrdersServer application that
processes the orders. The OrdersServer application's interface allows an operator to review
each order and decide whether to submit it to a local database for further processing, or reject
it.

FIGURE 14.6 Preparing an order with the DisconnectedOrders application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 14.7 Processing the order messages generated by the OrdersServer application

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 375

We're not going to get into the details of the DisconnectedOrders application here (the
application's code is discussed in detail in Chapter 18). In this section we'll look at the code
that creates an Order object out of the data entered by the user on the form of Figure 14.6 and
sends it to the NWOrders local queue.

Before we explore the code of the application, we'd like to discuss a few practical issues. The
DisconnectedOrders application, as its name implies, is meant to be used offline, on a
salesperson's notebook computer. To take an order from a customer, the salesperson must have
an up-to-date pricelist. The application should be able to work with a local copy of the
pricelist and should download the current pricelist from the server whenever the two
computers are connected. If the price of a product changes while the salesperson is on the go,
the product will be sold at its old price. The application running on the notebooks of the
salespersons will create a message for each new order and send it to a specific queue, on a
remote machine. Messages will be stored to an outgoing queue at the local computer and
delivered to the destination queue when the two computers connect.

The application's Data menu has two items, the Download Tables and Populate Tables
commands. The Download Tables command downloads the pricelist from the server into a
DataSet and persists the DataSet to an XML file. The Populate Tables command populates the
same DataSet with the data stored in the XML file. The customers are stored in another table
of the same DataSet. Users should be able to enter new customers into the database. We're not
showing here how to enter new customers to the client DataSet. Instead, we'll work with the
existing customers. You can easily modify the application to accept new customers. You must
create a new custom class for storing new customer data and submit them to a different (or the
same) queue. It's possible to send messages of different types to the same queue, as long as
you differentiate one of their properties. For example, you can set the Label property of the
messages that represent orders to ''NWOrder" and the Label property of the messages that
represent customers to "NWCustomers." Or you can set the Category property of the two
types of messages. The idea is that the application that processes the messages will be able to
quickly determine each message's type and cast it accordingly. You should also assign a
higher priority to messages that correspond to customers, so that they'll be processed before
their orders.

We'll use the Northwind sample database in our application. The basic columns of the
Products table (product IDs, names, and prices) and the Customers table (customer IDs,
names, and so on) will be downloaded to each client, where they will be persisted to an XML
file. The application can populate a DataSet from the XML file at any time, regardless of
whether it's connected to the server at the time. Obviously, every time the salesperson
connects to the company's server to upload orders, he should also update the price list on his
portable computer.

Preparing Orders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The class we'll use to store orders is the NewOrder class, whose definition is shown in Listing
14.13. The header of the order has just two fields, the CustomerID and EmployeeID fields.
The order's details are stored in an array of OrderedProduct objects. Each element of this array
corresponds to one of the order's detail lines.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 376

LISTING 14.13: THE NEWORDER CLASS'S DEFINITION
Public Class OrderedProduct
 Public ProductID As String
 Public ProductPrice As Decimal
 Public ProductQTY As Integer
 Public ProductDiscount As Decimal
End Class

Public Class NewOrder
 <XmlAttributeAttribute()> Public CustomerID As String
 <XmlAttributeAttribute()> Public EmployeeID As Integer
 Public Details() As OrderedProduct
End Class

When the application starts, we set up the MSQ object from within the form's Load event
handler. This variable represents the queue to which the order messages will be sent. It's a
local queue in our example, but you can use a queue on a remote machine just as easily. To
serialize the NewOrder objects in XML format we'll use the XMLMessageFormatter. Listing
14.14 shows the code for setting up the NWOrders queue.

LISTING 14.14: SETTING UP A QUEUE FOR THE ORDERS
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 MSQ = New MessageQueue
 MSQ.Path = ".\private$\nworders"
 MSQ.DefaultPropertiesToSend.AttachSenderId = True
 MSQ.DefaultPropertiesToSend.UseJournalQueue = True
 MSQ.DefaultPropertiesToSend.Label = "NW Order"
 Dim MTypes(0) As Type
 MTypes(0) = GetType(OrdersClass.NewOrder)
 MSQ.Formatter = New XmlMessageFormatter(MTypes)
End Sub

To enter a new invoice, select a customer's name in the first tab and then switch to the Details
tab of the form. Enter a product's ID in the ID TextBox control and press Enter. Alternatively,
you can enter the first few characters of the product's name in the Product Name box and press
Enter. If more than one product matches the description, a ListBox with the matching product
names will appear. Select the desired product and then enter the quantity and the product's
discount (or press Enter to accept the default values). When you're done, click the Save
Invoice button to finalize the order. Instead of submitting the new order to the database, the
DisconnectedOrders application will create a new instance of the NewOrder class and store
the invoice to the newly created object. This object is then serialized and sent to the MSQ
queue. These actions take place from within the Save Order button's Click event handler,
which is shown in Listing 14.15.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 377

LISTING 14.15: SUBMITTING A NEW ORDER TO THE NORTHWIND DATABASE
Private Sub bttnAccept_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnAccept.Click
 ' Combine rows that refer to the same product.
 ' See the ReduceRows() subroutine for more information.
 ReduceRows()
 ' Create an array list of OrderedProduct items
 Dim orderedItems(lvOrderGrid.Items.Count - 1) As _
 OrdersClass.OrderedProduct
 Dim P As OrdersClass.OrderedProduct
 Dim i As Integer
 ' Iterate through the items of the ListView control and
 ' add a new OrderedProduct object to the ArrayList
 ' for each ListView item (i.e., each ordered product)
 For i = 0 To lvOrderGrid.Items.Count - 1
 P = New OrdersClass.OrderedProduct
 P.ProductID = CInt(lvOrderGrid.Items(i).Text)
 P.ProductPrice = CDec(lvOrderGrid.Items(i).SubItems(2).Text)
 P.ProductQTY = CInt(lvOrderGrid.Items(i).SubItems(3).Text)
 P.ProductDiscount = _
 CDec(lvOrderGrid.Items(i).SubItems(4).Text / 100)
 orderedItems(i) = P
 Next
 Dim order As New OrdersClass.NewOrder
 order.CustomerID = lstCustomers.SelectedValue
 order.EmployeeID = cmbEmployees.SelectedValue
 order.Details = orderedItems
 Dim MSG As New Message()
 MSG.Body = order
 MSG.Label = ''Remote Order"
 MSG.Recoverable = True
 MSQ.Send(MSG)
 MsgBox("Ordered saved successfully." & vbCrLf & _
 "Press OK to prepare a new order")
End Sub

Processing Orders

Let's switch our attention to the application that processes the orders. This is the InvoiceServer
application, whose interface is shown in Figure 14.7. The Retrieve Orders button retrieves
copies of all orders in the NWOrders queue and stores them in the Orders ArrayList. This
ArrayList contains a collection of NewOrder objects. In addition, we store each message's ID
in the IDs ArrayList collection (we'll need this ID later to commit and delete orders).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 378

The code behind this button calls the GetAllMessages method, which returns copies of the
messages but doesn't retrieve them from the queue. We have not used an enumerator, because
it's a forward-only structure. Our approach allows the user to move back and forth through the
messages and commit orders to the database, or delete orders, at will. Every time you click the
Retrieve Orders button, a different set of messages will be copied to the ArrayList: the
messages you processed (or deleted) will be missing, while new messages that have arrived
recently will be included in the collection.

As it's read, each message is converted into an instance of the NewOrder class and stored in
the Orders ArrayList. The message's ID is stored in the IDs ArrayList and you'll see shortly
how this ID is used to delete processed messages from the queue. After reading all the
messages with a For ...Next loop, the program shows the first message with the
ShowOrder() subroutine and enables the navigational buttons at the bottom of the form. The
code behind the Retrieve Orders button is shown in Listing 14.16.

LISTING 14.16: RETRIEVING COPIES OF THE MESSAGES IN THE QUEUE
Private Sub bttnGetOrders_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnGetOrders.Click
MSQ = New MessageQueue
MSQ.Path = ".\private$\NWOrders"
MSQ.DefaultPropertiesToSend.AttachSenderId = True
MSQ.DefaultPropertiesToSend.UseJournalQueue = True
MSQ.DefaultPropertiesToSend.Label = "NW Order"
Dim MTypes(0) As Type
MTypes(0) = GetType(OrdersClass.NewOrder)
MSQ.Formatter = New XmlMessageFormatter(MTypes)
Try
 Messages = MSQ.GetAllMessages
Catch ex As Exception
End Try
If Messages Is Nothing Then
 MsgBox("Could not retrieve messages from the specified queue")
 Exit Sub
End If
If Messages.Length = 0 Then
 MsgBox("There were no messages in the specified queue")
 Exit Sub
End If
Dim order As OrdersClass.NewOrder
Dim currMessage As Message
Dim iMsg As Integer
Orders.Clear()
For iMsg = 0 To Messages.GetUpperBound(0)
 Console.WriteLine(Messages(iMsg).Id)
 currMessage = Messages(iMsg)
 order = New OrdersClass.NewOrder

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 379

 order = CType(currMessage.Body, OrdersClass.NewOrder)
 Orders.Add(order)
 IDs.Add(Messages(iMsg).Id)
 Next
 currentOrder = 0
 ShowOrder(CType(Orders(currentOrder), OrdersClass.NewOrder))
 bttnNext.Enabled = True
 bttnPrevious.Enabled = True
 bttnCommit.Enabled = True
 bttnDelete.Enabled = True
End Sub

The code behind the Next and Previous buttons, shown in Listing 14.17, is quite simple. Both
buttons adjust the currentOrder variable, which is an integer and points to the current order
in the collection. The current order is the one currently displayed.

LISTING 14.17: THE NAVIGATIONAL BUTTONS
Private Sub bttnNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnNext.Click
 If currentOrder = Orders.Count - 1 Then
 MsgBox(''This is the last order")
 Exit Sub
 End If
 currentOrder += 1
 ShowOrder(CType(Orders(currentOrder), OrdersClass.NewOrder))
End Sub

Private Sub bttnPrevious_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnPrevious.Click
 If currentOrder = 0 Then
 MsgBox("This is the first order")
 Exit Sub
 End If
 currentOrder -= 1
 ShowOrder(CType(Orders(currentOrder), OrdersClass.NewOrder))
End Sub

When the Commit Order button is clicked, the code shown in Listing 14.18 casts the current
message into an instance of the NewOrder type and processes its fields. The fields are passed
as arguments to the AddHeader and AddDetailLine stored procedures. The AddHeader stored
procedure inserts the order's header, and the AddDetailLine stored procedure inserts a detail
line of the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 380

order to the Order Details table. The AddDetailLine stored procedure is executed as many
times as there are detail lines in the order. The insertion of the appropriate rows in the database
takes place from within a transaction, so that if any of the operations fails, the entire
transaction is aborted. If the order is committed successfully, the message is removed from the
queue with the ReceiveByID method of the MessageQueue class.

LISTING 14.18: COMMITTING AN ORDER TO THE DATABASE
Private Sub bttnCommit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnCommit.Click
 Dim order As OrdersClass.NewOrder
 order = CType(Orders(currentOrder), OrdersClass.NewOrder)
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText = ''AddHeader"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@customerID", order.CustomerID))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@employeeID", order.EmployeeID))
 Dim CN As New SqlClient.SqlConnection
CN.ConnectionString = "data source= "(local); & _
 "initial catalog=Northwind; " & _
 "user id=YOUR ID ;password= YOUR_PASSWORD"
 CMD.Connection = CN
 Dim TRN As SqlClient.SqlTransaction
 CN.Open()
 TRN = CN.BeginTransaction
 CMD.Transaction = TRN
 Try

 Dim OrderID As Integer
 OrderID = CInt(CMD.ExecuteScalar())
 CMD = New SqlClient.SqlCommand
 CMD.Connection = CN
 CMD.Transaction = TRN
 CMD.CommandText = "AddDetailLine"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@OrderID", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@ProductID", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Quantity", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Price", Data.SqlDbType.Money))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Discount", Data.SqlDbType.Real))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 381

 Dim Item As OrdersClass.OrderedProduct
 For Each Item In order.Details
 CMD.Parameters(''@OrderID").Value = OrderID
 CMD.Parameters("@ProductID").Value = Item.ProductID
 CMD.Parameters("@Quantity").Value = Item.ProductQTY
 CMD.Parameters("@Price").Value = Item.ProductPrice
 CMD.Parameters("@Discount").Value = Item.ProductDiscount
 CMD.ExecuteNonQuery()
 Next
 Catch exc As Exception
 TRN.Rollback()
 CN.Close()
 Exit Sub
 End Try
 TRN.Commit()
 MSQ.ReceiveById(Messages(currentOrder).Id)
 Orders.RemoveAt(currentOrder)
 CN.Close()
 ShowNextOrder()
End Sub

The transaction involves database operations only. In Chapter 16 you'll see how to implement
transactions that involve both database and MSMQ operations. This is a fairly advanced topic
that requires the installation of serviced components, and we'll postpone its discussion until
Chapter 16.

The deletion of a message is simpler. We retrieve the ID of the message to be deleted from the
IDs ArrayList and use it to retrieve the corresponding message from the queue. The Orders
collection stores the orders we read from the queue with the Retrieve Orders button, but no ID
that relates an order to its matching message. That's why we had to store the IDs of the
messages separately. There are other techniques to deal with this problem. For example, you
could add a new member to the Order class and use it to store the ID of the corresponding
message. Listing 14.19 shows the statements that remove an order from the MSQ message
queue. Notice that the code removes the order's ID from the IDs ArrayList as well.

LISTING 14.19: DELETING AN ORDER AND THE CORRESPONDING MESSAGE
Private Sub bttnDelete_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnDelete.Click
 MSQ.ReceiveById(CStr(IDs(currentOrder)))
 Orders.RemoveAt(currentOrder)
 IDs.RemoveAt(currentOrder)
 ShowNextOrder()
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 383

FIGURE 14.8 Creating a new rule

Click the Next button to see the next window of the New Rule wizard, where you can add
conditions to the rule. Conditions are selected from a drop-down list and are evaluated every
time a message arrives. If all conditions are true, the trigger will be fired. The conditions are
basically properties of the message, such as whether the message's label contains a specific
string, whether the message's body contains a specific string, the ID of the computer that sent
the message, and so on. After selecting a condition, you must enter the value that will be used
for the comparison. The rule shown in Figure 14.9 says that the trigger will be fired for
messages whose Label contains the string ''NWOrder." In the drop-down list with the
conditions, select "Message label contains" and in the box below enter the string "NWOrder"
(without the quotes). Then click the Add button to add the condition to the rule, as shown in
Figure 14.9. A rule may contain multiple pairs of conditions/comparison values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 14.9 Establishing condition for a rule

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 384

Click Next again to see the last window of the New Rule dialog box, where you can define the
action that will take place when the conditions are met. You can react to the trigger by
executing a method of a COM component, or invoke a standalone executable, as shown in
Figure 14.10. Check the appropriate option on the dialog box of Figure 14.10 and specify the
programmatic ID of the COM component, or the full path to the executable that will service
the request. You can specify any programmatic ID, or the path to any EXE file on your
system. You'll have to return to the properties of the rule and revise it after you've written the
application that will service the trigger.

FIGURE 14.10 Specifying an action for a rule

Whether you select a COM component or a standalone executable, MSMQ can pass as
arguments one or more items related to the message that fired the trigger. There's a fixed
number of parameters you can pass to the program that will service the trigger, and you can
select any of them. To view the available parameters that you can pass as arguments, click the
Parameters button; you'll see the Invocation Parameters window, where you can select the
parameters to be passed to the program that will handle the trigger. In the Parameter drop-
down list you can select one of a number of parameters and click the Add button to add it to
the list of Invocation Parameters. You can add as many of the available parameters as you
need. For example, you can pass to the program the message's body, but this will only work
for simple text messages. We normally pass the message's ID to our application and use the
RetrieveByID method to read the desired message from the queue.

Defining Triggers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that we have specified the necessary rules and the corresponding actions, we can create a
new trigger. Right-click the Triggers items and select New Trigger from the context menu
to see the dialog box in Figure 14.11. Set the trigger's name to "Order Trigger." In the
Monitored Queue section, you can specify the queue that will be monitored. Check the User
Queue option and enter the path of the queue where the orders are written
(.\private$\nworders). In the Message Processing Type section of the window, you can specify
how MSMQ will process the message. This property can be set to one of the following values:
Peeking, Retrieval, or Transactional Retrieval. Check the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 385

Retrieval option to be sure that messages are also retrieved when processed. Peeking may be a
more reasonable choice for a practical application, because we want to be sure that a message
has been processed before we remove it from the queue. To disable a trigger temporarily, clear
the Enabled button in the dialog box shown in Figure 14.11. Note that the trigger-related
windows for Windows 2003 server will be a little different than their XP versions, shown in
the figures of this chapter.

FIGURE 14.11 Setting up a new trigger

Click the Next button to see the next window of the dialog box, where you can assign one or
more of the existing rules to the current trigger. The rules you've created under the Rules
branch of Message Queuing Triggers will appear in the Existing Rules box. You can select
any one of the rules with the mouse and click the Attach button to add it to the trigger. After
adding all the rules to the trigger, click the Finish button to create the trigger.

As soon as the new trigger is created, it will be activated and all the messages in the
NWOrders queue will be processed. In the following section, we'll write a simple console
application that retrieves the order that fired the trigger and displays the order's fields on the
console window.

The ProcessOrders Console Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's build an example to demonstrate how to set up and use Message Queuing Triggers.
Earlier in this chapter we developed the DisconnectedOrders application, which takes orders
and writes them to the NWOrder local queue. The OrderServer application retrieves the
messages from the queue and processes them. If this application isn't running, then the
messages will keep accumulating in the queue. We can use the Message Queuing Triggers
service to process messages as soon as they arrive, without deploying an application that will
run continuously in the background.

The application we'll build in this section is a console application, which will simply display
the message in a console window. Once you know how to retrieve the message from the queue
and cast it to the appropriate type, you can process it in any way you like. Start a new console
application, the ProcessOrders application, and add the OrdersClass class to it (copy the class's
definition from the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 386

ProcessOrders application and paste it onto a new class module by the same name in the new
project). We need the definition of the class so that we can extract messages that represent
orders and create objects out of them, just as we did with the OrdersServer application. The
trigger passes the following arguments to the application: the message's ID, the queue's path,
and two date values (when the message was sent and when it arrived at the destination queue).
We only really need the message's ID, but we've included a few more arguments to
demonstrate how to parse multiple arguments. The trigger, which is the OrderTrigger, was set
up to peek at messages, so we must remove the messages from within our code. Once the ID
of the message is known, we can use the RetrieveByID method to remove from the queue the
message that fired the trigger.

Before looking at the project's code, we'll discuss a couple of issues we ran into as we
developed the code for the application. The arguments are passed to the application as
command-line arguments. Each argument is embedded in a pair of quotes; consecutive
arguments are separated by spaces. Here's a typical command-line argument that contains the
ID of the message, the queue's path, and the date and time the message was sent and arrived at
the queue:

"{051C9A20-9A39-4696-AE8B-04A9C1C87BD5}\6721" "POWERTOOLKIT\private$\NWOrders"
"4/9/2003 11:24:51 AM" "4/9/2003 11:24:51 AM"

This string must be parsed. As you can see, there's no unique character that separates the
various arguments. If you used the space as separator, the dates will split into three separate
arguments. We decided to remove the first quote and then replace the string that consists of a
double quote followed by a space and another quote with the Char(255). Then we can use this
character to split the string into its constituent parts. In general, you should always examine
the value of the string passed to the component and make sure that your parsing code will
work. The following statements retrieve the command-line arguments as a string and then split
this string to extract the individual arguments:

Dim commands As String = Microsoft.VisualBasic.Command()
commands = commands.Replace(""" """, Chr(255)
commands = commands.Substring(1)
Dim separators As String = Chr(255)
Dim args() As String = commands.Split(separators.ToCharArray)

Notice the format of the message's ID. It's exactly as it appears in the MSMQ snap-in, but if
you attempt to use it as-is to retrieve the message from within your code, a runtime exception
will be thrown to the effect that no message with the specified ID exists in the queue. You
must remove the curly brackets that delimit the computer's unique identifier and then pass the
remaining string as argument to the RetrieveByID method. Here's how the code retrieves the
message that fired the trigger:

msgID = msgID.Replace("{","")
msgID = msgID.Replace("}","")
MSG = MSQ.ReceiveById(msgID)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The complete listing of the console application's Main subroutine is shown in Listing 14.20.
The code retrieves the message that fired the trigger from the queue, uses it to construct an
Orders-Class.NewOrder object, and displays the order's fields on a console window. You can
process the order in any way you see fit; for example, you can duplicate much of the code of
the OrdersServer project to commit the order to the database.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 387

LISTING 14.20: PROCESSING A TRIGGER
Sub Main()
 Dim separators As String = Chr(255)
 Dim commands As String = Microsoft.VisualBasic.Command()
 commands = commands.Replace(""" """, Chr(255)
 commands = commands.Substring(1)
 Dim args() As String = commands.Split(separators.ToCharArray)
 Dim msgID As String = args(0)
 Dim msgPath As String = args(1)
 Dim msgSentDate, msgArrivedDate As Date
 msgSentDate = args(2)
 msgArrivedDate = args(3)
 Console.WriteLine("MESSAGE ID: " & msgID & vbCrLf & _
 "MESSAGE PATH: " & msgPath & vbCrLf & _
 "MESSAGE SENT ON: " & msgSentDate & vbCrLf & _
 "MESSAGE ARRIVED ON: " & msgArrivedDate)
 Dim MSG As New Message
 Dim MSQ As New MessageQueue(".\private$\NWOrders")
 Dim typeNames(0) As Type
 typeNames(0) = GetType(OrdersClass.NewOrder)
 MSQ.Formatter = New XmlMessageFormatter(typeNames)
 msgID = msgID.Replace("{", " ")
 msgID = msgID.Replace("}", " ")
 MSG = MSQ.ReceiveById(msgID)

 Dim O As New OrdersClass.NewOrder
 O = CType(MSG.Body, OrdersClass.NewOrder)
 Console.WriteLine("CUSTOMER ID: " & O.CustomerID)
 Console.WriteLine("EMPLOYEE ID: " & O.EmployeeID.ToString)
 Dim dtl As OrdersClass.OrderedProduct
 Console.WriteLine("ORDER DETAILS")
 Console.WriteLine("ID" & vbTab & "QTY" & vbTab & _
 "PRICE" & vbTab & "DISC.")
 For Each dtl In O.Details
 Console.WriteLine(dtl.ProductID & vbTab & _
 dtl.ProductQTY & vbTab & _
 dtl.ProductPrice & vbTab & _
 dtl.ProductDiscount)
 Next
 Console.WriteLine()
 Console.WriteLine("Press any key to close this window")
 Console.Read()
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 389

FIGURE 14.13 Processing a message with a trigger's action

FIGURE 14.14 The order corresponding to the data of Figure 14.13

Messages are sent from computer to computer using the MSMQ component of the Windows
operating system. MSMQ takes care of many low-level details for us. We can, for instance,
request that messages are acknowledged at their destination. If a message doesn't arrive on
time at the destination queue, or a message isn't read from the queue within a specified time
interval, MSMQ can notify the sending computer.

Using queues, you can write asynchronous applications that are both fault-tolerant and load-
balanced. You can have multiple computers process messages from the same queue. If one of
them fails, the remaining ones will continue processing the queue's messages. If a system
accepts an unusual number of requests in a short time interval, it can write messages to a
queue and process them later. The classic example is that of a system for processing time-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

queue and process them later. The classic example is that of a system for processing time-
cards. A single machine is overwhelmed by requests early in the morning and in the evening.
Instead of processing each card entered into the system in real time, we can create messages
with each cards' data and send them to a queue. These messages can be processed at a slower
pace than they were entered.

Finally, you can manage messages automatically, with the newly released Message Queuing
Triggering component. This component allows you to set up rules for incoming messages and
invoke a program automatically when a new message meets certain criteria. MSMQ is one of
the most useful tools in building enterprise applications. We've demonstrated how to access
MSMQ from within your VB applications with a practical example of forwarding and
processing orders.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 390

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 392

Connection and Command classes are abstract classes; you can't use them directly in your
code. The Connection class is the parent class for the SqlConnection and OleDbConnection
classes, which provide connectivity features for SQL Server and OLE DB–compliant
databases, respectively. The Command class is the parent class for the SqlCommand and
OleDbCommand classes for SQL Server and OLE DB databases. Finally, there are two flavors
of the DataAdapter class, the SqlDataAdapter and OleDbDataAdapter classes.

The DataSet is the primary data storage mechanism for the client. You can also retrieve data
through a DataReader object, which returns the selected rows. It's your responsibility to
extract the data from the DataReader into a data structure such as an ArrayList, or populate a
control such as a ListBox or a ListView control. The DataSet is central in ADO.NET and most
data-driven applications are based on this class. The data is moved to the client and stored into
a DataSet, which is a miniature database. It contains as many tables as we specified in our
query, and each table contains the columns and rows specified in the query. These tables are
usually related (there are joins between pairs of tables), and the same relations can be
established between the tables of the DataSet as the ones that exist in the database. The
DataSet can even enforce relational and non-null constraints, but not arbitrary constraints such
the ones you can specify at the database level.

The Visual Database Tools

We'll start our exploration of ADO.NET by going through the visual database tools of the
Visual Studio IDE. It's a very brief overview meant for readers who are not familiar with these
tools. Our goal is to show you how to use the ADO.NET classes in writing data-driven
Windows applications. The visual tools are just wizards that allow you to set up the various
ADO.NET objects through point-and-click operations. Once you know how to access a
database with the visual tools, you'll find it easier to understand how to program the classes
behind them.

We'll present the visual database tools by building a simple program to display and edit the
products of the Northwind sample database. Start a new project and name it NWProducts.
We'll start by setting up the objects that will enable us to view and edit the rows of the
Products table in the Northwind database.

ESTABLISHING A CONNECTION

Our first step is to create a connection to the database. Open the Server Explorer tab of the
Toolbox and you will see an item called Data Connections at the top. Under Data Connections
there are connections to the databases you work with; it will be empty if you haven't
established a connection to a database yet. Right-click Data Connections and select Add
Connection. Another command in the context menu is the Create New SQL Server Database
(this option is available only in the Professional and Enterprise Architect versions of Visual
Studio). You can create a new SQL Server database right in Visual Studio's IDE, but the tools
are almost identical to the tools of SQL Server. Databases are usually designed with SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are almost identical to the tools of SQL Server. Databases are usually designed with SQL
Server's Enterprise Manager, but you can create small databases for convenience in the Visual
Studio environment.

The Data Link Properties dialog box will pop up; here you can specify the database to which
you want to connect and the properties of the connection. On the Provider tab you can select
the database provider. In this book we'll focus on SQL Server databases, but setting up a
connection to an Access database is very similar. On the Provider tab you must select the
option ''Microsoft OLE DB Provider for SQL Server," which is the default option. On the
Connection tab, select the name of the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 393

database server on the top ComboBox and the authentication method in the second section on
the tab. We're using Windows authentication so that you won't have to edit the properties of
the connections in the sample projects. On the last ComboBox on the dialog box, select the
name of the database (Northwind). The Connection tab of the Data Link Properties dialog box
should look like the one shown in Figure 15.1. On the Advanced tab, you can set the
connection's timeout (how long the connection will wait for the server to respond before it
times out and closes), as well as access rights for the application when the server is on a
network. Switch back to the Connection tab and click the Test Connection button to verify that
the connection can actually see the database. Then close the dialog box. The item
computer.Northwind will be added under Data Connections in your Server Explorer window
(where computer is the name of your computer).

FIGURE 15.1 Setting up a connection to the North-wind database

CONFIGURING A DATAADAPTER

If you expand this connection object you will see the names of the database objects you can
access, just like opening a database's branch in Enterprise Manager. Expand the Tables item
and you will see the names of all tables in the database. Select the Products table and drop it
on the form. Two new items will be added to the controls tray at the bottom of the designer:
the SqlConnection1 object, which is a Connection object for the Northwind database, and
the SqlDataAdapter1 object, which is a DataAdapter object for the Products table of the
database. Rename the SqlDataAdapter1 object to DAProducts. Select the DataAdapter and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database. Rename the SqlDataAdapter1 object to DAProducts. Select the DataAdapter and
right below the Properties window of the new DataAdapter, you will see the following links
(you will find commands by the same names in the Data menu, which is visible only while a
DataAdapter object on the form is selected):

Configure Data Adapter Starts a wizard to configure the DataAdapter.
Generate DataSet Generates a DataSet based on the properties of the DataAdapter.
Preview Data Retrieves the data selected by the DataAdapter for preview purposes.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 394

Select Configure Data Adapter to start the Data Adapter Configuration Wizard. This wizard
will guide you through the steps of setting up the SQL commands to be executed against the
database. Click Next to go past the wizard's welcome screen. On the next screen you must
select a connection (select the connection to the Northwind database you just designed) and
click the Next button again. Notice that you can use the New Connection button to create a
new connection from within the wizard. The steps are identical to the ones described earlier in
this section. On the next screen you're prompted to specify the type of commands that the
wizard will create: SQL Statements, New Stored Procedures, or Existing Stored Procedures.

Accept the default selection, Use SQL Statements, and click Next to continue. On the next
screen you're prompted to enter the SQL statement that selects the desired rows from the
Products table. Since we started the wizard by dropping the Products table on the designer, the
wizard has generated a SELECT statement that selects all the columns of all rows in the table.
This statement will move the entire Products table to the client, which is not what we usually
want. In a production database, the Products table may be enormous in size. You can either
specify a SELECT statement to retrieve selected columns of selected rows, or click the Query
Builder button to build the query with visual tools, as shown in Figure 15.2. We'll assume
you're familiar with SQL and we'll not discuss how to build SQL statements in this book.
However, we will discuss in detail the statements generated by the wizard.

At the bottom of this screen is the Advanced Options button. If you click this button you will
see a dialog box where you can specify a few more options that give you more control over
how the statements will be generated. We'll look at these options in detail in the section
''Concurrency Issues," later in this chapter.

Click the Next button again to end the wizard. If all went well, you'll see a list of the
commands generated by the wizard. The wizard will generate the appropriate SELECT,
DELETE, UPDATE, and INSERT statements for the Products table. If the query combined
several tables, the wizard may not be able to generate update statements, and it will display the
appropriate messages on the last form. Click Finish to end the wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 15.2 Specifying the rows and columns you want to retrieve from the Products table

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 395

CREATING A DATASET

So far we created a Connection object to connect to the Northwind database and a
DataAdapter that knows how to access the Products table. Although we specified only the
SELECT statement, the DataAdapter has generated statements to update the table. Now we
need a mechanism to download the selected data to the client, process them locally, and
submit the changes back to the database. This mechanism is the DataSet object. Each
DataAdapter should be associated with a specific table in the DataSet. Moreover, the
DataAdapter exposes a few methods to execute the statements generated by the Wizard. The
Fill method of the DataAdapter fills one of the tables of a DataSet with the selected data and
the Update method submits the changes made to a specific table of the DataSet back to the
database. It's possible to associate a DataAdapter with multiple related tables, but it won't be
able to submit any changes to the database (in other words, the wizard won't generate the
INSERT, UPDATE and DELETE statements).

Before you can download the table's rows to the client, you must create a DataSet for storing
them. Select the Generate DataSet command from the Data menu (or click the link by the
same name under the Properties window) and you'll see the Generate DataSet dialog box. Here
you can create a new DataSet and specify which of the tables will be added to the DataSet.
Check the name of the Products table on the dialog box of Figure 15.3, specify the name of the
DataSet, and click OK.

FIGURE 15.3 Creating a new DataSet

A few moments later a new component will be added to your project, the Products1 DataSet.
In the Solution Explorer window you'll see the Products.xsd item, which is the schema of the
DataSet. This is an XML file that describes the structure of the DataSet. The Products1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataSet. This is an XML file that describes the structure of the DataSet. The Products1
component added to your application is an instance of the Products class. Now place a Button
and a DataGrid control on the form—the arrangement of the controls on the form is shown in
Figure 15.6. Set the button's caption to ''Populate DataSet" and enter the statements of Listing
15.1 in its Click event handler.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 396

LISTING 15.1: POPULATING THE PRODUCTS TABLE THROUGH A DATAADAPTER
Private Sub bttnPopulate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnPopulate.Click
 Products1.Clear()
 DAProducts.Fill(Products1, ''Products")
MsgBox("DataSet filled successfully")
End Sub

First we clear the DataSet of its data and then we fill the Products table of the DataSet. The
DataSet is cleared, because if you click the same button more than once, the DataAdapter will
attempt to add the same rows to the existing DataSet. Each product has a unique ID and as
soon as you attempt to add another row with the same ID, an exception will be thrown. If you
run the program and click the Populate DataSet button, you'll see a message box informing
you that the DataSet was filled successfully. But you can't see the data anywhere.

VIEWING THE DATASET

The few statements you've entered so far copy data from the database into the DataSet at the
client. The quickest method to view the data in the DataSet is to bind the DataSet to a
DataGrid control. Place an instance of the DataGrid control on the form and then set its
DataSource property to Products1 (you'll actually select this setting from a drop-down list).
Then run the program again and click the Populate DataSet button. The data will appear on the
DataGrid control and you can even edit them. You can't submit the changes to the server yet,
but we'll get there shortly.

The DataGrid control is bound to the Products1 DataSet. This means that the DataSet
becomes the data source for the DataGrid control. The data in the DataSet are displayed on the
DataGrid control and any changes you make to the DataGrid control's data are reflected in the
DataSet. The DataSet is local to the client and the changes aren't automatically written to the
database. When the DataSet is populated you can click the plus symbol next to the first (and
only) row of the DataGrid. You will see the names of the tables in the DataSet. In our case, the
DataSet contains a single table, the Products table. Click its name and you'll see the columns
and rows of the Products table on the control. The DataGrid is a convenient tool for viewing a
table's data without any substantial programming effort. However, it's not as convenient as you
might expect. The CategoryID and SupplierID columns contain the IDs of the product's
category and supplier, respectively. As you can understand, editing a table's rows on a
DataGrid is not the most user-friendly approach. In our view, one of the common mistakes
programmers do when it comes to database applications is that they try to build user interfaces
based on the DataGrid control. Once you understand how the DataGrid control works and
what it can do for your application, you'll be able to determine whether it's the appropriate tool
for your application's needs or not. Most practical data-driven applications deploy an interface
based on regular Windows controls; you'll see several examples of such interfaces in this
book.

WORKING WITH MULTIPLE TABLES

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's add some complexity to the application and make it a little more useful. This time we'll
add the Categories and Suppliers tables to our DataSet. Stop the application and return to
design mode.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 397

Then drop the Categories and Suppliers tables on the design surface. We don't want all the
columns of the two tables, just enough information to identify categories and suppliers.
Rename the two DataAdapter objects that will be created automatically when the two tables
are dropped on the design surface to DACategories and DASuppliers. In the corresponding
wizards, specify the following SELECT statements:

DACategories DataAdapter

 SELECT CategoryID, CategoryName
 FROM Categories

DASuppliers DataAdapter

 SELECT SupplierID, CompanyName, ContactName,
 ContactTitle, Phone, Fax
FROM Suppliers

These statements will configure the corresponding DataAdapters to retrieve enough columns
from each table to identify the corresponding row. Then click the Generate DataSet button,
select all three tables in the list (the Products, Suppliers, and Categories tables), and add them
to the Products DataSet. You must also edit the statements that populate the DataSet by adding
statements to retrieve the rows of the two new tables, as shown in Listing 15.2.

LISTING 15.2: POPULATING A DATASET WITH THREE DATATABLES
Private Sub bttnPopulate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnPopulate.Click
 Products1.Clear()
 DAProducts.Fill(Products1, ''Products")
 DACategories.Fill(Products1, "Categories")
 DASuppliers.Fill(Products1, "Suppliers")
MsgBox("DataSet filled successfully")
End Sub

If you click the plus symbol at the first line on the grid, you will see the names of all three
tables. Select the name of any table and you'll see its rows on the DataGrid control. To go
back and select another table, click the control's Back button (the white arrow pointing to the
left on the control's navigational section, near the top). The three tables are related, but their
relations aren't reflected on the control; they must be established manually. Stop the program
to return to design mode, and double-click the Products.xsd item in the Solution Explorer to
see the definition (or schema) of the DataSet. The DataSet contains three tables, as shown in
Figure 15.4. The arrows between the tables represent relations, but you won't see them
initially; you must add them from within the IDE with simple point-and-click operations,
which are described immediately.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 398

FIGURE 15.4 Viewing the schema of a DataSet generated with the visual database tools

Open the Toolbox, select the Relation item, and drop it on any of the tables on the design
surface. The Toolbox contains items that apply to the design of XML schemas, not the usual
controls. In this chapter we'll only discuss how to add relations between existing tables. The
remaining items allow you to create a schema from scratch. As soon as the Relation item is
dropped on one of the tables, you will see the Edit Relation dialog box, where you can define
relations between pairs of tables. In the Parent element box you must specify the parent table
of a relation and in the Child element you must specify the child element of the relation. Then,
in the Fields box you must specify the fields that make up the relation. The first relation is
between the Categories and Products table and is based on the CategoryID of both tables, as
shown in Figure 15.5.

Then establish a relation between the Suppliers and Products tables based on the SupplierID
field of both tables. Run the project and click the Populate DataSet button. A runtime
exception will occur:

Failed to enable constraints. One or more rows contain values violating
 non-null, unique, or foreign-key constraints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 15.5 Establishing a relation between the Categories and Products tables

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 399

What this means is that you're attempting to load a row of the Products table that refers to a
category, or supplier, that doesn't exist in the DataSet. To fix this problem, just change the
order in which the tables are populated. You must populate the two parent tables first (the
Categories and Suppliers tables) and then the child table. Here are the statements that fill the
tables in the correct order:

DACategories.Fill(Products1, ''Categories")
DASuppliers.Fill(Products1, "Suppliers")
DAProducts.Fill(Products1, "Products")

If you run the application now, the DataSet will be filled as expected. Select the Categories
table on the DataGrid control, as shown in Figure 15.6 (a). In front of each row there's a plus
symbol, which indicates that the row has child (related) rows in the DataSet. Click this symbol
and you'll see the names of the relations that apply to this row. The Categories table is related
to the Products table with the CategoriesProducts relation. If the same parent table was related
to more child tables, you'd see more relation names here. Click the name of the
CategoriesProducts relation and you'll see the rows of the Products table that are related to the
selected category.

The DataGrid control allows us to visualize the relations between tables, but the suppliers and
categories of each product are still displayed as integer values. There's no way to display a
ComboBox with the names of the suppliers and categories on the DataGrid control, which is
one of the most serious limitations of this control as a data entry tool. OK, it's possible to
detect the coordinates of the selected row and display a custom ComboBox control there, but
this requires a lot of code. The current version of the DataGrid control can't display lookup
columns. A user-friendly interface can't be based on a grid control either. Most users would
like to edit data on a form with typical Windows controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 15.6 Viewing related rows on the DataGrid control

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 4

Dim at As Integer
Dim [end] As Integer
Dim count As Integer
[end] = str.Length
start = [end] / 2
Console.WriteLine()
Console.WriteLine("All occurences (sic) of 'he' from position {0} to {1}.", _
start, [end] - 1)
Console.WriteLine("{1}{0}{2}{0}{3}{0}", Environment.NewLine, br1, br2, str)
Console.Write("The string 'he' occurs at position(s): ")
count = 0
at = 0
While start <= [end] AndAlso at > - 1
 ' start++count must be a position within -str-.
 count = [end] - start
 at = str.IndexOf("he", start, count)
 If at = - 1 Then
 Exit While
 End If
 Console.Write("{0} ", at)
 start = at + 1
End While
Console.WriteLine()
End Sub 'Main
End Class ' Sample

This example was obviously written by a C programmer who had little experience with Visual
Basic programming. There are several giveaways. First is the use of a class to illustrate a
simple, small programming technique. Creating a class for this purpose is overkill, though
some strict OOP enthusiasts insist that everything in programming must be an object.

Also, Visual Basic programmers almost never use Sub Main. Instead, we use the
Form1_Load event as the startup object. For one thing, this event is the default startup object
in Visual Basic. Programmers using languages that are not form-based, such as C, employ Sub
Main as their entry point when a program begins execution. There is no default Form1 in C, so
C programmers are accustomed to starting their programs in Sub Main (which is where they
put initialization code, and also where they test short code samples).

To make the many "VB" code samples in Help work, a VB.NET programmer must right-click
the project name in Solution Explorer, choose Properties, then manually adjust the startup
object in a Property Pages dialog box.

Another giveaway that this isn't true VB is the line Imports System. VB.NET programmers
know that by default the System namespace is always available and need not be imported.

Also, VB.NET programmers do not use the brace {} symbols to fill in fields when displaying
results, nor do we use the word End as a variable name, requiring that it be enclosed in
brackets [].

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 40

For example:

Open ''C:\Test.Txt" As 5

In VB.NET you use a C-like "stream" (an incoming or outgoing data flow) technique for
reading or writing to a file. Streams are more flexible than the traditional VB approach, and
streams can be used not only with disk files but with other data stores, including data
incoming from the Internet—and indeed, from other streams.

Reading a File

Here's how to read a disk file:

Imports System.IO
Private Sub Button1_Click_1(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim a As String
 Dim sr As New StreamReader("e:\test.txt")
 a = sr.ReadLine
 a += sr.ReadLine
 sr.Close()
End Sub

However, for a more flexible approach, type Listing 2.7 into the Button's Click event.

LISTING 2.7: READING DISK FILES VIA STREAMS
Private Sub Button1_Click_1(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

 Dim strFileName As String = TextBox1.Text

 If (strFileName.Length < 1) Then
 msgbox("Please enter a filename in the TextBox")
 Exit Sub
 End If

 Dim objFilename As FileStream = New FileStream(strFileName, FileMode.Open, _
FileAccess.Read, FileShare.Read)

 Dim objFileRead As StreamReader = New StreamReader(objFilename)

 While (objFileRead.Peek() > –1)
 textbox1.Text += objFileRead.ReadLine()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 400

In short, the DataGrid control is made up of DataTable objects that correspond to the tables
specified in the queries you specified in the configuration of the DataAdapter. Each table in
the DataSet is represented by a DataTable object and each DataTable contains as many rows
as you have specified in the corresponding query. You can also create relations between the
DataSet's DataTables, as we did earlier. The DataSet enforces the relations as well (unless you
specify that relations shouldn't be enforced). If you attempt to edit a product by specifying a
CategoryID value that doesn't exist in the Categories table, you'll see a message box
explaining that the CategoryID value you specified is invalid:

ForeignKeyConstraint CategoriesProducts requires the child key values
(22) to exist in the parent table. Do you want to correct the value?

You can either correct the value or click No to restore the original value. The proper course of
action, of course, is to add a new item to the Catgories DataTable and then use it with the
Products table.

UPDATING THE DATABASE

Let's add some code to submit the changes made at the client back to the server. It's likely that
some rows may fail to update the database. For example, the UnitPrice field in the Products
table can't be negative. This is a constraint enforced by the database, but not by the DataSet.
The DataSet can enforce only referential and non-null constraints, but not arbitrary constraints
that exist in the database. It's possible to specify a negative price on the DataGrid control, but
the corresponding row will be rejected by the database when you attempt to insert the row. To
submit the changes to the database, add one more button on the form, set its caption to
''Update Database," and enter the statements shown in Listing 15.3 into its Click event
handler.

LISTING 15.3: POPULATING A DATASET WITH MULTIPLE RELATED TABLES
Private Sub bttnUpdate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnUpdate.Click
 DACategories.Update(Products1)
 DASuppliers.Update(Products1)
 DAProducts.Update(Products1)
End Sub

If the data on the DataGrid contains no errors, the changes will be submitted to the database.
The Update method of the DataAdapter object submits all the changes in the tables of the
specified DataSet to the database, using the commands generated by the DataSet configuration
wizard. The DACategories DataAdapter, for example, knows how to submit the changes
made to the Categories table, the DASuppliers DataAdapter knows how to submit the
changes made to the Suppliers table, and the DAProducts DataAdapter knows how to update
the Products table in the database. When a DataAdapter runs into an error, it terminates the
update process and doesn't attempt to update additional rows. To change this behavior and
force the DataAdapters to update as many rows as possible, select each DataAdapter on the
form and set its ContinueUpdateOnError property to True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 401

Let's see how the DataGrid handles update errors. Edit a row or two in the Products table and
set their UnitPrice column to a negative value. While you're editing the Products table, delete a
product name. Actually, select it with the mouse and cut it (you'll need to restore its value
later). Then click the Update Database button to submit the changes to the database. Some
rows will fail to update the underlying tables. A red icon with an exclamation mark will
appear in front of each row that failed to update the database. This is an instance of the
ErrorProvider control and you can hover the pointer over it to see a description of the error
that prevented the DataAdapter from submitting the edited row to the database, as shown in
Figure 15.7.

FIGURE 15.7 Rows in error are marked automatically on the DataGrid.

Notice that the row with the empty product name is not in error, even though the Products
table has a constraint to that effect. The ProductName column is not nullable. By deleting the
name of the product we've set it to an empty string, which is not a Null value. To set a field to
Null you must press Ctrl+0 (zero). The empty string is a valid value for a string column, so the
database accepted it. We usually insert code to handle Null values in our applications. For the
case of the ProductName field, a product without a name is clearly an invalid condition. We
might as well convert all the empty product names to Null values before submitting them to
the database, or display a warning to the user. You can further edit the rows on the DataGrid
control until all edited rows have been submitted to the database successfully. To verify that
all changes were submitted to the database, click the Populate DataSet button to read the tables
from the database again and see that the new values have taken effect.

Formatting the DataGrid Control

The default appearance of the DataGrid control is rather dull, but you can adjust it through the
numerous properties it exposes. Select the DataGrid control on the design surface and locate
its TableStyles property in the Property Browser. This property is a collection, made up of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

its TableStyles property in the Property Browser. This property is a collection, made up of
TableStyle objects, and there's one TableStyle object for each of the tables in the DataSet.
Each TableStyle provides properties for controlling the appearance of the corresponding table
(the header's font, the color of the grid lines, the default width of each column, whether the
rows can be sorted or not, and so on). Each TableStyle has a GridColumnStyle property,
which is also a collection, and there's a GridColumnStyle object for each column of the table.
Here you can define the column's caption (the default caption being the column's name), its
width, and the format for its values. You can experiment with the DataGrid control's
TableStyles collection to design a better-looking grid.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 402

The DataGrid control is a very convenient control for displaying related tables, but it's not the
primary tool for building data-driven applications. If you search the Internet you'll find
hundreds of articles on customizing the DataGrid control. In our view, the DataGrid control is
a programmer's tool, but not the ultimate tool for building user-friendly applications. A major
limitation of the DataGrid control is that you can't access its cells with a row/column
convention. Instead, you must access the underlying DataSet and change fields in the DataSet,
and the changes will be automatically reflected on the control's contents. Another limitation is
that you can't use lookup columns with it. For example, if you bind the Products tables to a
DataGrid control, the CategoryID item will be an integer; there's no simple method of
displaying a ComboBox with the category names and bind the ComboBox control to the
category ID of the current row. If you've worked a little with this control, you may also have
discovered that it doesn't capture keystrokes and mouse clicks. There are workarounds for all
the shortcomings mentioned here, but once you start writing code to deal with the limitations
of a given control, the benefits of a RAD system evaporate. In Chapter 18 you'll learn how to
use the regular Windows controls to build much more functional interfaces. For this, you'll
have to understand how to program the ADO.NET objects.

In this chapter we use the DataGrid a lot, because it's very convenient and it allows us to
quickly explore DataSets without having to write elaborate interfaces. In Chapter 18 you'll see
several examples of practical user interfaces.

The wizard has created a class that establishes a connection to the database through a
Connection object and executes commands against the database through a Command object.
In the following section, we'll explore how the wizard manipulates these two objects and how
you can program them from within your application.

The Connection Class

To establish a connection to a database you must first set the Connection object's
ConnectionString property and then call its Open method. The connection must be closed as
soon as the operation completes (reading or writing data to the database). To close a
connection, just call its Close method. Never open a connection to the database in the Form's
Load event handler and keep it open for the application's lifetime. This approach will work
with small projects, but such an application will never scale out. Maintaining a large number
of open connections is a very expensive operation, especially with Web applications. .NET
maintains a pool of connections and reuses them to accommodate all the clients with the least
number of connections. That's why you must close your connections and return them to the
pool as soon as possible.

The ConnectionString property provides all the information necessary to establish a
connection to the data source: the name of the server machine on which the DBMS resides, the
name of the database, and authorization information, among other things. SQL Server will not
honor a connection request unless the user who requested the connection has the appropriate
privileges. There are two techniques to authorize a user: pass a user ID and password to SQL
Server or ask Windows to authenticate the workstation that initiated the request. The second is
the safest authentication technique, because you don't have to store passwords anywhere. If a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the safest authentication technique, because you don't have to store passwords anywhere. If a
user is authenticated successfully by Windows itself, then SQL Server will honor the
connection.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 403

A common scenario is to create an account on SQL Server for all the users of an application
and pass this account's user ID and password along with the connection request. The following
statement shows a ConnectionString that authenticates the user, DBUser:

Dim CN As SqlClient.SqlConnection
CN.ConnectionString = _
 ''initial catalog=Northwind;persist" & _
 "security info=False; & _
 "data source = YOUR Server; & _
 "user id=DBUser;password=YOUR_PASSWORD; & _
"workstation id=YOUR WORKSTATION;packet size=4096"

Many developers use the sa account without a password to connect to SQL Server, especially
when they test their applications on the same workstation on which the DBMS is installed.
You should at least supply a password to the sa account, if you're still using it.

To let Windows authenticate a user, omit the User ID and Password options of the Connection
string and add the option:

Integrated Security = SSPI

The following statements establish a connection to the Northwind database using the built-in
Windows authentication:

Dim CN As SqlClient.SqlConnection
CN.ConnectionString = _
 "Integrated Security=SSPI;Initial Catalog=Northwind;" & _
 "Data Source=localhost" &_
 "workstation id=YOUR WORKSTATION;packet size=4096"

The sample applications in this book use Windows authentication. To change the
authentication mode, set a user ID and password that will work on your machine.

The sample connection string refers to the database on the same computer, and the setting of
the Data Source attribute is localhost (you can also use the period to reference the
workstation on which the application is running). To connect to an instance of SQL Server
running on another machine on the same network, set the Data Source attribute to the name of
this machine. The advantage of using Windows authentication is that you don't have to store
sensitive information (passwords) in your code.

Instead of writing the connection strings yourself (and testing them), you can let the Visual
Studio IDE create them for you. Just open the Server Explorer and drop the database to which
you want to connect onto a form. Depending on the database you selected, an SqlConnection
or an OleDbConnection object will be added to the project. Select this object on the design
surface and look up its ConnectionString setting in the Properties window. Connection objects
are created automatically by the IDE and added to your form every time you drop an item
from a specific database (a table, view, or stored procedure) from the Server Explorer onto the
design surface. Dropping additional items from the same database creates new DataAdapter
objects, which will reuse the same connection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 404

The DataAdapter Class

The DataAdapter is an object that knows how to access a database and perform specific tasks
against it. The tasks we perform against a database with DataAdapters are the following:

 Retrieval of selected rows
 Insertion of new rows
 Deletion of existing rows
 Update of existing rows

Each of these four tasks corresponds to a SQL command: the SELECT, INSERT, DELETE,
and UPDATE commands, respectively. To retrieve data through a DataAdapter, you must call
its Fill method, which accepts as arguments an instance of a DataSet and the name of the
DataTable, and fills the specified DataTable in the DataSet with the results of a query. You
can't access the results of the query directly; the DataAdapter can only be used to populate
DataSets. You have already seen how to fill a DataTable with the help of the DataAdapter.
Notice that the DataAdapter doesn't empty the DataTable before filling it; instead, it attempts
to append the new data to the existing one. If this isn't what you want, you must clear the
DataTable, or the entire DataSet, with the Clear method. In most cases, the rows we retrieve
from the database contain a primary key and, if you attempt to insert duplicate keys in the
same DataTable, a runtime exception will be thrown. However, it's possible to add two distinct
sets of rows from the same table by calling the Fill method twice.

The other basic method of the DataAdapter is the Update method, which submits the changes
made to the DataSet back to the database. Although you specified only the SELECT statement
to retrieve the desired data from the database, the wizard generated SQL statements for
updating existing rows, inserting new ones and deleting existing ones. These statements are
executed by the DataAdapter for all the rows in the DataTable that must update the underlying
table. The simplest form of the Update method accepts no arguments and submits all the
changes made to its DataTable to the database. There are overloaded methods that allow you
to specify a subset of the rows you want to submit to the underlying table in the database.

THEDATAADAPTER'SCOMMANDS

The DataAdapter provides commands for performing the basic actions against the database;
you can access them through the SelectCommand, InsertCommand, DeleteCommand, and
UpdateCommand properties. These properties are Command objects, and you can configure
them from within your code. The wizard that takes you through the steps of configuring a
DataAdapter sets up these objects behind your back. Let's see what the wizard has done for us
behind the scenes in the NWProducts project.

Open the NWProducts project in design mode, select the DASuppliers DataAdapter on the
design surface, and locate the SelectCommand property in the Property Browser and expand
it. One of its attributes is the CommandText; its setting is the following SQL statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT SupplierID, CompanyName, ContactName,
 ContactTitle, Phone, Fax
FROM Suppliers

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 405

The DataAdapter selects by default the entire table for us. While this is quite acceptable with a
small database such as Northwind, in a production database you can't select entire tables,
because they may contain thousands of rows and you can't afford to move them all to the
client every time the user wants to view a phone number or an e-mail address. You can change
the SELECT statement as you configure the DataAdapter by adding a WHERE clause to limit
the number of selected rows.

Now locate the InsertCommand property and look up its CommandText attribute. This is the
SQL statement that will insert new rows into the Customers table. The syntax for the INSERT
command generated by the wizard is:

INSERT INTO Suppliers (SupplierID, CompanyName, ContactName,
 ContactTitle, Phone, Fax)
 VALUES (@SupplierID, @CompanyName, @ContactName,
 @ContactTitle, @Phone, @Fax);
SELECT SupplierID, CompanyName, ContactName,

 Phone, Fax
FROM Suppliers
WHERE (SupplierIDID = @SupplierID)

There are two SQL statements here. The first one inserts a new row into the Customers table
and the second one selects the newly inserted row and returns it to the application. The
INSERT statement contains a bunch of parameters, which represent the values of the fields of
the new row. These parameters will be assigned their values automatically by the DataAdapter
when you call the DataAdapter's Update method, which submits the changes made to the
selected row(s) at the client to the server. It knows which rows should be inserted (the new
rows added to the DataSet) and which rows should be deleted and updated. To insert new
rows, the DataAdapter executes the command of the InsertCommand object, passing the
values of the new row as arguments.

The DeleteCommand object's command is a little more complicated:

DELETE FROM Suppliers
WHERE (SupplierID = @Original_SupplierID) AND
 (CompanyName = @Original_CompanyName) AND
 (ContactName = @Original_ContactName OR
 @Original_ContactName IS NULL AND ContactName IS NULL) AND
 (ContactTitle = @Original_ContactTitle OR
 @Original_ContactTitle IS NULL AND ContactTitle IS NULL) AND
 (Fax = @Original_Fax OR
 @Original_Fax IS NULL AND Fax IS NULL) AND
 (Phone = @Original_Phone OR
 @Original_Phone IS NULL AND Phone IS NULL) AND

This statement deletes a row whose columns match the columns of the row that was read from
the database. This is how the DataAdapter handles concurrency. If another user has edited the
same row since the application read it from the database, the row won't be deleted. To
implement concurrency, the DELETE statement generated by the DataAdapter compares each
column of the original version of the row (the version of the row that was read from the
database) to the corresponding columns of the same row in the database. If even a single
column's value is different, the DELETE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 406

statement will fail. The default behavior of the DataAdapter doesn't allow you to delete a row
if it has been edited in the meantime. The original values of the row's columns are stored in the
variables starting with the @Original prefix. As you will see in the following section, the
DataSet maintains the original values of the rows read through the DataAdapter from the
database.

The UPDATE statement makes use of the original values of the row's columns and updates a
row only if it hasn't been edited since it was read. Here's the UPDATE statement generated by
the DataAdapter configuration wizard for the Suppliers table:

UPDATE Suppliers
SET SupplierID = @SupplierID, CompanyName = @CompanyName,
 ContactName = @ContactName, ContactTitle = @ContactTitle,
 Phone = @Phone, Fax =@Fax
WHERE (SupplierID = @Original_SupplierID) AND
 (CompanyName = @Original_CompanyName) AND
 (ContactName = @Original_ContactName OR
 @Original_ContactName IS NULL
 AND ContactName IS NULL) AND
 (ContactTitle = @Original_ContactTitle OR
 @Original_ContactTitle IS NULL
 AND ContactTitle IS NULL) AND
 (Fax = @Original_Fax OR
 @Original_Fax IS NULL AND Fax IS NULL) AND
 (Phone = @Original_Phone OR
 @Original_Phone IS NULL AND Phone IS NULL) AND
SELECT SupplierID, CompanyName, ContactName, Phone, Fax
FROM Suppliers
WHERE (SupplierID = @SupplierID)

Although substantially longer than the DELETE statement, the UPDATE command is based
on same principle. If the row has been edited since it was read, the update operation will fail.

Notice how the DataAdapter handles Null values. Comparisons with Null values are invalid in
T-SQL. In other words, two columns that are Null are not equal, because Null means that the
column has no value and therefore no comparison is made. The T-SQL code generated by the
DataAdapter compares the two columns:

Fax = @Original_Fax

as well as both columns to Null:

@Original_Fax IS NULL AND Fax IS NULL

If either comparison returns True, then the two fields are the same. If the current and original
versions of a column have the same value, or they're both Null, the statement proceeds. If both
comparisons fail, then the two values are different and the statement will fail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The two preceding statements are fairly complicated, but here's how the DataAdapter works.
First, it generates a SELECT statement to retrieve all the columns of all the rows in the table
(that is, the entire table). You can provide your own SQL statement to limit the number of
rows and/or columns retrieved from the database. Then it generates the corresponding
INSERT, DELETE, and

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 407

UPDATE statements. The format of the action queries is always the same. You can modify the
default behavior of the wizard that generates the statements for the DataAdapter. That is the
topic of the next section.

HANDLING CONCURRENCY ISSUES WITH THE DATAADAPTER

You can change the default behavior of the DataAdapter, either with visual tools or from
within your code. To control the generation of the SQL statements, select the DataAdapter on
the designer and click the Configure Data Adapter link below the Properties window. Click
the Next button a few times until you see the Generate The SQL Statements window, which is
shown in Figure 15.2. Click the Advanced Options button on this window to see the Advanced
SQL Generation Options window, where you can customize how the DataAdapter generates
the SQL statements. The options on this window are shown in Figure 15.8.

FIGURE 15.8 Controlling the generation of the DataAdapter's commands

The first option, Generate Insert, Update And Delete Statements, determines whether the
DataAdapter will generate action queries. If you're selecting data to populate a control and the
application won't allow users to edit the data, clear this option and the DataAdapter will
generate only the SELECT command. If you turn off this option, the other two options on the
window will be disabled.

The second option, Use Optimistic Concurrency, determines the WHERE clause of the
statements. By default, the DataAdapter uses optimistic concurrency. Optimistic concurrency
is based on the assumption that it's highly unlikely that two users will be working on the same
row at the same time. When this happens, one of the two users won't be allowed to change, or
delete, a row that has been already modified by another user. Optimistic concurrency works
well with most applications, because the fundamental assumption is mostly true. There are
exceptions from time to time, and when this happens the update operation fails. The user must

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exceptions from time to time, and when this happens the update operation fails. The user must
read the row again from the database, edit it, and submit the changes to the database.

Turning off optimistic concurrency will make the DELETE and UPDATE statements
generated by the wizard simpler, because not all columns are taken into consideration in the
WHERE clause of the corresponding statements. As you can see, the statement uses only the
table's primary key to select the appropriate row. Moreover, it updates it no matter what the
values of the other columns are. This scenario is known as last-write-wins (it's also known as
destructive concurrency): the last user

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 408

to edit a row overwrites the changes made by all other users. This scenario also works well in
many applications. When two users edit a row of the Customers table, it's very likely that they
both edit the same column (change the customer's phone number, for example). However, it
can lead to situations that may frustrate users. If a user edits a product's name and another one
edits the same product's price, only one of the changes will take effect. The user who edited
the product's name will read back the same row a few moments later and find out that the
product's name didn't change but the price is different. In a table with thousands of products
it's quite unlikely that two users will edit the same row at the same time. With some types of
applications (such as banking, or seat reservation applications), this scenario shouldn't be used.

Another factor that should be taken into consideration is how often the client updates the
database. If your application downloads an entire table to the client, allows users to edit the
data locally, and submits the changes to the database a few hours later, there's a good chance
that some of its rows have been edited by other users in the meantime. A different application
that retrieves a small set of the table to the client and submits the changes to the database as
soon as they occur is much less likely to run into concurrency problems.

Turning off optimistic concurrency doesn't enable pessimistic concurrency, which is the
second technique to deal with concurrency issues. With pessimistic concurrency, we avoid the
concurrency problem by making sure that no two users can access the same row. To
implement pessimistic concurrency we lock the row(s) as soon as we read them, so that no
other users can access them. This is a very crude method of handling concurrency issues and
rarely used. If a user opens a row and goes to a meeting without closing the application, the
row may be locked for hours. No other application can read it, reports may skip this row (and
therefore the totals will be incorrect), and awkward situations can result. It's even possible that
an error in the application doesn't unlock rows properly and the number of locked rows
increases with time.

The DataAdapter doesn't support pessimistic concurrency. However, it is possible to
implement optimistic concurrency with transactions. You can start a transaction, open the row,
and close the transaction after the row is written back to the database. Keeping many
transactions open for long periods of time is a sure way to deteriorate SQL Server's
performance and write an application that can't be scaled. As far as ADO.NET is concerned,
pessimistic concurrency is out of the question. Transactions are discussed later in this chapter,
but the idea is to lock one or more rows to perform an operation that involves these rows. If
any of the operations fail, then all the operations are rolled back and no changes are made to
the database. The transaction should be completed in the shortest possible time span, so that
the rows will be freed soon and made available to other users.

The last option on the Advanced SQL Generation Options window is the generation of the
SELECT statement that retrieves the edited row from the database after an insert or update
operation. When this option is enabled, the INSERT and UPDATE statements retrieve the
inserted or edited row from the database. The new version of the row is downloaded to the
client, where it replaces the original row. We usually don't turn off this option with optimistic
concurrency.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last property of the DataAdapter you should set is the ContinueUpdateOnError property.
This is a very important property and it determines what the DataAdapter does when it runs
into an update error. DataAdapters can be used to submit multiple updates (insertions, updates,
and deletions) to the database. If one of the operations fails, the DataAdapter will not attempt
to submit any more changes to the database, because the default setting for this property is
False. If you want to perform as many of the updates as possible and then handle all the errors,
set the ContinueUpdateOnError property to True.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 41

 End While

 objFileRead.Close()
 objFilename.Close()

 End Sub

Note the End While command, which replaces the VB6 Wend command.

How Do You Know You're at the End?

When reading from a file, you have to know when you've reached the end. In the previous
example, you used the following code:

While (objFileRead.Peek() > -1)

Alternatively, you can use this:

While (objFileRead.PeekChar()<> -1)

Or you can use yet another technique for reading (or writing, using the FilePut command).
In this case, you test for the end of file with the venerable EOF property, End Of File. Also,
you use the FileGet command to read from a file; in this case, you are reading individual
characters. Start a new project, and put a TextBox on the form. Now type Listing 2.8.

LISTING 2.8: USING FILEGET TO READ A FILE
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim objN As New ReadBytes()

 TextBox1.Text = objN.ReadAFile

 End Sub

 Public Class ReadBytes

 Private strRead As String

 Public Function ReadAFile()
 strRead = ''"

 Dim chrHolder As Char
 Dim filenumber As Int16

 filenumber = FreeFile() ' whatever filenumber isn' t already used

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 410

USING COMMANDS WITH PARAMETERS

Most practical commands accept parameters and commonly return values to the VB
application through parameters. Let's consider a simple SELECT statement that retrieves the
customers from a specific country:

SELECT * FROM Customers WHERE Country = @country

@country is a variable name and you @country is a variable name and you must set its value
before executing the preceding statement. To submit this command to the database, you must
first create an sqlConnection object as already explained, the CN object. Then create an
SqlCommand object, the CMD object, that uses this connection and set its CommandText and
CommandType properties:

Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = ''SELECT * FROM Customers WHERE Country = @country"

The command's parameters are members of the Parameters property, which is made up of
Parameter objects. The Parameter object has a number of properties you can use to specify the
parameter. At the very least you must set the parameter's type, using either the dbType
property or the SqlDbType property. The settings for these two properties are the basic data
types (or the data types supported by SQL Server) and you'll see them on a list as you type.
The dbType property, for example, can be set to String, which is very convenient for VB
developers. The SqlDbType, on the other hand, doesn't have a String setting. You must
specify one of the data types supported by SQL Server (such as varchar or text). If the
parameter's type is String, you must also set the maximum size of the string with the Size
property. If the parameter is a numeric value, you can set the Scale and Precision properties.
The second property of the Parameter object you must set is the Direction property, which
determines whether this is an input parameter (it's passed by the application to the statement or
stored procedure), an output parameter (it's passed by the statement or stored procedure to the
application), or both. Finally, you can set the parameter's value through the Value property.

To specify a value for the @country variable in the preceding example, you must set up a
Parameter object with the following statements:

Dim P As New SqlClient.SqlParameter
P.ParameterName = "@country"
P.DbType = DbType.String
P.Size = 25
P.Direction = ParameterDirection.Input
P.Value = "Germany"
CMD.Parameters.Add(P)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last statement attaches the parameter to the Command object's Parameters collection. You
can create additional parameters, set their properties, and append them to the Parameters
collection. Then you can call any of the Command object's Execute methods. The following
VB code will execute an UPDATE statement against the Products table to increase the price of
all products from a specific supplier by $2. This is the code behind the Execute SQL
Statement button of the DataSet Basics project, as shown in Listing 15.4.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 411

LISTING 15.4: EXECUTING A SQL STATEMENT AGAINST THE DATABASE
Private Sub bttnExecuteSQL_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnExecuteSQL.Click

 Dim supplierID As Integer = InputBox(''Please enter a supplier ID")
 Me.Refresh()
 If supplierID <= 0 Then Exit Sub
 Dim CMD As New SqlClient.SqlCommand
 CMD.Connection = SqlConnection1
 CMD.CommandText = "UPDATE Products" & _
 "SET UnitPrice = UnitPrice + 2" & _
 "WHERE Products.SupplierID = @supplierID"
 CMD.CommandType = CommandType.Text
 Dim P0 As New SqlClient.SqlParameter
 P0.ParameterName = "@supplierID"
 P0.DbType = DbType.Int32
 P0.Direction = ParameterDirection.Input
 P0.Value = supplierID
 CMD.Parameters.Add(P0)
 Dim rows As Integer
 SqlConnection1.Open()
 rows = CMD.ExecuteNonQuery
 SqlConnection1.Close()
 MsgBox("The query affected " & rows.ToString & " rows")
End Sub

To execute a stored procedure, use similar statements. Let's code the previous UPDATE
statement as a stored procedure and attach it to the database. The ChangeSupplierPrices stored
procedure is shown next:

CREATE PROCEDURE ChangeSupplierPrices
@supplierID int
AS
UPDATE Products
SET UnitPrice = UnitPrice + 2
WHERE Products.SupplierID = @supplierID

The statements in Listing 15.5 will execute the ChangeSupplierPrices stored procedure against
the database. They're almost identical to the statements of Listing 15.4 that executed the
equivalent SQL statement against the database, with the exception of the statement that
specifies the type of the command.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 412

LISTING 15.5: EXECUTING A STORED PROCEDURE AGAINST THE DATABASE
Private Sub bttnExecuteSP_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnExecuteSP.Click
 Dim supplierID As Integer = InputBox(''Please enter a supplier ID")
 Me.Refresh()
 If supplierID <= 0 Then Exit Sub
 Dim CMD As New SqlClient.SqlCommand
 CMD.Connection = SqlConnection1
 CMD.CommandText = "ChangeSupplierPrices"
 CMD.CommandType = CommandType.StoredProcedure
 Dim P0 As New SqlClient.SqlParameter
 P0.ParameterName = "@supplierID"
 P0.DbType = DbType.Int32
 P0.Direction = ParameterDirection.Input
 P0.Value = supplierID
 CMD.Parameters.Add(P0)
 SqlConnection1.Open()
 Dim rows As Integer
 rows = CMD.ExecuteNonQuery()
 SqlConnection1.Close()
 MsgBox("The stored procedure affected " & rows.ToString & " rows")
End Sub

You can also execute commands and stored procedures to select rows from the database, but
you can't use the result of a query executed through a Command object to populate a DataSet.
There are basically two methods of storing data at the client. One of them is to read the data
returned by a command through a DataReader object and store them to a data structure, such
as an ArrayList or an array. You can also use the data to populate a Windows control. For
example, you can map each row returned by the command to a ListViewItem and populate a
ListView control. The second method is to populate a DataSet with the selected rows through
a DataAdapter. The DataSet is a data store that resides at the client and has the structure of a
database. Data are stored in tables and the same relations that exist in the database can be
applied to the DataSet. As you will see, the DataSet is an excellent mechanism for storing data
at the client, as well as for passing data between layers. In the following section we'll discuss
the DataReader class and how to read the result of a query through the DataReader class. Then
we'll explore the architecture of the DataSet class.

The third method for executing a command is the Command object's ExecuteScalar method,
which executes the command and returns a single value. This is the value of the first column
of the first row in the resultset. What this basically means is that the ExecuteScalar method
returns a single value, which you must return from within your SQL statement or stored
procedure with a SELECT statement. The following statements retrieve the average number of
products per supplier, as shown in Listing 15.6.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 413

LISTING 15.6: THE PRODECTPERSUPPLIER STORED PROCEDURE
DECLARE @productCount int
SELECT @productCount = COUNT(Products.ProductID)
FROM Products
WHERE SupplierID IS NOT NULL

DECLARE @supplierCount int
SELECT @supplierCount = COUNT(Suppliers.SupplierID)
FROM Suppliers
WHERE SupplierID IN (SELECT DISTINCT SupplierID FROM Products)
SELECT cast(@productCount AS float) / Cast(@supplierCount AS float)

We're taking into consideration only the products that have a valid SupplierID value and the
suppliers that refer to one or more products. You can assign this lengthy SQL statement to the
CommandText property of a Command object, execute the command with the ExecuteScalar
method, and retrieve the value selected by the last line of the stored procedure. The
ExecuteScalar method should be called with the statements shown in Listing 15.7.

LISTING 15.7: EXECUTING A STORED PROCEDURE WITH THE EXECUTESCALAR METHOD
Private Sub bttnExecuteScalar_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnnExecuteScalar.Click
 Dim CMD As New SqlClient.SqlCommand
 CMD.Connection = SqlConnection1
 CMD.CommandText = ''ProductsPerSupplier"
 CMD.CommandType = CommandType.StoredProcedure
 SqlConnection1.Open()
 Dim avgProductNumber As Single
 avgProductNumber = CMD.ExecuteScalar
 SqlConnection1.Close()
 MsgBox("The average number of products per supplier is " & _
 avgProductNumber.ToString)
End Sub

USING THE DATAREADER

The DataReader is an object that provides fast, forward-only, read-only access to the data
returned by a command. In other words, you can iterate through the selected rows in a
forward-only fashion and you can only read data. To update the underlying table(s) in the
database, you must set up other commands to execute the appropriate action queries, or stored
procedures, against the database. Assuming that the CMD object represents a properly
configured SqlCommand object, the following

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 414

statements execute the command with the ExecuteReader method and iterate through the
selected rows. Each row is added to a ListView control at the client, as shown in Listing 15.8.

LISTING 15.8: POPULATING A LISTVIEW CONTROL WITH THE DATAREADER
Dim SQLRSR As New SqlClient.SqlDataReader
SQLRDR = CMD.ExecuteReader
Dim LI As ListViewItem
While SQLRDR.Read
 LI = New ListViewItem()
 LI.Text = SQLRDR.GetString(0)
 LI.SubItems.Add(SQLRDR.GetString(1))
 LI.SubItems.Add(SQLRDR.GetString(2))
 ListView1.Items.Add(LI)
End While

The ExecuteReader method of the Command object returns a DataReader object (a
SqlDataReader object for the SqlCommand object and an OleDbDataReader object for the
OleDbCommand object). The DataReader is positioned in front of the very first row and you
must use the Read method to move to the next row in the resultset. The While loop keeps
reading one row at a time with the Read method, which will return False after reading the last
row. In the loop's body we can use one of a variety of methods to read a column's value. Since
all three columns in the requested rows are strings, we use the GetString method. The
DataReader method exposes methods for reading all types that SQL Server may return
(GetChar, GetChars, GetDateTime, GetFloat, GetGuid, and so on). You can look up the
methods that read data in the drop-down list with the object's methods as you type. Notice that
the various columns are identified by an integer, which is their order in the selection list of the
SELECT statement.

Our sample code adds the columns of the selected rows to a ListView control. You could have
created a custom class for storing the same data—say, the CustomerInfo class. At each
iteration you should create a new instance of this class, populate its fields, and add it to a
collection. If you only wanted to perform a few calculations with the data, you could insert the
appropriate statements in the loop's body and not store the data values anywhere. It's usually
simpler to write a SQL statement or stored procedure to perform the calculations at the server
and return the result(s) to the client application.

One cool feature of the DataReader is that it can process multiple cursors returned by batch
queries. If you want to retrieve products and their suppliers, you can execute a batch query
such as the following:

SELECT * FROM Products
WHERE CategoryID = 5;
SELECT * FROM Suppliers
 INNER JOIN Products
 ON Products.SupplierID = Suppliers.SupplierID;

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 416

FIGURE 15.9 The DSProducts.vb class provides the functionality of a typed DataSet.

The following statements demonstrate the difference between typed and untyped DataSets. To
access the ProductName column of the first row in the Products table in an untyped DataSet,
you'd use an expression such as the following:

Products1.Products.Rows(0).Item(''ProductName")

If the Products1 DataSet is typed, you can create an object of the Products.ProductsRow type
with the following statement:

Dim productRow As Products.ProductsRow = Products1.Products.Rows(0)

Then use the productRow variable to access the columns of the corresponding row:

productRow.ProductName
productRow.UnitPrice

Accessing the DataSet's Tables

The DataSet is made up of tables, which are represented by the DataTable class. Each
DataTable in the DataSet may correspond to a table in the database, or a view. When you
execute a query that retrieves fields from multiple tables, all selected columns will end up in a
single DataTable of the DataSet. You can select any DataTable in the DataSet by its index, or
its name:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DS.Tables(0)
DS.Tables("Customers")

With a typed DataSet, table names are exposed as properties of the DataSet and you can
access them with an expression such as the following:

DS.Customers

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 417

Each table contains a number of columns, which you can access through the Columns
collection. The Columns collection is made up of DataColumn objects, one DataColumn
object for each column in the corresponding table. The Columns collection is the schema of
the DataTable object, and the DataColumn class exposes properties that describe a column.
ColumnName is the column's name, DataType is the column's type, MaxLength is the
maximum size of text columns, and so on. The AutoIncrement property is True for Identity
columns and the AllowDBNull property determines whether the column allows Null values. In
short, all the properties you can set visually as you design a table are also available to your
code through the Columns collection of the DataTable object. You can use the DataColumn
class's properties to find out the structure of the table, or create a new table. To add a table to a
DataSet, you can create a new DataTable object. Then create a DataColumn object for each
column, set its properties, and add the DataColumn objects to the DataTable's Columns
collection. Finally, add the DataTable to the DataSet. The process is described in detail in the
online documentation and we won't repeat it here.

Working with Rows

As far as data are concerned, each DataTable is made up of DataRow objects. All DataRow
objects of a DataTable have the same structure and can be accessed through an index, which is
the row's order in the table. To access the rows of the Customers table, use an expression such
as the following:

DS.Customers.Rows(iRow)

where iRow is an integer value from zero (the first row in the table) up to
DS.Customers.Rows.Count 1 (the last row in the table). To access the individual fields of
a DataRow object, use the Item property. This property returns the value of a column in the
current row either by its index or by its name:

DS.Customers.Rows(0).Item(0)

or

DS.Customers.Rows(0).Item(''CustomerID")

To access a row's columns by name, create a DataRow object of the type that corresponds to
the rows of a specific table. The following statements create a typed DataRow object to
reference a specific product and then retrieve the row's value as properties of the DataRow
object:

Dim prod As DSProducts.ProductsRow
prod = DsProducts1.Products.Rows(0)
MsgBox("The price of " & prod.ProductName & _
 " is " & prod.UnitPrice.ToString)

To iterate through the rows of a DataSet, you can set up a For...Next loop such as the
following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim iRow As Integer
For iRow = 0 To DSProducts1.Products.Rows.Count -1
 ' process row: DSProducts.Products.Rows(iRow)
Next

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 418

If you're using a typed DataSet, you can create a DataRow object that represents the rows of a
specific table and then set up a For Each...Next loop such as the following:

Dim prod As DSProducts.ProductRow
For Each prodRow In DSProducts1.Products.Rows
 ' process prodRow row:
 ' prodRow.ProductName, prodRow.UnitPrice, and so on
Next

To edit a specific row, simply assign new values to its columns. To change the value of the
ContactName column of a specific row in a DataTable that holds the customers of the
Northwind database, use a statement such as the following:

DS.Customers(3).Item(''ContactName") = "new contact name"

The new values are usually entered by a user on the appropriate interface, and in your code
you'll most likely assign a control's property to a row's column with statements such as the
following:

If txtName.Text.Trim <>"" Then
 DS.Customers(3).Item("ContactName") = txtName.Text
Else
 DS.Customers(3).Item("ContactName") = DBNull.Value
End If

The code segment assumes that when the user doesn't supply a value for a column, this
column is set to Null (if the column is Nullable, of course). If the control contains a value, this
value is assigned to the ContactName column of the fourth row in the Customers DataTable of
the DS DataSet.

Handling Null Values

A very important (and quite often tricky) issue in coding data-driven applications is the
handling of Null values. Null values are special, in the sense that you can't assign them to
control properties, or use them in other expressions. Every expression that involves Null
values will throw a runtime exception. The DataRow object provides the IsNull method,
which returns True if the column specified by its argument is a Null value:

If customerRow.IsNull("ContactName") Then
 ' handle Null value
Else
 ' process value
End If

In a typed DataSet, DataRow objects provide a separate method to determine whether a
specific column has a Null value. If the customerRow DataRow belongs to a typed DataSet,
you can use the IsContactNameNull method instead:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If customerRow.IsContactNameNull Then
 ' handle Null value for the ContactName
Else
 ' process value: customerRow.ContactName
End If

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 419

If you need to map Null columns to specific values, you can do so with the IsNull function of
T-SQL, as you retrieve the data from the database. In many applications, we want to display
an empty string or a zero value in the place of a Null field. We can avoid all the comparisons
in our code by retrieving the corresponding field with the IsNull function in our T-SQL
statement. Where the column name would appear in the SELECT statement, use an expression
such as the following:

IsNull(customerBalance, 0.00)

If the customerBalance column is Null for a specific row, SQL Server will return the numeric
value zero. This value can be used in reports, or in other calculations in your code. Notice that
the customer's balance shouldn't be Null. A customer always has a balance, even if it's zero.
When a product's price is Null it means that we don't know the price of the product (and
therefore can't sell it). In this case, a Null value can't be substituted with a zero value. You
must always handle Null columns in your code carefully; how you'll handle them depends on
the nature of the data they represent.

Adding and Deleting Rows

To add a new row to a DataTable, you must first create a DataRow object, set its column
values, then call the Add method of the Rows collection of the DataTable to which the new
row belongs, passing the new row as argument. If the DS DataSet contains the Customers
DataTable, the following statements will add a new row for the Customers table.

Dim newRow As New DataRow = dataTable.NewRow
newRow.Item(''CompanyName") = "new company name"
newRow.Item("CustomerName") = "new customer name"
newRow.Item("ContactName") = "new contact name"
DS.Customers.Rows.Add(newRow)

Notice that we need not set the CustomerID column. This is an Identity column and it's
assigned a new value automatically by the DataSet. Of course, when the row is submitted to
the database, the ID assigned to the new customer by the DataSet may already be taken. SQL
Server will assign a new unique value to this column when it inserts it into the table. We'll
have more to say about inserting and updating columns with Identity values. If you're
designing a new database, use GUIDs (globally unique identifiers) instead of identity values.
A GUID can be created at the client and it is unique. The same GUID that will be generated
by the client will also be inserted in the table, when the row is committed. To create GUIDs,
call the NewGuid method of the Guid class:

newRow.Item("CustomerID") = Guid.NewGuid

Finally, to delete a row you can either remove it from the Rows collection with the Remove or
the RemoveAt methods of the Rows collection, or call the Delete method of the DataRow
object that represents the row. The Remove method accepts as argument a DataRow object
and removes it from the collection:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim customerRow As DS.CustomerRow
customerRow = DS.Customers.Rows(2)
DS.Customers.Remove(customerRow)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 42

 FileOpen(filenumber, ''C:\test.txt", OpenMode.Binary)

 Do While Not EOF(filenumber)
 FileGet(filenumber, chrHolder)
 strRead = strRead & chrHolder
 Loop
 FileClose(1)

 Return strRead

 End Function

End Class

Listing 2.9 shows one more way to read from a file. This one does not require a loop.

LISTING 2.9: USING THE READTOEND METHOD TO READ A FILE
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim objFilename As FileStream = New FileStream("C:\test.txt" , _
FileMode.Open, FileAccess.Read, FileShare.Read)
 Dim strRdr As New StreamReader(objFilename)

 TextBox1.Text = strRdr.ReadToEnd()
 TextBox1.SelectionLength = 0 'turn off the selection

 End Sub

This one relies on the ReadToEnd method of the StreamReader object. The one kink is that the
text that is placed into the TextBox is selected (white text on black background). So, to
deselect it, you set the SelectionLength property to zero.

Writing to a File

The code that writes to a file is similar to the previous file-reading examples. The simplest
approach is as follows:

Dim sw As New StreamWriter("test.txt")
sw.Writeline("My example line.")
sw.WriteLine("A second line.")
sw.Close

For a more flexible, advanced example, type Listing 2.10.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 420

DELETING VERSUS REMOVING ROWS

Deleted rows are not always removed from the DataSet, because the DataSet maintains its
state. If the row you've deleted exists in the underlying table (in other words, if it's a row that
was read into the DataSet when you filled it), the row will be marked as deleted, but it will not
be removed from the DataSet. If it's a row that was added to the DataSet after it was read from
the database, the deleted row is actually removed from the Rows collection. You can
physically remove deleted rows from the DataSet by calling the DataSet's AcceptChanges
method. However, once you've accepted the changes in the DataSet, you can no longer submit
any updates to the database. If you call the DataSet's RejectChanges method, then the deleted
rows will be restored in the DataSet.

The RemoveAt method accepts as argument the index of the row you want to delete in the
Rows collection. Finally, the Delete method is a method of the DataRow class and you must
apply it to a DataRow object that represents the row to be deleted:

customerRow.Delete

Locating Rows

To search for specific rows, you can use one of the FindBy methods or the Select method of
the appropriate DataTable object. The FindBy method is specific to the database and searches
the DataTable based on the ID of a row. When you add the Products table to a DataSet, the
FindByProductID method will be generated for you automatically. To use it, just pass the ID
of the desired product as argument to this method:

Dim selRow As Products.ProductsRow = _
 Products1.Products.FindByProductID (34)

The type that represents the rows of a specific table is a member of the Products class (the
definition of the DataSet) and not of the instance of the DataSet. The FindByProductID
method is a member of the specific DataSet. Notice that the method returns a DataRow object,
and not the index of the row in the table.

The Select method allows you to search a table using SQL-like search criteria and returns an
array of DataRow objects. The criteria involve column names, values, and comparison
operators, such as:

ContactName LIKE 'Anton%'

or

OrderDate < '5/13/2004'

You can combine multiple criteria with the AND and OR keywords.

Dim selRows() As DataRow
SelRows = DS.Products.Select(''SupplierID=" & supplierID & _
 " AND Price > 19.99")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example we've stored the rows returned by the Select method into an array of DataRow
objects. Since the DataSet is typed, we could have declared the array as
DS.Products.ProductsRow type.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 421

The Rows collection of the DataTable object is just a collection and is not connected in any
way to the underlying table in the database. The new row need not be appended at the end of
the collection. You can use the InsertAt method of the Rows collection to insert the new row
at any place in the collection:

DS.Customers.Rows.InsertAt(newRow, idx)

The idx variable is the index of the new row in the collection.

EDITING WITH CONSTRAINTS

While you're editing a row, the DataSet keeps enforcing the constraints. Sometimes we may
wish to edit a row in the DataSet without worrying about referential integrity, or other
constraints. When we're done editing the row, the data should be in a consistent state, or else
the DataSet won't accept the changes. However, we may wish to violate referential integrity
momentarily. By default, the DataSet won't allow you to violate any of the constraints even
while editing a row. To maintain referential integrity at all times, we must make sure that the
fields are edited in a specific order, which may not be what we want to do while editing the
DataSet. To turn off the constraints while editing a DataRow, you can use the BeginEdit and
EndEdit methods.

Products(3).BeginEdit
Products(3).CategoryID = 99
Products(3).EndEdit

You can also validate the data from within your code after the user is done editing the row. If
there are errors, you can call the CancelEdit method in the place of the EndEdit method to
cancel the edit operation. Practical user interfaces, which use regular Windows controls for
data entry, usually provide an OK button and a Cancel button. You can call the BeginEdit
operation when users click a button to indicate their intention to edit the current row. If they
click the OK button, call the EndEdit method; if they click the Cancel button, call the
CancelEdit method to reject changes made to the row.

Navigating through a DataSet

The DataTables making up a DataSet may be related, and they usually are. There are methods
that allow you to navigate from table to table following the relations between their rows. For
example, you can start with a row in the Customers DataTable, retrieve its child rows in the
Orders DataTable (the orders placed by the selected customer), and then drill down to the
details of each of the selected orders.

The relations of a DataSet are DataRelation objects and are stored in the Relations property of
the DataSet. Each relation is identified by a name, the two tables it relates, and the fields of the
tables on which the relation is based. It's possible, and really quite simple, to create relations in
your code. Let's consider a DataSet that contains the Categories and Products tables. To
establish a relation between the two tables, create two instances of the DataTable class to
reference the two tables:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim tblCategories As DataTable = DS.Categories
Dim tblProducts As DataTable = DS.Products

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 422

Then create two DataColumn objects to reference the columns on which the relation is based.
They're the CategoryID columns of both tables:

Dim colCatCategoryID As DataColumn = _
 tblCategories.Columns(''CategoryID")
Dim colProdCategoryID As DataColumn = _
 tblProducts.Columns("CategoryID")

And, finally, create a new DataRelation object and add it to the DataSet:

Dim DR As DataRelation
DR = New DataRelation("Categories2Products" , _
 colCatCategoryID, colProdCategoryID)

Notice that we need only specify the columns involved in the relation, and not the tables to be
related. The information about the tables is derived from the DataColumn objects. The first
argument of the DataRelation constructor is the relation's name. If the relation involves
multiple columns, then the second and third arguments of the constructor become arrays of
DataColumn objects.

To navigate through related tables, the DataRow object provides the GetChildRows method,
which returns the current row's child rows as an array of DataRow objects, and the GetParent-
Row/GetParentRows methods, which return the current row's parent row(s). The
GetParentRow returns a single DataRow object and the GetParentRows returns an array of
DataRow objects. Since a DataTable may be related to multiple DataTables, you must also
specify the name of the relation. Consider a DataSet with the Products, Categories, and
Suppliers tables. Each row of the Products table can have two parent rows, depending on
which relation you want to follow. To retrieve the product's category, use a statement such as
the following:

DS.Products(iRow).GetParentRow("CategoriesProducts")

The product's supplier is given by the following expression:

DS.Products(iRow).GetParentRow("SuppliersProducts")

We're assuming that the CategoriesProducts and SuppliersProducts relations have
already been created, either in the IDE or programmatically.

THE DATARELATIONS PROJECT

Let's consider a DataSet that contains the Customers, Orders, and Order Details tables of the
Northwind database. Let's also assume that the CustomerOrders and OrdersOrderDetails
relations have been created. You can open the DataRelations project and find the
CustomerOrders DataSet with the Customers, Orders, and Order Details tables of the
Northwind database and the appropriate relations. The data is downloaded from the server
when the form is loaded, and stored into the CustomerOrders DataSet, which is bound to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when the form is loaded, and stored into the CustomerOrders DataSet, which is bound to the
DataGrid control. The Show All Rows button displays on the lower TextBox control the
customers, their names, and the orders' details by iterating through the rows of all tables in the
DataSet. Figure 15.10 shows the application's output after clicking the Show All Rows button.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 423

FIGURE 15.10 The DataRelations project demonstrates how to use the relations between tables to iterate
through a DataSet.

The code behind the Show All Rows button, which is shown in Listing 15.9, goes through the
rows of the Customers table and at each row prints the fields of the row. Then it retrieves the
current customer's orders with the GetChildRows method, passing as argument the name of
the relation between the Customers and Orders tables. The related rows of the Orders table are
returned as an array of CustomerOrder.OrdersRow objects and the code goes through these
rows with a For Each...Next loop. For each order, it prints the current order's fields and
then retrieves the related detail lines from the OrderDetails table. To do so it calls the
GetChildRows method, passing as argument the name of the second relation in the DataSet,
and processes the details in a similar manner (prints their fields on the TextBox control).

LISTING 15.9: NAVIGATING THROUGH THE ROWS OF RELATED TABLES
Private Sub bttnShow_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnShow.Click
 Dim custRow As CustomerOrders.CustomersRow
 For Each custRow In CustomerOrders1.Customers
 Dim custCol As DataColumn
 For Each custCol In custRow.Table.Columns
 TextBox1.AppendText(_
 custRow.Item(custCol.ColumnName) & vbTab)
 Next
 TextBox1.AppendText(vbCrLf)
 Dim OrderRows() As CustomerOrders.OrdersRow
 Dim orderRow As CustomerOrders.OrdersRow
 OrderRows = custRow.GetChildRows(''CustomersOrders")
 For Each orderRow In OrderRows
 Dim orderCol As DataColumn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim orderCol As DataColumn
 TextBox1.AppendText(vbTab)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 424

 For Each orderCol In orderRow.Table.Columns
 TextBox1.AppendText(_
 orderRow.Item(orderCol.ColumnName) & vbTab)
 Next
 TextBox1.AppendText(vbCrLf)
 Dim detailRows() As CustomerOrders.Order_DetailsRow
 Dim detailRow As CustomerOrders.Order_DetailsRow
 detailRows = orderRow.GetChildRows(''OrdersOrderDetails")
 For Each detailrow In detailRows
 Dim detailCol As DataColumn
 TextBox1.AppendText(vbTab & vbTab)
 For Each detailCol In detailRow.Table.Columns
 TextBox1.AppendText(_
 detailRow.Item(detailCol.ColumnName) & vbTab)
 Next
 TextBox1.AppendText(vbCrLf)
 Next
 Next
 Next
End Sub

In Chapter 18 you'll see a better application for navigating through the tables of the Northwind
database; it demonstrates how to move not only from parent to child rows, but from child to
parent rows as well.

ROW STATES AND VERSIONS

Each row in the DataSet has a State property, which indicates the row's state and its value, is a
member of the DataRowState enumeration. The members of the DataRowState enumeration
are shown next.

Added The row has been added to the DataTable and the AcceptChanges method
has not been called.
Deleted The row was deleted from the DataTable and the AcceptChanges method
has not been called.
Detached The row has been created with its constructor, but has not yet been added
to a DataTable.
Modified The row has been edited and the AcceptChanges method has not been
called.
Unchanged The row has not been edited or deleted since it was read from the
database or the AcceptChanges was last called (in other words, the row's fields are
identical to the values read from the database). You can use the GetChanges method
to find the rows that must be added to the underlying table in the database, the rows
to be updated, and the rows to be removed from the underlying table.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 425

If you want to update a single row of a DataTable, call an overloaded form of the
DataAdapter's Update method, which accepts as argument a DataTable and submits its rows to
the database. The edited rows are submitted through the UpdateCommand object of the
appropriate DataAdapter, the new rows are submitted through the InsertCommand object, and
the deleted rows are submitted through the DeleteCommand object. Instead of submitting the
entire table, however, you can create a subset of a DataTable that contains only the rows that
have been edited, inserted, or deleted. The GetChanges method of the DataTable object
retrieves a subset of rows, depending on the argument you pass to it. This argument is a
member of the DataRowState enumeration:

Dim DT As New DataTable
DT = Products1.Products.GetChanges(DataRowState.Deleted)

The preceding statement retrieves the rows of the Customers table that were deleted and stores
them into a new DataTable. The new DataTable has the same structure as the one from which
the rows were copied, and you can access its rows and their columns as you would access any
DataTable of a DataSet. You can even pass this DataTable as argument to the appropriate
DataAdapter's Update method. This form of the Update method allows you to submit selected
changes to the database. For more information on updating the underlying data source with
DataAdapters, see the section ''Update Operations," later in this chapter.

In addition to a state, rows have a version. What makes the DataSet such a powerful tool for
disconnected applications is that it maintains not only data but also the changes in its data. The
Row property of the DataTable object, which represents a DataRow, is usually called with the
index of the desired row:

DS.Tables(0).Rows(i)

where i is the index of the row we want to access. The Rows property can be called with an
additional argument, which determines the version of the row you want to read. This argument
is a member of the DataRowVersion enumeration, whose values are the following:

Current Returns the row's current values (the fields as they were edited in the
DataSet).
Default Returns the default values for the row. For added, edited, and current rows,
the default version is the same as the current. For deleted rows, the default version
is the same as the original version. If the row doesn't belong to a DataTable, the
default version is the same as the proposed version.
Original Returns the row's original values (the values read from the database).
Proposed Returns the row's proposed value (the values assigned to a row that
doesn't yet belong to a DataTable).

If you attempt to submit an edited row to the database and the operation fails, you can give the
user the option to edit the current version of the row, or restore the values of the row to their
original values. To retrieve the original version of a row, use an expression such as the
following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DS.Tables(0).Row(i, DataRowVersion.Original)

While you can't manipulate the version of a row directly, you can use the AcceptChanges and
RejectChanges methods to either accept the changes or reject them. These two methods are
exposed by the DataSet, DataTable, and DataRow classes. The difference is the scope.
Applying RejectChanges to the DataSet restores all changes made to the DataSet (not a very
practical operation). Applying

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 426

RejectChanges to a DataTable object restores the changes made to the specific table's rows;
applying the same method to the DataRow object restores the changes made to a single row.

The AcceptChanges method sets the original value of the affected row(s) to the current value
(it will also set each row's state to Unchanged). Deleted rows are physically removed. The
RejectChanges method removes the proposed version of the affected row(s). You can call the
RejectChanges method when the user wants to get rid of all changes in the DataSet. Notice
that once you call the AcceptChanges method, you can no longer update the underlying tables
in the database, because the DataSet no longer knows which rows were edited, inserted, or
deleted. Call the AcceptChanges method only for DataSets you plan to persist on disk and not
submit to the database.

Using DataViews

In addition to processing tables directly in the DataSet, you can view and edit tables through
views. A view is another way of looking at a DataTable and is represented with a DataView
object. The view may contain a subset of the original table, or the table itself with a different
arrangement (sorted by a specific column, for example). The DataView object allows you to
perform certain operations that are not possible with the DataTable object. A view can be
sorted, for example. The order of the rows in the DataTable can't change, and it's the order in
which the rows were returned to the client by the server. You can edit the view as you would
edit the original DataTable. All the changes are reflected immediately to the DataSet.

Each DataTable object provides a default view, which is identical to the DataTable and is
accessible through the DefaultView property of the DataTable object. To create a new view,
call the DataView object's constructor passing the name of the DataTable as argument:

Dim sortedView As New DataView(TblCustomers)

The sortedView DataView object can be sorted by setting its Sort property to the name(s) of
one or more columns and the ASC or DESC qualifiers. To sort the sortedView view by
company name within each country, set the Sort property to the names of the two fields as
shown next:

SortedView.Sort = ''Country DESC, CompanyName DESC"

The DESC qualifier requests that rows will be sorted in descending order. To access the rows
of a DataTable in sorted order without creating a new DataView object, set the Sort property
of the table's default view:

TBLCustomers.DefaultView.Sort = "CompanyName"

Notice that the TBLCustomers DataTable's rows aren't sorted. You can view them in sorted
order by reading the Rows collection of the DataTable's default view
(TBLCustomers.DefaultView).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to sorting the view, you can apply a filter to select specific rows. To filter the rows
of a view, set the RowFilter property of the corresponding DataView object to an expression
like the ones you'd use in the WHERE clause of a selection query. The following expression
filters out the customers from all countries but Germany:

TBLCustomers.DefaultView.RowFilter = "Country = 'Germany'"

Strings within the filtering expression are delimited with single quotes and dates are delimited
with the pound symbol. To combine multiple expressions in a filter, use the Boolean operators
AND and OR. Both the asterisk (*) and the percent sign (%) can be used as wildcard
characters.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 427

Another filtering mechanism is the RowStateFilter, which filters rows based on their version
and state. The RowStateFilter property must be set to one of the values of the
DataViewRowsStates enumeration, whose members are shown next:

CurrentRows Selects the current versions of the rows. This is the default value and
it returns all the rows but the deleted ones.
Added Returns the rows added since the DataTable's AcceptChanges method was
called.
Deleted Returns the rows deleted since the DataTable's AcceptChanges method was
called.
ModifiedCurrent Returns the current version of all rows that were modified since
the Data-Table's AcceptChanges method was called.
ModifiedOriginal Returns the original version of all rows that were modified since
DataTable's AcceptChanges method was called.
None Returns no rows, just creates a DataView with the same structure as the
DataTable.
OriginalRows Returns the original version of all rows, including the ones that were
deleted since the DataTable's AcceptChanges method was called.
Unchanged Returns the rows that haven't been changed since the DataTable's
AcceptChanges method was called.

Finally, the DataView class provides two methods for searching the column on which the view
is sorted. The difference between the search methods of the DataView and the search methods
of the DataTable is that the DataView class's search methods return the index of the matching
rows in the view, and not the actual row. If you'd rather work with the index, you should use
the DataTable's default view. Suppose you're displaying the rows of a DataTable on a
ListView control. For certain operations it may be more convenient to retrieve the index of a
selected row, rather than the row itself, so that you can locate the same row on the ListView
control instantly.

The searching methods of the DataView class are the Find and FindRows methods. They both
accept as argument a value (or an array of values) and locate the row with the same value in
the column(s) on which the view is sorted. The Find method returns the index of the first
match, while the FindRows method returns an array with the matching rows. The following
statements create a new view on the TBLCustomers DataTable, sort it according to the
ContactTitle column, and then locate the index of the first contact whose title is ''Sales
Representative."

Dim DVCustomers As New DataView(DS.TBLCustomers)
DVCustomers.Sort = "ContactTitle"
Dim idx As Integer
idx = DVCustomers.Find("Sales Representative")

To retrieve all the contacts that are sales representatives in an array of DataRow objects, use
the following statements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim DVCustomers As New DataView(DS.TBLCustomers)
DVCustomers.Sort = "ContactTitle"
Dim rows() As DataRow
rows = DVCustomers.Find("Sales Representative")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 429

how the DataGrid marks the rows that failed to update the underlying tables. It's a very
convenient approach for developers, but you can't sell this type of interface. It's not what end
users want to see. Real applications deploy Windows forms where users can edit the DataSet's
tables. You can still use DataSets and DataAdapters, but if the Update operation fails you must
handle it somehow from within your code. The DataTable object provides the members you
need to retrieve the rows that failed to update the database, as well as the messages returned by
the database server. You'll see how these members are used in this section.

To demonstrate the techniques of this section we'll return to the NWProducts project and add
some code to the Update Database button, which submits the changes to the database. You'll
find more practical examples of handling update errors in Chapter 18. Here we'll show you
how to retrieve the rows that failed to update the database, as well as the reason why, from
within our code. Once you know what went wrong, you'll be able to build the appropriate
interface to help users correct their mistakes and try again. Some errors can't be corrected. If
the user has edited a row that has been removed in the meantime by another user, there's not
much you can do, short of removing the row from its DataTable and accepting this change.
With some additional effort, you can create a new row with the same values as the deleted one
and submit it to the database as a new row (with a different ID, of course).

The Update Database button calls the Update method of the three DataAdapters:

Dim CategoryRows, SupplierRows, ProductRows As Integer
CategoryRows = DACategories.Update(Products1)
SupplierRows = DASuppliers.Update(Products1)
ProductRows = DAProducts.Update(Products1)

The values returned are the number of rows affected in each table. The Update methods may
not have updated all the rows in the underlying tables. If a product was removed in the
meantime from the Products table in the database, the DataAdapter's UpdateCommand will not
be able to submit the changes made to the specific product. A product with a negative value
may very well exist in the DataSet (which doesn't enforce arbitrary constraints), but the
database will reject this row, because it violates one of the constraints of the Products table. As
we mentioned, you should validate the data as best as you can at the client before submitting
them to the database. The ContinueUpdateOn- Error property of the three DataAdapter objects
is set to True, so that they will submit all the changes to the database, even if some of the rows
fail to update the underlying tables.

If the database returned any errors during the update process, the HasErrors property of the
DataSet object will be set to True. You can retrieve the rows in error from each table with the
Get- Errors method of the DataTable class. This method returns an array of DataRow objects
and you can process them in any way you see fit. The code shown next iterates through the
rows of the Categories table that are in error and prints the description of the error on the
Output window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If Products1.HasErrors Then
 If Products1.Categories.GetErrors.Length = 0 Then
 Console.WriteLine(''No errors in the Categories DataTable")
 Else
 Dim RowsInError() As Products.CategoriesRow
 RowsInError = Products1.Categories.GetErrors
 Dim row As Products.CategoriesRow

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 43

LISTING 2.10: WRITING TO A FILE VIA STREAMING
Private Sub Button1_Click_1(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim strText As String = TextBox1.Text

 If (strText.Length < 1) Then
 MsgBox(''Please type something into the TextBox so we can save it.")
 Exit Sub
 Else
 Dim strFileName As String = "C:\MyFile.txt"
 Dim objOpenFile As FileStream = New FileStream(strFileName, _
FileMode.Append, FileAccess.Write, FileShare.Read)
 Dim objStreamWriter As StreamWriter = New StreamWriter(objOpenFile)

 objStreamWriter.WriteLine(strText)

 objStreamWriter.Close()
 objOpenFile.Close()
 End If

 End Sub

Because you used the FileMode.Append property, each time you run this program new text
will be added to any existing text in the file. If you want to overwrite the file, use
FileMode.Create instead. Alternatively, you can save to a file by borrowing functionality
from the SaveFileDialog class (or the SaveFileDialog control), as shown in Listing 2.11.

LISTING 2.11: WRITING TO A FILE USING THE SAVEFILEDIALOG OBJECT
Dim sfd As New SaveFileDialog()
 Dim dlgResponse As Integer
 Dim strFname As String

 sfd.DefaultExt = "txt" ' specifies a default extension
 sfd.InitialDirectory = "C:"

 dlgResponse = sfd.ShowDialog

 If dlgResponse = 1 Then
 strFname = sfd.FileName
 msgbox(strFname)
 End If

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 430

 Console.WriteLine(''Errors in the Categories table")
 For Each row In RowsInError
 Console.WriteLine(vbTab & row.CategoryID & vbTab & _
 row.RowError)
 Next
 End If
End If

The DataRow object exposes the RowError property, which is a description of the error that
prevented the update for the specific row. It's possible that the same row has more than a
single error. To retrieve all columns in error, call the DataRow object's GetColumnsInError,
which returns an array of DataColumn objects—the columns in error.

So, it's possible to retrieve information about the update errors, even if you're using the
DataAdapter's Update method to submit the changes to the database. Of course, the
DataAdapter is not the only method of submitting changes to the database.

One of the overloaded forms of the Update method allows you to specify the rows to be
submitted to the database. The DataAdapter's Update method can accept as argument a
DataTable, or an array of DataRow objects, and it will update only the specified rows.

Handling Identity Columns

An issue that deserves special attention in coding data-driven applications is the handling of
Identity columns. Identity columns are used as primary keys, and each row is guaranteed to
have a unique Identity value, because this value is assigned by the database the moment the
row is inserted into its table. The client application can't generate unique values. When new
rows are added to a DataSet, they're assigned Identity values, but these values are unique in
the context of the local DataSet. When a row is submitted to the database, the Identity columns
will be assigned their final values by the database. The temporary Identity value assigned by
the DataSet is also used as foreign key value by the related rows, and we must make sure that
every time an Identity value is changed, the change will propagate to the related tables.

Handling Identity values is a very important topic, and here's why. Consider an application for
entering orders or invoices. Each order has a header and a number of detail lines, which are
related to a header row with the OrderID column. This column is the primary key in the
Orders table and the foreign key in the Order Details table. If the primary key of a header is
changed, the foreign keys of the related rows must change also. Figure 15.11 shows the
Transactions application that creates new orders and submits them to the database. The new
orders are displayed on a DataGrid control and you can view their headers and their details.
You can submit them to the database one at a time, or in batch mode, by clicking the Submit
Orders button.

This application has two basic requirements:

The order header and the order detail must be related at all times. If the ID of an order
header is changed, the IDs of its related rows in the Order Details table must also
change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Orders must be entered into the database in a transactional context. This means that if a
detail line can't be inserted into the Order Details table, the entire order must be aborted.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 431

FIGURE 15.11 The Transaction project demonstrates how to insert new orders in transactional mode.

In this section we'll explore the techniques for maintaining the relation between headers and
details, which are based on Identity values. In the following section we'll discuss the second
requirement, namely how to implement transactions with ADO.NET.

Handling Identity columns is a crucial issue in developing disconnected data-driven
applications. The best way to handle this situation is to stop using Identity columns and
replace them with GUID columns. The GUID created at the client will be unique even after
the corresponding row is inserted into the database, and the relation will remain valid. This
option, however, is out of the question for many existing databases. It's trivial to change the
schema of the database, but this would break all the applications that use the database.

The trick in handling Identity columns is to make sure that the values generated by the DataSet
will be replaced by the database. We do so by specifying that the Identity column's starting
value is –1 and its autoincrement is –1. The first ID generated by the DataSet will be –1, the
second one will be –2, and so on. Negative Identity values will be rejected by the database,
because the AutoIncrement properties in the database schema are positive. By submitting
negative Identity values to SQL Server we make sure that new, positive values will be
generated and used by SQL Server.

We must also make sure that the new values will replace the old ones in the related rows. In
other words, we want these values to propagate to all related rows. The DataSet allows you to
specify that changes in the primary key will propagate through the related rows with the
UpdateRule property of the Relation.ChildKeyConstraint property. Each relation exposes the
ChildKeyConstraint property, which determines how changes in the primary key of a relation
affect the child rows. This property is an object that exposes a few properties of its own. The
two properties we're interested in are the UpdateRule and DeleteRule (what happens to the
child rows when the parent row's primary key is changed, or when the parent row is deleted).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

child rows when the parent row's primary key is changed, or when the parent row is deleted).
You can use one of the following rules:

Cascade Foreign keys in related rows change every time the primary key changes
value, so that they'll always remain related to their parent row.
None The foreign key in the related row(s) is not affected.
SetDefault The foreign key in the related row(s) is set to the DefaultValue property
for the same column.
SetNull The foreign key in the related rows is set to Null.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 432

As you can understand, setting the UpdateRule property to anything other than Cascade will
break the relation. If the database doesn't enforce the relation, you may be able to break it. If
the relation is enforced, however, the UpdateRule must be set to Rule.Cascade, or else the
database will not accept changes that violate its referential integrity.

If you set the UpdateRule to None, you may be able to submit the order to the database.
However, the detail rows may refer to a different order. This will happen when the ID of the
header is changed because the temporary value is already taken. The detail rows will be
inserted with the temporary key and they'll be added to the details of another order. Notice that
no runtime exception will be thrown and the only way to catch this type of error is by
examining the data inserted into the database by your application. By using negative values at
the DataSet, we make sure that the ID of both the header and all detail rows with a negative ID
will be rejected by the database.

THE TRANSECTIONS PROJECT

Now we can look at the code of the Transactions project, which inserts new orders to the
Northwind database using DataAdapters. Create a form with the controls you see in Figure
15.11. The Create New Order button creates a random order and adds it to the client DataSet.
This DataSet is bound to the DataGrid control, and you can view the new orders and their
details on the control. The Submit Orders sends all the new orders to the database. The third
button allows you to retrieve an order by its ID and add it the local DataSet.

Let's start by setting up the DataAdapters, to move data in and out of the Northwind database,
and the DataSet, where we'll store our data at the client. Drop the Customers table on the form
and rename the SqlDataAdapter that will be added to the form to DACustomers. Then drop
the Products, Orders, and Order Details tables on the form and rename the corresponding
DataAdapters to DAProducts, DAOrders, and DADetails, respectively. Each new order
will be submitted to the Orders and Order Details tables in the database, so we'll create a
DataSet with these two tables.

Configure the DataAdapters with the SELECT statements shown next:

DACustomers DataAdapter

SELECT CustomerID, CompanyName, Fax, Country,

 PostalCode, Region, City, Address, ContactTitle, ContactName

FROM Customers

Do not generate INSERT/UPDATE/DELETE statements for this DataAdapter, because we
won't update the Customers table; we'll use it to look up customer information.

DAProducts DataAdapter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT ProductID, ProductName, UnitPrice

FROM Products

Do not generate INSERT/UPDATE/DELETE statements for this DataAdapter, because we
won't update the Products table; we'll use it to look up product information.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 433

DAOrders DataAdapter

SELECT OrderID, CustomerID, EmployeeID, OrderDate,
 RequiredDate, ShippedDate, ShipVia, Freight,
 ShipName, ShipAddress, ShipCity, ShipRegion,
 ShipPostalCode, ShipCountry
FROM Orders
WHERE OrderID = @orderID

DADetails DataAdapter

SELECT OrderID, ProductID, UnitPrice, Quantity, Discount
FROM [Order Details]
WHERE OrderID = @orderID

Then generate two DataSets, one for storing the static tables (Customers and Products) and
another one with the updateable tables (Orders and Order Details). The first DataSet contains
the tables that need not update the database and will be used as lookup tools to select
customers and products for our orders. Call this DataSet DSTables and add the Customers
and Products tables to it. The other DataSet is the DSNewOrder DataSet and it contains the
Orders and Order Details tables. You must also add a relation between the two tables of the
DSNewOrder DataSet based on the OrderID column of the two tables. The parent table in the
relation is the Orders table and the child table is the Order Details table. The default name of
this relation is rather clumsy, so change it to OrdersOrderDetails, because we'll use it in
our code.

When the form is loaded we must populate the DSTables DataSet with the following
statements:

DACustomers.Fill(DsTables1, ''Customers")
DAProducts.Fill(DsTables1, "Products")

We must also set the properties of the Orders DataTable, so that it can handle the relations as
discussed earlier in this section. The following statements set the Identity attributes of the
OrderID column of the Orders DataTable.

DsOrders1.Orders.OrderIDColumn.AutoIncrement = True
DsOrders1.Orders.OrderIDColumn.AutoIncrementSeed = -1
DsOrders1.Orders.OrderIDColumn.AutoIncrementStep = -1
Finally, we must set the UpdateRule for the relation between the Orders and Order Details tables:
DsOrders1.Relations("OrdersOrderDetails"). _
 ChildKeyConstraint.UpdateRule = Rule.Cascade

These are the statements that must be executed in the form's Load event handler. The
DSOrders DataSet will be populated with new orders at runtime and is initially empty. The
code behind the Create New Order button creates random new orders to populate the Orders
and Order Details tables of the DSOrders DataSet. The customer to whom the order belongs
is selected randomly from

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 434

the Customers table and the order's shipping address is set to the customer's address. The
order's body is filled with random products. We set the number of detail lines (a random value
between 3 and 10) and then we select as many random rows from the Products table. We
create a detailLine variable to represent each detail line (the type of the variable is
DSOrders.Order_Details), assign values to its columns, and then add it to the Order Details
DataTable. The OrderID column of each detail line is set to the OrderID column of its parent
row. Listing 15.10 shows the code behind the Create New Order button on the form of the
application:

LISTING 15.10: CREATING A NEW ORDER
Private Sub bttnNewOrder_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnNewOrder.Click
 Dim rnd As New System.Random
 Dim custrow As Integer
 custrow = rnd.Next(0, DsTables1.Customers.Rows.Count - 1)
 Dim customerRow As DSTables.CustomersRow
 customerRow = DsTables1.Customers.Rows(custrow)

 Dim hdrOrder As DSOrders.OrdersRow
 Dim TBLOrders As DataTable = DsOrders1.Orders
 hdrOrder = TBLOrders.NewRow
 hdrOrder.CustomerID = customerRow.CustomerID
 hdrOrder.OrderDate = Now.Today.ToShortDateString
 If Not customerRow.IsAddressNull Then _
 hdrOrder.ShipAddress = customerRow.Address
 If Not customerRow.IsCityNull Then _
 hdrOrder.ShipCity = customerRow.City
 If Not customerRow.IsPostalCodeNull Then _
 hdrOrder.ShipPostalCode = customerRow.PostalCode
 If Not customerRow.IsCountryNull Then _
 hdrOrder.ShipCountry = customerRow.Country
 DsOrders1.Orders.Rows.Add(hdrOrder)

 Dim detLines As Integer = rnd.Next(3, 10)
 Dim detLine As Integer
 Dim TBLDetails As DataTable = DsOrders1.Order_Details
 Dim prodRow As DSTables.ProductsRow
 Dim detailLine As DSOrders.Order_DetailsRow
 For detLine = 1 To detLines
 detailLine = TBLDetails.NewRow
 detailLine.OrderID = hdrOrder.OrderID
 prodRow = DsTables1.Products.Rows(rnd.Next(1, 77))
 detailLine.ProductID = prodRow.ProductID
 detailLine.Quantity = rnd.Next(1, 100)
 detailLine.UnitPrice = prodRow.UnitPrice
 detailLine.Discount = rnd.NextDouble * 0.3

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 435

 Try
 TBLDetails.Rows.Add(detailLine)
 Catch ex As Exception
 Console.WriteLine(''Could not add product"& _
 detailLine.ProductID)
 End Try
 Next
End Sub

The Add method that adds each detail line to the Order Details DataTable is embedded in a
structured exception handler. The OrderID and ProductID columns of the Order Details table
in the Northwind database form a unique constraint: an order may not contain two detail lines
that refer to the same product. Because the products are selected randomly, it's possible that a
new detail line may refer to the same product as an existing one. When this happens, the
DataSet will reject the second row and a runtime exception will be thrown. Our code handles
this condition silently by simply ignoring the row that refers to an existing product and
continues.

As new orders are entered, they're assigned a negative ID and are automatically displayed on
the DataGrid control, which is bound to the DSOrders DataSet. You can verify that headers
and their details are related with negative ID values. You can also retrieve any order from the
database and add it to the DSOrders DataSet with the Show Order button. The existing order
will be displayed along with the new ones, but it will have its final ID (which is a positive
value).

To commit the new orders, click the Submit Orders button. If they're inserted into the database
successfully, the new OrderID values will be returned to the DataSet and they will appear on
the DataGrid control. The InsertCommand of the DataAdapter executes an INSERT statement
to insert the new row and then retrieves the newly inserted row and returns it to the DataSet.
Clicking the Submit Orders button without entering a new order has no effect, because the
DataSet contains no changes and there's nothing to be submitted to the database.

Take a look at the IDs of the orders shown in Figure 15.11. Initially, we retrieved the orders
with an ID value of 10900 and 10901 with the Show Order button. Then we added a couple of
new orders and submitted them to the database. The IDs assigned to these orders are 11109,
11110, and 11111. Then we added three more new orders, just before capturing the screen of
Figure 15.11. These orders will be assigned their final IDs the next time the Submit Orders
button is clicked again.

The code that inserts the new orders to the database is quite trivial; it just calls the Update
method of the two DataAdapters to insert the appropriate rows to the Orders and Order Details
tables, in that order, as shown in Listing 15.11.

LISTING 15.11: SUBMITTING ORDERS TO THE DATABASE
Private Sub bttnSubmitOrder_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSubmitOrder.Click
 DAOrders.Update(DsOrders1, "Orders")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DAOrders.Update(DsOrders1, "Orders")
 DADetails.Update(DsOrders1, "Order Details")
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 436

We were able to update the underlying tables with a few trivial statements, because we've
configured the DataSet and the DataAdapters properly. If you don't set the AutoIncrement
properties and the UpdateRule, you wouldn't be able to commit the orders to the database and
be sure that the relation between the two tables remains in effect.

The suggested approach will work, but not always as expected. What if a row can't be added
to the Orders or the Order Details table? The remaining rows will be added and we may end
up with an order that contains fewer detail rows than it should, a header without detail lines, or
even detail lines without a header (orphan rows in the Order Details table). This brings us to
the last topic discussed in this chapter, the topic of transactions.

Performing Transactions with the DataAdapter

Some actions against a database must be performed as a single operation: they must either
succeed or fail. Orders and invoices are typical examples, and so is the transferring of funds
between accounts. If a detail line can't be entered into the Order Details table, then the entire
order must be rejected. Otherwise, we'll end up with a partial order. Likewise, we can't remove
an amount from one account and not deposit it to another account. Operations involving
multiple steps that must either succeed or fail as a whole are known as transactions.

All DBMSs support transactions and this is one of the most important topics in database
programming: any non-trivial application involves transactions. While a transaction is in
process, the participating rows are locked and other applications can't access them. The DBMS
—SQL Server in our case—takes care of locking the rows during the transaction and
unlocking them when the transaction completes. It's therefore crucial that transactions are
performed as fast as possible. Imagine a situation where a transaction is initiated when the user
starts entering an invoice and completes when the invoice is ready. Rows will be unnecessarily
locked for long periods of time, and users won't be able to complete their own transactions if
one of the rows they need is locked by another user.

In ADO.NET, transactions are implemented through a Transaction object. As with most
ADO.NET classes, the Transaction class is an abstract one and you must use an
OleDbTransaction or a Sql-Transaction, depending on the database you're writing to.
Moreover, all the steps of a transaction must be performed through the same Connection
object. If your application calls for transactions that involve multiple databases, you must use
the COM+ services, which are discussed in Chapter 16.

First, you initiate a Transaction object by calling the BeginTransaction method of a
Connection object. The Transaction object must be used with all the Command objects that
will participate in the transaction. The Command class provides a Transaction property, which
must be set to a Transaction object. All the Command objects that refer to the same
Transaction object are executed in the context of the same transaction. If you're using
DataAdapters, you must set the Transaction property of the InsertCommand, DeleteCommand,
or UpdateCommand objects of the DataAdapter, depending on the type of action you want to
perform. To end a successful transaction, you must call the Transaction object's Commit
method. If the transaction failed, you call the RollBack method of the Transaction object to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method. If the transaction failed, you call the RollBack method of the Transaction object to
restore the affected rows to their version before the transaction began.

To commit the rows of an order in the context of a transaction, you must assign the
Transaction object to the Transaction property of the DAOrders.InsertCommand and
DADetails.InsertCommand objects. Then you can perform the steps of the transaction as you
would if the same steps were executed independently of one another. In other words, call the
Update method of both DataAdapters. If all steps are successful, you can call the Transaction
object's Commit method to finalize the transaction.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 437

The changes made to the database by the commands of the transaction will become visible as
soon as the Commit method is executed. If one of the steps fails, you must call the Rollback
method of the Transaction object to abort the transaction. To detect an error condition that
may prevent the transaction from completing successfully, you can embed the statements that
update the database into a structured error handler. The following code segments outline a
transactional update operation:

Dim CN As New SqlClient.SqlConnection()
' Set up the SqlConnection object
' and open a connection to the database
CN.Open()
' Create and initialize a Transaction object
Dim TRN As SqlClient.SqlTransaction
TRN = CN.BeginTransaction()
Try
 ' Set up a Command object
 Dim CMD1 As New SqlClient.SqlCommand()
 CMD1.Connection = CN
 CMD1.CommandText = . . .
 CMD1.CommandType = . . .
 ' Execute the commands in the context
 ' of the Transaction object
 CMD1.Transaction = TRN
 CMD1.ExecuteNonQuery
 ' Execute additional commands in the
 ' context of the same transaction
 Dim CMD2 As New SqlClient.SqlCommand()
 CMD2.Connection = CN
 CMD2.CommandText = . . .
 CMD2.CommandType = . . .
 ' Execute the second command in the context
 ' of the same Transaction object
 CMD2.Transaction = TRN
 CMD2.ExecuteNonQuery
 ' and finally commit all the actions
 TRN.Commit
Catch exc As Exception
 ' Handle errors
 TRN.Rollback
End Try
CN.Close

The code is substantially simpler if you're using DataAdapters to submit data to the database.
In this case, you don't have to set up your own Command objects; you simply call the Update
method of each DataAdapter in the context of a transaction.

Revise the code of the Submit Orders button of the Transactions project, so that the calls to the
Update method of the two DataAdapters take place in the context of a transaction, as shown in
Listing 15.12.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 438

LISTING 15.12: SUBMITTING ORDERS IN THE CONTEXT OF A TRANSACTION
Private Sub bttnSubmitOrder_Click(ByVal sender As System.Object,_
 ByVal e As System.EventArgs) _
 Handles bttnSubmitOrder.Click
 Dim TR As SqlClient.SqlTransaction
 SqlConnection1.Open()
 TR = SqlConnection1.BeginTransaction
 DAOrders.InsertCommand.Transaction = TR
 DADetails.InsertCommand.Transaction = TR
 Try
 DAOrders.Update(DsOrders1, ''Orders")
 DADetails.Update(DsOrders1, "Order Details")
 TR.Commit()
 Catch ex As Exception
 MsgBox ex.Message
 TR.Rollback
 Finally
 SqlConnection1.Close()
 End Try
End Sub

This code makes sure that no partial orders will be recorded. However, it will work as
expected only if you submit one order at a time. If you enter several new orders at the client
DataSet and submit them together, should a single detail line of a single order fail, then no
order will be committed to the database. Orders and invoices are usually submitted to the
database as soon as they're entered, so the code shown here will work with most real-world
applications. The transaction's scope, however, is much larger than it need be. We want to
prevent the insertion of a partial order to the database, but not reject all orders because only
one of them failed.

To submit each order in its own transaction context, we must modify the code a little, so that it
extracts the header and detail rows of each order and submits them to the database in the
context of a separate transaction. This way, if one transaction fails, it will not affect the others.
We'll show you the code, which also demonstrates how to use an overloaded form of the
Update method to submit arrays of rows to the database.

The revised code creates two arrays of DataRow objects for each order, one with a single
header row and another with the order's details. Then it calls the Update method of the two
DataAdapters passing the appropriate array as argument. The process is repeated for each
order, and each time the code sets up a different Transaction object. Listing 15.13 shows the
revised code that submits each order to the database in the context of its own transaction.

LISTING 15.13: SUBMITTING MULTIPLE ORDERS IN SEPARATE TRANSACTION CONTEXTS
Private Sub bttnSubmitOrder_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSubmitOrder.Click

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 439

 Dim TR As SqlClient.SqlTransaction
 SqlConnection1.Open()
 Dim headerRows(0) As DSOrders.OrdersRow
 Dim detailRows() As DSOrders.Order_DetailsRow
 Dim iRow As Integer
 For iRow = 0 To DsOrders1.Orders.Count - 1
 headerRows(0) = DsOrders1.Orders.Rows(iRow)
 detailRows = headerRows(0).GetChildRows(''OrdersOrderDetails")
 TR = SqlConnection1.BeginTransaction
 DAOrders.InsertCommand.Transaction = TR
 DADetails.InsertCommand.Transaction = TR
 Try
 DAOrders.Update(headerRows)
 DADetails.Update(detailRows)
 TR.Commit()
 Catch ex As Exception
 TR.Rollback()
 headerRows(0).Delete()
 MsgBox(ex.Message)
 End Try
 Next
 SqlConnection1.Close()
End Sub

TESTING THE TRANSACTIONAL UPDATES

You'll want to test the code and verify that it works as expected. To force a few transactions to
fail, we must enter data that violate a database constraint. We'll choose a constraint that's not
enforced by the DataSet, so that we can enter invalid data in the DataSet and have the database
itself reject the bad data. One such constraint is that the price of each detail line is a positive
value. Change the statement that assigns a value to the UnitPrice column of each detail row as
follows:

detailLine.UnitPrice = prodRow.UnitPrice - 8

Some of the detail lines will have a negative price and the database will reject them. Most of
the products are more expensive than $8, so some of the orders will contain valid items. Run
the application, enter a few new orders, and submit them to the database. As you create new
orders with the Create New Order button, you can view each order's detail lines on the
DataGrid and make sure that the set of new orders includes valid and invalid orders. As the
program attempts to commit the orders to the database, you'll see a message box with the error
description for each order that failed.

Some of the random orders generated by the application will fail to update the underlying
tables in the database. These orders must also be removed from the DataSet. To remove an
order, the program deletes the order's header by calling the Delete method of the DataRow
object that represents this header of the invalid order. Because the UpdateRule was set to
Cascade, when the parent row is deleted so are the child rows. The DataSet contains only the
orders that were committed to the database successfully, in addition to new orders that haven't
been committed yet and the orders you've added to the DataSet with the Show Order button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 44

(Then add code here to actually save this file.)

Yet another alternative reads and writes individual pieces of data. The size of these pieces is
up to you when you define the variable used to write and when you define the read mode (as
in r.ReadByte() versus r.ReadBoolean or r.ReadInt32, and so on).

Listing 2.12 is an example of how to create a file and store bytes into it.

LISTING 2.12: WRITING AND READING DATA IN VARIOUS SIZE UNITS WITH THE BINARYWRITER
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim fs As FileStream = New FileStream(''c:\test1.txt", FileMode.CreateNew)

 Dim w As BinaryWriter = New BinaryWriter(fs)

 Dim i As Byte

 store 14 integers in a file (as bytes)
 For i = 1 To 14
 w.Write(i)
 Next

 w.Close()

 fs.Close()
'And here' s how you read individual bytes from a file...
 ' Create the reader for this particular file:
 fs = New FileStream("c:\test1.txt" , FileMode.Open, FileAccess.Read)
 Dim r As New BinaryReader(fs)

 ' Read the data, in bytes, from the Test1.txt file:
 For i = 1 To 14
 Debug.WriteLine(r.ReadByte())
 Next i
 r.Close()
 fs.Close()

BinaryReader and BinaryWriter can read and write information in quite a few different data
types. Type this line, and when you type the . (period), you see the list of data types:

Debug.WriteLine(r.

Also note that there are several FileModes you can define. CreateNew, the mode used in the
preceding example, breaks with an error if the file already exists.

TIP To replace an existing file, use FileMode.Create instead of FileMode.CreateNew.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 442

computer to provide a rich user experience), or a Web application. If the client is a Web
application, the interaction with the user is not as rich, because Web applications can't interact
instantly with the user as Windows forms do. Web applications aren't called limited or
restricted clients, as one would expect, but the choice of the term ''rich client" for Windows
applications says it all. The major limitation of Web applications is that they don't interact
directly with the user: they submit information to the server and then display the results
returned by the server.

In a client/server environment, the database represents the data tier: it's the part of the
application that executes queries. Everything else belongs to the presentation tier, which
consists of the code that interacts with the user. Business logic (the code that implements basic
operational rules that reflect the corporation's policies) also belongs to the presentation tier.
The client/server architecture is great for many applications, but it wasn't designed for the
Web. The current architecture for building applications is the multi-tier architecture, which
we'll discuss later.

To better understand the multi-tier architecture, you should consider for a moment the
problems of client/server architecture. Many of you have written client/server applications
with VB6 and you may already be familiar with them. Client/server applications don't scale
very well. They assume a connection to the database and use it to pass data back and forth all
the time. As more and more clients are added to the network, the database server spends more
time and resources to maintain the client connections. Moreover, VB6 developers based their
interfaces on the data-bound controls, which submit changes to the database as soon as they
occur. This resulted in applications that don't scale well. Every client maintains its own
connection to the database, which may be acceptable for a few dozen to a few hundred local
users. Take this application to the Web and the server can't keep up with the number of
requests.

The problem of maintaining database connection for the duration of the application was
eliminated by the disconnected nature of ADO.NET. With ADO.NET, clients can no longer
bind their interface directly to the database; instead, they must request the data, store them to
the client (usually in a DataSet), and process them locally. While the DataSet is being
processed at the client, no load is placed to the database server. After processing the data, the
application requests a new connection to the database and submits the changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 16.1 The client/server architecture

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 443

In addition to the data and presentation tiers, multi-tier architectures introduced a third layer of
functionality, the middle tier(or business tier, or application tier). This is the code that
implements the business logic. Business logic is the part of the application that implements
rules specific to a corporation. Such rules include the establishment of customer credit,
discount policies, the calculation of insurance premiums, and so on. All components that don't
clearly belong to the other two tiers belong to the middle tier. In short, the middle tier is a
layer of code between the client and the database, which isolates the other two tiers. The
obvious advantage of this architecture is that components that don't belong to the presentation
tier are isolated and can be maintained and deployed separately from the presentation tier. This
isn't the only advantage of introducing another tier to the application, nor the most important
one, in our view.

What Exactly Is a Business Rule?

Let's consider a typical example of a business rule. Every corporation has a discount policy,
which may change quite often, because it's dictated by business needs. This is a business rule
that must be implemented in code. The most crucial part of your application is the code that
implements the business rules, because they must be implemented accurately and efficiently.
They affect the company's daily operations and it's usually the management that determines
them. The discount policy can make a huge difference in the company's sales. If you
incorporate it in the client application's code, then every time the corporation needs to revise
this rule, you must modify the client application and deploy it to all the workstations. This is a
very inefficient deployment approach, especially if the client application is running on a large
number of workstations. If the business rule is implemented in a middle-tier component (see
Figure 16.2), which is deployed on a single machine, every time the corporation's discount
policy changes, we need only revise a single component and deploy it to a single machine. All
clients will see the new version of the component and will use the new discount policy.

So far, we've been using the terms ''tiers" and "layers" indiscriminately—and we'll continue to
do so. Technically, there's a fine difference between the two terms. Layer refer to the logical
separation, while tier refers to a physical separation. When the layers of the application are
distributed on different computers, we talk about the tiers of the application. Once you learn to
design your applications with distinct layers, you'll be able to implement tiers by deploying
your layers on different machines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 16.2 Multi-tier architecture

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 444

The real advantage of the using middle-tier components is that we no longer rely on multiple
developers to understand and implement the business rules, which may lead to inconsistencies
in an application (same rule implemented differently in different parts of the application). As a
VB6 developer, you've learned how to break your applications into components and reuse
them in your code. With VB.NET, componentizing an application comes naturally, because
classes permeate the design of the new language. In our view, the biggest advantage of multi-
tier architecture is that it encourages the separation of the application into distinct layers of
functionality. Even if you don't plan to deploy these layers on different machines,
componentizing large applications has distinct benefits, such as maintainability and code
reuse.

Another benefit of the middle tier is that it allows you to create custom objects to exchange
information with the presentation tier. Instead of passing a DataTable with the customers, we
can create a collection of Customer objects, each one representing a different customer. The
custom object can expose methods for the basic operations against the database as well. The
Customer class, for example, may expose methods such as GetCustomerByID,
GetCustomersByName, AddCustomer, EditCustomer, and so on. The developers working at
the presentation tier can use these methods to interact with the database and never have to
execute statements directly against the database. A well designed middle-tier component can
totally isolate the presentation tier from the data tier. If you later decide to introduce some
changes in the database, you need only change a few members of a middle-tier component and
the rest of the application will work as is.

Microsoft suggests using DataSets to pass data between tiers. DataSets are very efficient and,
in effect, they're small databases residing in the client computer's memory. If you plan to use
data-binding in your presentation tier, go ahead and use DataSets—you don't have any other
options, anyway. Professional applications do not make extensive use of data-binding
techniques, so you can choose how to pass data between tiers. In our experience, using custom
objects that represent business entities is far more convenient than using DataSets.

Building custom objects for your application is not a trivial task. You must first understand the
business needs of an application and then implement them in code. This means a thorough
design of the application, which will inevitably lead to a more robust, easier-to-maintain
application. Of course, it also means a substantial effort in designing the application before
coding it. Practically speaking, most of the small projects would never finish if we had to use
custom objects. However, the use of objects becomes a necessity for large projects. When you
have many developers working in tandem, you must standardize the way they code. The best
method of standardizing your development team is to hide as many details as possible, and this
can be achieved through custom objects.

Componentizing a project is the best method to achieve code reuse (software's Holy Grail). A
component is written once and used in many places in an application, or by different
applications. As a team leader, you can have a large number of developers working on an
application's presentation tier and make sure that none of them programs directly against the
database. If you provide classes to represent business entities, developers working at the
presentation level can program against these objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last, but not least, of the benefits of using a middle tier is that it isolates the presentation
tier from the data tier. What this means is that no developer can execute queries against the
database directly. All developers who need to enter a new invoice will call a method of the
middle-tier component, passing the order's values as arguments. The method's code determines
whether the stock of the items will be affected, or whether the customer's balance will be
affected. You don't run the risk of inserting a partial order because one of the developers didn't
implement a proper transaction. You

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 445

can even change the method's code so that it adjusts the stock of the items and re-deploy it.
The clients need not be aware of this change, and the presentation tier will function with the
revised middle-tier component.

Designing with Middle-Tier Components

To demonstrate the design of middle-tier components we'll build a ''true" middle-tier
component, as opposed to simple components that convert units or perform other trivial tasks.
One of this book's examples is an application that prepares orders and invoices. We've used
this example in several chapters, because we consider it to be a very practical component of
every business application. Figure 16.3 shows the interface of the application, which is based
on the ListView control. To enter a new detail line, the user can enter either the ID of the
desired product or its name. If multiple products match the description, their names appear in a
drop-down list where the user can select the desired one. This is the NWOrders application we
present in Chapter 18.

FIGURE 16.3 The user interface of an invoicing application

Once a product is selected, the user can set the quantity and the discount. A real application
shouldn't let the user determine the discount. Corporations have discount policies, which are
implemented in the application's business logic. Clearly, letting the user determine the
discount is not wise. Implementing the discount policy in the presentation tier is doable, but
not recommended. If the same rule is to be implemented by several developers, you must
make sure that they all understand the corporation's discount policy. Even then, you have to
deal with changes in this business rule. What happens when the corporation changes its
discount policy? As mentioned earlier, deploying the application on a large number of
workstations should be avoided, when possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We're going to postpone for a while the issue of deployment and focus on a component that
implements a basic business rule, the company's discount policy. We'll implement this rule as
a component and ask the presentation-tier developers to simply reference it in their code. You
can then change the implementation of the middle tier and generate a new DLL, and all client
applications will see the new DLL. This allows you to revise the discount policy as dictated by
business needs. Later in this chapter you'll see how to deploy the new component on a single
machine and have all clients request the discount from this computer.

Let's start with a quick overview of the application's architecture. The details of the application
are in the code that prepares the invoice, and they're discussed in Chapter 18. Here we'll focus
on the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 446

application's middle-tier component, which performs some operations against the database.
These operations are implemented as methods; they are the following:

GetProductsByName Accepts a product name (or part of a product's name) as
argument and returns an array of objects that represent the products, whose names
match the string passed to the method as argument.
GetProductByID Accepts a product ID as argument and returns an object that
represents the specified product.
AddOrder Accepts as argument an object that represents the entire order and
commits it to the database. If the order is committed successfully, the method
returns the ID of the new order; otherwise a negative value is returned.

With these three operations in place, you can focus on the presentation tier's code and ignore
the specifics of the database. You can pass the middle-tier component to another developer,
who can write a functional interface for preparing orders/invoices without knowing anything
about the database. A team of developers can use this component to develop a Windows
application, while another team can develop a Web application. The foundation of both
applications will be the component that interacts with the database. You can even revise the
middle-tier component later to work with a different database, or a remote database. The
presentation tier need not be touched. This is the middle-tier contribution to your application
development team: it completely decouples the presentation tier from the rest of the
application. Of course, if some changes in the presentation tier require additional parameters
(the product's measurement unit or the currency, for example), you'll have to revise the code in
multiple layers and re-deploy the application. In a well designed application, however, you'll
be able to revise one tier independently of the others. To convince yourself, you should try to
edit the middle-tier component of this section's sample application, so that it works with a
different database. It's almost trivial; each product has an ID, a description, and a price, and
this is all the information you need to pass between the database and the middle-tier
component.

The middle-tier component of the invoicing application uses two custom objects to exchange
data with the presentation tier: the ProductPrice object, which represents a product and its
price, and the OrderedProduct object, which represents a detail line in the order. The
definition of the classes that implement the two custom objects are shown next:

Public Class ProductPrice
 Public ProductName As String
 Public ProductID As String
 Public ProductPrice As Decimal
 Public Overrides Function ToString() As String
 Return ProductName
 End Function
End Class

Public Class OrderedProduct
 Public ProductID As String
 Public ProductPrice As Decimal
 Public ProductQTY As Integer
 Public ProductDiscount As Decimal
End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 447

The two classes abstract the structure of the database by providing all the information needed
to prepare and commit an order to the database. It doesn't really matter where the data
originates, or how it's structured. You can easily modify the implementation of the
component's methods to make them work with a different database, even with a DataSet that's
persisted in XML and never committed to a database.

Note that the ProductPrice class overrides its ToString method. This simple trick allows us to
add instances of the ProductPrice class to a ListBox control. We simply pass an object to the
Add method of the control's Items collection. The string displayed on the control is the same
string returned by the ToString method. However, the item added to the ListBox control is a
ProductPrice object, which carries with it the product's ID and price, in addition to the
product's name. To find out the ID of the selected item on the control, you can cast the
selected item to the ProductPrice type and request its ProductID property:

Dim SelProductID As Integer
SelProductID = CType(ListBox1.SelectedItems(0), ProductPrice).ProductID

DESIGNING A DISCOUNT POLICY COMPONENT

The component that implements the discount policy should be designed so that it can
accommodate future policies as well. We'll create a method that accepts a few arguments and
returns the discount as a decimal value. What kind of information do we usually need to
calculate discounts? Most discount policies are based on two pieces of information: who's
buying and what they're buying. Our method, therefore, will accept two arguments: the
product's ID and the customer's ID, and it will return the discount for the specific product.

This scheme is quite flexible. You can group the customers and offer different group discounts
that apply to all products (in this case, the product's ID is irrelevant). You can also maintain
different price lists for each group of customers. The component can determine the customer's
group from the customer's ID and then look up the discount for the desired product in the
current price list. An even more complicated technique is to offer a discount based on past
purchases of the same customer. Actually, this is the discount policy we'll implement in our
sample code. It's quite complicated, because it must execute a non-trivial query against the
database to find out the total amount spent in the past by a specific customer for a specific
product. The discount is proportional to this amount (with an upper limit, of course).

As you realize, all policies use two pieces of information to determine the discount: the
customer and product IDs. The implementation of the component may change at will, as long
as the business policy doesn't require additional data. To implement the discount policy, we'll
build a class that exposes a single method, the GetItemDiscount method, whose
implementation is shown in Listing 16.1.

LISTING 16.1: THE GETITEMDISCOUNT METHOD OF THE BUSINESSLAYER COMPONENT
Public Class BusinessLayer
 Public Shared Function GetItemDiscount(_
 ByVal CustomerID As String, ByVal ProductID As Integer) _
 As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 As Integer
 Dim CMD As New SqlClient.SqlCommand()
 CMD.CommandText = ''GetItemDiscount"
 CMD.CommandType = CommandType.StoredProcedure

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 448

 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 ''@ProductID", ProductID))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@CustomerID", CustomerID))
 Dim CN As New SqlClient.SqlConnection()
 CN.ConnectionString = "initial catalog=Northwind;" & _
 "integrated security=SSPI;" &_
 "persist security info=False;" & _
 "workstation id=POWERTOOLKIT;packet size=4096"
 CN.Open()
 CMD.Connection = CN
 Dim discount As Integer
 discount = CMD.ExecuteScalar
 ' additional discount processing statements here !
 Return CType(discount, Integer)
 End Function
End Class

The code is almost trivial: it calls a stored procedure, the GetItemDiscount stored procedure,
passing as arguments the values passed to the method by its calling application. The
GetItemDiscount stored procedure goes through the specified customer's past orders and
calculates the discount. Listing 16.2 shows the GetItemDiscount stored procedure, which you
must attach to the Northwind database before you run the application.

LISTING 16.2: THE GETITEMDISCOUNT STORED PROCEDURE
CREATE PROCEDURE GetItemDiscount
@CustomerID nchar(5),
@ProductID int
AS
DECLARE @CustomerTotal int
SET @CustomerTotal =
 (SELECT ROUND(SUM(unitprice*quantity*(1-discount)),0,0)
 FROM [Order Details] INNER JOIN Orders
 ON Orders.OrderID = [Order Details].OrderID
WHERE Orders.CustomerID = @CustomerID AND
 [Order Details].ProductID=@ProductID)
IF @CustomerTotal IS NULL
 SELECT 12
ELSE
BEGIN
 IF @CustomerTotal < 1200
 SELECT 12 + @CustomerTotal / 100
 ELSE
 SELECT 24
END

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 450

Converting the BusinessLayer Class to a Web Service

Converting an existing class to a Web service and exposing its methods through a web server
is almost trivial. Start by copying the folder of the NWOrders application to another location
and change its name to NWOrdersWebService. Copy the code of the BusinessLayer and
Orders classes and then delete the two classes from the project. The middle-tier components
will become available to our application through a Web service, so they need not be part of the
new client application. We'll return to the NWOrdersWebService project and revise its code a
little, so that it will interact with the database through the new Web service we're going to
build now.

Start a new instance of Visual Studio and create a Web service project. Name the new project
BusinessLayer. To make the application a little more challenging, we'll implement all the
classes that make up the application's middle tier into a Web service, not just the discount
policy. Any client, whether a Windows or a Web application, will be able to interact with the
database and prepare invoices by calling the methods of the Web service through the Web.

To turn a class into a Web service, we create a new class that imports the
System.Web.Services namespace and inherits from the System.Web.Services.WebService
class. In addition, the methods that must be exposed as web methods must be prefixed with the
<WebMethod> attribute. Listing 16.3 shows the code of the BusinessLayer Web service. The
classes that define the custom objects exposed by the Web service and the code of the original
class's methods are identical to the ones found in the NWOrders project.

LISING 16.3: THE BUSINESSLAYER WEB SERVICE
Imports System.Web.Services

<System.Web.Services.WebService(Namespace:=
 ''http://tempuri.org/BooksBLayer/Service1")> _
Public Class BusinessLayer
 Inherits System.Web.Services.WebService

 Public Class OrderedProduct
 Public ProductID As String
 Public ProductPrice As Decimal
 Public ProductQTY As Integer
 Public ProductDiscount As Decimal
 Public Sub New()

 End Sub
 End Class

 Public Class ProductPrice
 Public ProductName As String
 Public ProductID As String
 Public ProductPrice As Decimal
 Public Sub New()

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 451

 Public Overrides Function ToString() As String
 Return ProductName
 End Function
 End Class

 <WebMethod()> _
 Public Function GetItemDiscount(ByVal CustomerID As String, _
 ByVal ProductID As Integer) As Integer
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText = ''GetItemDiscount"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@ProductID", ProductID))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@CustomerID", CustomerID))
 Dim CN As New SqlClient.SqlConnection
 CN.ConnectionString = "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;" & _
 "workstation id=POWERTOOLKIT;packet size=4096"
 CN.Open()
 CMD.Connection = CN
 Dim discount As Integer
 discount = CMD.ExecuteScalar
 ' additional discount processing statements here !
 Return CType(discount, Integer)
 End Function

 <WebMethod()> _
 Public Function GetProductsByName(ByVal ProductName As String) _
 As ProductPrice()
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText = "GetProductsByName"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@productName", ProductName))
 Dim CN As New SqlClient.SqlConnection
 CN. ConnectionString = "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;" & _
 "workstation id=POWERTOOLKIT;packet size=4096"
 CN.Open()
 CMD.Connection = CN
 Dim DR As SqlClient.SqlDataReader = CMD.ExecuteReader()
 Dim P(999) As ProductPrice
 Dim prod As New ProductPrice
 Dim i As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 452

 While DR.Read
 prod = New ProductPrice
 prod.ProductID = DR.Item(''ProductID")
 prod.ProductName = DR.Item("ProductName")
 prod.ProductPrice = DR.Item("UnitPrice")
 P(i) = prod
 i = i + 1
 End While
 ReDim Preserve P(i - 1)
 If i > 0 Then
 Return P
 Else
 Return Nothing
 End If
 End Function

 <WebMethod()> Public Function _
 GetProductByID(ByVal ProductID As Integer) As ProductPrice
 Dim CMD As New SqlClient.SqlCommand
 Dim CN As New SqlClient.SqlConnection
 CN. ConnectionString = "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;" & _
 "workstation id=POWERTOOLKIT;packet size=4096"
 CN.Open()
 CMD.Connection = CN
 CMD.CommandText = "GetProductByID"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@productID", ProductID))
 Try
 Dim DR As SqlClient.SqlDataReader = CMD.ExecuteReader()
 Dim P As ProductPrice
 If DR.Read Then
 P = New ProductPrice
 P.ProductID = DR.Item("ProductID")
 P.ProductName = DR.Item("ProductName")
 P.ProductPrice = DR.Item("UnitPrice")
 End If
 Return P
 Catch ex As Exception
 Return Nothing
 End Try
 End Function

 <WebMethod()> _
 Public Function AddOrder(ByVal customerID As String, _
 ByVal empId As Integer, _

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 453

 ByVal Order() As OrderedProduct) _
 As Boolean
 ' Commits the order passed through the
 ' function's arguments to the database
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText = ''AddHeader"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@customerID", customerID))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@employeeID", empId))
 Dim CN As New SqlClient.SqlConnection
 CN. ConnectionString = "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;" & _
 "workstation id=POWERTOOLKIT;packet size=4096"
 CMD.Connection = CN
 Dim TRN As SqlClient.SqlTransaction
 CN.Open()
 TRN = CN.BeginTransaction
 CMD.Transaction = TRN
 Try
 Dim OrderID As Integer
 OrderID = CMD.ExecuteScalar()
 CMD = New SqlClient.SqlCommand
 CMD.Connection = CN
 CMD.Transaction = TRN
 CMD.CommandText = "AddDetailLine"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@OrderID", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@ProductID", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Quantity", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Price", Data.SqlDbType.Money))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Discount", Data.SqlDbType.Real))
 Dim Item As OrderedProduct
 For Each Item In Order
 CMD.Parameters("@OrderID").Value = OrderID
 CMD.Parameters("@ProductID").Value = Item.ProductID
 CMD.Parameters("@Quantity").Value = Item.ProductQTY
 CMD.Parameters("@Price").Value = Item.ProductPrice
 CMD.Parameters("@Discount").Value = Item.ProductDiscount
 CMD.ExecuteNonQuery()
 Next

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 454

 Catch exc As Exception
 TRN.Rollback()
 CN.Close()
 Return False
 End Try
 TRN.Commit()
 CN.Close()
 Return True
 End Function

 End Class

Once the Web service is in place, you can test it by executing the application (that is, you don't
have to write a client to test the Web service). Visual Studio will invoke Internet Explorer and
will give you a list of the methods exposed by the Web service. Press F5 to run the project;
Internet Explorer will open, displaying the description of the Web service, as shown in Figure
16.4.

FIGURE 16.4 Viewing a description of your Web service's method

In addition to viewing the methods of the Web service, you can execute these methods from
within the browser and make sure they behave as expected. You won't be able to test the
methods that accept custom objects as arguments, but you will still be able to test much of the
Web service's functionality without building a test project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To test the GetItemDiscount method, click the corresponding hyperlink in the window of
Figure 16.4 and you will see another form, shown in Figure 16.5, prompting you to enter the
arguments required by the method. If you scroll down the form of Figure 16.5 you will see the
description of the request that will be made to the service and the expected response. Web
services are exposed to remote clients as URLs to specific applications. The arguments are
passed just like the parameters of a form when submitted to a web server as part of a request.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 455

FIGURE 16.5 Preparing the parameters to be passed to a web method

Click the Invoke button and you will see yet another form, shown in Figure 16.6, with the
Web service's response. The response of the GetItemDiscount method is just an integer value.
If you retrieve a product by name, you will see the XML description of an instance of the
ProductPrice class (see Figure 16.7). The Web service serialized an instance of the object in
XML format and passed it to the client.

FIGURE 16.6 Testing the GetItemDiscount method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 16.7 Testing the GetProductByID method

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 456

If you attempt to test the GetProductsByName method using a large table, you may get an
exception. The array that holds the names of the selected products is dimensioned to hold
1,000 products. Should the query retrieve more than 1,000 products, an exception will be
thrown. The best method to handle this situation is to limit the number of selected rows from
within the corresponding stored procedure to 100, or 1,000, using the TOP N clause. Users
may specify generic search criteria that will result in thousands of rows. However, your
application need not download a very large number of rows to the client (users should be able
to identify the product they're trying to sell more precisely).

The code of the Web service is practically identical to the code of the original BusinessLayer
component. The new class is derived from the System.Web.Services.Webservice class, and all
methods are prefixed with the <WebMethod> attribute, which makes it possible to call them
through HTTP. They're executed on the same machine on which the web server is running and
return their result in SOAP format (which is basically XML) to the client. As you will see, the
client will parse the result without any code on your part and use it to prepare the invoice.
Let's see how we can use the BusinessLayer Web service in our client application.

REFERENCING A WEB SERVICE

Now we'll switch to the client application that prepares invoices and revise its code so that it
will use the newly created Web service. We'll revise the application a little, but we won't have
to rewrite the presentation tier's code. Actually, we'll only add to our project a reference to the
Web service and we'll edit the declarations of certain objects, which are now supplied by the
Web service.

Make a copy of the NWOrders application's folder (it's the WebInvoiceBLayer sample
project) and open it with the IDE. Throw away the BusinessLayer and OrderClass classes. We
just moved the functionality of these two classes into a Web service, so we'll add a reference
to the Web service in the place of the two classes. Right-click the solution's name and from the
context menu select Add Web Reference. The dialog box of Figure 16.8 will appear on your
desktop, which prompts you to select the source of the Web service. In our case the Web
service resides on the local machine, so click the Web Services On The Local Machine
hyperlink.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 16.8 Adding a Web reference to a .NET project

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 457

In the next window you will see a list of all Web services on the local machine. Find and click
the hyperlink that corresponds to the desired Web service (its name is Service1 and its URL is
http://localhost/BusinessLayer/Service1.asmx) and it will be automatically added to your
project. The localhost item will appear under the Web References branch in the Solution
Explorer, which means that you can use the Web service in the application's code, just like any
other component. If you revise the Web service's code, you must refresh the definition of the
Web service at the client (force the CLR—Common Language Runtime— to take a trip to the
server and retrieve the latest definition of the Web service) by selecting Update Web
References from the localhost item's context menu. As you can guess, you can add references
to many Web services, on the same or different computers. For each Web reference, a new
item will be added to the Web References section of the Solution Explorer, and this item will
be named after the computer on which the Web service resides.

Now go to the project's code and change the references to the middle-tier component. To
create a reference to the BusinessLayer component, use the following statement:

Dim Invoice As New localhost.BusinessLayer
Likewise, to retrieve a product by its ID, use the following statements:
Dim Product As localhost1.ProductPrice
Dim BLayer As New localhost.BusinessLayer()
Product = Invoice.GetProductByID(txtID.Text.Trim)

The rest of the code requires similar minor changes. It's like changing the name of the middle-
tier component. This time the middle-tier component is not a class of the project but a
component running under IIS, and it exposes its functionality as web methods. You can either
open the project and examine its code, or paste the code of the original application, NWOrder,
and fix the problems that will be caused by the deletion of the original middle-tier component.

WEB APPLICATIONS VERSUS RICH-CLIENT APPLICATIONS

As you can understand, it's also possible to build a Web application for preparing orders. All
you have to do is create a new presentation tier, which this time will be a WebForm, so that
users can connect to it from any workstation that can access the Web. This isn't a trivial task,
but if you're familiar with Web applications, you can certainly design a function application for
preparing invoices that can be invoked from within Internet Explorer. Of course, the Web
application won't react to the Enter keystroke instantly as the equivalent Windows application
does, nor will you be able to switch between the order's headers and details lines with the
arrow keys.
Why resort to a Web application, which can't provide the rich user experience of a Windows
application? You can actually distribute the Web application to a number of clients (either on
the same network or remote). The presentation tier's code uses the .NET Framework and will
execute on any system on which the .NET runtime has been installed. To communicate with
the database, the presentation tier's code uses a Web service, which runs on a web server and
can be accessed from anywhere. As you may recall from Chapter 10, you can deploy the
application from the same web server that hosts the application's Web service. You don't even
have to install the application on the clients—just give them the URL of the application on the
web server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can understand, Web services allow you to combine the convenience of distributing
Web applications with the rich user experience of a Windows application. During the last few
years there's been an increased demand for Web applications, because they can be deployed
easily to a large number of clients and they enable users to access the application from
anywhere on the web. The same is more or less true for Windows applications that make use of
Web services. We expect to see a departure (or, should we say return) from Web-based
applications to Windows, or rich-client, applications.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 458

Converting the BusinessLayer to a Remote Service

The second technique for invoking components on remote systems is remoting. Remoting is a
new technique introduced with .NET that is similar to using Web services, but is faster and
gives you more control over the format of the data moved back and forth between the server
and the client. Remoting is not as simple to set up, either. To remote a component, we need an
application to host our component and make its services available to a number of remote
clients through a TCP or HTTP port. The application that will host the component could be a
Windows application, or console application, or an ASP application. We'll use an ASP
application for the purposes of this example, basically because an ASP application is always
available and need not be started, unlike Windows and console applications.

Create a new ASP.NET Web Application project and name it DiscountServer. When the ASP
project is created, the item Service1.asmx is automatically added to the project. This is where
you'd normally place your application's code, but you don't need to do anything about this file.
Just add the component we've used in the previous example to the project. Because the
component will pass instances of custom objects to the clients and back, the class must be
marked as serializable. Create a new class, the ProductPrice class, and insert in it the code of
the BusinessLayer class. Listing 16.4 is the code of the ProductPrice class (we're not showing
the code of the methods, because it's no different than the code shown in Listing 16.3).

LISTING 16.4: THE REVISED BUSINESSLAYER COMPONENT
<Serializable()> _
Public Class Product
 Public Class Price
 Public ProductID As Integer
 Public ProductName As String
 Public ProductPrice As Decimal
 Public ProductDiscount As Decimal
 End Class
End Class

Public Class OrderedProduct
 Public ProductID As String
 Public ProductPrice As Decimal
 Public ProductQTY As Integer
 Public ProductDiscount As Decimal
 Public Sub New()

 End Sub
End Class

<Serializable()> Public Class NewProduct
 Public Class ProductPrice
 Public ProductName As String
 Public ProductID As String
 Public ProductPrice As Decimal
 Public Sub New()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 459

 End Sub
 Public Overrides Function ToString() As String
 Return ProductName
 End Function
 End Class

 Public Function GetItemDiscount(ByVal CustomerID As String, _
 ByVal ProductID As Integer) _
 As Integer
 . . .

 End Function

 Public Function GetProductsByName(ByVal ProductName As String) _
 As ProductPrice()
 . . .
 End Function

 Public Function GetProductByID(ByVal ProductID As Integer) _
 As ProductPrice

 . . .
 End Function

 Public Function AddOrder(ByVal customerID As String, _
 ByVal empId As Integer, _
 ByVal Order() As OrderedProduct) _
 As Boolean
 . . .
 End Function

End Class

To expose the functionality of your middle-tier component through remoting, you must add a
few statements in the application's configuration file. Double-click the item Web.config in the
Solution Explorer, and when the configuration file's code appears in the editor's window, enter
the statements in Listing 16.5 right after the <configuration> tag.

LISTING 16.5: CONFIGURING AN ASP APPLICATION TO HOST A REMOTABLE COMPONENT
<system.runtime.remoting>
 <application>
 <service>
 <wellknown mode=''singlecall" type="Discounts,
 DiscountServer.Discounts" objecturi="Discounts.soap">

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 46

To create a way of accessing Form1, create an object variable in a Module; then assign Form1
to this variable when Form1 is created. The best place to do this assigning is just following the
Initial-izeComponent() line in the Sub New() constructor for Form1.

Create a module (choose Project Add Module). Modules are visible to all the forms in a
project. In this module, you define a public variable that points to Form1. In the Module,
type this:

Module Module1
 Public f1 As Form1()
End Module

Notice that the NEW keyword was not employed here. You are merely creating an object
variable that will be assigned to point to Form1. Click the + next to ''Windows Form Designer
generated code" in Form1's code window. Locate Form1's constructor (Public Sub New)
and just below the InitializeComponent() line, type this:

InitializeComponent()
F1 = Me

This assigns Me (Form1, in this case) to the public variable F1. Now, whenever you need to
communicate with Form1 from any other form, you can use F1. For example, in Form2's Load
event, you can have this code:

Private Sub Form2_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 F1.BackColor = Color.Brown
End Sub

Using Handles

In VB6 and earlier, each event of each object (or control) was unique. When the user clicked a
particular button, that button's unique event procedure was triggered. In VB.NET, each event
procedure declaration ends with a Handles command that specifies which event or events that
procedure responds to. In other words, you can create a single procedure that responds to
multiple different object events.

To put it another way, in VB.NET an event can "handle" (have code that responds to)
whatever event (or multiple events) you want it to handle. The actual sub name (such as
Button1_Click) that you give to an event procedure is functionally irrelevant. You could call it
Bxteen44z_Click if you want. It would still be the Click event for Button1 no matter what you
named this procedure, as long as you provide the name Button1 following the Handles
command.

In other words, the following is a legitimate event where you write code to deal with Button1's
Click:

Private Sub Francoise_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Handles Button1.Click code does the trick.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 460

 </wellknown>
 </service>
 <cannels>
 <channel
 type= ''system.Runtime.Remoting.Channels.Http.HttpChannel,
 system.Runtime.Remoting">
 </channel>
 <channel type="system.Runtim.Remoting.Channels.Tcp.TcpChannel,
 System.Runtime.Remoting">
 </channel>
 </cannels>
 </application>
</system.runtime.remoting>

The configuration file shown here registers the class as a remote component with the web
server and tells IIS that clients can call the component's members either through an HTTP or a
TCP channel. Clients that connect over the Internet and through a firewall will use an HTTP
channel, and the data to be exchanged will be serialized in SOAP format. Clients on the same
local area network as the web server can make calls using binary serialization, through a TCP
port. Notice that you don't have to serialize any objects in your code; this is what remoting
does for you. Just remember to "decorate" the class with the <Serializable> attribute.

This is all it takes to host the component on a web server through remoting. Build the
application and then switch to the client. Make a copy of the NWOrders application (the new
project is called RemoteOrders) and revise its code so that it communicates with the database
through the methods of the DiscountServer service. Get rid of the two classes that implement
the middle tier of the original project to make sure you're not calling a local component by
mistake.

First, you must import the following two namespaces to the project:

Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels

Then you must register the remote server with the following statement, which must appear in
the form's Load event handler:

RemotingConfiguration.RegisterWellKnownClientType(_
 GetType(DiscountServer.NewProduct), _
 "http://localhost/DiscountServer")

This statement registers the DiscountServer.NewProduct type with the DiscountServer
component. It basically tells the CLR that the application will act as a client for a remote
service specified by its URL and that the client application will exchange information with the
remote server through the objects of the DiscountServer.NewProduct class. The class is
serializable and the server will be passing to the client application instances of the
ProductPrice and OrderedProduct classes, which are defined in the component's code. You
must also add to the project a reference to the DiscountClass. The file to be referenced is the
DiscountServer.dll file in the ASP application's Bin folder. When you use remoting, both the
server and the client must have a reference to the classes they will use to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 461

exchange data. Web services, on the other hand, do not share this information with their
clients. The client of a Web service finds out about the objects recognized by the Web service
when you add a Web reference to the project.

The test project's code is almost identical to the original NWOrders project. They differ in the
statements that create the instances of the business objects. The following statements create
the array with the order's detail lines and then populate it with the items on the grid. Each
element of the array is of the OrderedProduct type, which has been registered as a remote
server in the Form's Load event handler.

Dim orderedItems(lvOrderGrid.Items.Count - 1) As _
 DiscountServer.OrderedProduct
Dim P As DiscountServer.OrderedProduct
Dim i As Integer
For i = 0 To lvOrderGrid.Items.Count - 1
 P = New DiscountServer.OrderedProduct
 P.ProductID = CInt(lvOrderGrid.Items(i).Text)
 P.ProductPrice = CDec(lvOrderGrid.Items(i).SubItems(2).Text)
 P.ProductQTY = CInt(lvOrderGrid.Items(i).SubItems(3).Text)
 P.ProductDiscount = CDec(lvOrderGrid.Items(i).SubItems(4).Text)
 orderedItems(i) = P
Next

To submit the order to the database, we create a new instance of the NewProduct class and call
its AddOrder method, passing the necessary arguments:

Dim INV As New DiscountServer.NewProduct
If INV.AddOrder(lstCustomers.SelectedValue, _
 cmbEmployees.SelectedValue, orderedItems) Then

In this section we've presented two techniques that allow you to host your application's middle
tier on a remote web server. Both techniques allow you to deploy the middle-tier component
on an application server that can service multiple clients, either on the same network or
through the Web. Moreover, the middle tier's code can be modified at any time and deployed
on a single machine. The client application need not be revised or deployed again to all
workstations that make use of the middle-tier components. You should open the
NWOrdersWebService and RemoteOrders projects and examine their code. Even though they
contact a class on a remote server, their code is almost identical. It's almost the same as the
code of the NWOrders application, which is a Windows application that uses a logical middle-
tier component. We were able to move the middle tier's components to a server and use it
remotely with very few changes.

Using COM Components with .NET Clients

Most large-scale applications written in VB6 make use of COM components, and developers
have invested a lot of time and effort in these components. The designers of .NET made sure
that the investment in COM won't be wasted and that existing COM components will
interoperate with .NET applications. In this section you'll see what it takes to use an existing
COM component from within your .NET applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 462

To understand the intricacies involved in calling a COM component from within your .NET
application, you must consider the role of the Common Language Runtime (CLR) in
developing .NET applications. Code written for the CLR is called managed code, and it
requires the CLR for its execution. Some of the unique features the CLR provides are
language interoperability and garbage collection. COM components are not aware of the CLR
and are written in unmanaged code (that is, any code not written to operate within the CLR).
So it seems that a managed application can't call unmanaged code. To overcome this
limitation, the designers of .NET decided to create a proxy between managed and unmanaged
code. The proxy accepts commands from one component, translates them into a different
format, and passes them to the second component. This is how managed code interoperates
with COM components.

VB6 developers are quite familiar with proxies. When you configure a COM component to
run as a COM+ application on a server, clients connect to it through a proxy. The proxy is
installed on the client with an MSI package, which is generated by the Component Services
Explorer. The proxy makes the VB6 client think that it talks to a component that runs in the
same memory space, while in reality it make calls to a remote component, which is running on
the application server. Something similar happens with the proxies generated by .NET for the
COM components. The .NET code thinks that it's talking to another .NET component, while
the COM component thinks that it's talking to another COM component. The proxy is a
mediator between the two (otherwise incompatible) layers.

The way .NET implements this proxy is through a so-called runtime-callable wrapper (RCW).
A RCW is a piece of software that sits between managed and unmanaged code and makes
possible the interoperation between the two worlds. COM components contain metadata,
which describe their public interface (the signatures of its methods and the types of its
properties). One of the tools that comes with Visual Studio is the tlbimp.exe tool (Type
Library Importer), which reads this data from the COM component and creates an assembly
that managed code can use to call the COM component. The proxy is a DLL component that
you can reference from within your .NET project. The tlbimp tool accepts as arguments the
name of the COM component, followed by the /out switch and the name of the RCW:

Tlbimp COMponent.dll /out:NETCOMponent.dll

Of course, there's a simpler method to call a COM component from within a .NET application,
by simply referencing the COM component from within the .NET application. When you add
a reference to a COM component to the project, the corresponding RCW is created
automatically. Let's look at the process through an example.

Using ActiveX Controls in .NET

ActiveX controls are COM components, which means you can still use them with your .NET
applications. One of the most useful ActiveX controls is the MS Script control, which
(strangely) hasn't been replaced with an equivalent purely .NET control. The Script control
allows you to evaluate expressions at runtime, and in many situations it's extremely valuable.
The Script control understands VBScript and can be used to evaluate math expressions,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Script control understands VBScript and can be used to evaluate math expressions,
manipulate strings and dates, even perform test and repeat operations with the usual loops.
Figure 16.9 shows the interface of the COMCalculator project. You can enter any math
expression you wish in the top TextBox control and the value of the independent variable X in
the second TextBox, then click the Evaluate Expression

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 463

button to calculate the expression for the specified value of X. This is a very simple calculator,
but you can't implement something equivalent with straight VB code (at least, not with a few
lines of code, as we will do in our application). If you don't mind putting together an elaborate
interface, you can build an advanced calculator by exploiting the functionality of the Script
control. You can also write functions that perform complicated tasks and execute them by
calling a single method. The example of this section is trivial, because our goal is to
demonstrate how to interoperate with ActiveX controls from within your .NET applications,
but you may wish to take a closer look at the functionality of this control. You can even
expose your application's objects and allow developers to program against them with
VBScript.

FIGURE 16.9 The COMCalculator is a simple, but very functional, application.

The Microsoft Script control comes with VB6 and there's a good chance that many readers
already have this component installed on their systems. If not, you can always download it
from Microsoft, at http://msdn.microsoft.com/scripting (just follow the link to the downloads).

Start a new project, name it COMCalculator, and then add a reference to the Script control.
Open the Project menu and select Add Reference. When the Add Reference dialog box
appears, switch to the COM tab and locate the item Microsoft Script Control 1.0 (or whatever
the current version will be at the time you download the component). Select the ActiveX
control and add a reference to it (see Figure 16.10).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 16.10 Referencing a COM component from within a .NET application code

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 464

After adding the Script control to the project, switch to the project's Solution Explorer and
expand the branch References, where you will see the reference to the component
MSScriptControl. Click the Show All Files button and expand the obj item in the Solution
Explorer. The following DLL has been added to the application:

Interop.MSScriptControl.dll

This is the proxy we discussed earlier—it's an interoperability layer. For every reference to a
COM component you add to a project, .NET creates a new RCW, which has the same name as
the control and is prefixed with the ''Interop" string.

PROGRAMMING THE SCRIPT CONTROL

To evaluate an expression with the Script control, you must append the statement that assigns
a value to the independent variable with the AddCode method and then call the control's Eval
method, passing the expression to be evaluated as argument. Listing 16.6 is the code behind
the Evaluate Expression button:

LISTING 16.6: EVALUATING AN EXPRESSION WITH THE SCRIPT ACTIVEX CONTROL
Private Sub bttnEvaluate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnEvaluate.Click
 Dim SC As New MSScriptControl.ScriptControl
 SC.Language = "VBScript"
 SC.AddCode("X=" & Convert.ToDouble(txtX.Text))
 Dim result As Double
 result = Convert.ToDouble(SC.Eval(txtExpression.Text))
 txtResult.Text = result.ToString
End Sub

The code is quite simple. The expression to be evaluated by the Script control can be as
complicated as you wish. The following statements attach a function to the control and then
execute it:

Dim S As String
S = "Function Main()" & vbCrLf
S = S & " A = InputBox(""Enter value of A"")" & vbCrLf
S = S & " B =InputBox(""Enter value of B"")" & vbCrLf
S = S & " A = CDbl(A)" & vbCrLf
S = S & " B= CDbl(B)" & vbCrLf
S = S & " If A/B > 1 Then" & vbCrLf
S = S & " Main = A - B" & vbCrLf
S = S & " Else" & vbCrLf
S = S & " Main = A + B" & vbCrLf
S = S & " End If" & vbCrLf
S = S & "End Function" & vbCrLf
SC.AddCode(S)
SC.ExecuteStatement("MsgBox(Main())")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 466

The COMPlus Component

Start VB6 and create a trivial class with a single method that returns the current date. Call the
project COMPlus, and in the Class1 class's code window enter the following method:

Public Function GetServerDate() As Date
 GetServerDate = Now
End Function

Create the executable, which is the COMPlus.dll file. To install the DLL as a COM+
application, switch to the Component Services snap-in (Control Panel Administrative
Tools Component Services) and expand the branch Component Services Component
Services Computers My Computer. Right-click the item COM+ Applications and from
the context menu select New Application to start the COM+ Application Install Wizard.
Skip the first introductory screen; on the next screen you'll be prompted to select the type of
application you want to create. You can install either a prebuilt application (an MSI package
created by the Component Services of another computer) or an empty application. Select the
Create An Empty Application button and you'll be prompted to enter the new application's
name. Set its name to COMPlusApplication, as shown in Figure 16.11.

FIGURE 16.11 The Create Empty Application window of the COM Application Install Wizard

In the Activation Type zone you can select where the component will be activated. We want
the component to run on the server machine, which is the machine on which the package is
created. You can also create a library application. The library application will provide the
DLL to the client, but the DLL will be loaded and executed in the same memory space as the
calling application (in other words, each client will download the DLL and execute it locally).
Click Next and you will see the Set Application Identity window, as shown in Figure 16.12,
where you can specify the users who are allowed to execute this package. The default choice

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where you can specify the users who are allowed to execute this package. The default choice
''Interactive User" means the user who has requested the services of the COM+ component
(that is, the user who started the client application). Normally, we create a new account for the
users whom we want to execute the component remotely (an account such as AccountingUser,
for example) and we make sure that the clients log on with this user ID. For the purposes of
this sample, you need not make any changes in this window. Click Next one last time to create
the COMPlusApplication application.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 467

FIGURE 16.12 The Set Application Identity window of the COM Application Install Wizard

If you switch now to the Component Services window, you'll see that you've created a new
COM+ application, but it contains no components. We haven't specified yet the component to
be hosted by the newly created COM+ application. Double-click the Components item under
COMPlusApplication to open it and then right-click the opened item. From the context menu
select New Component. This will start the COM+ Component Install Wizard, which will
take you through the steps of installing a new component to the application. Skip the first
welcome window; on the following one you'll be prompted about the type of component you
want to install: a new component, a registered component, or a new event class. Select the first
option and a File Open dialog box will appear, on which you can select the DLL with the
component to add to the application. Locate the COMPlus.DLL and click OK to select it. The
wizard will add the component to the COM+ application; you can right-click the component's
name in the Component Services and view the properties of the new component.

Open the component's property pages and switch to the Activation tab. The Object Pooling
section in this tab is disabled. VB6 components can't take advantage of object pooling, and
this is a topic we'll discuss in some detail a little later in this chapter.

Exporting a Proxy and Testing It

So far you created a COM+ application that hosts a simple class. Now we're going to use this
component from a remote machine. We'll set up a .NET client application that calls the
methods of the COMPlus component from another computer. The COM component will be
executed on the machine on which it's hosted. For example, the component may be able to
access a database to which no client has access. Or it may perform operations on behalf of the
client that require resources available only on the application server. Presumably, VB6
developers have a number of COM components that they will keep using with .NET. Many of
these components may already be deployed as COM+ applications, and as you will see, you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these components may already be deployed as COM+ applications, and as you will see, you
can use them immediately.

To access a COM+ application's services from a remote computer, you must install the
corresponding proxy on the client computer. The proxy is a DLL (basically, another COM+
application registered at the client), which talks to the client application running on the same
computer and to the COM+ application's components on the remote server. In simple terms, it
takes care of the plumbing between the two components, making them think that they talk
directly to one another—which in turn simplifies our programming effort.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 468

To create the proxy, right-click the COM+ application on the server and from the context
menu select Export to start the Application Export Wizard. This wizard will generate an MSI
package that can be used to install the COM+ application to another computer, either as a
server application or as a proxy. Specify the path where the MSI package will be created,
check the radio button Application Proxy, and click the Next button on the window shown in
Figure 16.13. The wizard will generate an MSI package that you can use to install the
component's proxy on a client. Copy the MSI file to another machine and run it to install the
COM+ application's proxy.

FIGURE 16.13 Generating an MSI package for installing the component's proxy on the client computers

Now you can write a client to test your proxy. Start a new Windows application, add a
reference to the component's proxy, and use it in your code. To add the corresponding
reference to the client project, open the Add Reference dialog box, switch to the COM tab, and
locate there the COMPlus component. After that, you can create instances of the COMPlus
component in the client application's code and call its methods.

Building Serviced Components with .NET

COM+ applications were quite popular with VB6, so we should be able not only to reuse
existing COM+ applications with our .NET applications, but to create new COM+
applications in managed code. Indeed, it's possible to build COM+ applications with .NET and
take advantage of all the COM+ services. Let's start with an overview of the COM+ services.
This will be a quick overview of COM+ for readers who have used COM+ with VB6 and an
introduction to the EnterpriseServices class. The most important of the COM+ services are the
following:

Automatic Transaction Processing This service allows you to perform

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automatic Transaction Processing This service allows you to perform
transactions through the Context object. Database and messaging transactions are
committed or rolled back automatically. The big advantage of performing
transactions through COM+ is that it simplifies transactions against multiple
databases. To perform this type of transactions from a client application, you need
to establish connections to multiple databases from every client (something that's
neither practical nor very efficient).
Just In Time Activation (JITA) Activates an object when a method is called and
deactivates it as soon as the method returns.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 469

Object Pooling Maintains a pool of objects and client applications are given access
to one of the existing objects, as opposed to creating new objects as needed. You
have control of the minimum and maximum number of objects maintained in the
pool, and you can control your server's load.
Queued Components A queued component provides asynchronous processing.
Requests are queued and serviced according to the component's schedule. We will
not discuss queued components in this chapter, but the idea is similar to passing
messages to a queue (as discussed in Chapter 14).
Role-Based Security Applies security policy to a component based on a role. You
can assign roles to the users and service (or deny) requests based on the user's role
in the application.

COM+ interoperates with .NET, but there are no Framework classes specific to COM+. The
functionality of COM+ in .NET is implemented with the EnterpriseServices namespace, which
we'll explore in the following section. The components that will be hosted in COM+ are no
longer called COM+ applications: their new name is serviced components. Other than a few
differences in terminology and a different approach in building COM+ applications, there are
no basic differences between the two. The EnterpriseServices class exposes the functionality
previously available to COM+ components.

To demonstrate the process of building serviced components, we'll use a very simple example
that demonstrates how to take advantage of object pooling. This feature is new to VB.NET—
the object pooling service was not available with VB6 COM components.

OBJECT POOLING

Object pooling is a simple concept that can become invaluable in building scalable
applications. We will assume that certain components must reside on an application server and
these components are requested by a large number of clients. Let's also assume that some of
these objects are expensive to set up (they take a lot of CPU time, or use system resources
excessively). Setting up a connection to a database is a typical expensive operation. Setting up
a database connection is a necessary operation, but it's not the kind of operation we want to
perform repeatedly. A query, on the other hand, is an expensive operation, but a useful one.
Establishing a connection to the database is only a prerequisite for executing the query, and
we'd like to minimize the cost of the new connection.

Object pooling allows us to maintain a pool of objects that are ready to be reused. Every time
a client needs a connection, we can retrieve a Connection object from our pool and assign it to
the client, which can proceed by executing a query without having to wait for a new
connection to be established. Enterprise Services allows us to specify the minimum and
maximum number of objects in the pool. If we determine that the average load on the
application server is 10 concurrent clients, we can create 10 or 12 objects and place them in
the pool. These objects will remain alive in the pool, even if no client is using them. Under
normal circumstances, there will be an object for each client that requests it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the server accepts more requests than the available objects, new ones will be created
automatically and assigned to the client applications. However, these objects won't be added to
the pool. They will be released as soon as they're no longer needed. We may also determine
that the server can't gracefully

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 47

You can even gang up several events into one, like this:

Private Sub cmd_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdOK.Click, cmdApply.Click, cmdCancel.Click

For a working example of this ganging up, see the section in this chapter titled ''Multiple
Handles."

Runtime Handles

If you want to get really fancy, you can attach or detach an object's events to a procedure
during run-time. The following example illustrates this.

Put three Buttons on a form. Now create this procedure to handle all three of these Buttons'
Click events:

Private Sub AllTheButtonClicks(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click, Button2.Click, Button3.Click
 RemoveHandler Button1.Click, AddressOf AllTheButtonClicks
 MsgBox(sender.ToString)
End Sub

Press F5 to run this little program and click Button1. The MessageBox appears. Click Button1
again and nothing happens because Button1's Click event has been detached—so this
procedure no longer responds to any clicking of Button1. Button2 and Button3 still trigger this
procedure. To restore (or create for the first time) a procedure's ability to handle an object's
events, use the AddHandler command, like this:

AddHandler Button1.Click, AddressOf AllTheButtonClicks

Detecting Key Presses

The following example show how to use the KeyChar property to figure out which key the
user pressed. You compare it to the Keys enumeration (a list of built-in constants that can be
used to identify keypresses). The following code checks to see if the user presses the Enter
key:

Private Sub TextBox1_KeyPress(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles TextBox1.KeyPress
 If Asc(e.KeyChar) = Keys.Enter Then
 MsgBox("ENTER")
 End If
 End Sub

The following example shows how to detect if the user presses Ctrl+N on the form (to set the
Form's KeyPreview property to True):

Private Sub Form1_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyDown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyDown

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 470

handle more than 50 concurrent sessions. In other words, maintaining 50 concurrent sessions
is a hard upper limit for our server, and it's better to have some clients wait for an object to
become available in the pool than to create objects. The 51st client will have to wait for an
object to become available (that is, for another client application to free one of the objects). If
you don't set the maximum number of objects in the pool, the delay will be spread among the
clients. There's a cutoff point, beyond which we'd rather delay an isolated client than keep
increasing the delay for all clients. In effect, by controlling the maximum number of objects in
the pool we control the amount of resources consumed by these objects. The exact value of the
minimum and maximum number of objects in the pool is determined empirically and depends
on the application, the minimum/average/maximum client load, and the application server. A
server with multiple processors can better handle components that execute a load of
statements. If your components set up complicated data structures in memory, they can be
handled more efficiently by a server with many gigabytes of memory.

IMPLEMENTING POOLING

Let's look at the process of building a pooled component. Every component that must be
installed as a COM+ application must inherit from the ServicedComponent class and must
reference the EnterpriseServices class. It must also have a strong name, like a regular COM+
component. Adding a strong name to an assembly is a straightforward process, and you'll see
shortly how to create a strong name and then use it in a .NET assembly. Finally, you must
assign attributes to the class and its members. These attributes will allow the CLR to create the
proper COM+ application for your component. It's also possible to specify these attributes in
the assembly's configuration file, or set them manually through the Component Server
Explorer.

Start a new Class Library project and name it PooledServer. Then add to the project a
reference to the System.EnterpriseServices namespace. Before writing any code, you should
prepare a strong name for the application. If you have created a strong name you're using with
your applications already, you can reuse it. To create a new strong name, open the Visual
Studio Command Prompt and switch to the application's folder. You can create the file with
the strong name in any folder, but then you must copy it to the new application's folder. Enter
the following statement in the Command Prompt window:

sn –k ServerKey.snk

The sn command line tool will create the ServerKey.snk file in the current folder. This file
contains a public and a private key and must be referenced by the component that must be
assigned a strong name. Copy the ServerKey.snk file to the project's Bin folder. To reference
the file with the keys in your component, add the following statement to your class:

<Assembly: AssemblyKeyFile(''../../ServerKey.snk")

Finally, you must decorate the class's definition with the ObjectPooling attribute, in which
you can specify the minimum and maximum size of the pool, as well as the setting of the
JustInTimeActivation option:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<ObjectPooling(MinPoolSize:=3, MaxPoolSize:=12), JustInTimeActivation(True)>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 471

To demonstrate how object pooling can help the performance of a client application, we'll
implement a constructor that takes 10 seconds to create an instance of a new object and
another method that returns the name of the computer. We've chosen this return value for our
sample method so that we can verify on which computer the component is running (should
you install it on an application server). If you're using a single machine to test the pooled
component, you'll see the difference in creating new objects, but the computer name will
always be the same. Listing 16.7 shows the code of the PooledServer application:

LISTING 16.7: THE POOLEDSERVER CLASS'S IMPLEMENTATION
Imports System.EnterpriseServices

<ObjectPooling(MinPoolSize:=3, MaxPoolSize:=12), _
 JustInTimeActivation(True)> _
Public Class ExpensiveObject
 Inherits EnterpriseServices.ServicedComponent

 Protected Overrides Function CanBePooled() As Boolean
 Return True
 End Function

 Public Sub New()
 System.Threading.Thread.CurrentThread.Sleep(10000)
 End Sub

 Public Function GetComputerName() As String
 System.Threading.Thread.CurrentThread.Sleep(1000)
 Return Windows.Forms.SystemInformation.ComputerName
 End Function
End Class

Compile the class to create the PooledServer.dll in the application's Bin folder. The DLL isn't
registered with COM+ automatically, but its attributes determine the settings for its proper
configuration. To actually register the new component with the COM+ catalog, open a
Command Prompt window, switch to the location of the DLL file, and execute the following
command:

regsvcs PooledServer.dll

This command will register the new component with the COM+ catalog and you will be able
to use it from within client applications. If you open the Component Services window now,
you'll verify that a new COM+ application was created automatically—the PooledServer
application—and that it hosts a single component—the ExpensiveObject component—as
shown in Figure 16.14. Select the ExpensiveObject component and open its property page.
Switch to the Activation tab, as shown in Figure 16.15, and you will see that the pooling
parameters we specified with the appropriate attributes in our code have taken effect.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 472

FIGURE 16.14 Adding a new application to the COM+ catalog with the regsvcs.exe tool

FIGURE 16.15 Use the Activation tab of the component's Property pages to change the object pooling
parameters of an existing serviced component.

Now we're ready to test our new serviced component. Start a new project in Visual Studio—
this time, a Windows application that will call the services of the PooledServer component.
Name the new project PooledClient and add to it a reference to the PooledServer.dll
component. Then enter the statement in Listing 16.8 in a button's Click event handler.

LISTING 16.8: TESTING THE POOLEDSERVER SERVICED COMPONENT
Imports System.EnterpriseServices
Public Class Form1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class Form1
 Inherits System.Windows.Forms.Form
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim P As New PooledServer.ExpensiveObject
 MsgBox(P.GetComputerName)
 ServicedComponent.DisposeObject(P)
 End Sub
End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 474

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 477

 If Xreader.nodetype = XmlNodeType.Element Then
 ele += 1
 If (Xreader.HasAttributes) Then
 att += Xreader.AttributeCount
 End If
 End If

 End While

 m &= ''Number of Elements: " & ele
 m &= " Number of Attributes: " & att
 MsgBox(m)

End Sub

This code creates a little XML parser. The Microsoft version of a SAX reader, the
XMLReader object, is similar to the traditional SAX parser, but it's more flexible. You can
customize the XMLReader's behaviors. The reader's .Read method is quite versatile (though it
cannot modify the XML stream by itself).

.NET offers several techniques you can use to read, search, or parse XML. In addition to the
XMLReader class, you can use the .NET XPathNavigator API, which offers a cursor-based
technology useful for exploring XML stores, in addition to supporting Xpath queries.

In the previous example, we asked for information on elements and attributes, while ignoring
much of the other information this method reports. Here are the other NodeTypes the reader
can tell you about: CDATA, comment, Document, DocumentFragment, DocumentType,
EndElement, EndEntity, Entity, EntityReference, Notation, ProcessingInstruction,
SignificantWhitespace, Text, Whitespace, XmlDeclaration.

Following is a list of the properties of the XMLReader object that provide node information:

AttributeCount How many attributes are contained within the current node.
BaseURI The base URI. Duh.
Depth The depth of the current node (how many parent-child nests down it is)
within the document's structure.
HasAttributes A Boolean (true or false) value specifying whether the node has any
attributes.
HasValue A Boolean value specifying whether the node has any "value" (contents,
such as text or numeric data).
IsDefault A Boolean value signifying whether the node's value is the default value
specified in a DTD or XSD file.
IsEmptyElement A Boolean value indicating whether the node contains no data.
LocalName The name of the current node—but leaves off any namespace prefix.
Name The "fully qualified" name of the node—including any namespace prefix.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 479

self-describing tags (understood by programmers) to self-describing data structures
(understood by programs themselves, without the direct aid and translation of a programmer).

Table 17.1 contains the primary classes in the .NET DOM implementation. Table 17.2
contains the extended classes.

TABLE 17.1: THE .NET DOM FUNDAMENTAL CLASSES

CLASS DESCRIPTION

XmlNode A node in an XML document
XmlNodeList A collection of nodes
XmlNamedNodeMap A collection of nodes that can be accessed directly from code using

their node names

TABLE 17.2: THE .NET DOM EXTENDED CLASSES

CLASS DESCRIPTION

XmlDocument Represents an entire XML document (the top node and all the
child nodes)

XmlAttribute Represents an XML attribute
XmlAttributeCollection A collection of attributes (all attributes are associated with a

single XML element)
XmlCDataSection A CDATA section in a document
XmlCharacterData Offers several text-manipulation methods
XmlComment An XML comment
XmlDeclaration An XML declaration
XmlDocumentFragment A section from a full XML document (not a complete

document)
XmlDocumentType A DOCTYPE declaration
XmlElement An XML element
XmlEntity An <!ENTITY ... > declaration
XmlEntityReference An entity reference node
XmlImplementation A definition of the context for a set of XMLDocument objects
XmlLinkedNode A node just before (such as a parent) or after (such as a child)

the currently referenced node
XmlNotation A notation declaration in a DTD or XSD file
XmlProcessingInstruction A processing instruction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSignificantWhitespace Whitespace in an element or attribute
XmlText The value (the text content) of an element or attribute

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 482

A schema is a structured framework, or diagram, that is meant to clarify and describe a set of
related ideas. A blueprint, for example, is a schema that describes all the elements in what will
be a house.

A schema is metadata—data about data. The metadata, or schema, for a database is the names
and relationships between tables, fields, records, and properties of that database. Similarly, an
XML document can be thought of as another kind of database. And an XML schema is a
description of the structure of an XML document. If you own a grocery store, you can use
XML to communicate your inventory needs to your suppliers as long as both of you are using
the same XML schema to ensure conformity and, thus, comprehensibility.

VB .NET contains a tool, the XML Designer, which you can use to build and modify XML
schemas and the resulting XML documents. This designer shows you both source code and
diagrams of a schema.

Microsoft has selected XSD as its favored schema builder for several reasons. XSD permits
you to group elements and attributes (to assist you in repeating the groups); it contains KEY
and KEYREF statements which allow you to create one-to-many relationships and uniqueness
constraints; it supports inheritance, namespaces, and extensibility (not simple XML tag
extensibility; rather, the extension of a schema itself); and, last but not least, XSD employs
XML to define the XSD schemas (so it has the benefits that XML offers over other data
definition techniques).

Here's an example of a typical XSD schema. Notice that there is no actual data content here
(no proper names such as London St. or numeric values such as a phone number). Instead, you
have a list of elements (tags), their data type, and their structural relationship within the
sequence. This is quite like creating an array or type of declared variable names:

Dim FirstName as String
Dim LastName as String
Dim ZipCode as Integer
Dim Address as String

Here's the ''declaration" of a complex data type using XSD:

<?xml version="1.0" encoding="utf-8"?>
<schema targetNamespace="http://CardCorp.com/XMLSchema1.xsd" _
xmlns="http://www.Nams.com/Ars/XMLSchema2">
<complexType name="customerType">
 <sequence>
 <element name="LastName" type="string"/>
 <element name="FirstName" type="string"/>
 <element name="StreetAddress" type="string"/>
 <element name="City" type="string"/>
 <element name="State" type="string"/>
 <element name="ZipCode" type="integer"/>
</sequence>
</complexType>
</schema>

The line that begins with ?xml describes which version of XML this document uses. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The line that begins with ?xml describes which version of XML this document uses. The
following line, beginning with <schema, describes which XSD schema file is being used and
also specifies the namespace.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 483

Using XML Data Types

The type of an element or attribute can be either one of the standard types defined by the
World Wide Web Consortium (W3C), or can be simple or complex types that you defined
earlier in your schema.

Some programmers prefer to use only the string type, and then in applications convert the
string to other types, as necessary. If you want to use data types supported by Internet
Explorer 5 and above, include the following datatypes namespace:

<schema name=''YourSchema"
 xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
<!-- define your schema here -->
</schema>

You are allowed to specify data types for attributes, as well as elements; however, with
attributes there are fewer permitted types. The types permitted for use with attributes are:
string, id, idref, idrefs, nmtoken, nmtokens, entity, entities, enumeration, and notation. For
example:

<AttributeType name="Overdue" dt:type="idref"/>
<attribute type="Overdue" />

If an attribute has an idref data type, that attribute contains a unique identifying value in the
document (just as the Name property of a VB control must be unique within a given
WebForm, or the ID in an HTML document must be unique in that document). However, there
are two similar XML data types in a schema: id and idrefs.

Attributes with the type id are references to the element that uses the same id. Idrefs is like id,
but idrefs contains a list of ids separated by spaces:

<LateCharge creditcard="First Second Third">

Note that elements only support the id attribute data type in Internet Explorer 5.01 and above:

<ElementType name="Factory">
 <datatype dt:type="id">
</ElementType>

DECLARING SIMPLE XML DATA TYPES

To declare simple (boolean, float and such) data types for attributes in your schema, just use
the <datatype> element within an <AttributeType> element, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<AttributeType name ="MyAttributeType"/>
 <datatype dt:type="int"/>
</AttributeType>
<ElementType name="Points">
 <attribute type="MyAttributeType"/>
<ElementType>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 484

SPECIFYING CONTENT IN AN XML SCHEMA

You can use previously defined ElementTypes to build a new, more complex ElementType, as
shown in Listing 17.2.

LISTING 17.2: BUILDING A COMPLEX ELEMENTTYPE

<schema xmlns=''http://www.Nams.com/Ars/XMLSchema2">

<ElementType name="LastName" />
<ElementType name="FirstName" />
<ElementType name="StreetAddress" />
<ElementType name="City" />
<ElementType name="LastName" />

<ElementType name="Voter" order="seq">
 <element type="FirstName" />
<element type="LastName" />
 <element type="StreetAddress" />
 <element type="City" />
</ElementType>

</schema>

In this example, we built the Voter element out of four previously defined elements. We also
used <seq> to specify that the four elements must be in sequence. XML that correctly follows
the previous schema looks like this:

<Voter xmlns="Myschema:Voter-schema.xml">
<FirstName>Jon</FirstName>
<LastName>Popodoupolous</LastName>
<StreetAddress>922 W. Archer St.</StreetAddress>
<City>Bogotoa</StreetAddress>
</Voter>

EXTENDING A SCHEME

Schemas can be freely extended (you can add new elements and attributes that go beyond
what is defined in the schema) as long as you follow a few rules. This means that a schema's
content model is by default open, though you can force it to be closed if you wish by using the
model="closed" attribute.

If you want to extend an open content model, you must remember that you can only add new,
undeclared elements if they are in a new namespace. For example, here we add a new
namespace with the prefix n:

<Voter xmlns= xmlns="Myschema:Voter-schema.xml" xmlns:n="urn:AnotherNamespace">

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 485

Now we can add an attribute from the n namespace, like this:

<FirstName>Jon</FirstName>
<LastName n:Alpha = ''P">Popodoupolous</LastName>

or add a new element from the n namespace, like this:

<StreetAddress>922 W. Archer St.</StreetAddress>
<City>Bogotoa</StreetAddress>
<n:Country>Chile</n:Country>
</Voter>

Be warned that you can't add (or delete) any content from the model that would violate the
content model rules. Recall that in the original schema we used the order="seq" attribute to
require that the FirstName, LastName, StreetAddress, and City elements be sequential. You
are allowed to add new attributes to these elements, but you are not allowed to violate the
sequence of the elements. That is, you cannot remove one of the required four elements, or
insert a new element above or within the sequence. The <Voter> element must begin with the
four elements, though you can add additional elements below those four elements. Also, if you
want to add more FirstName elements to <Voter> (to accommodate people like Prince Charles
Albert James etc. etc. of England), you can do it, but these new FirstName elements must be
appended to the sequence. In other words, you must add new FirstName elements after the
<City> element. Otherwise you would violate the sequence as defined in the schema.

If for some reason you want to freeze a content model, and not permit any extensibility,
simply use the following attribute in the schema:

<ElementType name="Voter" order="seq" model="closed">

With this directive in place, any added or deleted elements—any changes to the original
schema, will not validate. It doesn't matter if you add new namespaces. Closed means closed.

The order attribute, as you've seen, can be used with the seq value in a schema to freeze a
sequence of elements. You can also use the one value with the order attribute to require that
only one single subelement (an element within another element) must be used from a list of
possible subelements. For example, you might want to specify that only one of the following
elements can be used— <ZipCode> or <CountryCode> but not both. Here's how:

<ElementType name="Code" order="one">
 <element type="ZipCode" />
 <element type="CountryCode" />
</ElementType>

But if you want to go in the other direction and throw all caution to the winds, use the many
value with the order attribute. The many value says that there can be any number of
subelements and they can appear in any order as well.

Sometimes you may need to specify an order on some of the subelements, but want to leave
the rest of the subelements unaffected by the order rule. To do that, use the group element. For
instance, we

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 486

could isolate the ZipCode or CountryCode elements by forcing them to be either/or, but not
extending this rule to other subelements:

<ElementType name=''Code">
<group order="one">
 <element type="ZipCode" />
 <element type="CountryCode" />
</group>
 <element type="PhoneNumber" />
 <element type="Age" />
</ElementType>

In this example, either ZipCode or CountryCode will be used, but not both. However, Phone-
Number and Age will both be required.

The group element has two other possible attributes: minOccurs and maxOccurs. These
attributes define how often a given subelement can appear within a container element. You
can specify max-Occurs using an integer (maxOccurs="5" means that no more than five of
this subelement may appear) or an asterisk to indicate that there can be unlimited numbers of
the subelement:

<element type="Voter" maxOccurs="*" />

The default value for maxOccurs is 1. But if the content="mixed" then the default value for
maxOccurs is "*".

MinOccurs defines the minimum number of times that a given subelement can appear.
MinOccurs defaults to 1, but if you set it to "0" the inclusion of that subelement is then
optional.

USING THE CONTENT ATTRIBUTE

Elements can contain other elements (called subelements), and/or text, or simply be empty of
content. You can use the values textOnly, eltOnly, mixed, and empty as values for the content
attribute of an element—these values specify the permitted content for that element.

If you want to insist that an element contain text, but can contain no other elements (nor be
empty), use the textOnly value:

<ElementType name="FirstName"content="textOnly"/>

If you use the empty value, no text or subelements are permitted. The mixed value permits you
to use both text and subelements. Or you can specify that an element must contain
subelements, but no other content; use this variation (elt is short for element):

<ElementType name="Voter" content="eltOnly"/>

TIP If you've defined a datatype for an element, then textOnly becomes the default content
specification.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the content attribute is eltOnly, then the order value defaults to seq. If the content attribute is
mixed, then the order value defaults to many.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 488

Edit and Save

You must be able to programmatically edit XML, and save the results back to an XML store.
In the following examples, you see how to delete a particular attribute or element throughout a
document, as well as how to replace or add individual elements or entire nodes.

DELETING ATTRIBUTES

In the next example (Listing 17.4), you decide you want to delete all the id attributes from the
book elements. You simply loop through the XmlElements, stopping at each child node (in
other words, all nodes within the general, outermode node <catalog>). For each child node,
you remove any attribute named id.

LISTING 17.4: DELETING AN ATTRIBUTE THROUGHOUT A DOCUMENT
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Xdoc As New XmlDocument
 Xdoc.Load(''c:\books.xml")

 Dim XElement As XmlElement

 For Each XElement In Xdoc.DocumentElement.ChildNodes
 XElement.RemoveAttribute("id")
 Next

 Dim writer As XmlTextWriter = New XmlTextWriter _
("c:\bookschanged.xml", Nothing)
 Xdoc.Save(writer)

 End

End Sub

After you execute this code, the new file, c:\bookschanged.xml, will contain the same
XML, but with the id attributes stripped out.

DELETING ELEMENTS

Here's similar code that removes elements rather than attributes:

For Each XElement In Xdoc.DocumentElement.ChildNodes
 Dim xmlList As XmlNodeList = XElement.GetElementsByTagName("author")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 489

 For i = 0 To xmlList.Count - 1
 XElement.RemoveChild(xmlList(0))
 Next
Next

REPLACING ELEMENTS

To replace elements, use code like this:

 Dim root As XmlNode = myXMLdoc.DocumentElement
 'Create a new node.
 Dim Xelement As XmlElement = myXMLdoc.CreateElement(''price")
 Xelement.InnerText = "99.99"
 'Replace the first element (book ID = 101) with this new element
 root.ReplaceChild(Xelement, root.FirstChild)

The DocumentElement property represents a document's root element, which is often the
entire document itself. The CreateElement constructs a new node; you can create a new XML
element simply by assigning a name ("price" here) and including any InnerText you care to
add. The ReplaceChild method replaces the first <book> element with this new <price>
element.

ADDING NEW ELEMENTS

Use the InsertAfter or InsertBefore methods to add new elements. Change the ReplaceChild
method from the previous code example:

root.InsertAfter(Xelement, root.FirstChild)

The DOM includes four methods you can use to add new elements: InsertAfter, InsertBefore,
AppendChild, PrependChild.

ADDING AN ENTIRE NODE

In Listing 17.5, you see how to add a whole node, all at once, to an existing document.

LISTING 17.5: ADDING A NODE TO A DOCUMENT
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim XDoc As New XmlDocument
 XDoc.Load("c:\books.xml")

 ' Create a new Book element
 Dim XElement As XmlElement = XDoc.CreateElement("book")
 ' Append this new element to the collection of children of the document's

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 490

 ' root element which is <catalog>.
 XDoc.DocumentElement.AppendChild(XElement)

 ' Specify the ID attribute for the new node.
 XElement.SetAttribute("id", "2009")

 ' Build the sub-elements that belong within a <book> element.

 Dim XChildElement As XmlElement

 ' Create the author sub-element.
 XChildElement = XDoc.CreateElement("author")

 'Add the text (the value) to this element,
 'and append it to the new <book> element:
 XChildElement.AppendChild(XDoc.CreateTextNode("Salifs, Sally"))

 'Append this to the new book element.
 XElement.AppendChild(XChildElement)

 ' Repeat the ab ove to create all the rest of the sub-elements:

 XChildElement = XDoc.CreateElement("title")
 XChildElement.AppendChild(XDoc.CreateTextNode("Seems to Me!"))
 XElement.AppendChild(XChildElement)

 XChildElement = XDoc.CreateElement("genre")
 XChildElement.AppendChild(XDoc.CreateTextNode("Pointless Self-help"))
 XElement.AppendChild(XChildElement)

 XChildElement = XDoc.CreateElement("price")
 XChildElement.AppendChild(XDoc.CreateTextNode("$4.95"))
 XElement.AppendChild(XChildElement)

 XChildElement = XDoc.CreateElement("publish_date")
 XChildElement.AppendChild(XDoc.CreateTextNode("2003-10-03"))
 XElement.AppendChild(XChildElement)

 XChildElement = XDoc.CreateElement("description")
 XChildElement.AppendChild(XDoc.CreateTextNode("This book is indescribable"))
 XElement.AppendChild(XChildElement)

 XDoc.Save(Console.Out)
 End
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 491

A Recursive Walk through the Nodes

Going down through a tree structure such as an XML document, you may find that you have
to examine each node, see if it has any children, or children of the children, and so on down as
far as necessary. Sounds like a job for recursion.

In this next example, you walk through the sample XML document, and can, therefore,
manipulate each element or attribute as you wish (using some of the methods described earlier
in this chapter, for example). If you require fine-grain management of an XML document, this
is one way to do it. You could even use conditional logic, such as: ''If this document includes
no date stamp anywhere, add one."

Add a TextBox to your form. Using the Properties window, change the TextBox's MultiLine
property to True and its ScrollBars property to Vertical. Then type Listing 17.6 into your code
window.

LISTING 17.6: WALKING THROUGH AN XML DOCUMENT
Dim s As String
 Dim cr As String = ControlChars.CrLf
 Dim quot As String = ControlChars.Quote

 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Xdoc As New XmlDocument
 Xdoc.Load("c:\books.xml")

 ShowElements(Xdoc) 'pass the entire document to the recursive subroutine

 TextBox1.Text = s 'display the whole, finished string
 TextBox1.SelectionLength = 0 'turn off the selection

 End Sub

 Sub ShowElements(ByVal XNode As XmlNode)

 Static c As Integer
 c += 1 'increment counter each time through the recursion

 If XNode.Name = "book" Then _
 'major node
 s &= "______________________________Major _

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 492

Parent Node ___________________'' & cr
 s &= c & ". Name of this Node: " & XNode.Name & cr

 ElseIf XNode.Name <> "#text" Then _
'show the name of the other children except text
 s &= c & ". " & XNode.Name & cr
 End If

 Select Case XNode.NodeType
 Case XmlNodeType.Element
 ' Any attributes inside this element?
 If XNode.Attributes.Count > 0 Then 'yes
 s &= ".........Attributes:"

 Dim XAttribute As XmlAttribute

 ' show each attribute
 For Each XAttribute In XNode.Attributes
 s &= XAttribute.Name & _
" = " & quot & XAttribute.Value & quot & cr & cr
 Next
 End If
 Case XmlNodeType.Text 'show only the contents of a text node
 s &= c & ". " & XNode.Value & cr
 Case Else
 ' ignore other types of elements
 End Select

 ' Keep calling this same ShowElements Sub
 ' until you run out of child elements:
 Dim XChild As XmlNode = XNode.FirstChild
 Do Until XChild Is Nothing
 ShowElements(XChild) 'call yourself
 XChild = XChild.NextSibling 'move further
 Loop
 End Sub

Execute this code and you see the entire XML document atomized into all its components, as
shown in Figure 17.1. This is an excellent way to manage XML documents on the lowest
level.

This low-level access to XML permits you to write programming that adjusts the content (you
can freely edit, delete, add, or replace components) or displays the contents of an XML
document in any fashion you choose, for reports. In this report, each <text> element's name
(#text) is not displayed, but the value of these text elements is shown (via the Select Case
structure). All the other child elements are listed as name/value pairs, with the value tabbed
over a bit to make the values easy to distinguish from the element names.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 494

LISTING 17.7: PERSISTING AND RETRIEVING STORED DATASETS
Imports System.IO

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 'Save data as XML

 Dim fStream As Stream
 fStream = New FileStream(''C:\XMLData", FileMode.OpenOrCreate)
 XmlSchema11.WriteXml(fStream)

 fStream.Close()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 'load the XML data

 Dim fStream As Stream
 fStream = New FileStream("C:\XMLData", FileMode.Open)
 XmlSchema11.Clear()
 XmlSchema11.ReadXml(fStream)

 fStream.Close()

 End Sub

Now test all this by running the program and typing in some data, as shown in Figure 17.2:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 17.2 Saving and loading DataSets stored as XML is quite elegantly efficient in VB.NET.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 496

 Dim fs As New FileStream(''c:\test.txt", FileMode.Create, FileAccess.Write)

 Dim XMLf As New Soap.SoapFormatter

 XMLf.Serialize(fs, Arr)

 fs.Close()

 'read it back

 Dim XMLf1 As New Soap.SoapFormatter

 Dim fs1 As New FileStream("c:\test.txt", FileMode.Open, FileAccess.Read)

 ArrNew = XMLf1.Deserialize(fs1)

 fs1.Close()

 Console.WriteLine("The new array has been read back:")

 Console.WriteLine(ArrNew(0))
 Console.WriteLine(ArrNew(1))
 Console.WriteLine(ArrNew(2))

End Sub

Technically, you don't need to Imports the binary version here of the serialization namespace,
but what the heck. Adding a few extra, unused namespaces to a project doesn't do any harm. It
doesn't make your executable any larger, and in my experience doesn't result in name
collisions. Microsoft has taken care in its .NET assemblies to ensure unique member names as
much as possible.

The resulting XML file contains even more than the usual verbosity characteristic of XML:

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
'xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns::SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">
<item id="ref-2">This test</item>
<item id="ref-3">continues until</item>
<item id="ref-4">it finishes.</item>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 497

</SOAP-ENC:Array>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You can use the BinaryFormatter technique in many cases when you are working within the
.NET Framework—it's both faster and more efficient as store (it creates more compact files).
But when you need to send data across the Internet, or communicate outside the .NET
platform—SOAP-style is likely your formatting of choice.

TIP The serializable attribute is not inheritable, so if you derive a new class from a
serializable class, you must explicitly mark that new class as <Serializable()> as well, as
illustrated by the following example.

Mixing and Matching Types

Serialization permits you to easily mix and match various kinds of data in the same file. Once
you've started feeding data into a stream, you can keep that stream open and pipe more data
through it, even data of a different type or organization. In other words, you can fill your file
or other data target with all kinds of data, and data collections, as long as you remember to
read them back in the correct order. That is, if you store an Int32, a Char array, and then an
object, you must read these same data types back in the same order that they were sent through
the pipe: Int32, array, object.

If you thought the XML file in the previous example was a bit verbose, considering the
simplicity and brevity of the structure and data, wait until you see the bloat-o-matic file
created in the next example, Listing 17.9. This example shows how to save a structure
followed by an ArrayList. (See the previous section if you have not added a Soap namespace
to your project.)

LISTING 17.9: THIS CODE ILLUSTRATES XML VERBOSITY
Imports System.IO
Imports System.Runtime.Serialization.Formatters

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim m As New MeatPot

 m.Name = ''Mr. Porko"
 m.Size = 44422
 m.Price = 1412.99

 Dim MyArray As New ArrayList

 MyArray.Add("Sliders")
 MyArray.Add("Grinders")
 MyArray.Add("PoBoys")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 498

 Dim fs As New FileStream(''c:\test.txt", FileMode.Create, FileAccess.Write)

 Dim XMLf As New Soap.SoapFormatter

 'hetero serialization:
 XMLf.Serialize(fs, m)
 XMLf.Serialize(fs, MyArray)
 fs.Close()

 End Sub
End Class

<Serializable()> Public Structure MeatPot
 Dim Name As String
 Dim Size As Integer
 Dim Price As Decimal
End Structure

Press F5 and use Windows Explorer to look at Test.txt. You'll see the big SOAP file full of
XML explanations of the structures and data that were saved. I won't reproduce the entire
thing, with its schemas upon schemas, but here's the meat of the file illustrating how your data
was translated into the usual XML nested tag pair storage system:

<a1:MeatPot id="ref-1"
'<Name id="ref-3">Mr. Porko<Name>
<Size>44422</Size>
<Price>1412.99</Price>
'<a1:MeatPot>
<a1:ArrayList id="ref-1"
xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Collections">
<_items href="#ref-2"/>
<_size>3<_size>
<_version>3<_version>
'<a1:ArrayList>
<SOAP-ENC:Array id="ref-2" SOAP-ENC:arrayType="xsd:anyType[16]">
<item id="ref-3" xsi::type="SOAP-ENC:string">Sliders<item>
<item id="ref-4" xsi::type="SOAP-ENC:string">Grinders<item>
<item id="ref-5" xsi::type="SOAP-ENC:string">PoBoys<item>
<SOAP-ENC:Array>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 499

READING MIXED DATA

To load the XML from the file created in the previous example, it's your responsibility to
deserialize the data types in the same order that you serialized them. In other words, you have
to pay attention to the data types and their position in the stream.

The SoapFormatter's deserialize method returns only object variables. This means that you are
also responsible for casting each of them into the correct data type. You can use the CType
command to accomplish this casting. In Listing 17.10, the incoming data packages are cast
into a Meat-Pot structure, followed by an ArrayList (this structure and ArrayList were saved to
the hard drive in Listing 17.9).

LISTING 17.10: DESERIALIZING AND CASTING MIXED DATA
 Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

 Dim m1 As New MeatPot

 Dim ar As New ArrayList

 Dim fs As New FileStream(''c:\test.txt", FileMode.Open, FileAccess.Read)
 Dim XMLf As New Soap.SoapFormatter

 m1 = CType(XMLf.Deserialize(fs), MeatPot)
 ar = CType(XMLf.Deserialize(fs), ArrayList)

 fs.Close()

 Console.WriteLine(m1.Price)
 Console.WriteLine(ar(2))

 End Sub

Here I used a single stream (fs) to deserialize both the MeatPot structure and the ArrayList.
One stream can handle multiple serializations or deserializations.

.NET also includes a similar XML serializer, and it differs somewhat from the SOAP version.
XML serialization permits you to specify the XML namespace, the name of tags, and whether
a property is to be serialized as an attribute or element. However, object identity and assembly
information are both lost, and it works only with public classes, fields, and properties. You can
use this method when the consuming application doesn't need self-description (when it already
knows the syntax governing the data).

This approach is useful when you want a quick way to communicate data, and to consume it
under your control into your objects and databases. Listing 17.11 illustrates this technique.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 50

It's different now. You must use a System.Random object in .NET. The good news is that the
Random object has useful capabilities that were not available via the old Rnd and Randomize
functions. Try this example:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim i As Integer
 For i = 1 To 100
 Console.Write(rand(i) & '' ")
 Next
 End Sub

This function returns random numbers between 1 and 12:

Function rand(ByVal MySeed As Integer) As Integer
 Dim obj As New system.Random(MySeed)
 Return obj.next(1, 12)
End Function

WARNING Although the arguments say 1, 12 in the line Return obj.next(1, 12), you
will not get any 12s in your results. The numbers provided by the System.Random function in
this case will range only from 1 to 11. I'm hoping that this error will be fixed at some point.
However, even the latest version of VB.NET (2003) still gives you results only ranging from 1
to 11. Perhaps the same people who believe that arrays should start with a "zero element"
also think that an upper bound of 12 should provide only numbers between 1 and 11. Can this
truly odd behavior be an intentional feature of the Random.Next method? It's just too tedious
to hear mystical techie justifications for these kinds of silly boundary rules, such as this 12,
that turn out—surprise!—not to be the true boundaries after all.

On a happier note, Listing 2.14 is an example that illustrates how you can use the NOW
command to seed your random generator.

LISTING 2.14: SEEDING THE RANDOM GENERATOR
Private Sub Button1_Click_1(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim sro As New coin()
 Dim x As Integer
 Dim i As Integer

 For i = 1 To 100
 sro.toss()

 Dim n As String

 x = sro.coinvalue
 If x = 1 Then
 n = "tails"

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 500

LISTING 17.11: AN EXAMPLE OF STREAMLINED WITH THE XMLSERIALIZER
 Imports System.IO
 Imports System.XML.Serialization

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Xser As New XmlSerializer(GetType(YourClassName))

 Dim c As New YourClassName(''Doris", "Duke")

 Dim fs As New FileStream("c:\test", FileMode.Create)
 Xser.Serialize(fs, c)

 fs.Close()

 'read it back

 Dim fs1 As New FileStream("c:\test", FileMode.Open)
 Dim c1 As YourClassName = CType(Xser.Deserialize(fs1), YourClassName)
 fs1.Close()

 Console.WriteLine(c1.LastName)
 End Sub

 End Class

 Public Class YourClassName

 Public FirstName As String
 Public LastName As String

 'the class must have a parameterless constructor
 Sub New()
 End Sub

 Sub New(ByVal FN As String, ByVal LN As String)
 Me.FirstName = FN
 Me.LastName = LN
 End Sub

End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 501

The resulting file is largely free of XML's typical verbosity:

<?xml version=''1.0"?>
<YourClassName xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <FirstName>Doris</FirstName>
 <LastName>Duke</LastName>
</YourClassName>

You can specify tag names, attributes, and so on when using the XMLSerializer. You add your
specifications within the class itself, like this, fiddling with the properties of the class:

<XmlRootAttribute("FamousLady", Namespace:="http://www/yourplaceormine.com",
IsNullable:=True)> Public Class YourClassName
 <XmlAttributeAttribute("HerFirstName")> Public FirstName As String
 <XmlIgnore()> Public LastName As String

These modifications result in a rather different XML file—one that has a new root name and a
new namespace, and one that forces the FirstName property to be serialized as an attribute
rather than an element and refuses to store the LastName property at all:

<?xml version="1.0"?>
<FamousLady xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 HerFirstName="Doris"
 xmlns="http://www/yourplaceormine.com" />

Deserialization Trapping

Perhaps you agree with critics who view "self-description" and "discovery" as merely
honorable wishes rather than realized, practical programming behaviors.

Whatever else you may say, XML is not artificial intelligence. It doesn't permit you to write
an application that loads an unknown XML file and "understands" what to do with the
structures and data therein.

If you receive this from a chemical company:

<Borax>5</Borax>

your application cannot know what it means. Some human programmer must translate this into
a usable piece of information. Does it mean five boxes of Boraxo soap? Five tons of raw
borax? Borax is now $5 a pound? Or 5 cents? To a computer, this "self-describing" data is
merely another stream of bytes. And to an application that hasn't been programmed to
recognize this particular stream of bytes, it's meaningless.

While deserializing an incoming XML stream, the XMLSerializer object throws exceptions
when it cannot process something in the stream. The UnknownElement and
UnknownAttribute events are

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 502

useful as a way of creating a log or otherwise flagging (for human intervention) that some
''self-described" data isn't self-described enough.

If you don't write code to handle this situation, the serializer will simply ignore the incoming
items it doesn't know what to do with. So you'd better use these events in your code. Let's use
a previous example to create a problem in the XML. Using Notepad, modify the c:\test file
so it looks like this (changes in boldface):

<?xml version="1.0"?>
<YourClassName xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Booboo>Doris</Booboo>
 <LastName>Duke</LastName>
</YourClassName>

Now consume this XML using this source code, which is filling an object that expects a First-
Name element (property), not a Booboo:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim Xser As New XmlSerializer(GetType(YourClassName))
 Dim fs1 As New FileStream("c:\testx", FileMode.Open)
 Dim c1 As YourClassName = CType(Xser.Deserialize(fs1), YourClassName)
 fs1.Close()
 Console.WriteLine(c1.FirstName)
 Console.WriteLine(c1.LastName)
End Sub

When you run this, the FirstName element was ignored by the deserialize method because it
had that unrecognized tag Booboo. To deal with this problem—to alert a human that
intervention is required—add an event to your code, like this:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim Xser As New XmlSerializer(GetType(YourClassName))
 AddHandler Xser.UnknownElement, AddressOf deser_UnknownElement
 Dim fs1 As New FileStream("c:\testx", FileMode.Open)
 Dim c1 As YourClassName = CType(Xser.Deserialize(fs1), YourClassName)
 fs1.Close()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 508

The interface of the application is based on regular Windows controls, and we've added quite a
bit of code to make sure that the application can be used without the mouse. To activate the
search button (the button with the question mark on the main form), users can press F3. We
won't discuss the part of the code that handles the keystrokes, but you can open the project in
Visual Studio and view the complete code, which is well documented.

The Application's Architecture

This is a connected application and it updates the database as soon as a row is edited, inserted,
or deleted. When the user selects a row on the auxiliary form, the selected row is stored in the
Products DataTable of the DSProducts DataSet. The Products DataTable is associated
with the DAProduct DataAdapter, which is based on a SELECT statement that retrieves a
product row by its ID:

SELECT ProductID, ProductName, SupplierID, CategoryID,
 QuantityPerUnit, UnitPrice, UnitsInStock,
 UnitsOnOrder, ReorderLevel, Discontinued
FROM Products
WHERE (ProductID = @ID)

Once the user has selected a product on the auxiliary form, the product's ID is known and we
can use it as an argument to the to preceding SELECT statement to retrieve the values of the
selected row. These values are then displayed on the controls of the main form. With the
exception of the two ComboBox controls, no other control on the main form is bound.

The DSProducts DataSet holds two more tables, the Categories and Suppliers tables. The
DACategories and DASuppliers DataAdapters, which fill the tables with the categories and
suppliers, respectively, are based on the GetAllCategories and GetAllSuppliers stored
procedures, whose listings are shown next:

CREATE PROCEDURE GetAllCategories
AS
SELECT CategoryID, CategoryName
FROM Categories

and

CREATE PROCEDURE GetAllSuppliers
AS
SELECT SupplierID, CompanyName
FROM Suppliers

To test the application, you must attach the two stored procedures to the database. The two
DataAdapters populate the corresponding tables in the DataSet when the application's main
form is loaded. Because the form is initially empty, the two ComboBox controls shouldn't
display any category or supplier name, so we set the SelectedIndex property of the two
controls to -1. Listing 18.1 shows the main form's Load event handler:

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 509

LISTING 18:1: POPULATING THE DSPRODUCTS DATASET AT STARTUP
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 Products1.Clear()
 DACategories.Fill(Products1, ''Categories")
 DAsuppliers.Fill(Products1, "Suppliers")
 cmbSupplier.SelectedIndex = -1
 cmbCategory.SelectedIndex = -1
End Sub

The reason we load the categories and suppliers when the program starts is that these two
tables will be used as lookup tools in selecting the current product's category and supplier, so
we need to display their names on the two ComboBox controls. To bind the two controls to
the corresponding DataTables, we've set a few properties, as shown next. The following table
shows the settings of the data-binding properties of the cmbCategory ComboBox control:

Property Setting
DataSource Products1.Categories
DisplayName CategoryName
ValueMember CategoryID

The equivalent settings for the cmbSupplier ComboBox control are shown next:

Property Setting
DataSource Products1.Suppliers
DisplayName CompanyName
ValueMember SupplierID

The DataSource property indicates where the data will be read from—in our case, from the
Categories DataTable of the Products DataSet. The DisplayName property is the column we
want to display on the control, and the ValueMember property is the column that identifies
each row. The DisplayName property is set to a column that makes sense to the user, such as a
name, and need not be unique. The ValueMember property is set to the key column of the
table.

As soon as we fill the Categories and Products DataTables, the corresponding ComboBox
controls are also populated—no need to write any code to populate a data bound control, just
set a few properties. The currently selected item's ValueMember property is the ID of the
product's category or supplier. In other words, users can select a category or supplier by name
on the control. Our code will read the control's ValueMember, which returns the ID of the
selected item.

The project's DataSet contains two relations, one between the Products and Suppliers
DataTables and a second one between the Products and Categories DataTables. These
relations are enforced, and the user can't specify an invalid category or supplier for a product.
Allowing the user to select a category and a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 51

 Else
 n = ''heads"
 End If

 n = n & " "

 debug.Write(n)

 Next i

 End Sub

End Class

Class coin

 Private m_coinValue As Integer = 0

 Private Shared s_rndGenerator As New System.Random(Now.Millisecond)

 Public ReadOnly Property coinValue() As Integer
 Get
 Return m_coinValue
 End Get
 End Property

 Public Sub toss()
 m_coinValue = s_rndGenerator.next(1, 3)
 End Sub

End Class

As nearly always in VB.NET, there is more than one way to do things. The next example uses
the system.random object's Next and NextDouble methods. The seed is automatically taken
from the computer's date/time (no need to supply a seed as was done in the previous example,
or to use the old VB6 Randomize function). The Next method returns a 32-bit integer; the
NextDouble method returns a double-precision floating point number ranging from 0 up to
(but not including) 1.

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim r As New System.Random()
 Dim x As Integer
 Dim i As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 510

supplier by name is much friendlier than requesting a numeric ID, as you would have to do
with the DataGrid control. Moreover, we won't have to validate the CategoryID and
SupplierID columns (users can't assign invalid data to these two columns). A drawback of our
interface is that it doesn't allow the insertion of new categories or suppliers, but this can be
easily fixed by adding a button next to each ComboBox control, which will open a similar
auxiliary form for the Categories or the Suppliers table.

The selection of the desired product takes place on an auxiliary form and the selection can be
based on several criteria, but only one at a time. Depending on the user's selection, the
program downloads a few columns of the Products table and displays them on the ListView
control at the bottom of the form. The selected columns are the product's ID, name, and price.
The code behind the search form doesn't download all the columns you see on the main form,
because it doesn't have to. It downloads enough information to help the user make a selection.
Once the user has selected a single product, we download all the columns of a specific row for
editing purposes. Northwind is a small database and you could download all the columns of
the selected rows from the Products table. In a large database, however, the table with the
products contains many columns, and many of them are used internally by the application.
You should never download to the client more data than necessary.

The auxiliary form contains the AuxTables DataSet, which stores the Categories and
Suppliers tables, which are populated by the DACategories and DASuppliers DataAdapters,
respectively. The two DataAdapters select all the rows of the corresponding table and populate
their DataTables in the DataSet.

To retrieve the products that match the user-supplied criteria, the code creates a SELECT
statement and executes it against the database through the DASelectedProducts
DataAdapter. This DataAdapter executes its SelectCommand and populates the Products table
in the AuxTables DataSet with the selected rows.

The Application's Code

When the user clicks the button with the question mark, the following code displays the
auxiliary form for selecting a product:

Private Sub bttnSearch_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles bttnSearch.MouseUp
 ShowExtForm()
End Sub

The ShowExtForm() subroutine creates a new instance of Form2 and displays it modally. The
auxiliary form exposes the ID of the selected product as property, the ProdID property, which
the main form reads and then uses to display the selected product. The code of the
ShowExtForm() sub-routine is shown in Listing 18.2.

LISTING 18:2: SHOWING THE SEARCH FORM
Private Sub ShowExtForm()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub ShowExtForm()
 Dim searchFRM As New Form2
 If searchFRM.ShowDialog() = DialogResult.OK Then
 Dim prodID As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 511

 prodID = searchFRM.ProdID
 If prodID > -1 Then
 ShowProduct(prodID)
 End If
 End If
End Sub

The ShowProduct() subroutine retrieves the selected row and then calls the PopulateControls()
subroutine to display the values of this row. Downloading all categories and suppliers to the
client is a convenient technique, but it may lead to following condition. A user may add a new
category and then assign this category to a product (an existing or new product). When
another user selects this product, an exception will be thrown, because the DataSet won't be
able to enforce the relation between the product and its category (the newly inserted category
will not be at the client). Our code must detect this condition and reload first the rows of the
Categories table and then the selected row of the Products table. In our code, when we detect
that a related row in either of the Categories or Suppliers table is missing, we reload both
tables. The ShowProduct() subroutine is shown in Listing 18.3.

LISTING 18.3: RETRIEVING AND DISPLAYING A PRODUCT BY ITS ID
Private Sub ShowProduct(ByVal productID As Integer)
 ClearFields()
 DAProduct.SelectCommand.Parameters(''@ID").Value = productID
 Products1.Products.Clear()
 Try
 DAProduct.Fill(Products1, "Products")
 Catch exc As ConstraintException
 DACategories.Fill(Products1, "Categories")
 DAsuppliers.Fill(Products1, "Suppliers")
 Products1.Products.Clear()
 DAProduct.Fill(Products1, "Products")
 End Try
 PopulateControls()
 txtProductName.Focus()
End Sub

The PopulateControls() subroutine displays the selected row's values on the form's controls
and its code is straightforward. In addition, it locks all the controls on the main form. You can
look up the code of the PopulateControls() subroutine in the project's code.

When the Add or Edit buttons are clicked, the program unlocks the fields on the form by
calling the UnlockFields() subroutine. When a new row is added, in addition to unlocking the
fields on the form the code also clears them, and it also clears the Products DataSet. The
Edit and Add buttons prepare the application for the editing of the current row and the
insertion of a new row, respectively; their code is shown in Listing 18.4.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 512

LISTING 18.4: THE EDIT AND ADD BUTTON'S CODE
Private Sub bttnEdit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnEdit.Click
 If Products1.Products.Rows.Count = 0 Then
 MsgBox(''Please select a product to edit!")
 Exit Sub
 End If
 UnlockFields()
 HideButtons()
End Sub

Private Sub bttnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnAdd.Click
 Products1.Products.Clear()
 ClearFields()
 UnlockFields()
 HideButtons()
End Sub

The two event handlers are similar and quite trivial. The HideButtons() subroutine hides the
usual editing buttons and displays the OK and Cancel buttons in their place. The OK button
must handle an edit operation as well as the insertion of a row. If the Products Data Table
contains no rows, it means that the user is adding a new row and the code must insert a new
row into the Data-Table. Otherwise, the OK button was clicked to end an edit operation, in
which case we simply update the values of the existing row in the Products DataTable. The
OK button's Click event handler is shown in Listing 18.5:

LISTING 18.5: ENDING AN EDIT OR INSERT OPERATION
Private Sub bttnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnOK.Click
 If txtProductName.Text.Trim = " " Then
 MsgBox("Product Name must have a value!")
 Exit Sub
 End If
 If txtPrice.Text.Trim = "" Then
 MsgBox("The product must have a price!")
 Exit Sub
 End If
 If Not IsNumeric(txtPrice.Text.Trim) Then
 MsgBox("Invalid price!")
 Exit Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 513

 End If
 If CDec(txtPrice.Text) < 0 Then
 MsgBox(''The price can't be negative!")
 Exit Sub
 End If
 Dim newRow As Products.ProductsRow
 If Products1.Products.Rows.Count > 0 Then
 newRow = Products1.Products.Rows(0)
 Else
 'if not, it s a new row
 newRow = Products1.Products.NewRow
 End If
 ' Get the new values from the controls on the form
 ' and place them into the columns of the new/edited row
 ReadFieldValues(newRow)
 If Products1.Products.Rows.Count = 0 Then
 Products1.Products.Rows.Add(newRow)
 End If
 ' Attempt to submit changes to database
 Try
 DAProduct.Update(Products1, "Products")
 Catch exc As Exception
 ' update operation failed
 MsgBox(exc.Message)
 ' If this is an edited row, reject changes
 If Products1.Products.Rows(0).RowState = _
 DataRowState.Modified Then
 Products1.Products.RejectChanges()
 Else
 ' and if it's a new row, remove it
 Products1.Products.Rows.RemoveAt(0)
 ClearFields()
 End If
 Exit Sub
 End Try
 ' update operation succeeded, continue with viewing/editing
 LockFields()
 ShowButtons()
 bttnSearch.Focus()
 End Sub

The code starts by validating the data. If the supplied data doesn't violate any of the database's
constraints, it calls the ReadFieldValues() to copy the values from the controls into a typed
DataRow object. For new products, the code creates a new DataRow object with the following
statements:

Dim newRow As Products.ProductsRow
newRow = Products1.Products.NewRow

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 514

When the user edits an existing row, this is the only row in the Products table of the DataSet
and we simply retrieve it from its table with the following statement:

newRow = Products1.Products.Rows(0)

The ReadFieldValues() subroutine copies the values from the form's controls into the newRow
object's columns. Then the code adds this row to the Products table and calls the DAProducts
DataAdapter's Update method to submit the new (or edited) row to the database. If the Update
method fails, the structured exception handler catches it and handles it accordingly. If the row
is a new one, it's removed from the DataSet. If it's an existing row that was edited, the
exception handler rejects the changes and restores the DataRow object to its state before the
editing process. Restoring a single row to its original version and asking the user to edit it
again is quite reasonable. This approach, however, can't be used with a disconnected
application, because dozens of rows may fail to update the underlying tables.

The Cancel button on the form calls the PopulateControls() subroutine to re-display the
selected product. Notice that we don't have to undo any changes, because the DataRow object
that represents the selected product hasn't been modified yet. Only the values of the controls
on the form have been changed, and these changes are lost when the controls are repopulated.

THE SEARCH FORM'S CODE

The auxiliary form contains a DataAdapter, the DASelectedProducts DataAdapter, which
we configure from within our code with the appropriate SELECT statement, depending on the
criteria specified by the user. Then we use the DataAdapter to fill the AuxTables DataSet,
which contains the Products DataTable (this is where we store the selected products), as well
as two more tables, the Categories and Suppliers tables. The two tables are populated through
the DASuppliers and DACategories DataAdapters, which select the IDs and names of all
suppliers and all categories respectively. The Categories and Suppliers DataTables are
populated when the form is loaded and they're bound to the cmbSupplier and cmbCategory
ComboBox controls of the auxiliary form.

When a new category is selected on the cmbCategories ComboBox, the program executes a
SELECT statement that retrieves all the products in the selected category, populates the
Selected-Products DataTable of the AuxTables Dataset, and calls the ShowProducts()
subroutine to display the selected rows on a ListView control. If the user selects a supplier, the
code we execute is identical, with the exception of the SELECT statement, which now
retrieves the selected supplier's products. When the user presses the Enter key while the top
TextBox control has the focus, the code executes a third SELECT statement, which selects
products by name. Listing 18.6 shows the code behind the SelectedIndexChanged event
handler of the cmbCategory ComboBox control.

LISTING 18.6: RETRIEVING AND DISPLAYING THE PRODUCTS OF A CATEGORY
Private Sub cmbCategory_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles cmbCategory.SelectedIndexChanged

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Handles cmbCategory.SelectedIndexChanged
 txtProductName.Text = ''"
 cmbSupplier.Text = ""

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 515

 AuxTables1.Products.Clear()
 ' Use a parameterized query to select products by category
 DASelectedProducts.SelectCommand.CommandText = _
 ''SELECT ProductID, ProductName, UnitPrice " & _
 "FROM Products WHERE CategoryID=@category"
 DASelectedProducts.SelectCommand.Parameters.Clear()
 DASelectedProducts.SelectCommand.Parameters.Add(_
 "@category" , SqlDbType.Int)
 DASelectedProducts.SelectCommand. _
 Parameters("@category").Value = cmbCategory.SelectedValue
 DASelectedProducts.Fill(AuxTables1, "Products")
 ShowProducts()
End Sub

The ShowProducts() subroutine is straightforward and we won't show its listing here. You can
open the project with Visual Studio and examine the code. When the OK button on the
auxiliary form is clicked, the program stores the ID of the selected product to the ProdID
variable, which is a public field of the form. The code on the main form can access this field
and retrieve its value when the user closes the auxiliary form to return to the main form of the
application. The code behind the OK button of the auxiliary form is shown in Listing 18.7.

LISTING18.7: SELECTING A PRODUCT ON THE SEARCH FORM
Private Sub bttnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnOK.Click
 If lstProducts.SelectedIndices.Count > 0 Then
 ProdID = lstProducts.SelectedItems(0).Tag
 Me.DialogResult = DialogResult.OK
 Else
 Me.DialogResult = DialogResult.Cancel
 Exit Sub
 End If
End Sub

The same code is executed from within the DoubleClick event handler of the ListBox control
at the bottom of the auxiliary form.

Run the NWProducts application to check out its operation and try to operate the application's
interface with the keyboard only (the shortcut key for the search button on the main form is
F3). You can run two instances of the same application on your desktop and see how the
NWProducts application handles concurrency, as well as update errors. Start an instance of the
application and then add a new category to the database from within Enterprise Manager or
the Query Analyzer. The new category won't appear in the list of categories on the running
application's form. Then start a new instance of the application and add a new product that
belongs to this category. Switch to the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 517

FIGURE 18.3 The NWOrders application

Users can enter items by supplying their ID in the first TextBox control and move to the next
box by pressing the Enter key (the Tab key will also work). The boxes with the selected
product's name and price are skipped and the user is taken to the Quantity box, where the
suggested quantity is one. Pressing Enter one more time takes the user to the Discount box,
and with a third Enter the new detail line is added to the grid. The focus is also moved to the
ID box, where users can enter the ID of the next item in the order. This is also how most bar-
code readers work, so you'll be able to deploy an application like this at a point of sales.

If the product's ID isn't known, users can search for a product by name. They can enter part of
the product's name in the second TextBox control near the top of the form and press the Enter
key. The search will most likely return more than a single item. The matching product names
will be displayed on a ListBox control, as shown in Figure 18.4, and the user can move to the
desired one with the arrow keys and select it by pressing Enter (or double-click the name of
the desired product in the ListBox control). The ListBox control with the product names will
disappear as soon as an item is selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 18.4 Selecting a product by name

As the user changes the current selection on the ListBox control with the product name, the
current product's ID and price appear on the TextBox controls at the top of the form. You can
edit the application's interface to display even more properties on the form.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 518

When an order is completed, it's submitted to the database. Each order contains two sections:
its header and its details. The order's header contains the ID of the customer who placed the
order and the ID of the employee who made the sale. The NWOrders application allows you to
specify the customer and employee by selecting them from the appropriate list on the Order
Header tab, as shown in Figure 18.5. After specifying the order's header, users can switch to
the Order Details tab by pressing Alt+D. On the Order Details tab, users can specify the
order's detail lines and commit or cancel the order with one of the two buttons at the bottom of
the form.

FIGURE 18.5 Preparing the order's header

The Application's Architecture

When the form is loaded, the rows of the Customers and Employees tables are downloaded to
the client and stored to the DSCustomers DataSet. The DataSet's DataTables are populated
with the DACustomers and DAEmployees DataAdapters. The DACustomers DataAdapter
populates the DSCustomers DataSet with the following SELECT statement:

SELECT CustomerID, CompanyName,
ContactName, ContactTitle,
Address, City, Region, PostalCode, Country

FROM Customers
ORDER BY CompanyName

The DACustomers DataAdapter need not update the Customers table; clear the Generate
Insert, Delete, and Update Statements options on the Advanced tab of the DataSet generation
wizard. The DAEmployees DataAdapter has the same configuration, except for the SELECT
statement, which is shown next:

SELECT EmployeeID, LastName, FirstName
FROM Employees

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY LastName, FirstName

The order's detail lines are not stored to a DataSet. All the information about the detail lines is
stored on the ListView control. The NWOrders application consists of three tiers. The
presentation tier retrieves all the fields of the order from the controls on the form and uses
them to create a custom object and pass it to the middle tier. The middle tier commits the order
to the database in the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 519

context of a transaction. The third tier is the data tier, which consists of the database and the
stored procedures we've written for this application.

The program uses two custom classes, the ProductPrice and OrderedProduct classes. The
Product-Price class is where we'll store product information: the product's name, ID, and price.
We use this class to pass information from the middle tier to the presentation tier every time
the program requests the price of a product. The OrderedProduct class is where we'll store the
order's detail lines. When we request a product by its ID, the middle tier will return to our
application an object of the ProductPrice type with information about the specified product.
This—the product's name and price—is the information we need to sell the product. When the
order is ready, we'll pass to the middle tier an ArrayList of OrderedProduct objects, as well as
the order's header, and the middle tier's code will submit the order to the database. The
OrderedProduct class stores the ordered product's ID, its price, the ordered quantity, and the
discount.

Let's consider the operations we need to perform from the presentation tier. First, we need to
be able to retrieve a product by its ID and display a few of its columns on the form. This
operation will be implemented by the GetProductByID method, which accepts a product ID as
argument and returns a ProductPrice object with the product's name and price. We also need to
search products by name. This operation will be implemented with the GetProductsByName
method, which accepts as argument a string and returns an array of ProductPrice objects.
They're the products whose names match the string passed as argument.

To submit the order to the database, we create an instance of the OrderedProduct class,
populate it with the order's header and its details, and pass it to the AddOrder method, which
commits it to the database. If the order is inserted successfully, the AddOrder method returns
the ID of the new order (a number assigned to the order by the database). If not, it returns the
value –1.

THE ORDER CLASS CLASS

The OrderClass class is the middle tier component of the NWOrders application. It contains
two nested classes and a few methods. The two classes are the ProductPrice class, which
represents a product for the purposes of appending it to the order, and the OrderedProduct
class, which represents a detail line for the purposes of submitting it to the database. The two
classes are similar, but the ProductPrice class doesn't contain a quantity and the
OrderedProduct class doesn't contain the product name. When we sell, we assume that the
customer has selected the products and all products have a label with a bar code (or at least a
label with a unique ID and the price). The cashier doesn't need any more information beyond
the product's name and price, so the ProductPrice class exposes three members: the product's
ID, its name, and its price. It also exposes a custom ToString method, which returns the
product's name. You'll see shortly how this member is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OrderedProduct class represents a detail line of the invoice and contains the fields that
will be included in the order's details table: the ID of a product, its price, a quantity, and a
discount. The OrderedProduct class exposes the following members: ProductID, ProductPrice,
ProductQTY, and ProductDiscount. Both classes belong to the OrderClass class and their
declaration is shown next:

Public Class OrderClass
 Public Class ProductPrice
 Public ProductName As String
 Public ProductID As String

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 52

 For i = 1 To 10
 Debug.Write(r.Next & '' ,")
 Next
 For i = 1 To 10
 Debug.Write(r.NextDouble & " , ")
 Next
 End Sub

The following is a sample of what you see in the output window when you run this example:

519421314, 2100190320, 2103377645, 526310073, 1382420323, 408464378, 985605837,_
265367659, 665654900, 1873826712
0.263233027543515, 0.344213118471304, 0.0800133510865333, 0.902158257040269,_
0.735719954937566, 0.283918539194352, 0.946819610403301, 0.27740475408612,_
0.970956700374818, 0.803866669909966

Any program that uses this technique can be guaranteed to get unique results each time it's
executed. It's impossible to execute that program twice at the same time and date, just as you
cannot kiss yourself on the face. (Even Mick Jagger can't.)

Of course, if you choose, you can still employ the older VB6 version of the randomizing
function:

Dim r As Double
 r = Rnd
 MsgBox(r)

It's not necessary in this case to invoke the Microsoft.VisualBasic namespace. Why not?
Pure whimsy. Sometimes they decide to put things into a special package called a wrapper.
The Rnd function is in a wrapper, as another attempt to provide backward compatibility
between VB.NET and earlier VB code (such as using MsgBox rather than having to type in
the whole tedious MessageBox.Show every time you want to test a variable during
debugging).

If you've used the Rnd function before, you might recall that it will provide identical lists of
random numbers by default (which can be quite useful when attempting to, for example,
debug a game). If you want to get identical lists in VB.NET, you can seed the Random object,
like this:

Dim r As New System.Random(14)

Filling an Array

The Random.NextBytes method automatically fills an array of bytes with random numbers
between 0 and 255. Here's how:

Dim r As New System.Random()
Dim i
Dim a(52) As Byte 'create the byte array
r.NextBytes(a) ' fill the array

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 520

 Public ProductPrice As Decimal
 Public Overrides Function ToString() As String
 Return ProductName
 End Function
End Class

Public Class OrderedProduct
 Public ProductID As String
 Public ProductPrice As Decimal
 Public ProductQTY As Integer
 Public ProductDiscount As Decimal
End Class

In addition to the two classes that represent the entities we need in order to specify an order,
the OrderClass module also contains the following methods:

GetProductByID This method accepts as argument a product ID and returns a
ProductPrice object that represents the selected product.
GetProductsByName This method accepts as argument a string and returns an
array of Product-Price objects, which represent the products whose names contain
the specified string.
AddOrder This method accepts a number of arguments that represent an order and
commits it to the database. These arguments are the IDs of a customer and an
employee (the order's header), as well as an ArrayList of OrderedProduct objects
(the order's details).

The implementation of the three methods of the OrderClass class is shown in Listing 18.8.

LISTING 18.8: THE IMPLEMENTATION OF THE ORDERCLASS
Public Class OrderClass
 Public Class ProductPrice
 Public ProductName As String
 Public ProductID As String
 Public ProductPrice As Decimal
 Public Overrides Function ToString() As String
 Return ProductName
 End Function
 End Class

 Public Class OrderedProduct
 Public ProductID As String
 Public ProductPrice As Decimal
 Public ProductQTY As Integer
 Public ProductDiscount As Decimal
 End Class

Public Shared Function GetProductsByName(_
 ByVal ProductName As String) As ProductPrice()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 521

 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText = ''GetProductsByName"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@productName", ProductName))
 Dim CN As New SqlClient.SqlConnection
 CN.ConnectionString = _
 "data source = powertoolkit;" & _
 "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;"
 CN.Open()
 CMD.Connection = CN
 Dim DR As SqlClient.SqlDataReader = CMD.ExecuteReader()
 Dim P(999) As ProductPrice
 Dim prod As New ProductPrice
 Dim i As Integer
 While DR.Read
 prod = New ProductPrice
 prod.ProductID = DR.Item("ProductID")
 prod.ProductName = DR.Item("ProductName")
 prod.ProductPrice = DR.Item("UnitPrice")
 P(i) = prod
 i=i + 1
 End While
 ReDim Preserve P(i - 1)
 If i > 0 Then
Return P
 Else
 Return Nothing
 End If
End Function

Public Shared Function GetProductByID(_
 ByVal ProductID As String) As ProductPrice
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText=GetProductByID
 CMD.CommandType=CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@productID", CInt(ProductID)))
 Dim CN As New SqlClient.SqlConnection
 CN.ConnectionString =_
 "data source=powertoolkit;" & _
 "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;"
 CMD.Connection=CN
 CN.Open()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 522

Try
 Dim DR As SqlClient.SqlDataReader=CMD.ExecuteReader()
 Dim P As ProductPrice
 If DR.Read Then
 P=New ProductPrice
 P.ProductID=DR.Item(''ProductID")
 P.ProductName=DR.Item("ProductName")
 P.ProductPrice=DR.Item("UnitPrice")
 End If
 Return P
 Catch ex As Exception
 Return Nothing
 End Try
End Function

Public Shared Function AddOrder(ByVal customerID As String, _
 ByVal empId As Integer, _
 ByVal Order As ArrayList) As Boolean
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText="AddHeader"
 CMD.CommandType=CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@customerID", customerID))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@employeeID", empId))
 Dim CN As New SqlClient.SqlConnection
 CN.ConnectionString=_
 "data source=powertoolkit;" & _
 "initial catalog=Northwind;" & _
 "integrated security=SSPI; & _
 "persist security info=False;"
 CMD.Connection=CN
 Dim TRN As SqlClient.SqlTransaction
 CN.Open()
 TRN=CN.BeginTransaction
 CMD.Transaction=TRN
 Try

 Dim OrderID As Integer
 OrderID=CMD.ExecuteScalar()
 CMD=New SqlClient.SqlCommand
 CMD.Connection=CN
 CMD.Transaction=TRN
 CMD.CommandText="AddDetailLine"
 CMD.CommandType=CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@OrderID" , Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 523

 ''@ProductID", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Quantity", Data.SqlDbType.Int))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Price', Data.SqlDbType.Money))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@Discount", Data.SqlDbType.Real))
 Dim Item As OrderedProduct
 For Each Item In Order
 CMD.Parameters("@OrderID").Value=OrderID
 CMD.Parameters("@ProductID").Value=Item.ProductID
 CMD.Parameters("@Quantity").Value=Item.ProductQTY
 CMD.Parameters("@Price").Value=Item.ProductPrice
 CMD.Parameters("@Discount").Value=Item.ProductDiscount
 CMD.ExecuteNonQuery()
 Next
 Catch exc As Exception
 TRN.Rollback()
 CN.Close()
 Return False
 End Try
 TRN.Commit()
 CN.Close()
 Return True
 End Function
End Class

To retrieve products either by ID or by name, the methods of the OrderClass component
execute a stored procedure against the database and return the matching products. The
GetProductByID method returns a single ProductPrice object, while the GetProductsByName
method returns an array of ProductPrice objects. The result of the query is read through a
DataReader and our middle tier's code is responsible for extracting the values from the
DataReader and populating the instance(s) of the ProductPrice objects (one for each selected
product row). The two methods use the GetProduct-ByID and GetProductsByName stored
procedures, whose implementations are shown in Listings 18.9 and 18.10. The two stored
procedures must also be appended to the database.

LISTING 18.9: THE GETPRODUCTBYID STORED PROCEDURE
CREATE PROCEDURE GetProductByID
@productID int
AS
SELECT ProductID, ProductName, UnitPrice
FROM Products
WHERE ProductID=@productID

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 524

LISTING 18.10: THE GETPRODUCTSBYNAME STORED PROCEDURE
CREATE PROCEDURE GetProductsByName
@productName varchar(100)
AS
SELECT ProductID, ProductName, UnitPrice
FROM Products
WHERE ProductName LIKE '%' + @productName + '%'

The AddOrder method executes the AddHeader and AddDetailLine stored procedures. The
first stored procedure is executed once for each order and inserts a single row into the Orders
table. The second stored procedure is executed once for each detail line. The two stored
procedures, whose listings are shown in Listing 18.11 and 18.12, must be appended to the
database. They're two simple stored procedures that insert the values passed as arguments into
the corresponding table. The AddOrder method of the middle tier component initiates a
transaction and then executes the AddHeader stored procedure. Then it calls the
AddDetailLine stored procedure as many times as necessary and finally commits the
transaction, if everything went well. If an error occurs in the process, the order is rejected as a
whole. To test the AddOrder method, create a new order that contains one or more rows with
negative prices. The client application doesn't validate the price, so you can enter any value.
You can validate the price before submitting the order to the database from within your code,
or even lock the price field. If the application is going to be used at a POS, you must certainly
lock this field, because we don't want operators to edit the prices.

LISTING 18.11: THE ADDHEADER STORED PROCEDURE
CREATE PROCEDURE AddHeader
@CustomerID varchar(5),
@EmployeeID int
AS
DECLARE @orderID int
INSERT Orders (CustomerID, EmployeeID, OrderDate)
VALUES (@customerID, @employeeID, GetDate())
SELECT SCOPE_IDENTITY()

LISTING 18.12: THE ADDDETAILLINE STORED PROCEDURE
CREATE PROCEDURE AddDetailLine
@OrderID int,
@ProductID int,
@Quantity small int,
@price money,
@discount real
AS

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 525

INSERT [Order Details]
 (OrderID, ProductID, Quantity, UnitPrice, Discount)
VALUES
 (@orderID, @productID, @quantity, @price, @discount)

The Application's Code

The selection of a new product takes place in the KeyUp event handler of the txtID control
(the TextBox where the product's ID is shown). This event handler examines the key that was
pressed. If the user pressed the Enter key, it means that the user has entered a product ID and
the code should retrieve the corresponding row from the database and return it to the
application. This action takes place in the middle tier, with the GetProductByID method,
which returns an instance of the ProductPrice class. If no matching row is found, the method
returns a Nothing value, in which case the application turns the TextBox controls at the top of
the form to red for a short moment (see the code of the AlarmUser() subroutine, which we will
not discuss here; you may find it excessive, but it's an interesting technique to attract the user's
attention in a non-invasive manner).

The fields of the selected product, which are properties of the ProductPrice object returned by
the GetProductByID method, are displayed on the various TextBox controls at the top of the
form. The program suggests a quantity of 1 and waits for the user to confirm the suggested
quantity, or enter a different quantity, and press Enter.

If the user presses one of the up or down arrow keys, the focus is moved to the ListView
control with the invoice's detail lines. The selected item is the one selected most recently on
the control (the last time the user made a selection from this list). As the user moves through
the order's detail lines in the grid, the values of the currently selected line are displayed on the
TextBox controls at the top of the form. To signal his intention to edit the current row, the user
must press Enter. The KeyUp event handler of the txtID control is shown in Listing 18.13.

LISTING 18.13: SELECTING A PRODUCT BY ITS ID
Private Sub txtID_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles txtID.KeyUp
 If e.KeyCode = Keys.Enter Then
 If txtID.Text.Trim = ''" Then
 e.Handled = True
 Exit Sub
 End If
 Dim Product As OrderClass.ProductPrice
 Product = Invoice.GetProductByID(txtID.Text.Trim)
 If Product Is Nothing Then
 AlarmUser()
 Beep()
 txtID.SelectAll()
 Else

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 526

 txtDescription.Text = Product.ProductName
 txtPrice.Text = Product.ProductPrice
 txtQty.Text = ''1"
 txtDiscount.Text = "0"
 txtQty.Focus()
 End If
 End If

 If e.KeyCode = Keys.Down Or e.KeyCode = Keys.Up Then
 If lvOrderGrid.Items.Count = 0 Then Exit Sub
 If lvOrderGrid.SelectedItems.Count = 0 Then
 lvOrderGrid.Items _
 (lvOrderGrid.Items.Count - 1).Selected = True
 lvOrderGrid.Items _
 (lvOrderGrid.Items.Count - 1).Focused = True
 End If
 lvOrderGrid.EnsureVisible(lvOrderGrid.SelectedIndices(0))
 lvOrderGrid.Focus()
 End If
End Sub

The user may also enter some text in the txtProductName box and then press Enter, to select a
product by name (because the ID of a product is not known at the time, or because the bar-
code reader can't read the product's label). The program displays all matching product names
in a ListBox control below the txtDescription box, as shown in Figure 18.4, and moves the
focus to the ListBox control. The user can then select the desired product with the arrow keys
and press Enter again to display its fields on the controls at the top of the form, where they can
be edited. The KeyUp event handler of the txtDescription control is shown in Listing 18.14.

LISTING 18.14: SELECTING A PRODUCT BY NAME
Private Sub txtDescription_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles txtDescription.KeyUp
 If e.KeyCode = Keys.Enter Then
 Dim Products() As OrderClass.ProductPrice
 Products = Invoice.GetProductsByName(txtDescription.Text.Trim)
 If Products Is Nothing Then
 Beep()
 Else
 lstProducts.Items.Clear()
 Dim i As Integer
 For i = 0 To Products.GetUpperBound(0)
 lstProducts.Items.Add(Products(i))
 Next
 If lstProducts.Items.Count = 1 Then

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 527

 lstProducts.SelectedIndex = 0
 lstProducts_SelectedIndexChanged(Me, Nothing)
 lstProducts_KeyUp(Me, e)
 Exit Sub
 End If
 If lstProducts.Items.Count < 10 Then
 lstProducts.Height = (lstProducts.ItemHeight + 1) * _
 lstProducts.Items.Count + 3
 Else
 lstProducts.Height = 11 * lstProducts.ItemHeight + 3
 End If
 lstProducts.Visible = True
 lstProducts.SelectedIndex = 0
 lstProducts.Focus()
 End If
 End If
End Sub

The program limits the height of the ListBox control to 10 items. If the control contains fewer
items, the height of the control is smaller. While the ListBox control is visible, the user can't
switch to another control. They can only select a product by pressing Enter, or hide the
ListBox control without selecting a product by pressing Escape. When the Escape key is
pressed, the program moves the focus to the txtID control, where the user can select another
product by specifying its ID. These actions take place from within the ListBox control's
KeyUp event handler.

Another interesting part of the code is the KeyUp event handler of the ListView control.
While this control has the focus, the user can perform the following actions:

Select a row to edit by pressing Enter. The current row's fields are displayed on the
TextBox controls and the focus is moved to the txtQty control. There the user can revise
the quantity—or can press Enter to move to the next control and revise the discount—
and press Enter once again to commit the changes to the grid control.

 Delete the current row by pressing the Delete key.
 Return to the txtID control on the form to enter a new row by pressing Escape.

These actions are handled from within the ListView control's KeyUp event handler, which is
shown in Listing 18.15:

LISTING 18.15: HANDLING USER ACTIONS ON THE LISTVIEW CONTROL
Private Sub ListView1_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles ListView1.KeyUp
 If e.KeyCode = Keys.Delete Then
 If ListView1.SelectedItems.Count > 0 Then
 Dim selIndex As Integer = _

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 528

 ListView1.SelectedIndices(0)
 ListView1.SelectedItems(0).Remove()
 If selIndex = ListView1.Items.Count Then
 selIndex = selIndex - 1
 End If
 If selIndex >= 0 Then _
 ListView1.Items(selIndex).Selected = True
 End If
 ShowTotals()
 End If
 If e.KeyCode = Keys.Escape Then
 ClearFields()
 txtID.Focus()
 End If
 If e.KeyCode = Keys.Enter Then
 If ListView1.SelectedItems.Count > 0 Then
 ShowSelectedRow()
 SetEditColors()
 txtQty.SelectAll()
 EditedID = ListView1.SelectedIndices(0)
 txtQty.Focus()
 End If
 End If
End Sub

A detail line is committed to the grid when the user presses Enter in the txtDiscount TextBox
control. When this happens, the code validates all the fields and then adds a new item to the
ListView control. If the txtID box isn't empty, then a product has been selected and we must
only make sure that the user has specified a positive quantity. If not, the execution of the event
handler is aborted.

If it's a new line, the program creates a new item for the ListView control and appends it to the
control. If it's an existing line that was selected for editing, the program replaces the original
item with the new one. Notice how the code handles the discount. If it's a number less than 1,
it accepts it as is. If it's larger than one, it divides it by 100. To specify a discount of 32%, you
can enter a value like 0.32, or 32. Both values will be translated into 0.32 when the discount is
inserted into the DataRow object. The KeyUp event handler of the txtDiscount TextBox
Control accepts a new detail line and inserts it into the ListView control (or updates an
existing line on the same control). It is shown in Listing 18.16.

LISTING 18.16: ADDING A NEW DETAIL LINE TO THE GRID
Private Sub txtDiscount_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles txtDiscount.KeyUp
 If e.KeyCode = Keys.Enter Then
 If txtID.Text.Trim = ''" Or _

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 529

 Val(txtQty.Text) = 0 Then Exit Sub
 txtSubTotal.Text = _
 FormatNumber(CalculateLineTotal(), 2)
 Dim LI As New ListViewItem()
 Dim newItemIndex As Integer
 newItemIndex = ListView1.Items.Count
 LI.Text = txtID.Text
 LI.SubItems.Add(txtDescription.Text)
 LI.SubItems.Add(txtPrice.Text)
 LI.SubItems.Add(txtQty.Text)
 If CDec(txtDiscount.Text) >= 1 Then
 txtDiscount.Text = CDec(txtDiscount.Text) / 100
 End If
 LI.SubItems.Add(FormatNumber(txtDiscount.Text, 2))
 LI.SubItems.Add(txtSubTotal.Text)
 If EditedID = -1 Then
 ListView1.Items.Add(LI)
 ListView1.EnsureVisible(newItemIndex)
 Else
 ListView1.Items(EditedID).Text = LI.Text
 ListView1.Items(EditedID).SubItems(0).Text = _
 LI.SubItems(0).Text
 ListView1.Items(EditedID).SubItems(1).Text = _
 LI.SubItems(1).Text
 ListView1.Items(EditedID).SubItems(2).Text = _
 LI.SubItems(2).Text
 ListView1.Items(EditedID).SubItems(3).Text = _
 LI.SubItems(3).Text
 ListView1.Items(EditedID).SubItems(4).Text = _
 LI.SubItems(4).Text
 ListView1.Items(EditedID).SubItems(5).Text = _
 LI.SubItems(5).Text
 EditedID = -1
 End If
 ShowTotals()
 ClearFields()
 ResetEditColors()
 txtID.Focus()
 End If
End Sub

There are additional pieces of code in the application that we didn't present here. You can
download the application and examine its code. It's a little lengthy, but the interface is very
intuitive and can be used as is with a bar-code reader. Just program the reader to emit three
Enter keystrokes after the product's ID and the new row will be automatically committed to
the grid with the default quantity of 1. You can use this project as your starting point for
building an application to issue invoices

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 530

and add the necessary features to it. Such features may include a standard discount for all the
lines, or a discount that's determined by the customer to whom the invoice is issued (the
customer ID selected on the first tab of the application's interface). The application allows you
to enter multiple rows with the same product ID. You can change this behavior by searching
all the items on the control for each new product ID entered by the user. If such a row exists,
you can add the new row's quantity to the existing quantity. If no row with the same ID exists
on the grid, you can add a new item to the control. Before submitting the order to the database,
however, the code reduces multiple detail lines that refer to the same product into a single one,
with the appropriate quantity.

COMMITTING AN ORDER TO THE DATABASE

When the user clicks the Save Invoice button to submit the changes to the database, the code
eliminates rows that contain the same product and creates a single row with the sum of all
quantities for each product. This is necessary because the OrderID and ProductID fields form
a unique key in the Order Details table. The same order can't contain two (or more) rows that
refer to the same product. Even if this constraint didn't exist in the database, it's always a good
idea to clean up each order before committing it to the database. Listing 18.17 shows the Click
event handler of the Save Invoice button.

The handler of Listing 18.17 calls the ReduceRows() subroutine to combine rows that refer to
the same product. Then it iterates through the rows of the ListView control and creates a new
OrderedProduct object for each row (that is, each detail line of the order). These rows are
added to the orderedItems ArrayList. This array, along with the ID of the selected customer
and the ID of the selected employee, is passed to the AddOrder method, which commits the
order to the database.

LISTING 18.17: COMMITTING AN ORDER TO THE DATABASE
Private Sub bttnAccept_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles bttnAccept.Click
 ReduceRows()
 Dim orderedItems As New ArrayList()
 Dim P As OrderClass.OrderedProduct
 Dim i As Integer
 For i = 0 To lvOrderGrid.Items.Count - 1
 P = New OrderClass.OrderedProduct
 P.ProductID = CInt(lvOrderGrid.Items(i).Text)
 P.ProductPrice = CDec(lvOrderGrid.Items(i).SubItems(2).Text)
 P.ProductQTY = CInt(lvOrderGrid.Items(i).SubItems(3).Text)
 P.ProductDiscount = _
 CDec(lvOrderGrid.Items(i).SubItems(4).Text / 100)
 orderedItems.Add(P)
 Next
 Dim INV As OrderClass
 If INV.AddOrder(lstCustomers.SelectedValue, _
 cmbEmployees.SelectedValue, orderedItems) Then
 Dim reply As DialogResult
 MsgBox(''Ordered saved successfully." & vbCrLf & _
 "Press OK to prepare a new order")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Press OK to prepare a new order")
 lvOrderGrid.Items.Clear()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 531

 ClearFields()
 TabControl1.SelectedIndex = 0
 lstCustomers.Focus()
 Else
 MsgBox(''Failed to record order." & vbCrLf & _
 "The current order will be cleared " & _
 "and you must create a new one")
 lvOrderGrid.Items.Clear()
 ClearFields()
 txtID.Focus()
 End If
End Sub

The ReduceRows() subroutine eliminates multiple rows that refer to the same product; its
implementation is shown in Listing 18.18. The code uses two nested loops to compare all
items to one another. The outer loop of the subroutine iterates through all the items in the
ListBox control, and the inner loop iterates through the items that are below the current item of
the outer loop. In effect, each item is compared with all following items. If the product ID
values of two items match, then the second item is removed and its quantity is added to the
quantity of the first item.

LISITING 18.18: THE REDUCEROWS SUBROUTINE
Private Sub ReduceRows()
 Dim idx As Integer
 While idx < lvOrderGrid.Items.Count
 Dim i As Integer = idx + 1
 While i < lvOrderGrid.Items.Count
 If lvOrderGrid.Items(idx).Text = _
 lvOrderGrid.Items(i).Text Then
 lvOrderGrid.Items(idx).SubItems(3).Text = _
 (CInt(lvOrderGrid.Items(idx).SubItems(3).Text) + _
 CInt(lvOrderGrid.Items(i).SubItems(3).Text)).ToString
 lvOrderGrid.Items(idx).SubItems(4).Text = _
 Math.Max(CDec(lvOrderGrid.Items(idx). _
 SubItems(4).Text), _
 CDec(lvOrderGrid.Items(i).SubItems(4).Text)).ToString
 lvOrderGrid.Items(i).Remove()
 Else
 i = i + 1
 End If
 End While
 idx = idx + 1
 End While
 lvOrderGrid.Sorting = SortOrder.Ascending
 lvOrderGrid.Sort()
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 532

After collapsing the duplicate rows, the code commits the new order to the database through a
transaction. First, it creates an ArrayList, the OrderedItems ArrayList, with the order's detail
lines. Each detail line is represented by an object of the OrderClass.OrderedProduct type. The
ArrayList and a few fields that represent the order's header are passed as arguments to the
AddOrder method. The following statement calls the AddOrder method of the middle tier
component:

Dim INV As OrderClass
If INV.AddOrder(lstCustomers.SelectedValue, _
 cmbEmployees.SelectedValue, orderedItems) Then

The first two arguments are the IDs of the customer and the employee and the third argument
is the ArrayList with the order's details. If the AddOrder method returns a positive value, the
order has been added successfully to the database. A negative value means that the update
operation failed.

The NWOrders application contains quite a bit of code we're not going to discuss in this
chapter. The colors of the controls change to indicate the current operation, and there's code to
handle the Enter and Escape keys in most operations. The totals at the bottom of the form are
updated as new detail lines are entered or removed. The interface of the application is intuitive
and the application will work as-is with a bar-code reader. If you program the bar-code reader
to emit three Enter keystrokes after reading the product ID, users can keep entering detail lines
without even touching the keyboard. Notice that you can move from one TextBox to the other
with the Tab key as well, but you must press Enter at the Discount TextBox control to add the
current detail line to the ListView control.

The same interface can be used with different databases as well. All you really need in order
to sell, or take orders, are the product descriptions, their prices, and their discounts. The
presentation tier code communicates with the database through three simple methods, and you
can easily modify the application's middle tier to make it work with a different database. The
middle tier component isolates the structure of the database from the presentation tier; you
need only edit the middle tier's code to make the application work with any other database. We
were able to reuse the NWOrders application with a large production database of books, where
the product IDs are the ISBNs, their descriptions are the book titles, and the prices were
obtained with a stored procedure that takes into consideration offers and special customer
discounts. Actually, in the following section we're going to add a middle tier component to
calculate discounts based on past purchases by the same customer.

Adding a Business Rule

In this section we'll add a ''true" middle tier component to our application. The new component
will calculate the discount of each product with a business rule. This rule will be different for
different companies and we should be able to deploy it independently of the invoicing
application. The company's management may change the discount policy at any time, and you
should be able to deploy this component without recompiling and reinstalling the client
application on every workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's start with the business rule. Each item's discount is determined by two pieces of
information: who's buying and what they're buying. With this information we can implement
different discount policies in our code. We can use lookup tables based on customers or
products (or both), create groups of customers and assign discounts to each group, and so on.
In this example we will implement a component that accepts a customer ID and a product ID
and calculates the discount

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 533

based on the sales of the same product to the same customer in the past. Customers who have
purchased more items of the same product in the past will get an extra discount. Specifically,
we'll offer an additional 1% for every $100 a customer has spent on the same item, with a
maximum discount of 24%.

This rule is implemented with the GetItemDiscount method of the BusinessLayer class. We're
adding a new class to the project so that we can deploy it on an application server. The
business rule shouldn't be embedded in the client application, because changes in the
company's business rules would require recompiling and redeploying the revised application
on every workstation. If the business rule is implemented in a module that all clients can
access, then we can change this module at a single location and all clients will see the revised
business rule. In the revised project, the NWOrders-BLayer project, the discount business rule
is implemented with a stored procedure, so it's trivial to revise and deploy the business rule.
As long as you don't add new arguments to the stored procedure, you can change it at any time
and all clients will calculate discounts with the new rule.

THE BUSINESSLAYER MIDDLE TIER COMPONENT

Our business rule is implemented with the GetItemDiscount method of the BusinessLayer
class. The code of the class is shown in Listing 18.19.

LISTING 18.19: THE BUSINESSLAYER CLASS
Public Class BusinessLayer
 Public Shared Function GetItemDiscount(_
 ByVal CustomerID As String, _
 ByVal ProductID As Integer) As Integer
 Dim CMD As New SqlClient.SqlCommand()
 CMD.CommandText = ''GetItemDiscount"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@ProductID", ProductID))
 CMD.Parameters.Add(New SqlClient.SqlParameter(_
 "@CustomerID", CustomerID))
 Dim CN As New SqlClient.SqlConnection()
 CN.ConnectionString = _
 "initial catalog=Northwind; " & _
 "integrated security=SSPI; " & _
 "persist security info=False; "
 CN.Open()
 CMD.Connection = CN
 Dim discount As Integer
 discount = CMD.ExecuteScalar
 ' additional discount processing statements here !
 Return CType(discount, Integer)
 End Function
End Class

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 534

As you can see, the middle tier component is quite trivial: it executes the GetItemDiscount
stored procedure passing as argument the ID of a product and the ID of the customer placing
the order. The GetItemDiscount stored procedure is shown in Listing 18.20; you must attach
this stored procedure to the database.

LISTING 18.20: THE GETITEMDISCOUNT STORED PROCEDURE
CREATE PROCEDURE GetItemDiscount
@CustomerID nchar(5),
@ProductID int
AS
DECLARE @CustomerTotal int
SET @CustomerTotal =
 (SELECT ROUND(SUM(unitprice*quantity*(1-
discount)),0,0)
FROM [Order Details] INNER JOIN Orders
 ON on Orders.OrderID = [Order Details].OrderID
WHERE Orders.CustomerID = @CustomerID AND [Order
 Details].ProductID = @ProductID)
IF @CustomerTotal IS NULL
 SELECT 12
 ELSE
 BEGIN
 IF @CustomerTotal < 1200
 SELECT 12 + @CustomerTotal / 100
 ELSE
 SELECT 24
 END

Notice that the BusinessLayer component isn't really necessary in our example, because the
discounts are actually implemented by a stored procedure. When the discount business rule
changes, we can simply change the stored procedure. Our business rule covers most cases, as
discounts depend on two pieces of information: who's buying and what they're buying. To
implement a more complicated discount policy, you may need a middle tier component that
performs most of the calculations, as opposed to delegating the task of calculating each
customer's discount to a stored procedure.

The presentation tier of the revised NWOrders application is identical to the presentation tier
of the original application, with the exception of the statement that displays the discount. To
calculate the discount of an item, we call the GetItemDiscount method of the BusinessLayer
component passing the IDs of the customer and the product. The value returned by the
GetItemDiscount method is displayed on the appropriate TextBox control on the form and
copied onto the grid when the detail line is finalized:

txtDiscount.Text = BLayer.GetItemDiscount(_
 lstCustomers.SelectedValue, txtID.Text.Trim).ToString(''##.00")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 536

To load the DataSet we used four DataAdapters, one for each table. The DataAdapters were
configured with the following SQL statements:

DAProducts

 SELECT ProductID, ProductName

 FROM Products

 ORDER BY ProductName

DACustomers

 SELECT CustomerID, CompanyName

 FROM Customers

DAOrders

 SELECT OrderID, CustomerID

 FROM Orders

 ORDER BY CustomerID, OrderID

DADetails

 SELECT OrderID, ProductID, UnitPrice, Quantity, Discount

 FROM [Order Details]

Notice that we downloaded all the customers and all products, including products that have
never been ordered and customers who have never placed an order. You will have to configure
your DataAdapters to select the rows that meet the user-specified criteria and not load
unneeded data to the client.

The ListBox control on the left is bound to the Products DataTable of the ProductSales
DataSet. We could have populated the ListBox control from within our code with a few simple
statements. The control's DisplayName property is set to the ProductName column and the
ValueMember property is set to the ProductID column. Users will select products by name,
but we should be able to retrieve the selected product's ID quickly and use it to extract from
the DataSet the sales data. The data-bound properties of the ListBox control are set as follows:

Property Setting
DataSource ProductSales1.Products
DisplayName ProductName
ValueMember ProductID

The Application's Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the form is loaded, the tables of the ProductSales DataSet are populated through their
respective DataAdapters from within the form's Load event handler, shown in Listing 18.21.
The last two statements force the selection of the first item in the ListBox control (the name of
the first product

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 537

in the list). This list is bound to the Products DataTable, and it's automatically populated as
soon as the DataTable is filled.

LISTING 18.21: LOADING THE DATA AT THE CLIENT
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 DAProducts.Fill(ProductSales1, ''Products")
 DACustomers.Fill(ProductSales1, "Customers")
 DAOrders.Fill(ProductSales1, "Orders")
 DADetails.Fill(ProductSales1, "Order Details")
 ' Force the SelectedIndexChanged event of the ListBox control
 ListBox1.SelectedIndex = -1
 ListBox1.SelectedIndex = 0
End Sub

The core of the application is the ListBox control's SelectedIndexChanged event handler,
which is shown in Listing 18.22. Every time the user selects another product in the ListBox
control, the event handler displays the names of the customers that have ordered the specific
product, along with some totals.

LISTING 18.22: DISPLAYING SALES DATA ABOUT THE SELECTED PRODUCT
Private Sub ListBox1_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ListBox1.SelectedIndexChanged
 ListView1.Items.Clear()
 Dim productID As Integer
 Dim OrderCount, ItemCount, Revenue As Decimal
 Dim TotalOrders, TotalCount, TotalRevenue As Decimal
 productID = ListBox1.SelectedValue
 Dim DetailRows() As DataRow
 ' Get all detail lines that refer to the selected product
 DetailRows = _
 ProductSales1.Order_Details.Select("ProductID = " & productID)
 Dim DetailRow As ProductSales.Order_DetailsRow
 Dim OrderID As Integer
 Dim LI As ListViewItem
 Dim OrdersTable As New DataTable()
 ' Make a new DataTable with the same schema
 ' as the Orders table
 OrdersTable = ProductSales1.Orders.Clone
 Dim OrderRow As ProductSales.OrdersRow
 Dim OrderRows() As DataRow

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 538

 ' The following loop extracts all the orders that contain
 ' the selected product and adds them to the OrdersTable DataTable
 For Each DetailRow In DetailRows
 OrderRow = DetailRow.GetParentRow(''OrdersOrder_Details")
 OrdersTable.Rows.Add(OrderRow.ItemArray)
 Next
 ' Sort selected orders by Customer ID
 OrderRows = OrdersTable.Select(" ", "CustomerID")
 Dim currentCustomerID As String = " "
 ItemCount = 0 : OrderCount = 0 : Revenue = 0
 For Each OrderRow In OrderRows
 Dim CustomerID As String
 Dim CustomerRow As ProductSales.CustomersRow
 CustomerID = OrderRow.Item("CustomerID")
 OrderID = OrderRow.Item("OrderID")
 DetailRow = _
 ProductSales1.Order_Details. _
 FindByOrderIDProductID(OrderID, productID)
 If CustomerID <> currentCustomerID And _
 currentCustomerID <> ""Then
 LI = New ListViewItem
 CustomerRow = _
 ProductSales1.Customers.FindByCustomerID(CustomerID)
 LI = MakeListItem(CustomerRow.CompanyName, _
 OrderCount, ItemCount, Revenue)
 If ListView1.Items.Count Mod 2 = 0 Then
 LI.BackColor = Color.Beige
 Else
 LI.BackColor = Color.Gainsboro
 End If
 ListView1.Items.Add(LI)
 TotalOrders = TotalOrders + OrderCount
 TotalCount = TotalCount + ItemCount
 TotalRevenue = TotalRevenue + Revenue
 OrderCount = 0 : ItemCount = 0 : Revenue = 0
 End If
 currentCustomerID = CustomerID
 OrderCount = OrderCount + 1
 ItemCount = ItemCount + DetailRow.Quantity
 Revenue = Revenue + DetailRow.Quantity * _
 DetailRow.UnitPrice * (1 - DetailRow.Discount)
 Next
 LI = New ListViewItem
 LI = MakeListItem("TOTAL", TotalOrders, TotalCount, TotalRevenue)
 LI.Font = New Font(LI.Font.Name, LI.Font.Size + 2, FontStyle.Bold)
 LI.BackColor = Color.LightGreen
 ListView1.Items.Add(LI)
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 54

Add these Imports statements to the very top of your code window:

Imports System.IO
Imports System.Runtime.Serialization.Formatters
Imports System.Runtime.Serialization.Formatters.Binary

In the following example, you create an object and display three of its properties in the output
window. Then the program changes the properties, serializes the object, and streams it to a
file. Finally, the object is streamed back to the program and deserialized, and the new
properties are displayed in the output window, just to show you that the process actually
works. Add this class (Listing 2.15) to your code window.

LISTING 2.15: SERIALIZING AND DESERIALIZING COMPLICATED DATA
<Serializable()> Public Class MyObject

 Public a As String = ''This thing goes"
 Public b As String = "into a stream, then back."
 Public c As Integer = 120

End Class

Then type this into the Form1_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim obj As New MyObject()

 Console.WriteLine(obj.a)
 Console.WriteLine(obj.b)
 Console.WriteLine(obj.c)
 Console.WriteLine()

 obj.a = "Incoming!!"
 obj.b = "I've been serialized."
 obj.c = 44
 Dim fs As New FileStream("c:\test.txt", FileMode.Create, FileAccess.Write)
 Dim BF As New Binary.BinaryFormatter()

 BF.Serialize(fs, obj)
 fs.close()

 'read it back

 Dim BF1 As New Binary.BinaryFormatter()
 Dim fs1 As New FileStream("c:\test.txt", FileMode.Open, FileAccess.Read)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 540

authors, onto a ListView control. The application doesn't interact with the user, it simply maps
a set of related data onto a Windows controls. If you used a DataGrid to display the same
information, users would be able to view only one level of data at any one time (only
publishers, or only a publisher's titles, or only the authors of a single title).

FIGURE 18.7 Mapping publishers, titles, and authors on a ListView control

The structure of the Relations1 project is similar to that of the Relations project, so we'll
discuss briefly its architecture and code. The application contains four DataAdapters that load
the following tables to the DSTitles client DataSet. The four DataAdapters are configured
for selecting rows from their corresponding tables, and not updating these tables, with the
following statements:

DAPublishers DataAdapter

 SELECT pub_id, pub_name

 FROM publishers

DATitles DataAdapter

 SELECT title_id, title, pub_id, price

 FROM titles

DAAuthors DataAdapter

 SELECT au_id, au_lname, au_fname

 FROM authors

DATitleAuthor DataAdapter

 SELECT au_id, title_id, au_ord

 FROM titleauthor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM titleauthor

The application loads the entire tables to the DataSet, which isn't something you want to do
with a production database. You can add a WHERE clause to all of the SELECT statements
shown here to limit the number of rows. Since the four tables are related, the same WHERE
clause will apply to

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 541

all statements (limit the number of publishers, or retrieve titles of selected authors along with
their publishers, and so on).

Once you've created the structure of the DSTitles DataSet by configuring the DataAdapter
objects, you must establish relations between its tables. The relations are identical to the ones
that exist in the database, but you must drop the compound key of the TitleAuthor table and
create two new keys on the au_id and title_id fields.

When the Load All Titles button is clicked, the program populates the DataSet and maps its
rows to the ListView control with the statements of Listing 18.23:

LISTING 18.23: MAPPING PUBLISHERS, TITLES, AND AUTHORS ON A LISTVIEW CONTROL
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 DsTitles1.Clear()
 ListView1.Items.Clear()
 DAPublishers.Fill(DsTitles1, ''Publishers")
 DAAuthors.Fill(DsTitles1, "Authors")
 DATitles.Fill(DsTitles1, "Titles")
 DATitleAuthor.Fill(DsTitles1, "TitleAuthor")

 Dim LI As ListViewItem
 Dim PubRow As DSTitles.publishersRow
 For Each PubRow In DsTitles1.publishers
 LI = New ListViewItem()
 LI.Text = PubRow.pub_name
 Dim BookRow As DSTitles.titlesRow
 Dim BookRows() As DSTitles.titlesRow
 BookRows = PubRow.GetChildRows("PublishersTitles")
 For Each BookRow In BookRows
 LI.SubItems.Add(BookRow.title)
 Dim TitleAuthorRow As DSTitles.titleauthorRow
 Dim TitleAuthorRows() As DSTitles.titleauthorRow
 TitleAuthorRows = _
 BookRow.GetChildRows("TitlesTitleAuthor")
 For Each TitleAuthorRow In TitleAuthorRows
 Dim AuthorRow As DSTitles.authorsRow
 AuthorRow = _
 TitleAuthorRow.GetParentRow("AuthorsTitleAuthor")
 LI.SubItems.Add(AuthorRow.au_lname & _
 ", " & AuthorRow.au_fname)
 ListView1.Items.Add(LI)
 LI = New ListViewItem()
 LI.Text = " "
 LI.SubItems.Add(" ")
 Next

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 545

The regular expression shown in Figure 19.2 matches all eight-character words in the text, one
at a time. After specifying the search pattern, click the Find First Match button to locate the
first match in the text. After locating the first match in the text, keep clicking the Find Next
Match button to locate the next match.

FIGURE 19.2 Matching regular expressions with the RegularExpressions project

To test the projects, and create some of the examples, we've used some large text files, which
we downloaded from the Project Gutenberg site (http://promo.net/pg/). This site is an on-line
library and contains hundreds (perhaps thousands) of books in text format for on-line
browsing, or downloading to your computer.

Let's start with a few examples so that you'll understand what regular expressions are and how
they're used. Any string can be considered a generalized regular expression. The pattern
''Visual" will match all the instances of this word in the text. The search is case-sensitive by
default, but you can make it case-insensitive by setting an option (you'll see shortly the objects
for working with regular expressions). Of course, this isn't why we're using regular
expressions. A regular expression contains one or more metacharacters: characters with
special meaning. The most basic metacharacter is the period, which stands for any character.
The following expression will locate all two-letter words that end with "f":

.f

and the following expression will locate all five-letter strings that begin with "t" and end with
"e":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

t...e

This expression will not locate words, but strings; it will locate much more than five-letter
words. It will also locate passages such as "to get," "the end," and so on. To match words only,
use the \w metacharacter in the place of the period metacharacter:

t\w\w\we

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 546

WHAT'S REGULAR ABOUT THESE EXPRESSIONS?

Would you expect that the following non-sensical string is called a regular expression?
Probably not. (By the way, it's an expression that will match all dates in a text.)

\b\d{1,2}\/\d{1,2}\/(\d{2}|\d{4})\b

It's probably one of the last things you'd call regular, but the name stems from the fact that
such expressions normalize general search patterns. Anyway, this is their name, and writing a
correct regular expression is a real challenge. Constructing the correct regular expression for a
specific pattern is like putting together a puzzle.

The \w metacharacter indicates a word character; that is, a character other than space and
punctuation symbols. Metacharacters are mixed freely with regular characters in a regular
expression. Many metacharacters are letters prefixed with the backslash.

The last expression is not perfect either. Although it will not return matches that span multiple
words, it will match the ''tinue" in "continued." To match complete words, use the \b
metacharacter, which specifies the beginning or end of a word. The following expression will
match all five-letter words that begin with "t" and end with "e":

\bt\w\w\we\b

This expression will locate words such as "there," "three," "theme," and so on, but not parts of
larger words ("continued") or multiple words ("to get," "the end").

To avoid repeating a metacharacter multiple times, as we did in the last couple of examples,
you can use a quantifier. There are many types of quantifiers; one of the most common is the
{n} quantifier, which means that the preceding expression must be matched exactly n times.
The expression that matches five-letter words that begin with "t" and end with "e" can be
written as:

\bt\w{3}e\b

Here's how you read this regular expression: the desired matches must be words (delimited by
the \b metacharacter) and they should start with the character "t," followed by three characters
(any three characters) and ending with the character "e."

NOTE Since we're using the \b metacharacter to indicate the beginning and end of words,
you'd expect that the \w metacharacter is now equivalent to the period. This isn't the case, and
here's why: Placing the \b metacharacter at the two ends of a regular expression doesn't limit
the match to a single word. The first instance of the metacharacter means the beginning of a
word and the second instance means the end of a word. Taken together, they don't mean the
beginning and end of a single word. If you replace the \w metacharacter in the regular
expression with the period, you may locate matches that span multiple words. The regular
expression \bt.{9}e\b will match word sequences such as "through the" and "they may be."
The expression \bt\w{9}e\b, however, will match only nine-character words.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our next example, a regular expression that locates all ISBNs in a text, demonstrates the range
operator. Instead of "any" character, or a specific character, you can specify a range of
characters in a pair of square brackets. The following expression matches any vowel
(depending on whether you count "y" as a vowel or not, of course):

[aeiou]

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 548

There are two more overloaded forms of the RegEx class's constructor, which are shown next:

Dim RX As RegEx(pattern)
Dim RX As RegEx(pattern, options)

where pattern is the regular expression to be matched against the text and the options
argument specifies various search options. The options argument determines how the search
will be performed (for example, whether the search will be case-sensitive) and is discussed
shortly.

Using the RX object, you can apply a regular expression against a text and retrieve the
corresponding matches. The Matches method of the RegEx class accepts as arguments the text
to be searched and the regular expression, and returns the matches in a collection, the
MatchCollection object. To apply the regular expression stored in the strSearch variable to the
text on the TextBox1 control, use the following statements:

Dim RX As Regex
Dim allMatches As MatchCollection
Try
 allMatches = RX.Matches(TextBox1.Text, strSearch)
Catch exc As Exception
 MsgBox(exc.Message, MsgBoxStyle.OKOnly, _
 ''INVALID REGULAR EXPRESSION")
 Exit Sub
End Try

The exception handler will catch any errors in the regular expression itself (i.e., an invalid
regular expression). If the specified regular expression is invalid, an exception is thrown and
you must catch it in your code. The allMatches collection exposes the usual members of a
collection, which you can use to iterate through the matches. Each member of the collection is
a Match object, and we'll examine the members of the Match object shortly.

The Matches method is overloaded. Its simplest form accepts the two arguments shown in the
example: the string to be searched and a regular expression. The other overloaded forms of the
method are:

RegEx.Matches(string)
RegEx.Matches(string, pattern, options)
RegEx.Matches(string, startIndex)

To use the form of the Match method that accepts a single argument (the text to be searched),
you must instantiate the RegEx class with a constructor that accepts a regular expression as
argument (the pattern argument in the overloaded forms shown above).

The options argument of the RegEx constructor lets you adjust the search method by
specifying one or more of the options shown in Table 19.1. The available options are members
of the RegExOptions enumeration, and they're shown next. You can combine multiple options
with the OR operator. Some of the explanations refer to topics that are discussed later in the
chapter and you may have to return to this table after reading about groups and captures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 549

TABLE 19.1: THE REGEXOPTIONS ENUMERATION

MEMBER DESCRIPTION

Compiled The regular expression is compiled for faster execution. The
compilation process increases the startup time, but
subsequent searches with the same regular expression are
executed more quickly.

CultureInvariant Forces the methods of the RegularExpressions class to ignore
the current culture. Case-insensitive operations are always
culture-sensitive. The methods get the specifics of the current
culture from the property Thread.CurrentCulture.

ECMAScript Enables ECMAScript-compliant behavior for the expression.
This flag can be used only in conjunction with the
IgnoreCase, Multiline, and Compiled options, otherwise an
exception will be thrown.

ExplicitCapture Specifies that the only valid captures are explicitly named or
numbered groups of the form (?<name>...).

IgnoreCase Specifies that the search is case-insensitive (by default, the
search is case-sensitive).

IgnorePatternWhiteSpace Eliminates the white space from the pattern and enables
comments marked with #.

Multiline Specifies multi-line mode. In this mode the ^ and $ characters
match the beginning and end of every line.

None Uses the default options.
RightToLeft Specifies that the search will be performed from the end of

the text and proceed to the beginning of the text.
SingleLine Specifies single-line mode. The only difference between

single-line and multi-line mode is that in single-line mode the
period matches every character, including the newline
character.

You may not need all the matches at once. For example, you may want to process the current
match before locating the next one. The RegEx class allows you to locate one match at a time
with the Match method, which returns a Match object that represents the first match. After
that, you can call the NextMatch method of the Match object returned by the Match method to
retrieve the next match. This method returns a Match object as well, and you can continue
searching through the text for the same regular expression by calling this object's NextMatch
method. It's actually simpler than it sounds and you'll see this technique in the section ''Using
the Match and NextMatch Methods" later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can locate all instances of the word "expression" in your text by specifying this literal as
the regular expression. Whether you will locate instances of the same word in different cases
depends on the setting of the IgnoreCase option. To locate only the sentences that begin with
the word "Expression", specify the regular expression ^Expression and turn on the RegEx
object's Multiline option.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 55

 obj = BF1.Deserialize(fs1)
 fs1.Close()

 Console.WriteLine(obj.a)
 Console.WriteLine(obj.b)
 Console.WriteLine(obj.c)

End Sub

What does this look like on the hard drive? Load it into Notepad and here's what you get:

' ÿÿÿÿ ^ CTrans, Version=1.0.1202.12130,
 Culture=neutral, PublicKeyToken
=null´ Trans.MyObject~ ´a´b´c´´ .^ .∼
 Incoming!!.- Iâ€™ve been serialized.,

This is ''binary" serialization, but, as you can see, some text survives the grinder. To serialize
in a purely text format, use the XML (SOAP) serialization covered in Chapter 17. XML
serialization ignores any private fields (binary serialization saves both private and public
fields).

Mixing Types into the Same Stream

This next example illustrates how you can shove disparate items into a
serialization/deserialization process. This example sends a structure, followed by an arraylist
into the same stream. (See the previous example for the Imports statements required.)

Add the structure and Form_Load code in Listing 2.16 to your code window.

LISTING 2.16: MIXING DISPARATE DATA STRUCTURES DURING SERIALIATION
<Serializable()> Public Structure Hat
 Dim Name As String
 Dim Size As Integer
 Dim Price As Decimal
End Structure
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim d As New Hat
 d.Name = "Bowler"
 d.Size = 9
 d.Price = 44.98

 Dim MyArray As New ArrayList

 MyArray.Add("Sandbag")
 MyArray.Add("Bigbag")
 MyArray.Add("Paperbag")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 550

Notice that the Options property of the RegEx object is read-only. The options must be
specified in the RegEx object's constructor, as follows:

RXOptions = RegExOptions.Compiled Or _
 RegexOptions.MultiLine Or _
 RegExOptions.IgnoreCase
RX = New Regex(txtPattern.Text, RXOptions)

When you call the Matches property of the RX object, you will retrieve only the sentences that
begin with ''Expression". To catch all instances of the word, even those that start with a
lowercase character, we usually turn on the IgnoreCase option, as shown in the previous
sample.

The Match object contains information about the current match, and its basic members are
described in Table 19.2.

TABLE 19.2: THE MOST IMPORTANT MEMBERS OF THE MATCH CLASS

PROPERTY DESCRIPTION

Index Property Returns the starting position of the first character of the match in
the text

Length Property Returns the length of the match
Value Property Returns the matched string in the text
Success
Property

Returns a Boolean value indicating whether the match is
successful

NextMatch
Method

Retrieves the next match in the text, following the current match

The Match object exposes other members as well, which you can look up in the
documentation. The members you'll be using most often in your code are shown in Table 19.2.

Using the Matches Method

The statements in Listing 19.1 retrieve all the matches of a regular expression in a collection,
the allMatches collection, and then iterate through the items of the collection and print the
matched text, its starting location in the string, and its length.

LISTING 19.1: ITERATING THROUGH THE MATCHES COLLECTION
Dim myText As String = TextBox1.Text
Dim RX As System.Text.RegularExpressions.Regex
Dim searchPattern As String = "\be\w{3}\b"
Dim match As System.Text.RegularExpressions.Match
Dim matchValue As String
Dim matchStart, matchLength As Integer
Dim allMatches As System.Text.RegularExpressions.MatchCollection
allMatches = RX.Matches(myText, searchPattern, _
 System.Text.RegularExpressions.RegexOptions.IgnoreCase)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.Text.RegularExpressions.RegexOptions.IgnoreCase)
For Each match In allMatches

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 551

 matchValue = match.ToString
 machStart = match.Index
 machLength = match.Length
 Console.WriteLine('' MATCH: " & matchValue & _
 " at location: " & matchStart & _
 ", length: " & matchLength)
Next

The text to be searched is the myText variable and the regular expression is stored in the
searchPattern variable. The expression \be\w{3}\b locates all four-letter words that
begin with the character "e" ("exit," "else," and so on). Notice the second argument passed to
the Matches method, which specifies that case should be ignored. This means that the regular
expression will match "exit," "Exit," and "EXIT." If you omit this argument, then the search
will be case-sensitive. The code segments shown in this section fully qualify the member
names. You should import the System.Text.RegularExpressions namespace to shorten the
names of the members of the RegularExpressions class and save yourself some typing.

Using the Match and NextMatch Methods

You can also match a regular expression against some text and retrieve the matches one at a
time with a loop like the one shown in Listing 19.2. The Match method is called initially to
retrieve the first match. The code enters a loop that keeps calling the NextMatch method of the
currentMatch object, which represents the current match. If the method locates another
match, the Success property of the same object is set to True and the loop repeats. With each
iteration, the code prints the current match on the Output window. When there are no more
matches in the text, the While loop terminates because the Success property of the
currentMatch object is set to False and the number of matches is printed.

LISTING 19.2: LOCATING ONE MATCH AT A TIME
Dim RX As System.Text.RegularExpressions.Regex
Dim searchPattern As String = "\be\w{3}\b"
RX = New System.Text.RegularExpressions.Regex(searchPattern, _
 System.Text.RegularExpressions.RegexOptions.IgnoreCase)
Dim matches As Integer
Dim currentMatch As System.Text.RegularExpressions.Match = _
 RE.Match(TextBox1.Text)
While currentMatch.Success
 matches += 1
 Console.WriteLine(" MATCH: " & currentMatch.Value & _
 " at location: " & currentMatch.Index.ToString & _
 ", length: " & currentMatch.Length.ToString)
 currentMatch = currentMatch.NextMatch
End While
Console.WriteLine(" Found " & matches.ToString & " matches ")

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 552

The text being searched shouldn't be edited between calls to the NextMatch method. The
FindFirst method of the RegEx class locates all the matches at once and the NextMatch
method simply returns the subsequent matches. As a result, the NextMatch will report
incorrect matches if you edit the text. Let's say you're searching for all three-letter words in the
following sentence (the matches are in boldface in the example):

A brown fox jumped over the lazy dog.

Let's say you locate the first three-letter in the text and then you edit the sentence by adding
the word ''high" after the verb. The following three matches will be located as shown here:

A brown fox jumped high over the lazy dog.

The matches reported by the NextMatch method are at the locations of the original matches in
the text. If you need to process the matches in the text as you go along, use two copies of the
string you're searching, or the Replace method of the RegEx class.

The Split Method

The Split method of the RegEx object is similar to the Split method of the String class, but it
splits the specified input string at the positions defined by a regular expression. The regular
expression can be specified in the RegEx object's constructor, or as an argument to the Split
method, as shown in the two overloaded forms of the method:

RegEx.Split(text)
RegEx.Split(text, pattern)

The Split method returns an array of strings, which are the parts of the original string. For
example, you can split a text into segments based on paragraph numbers (such as 1.1, or
5.3.2.4) or section headers ("chapter," "section," "paragraph," and so on). Splitting a text with
such general criteria is impossible with the simpler Split method of the String class. Whereas
the Split method of the String class uses specific delimiters (periods, space, tab, etc.) to split a
string, the Split method of the RegEx object uses more general expressions (for example, the
string "Section" or "Chapter" followed by a number, or a series of numbers separated by
periods).

The Replace Method

This method replaces all the matches of a regular expression with another pattern. There are
many overloaded forms of the Replace method, the simpler one being the following:

RegEx.Replace(text, replacement)

where the first argument is the original string (the string where all the replacements will take
place) and the second argument is the replacement string. The Replace method doesn't modify
the text directly. Instead, it returns the modified string. The regular expression that will be
used to locate the matches is specified in the constructor of the RegEx object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The replacement argument can be a literal, but it can also be a regular expression. This
method is a very flexible and powerful tool and you'll see some interesting examples later in
this chapter, when we'll discuss how to group the parts of a match.

Another, even more powerful form of the Replace method is the following:

RegEx.Replace(text, matchEvaluator)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 553

The matchEvaluator argument is a delegate (a user-specified procedure) that is called at
each match to return the replacement string. The declaration of the delegate is shown next:

Public Delegate Function _
 MatchEvaluator(ByVal match As Match) As String

Every time a match is found, the MatchEvaluator delegate is called; it returns the replacement
string for the match passed as argument. You can create very elaborate search and replacement
procedures with this form of the Replace method. To use it, you must provide the code of the
MatchEvaluator function. In the function's body you can access the current match through the
match argument, then create a string that will be used by the Replace method to replace the
match. The replacement string is the function's return value. The use of the MatchEvaluator
delegate is demonstrated in the discussion of the MatchEvaluator project, later in this chapter.

To experiment with replacement operations with regular expressions, use the RegExEditor or
the RegularExpressions project. You will see how the Replacement method is used in the
discussion of the code of these two projects. A typical example is the formatting of phone
numbers. A document may contain phone numbers with the area code in parentheses or not,
with hyphens or periods between the groups of digits, and so on. Using the Replace method of
the RegEx class, you can apply a uniform formatting to all phone numbers in the text—a
format such as (nnn) nnn.nnnn, where ns are the appropriate digits.

The replacement string can be a literal, but in most cases it's either a part of the match or a
transformed part of the match (you'll have to provide a MatchEvaluator delegate to transform
the match). To specify a part of the match, you must use one of the symbols shown in Table
19.3 below.

TABLE 19.3: COMMON REPLACEMENT METACHARACTERS

METACHARACTER DESCRIPTION

$$ Substitutes the "$" literal

$& Substitutes a copy of the entire match

$` Substitutes the part of the input string before the match

$' Substitutes the part of the input string after the match

$+ Substitutes the most recently matched group

$_ Substitutes the entire input string

Let's say the text is the following sentence:

Match and replace words

If you search for the word "and" and then replace the match with $' you'll get the sentence:

Match replace words replace words

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you apply the replacement pattern $_ to the same text, the result will be the following
sentence:

Match Match and replace words replace words

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 554

THE MATCHEVALUATOR PROJECT

The MatchEvaluator project demonstrates how to use the Replace method with a
MatchEvaluator delegate to perform elaborate replacement operations. As you already know,
it is possible to perform search and replace operations using regular expressions. A regular
expression allows you to locate substrings based on general patterns, rather than literals, and
use parts of these expressions to build elaborate replacement strings. However, the
RegularExpressions class doesn't provide any string or date manipulation functions you may
need to perform even more elaborate replacements. You have seen how to locate short dates in
the text (dates in the form mm/dd/yy or mm/dd/yyyy). However, what if you want to replace
these instances with long dates that include day and month names? Visual Basic provides tools
to format days in all possible ways, but how can we access this functionality from within the
RegEx.Replace method?

The solution is to write a custom function that accepts a Match object as argument and returns
the replacement string. The Replace method can call this function for every match and retrieve
the replacement string. In the function's body you're free to use any of the Visual Basic
functions, or the functionality of any of the Framework's classes. One of the overloaded forms
of the Replace method accepts as arguments the original text, the search pattern, and a
delegate. The Replace method first calls the delegate, a function that retrieves the actual
replacement string, and then performs the replacement.

Let's say you want to replace a string with the same text, but set the first character of each
word in uppercase. First you must write a function that accepts a Match object as argument
and returns a string that will replace the corresponding match in the original text. Here's such a
function:

Private Function CamelCase(ByVal m As Match) As String
 Dim str As String = m.ToString
 Return Char.ToUpper(str.Chars(0)) + str.Substring(1, str.Length - 1)
End Function

This function accepts an argument of the Match type, processes the text of the match, and
returns the uppercase of the first character in the string, followed by the rest of the string. To
use it with the Replace method, create a variable of the MatchEvaluator type:

Dim MatchEval As System.Text.RegularExpressions.MatchEvaluator

MatchEval is a delegate, which must be associated with a function (the CamelCase() function
in this example):

MatchEval = _
 New System.Text.RegularExpressions.MatchEvaluator(_
 AddressOf CamelCase)

Now you can call the Replace method passing the MatchEval variable in the place of the
replacement string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim result As String
result = Regex.Replace(txt, pattern, MatchEval)

Here's how this form of the Replace method works: It locates all the matches of the specified
pattern in the txt string. For each match, it calls the function specified by the MatchEval
delegate. The function returns a string, which the Replace method uses as the replacement
string for the current

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 555

match. If the pattern is the regular expression \w+, the Replace method will locate all words
in the text and then will replace each word in the text with the same word in different case.

Figure 19.3 shows the main form of the MatchEvaluator project. The upper TextBox contains
the original text and the lower TextBox displays the result of the replace operation. You can
specify the search pattern in the Search Pattern box, select the type of replacement you want to
perform by checking the appropriate radio button, and then click the Replace button. The
search pattern locates dates and the Replace method replaces the short dates with the same
dates in the long date format.

FIGURE 19.3 Performing elaborate replacement with a MatchEvaluator delegate

Listing 19.3 shows the definitions of the delegates implemented in the MatchEvaluator
project.

LISTING 19.3: THE FUNCTIONS THAT WILL BE USED AS DELEGATES IN THE
MATCHEVALUATOR PROJECT
Private Function CamelCase(ByVal m As Match) As String
 Dim str As String = m.ToString
 If str.Length > 0 Then
 Return Char.ToUpper(str.Chars(0)) + _
 str.Substring(1, str.Length - 1)
 Else
 Return str
 End If
End Function

Private Function UpperCase(ByVal match As Match) As String
 Return match.ToString.ToUpper
End Function

Private Function LowerCase(ByVal match As Match) As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function LowerCase(ByVal match As Match) As String
 Return match.ToString.ToLower
End Function

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 556

Private Function LongDate(ByVal match As Match) As String
 Dim mDate As Date
 Try
 mDate = CType(match.ToString, Date)
 Catch
 Return ''**" & match.ToString & "**"
 End Try
 Return CDate(match.ToString).ToLongDateString
End Function

The first three functions are trivial; they change the case of the characters in their argument. In
the CamelCase() function's code we examine the length of the string that's passed as argument,
because certain regular expressions may return a zero length string. If we attempt to extract the
first character of a zero-length string, an exception will be thrown. The If statement, in effect,
prevents this exception (you could have used a structured exception handler).

The LongDate() function converts its argument to a Date value and returns it, after formatting
it as a long date. Notice the use of the structured exception handler: if the match passed to the
function isn't a valid date value, the function returns its argument embedded in asterisks, to
indicate an error condition. You should probably return the match as it was passed to the
function, because if you use this delegate with the wrong regular expression (a regular
expression that returns numbers, or words, for example), the replace operation will fill the text
with asterisks, because the matches will not be dates.

When the Replace Text button is clicked, the code shown in Listing 19.4 is executed. First, it
creates the appropriate MatchEvaluator delegate, depending on which of the radio buttons is
selected. Then it passes this delegate to the Replace method, along with the search pattern and
the text to be searched. The string returned by the Replace method is assigned to the second
TextBox control on the form.

LISTING 19.4: PERFORMING REPLACE OPERATIONS WITH DELEGATES
Private Sub bttnReplace_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnReplace.Click
 Dim pattern As String
 Dim MatchEval As System.Text.RegularExpressions.MatchEvaluator

 If rdLower.Checked Then
 MatchEval=New System.Text.RegularExpressions. _
 MatchEvaluator(AddressOf LowerCase)
 End If
 If rdUpper.Checked Then
 MatchEval = New System.Text.RegularExpressions. _
 MatchEvaluator(AddressOf UpperCase)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 557

 End If
 If rdCamel.Checked Then
 MatchEval = New System.Text.RegularExpressions. _
 MatchEvaluator(AddressOf CamelCase)
 End If
 If rdLongDates.Checked Then
 MatchEval = New System.Text.RegularExpressions. _
 MatchEvaluator(AddressOf LongDate)
 End If

 pattern = txtPattern.Text.Trim
 Dim result As String = _
 Regex.Replace(TextBox1.Text, pattern, MatchEval)
 TextBox2.Text = result
End Sub

To test the other delegates, specify the following regular expression, which matches individual
words, and then select one of the options that changes the word's case:

\b\w{1,}\b

Each match (that is, each word in the text) is passed to the appropriate delegate, which returns
the same string in different case (Figure 19.4).

FIGURE 19.4 Changing the case of the text with a custom MatchEvaluator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MatchEvaluator project demonstrates the use of custom MatchEvaluator delegates in
performing elaborate replacement operations with regular expressions, but it's hardly useful on
its own. To make the most of the RegEx class's Replace method, you must write a function
that accepts a Match object as argument and returns a new string that will replace the current
match. The function's return value could be any string, but it's usually derived from the current
match. Once this function is in place, you can pass to the Replace method a delegate to this
function.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 559

will match ''since" (three characters followed by the characters "c" and "e," but it will also
match "once" (there's a space in front of the word). To limit the match to words, use the \w
metacharacter in the place of the period metacharacter. The expression:

\w\w\wce

(which is equivalent to "\w{3}ce") will locate "since" and "twice," but not "once."The
problem with this pattern is that it will also match "sources." In the section "Anchors" later in
this chapter, you'll learn how to specify word limits too.

To locate all e-mail addresses in a text, you can specify the following pattern: one or more
characters, followed by the "@" symbol, followed by one or more characters, a period, and
then one or more characters. The following is a simple regular expression for locating e-mail
addresses:

\w+@\w+\.\w+

The expression \w+ stands for any number of word characters. In effect, the expression \w+
locates a word (one or more word characters). In the realm of regular expressions, a word is a
string delimited by spaces and/or punctuation symbols. This word should be followed by the
@ symbol, another word, the period, and another word. The period has special meaning in a
regular expression; to locate a period, you must turn off the special meaning of the period by
prefixing it with a slash character. This expression will locate simple e-mail addresses of the
form name@server.com. Mail addresses can be more complicated than this and you will see
a more general e-mail matching pattern later in this chapter.

The \W metacharacter matches any non-word character. This metacharacter matches the first
or last character in a word, as well as the carriage return and line feed characters. In effect, it's
equivalent to the following range operator , which stands for all characters except
upper/lowercase characters, digits, and the underscore:

[^A-Za-z_0-9]

The caret (^) symbol negates the following characters, or range of characters (see the
following section for more information on character ranges).

Ranges of Characters

Instead of a specific character, or the "any character" metacharacter, you can specify a range
of characters in square brackets. The following expression stands for all vowels:

[aeiou]

To locate three consecutive vowels in the text, use the expression:

[aeiou]{3}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the characters in the range are consecutive, you can use the range operator (the minus
symbol) between the first and last character in the range. The following expression locates a
numeric digit:

[0-9]

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 56

 Dim fs As New FileStream(''c:\test.txt", FileMode.Create, FileAccess.Write)
 Dim BF As New Binary.BinaryFormatter

 'do the multiple serialization:
 BF.Serialize(fs, d) 'store the hat object
 BF.Serialize(fs, MyArray) 'store the ArrayList
 fs.Close()

 End Sub

NOTE A structure in VB.NET replaces the traditional VB user-defined type. A structure is
similar to, though more flexible than, the user-defined type. Now, to make things even more
confusing, the term type has a far different meaning in .NET than it did in previous versions of
VB. Type now means objects, fields, enumerations, and various other elements of an assembly
—in other words, type includes pretty much everything you might manipulate during design-
time. (Note this section's title, "Mixing Types into the Same Stream.") Finally, OOP professors
tell us not to use structures at all; instead, you are to use classes, which are similar but offer
more features. Besides, OOP professors just ike classes in general, and suggest you use them
universally, even when dreaming.

Reading Back Mixed Data

There are two requirements when deserializing. First, you must deserialize the items in the
same order that you serialized them. In this case, you sent the Hat structure in, then the
ArrayList. So you pull them back out in the same order.

Second, the Deserialize method returns only object variables, so you must cast each incoming
object into the correct type (you can use the CType command). Listing 2.17 deserializes the
file created in the previous example (Listing 2.16).

LISTING 2.17: READING DISPARATE DATA STRUCTURES VIA DESERIALIZATION
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim d1 As New Hat
 Dim ar As New ArrayList

 Dim BF1 As New Binary.BinaryFormatter
 Dim fs1 As New FileStream("c:\test.txt", FileMode.Open, FileAccess.Read)

 d1 = CType(BF1.Deserialize(fs1), Hat)
 ar = CType(BF1.Deserialize(fs1), ArrayList)

 fs1.Close()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 560

You can negate a range of characters by prefixing it with the caret (^) symbol. The following
expression stands for all characters but vowels:

[^aeiou]

Notice that the previous expression doesn't stand for consonants—it includes numeric digits
and punctuation symbols, in addition to consonants. To search for all characters except
numeric digits, use the following expression:

[^0-9]

White Space and Metacharacters

The \s metacharacter matches any white space (spaces, horizontal and vertical tabs, line
feeds). The \S metacharacter matches any non-white space. Avoid the \S metacharacter, as it
will match any character in the text. If you want to match specific characters that produce
white space (space, tab, line feed, and so on), use one of the following metacharacters. These
metacharacters represent common non-printable characters and they're shown in Table 19.4:

TABLE 19.4: WHITE SPACE METACHARACTERS

METACHARACTER DESCRIPTION

\a bell (beep)

\n newline

\r carriage return

\t tab

\f formfeed

\e escape

Quantifiers

A regular expression may contain one or more quantifiers, which determine how many times
the preceding element should be matched. The quantifiers are shown in Table 19.5:

TABLE 19.5: QUANTIFIER METACHARACTERS

METACHARACTERS DESCRIPTION

? Matches the preceding element zero or one times
* Matches the preceding element zero or more times
+ Matches the preceding element one or more times
{num} Matches the preceding element num times exactly
{min, max} Matches the preceding element at least min times, but not more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{min, max} Matches the preceding element at least min times, but not more
than max times

{min,} Matches the preceding element at least min times

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 561

The difference between the ? and * quantifiers is that the ? quantifier doesn't match two or
more consecutive instances, while the * does. The following expression locates Social
Security numbers in the form XXX-XX-XXXX. The groups may be separated by dashes
and/or spaces. The following expression will locate an SSN whether it's written 213-46-8915,
or 213 - 46 - 8915, or 213 46 8915, or even 213468915.

\d{3}[-]*\d{2}[-]*\d{4}

This regular expression will locate strings that are made up of three groups of digits: the first
group must have three digits (leading zeros can't be skipped in Social Security numbers), the
second group must have two digits, and the last group must have four digits. These groups can
be separated by any number of dashes and/or spaces. The element [-] means either a space or
the dash. Moreover, this element may appear one or more times. This regular expression will
match Social Security numbers even if they're entered as 213--46--8915, or as 213- -46-
-8915.

GREEDY VERSUS NON-GREEDY PATTERNS

The * metacharacter is used to create ''greedy" expressions. A greedy expression doesn't stop
at the first match, but attempts to find the longest possible match. In other words, the match
returned by a greedy expression may contain multiple instances of the character(s) to which
the quantifier applies. Let's say you want to locate all the tags in an XML (or HTML)
document. Let's also assume that each element of the XML file is stored on a separate line.
The following pattern will locate any string starting with the opening bracket, followed by any
number of characters and ending with the closing bracket:

<.*\>

This is a greedy pattern: it will not stop at the first closing bracket it encounters. When you
apply it to a document that contains the following line:

<ProductID>101</ProductID>

it will report the entire line as a single match, because it starts with an opening bracket and
ends with a closing one. Between them, there are many characters. One of them happens to be
the closing bracket, but a greedy pattern treats it as a regular character, because there's another
one later in the line.

To turn this pattern into a "non-greedy" one (a pattern that will search for the minimum, not
the maximum, number of characters), write it as:

\<.?\>

The question mark is another metacharacter that matches the preceding expression zero or one
time, but no more. If you apply the new pattern to the same XML document, it will report two
matches for the previous line:

<ProductID>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<ProductID>

and

</ProductID>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 562

Greedy expressions are quite often desirable. Let's say you're searching for uppercase words
with a regular expression such as the following:

\b[A-Z]{2,}\b

This expression locates words made up of two or more uppercase characters. If the matched
words are consecutive, you may wish to locate them all in a single match. If you want to
locate VISUAL BASIC as a single match, and not as two matches, you need a greedy
expression like the following:

(\b[A-Z]{2,}\b\s{0,})+

This expression locates strings of two or more uppercase characters followed by any number
of spaces. Any succession of words in uppercase with white space between them will be
captured in a single match.

Anchors

In addition to specifying a pattern and a quantifier, we can also specify where in the text the
pattern should appear—the position at which a particular pattern occurs. To specify the
location of the pattern in the text you can use one of the anchor metacharacters shown in Table
19.6.

TABLE 19.6: ANCHORING METACHARACTERS

METACHARACTER MEANING

^ Start of line. The pattern ^[0-9] matches lines that begin with a
number.

$ End of line. The pattern [0-9]$ matches lines that end with a
number.

\b Word boundary (matches any character at the beginning of a
word).

\B Non-word boundary (matches any character not at the beginning
of a word).

The ^ metacharacter has a whole different meaning when it appears in the range operator (after
the opening square bracket). The ^ and $ metacharacters are among the most useful ones when
it comes to replace operations. They allow you to select the entire line and replace it with
something else.

The following pattern locates lines that begin with a number followed by a period (such as
paragraph numbers or section numbers):

^\d?\.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The regular expression that matches numbers searches for one or more digits. The following
pattern will locate all the words that begin with the character ''x":

\bx\w*\b

The \b metacharacter at the beginning and the end of the expression indicates that matches
should occur at a word boundary. The next character in the pattern ("x") is the first character
of the desired match and it should be followed by any number of word characters.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 563

Escaping Metacharacters

If you want to treat the metacharacters as regular characters in a pattern, you must ''escape"
them: place a backslash ("\") in front of a metacharacter to reverse its special meaning (in
other words, treat it as a normal character instead of as a metacharacter). To locate all lines
that start with a number followed by a period, use the following pattern:

^\d?\.

To locate lines that contain URLs, you can use this pattern:

http:\/\/www

This regular expression will match only the protocol part of the URL, as shown by the
boldfaced section of the following example:

http://www .sybex.com

To catch the entire URL use the following expression, which locates the same patterns as the
previous one, followed by anything that's not space:

http:\/\/www\S*

Of course, not all URLs begin with "www," but this short example shows how ugly a regular
expression with escaped characters can get. The characters in Table 19.7 have special meaning
in regular expressions, and you must escape them if you want to match them as literals. All
other characters match themselves.

TABLE 19.7: ESCAPING METACHARACTERS

. Period \. | pipe symbol \|

$ Dollar sign \$ slash \\

^ Caret \^ * Asterisk *

{ Opening curly bracket \{ + plus symbol \+

[Opening square bracket \[? question mark \?

(Opening parenthesis \() closing parentesis \)

Notice that the closing square bracket need not be escaped, because its meaning in a regular
expression is determined by the matching opening square bracket. To locate an expression in
square brackets, use the following expression:

\[.*]

Alternation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The alternation metacharacter allows you to search for the "either/or" type of matches. The
pipe symbol (|) matches one of the characters (or expressions) it separates. The following
expression will match either "u" or "ou":

(o|ou)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 564

The following regular expression will match both ''Petroutsos" and "Petrutsos":

Petr(ou|u)tsos

Use similar expressions to match words with alternate spellings, or frequently misspelled
words. To locate the word "color" in the text, use the following regular expression:

(color|colour)

or:

col(o|ou)r

To match the words "gray" or "grey," use the following regular expression:

gr(a|e)y

We've covered a lot of ground so far and you should have a good grasp of regular expressions
and the RegEx class. Let's look at a practical example that demonstrates many of the topics
discussed so far.

The RegExEditor Project

The RegExEditor application is a simple text editor capable of searching with regular
expressions, as well as literals. Figure 19.1 shows the main form of the application, where the
text is entered and edited, and the Find & Replace dialog box, where you specify what to
search for. RegExEditor is a text editor based on the functionality of the TextBox control and
that of the RegularExpressions namespace. In this chapter we're not going to discuss the basic
operations of the editor, just the code that implements the features related to regular
expressions.

The Find & Replace dialog box of the RegExEditor project can treat the search pattern as a
literal (like the Editor project) or as a regular expression. The Use Regular Expressions check
box is checked by default. Even so, if the search expression doesn't contain any
metacharacters, the program will search the text for a literal. The Replace and Replace All
buttons replace the current match, or all matches, in the text with the specified string.

Let's start with the code of the Find button. The code starts by examining the state of the Use
Regular Expressions check box. If this control is cleared, the code escapes the search string to
cancel the effect of any metacharacters in the string. Then the code checks the state of the
Case Sensitive box and sets the searchOptions variable. This value is the second argument
of the RegularExpressions class's constructor and it determines how the Match method will
search the text. This argument is of the RegExOptions type and can be one of the values of the
RegExOptions enumeration (or a combination of the enumeration's members). Listing 19.5
shows the code of the Find button's Click event handler:

LISTING 19.5: THE FIND BUTTON'S CODE
Private Sub bttnFind_Click(ByVal sender As System.Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub bttnFind_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnFind.Click
 Dim searchPattern As String
 If chkRegEx.Checked Then
 searchPattern = searchWord.Text

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 565

 Else
 searchPattern = RegEx.Escape(searchWord.Text)
 End If
 Dim searchOptions As RegexOptions
 If Not chkCase.Checked Then
 searchOptions = RegexOptions.Multiline Or _
 RegexOptions.IgnoreCase
 Else
 searchOptions = RegexOptions.Multiline
 End If
 Try
 RegEx = New Regex(searchPattern, searchOptions)
 Catch exc As Exception
 MsgBox(exc.Message, MsgBoxStyle.OKOnly, _
 ''INVALID REGULAR EXPRESSION")
 Exit Sub
 End Try
 currentMatch = RegEx.Match(EditorForm.txtBox.Text)
 If Not currentMatch.Success Then
 MsgBox("Can't find word")
 Exit Sub
 End If

The Find Next command calls the NextMatch method of the RegEx object to locate the next
match of the regular expression in the text (Listing 19.6). The NextMatch method always
returns a Match object, even if no match is found. In this case, the Success property of the
Match object is False. If a match is found, the corresponding text on the editor's form is
highlighted.

LISTING 19.6: THE FINDNEXT BUTTON'S CODE
Private Sub bttnFindNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnFindNext.Click
 currentMatch = RegEx.Match(EditorForm.txtBox.Text, _
 EditorForm.txtBox.SelectionStart + _
 EditorForm.txtBox.SelectionLength)
 If Not currentMatch.Success Then
 MsgBox("No more matches")
 Exit Sub
 End If
 Dim selStart As Integer = currentMatch.Index
 EditorForm.txtBox.Select(selStart, currentMatch.Length)
 EditorForm.txtBox.ScrollToCaret()
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 566

The Replace All button's code uses the Replace method of the RegEx object to replace all the
matches with a literal (if the Use Regular Expression option is cleared), or with another
regular expression (if the Use Regular Expression option is checked). Listing 19.7 gives the
code behind the Replace All button:

LISTING 19.7: THE REPLACE ALL BUTTON'S CODE
Private Sub bttnReplaceAll_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnReplaceAll.Click
 Dim curPos, curSel As Integer
 curPos = EditorForm.txtBox.SelectionStart
 curSel = EditorForm.txtBox.SelectionLength

 If chkRegEx.Checked Then
 Dim searchOptions As RegexOptions
 searchOptions = RegexOptions.Multiline
 If Not chkCase.Checked Then
 searchOptions = searchOptions Or RegexOptions.IgnoreCase
 End If
 RegEx = New System.Text.RegularExpressions.Regex(_
 searchWord.Text, searchOptions)
 EditorForm.txtBox.Text = RegEx.Replace(_
 EditorForm.txtBox.Text, replaceWord.Text)
 Else
 If searchWord.Text <> And replaceWord.Text <> Then
 EditorForm.txtBox.Text = _
 EditorForm.txtBox.Text.Replace(_
 searchWord.Text, replaceWord.Text)
 End If
 End If
 EditorForm.txtBox.Select(curPos, curSel)
 EditorForm.txtBox.ScrollToCaret()
 bttnFindNext.Enabled = False
 bttnReplace.Enabled = False
 bttnReplaceAll.Enabled = False
End Sub

The Replace button replaces the currently selected text on the editor with another literal, or
regular expression. To replace a single match, the Replace method is passed the currently
selected, not the entire, text of the control (Listing 19.8).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 568

We'll also look at regular expressions that allow you to specify the surrounding characters of a
pattern without actually matching anything more than the desired pattern. For example, you
can search for dates and match only the year, or month, part of the date.

Grouping and Backreferences

Sometimes we're not interested in just a match, but also in identifying segments of a match.
Let's say you're locating e-mail addresses in a text file with the following expression:

[\w\.-]+@[\w\.-]+\.\w+

This regular expression locates a string made of word characters, periods, and/or dashes,
followed by the ampersand symbol, followed by another string with the same structure,
followed by a period and another word made up of lower/uppercase characters. The first string
in the match is the user's name, the second string is the domain name, and the last string is the
suffix of the domain name (com, org, net, and so on). If you want to capture these substrings
as separate entities, enclose them in parentheses, as in the following regular expression:

([\w\.-]+)@([\w\.-]+)\.(\w+)

It's the same regular expression as before: it locates the same matches, but it maintains
information about each group of the match. A group is a segment of the match that
corresponds to a regular subexpression in parentheses. The username is the first group of the
last regular expression, the domain name is the second group, and the domain suffix is the
third group. Once you group the results of a match, you can access each part of the e-mail
address.

Enter the last regular expression in the Search Pattern box at the top of the RegularExpressions
application and an e-mail address like name@server.com in the Text box on the form. Then
click the Find First Match button and you will see the following items in the Groups box near
the bottom of the form (ignore the items with the ''CAPTURE" prefix):

GROUP 1 name@server.com
GROUP 2 name
GROUP 3 server
GROUP 4 com

If you search for the non-grouped pattern shown at the beginning of this section, only one
group will be matched and the following item will appear in the Groups box:

GROUP 1 name@server.com

To access the groups in a match, you can use the elements of the Groups collection of the
Match object. The following loop iterates through the groups of the object thisMatch, which
represents a regular expression match:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If thisMatch.Groups.Count > 0 Then
 Dim igrp As Integer
 For igrp = 0 To thisMatch.Groups.Count - 1
 Console.WriteLine("GROUP" & igrp.ToString & _
 vbTab & thisMatch.Groups(igrp).Value)
 Next
End If

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 569

If you apply the regular expression that matches e-mail addresses and groups the parts of the
address to some text that contains e-mail addresses, you will see that the first item in the
Groups collection is the entire match and the following items are the groups, as specified by
the pairs of parentheses in the regular expression. Figure 19.5 shows the RegularExpressions
application matching this regular expression against the text in the large TextBox control. For
the time being, ignore the captures listed in Figure 19.5; we'll discuss captures in the following
section.

The groups in a match are identified with a number, or a name. To name each group, use the
question mark followed by a name in a pair of angle brackets immediately after the group's
opening parenthesis. The following regular expression is the same as the one shown in Figure
19.5, but it names the three groups. The names are User,Domain, and Suffix:

(?<User>[\w\.-]+)@(?<Domain>[\w\.-]+)\.(?<Suffix>\w+)

FIGURE 19.5 Using groups in a regular expression

REPLACEMENT OPERATIONS WITH GROUPED MATCHES

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you don't supply your own names, the groups will be named with a number (1 for the first
group, 2 for the second, up to 9). But why bother naming the groups? One good reason is that
you can refer to them in substitution operations. Instead of replacing a match with a fixed
string, you can replace the match with a string that's based on the match itself. Let's look at
another example of a fairly advanced replacement operation, this time with the RegExEditor
project.

Start the RegExEditor project and enter some text that contains phone numbers, like that
shown in Figure 19.6. Then open the Find & Replace dialog box and enter the following
search pattern:

\({0,1}(\d{3})\){0,1}[-]{0,}(\d{3})[-]{0,}(\d{4})

This pattern locates phone numbers and returns three groups for each match: the area code, the
first three digits of the phone number, and the remaining four digits of the phone number. The
search pattern will locate all instances of phone numbers with area codes, regardless of how
they're formatted. The area code may or may not be enclosed in parentheses, there may or may
not be a

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 570

FIGURE 19.6 Using regular expressions in replacement operations. The original text (top) and the same
text after the replacements (bottom).

space between the area code and the phone number, and there may or may not be a separator
between the two groups of the phone number.

The first character is the opening parenthesis, which is a special character and must be
prefixed by a backslash: \(.The opening parenthesis may appear zero or one times, but no
more. The first group of the regular expression matches a group of three digits. This is the
number's area code; it may be followed by a closing parenthesis. The next character can be
one or more spaces and dashes: [-]{0,}. The following characters of the regular
expression, (\d{3}) , attempt to locate another group of three digits, followed by one or more
spaces and/or dashes. The last part of the regular expression is a group of four digits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then specify the following replacement pattern:

($1) $2.$3

If you click the Replace button, all phone numbers in the text will be formatted as:

(nnn) nnn.nnnn

where n is a digit. The following text:

Home number: (343) 445-3434
Office numbers: 800 777-3434, 435 8883999
Cellular number: 111-4453222

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 571

will become:

Home number: (343) 445.3434
Office numbers: (800) 777.3434, (435) 888.3999
Cellular number: (111) 445.3222

You can also refer to a group later in the same regular expression by number or by name. The
group's identifier must appear in a pair of parentheses and be prefixed by a forward slash. One
rather common regular expression with groups is the following, which locates consecutive
duplicate words in a text (as in ''words in in a text"):

\b(\w+) (\1)\b

This regular expression looks for a word, which is captured as a group, followed by a space,
which is followed by the first group of the match. The subexpression (\1) refers to the first
grouped match of the regular expression, which is a word. The entire expression will match
identical words separated by a space. If you want to allow for any white space between the
words (multiple spaces, tabs), you should replace the single space with the \s metacharacter
followed by a quantifier:

\b(\w+)\s+(\1)\b

Knowing how to locate consecutive duplicate words in a text is useful, but it would be even
more useful to be able to remove the second instance of the same word. If you want to get rid
of the repeated word, use the following replacement pattern:

$1

(an odd replacement pattern, but it specifies that the entire match should be replaced by the
first group of the match). Of course, not all duplicate words that may appear in the text are in
error ("... a chance that that same evening..." is a part of a correct sentence that contains
repeated words).

TIP We tested our regular expressions by applying them to large documents and all kinds of
special cases surfaced during the tests. Getting the correct regular expression takes a few
trials, and we recommend that you test your regular expressions with long documents that are
likely to contain a large number of matches. For example, you may write a regular expression
to match e-mail addresses that works with the sample document you provide, but misses
addresses that contain periods in the username.

Referring to a previous subexpression in the same match is also known as backreference.
Backreferences are references to earlier groups of the same match by their number, and you
can refer to the last nine groups in the same match as \1, \2, etc. up to \9. Notice that you can't
make backreferences by name. Named groups can be used in a replacement pattern, but not in
the same regular expression you're using to search the text.

Another example along the same lines is the formatting of dates in a standard format
throughout a document. The following regular expression will locate dates in the text:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\b(?<month>\d{1,2})[/|-](?<day>\d{1,2})[/|-](?<year>\d{2,4})\b

The regular expression isn't going to validate the dates (it will happily locate a date like
13/13/2004, which is clearly an invalid date in the western calendar). However, it will accept
dates with backslashes and/or dashes as separators. Each part of the date is a different group of
the match, because they're

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 572

enclosed in a pair of parentheses. The groups are named as well, and we'll use their names in
the replacement operation. Let's say you want to format dates as ''yyyy-mm-dd." This type
of formatting simplifies sorting and comparison operations. To format the dates in the text,
you can use the following replacement pattern:

${year}-${month}-${day}

If you supply the search and replacement patterns shown earlier to the following text:

Date1 12/3/2001
Date2 4-11-2004
Date3 8/1/04

the edited text will become:

Date1 2001-12-3
Date2 2004-4-11
Date3 04-8-1

TIP By the way, there's no regular expression that will format month and day numbers with
leading zeros (at least, none that we're aware of). The RegEx class doesn't expose elementary
string manipulation methods, such as a method to convert to upper/lowercase. To apply
special formatting to the matches, or convert the matched string to uppercase, you should use
the MatchEvaluator delegate, as discussed in the section "The Replace Method," earlier in
this chapter.

One last, and quite practical, example of grouped matching is the parsing of a file with
delimited fields, like the following:

value1 23.5
value2 -19.1
value3 3.34
value4 2.89

Some of the rows in this example are separated by a single space and others by multiple
spaces; the last two rows use tabs and spaces to separate the two fields. In all cases, the
separator is white space. Use the following regular expression to locate rows that contain data
in this space-delimited format and capture the two fields as separate groups:

(?<name>[\w\.]+)(\s+(?<value>-?[\d\.]+))

The first field (name) can't have spaces ("value1" is a valid name, but "value 1" isn't). The
second field is made up of the (optional) minus symbol, followed by one or more digits, a
decimal period, and then a few more digits.

Enter the text and the regular expression shown here in the appropriate boxes of the Regular-
Expressions program. Then click the Find First Match button to locate the first match. The
RegularExpressions project will report the following groups and captures:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP 1 value1 23.5
CAPTURE1 value1 23.5
GROUP2 23.5
CAPTURE1 23.5
GROUP3 value1

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 573

CAPTURE1 valuel
GROUP4 23.5
CAPTURE1 23.5

The following metacharacters allow you to group the matches. The grouping metacharacters
appear in pairs, and the most important grouping pair are the parentheses. Grouping is used in
substitutions and we'll talk a little about substitutions with regular expressions. When you
group a match, you're ''capturing" it (it's saved in a register so that you can use it later in the
expression). The capturing and substitution of matches can get quite complicated, so we will
only scratch the surface of this topic.

() Captures the matched substring. The captured subexpressions are numbered
automatically based on the order of the opening parentheses, starting from one. The
first capture, capture element number zero, is the text matched by the whole regular
expression pattern.
(?<name>) Captures and names a match. The name argument is a string, which
may not contain any punctuation and cannot begin with a number.
(?:) This match will not produce a group.
(?imnsx-imnsx:) Applies or disables the specified options within the
subexpression. For example, (?i-s:) turns on case insensitivity and disables
single-line mode. For the meaning of the options you can turn on or off, see Table
19.1.
Ignores white space in the pattern and allows comments in a multi-line regular
expression. Comments begin with the # symbol and everything to the right of this
symbol to the end of the line is considered a comment. The following is a simple
regular expression with embedded comments:

(?x:(?<month>\d{1,2})[/|-]
 # match the month part of the year
 # followed by a backslash or dash
(?<day>\d{1,2})[/|-]
 # match the day part of the year
 # followed by a backslash or dash
(?<year>\d{2,4})
 # match the year part of the year
 # followed by a backslash or dash
)

Now that you have seen how to split a match into groups, let's look at captures: how to match
multiple instances of the same regular expression in a single step.

Regular Expressions with Multiple Captures

The matches we've seen in the examples so far contain a single capture each: that is, they
contain a single instance of the pattern we're searching for. It's possible to capture multiple
instances of the same pattern in the text in a single sweep. Let's say you're given a file that
contains pairs of keys and values and you want to extract either the pairs, or their parts. Here's
the sample text:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value1 = 34 value2 = 405 value3 = 4534
value4 = 45 value5 =3334

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 574

value10 = -4554
value11 = 3904
value12=456 value13=5564

Notice that this is a rather unstructured text document. The only requirement is that it contains
key/value pairs. You can have multiple pairs on the same line, separated by at least one space.

The following search pattern will locate all key/value pairs in separate groups, each group
containing multiple captures:

((\w+)\s*=\s*(\S+)\s+)+

The regular expression in the outermost parentheses locates strings like the following:

key1 = value1

We place this expression in parentheses and then specify the + quantifier to locate any run of
key/value pairs in the text. If you click the Find First button, the program will match all the
key/value pairs at once. Then the following will appear on the Groups ListBox control:

GROUP 1 value1 = 34 value2 = 405 value3 = 4534
value4 = 45 value5 =3334

value10 = -4554
value11 = 3904
value12=456 value13=5564
CAPTURE 1 value1 = 34 value2 = 405 value3 = 4534
value4 = 45 value5 =3334

value10 = -4554
value11 = 3904
value12=456 value13=5564

GROUP 2 value13=5564
 CAPTURE 1 value1 = 34
 CAPTURE 2 value2 = 405
 CAPTURE 3 value3 = 4534
 CAPTURE 4 value4 = 45
 CAPTURE 5 value5 =3334
 CAPTURE 6 value10 = -4554
 CAPTURE 7 value11 = 3904
 CAPTURE 8 value12=456
 CAPTURE 9 value13=5564
GROUP 3 value13
 CAPTURE 1 value1
 CAPTURE 2 value2
 CAPTURE 3 value3
 CAPTURE 4 value4
 CAPTURE 5 value5
 CAPTURE 6 value10
 CAPTURE 7 value11

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 575

 CAPTURE 8 value12
 CAPTURE 9 value13
GROUP 4 5564
 CAPTURE 1 34
 CAPTURE 2 405
 CAPTURE 3 4534
 CAPTURE 4 45
 CAPTURE 5 3334
 CAPTURE 6 -4554
 CAPTURE 7 3904
 CAPTURE 8 456
 CAPTURE 9 5564

The first group contains a single capture, which is the entire matched string. The second group
contains the pairs of keys and values, as they appear in the matched text. The last two groups
contain the names of the keys and the corresponding values. If you test the pattern shown in
this example with a large segment of text, you'll realize that the operation will take a while,
but this is the most efficient method of parsing text made up of items with the same structure.

The problem with processing text files with regular expressions is that you won't get any
indications about possible errors (errors that you would normally catch from within your code
if you wrote a parsing routine in VB). You should make sure that the file has the correct
structure before processing it with regular expressions. Because the syntax of regular
expressions is so cryptic, you should also test your regular expressions with some simple text
to make sure that they locate the desired patterns. Try to include in your sample text patterns
that are similar to the ones you want to capture but that don't qualify. After you're certain that
the regular expression you have built locates the desired patterns in the sample text, use it with
a large segment of text.

Lookahead and Lookbehind Assertions

A lookahead assertion is a tool for specifying not a match, but a pattern that will precede the
match. For example, we may be interested in extracting the century from a date's year (the
numeric value 17 from 1789, for example). We want to grab the first two digits from a four-
digit string. This is a positive lookahead assertion and can be expressed with the following
regular expression:

\d\d(?=89)

This regular expression will match the string ''17" in "1789."

There are positive and negative lookaheads. A positive lookahead specifies the pattern that
must follow the match, and it must appear in a pair of parentheses and be prefixed with a
question mark and the equals sign. A negative lookahead specifies the pattern that must not
follow the match, and it must appear in a pair of parentheses prefixed by a question mark and
the exclamation mark.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lookbehind assertions are equivalent to lookahead assertions, but they specify the pattern that
must precede the match. A positive lookbehind specifies the pattern that must precede the
match, and it must appear in a pair of parentheses and be prefixed by a question mark, the left
angle bracket, and the equals sign. The following regular expression is a positive lookbehind
that matches the "34" in 1934 and the "99" in "1999."

(?<=19)\d\d

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 576

To match the year in a date, use the following regular expression:

(?<=\d{1,2}\/\d{1,2}\/)\d{4}

The entire expression is located, but the match that corresponds to the subexpression in
parentheses is not part of the match reported by the Matches property, or the Match method. In
a text with dates, this regular expression will match the years, as shown next (the matches are
in bold):

From 1/5/1749 to 12/31/1820

Finally, a negative lookbehind specifies the pattern that must not follow the match, and it must
appear in a pair of parentheses prefixed by a question mark, the left angle bracket, and the
exclamation mark. You will notice that negative lookahead and lookbehind assertions are
specified with the same characters as their positive counterparts and an exclamation mark,
which reverses the sign of the assertion. Lookahead and lookbehind assertions use the same
notation, with the exception of the left angle bracket symbol, which points to direction of the
preceding pattern in the case of lookbehind assertions.

What if you want to locate all the years in the 18th century, excluding the century part (the
''89" in 1789)? The following regular expression does exactly that: it isolates the last two
digits from the year in a date from 1/1/1700 to 12/31/1799:

(?<=\d{1,2}[/|-]\d{1,2}[/|-]17)\d\d

If you apply the previous regular expression to the sample text shown next, the bold matches
will be reported:

1/3/1789
4/8/1779
19/4/1889
19/4/17 02

You can use a replacement regular expression like the following to change the format of the
dates in the text. Enter the following text:

Born on 5/8/1915 and died on 16/3/2001

and perform a search and replace operation with the last regular expression and the following
replacement pattern:

${year}-${month}-${day}

The original string will be transformed as follows:

Born on 1915-5-8 and died on 2001-16-3

The regular expression

(?i:Click)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

matches "click," "Click," and "CLICK" in the text, even if the IgnoreCase of the RegEx object
has been turned off. The case sensitivity is restored to its original setting for the following
searches with the same RegEx object.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 577

The following expression locates the word ''ISBN " followed by an ISBN value (10 digits, or 9
digits and "X"):

ISBN \d{9}[\dx]

If the current instance of the RegEx object has its IgnoreCase option turned off, you can turn it
on for a single search by specifying the I option to the regular expression:

(?i:ISBN \d{9}[\dx])

To turn off the case sensitivity, place the minus symbol in front of the i option:

(?-i:ISBN \d{9}[\dx])

You can also turn on or off any of the i, m, n, s, and x options in a subexpression. The
following regular expression is made up of two subexpressions and it locates substrings like
"Grade A" or "GRADE C." The word "grade" can be spelled in lower/uppercase, or any
combination of lowercase and uppercase characters. The grade itself, however, is an uppercase
character: A, B, C, D, E, F, or I. Here's the regular expression that locates the word "grade"
without case-sensitivity, followed by a space and an actual grade value (an uppercase
character):

(?i:grade) (?-i:[ABCDEFI])

You can combine subexpressions in a regular expression to locate exactly the string you're
interested in. The following regular expression will locate strings like "Grade B," but it will
match only the grade (the character "B"):

(?<=(?i:grade))(?-i:[ABCDEFI])

This regular expression will return two matches in the following text (the matches are shown
in bold in the text):

Grade A grade B Grade c grade c

If you want to capture specific groups in the match, add a pair of parentheses around the
group(s) you want to capture as usual. To capture the grades, use the following regular
expression:

(?<=(?i:grade))(?-i:([ABCDEFI]))

Then you can embed the grades in the original string in a pair of brackets with the following
replacement string:

[$1]

The original string will become:

Grade [A] grade [B] Grade c grade c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a plus sign after each grade, use the following regular expression to match the passing
grades:

(?<=(?i:grade))(?-i:([ABCD]))

and the following replacement regular expression:

$1+

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 578

After the replacement takes place, the original string will become:

Grade A+ grade B+ Grade c grade c

To exploit lookahead and lookbehind assertions, use the following metacharacters:

(?=) Zero-width positive lookahead assertion. Continues match only if the subexpression
matches at this position on the right. For example, \w+(?=\d) matches a word followed by a
digit, without matching the digit. This construct does not backtrack. The expression

\b19(?=\d\d\b)

matches the ''19" in "Born in 1915 and died in 2001." The following expression matches the
day and month part of a date:

\d{1,2}\/\d{1,2}\/(?=\d{4})

(?!) Zero-width negative lookahead assertion. Continues match only if the subexpression
does not match at this position on the right. For example,

\b(?!un)\w+\b

matches words that do not begin with "un".

(?<=) Zero-width positive lookbehind assertion. Continues match only if the subexpression
matches at this position on the left. For example,

(?<=19)99

matches instances of 99 that follow 19. This construct does not backtrack.

(?<!) Zero-width negative lookbehind assertion. Continues match only if the subexpression
does not match at the position on the left.

(?>) Nonbacktracking subexpression (also known as a greedy subexpression). The
subexpression is fully matched once, and then does not participate piecemeal in backtracking.
(That is, the subexpression matches only strings that would be matched by the subexpression
alone.)

Advanced Replacement Operations

Now that you've learned how to locate multiple captures with a single regular expression, you
probably want to know how to replace all the captures in a single operation. Let's say you
want to clean up the preceding list of key/value pairs. We'll use the same search pattern to
capture all pairs in a single match. Here's the search pattern:

(\w+)\s*=\s*(\S+)\s+

and the here's the sample text:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value1 = 34 value2 = 405 value3 = 4534
value4 = 45 value5 =3334
value10 = -4554
value11 = 3904
value12=456 value13=5564

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 58

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 580

In the Replace Pattern box you can enter a replacement pattern, which is another regular
expression, and then click the Replace Matches button to perform the replacements. The
following two declarations appear outside any procedure and are used throughout the project's
code:

Dim RX As Regex
Dim thisMatch As Match

RX is a RegEx object that's used throughout the code and thisMatch is a Match object that
represents the current match. The Find First Match button's code, which is shown in Listing
19.9, locates the first match by calling the RX object's Match method.

LISTING 19.9: THE FIND FIRST MATCH BUTTON'S CODE
Private Sub FindFirst(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnFindFirst.Click
 Try
 RX = New Regex(TextBox1.Text, _
 RegexOptions.IgnoreCase Or _
 RegexOptions.IgnorePatternWhitespace Or _
 RegexOptions.Multiline)
 Catch exc As ArgumentException
 MsgBox(exc.Message)
 Exit Sub
 End Try
 thisMatch = RX.Match(TextBox2.Text)
 If thisMatch.Success Then
 ShowGroups(thisMatch)
 bttnFindNext.Enabled = True
 End If
End Sub

The code behind the Find Next Match button is similar. This time we call the NextMatch
method of the RX object to retrieve the next match. Listing 19.10 shows the code of the Find
Next Match button. The current match is stored in the form level variable thisMatch , so that
we can use it the next time the FindNext button is clicked.

LISTING 19.10: THE FIND NEXT MATCH BUTTON'S CODE
Private Sub FindNext(ByVal sender As System.Object, _ ByVal e As System.EventArgs) _
 Handles bttnFindNext.Click
 If thisMatch Is Nothing Then
 thisMatch = RX.Match(TextBox2.Text)
 bttnFindNext.Enabled = True
 Else
 thisMatch = thisMatch.NextMatch

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 581

 If Not thisMatch.Success Then
 MsgBox(''There are no more matches in the text!")
 bttnFindNext.Enabled = False
 Exit Sub
 End If
 End If
 ShowGroups(thisMatch)
End Sub

The ShowGroups() subroutine accepts a Match object as argument and displays its groups (if
any) on the ListBox control at the bottom of the form, as shown in Listing 19.11.

LISTING 19.11: THE SHOWGROUPS SUBROUTINE
Sub ShowGroups(ByVal thisMatch As Match)
 TextBox2.Select(thisMatch.Index, thisMatch.Length)
 TextBox2.ScrollToCaret()
 ListBox1.Items.Clear()
 If thisMatch.Groups.Count > 0 Then
 Dim igrp As Integer
 ' The first group of the match (the one with index = 0)
 ' is the match itself, so we skip it.
 For igrp = 0 To thisMatch.Groups.Count - 1
 ListBox1.Items.Add("GROUP" & igrp.ToString & _
 " " & thisMatch.Groups(igrp).Value)
 Next
 End If
End Sub

Finally, the Replace Matches button's code calls the Replace method passing the strings of the
three TextBox controls as arguments: the text, the search pattern, and the replacement pattern.
Because the replacement pattern itself can be a regular expression, the Replace method is a
very flexible and powerful tool. Listing 19.12 shows the code behind the Replace Matches
button. This event handler replaces all the matches in the text with the specified replacement
string.

LISTING 19.12: THE SHOWGROUPS SUBROUTINE
Private Sub Replace(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnReplace.Click
 Try
 RX = New Regex(txtPattern.Text)
 Catch exc As Exception
 MsgBox(exc.Message)
 Exit Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 583

FIGURE 19.9 Selecting one of the predefined regular expressions by its description

At the time of this writing, the following regular expressions are displayed on the
RegExSamples dialog box:

Locate all HTML tags
 <[ˆ>]+>

Locate repeated words
 \b([A-Za-z]+) \1\b

Locate e-mail addresses (1)
 [A-Za-z0-9]{1,}@[A-Za-z0-9\.]{1,}

Locate e-mail addresses (2)
 [\w\.-]+@[\w\.-]+(\.[a-zA-Z]+)

Locate URLs in HTML
 (\w+):\/\/\([ˆ/:]+):(\d*)?([ˆ#]*)/

Locate all 10-letter words in text
 \b[A-Za-z]{10}\b

Locate dollar amounts
 \$\d{1,}\.\d{2}

Locate uppercase words
 \b[A-Z]{2,}\b

Locate valid postal codes
 [A-Z]{2}(|-)(\d{5}?)((|-){1}\d{3,5})?

Dollar amounts
 \$[0-9]+(\.[0-9[0-9])?

Dates (mm/dd/yy or mm/dd/yyyy)
 \b\d{1,2}\/\d{1,2}\/(\d{2}|\d{4})\b

Of course, you can edit the project's code and add regular expressions that are more specific to
your needs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 584

To search the text, click the grep button (or press Enter). The matches will be displayed on the
RichTextBox control at the bottom of the window. The program isolates the lines that contain
the matches and displays them on the control. The matches are highlighted in yellow and
underlined, in an attempt to emulate an old Unix terminal look. The numbers in front of the
lines are not line numbers; they're the number of the matches found so far. If a line contains
two matches, the following number is larger by two than the current line's number.

The matching process is quite fast. If the process returns too many matches, displaying them
on the RichTextBox control may take more than a few seconds. You can interrupt the process
by pressing the Escape key. This keystroke will interrupt the process of displaying the results,
not the search.

The code behind the grep button goes through each selected file and calls the GrepFile()
subroutine to process the file, as shown in Listing 19.13.

LISTING 19.13: THE GREP BUTTON'S CODE
Private Sub bttngrep_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttngrep.Click
 Dim fname As String
 Abort = False
 rtfResults.Text = ''"
 For Each fname In lstFiles.Items
 GrepFile(fname)
 Next
End Sub

The GrepFile() subroutine finds all the matches in the file whose path is passed to the
subroutine as argument and stores them in a MatchCollection object. The RegEx object's
Options argument is set to Multiline and (optionally) to Ignore Case. After retrieving the
matches, it calls the Show-Matches() subroutine to display the lines where the matches were
found on a RichTextBox control. Here's the code of the GrepFile() subroutine (Listing 19.14).

LISTING 19.14: THE GREPFILE() SUBROUTINE
Sub GrepFile(ByVal filename As String)
 Dim TReader As System.IO.StreamReader
 TReader = New System.IO.StreamReader(filename)
 Dim txt As String = TReader.ReadToEnd
 TReader.Close()
 Dim RX As Regex
 Dim Options As RegexOptions
 If chkCase.Checked Then
 Options = RegexOptions.IgnoreCase Or RegexOptions.Multiline
 Else
 Options = RegexOptions.Multiline
End If

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 585

 Dim allMatches As MatchCollection
 Try
 allMatches = RX.Matches(txt, txtPattern.Text, Options)
 Catch exc As Exception
 MsgBox(exc.Message, MsgBoxStyle.OKOnly, _
 ''INALID REGULAR EXPRESSION")
 Exit Sub
 End Try
 ShowMatches(allMatches, filename, txt)
End Sub

The results are displayed on a RichTextBox control, so that the matches can be formatted
differently than the rest of the text. The code uses the textFont, ulineFont and
boldFont variables to represent the three fonts to be used to render the matching lines on the
control, and it changes the font by setting the control's SelectionFont property.

The ShowMatches() subroutine accepts three arguments: the MatchCollection that contains all
the matches, the name of the file (the code displays the name of the file that was processed),
and the original text. Notice that the text is passed by reference, to avoid making a copy of a
large block of text.

The subroutine's code extracts each match's starting location in the original text and its length
with the Index and Length properties of the appropriate Match object. Then it prints the text in
front of the match on the same line in a regular green font, the match in underlined font and
yellow color, and the remaining text on the same line in regular green font.

Listing 19.15 shows the ShowMatches() subroutine, which is basically an exercise in
programming the RichTextBox control. The statements that deal with the matches are
straightforward, but most of the code deals with the proper formatting of the matches.

LISTING 19.15: THE SHOWMATCHES() SUBROUTINE
Sub ShowMatches(ByVal allMatches As MatchCollection, _
 ByVal fname As String, ByRef text As String)
 Dim textFont As Font = rtfResults.Font
 Dim boldFont As Font = New Font(rtfResults.Font.Name, _
 rtfResults.Font.Size + 2, FontStyle.Bold)
 Dim ulineFont As Font = New Font(rtfResults.Font.Name, _
 rtfResults.Font.Size, FontStyle.Underline)
 Dim aMatch As Match
 Dim matchStart, matchLength As Integer
 Dim lineStart, lineEnd As Integer, txtLine As String
 rtfResults.SelectionFont = boldFont
 rtfResults.AppendText("FILE: " & Path.GetFileName(fname) & _
 vbTab & "Found " & allMatches.Count &_
 " matches" & vbCrLf & vbCrLf)
 rtfResults.SelectionFont = textFont
 Dim currentMatch As Integer

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 586

Me.Cursor = Cursors.WaitCursor
rtfResults.ReadOnly = False
For Each aMatch In allMatches
 currentMatch += 1
 matchStart = aMatch.Index
 matchLength = aMatch.Length
 lineStart = text.LastIndexOf(vbCrLf, matchStart)
 If lineStart < 0 Then lineStart = 0
 lineEnd = text.IndexOf(vbCrLf, matchStart + matchLength)
 If lineEnd < 0 Then lineEnd = text.Length
 If multiple matches are found in the same line, display it once
 If txtLine <> text.Substring(lineStart + 2, _
 lineEnd - lineStart - 2) Then
 txtLine = text.Substring(lineStart + 2, _
 lineEnd - lineStart - 2)
 rtfResults.SelectionColor = Color.White
 rtfResults.AppendText(''# " & currentMatch.ToString & _
 ">>" & vbTab)
 rtfResults.SelectionColor = Color.LightGreen
 Match again all the matches on the same line
 Dim lineMatches As MatchCollection = _
 Regex.Matches(txtLine, txtPattern.Text)
 Dim lineMatch As Match
 Dim nextLineStart As Integer = 0
 For Each lineMatch In lineMatches
 rtfResults.SelectionFont = textFont
 rtfResults.AppendText(txtLine.Substring(nextLineStart, _
 lineMatch.Index - nextLineStart))
 nextLineStart = lineMatch.Index + _
 lineMatch.ToString.Length
 rtfResults.SelectionFont = ulineFont
 rtfResults.SelectionColor = Color.Yellow
 rtfResults.AppendText(lineMatch.ToString)
 rtfResults.SelectionFont = textFont
 rtfResults.SelectionColor = Color.LightGreen
 Next
 rtfResults.AppendText(txtLine.Substring(nextLineStart))
 rtfResults.AppendText(vbCrLf)
 End If
 If Abort Then
 Abort = False
 rtfResults.SelectionFont = boldFont
 rtfResults.AppendText(vbCrLf & "Interrupted!" & vbCrLf)
 rtfResults.SelectionFont = textFont
 Beep()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 587

 Me.Cursor = Cursors.Default
 Exit Sub
 End If
 Application.DoEvents()
 Next rtfResults.AppendText(vbCrLf)
 Me.Cursor = Cursors.Default
 rtfResults.ReadOnly = True
End Sub

To add formatted text on a RichTextBox control, you must first set the SelectionFont and/or
SelectionColor properties of the control to the appropriate values (how you want to format the
text) and then append the text to be formatted with the AppendText method. The text you
append to the control will be formatted according to the settings of the SelectionFont and
SelectionColor properties in effect. To return to the default text formatting, set these two
properties to their initial values again. Note also that only the matches are formatted
differently. All other characters on the line (the characters before and after the match) have the
default format. The font for the matches is stored in the ulineFont variable and the regular
text's font is stored in the textFont variable, which are declared at the beginning of the event
handler. The default text color is light green.

Notice that the code doesn't display the same line twice if it contains two, or more, matches.
Instead, it highlights all the matches on the line. The number shown in front of the match,
however, is the number of the first match in the corresponding line. If a line contains two
matches, this number will be increased by two, to indicate that the previous line contains two
matches.

The Abort variable is declared on the form's level and is set to True when the user clicks the
Escape key. As the code iterates through the matches, it examines the value of the Abort
variable and, if it's True, it terminates the processing of the matches. The form's KeyPreview
property should be set to True. The following statements in the form's KeyUp event handler
detect the Escape keystroke (Listing 19.16).

LISTING 19.16: CANCELING THE MATCHING PROCESS
Private Sub RegExForm_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles MyBase.KeyUp
 If e.KeyCode = Keys.Escape Then Abort = True
End Sub

The rest of the code that prompts the user to select filenames and add them to the ListBox
control, or the code that retrieves one of the predefined patterns, is fairly straightforward and
we will not discuss it here.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 591

The PG Graphics object represents the surface of the PictureBox control on the control. This is
where we'll draw the functions. The PG object is created with the following statements:

Dim Pbmp As Bitmap
Pbmp = New Bitmap(PictureBox1.Width, PictureBox1.Height)
PictureBox1.Image = Pbmp
Dim PG As Graphics
PG = Graphics.FromImage(Pbmp)

We draw directly on the bitmaps of the two Graphics objects to generate persistent graphics.
Drawing a complicated plot with many functions takes a few seconds, as the functions must be
evaluated every time, and we'd rather not perform all the calculations every time the form that
contains the control needs to be refreshed.

The GraphicsPath Object

The new object we're introducing in this section is the GraphicsPath object, which represents
an arbitrary curve. A GraphicsPath object is a collection of simpler graphics entities, such as
lines and arcs, and it's treated as a single entity. It's rendered as a single curve and it can be
transformed also as a single entity (the transformations you apply to the GraphicsPath object
are also applied to its constituent elements). Most importantly, you can set a style for the path,
which will be applied correctly to all its elements. For example, you can set the path's style to
a dashed line and the GraphicsPath object will be drawn with the specified style—you don't
have to worry about what happens at the joins of the line segments.

Paths are used to draw curves and outlines of shapes, and to define clipping regions. To create
a GraphicsPath object, declare a variable of this type and then call its Add methods to add
elements to the path. There's an Add method for each type of graphics primitive you can add
to a path (AddCurve, AddLine, AddPolygon, and so on). In our code we'll create a separate
path for each function; each path is made up of line segments. The plot is a collection of (X,
Y) points: (X0, Y0), (X1, Y1), (X2, Y2), ... (Xn, Yn). Instead of turning on the pixels that
correspond to these points, we draw line segments between them. The first line segment
connects point (X0, Y0) to point (X1, Y1), the second line segment connects point (X1, Y1) to
point (X2, Y2), and so on. The result is a solid curve that goes through all the points. This is
the definition of the curve. The curve can be drawn in any style, but the path that represents it
has no gaps.

The GraphicsPath object is the most convenient method of representing a curve as a collection
of points on the drawing surface. The coordinates of the path's elements are expressed in world
coordinates, which means that you'll have to transform them into screen coordinates before
rendering the path. The transformation of the path is not trivial, either, and we discuss it in the
section ''Transforming the Plot's Curves," later in this chapter.

The Control's Members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All aspects of the appearance of the plots can be specified through properties, and the
PlotControl exposes quite a few properties. The basic properties are those that determine the
functions to be plotted and how they'll be plotted. The definitions of the functions must be
added to a collection. Since each function is plotted in its own style, the control provides four
collections, and you must

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 592

add to each collection a member for each function to be plotted. The four collections, which
are public ArrayLists, are the following:

Functions The collection with the functions to be plotted. You can use the members
of the Math namespace in defining a function.
FunctionColors The collection with the colors in which each function will be
rendered.
FunctionStyles The collection with the styles of the lines, in which each function
will be rendered. A function's style must be a member of the DashStyle
enumeration: Dash, DashDot, DashDotDot, Dot, and Solid (you can't use the
Custom style).
FunctionLineWidths The collection with the widths of the lines, in which each
function will be rendered.

To set up a function for plotting with the PlotControl, place an instance of the control on the
form and then set its properties with statements like the following:

PlotControl.Functions.Add(''Cos(x*2)*Sin(x*7)")
PlotControl.FunctionStyles.Add(Drawing2D.DashStyle.Solid)
PlotControl.FunctionColors.Add(Color.Red)
PlotControl.FunctionLineWidths.Add(2)

The preceding statements prepare the control to print a function with a solid, 2-pixel-thick line
in red color. To plot more than one function, use similar statements for each one. Each
function must have a definition, a style, a color, and a line thickness.

Once you've specified the functions to be plotted, you must specify the range of X values in
which the plot will be generated. To specify this range, set the control's XMin and XMax
properties. The control will calculate the corresponding range of Y values and will plot the
functions using its defaults for numbering the axes, drawing the grid, and so on. You may skip
the automatic calculation of the Y axis range by setting the properties YMin and YMax. If
these two properties are not both zero, their values will be used in determining the Y axis
range.

In addition to the basic properties of the functions to be plotted, the PlotControl provides a
number of properties that affect the appearance of the plot, specifically:

PlotTitle The plot's title, which is printed above the PictureBox with the plot. The
text will not be wrapped, so make sure that the title will fit in the available area (use
a smaller font for the title, if you have to).
PlotTitleFont, PlotTitleColor The font and color in which the plot's title will be
rendered.
XAxisTitle, YaxisTitle The titles of the two axes. The text will not be wrapped, so
you should make sure that the text will fit in the available area (use a smaller font
for the axis titles, if you have to).
AxisTitleFont, AxisTitleColor The font and color in which the axis titles will be
rendered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowMajorGrid, ShowMinorGrid Two Boolean values that determine whether
you want to draw a major and a minor grid.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 593

MajorXTicks, MajorYTicks The number of major ticks along the X and Y axes.
Major ticks are shown on the plot with a short, thick line. Major and minor ticks are
displayed independently of the grid.
MinorXTicks, MinorYTicks The number if minor ticks between two major ticks.
Minor ticks are shown on the plot with a short, thin line.
MajorGridWidth, MinorGridWidth The width of the major and minor grid lines.
MajorGridColor, MinorGridColor The color in which tick marks and grid will be
rendered.
AxisNumberFont, AxisNumberColor The font and color in which the axis
numbers will be rendered.

The control provides two methods: the Plot method, which generates the plot according to the
settings of the properties, and the Clear method, which clears the control.

The implementation of the control's properties is quite trivial and we don't show the
corresponding code in this chapter. Instead, we'll focus on the Plot method, which does all the
work.

EVALUATING FUNCTIONS AT RUNTIME

Plotting functions would be fairly trivial if Visual Basic provided a technique for evaluating
functions at runtime. To evaluate arbitrary math expressions at runtime, we used the MSScript
control, which is an ActiveX control that can be used with .NET applications. This control
was distributed with VB6 and it's already installed on your computer if you're an old VB6
developer. If not, you can download it from Microsoft, at www.microsoft.com/scripting. We
discussed the capabilities of this control briefly in Chapter 16, where we used it to design a
simple calculator.

To use the MSScript control in a .NET project, you must reference this control from within
your project and place an instance of it on the form that will use it. Since the PlotControl is a
custom control, place an instance of the MSScript control on the design surface of the
UserControl object. The following function evaluates a math expression for a given value of
the independent variable X:

Function FunctionEval(ByVal FunctionName As String, _
 ByVal X As Single) As Single
 Try
 AxScriptControl1.ExecuteStatement(''X=" & X)
 FunctionEval = CSng(AxScriptControl1.Eval(FunctionName))
 Catch exc As Exception
 Throw New Exception("Can't evaluate function at X=" & X)
 End Try
End Function

The FunctionEval() function accepts two arguments, the expression to be evaluated (a string)
and a value of the independent variable, and returns the value of the expression for the
specified value of the independent variable. The FunctionEval() function is called for each
value of the X variable at which we want to plot the function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our code uses the FunctionEval function to evaluate the function in the range that will be
plotted. Before plotting the function, we must determine the minimum and maximum values of
the Y axis (see Listing 20.1). This takes place from within the following loop, which keeps
track of the minimum and maximum values of all the functions that will be plotted.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 594

LISTING 20.1: CALCULATING THE Y AXIS RANGE FOR ALL FUNCTIONS
For t = _Xmin To _Xmax Step (_Xmax - _Xmin) / (PictureBox1.Width - 2)
 Dim ifunction As Integer
 Dim functionName As String
 For ifunction = 0 To Functions.Count - 1
 functionName = Functions(ifunction)
 Try
 val = CSng(FunctionEval(functionName, t))
 Ymax = Math.Max(val, Ymax)
 Ymin = Math.Min(val, Ymin)
 Catch exc As Exception
 MsgBox(''Can't plot this function in " & _
 "the specified range!" & vbCrLf & exc.Message)
 Exit Sub
 End Try
 Next
Next

The values calculated by the code of Listing 20.1 can't be used immediately, because they will
not produce proper tick marks. If the calculated range is from –0.2002 to 11.294, you'd
probably use a range from –2 to 12, or –5 to 20. The control calculates the "best" range of Y
values by calling the AutoRange() function. By "best range" we mean a minimum and
maximum value that doesn't carry unnecessary fractional digits. It's a range that can be easily
divided into equal parts, which correspond to the tick marks along the axes. The code of the
AutoRange() subroutine is shown in Listing 20.2.

LISTING 20.2: THE AUTORANGE() FUNCTION
Private Function AutoRange(ByVal minVal As Double, _
 ByVal maxVal As Double) As PointF
 Dim P As New PointF
 Dim scale As Long = 1
 Dim Diff As Double = maxVal - minVal
 If Diff > 1 Then
 While Diff > 10
 scale = scale * 10
 Diff = Diff / 10
 End While
 P.X = Convert.ToSingle(Math.Floor(minVal / scale)) * scale
 P.Y = Convert.ToSingle(Math.Ceiling(maxVal / scale)) * scale
 Return P
 Else
 While Diff < 1
 scale = scale * 10
 Diff = Diff * 10
 End While

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 595

 P.X = Convert.ToSingle(Math.Floor(minVal * scale)) / scale
 P.Y = Convert.ToSingle(Math.Ceiling(maxVal * scale)) / scale
 Return P
 End If
End Function

The AutoRange function scales the calculated Y range until it falls in the range from 0 to 10.
If the range is larger than 10, it keeps dividing it by 10; otherwise, it keeps multiplying it by
10. Then it takes the largest integer that doesn't exceed the minimum value (this value is given
by the Math.Floor() function) and the smallest integer that exceeds the maximum value (this
value is given by the Math.Ceiling() function). These values are then scaled back to produce
the automatic range.

Let's consider a function whose Y values are in the range from –30.46 to 24.04. The difference
is 24.04 – (–30.46) = 54.50. This value must be scaled by 1/10 to produce a range less than 10.
The new range is from –3.046 to 2.404. The largest integer that doesn't exceed the minimum
value is –4 and the smallest integer that exceeds the maximum value is 3. These values are
scaled back by 10 and the new range will become –40 to 30. This is a ''convenient" range that
can be easily broken into 6 major ticks at these points: –40, –26, –12, 2, 16, and 30. If you had
to break the original range into the same number of sections, each section's magnitude would
have to be 54.50/6, or 9.08333 (the numbers along the vertical axis would be odd, to say the
least). The method used by the AutoRange() subroutine to generate a good range of values for
the Y axis is quite simple, but it works in most cases. You can use a more complicated
technique, or provide an interface that will allow users to set the range, should the
AutoRange() subroutine fail to produce an acceptable range.

The code calls the AutoRange() function and then sets the values of the variables that
determine the vertical range of the plot (they are the YMin and YMax properties, and their
values are stored in the _YMin and _YMax local variables). The values returned by the
AutoRange function are taken into consideration only if the _YMin and _YMax variables
haven't been set. If the application has set the plot's Y range, then the calculated values are
ignored. Here are the statements that determine the vertical range of the plot:

P = AutoRange(Ymin, Ymax)
If _Ymin = _YMax And _YMax = 0 Then
 Ymin = P.X
 Ymax = P.Y
Else
 Ymin = _Ymin
 Ymax = _YMax
End If

TRANSFORMING THE PLOT'S CURVES

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you recall, Visual Basic assumes that the origin is always at the top-left corner of the
control. When displaying functions, however, the origin should be at the bottom-left corner.
Unless you want to view the plots upside-down, you must switch the minimum and maximum
values of the Y coordinates. The transformation that relocates the origin to the bottom-left is
performed with the Translate method of the world coordinate system. The Translate method
accepts two arguments, which are the

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 596

displacement in the horizontal and vertical directions. The horizontal displacement is –_XMin:
if the X axis starts at –10, the origin is shifted to the right by 10 units. If it starts at 10, the
origin is shifted to the left by 10 units. In either case, the origin of the plot will coincide with
the origin of the PictureBox control on which it will be plotted. The vertical translation is the
negative of the minimum Y value (the smallest Y value will be mapped to the top of the
PictureBox control and the largest Y value will be mapped at the top of the control).

In addition to flipping the plot vertically, we must scale it, so that the world coordinates (the
plot's X and Y coordinates) will be mapped to the dimensions of the PictureBox control. The
PictureBox control's dimensions are fixed (for each plot), so we simply scale the world
coordinates so that their end values coincide with the coordinates of the PictureBox. The
following statements set up the necessary transformations:

' set up the appropriate Scale and Translate transformations
World = New System.Drawing.Drawing2D.Matrix
World.Scale(((PictureBox1.Width - 2) / (_Xmax - _Xmin)), - _
 (PictureBox1.Height - 2) / (Ymax - Ymin))
World.Translate(-_Xmin, -Ymax)

(We subtract two pixels from the dimensions of the PictureBox control to make up for the
control's border.)

GDI+ supports the basic graphics transformations (translation, scaling, and rotation) through a
transformation matrix. Every point on the drawing surface is specified by two coordinates. To
apply one or more transforms, GDI+ creates a 3×3 matrix and multiplies it with the original
point. The result is another point, which is the transformed point. You'll never have to create
the transformation matrix yourself; you simply create a Matrix object and then specify the
transformations you want to apply to all graphics elements. The transformations will be
performed in the order in which they were specified, and it's important to get their order
correct. The preceding statements specify a scaling transformation and then a translation. The
transformations are defined with the Scale and Translate method of a new Matrix object, the
World matrix, which stores the cumulative transformation.

So far we've specified the necessary transformations, but they will not take effect unless we
apply them to the objects to be drawn. Each function's plot is a GraphicsPath object, and you'll
see in a moment how this object is created. Before drawing the curve specified by the
GraphicsPath object, we must apply the World transformation with the object's Transform
method. For each function, we'll create a Path object, then we'll calculate the points along the
path, and finally we'll apply the World transformation and we'll draw the path. The following
statements outline this process:

Dim plot As New System.Drawing.Drawing2D.GraphicsPath
' Add points to the path
' Apply transformation
plot.Transform(World)
' And finally draw the path
PG.DrawPath(plotPen, plot)

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 597

CALCULATING A FUNCTION'S PATH

Let's look now at the code that generates the plots. To plot a function, we must calculate the
value of the function for each point along the X axis. To avoid calculating the value of the
function at more points than necessary, the program figures out at the very beginning how
many pixels are in the PictureBox. In our code we set up a loop that starts at _XMin and ends
at _XMax. The loop's counter is given by the following expression:

(_Xmax - _Xmin) / (PictureBox1.Width - 2)

This increment makes sure that the function is calculated at the points that correspond to the
pixels across the PictureBox control. We calculate the value of the function at each point along
the horizontal axis and add a line segment to the path that represents the specific function. The
line segment extends from the previous point to the current one. This process is repeated for
all functions, and we create a new GraphicsPath object for each function. The GraphicsPath
objects are added to an ArrayList collection, the Plots collection. We'll use this collection to
draw the plots on the PictureBox control. Listing 20.3 shows the statements that create the
paths of the functions.

LISTING 20.3: GENERATING THE FUNCTIONS' PATHS
Dim plot As System.Drawing.Drawing2D.GraphicsPath
For i = 0 To Functions.Count - 1
 Dim functionName As String
 plot = New System.Drawing.Drawing2D.GraphicsPath
 functionname = Functions(i)
 oldX = _Xmin
 oldY = CSng(FunctionEval(functionName, _Xmin))
 For t = _Xmin To _Xmax Step _
 (_Xmax - _Xmin) / (PictureBox1.Width - 2)
 X = CSng(t)
 Try
 Y = CSng(FunctionEval(functionName, t))
 plot.AddLine(oldX, oldY, X, Y)
 oldX = X
 oldY = Y
 Catch
 End Try
 Next
 plots.Add(plot)
Next

To display the plots on the control, we must apply the World transformation matrix to each
GraphicsPath object and then render it on the control. This is what the statements of Listing
20.4 do.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 598

LISTING 20.4: DRAWING THE FUNCTIONS
Dim plotPen As Pen = New Pen(Color.Red)
Dim iplot As Integer
G.SmoothingMode = SmoothingMode
Try
 For iplot = 0 To plots.Count - 1
 plotPen.DashStyle = FunctionStyles(iplot)
 plotPen.Width = Convert.ToInt32(FunctionLineWidths(iplot))
 plotPen.Color = FunctionColors(iplot)
 plots(iplot).Transform(World)
 G.DrawPath(plotPen, plots(iplot))
 Next
Catch ex As Exception
 Throw ex
End Try

Drawing the Grid

Before plotting the functions, the program draws the major and minor grids on the PictureBox
control. The settings of the two grids are specified by the developer using the appropriate
properties of the control. The two nested loops shown in Listing 20.5 draw the two grids.
Regardless of whether the grid lines will be visible or not, the tick marks are always visible.
The grid's lines are drawn at the same locations as the tick marks, but they cover the entire
width or height of the PictureBox control.

LISTING 20.5: DRAWING THE GRID AND TICK MARKS
For iGridLine = 0 To _MajorXTicks
 axisNum = _Xmin + iGridLine * (_Xmax - _Xmin) / _MajorXTicks
 If _ShowMajorGrid Then
 If iGridLine <> 0 And iGridLine <> _MajorXTicks + 1 Then
 G.DrawLine(New Pen(_MajorGridColor, _MajorGridWidth), _
 Convert.ToSingle(MajorXGridSpace * iGridLine), _
 Convert.ToSingle(0.0), _
 Convert.ToSingle(MajorXGridSpace * iGridLine), _
 Convert.ToSingle(PictureBox1.Height))
 End If
 If _ShowMinorGrid Then
 Dim iMinorGridLine As Integer
 For iMinorGridLine = 1 To _MinorXTicks
 G.DrawLine(New Pen(_MinorGridColor, _MinorGridWidth), _
 Convert.ToSingle(MajorXGridSpace * iGridLine + _
 MinorXGridSpace * iMinorGridLine), _
 Convert.ToSingle(0.0), _
 Convert.ToSingle(MajorXGridSpace * iGridLine + _
 MinorXGridSpace * iMinorGridLine), _

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 599

 Convert.ToSingle(PictureBox1.Height))
 Next
 Else
 Dim iMinorGridLine As Integer
 For iMinorGridLine = 1 To _MinorXTicks
 G.DrawLine(New Pen(_MinorGridColor, _MinorGridWidth), _
 Convert.ToSingle(MajorXGridSpace * iGridLine + _
 MinorXGridSpace * iMinorGridLine), _
 Convert.ToSingle(PictureBox1.Height), _
 Convert.ToSingle(MajorXGridSpace * iGridLine + _
 MinorXGridSpace * iMinorGridLine), _
 Convert.ToSingle(PictureBox1.Height - 10))
 Next
 End If
 End If
Next

NUMBERING THE AXES

Next, the numbers at the major tick marks are drawn. To avoid printing very small or very
large values, the code scales the values and uses exponentials, if needed. The value
0.00000123 will be printed as 1.23 * 10-6, and the value 123000000 will be printed as 12.3 *
107. The following statements determine the values along the Y axis, as well as their format:

valStep = (Ymax - Ymin) / _MajorYTicks numFormat = ''0.00"
Dim exp As Integer = 0
If valStep < 0.0001 Then
 While valStep < 1
 exp = exp - 1
 valStep *= 10
 End While
End If
If valStep > 99999 Then
 While valStep > 100
 exp = exp + 1
 valStep /= 10
 End While
End If
If Math.Abs(valStep) > 1 Then numFormat = "0.00"
If Math.Abs(valStep) > 10 Then numFormat = "#,###,##0"
If Math.Abs(valStep) < 0.1 Then numFormat = "0.000"
If Math.Abs(valStep) < 0.01 Then numFormat = "0.0000"
If Math.Abs(valStep) < 0.001 Then numFormat = "0.00000"
If Math.Abs(valStep) < 0.0001 Then numFormat = "0.000000"

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 600

The following statements (Listing 20.6) print the numbers along the Y axis (these statements
appear in the same For...Next loop that draws the tick marks along the Y axis):

LISTING 20.6: PRINTING THE AXIS NUMBERS
G.DrawString(axisNum.ToString(numFormat), AxisNumberFont, _
 New SolidBrush(_AxisNumberColor), _
 New RectangleF(1, PictureBox1.Top + _
 PictureBox1.Height - _
 Convert.ToSingle(MajorYGridSpace * iGridLine) - _
 AxisNumberFont.GetHeight(G) / Convert.ToSingle(2), _
 PictureBox1.Left - 5, AxisNumberFont.GetHeight(G)), fmt)
Next
If exp <> 0 Then
 Dim expVal As String
 expVal = ''x10"
 Dim ReducedFont As New Font(AxisNumberFont.Name, _
 AxisNumberFont.Size - 1, AxisNumberFont.Style)
 Dim expWidth As Integer
 expWidth = Convert.ToInt32(G.MeasureString(expVal, _
 ReducedFont, 999).Width) + 1
 fmt.Alignment = StringAlignment.Near
 G.DrawString(expVal.ToString(), ReducedFont, _
 New SolidBrush(AxisNumberColor), _
 New RectangleF(PictureBox1.Left, _
 PictureBox1.Top - 1.2 * ReducedFont.GetHeight(G), _
 expWidth, AxisNumberFont.GetHeight(G)), fmt)
 ReducedFont = New Font(AxisNumberFont.Name, _
 AxisNumberFont.Size - 2, AxisNumberFont.Style)
 G.DrawString(exp.ToString(), ReducedFont, _
 New SolidBrush(AxisNumberColor), _
 New RectangleF(PictureBox1.Left + expWidth, _
 PictureBox1.Top - 1.2 * AxisNumberFont.GetHeight(G), _
 expWidth, ReducedFont.GetHeight(G)), fmt)
End If

The program prints the numbers on the UserControl object's surface, centered at the
corresponding tick marks. Note that the tick marks are drawn on the PictureBox control. The
X axis numbers are centered horizontally and the Y axis numbers are centered vertically. In
drawing the vertical axis numbers, the program takes into consideration the value of the exp
variable, which is the exponent that will be used for all numbers along the axis. If its value is
different than 0, the code sets up a new Font object, the ReducedFont object. This font is
identical to the font we use for the axis numbers, but smaller by one point. We use this font to
print the exponent above the top left corner of the PictureBox control. The X axis numbers are
printed with a similar set of statements.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 601

DRAWING THE TITLES

The last step is the drawing of the plot's titles. Each title is printed in an area of fixed size,
which is determined by the placement of the PictureBox control on the UserControl object.
The font size used for each axis should be such that the title will fit in the designated area. The
plot's title is centered over the width of the UserControl object. The X axis title is centered
over the width of the PictureBox control and the Y axis title is rotated 90 degrees counter-
clockwise and centered over the height of the PictureBox control.

The code that prints the titles is shown in Listing 20.7. First it prints the Y axis title. It applies
a rotation and a translation transformation to the G Graphics object. The rotation is needed to
rotate the text. The rotation keeps the top left corner of the object to be rotated fixed, so the
title will end up outside the area occupied by the UserControl object. To rectify the
displacement introduced by the rotation, we must apply another translation transformation by
the following amount:

-PictureBox1.Height - PictureBox1.Top

After printing the vertical title, the transformation is reset—we don't need any transformation
to print the two horizontal titles. Listing 20.7 shows the code that prints the plot's titles on the
surface of the UserControl object.

LISTING 20.7: DRAWING THE PLOT'S TITLES
fmt.Alignment = StringAlignment.Center

G.RotateTransform(-90)
G.TranslateTransform(-PictureBox1.Height - PictureBox1.Top, 0)

G.DrawString(_YAxisTitle, _AxisTitleFont, _
 New SolidBrush(_AxisTitleColor), _
 New RectangleF(0, 0, PictureBox1.Height, _
 _AxisTitleFont.GetHeight(G)), fmt)
G.ResetTransform()
G.DrawString(_XAxisTitle, _AxisTitleFont, _
 New SolidBrush(_AxisTitleColor), _
 New RectangleF(PictureBox1.Left, _
 PictureBox1.Top + PictureBox1.Height + _
 AxisNumberFont.GetHeight(G) * 1.5, PictureBox1.Width, _
 _AxisTitleFont.GetHeight(G)), fmt)
G.DrawString(_PlotTitle, _PlotTitleFont, _
 New SolidBrush(_PlotTitleColor), _
 New RectangleF(Me.Left, 5, Me.Width, _
 _PlotTitleFont.GetHeight(G)), fmt)

Open the PlotControl project and build the custom control, then use it with your own projects.
There are certainly areas to be improved, but it's a good starting point for a control that plots
two-dimensional functions. You can easily add statements to plot data as well: open a file with
X/Y values and plot them on the control with different markers, such as squares, circles, and
so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 603

One virtue of plotting, of translating a mathematical expression or equation into a visual
analog, is that you can see relationships you might not notice when merely reading the
numbers. At a glance you often can see a larger, overall view of the entire relationship or
structure that for most of us is not so clear in an equation.

However, not all numbers used by mathematicians are those familiar normal (or ''real")
numbers that we use every day, such as 120 miles or 3 hours. For example, to translate
waveforms into audio frequencies, or to analyze an FM radio signal, or, indeed, to generate
fractals, it is necessary to use "imaginary" numbers.

REAL AND IMAGINARY NUMBERS

In the 16th century, mathematicians began trying to describe a pretty odd duck, the square root
of minus one. When you multiply a number by itself, you square it; 4 * 4 is 16. And you can
also describe this relationship between 4 and 16 the other way: 4 is the square root of 16. It
seems obvious that there is a square root for any number. With 4, the square root is 2, and so
on. Squares and roots had been used for thousands of years, but finally attention was focused
on –1, which, though paradoxical in some ways, eventually proved quite useful.

What is the square root of –1? It's unusual, to say the least. For one thing, it's neither positive
nor negative. When you square a positive number, you always get another positive number (a
positive multiplied by a positive yields a positive). But when you multiply a negative number
by a negative number, you also get a positive. So the thing that you could multiply by itself to
get –1 is neither positive nor negative (and of course not zero). In other words, it's not a real
number.

Descartes called the square root of minus one an "imaginary" number, and the name stuck.
This distinguishes it from "real" numbers such as 2, or the square root of 25, or –12, or .55,
which all seem somehow more natural. After all, we can find things around us of which there
are two or five, or somebody removed a dozen bagels from the kitchen, or an oil can is half
full. We experience these "real" numbers. But where have you ever seen a number that is
simultaneously neither positive nor negative?

The square root of –1 is the imaginary unit and is denoted as i (sometimes j). With the
introduction of the imaginary unit, it was possible to calculate the square root of any negative
number. What's the square root of –4? If you attempt to calculate it with Visual Basic as:

Console.WriteLine(Math.Sqrt(–4))

you'll get a runtime exception. Visual Basic can't calculate square roots of negative numbers
because it can handle only real numbers.

Let's start by writing –4 as –1 * 4. The square root of this quantity is the square root of –-1
(which is the imaginary unit i) times the square root of 4 (which is 2). The square root of –4,
therefore, is 2 * i, where i is the imaginary unit. We can easily verify the previous result
because the square of 2 * i must be –4. Let's calculate the quantity:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(2*i)*(2*i) = 4*i*i

We know that i is the square root of –1, and therefore the quantity i * i is –1. Thus the term 4 *
i * i is –4. The imaginary number 2 * i is indeed the square root of –4.

We have seen that there are two kinds of numbers: real ones (such as the speed of a car or the
distance to the moon) and imaginary ones (such as the square root of a negative number). It is
possible

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 604

to combine real and imaginary numbers to produce complex numbers. When you combine real
with imaginary numbers, you get points on a grid, as shown in Figure 20.2. Real numbers on
this grid describe the horizontal distances, and imaginary numbers describe the vertical
distances. The resulting complex numbers are denoted as 4 + i * 7 or 6 + i * 5 .

NOTE This isn't really an addition. The plus sign says that the real and imaginary numbers are
tied together to form a complex number. It's like describing a point on a city map by using two
coordinates, such as A-13.

Sometimes we don't even use the symbol of addition to indicate a complex number. Instead,
we can write the previous complex numbers as (4, i * 7) or (6, i * 5). You can even drop the i,
if you keep in mind that the first number is the real one, and the second number is the
imaginary one. One last remark about real and imaginary numbers. We mentioned that there
are two kinds of numbers—the familiar real numbers and the imaginary ones. Both, however,
are complex numbers. A complex number without an imaginary part is a real number.
Similarly, a complex number without a real part is an imaginary number. The real numbers we
are all familiar with are therefore a special case of complex numbers.

The two components of a complex number are quite distinct. The number (4 + i * 7) is a
complex number and not an addition. The component 4 corresponds to a point on the
horizontal axis, and the number 7 corresponds to the vertical axis. It doesn't make any more
sense to add the two components of a complex number than it does to add time and distance.
The real part of a complex number is the letter in the map metaphor (A), and the imaginary
part is the number (13).

It is possible, however, to manipulate complex numbers. For example, you can add two
complex numbers by adding their real and imaginary parts separately. At the end of the
chapter we'll describe how to add or multiply two complex numbers. If you aren't familiar
with complex numbers, just follow the general description of the algorithms and worry later
about the details—or don't worry at all, and just use the functions we provide.

What's useful and special about using complex numbers to describe points on the complex
plane is that new and important real, experimentally verifiable results can be calculated.
Complex numbers are now widely used in every field of mathematics and applied science.
They are used in voice processing, image compression, radar, earthquake analysis, and many
other applications. Fractals, too, live on the complex plane.

MATH TRANSFORMATIONS

A fractal is the graphical representation of an iterative process (like an ordinary For...Next
loop), which is based on multiplying a complex number by itself. This process is called a
transformation because each time we multiply a number by itself, we transform it to another
number.

Three things can happen when you repeatedly multiply a number by itself. If it is a real
number bigger than 1, it will grow toward an infinitely large number (2 * 2 becomes 4; then 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number bigger than 1, it will grow toward an infinitely large number (2 * 2 becomes 4; then 4
* 4 becomes 16, 16 * 16 becomes 256, and so on quickly off to infinity). If our starting
number is less than one (a fraction), it will shrink toward an infinitely small number close to
zero. For example, multiply 1/2 by 1/2 and you get 1/4, then 1/4 by 1/4 becomes 1/16, and so
on down to a very little piece of a pie. However, there is a third possible result. On the fence
between the numbers that grow huge and the fractions that shrink is the number one. The
number one, and the number one alone, is completely stable and cannot balloon or shrink,
cannot move in either direction toward infinity.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 605

Applying a transformation that's based on multiplication of real numbers isn't very interesting,
because the result is known a priori. As you can see, numbers even extremely close to one will
rapidly diverge toward zero or infinity, depending on which side of one they are. This
divergence is the basis for drawing fractal images. You have heard the word attractors. For
any given transformation, attractors are points on the complex plane that draw other points
toward them. Zero and infinity are the attractors in our example above—they ''attract" the
initial numbers toward themselves like magnets. (The value one is not an attractor, but a
"stable" point of the transformation. Nothing changes when we multiply one by itself.)

All fractals are built upon the competing magnetism of two attractors. And between these two
attractors there is always a border (in our previous example, this border is the number one). If
you start an iteration with the number 1, the result will always be one, since one is the only
number that, when squared (or otherwise multiplied by itself), remains unaffected, remains
one. However, a fractal such as the Mandelbrot Set is a more complicated border–it is a visual
depiction of an iteration involving imaginary and complex numbers, not the number one.

COMPLEX NUMBERS PRODUCE EXCEPTIONALLY RICH SHAPES

Our example above is a simple transformation. We merely squared a number, then squared the
result, again and again. But watch what happens when we mix in a complex number. Let's
write an iteration that involves squaring, but adds a complex number into the mix. This will
not be a radical change. (We will put in a complex number, but we'll use zero for the
imaginary component when we start the iterations. Therefore, in this case, the imaginary
component will have no effect on the outcome). We're going to use this rather "mild" complex
number, with its imaginary part neutered, because we want to approach these ideas one step at
a time. Neutering the imaginary number provides us with a simpler, more easily understood
example. So, say our starting point is z = (0,0) and the constant c = (1,0). (From now on
we'll use the notation z, rather than a, to represent the points we generate to create our plots. z
is just a convention to remind us that we're no longer using real numbers, but instead are now
using complex numbers. Also, the constant c, like a constant in VB, remains unchanged—a
static value throughout all the iterations.)

If we repeat the operation z = z ˆ 2 + c a few times, we will get the numbers:

0ˆ2+1 = 1
1ˆ2+1 = 2
2ˆ2+1 = 5
5ˆ2+1 = 26

As you can see, the results get larger and larger, as before, and in a small number of iterations
they escape to infinity, also as before. However, because of the additional constant, the pattern
(2...5...26) is becoming a slightly less ordinary sequence than our simpler example, 2...4...16.
The constant is slightly disturbing the simple squaring as the transformation heads away from
1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's now go a step further and produce a more intricate result. If we change the constant c
from 1 to –1, we see a very interesting effect: rather than fly off the top of the grid to infinity
or sink down to zero, the line flutters between zero and minus one. This transformation results
in an oscillation. If c = –1, the results are

(–1)ˆ2 - 1 = 0
0 - 1 = –1
(–1)ˆ2 –1 = 0

...and so on.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 606

This elementary transformation offers another possibility. Some numbers will neither inflate to
infinity nor shrink to zero. They oscillate between two values. Let's follow the same
transformation with c = (0 + i * 1):

0ˆ2 + (0 + i) = i
iˆ2 +(0 + i)= (–1 + i)
(–1 + i)ˆ2+(0 + i) = i
iˆ2+(0 + i)=(–1 + i)

This is another example of a complex number that oscillates, this time between the values i
and (–1 + i). Don't be alarmed if you aren't familiar with complex numbers and can't follow
these numeric examples. The important thing to keep in mind is that some numbers will escape
to infinity, while others will remain bounded. And this distinction gives rise to the most
magnificent computergenerated images.

Finally, what if c = (0, 0) and z = (0.5, 0)? If you apply the same transformation, z
(which represents our current position on the grid) gets smaller and smaller and practically
vanishes after a number of iterations. This transformation has the same two attractors, but the
boundary between them is no longer a simple circle (the number one). Figures 20.2 and 20.3
show the trajectories of two points on the complex plane—as you can see, we're not dealing
with simple, stable, familiar geometric shapes here.

At the heart of every fractal image is a very simple transformation—a trivial transformation,
such as squaring a number over and over again. If this transformation is disturbed with the
introduction of an imaginary number, there arises the beautiful and elaborate filigree that we
all recognize as fractal images. The word fractal comes from the Latin root that also produced
fracture and fraction.

Notice that now our results are not that simple horizontal line between zero and infinity that
we got before. z is a complex number, so the boundary between the two attractors (zero and
infinity) is no longer a single number like one. It's a shape of indescribable complexity and
beauty, as we will shortly see.

FIGURE 20.2 This is the trajectory of a point that's in the process of flying off into infinity. This point, an
''escapee," will be displayed as a dot outside the boundary of the Mandelbrot Set.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 607

The Mandelbrot Set

The Mandelbrot Set is the group of numbers that, when plugged into the formula z = z ˆ 2
+ c, remain ''bounded" (don't escape to infinity). Technically, this set is the portion of the
complex plane that is attracted to zero. A number will either fly off toward infinity (and
therefore not be part of the Mandelbrot Set) or it will go toward zero (or, possibly, oscillate).
The numbers going toward zero or oscillating, when all painted in, create the classic
Mandelbrot shape as shown in Figure 20.4.

FIGURE 20.3 This trajectory reveals that this point will remain a "prisoner." It cannot puncture the
boundaries and will eventually fall to zero. Notice how it approaches zero in an aperture-like, symmetric
path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 20.4 The classic Mandelbrot Set is revealed here as a somewhat lumpy symmetry.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 608

To display our fractals on the computer screen, we can think of the complex plane as a grid,
with real numbers shown horizontally and imaginary numbers shown vertically. Every pixel
on our drawing surface is mapped to a point on the complex plane. To calculate the
Mandelbrot Set in VB, we'll first arbitrarily choose a zone within the grid to paint in. For each
point in this area, we assign the corresponding complex number to c (corresponding to this
particular position on the grid) and, starting with z = 0, we repeat the transformation against
this value enough times to discover whether or not this particular position will escape to
infinity. If it will, we color it white to show that it is outside of the Mandelbrot Set. If it won't
escape, we color it black to show that it is part of the set. In other words, we calculate the
square of z, add the constant c, and, once again, put the result into z. This process is repeated
again and again until we are reasonably confident that we know whether this one is an escapee
or not. For a black-and-white fractal, 32 times is enough; for highly detailed fractals, we may
check a pixel thousands of times before we're reasonably sure that it remains bounded.

The result is an intricate shape known as the Mandelbrot Set. The irregular ''line" between the
black and white areas is the boundary between the two attractors (zero and infinity). Points
that remain bounded within a fractal set's boundaries are called prisoners, while those that
escape to infinity are called escapees.

How do we find out if one of our points succeeds in escaping to infinity? Obviously, we
shouldn't have to wait for an overflow condition. It can be mathematically proven that if either
the real or the imaginary part of z is larger than 2 or smaller than –2, it will inevitably escape
to infinity. However, if the result remains in the range (–2,2) after a large number of iterations,
then the point is bounded. So, we could just run it through the iterations enough times to
satisfy ourselves that it is or isn't escaping by going beyond 2 in either direction. However,
we're going to use a slightly different approach.

Another way to test for escapees is to compare the result of each iteration against a very large
number, such as 100,000. If our result (either its real or its imaginary part) is larger than
100,000, we know that this point escapes to infinity. As we'll soon see, we want to know more
about each point than simply whether or not it escapes—so we'll use this compare-to-huge-
number technique.

One last detail before we get to the actual VB programming that produces fractals. We
mentioned that the operation must be repeated for every point in our grid. Because a computer
screen has a limited number of pixels, we need to calculate the values of only those points we
can plot on the screen (in other words, the pixels, the dots that are visible to the user). If the
area of our grid is from –1 to +1 in both axes, and the Picture Box we will use to display the
Mandelbrot Set has a resolution of 512×512 pixels, we must find only the points of the grid
that correspond to pixels. The increment between two successive points must be 2/511, and
therefore the points we will use are –1, –1 + (2/511), –1 + 2 * (2/511), and so on, up to –1 +
511 * (2/511). The last point is 1, the other endpoint.

PROGRAMMING THE MANDELBROT SET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now for the VB programming that opens the door to what many people find a hypnotic and
even addictive world. Because fractals are the visual analog of the most complex object in all
mathematics, we should be grateful that we amateurs and even nonmathematicians are
privileged to see with our computers what even the math geniuses who discovered fractals
couldn't visualize.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 609

FIGURE 20.5 The Mandelbrot application's interface

The main Form of our first fractal application, Mandelbrot, is shown in Figure 20.5. This
application generates colored Mandelbrot Sets. Another type of fractal is the Julia Set, and
we'll get to it shortly. The PictureBox control that covers most of the form has dimensions
(512×512 pixels).

To draw the Mandelbrot Set, set the parameters on the form and click the New Fractal button.
A new fractal will slowly be drawn on your screen. You can stop the calculation (and
drawing) of the fractal at any point by pressing the Escape button. After the fractal has been
drawn on the screen, you can select an area with the mouse and zoom into it. Just click the
New Fractal button again to draw the selected area.

Let's start with the black-and-white Mandelbrot Set. The only parameters to define are the
following:

 The area of the complex plane we wish to map (Xmin, Xmax, Ymin, YMax)
 The resolution of the Picture Box (nx, ny)
 The maximum number of iterations required to establish that a given point remains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 The maximum number of iterations required to establish that a given point remains
bounded (maxiter)

Thirty-two iterations is a good starting point for the black-and-white Mandelbrot Set. Larger
values, such as 500 iterations, yield more accurate sets but, of course, require longer
calculation times. So let's plunge in. Listing 20.8 is the programming that results in Figure
20.5.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 61

SOAP serialization produces a SOAP-compliant envelope that describes its contents and
serializes the objects in SOAP-compliant format. SOAP serialized data are suitable for
transmission to any system that understands SOAP, and it's implemented by the
SOAPFormatter class. As you will see later in this book, binary and SOAP serialization are
used by remoting to pass objects between two domains (two applications running on the same,
or different, computers). SOAP serialization is fire-wall-friendly and is used to remote objects
to a server on a different domain. Binary serialization isn't firewall-friendly, but it's faster and
more compact. It's used to remote objects in a local area network.

XML serialization is implemented by the XmlSerializer class and is a different type of
serialization. The XmlSerializer class serializes public, read/write properties only. Because it
doesn't serialize the private members, or read-only properties, the XmlSerializer doesn't quite
preserve the state of the object. Another limitation of the XmlSerializer is that it doesn't
serialize collections, with the exception of arrays and ArrayLists. However, it can be
customized with the use of attributes (special keywords that prefix the members of a class) and
it's as close as we can get to a universal data exchange format. You will see later in this
chapter how to retrieve XML from SQL Server and use it to automatically populate objects
with a structure that matches the schema of the XML document.

Basic Serialization

To serialize an object, you need to set up a formatter object that determines the type of
serialization and a stream object that will accept the result of the serialization. Any stream will
do; in this chapter's examples we'll use a stream that represents a disk file. If you only want to
look at the serialized stream's bytes, you can use a MemoryStream. You can even use a
WebResponse stream to direct the data to a browser. The formatter is an instance of the
BinaryFormatter or the SoapFormatter class, depending on the type of serialization you want
to perform. Both the BinaryFormatter and the SoapFormatter expose the same methods and
the code is identical. The choice of formatter depends on your application's requirements.

TIP Not all objects can be serialized in SOAP or binary format. An object can be serialized if
its parent class was marked as serializable. Many of the built-in classes are serializable, but
not all of them.

The object to be serialized is usually an instance of a custom class, or a collection of objects.
To demonstrate the basic steps in serialization, we'll create an ArrayList and populate it with a
few serializable objects. The Rectangle class is serializable and so is the Bitmap class. These
are two drastically different types and, as you will see, the serialization mechanism of .NET
can handle them both. The ArrayList objects is the object to be serialized. We'll serialize it
in binary format and store the serialized object into a file, which we'll use later to reconstruct
the original ArrayList.

First, you must add a reference to the System.Runtime.Serialization class to your project. To
minimize the typing import the following namespaces to the project:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Runtime.Serialization.Formatters.Binary
Imports System.IO

Then enter the statements of Listing 3.1 in a button's Click event handler. You can find the
code samples of this section in the BasicSerialization project, whose main form is shown in
Figure 3.1.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 610

LISTING 20.8: DRAWING THE MAMNDELBORT SET
Private Sub bttnMandelbrot_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnMandelbrot.Click
 Static IterMin As Integer = 100000
 Dim IterMax As Integer = –100000
 Dim bmap As Bitmap
 bmap = New Bitmap(512, 512, _
 Drawing.Imaging.PixelFormat.Format32bppPArgb)
 PictureBox1.Image = bmap
 Dim pX, pY As Integer
 Dim NX As Integer = 512
 Dim NY As Integer = 512
 Dim MaxIter As Integer
 Dim X, Y As Double
 Dim Iterations As Integer
 Dim minIterations As Integer = CInt(txtMin.Text)
 Dim maxIterations As Integer = CInt(txtMax.Text)
 Dim colorMin As Integer
 Dim colorMax As Integer
 Dim pixelColor As Color

 If IsNumeric(txtColorMin.Text) Then colorMin = _
 CInt(txtColorMin.Text)
 If IsNumeric(txtColorMax.Text)= _
 CInt(txtColorMax.Text)
 If IsNumeric(txtMin.Text) Then minIterations = CInt(txtMin.Text)
 If IsNumeric(txtMax.Text) Then maxIterations = CInt(txtMax.Text)
 If maxIterations <= minIterations Then
 MsgBox(''The number of maximum iterations should be larger " & _
 "than the number of minimum iterations")
 Exit Sub
 End If
 If colorMax <= colorMin Then
 MsgBox("The first color s value should be smaller " & _
 "than the last color s value")
 Exit Sub
 End If
 For pY = 0 To NY – 1
 Y = YMin + pY * (YMax – YMin) / (NY – 1)
 For pX = 0 To NX – 1
 X = (XMin + pX * (XMax – XMin) / (NY – 1))
 Iterations = Mandelbrot(X, Y, maxIterations)
 Dim clr As Integer
 clr = CInt(colorMin + _
 (colorMax – colorMin) / (maxIterations – minIterations) * _
 (Iterations – minIterations))

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 611

 pixelColor = PaintPixel(clr)
 bmap.SetPixel(pX, pY, pixelColor)
 Next
 PictureBox1.Invalidate()
 Application.DoEvents()
 If breaknow Then
 breaknow = False
 Exit Sub
 End If
 Next
End Sub

Above, X and Y are the grid coordinates of each pixel on the complex plane. In other words,
they are the grid coordinates that correspond to the pixels of our display. (Remember that we
are calculating the Mandelbrot Set for points on the complex plane that correspond to grid
intersections—pixels—on our display.)Since the dimensions of the canvas where the fractal is
drawn are 512×512 pixels, we must repeat the transformation 512×512 times. We've set up
two nested loops, one through the rows of pixels and another through the pixels of each row.
At each iteration, the program calls the Mandelbrot()function, which returns the number of
iterations it took for the current point to escape to infinity. For points that persist in remaining
bounded, the transformation must be repeated MaxIterations times. The current pixel is
colored by a color that reflects how long it took the current point to escape to infinity.

The essential calculation that discovers whether or not our pixel is an escapee takes place in
the Mandelbrot() function, whose code is shown in Listing 20.9.

LISTING 20.9: THE MANDELBROT() FUNCTION
Function Mandelbrot(ByVal Cx As Double, _
 ByVal Cy As Double, _
 ByVal maxIter As Integer) As Integer
 Dim iter As Integer
 Dim X2, Y2 As Double
 Dim X, Y As Double
 Dim temp As Double
 While iter < maxIter And (Sqrt(X2 * X2 + Y2 * Y2) < 4)
 temp = X2 – Y2 + Cx
 Y = 2 * X * Y + Cy
 X = temp
 X2 = X * X
 Y2 = Y * Y
 iter = iter + 1
 End While
 Return (iter)
End Function

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 612

The Mandelbrot() function returns the number of iterations executed. If the function repeated
its calculations MaxIter times, the point is a prisoner. If the value returned by the function is
smaller than MaxIter, the point is an escapee and it's colored according to the number of
iterations it took for the point to escape. The first five lines of the While loop multiply a
complex number by itself and add the constant c, as we described earlier in the chapter. (For
those who really want to know the gory details, multiplication and addition of complex
numbers will be explained at the end of this chapter.) If the point escapes quickly to infinity,
we exit the loop before reaching the maximum number of iterations.

In our code we're using a structure to store the coordinates of the current fractal (these
statements are not shown here, because they have nothing to do with the fractal calculations;
you'll find them in the project's code). We've set up an ArrayList, the limits ArrayList,
which we populate with instances of the Bounding structure, so that we can move to the
previous/next fractal easily. The definition of the Bounding structure is:

Structure Bounding
 Dim XMin As Double
 Dim XMax As Double
 Dim YMin As Double
 Dim YMax As Double
End Structure

You can look up the project's code to see how the limits ArrayList is used in the code. We
keep track of the bounding rectangle of each fractal, so that we can return to it should we
zoom into an area of no interest. You can expand this structure to keep track of the number of
iterations and colors used to produce each fractal.

The Julia Set

We will now temporarily leave the Mandelbrot Set to describe how to generate a different type
of fractal image, known as Julia Sets. This is a second major style of fractal. A Julia Set (see
Figures 20.6–20.8) is generated by the same process as a Mandelbrot Set, only here the
function z = z ˆ 2 + c is defined differently. In a Julia Set, the variable z takes on every
value of the grid, and c remains the same throughout the entire process. The constant c can
have any value, as long as both its parts (the real and the imaginary part) are between –2 and
2. In other words, c is added to the square of each point in the complex plane, and the same
transformation is repeated over and over.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 20.6 This is the ''classic" Julia Set shape, but Julia Sets beget many different shapes depending
on what numbers you feed them.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 613

FIGURE 20.7 Here's another Julia Set, quite distinct from Figure 20.6.

FIGURE 20.8 And yet another variation of the Julia Set

Unlike the Mandelbrot Set, whose shape is always the same, a Julia Set can be many different
designs, depending on the value of the constant c. Different values of c result in quite different
images. However, every one of those images can, like any other fractal, be zoomed into. And
the zooming will reveal, variously, shapes and designs that resemble (but are not quite
identical to) the original. This is why fractal geometry is sometimes referred to as self-similar.

Unfortunately, not all c values yield interesting Julia Sets, and it's not always easy to come up
with a good value for the parameter c. The value used most often to produce the ''classic" Julia
Set is –0.74543 + i0.11301. (We'll suggest a few other good c values later in this chapter.)

PROGRAMMING JULIA SETS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VB code for generating a Julia Set is virtually identical to the code for the Mandelbrot Set
(see the Julia application). Actually, the two sample applications of this chapter have an
identical user interface, but they produce different types of fractals. The difference is how we
apply the transformation to each point of the complex plane. The JuliaSet() function is shown
in Listing 20.10.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 614

LISTING 20.10: THE JULIASET() FUNCTION
Private Function JuliaSet(ByVal cx As Double, _
 ByVal cy As Double, ByVal X As Double, _
 ByVal Y As Double, ByVal MaxIter As Integer) As Integer
 Dim iter As Integer
 Dim x2 As Double, y2 As Double
 Dim xtemp As Double, ytemp As Double

 iter = 0
 x2 = X + cx
 y2 = Y + cy
 While ((iter < MaxIter) And ((Abs(x2) + Abs(y2)) < 100000))
 xtemp = x2 * x2 – y2 * y2 + cx
 ytemp = 2 * x2 * y2 + cy
 x2 = xtemp
 y2 = ytemp
 iter = iter + 1
 End While
 Return iter
End Function

The first two arguments, cx and cy , are the real and imaginary parts, respectively, of the
complex constant c. Just like the MandelbrotSet() function, the JuliaSet() function returns the
number of repetitions required for the point to escape to infinity. Again, if the point under
consideration remained bounded up to the maximum number of iterations, it is considered
bounded and we color it black. Otherwise, it's colored according to how fast it escaped.

COLORING FRACTALS

Different colors represent different escape velocities. Points that escape to infinity with
different velocities are colored differently. So, although you could assign any colors you want
to represent the various speeds of escape or entrapment of each point, there must nonetheless
be a consistent pattern of color created within any single Julia or Mandelbrot Set. In other
words, red could indicate only the fastest escapees or could mean only the bound points or
some other in-between escape velocity. So what red means in general is up to you. But all
points colored the same shade of red within a given fractal image share the same (or a similar)
velocity.

These mysterious variations of escape velocity (and the resulting patterns of position and
color) give fractals their beauty and complexity. We mentioned earlier that once the absolute
value of the real or imaginary part of the point under consideration becomes larger than 2, the
point will eventually escape. We could have used this well-known fact to end our calculations
sooner and make our programs slightly faster, but when drawing colored fractals we are also
interested in the velocity of escape, not in the mere fact that a point will eventually escape. So,
we permit iterations to go on longer than strictly necessary because this provides us with the
information about escape velocity, which we use to determine the color of each point. (By
gathering more information about velocity, we can increase the color detail within our fractal.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 615

There are many ways you could decide to represent the various escape velocities of these
points with colors, but if you think about it, you'll realize it's not easy to come up with a color
set for a fractal. Fractals are unpredictable by nature, and there is no way to predict which
colors will do best in any particular complex image. Should we color red the points that escape
immediately to infinity, or those that take longer? And how many basic colors should we use
in the palette? And often of supreme importance to the look of the final picture—how will the
palette be organized? Do we want a gradual shift from one shade at the start, to a comparable
shade at the end, such as light to dark blue? Or perhaps a rainbow effect with all colors
included?

The fractal algorithms won't help us, so we'll follow a different approach. We will attempt to
design a color palette that satisfies two basic requirements. First, transitions among colors
must be as smooth as possible. Let's say we have a point that escapes to infinity after 100
iterations, and it is colored red. It's likely that some of its neighboring points will escape to
infinity after 101 or 99 iterations. Often a better-looking image results if these points are
colored with a similar tone of red, and not a tone of green or blue. Second, we don't
necessarily want many different colors. The most pleasing effects can result from a palette
with a few basic colors, widely spaced apart and separated by gradual transition shades. Such
a palette yields the most smoothly colored fractals.

The smoothest palette is one built from a single color, just a gradient of shades of the same
color. A palette with 256 tones of gray, from black to white, is the smoothest possible palette.
It contains only two basic colors and as many of their transition tones as you can get on a
computer. (You can also create other palettes, which contain smooth transitions between, for
example, very dark red and white, with all the pinks between.)

In our code we've implemented a palette with 2,048 colors. The first color is black. The next
255 colors are the shades between black and red. In effect, we walk through the color space
between black and red. Then we walk the space between the red and yellow colors. The next
256 colors are shades between red and yellow. Then we move to cyan, blue, and so on. If
you're familiar with the color cube, you've already understood that we construct our palette by
walking through the corners of the color cube, passing through each possible shade between
them. Listing 20.11 shows the code of the PaintPixel() function, which accepts as argument
the number of iterations and returns the color of the palette that corresponds to this index.

LISTING 20.11: MAPPING ITERATIONS TO COLORS
Private Function PaintPixel(ByVal clr As Integer) As Color
 Select Case clr
 Case 0 To 256 - 1
 Return Color.FromArgb(clr, 0, 0)
 Case 256 To 256 * 2 - 1
 Return Color.FromArgb(255, clr - 256, 0)
 Case 256 * 2 To 256 * 3 - 1
 Return Color.FromArgb(255, 255, clr - 256 * 2)
 Case 256 * 3 To 256 * 4 - 1
 Return Color.FromArgb(255, clr - 256 * 3, clr - 256 * 3)
 Case 256 * 4 To 256 * 5 - 1
 Return Color.FromArgb(255, 256 * 5 - clr - 1, 255)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return Color.FromArgb(255, 256 * 5 - clr - 1, 255)
 Case 256 * 5 To 256 * 6 - 1

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 616

 Return Color.FromArgb(clr - 256 * 5, _
 clr - 256 * 5, clr - 256 * 5)
 Case Else
 Return Color.FromArgb(clr Mod 256, clr Mod 256, clr Mod 256)
 End Select
End Function

The Real Magic of Fractals

Up to now, we've been variously limited by ranges of color, organization of the palette, and
seeing only the outermost view of the generated fractal. The Mandelbrot and Julia applications
allow you to zoom in on a given fractal so that you can see how colors and shapes emerge and
vary, the farther into a fractal you move. (Generally, the first, outermost view of a fractal
contains less variety of color. Often, the real beauty of a fractal is hidden among the filaments.
To really explore a fractal, move repeatedly down through the filaments within.) To zoom into
a specific area of a fractal, use the mouse to draw a rectangle that encloses the desired area and
then click the Draw Fractal button.

Once you start zooming into a fractal, you must adjust the minimum and maximum number of
iterations, as well as the two end colors. The sample applications of this chapter are not the
ultimate fractal generators, but they're short Visual Basic applications that can serve as a
vehicle for your own exploration of the world of fractals. The two end colors on the
application's interface are specified by their index in the 2048 palette. A starting index of 0
and and an ending index of 256 correspond to a palette of shades from black to red. A starting
index of 512 and an ending index of 1024 yields a palette with 256 shades from yellow to red,
followed by 256 shades from red to white. You can edit the code of the PaintPixel() function
to create any palette, or add more colors to it.

To control the appearance of each fractal you can adjust the values of the min/max iterations
and the min/max colors. The code maps the iterations to colors, and the two ranges shouldn't
be very different. For example, if the number of iterations goes from 0 to 64 and the number of
colors from 0 to 1024, you won't have a very smoothly colored fractal. You'll have to
experiment with the settings of these two parameters a little to get a nice image. Moreover, the
settings that will work for one fractal will not work for another one. As you zoom deeper and
deeper into a fractal, you'll have to increase the number of iterations, because it's the border of
the Mandelbrot Set that contains the most intriguing patterns (points that take a long number
of iterations to escape).

Figures 20.9 through 20.14 illustrate the unique nature of fractals. Fractal images do not have
''resolution." They never run out of shapes or colors, no matter how deep you zoom into them.
Think of the zoom operation as an electronic microscope that probes the deep fractal space.
There are limits to how deep you can probe, but these limits are due to the instrument, not the
object you are examining. The power of your electronic microscope goes as far deep as
double-precision numbers can take it. Keep zooming and you will keep discovering new
patterns, until you reach the smallest number Visual Basic can represent. This is where your
microscope's resolution, but not the fractal space, ends.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 617

The Mandelbrot Set, just like the Julia Set, exhibits the self-similarity property. Successive
magnifications of the same spot in the set look more like different sections of the same image,
rather than drastically different magnifications of the same image. Although unreal, they look
familiar and remind you of anything from trees to galaxies.

FIGURE 20.9 The Mandelbrot Set in its entirety

FIGURE 20.10 Zooming into the top left area of the fractal of Figure 20.9

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 618

FIGURE 20.11 Exploring the edges of the fractal of Figure 20.10

FIGURE 20.12 Discovering a replica of the original Mandelbrot Set in the filaments of the fractal of
Figure 20.11

The fractals in the figures of this chapter will be rendered in shades of gray. We will post the
same images in color at the book's site, along with the chapter's projects.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 619

FIGURE 20.13 The same fractal of Figure 20.12 drawn with 64 iterations only

FIGURE 20.14 The same fractal once again, this time computed with 512 iterations

SOME GREAT JULIAS

While the Mandelbrot Set doesn't vary (but you can discover an infinite number of patterns as
you zoom into its borders), the Julia Set is based on an initial point on the complex plane (the
parameters Cx and Cy). Here is a list of numbers you can try that produce interesting Julia
Sets (or you can

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 62

LISTING.1: BINARY SERILALIZATION OF AN ARRAYLIST COLLECTION
Private Sub bttnSerialize_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSerialize.Click
' UNCOMMENT THE TWO STATEMENTS IN THE PROCEDURE AND COMMENT OUT THE
' FOLLOWING STATEMENTS TO SERIALIZE THE SAME OBJECTS IN BINARY FORMAT
 Dim objects As New ArrayList
 objects.Add(New Rectangle(10, 10, 100, 160))
 objects.Add(New Bitmap(''..\sample.gif"))
 Dim BF As New BinaryFormatter
 'Dim SF As New SoapFormatter
 Dim Strm As New FileStream("..\Objects.Bin", FileMode.OpenOrCreate)
 Strm.SetLength(0)
 Try
 BF.Serialize(Strm, objects)
 'SF.Serialize(Strm, objects)
 Catch ex As Exception
 MsgBox("Serialization failed." & vbCrLf & _
 ex.Message)
 Strm.Close()
 Exit Sub
 End Try
 Strm.Close()
 MsgBox("Collection serialized successfully ")
End Sub

FIGURE 3.1 The BasicSerialization project demonstrates how to serialize and deserialize built-in objects.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 621

Since i is the square root of –1, the square of i is –1. The term ib * id, therefore, is reduced
to –bd. Then we separate the real and imaginary parts, to form the new complex number:

a*c + ib*c + ia*d + ib*id = a*c + i(b*c + a*d) –b*d =
(a*c – b*d + i(b*c + a*d)), or (a*c – b*d, b*c + a*d)

Here's an example of complex number multiplication:

(3, i7) * (–2, i4) = (3*(–2) – (7*4), 7*(–2) + 3*4) = (–34, –2)

The Transformation z = z2 + c

Let's follow the lines of the Mandelbrot function that implements the transformation z = z ˆ
2 + c. z is a point on the complex plane, defined by two numbers: the real and imaginary
part. Let's call these parts x and y. Similarly, c is another complex number whose real part is
Cx and imaginary part is Cy. The previous transformation can now be written as

z = (x + iy) ˆ 2 +(Cx + iCy)

The square of a complex number is calculated as follows (it's a direct application of the
multiplication formula given earlier):

(x + iy) ˆ 2 = (x + iy)*(x + iy) = xˆ2 – yˆ2 +i2xy

The result is another complex number, whose real part is (xˆ2 – yˆ2) and imaginary part is
2xy. It can also be written as (xˆ2 – yˆ2 + i2xy).

Then we add the constant C to the result. The new number z becomes:

((xˆ2 – yˆ2) + i2xy) + (Cx + iCy) = (xˆ2 – yˆ2 +Cx) + i(2xy + Cy)

The result of the operation z ˆ 2 + c is another complex number, whose real part is (xˆ–
yˆ2 + Cx) and imaginary part is (2xy + Cy). This number becomes the new value of the
variable z, and the process continues. Look at the Mandelbrot function to see that this is how it
implements the basic transformation z = z ˆ 2 + c. The variables x2 and y2 hold the
values xˆ2 and yˆ2 respectively.

Let's explain this further with a numeric example. We will apply the transformation to the
point (0.2 + i0.5) of the complex plane. We start with z = (0 + i0), square it, and add
the constant (0.2 + i0.5):

z = zˆ2 + c = (0 + i0)ˆ2 + (0.2 + i0.5) = (0.2 + i0.5)

This is the value of z for next transformation:

z = zˆ2 + c = (0.2 + i0.5)ˆ2 + (0.2 + i0.5) = –0.01 + i0.7

This value is assigned to z, and the same transformation is repeated over and over again, until
either the result exceeds a very large value or the maximum number of iterations is exhausted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 624

You know the effect. Which stranger do you trust more: the woman in stained sweatpants with
oily hair chewing gum? Or the calm, smart woman in a fitted beige silk dress, wearing a single
strand of pearls around her clean, strong neck?

Beyond the value of first impressions, users come to rely on visual conventions, the rules of
the road. For example, notice the difference between the forms in Figures 21.1 and 21.2:

FIGURE 21.1 BEFORE. Avoid flat, haphazard, dull, childish-looking forms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 21.2 AFTER. Much improved by adding a gradient, a 3D frame, balancing the controls, turning
off boldface text, and other adjustments.

See how many differences you can detect between Figures 21.1 and 21.2. There are 14
improvements in Figure 21.2:

 An icon appropriate to the application's purpose (a clock for a scheduling application,
for instance) is located in the upper left corner. A large collection of well-designed icons
can be found in \Program Files\Microsoft Visual Studio
.NET2003\Common7\Graphics\Icons. If you don't see this set of icons, you can
rerun VS.NET setup and choose to install them.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 625

 The form has a descriptive title, ''Schedule" (the form's Text property).
 The title "Schedule" is preceded by a space character when typed into the Properties
window. This looks better than jamming it up against the icon too closely. Various
defaults in VB.NET aren't the best design choice, and this is one of them.

 A second TextBox is superimposed on the existing TextBox. The inner TextBox is sized
slightly smaller than the outer (original) one. This way the outer TextBox provides the
framing and the inner TextBox can be adjusted to provide attractive margins. The inner
TextBox's BorderStyle property is set to None. The whole purpose of this nesting is to
move the text down from the top and over from the left a bit. By default, the text in a
TextBox is jammed up against the top and left sides too much (compare the margins of
the text 12 November - Maintenance in the two figures). Figure 21.2 has comfortable,
nice-looking margins; Figure 21.1 doesn't.

 The TextBox's BorderStyle property is changed from FixedSingle to Fixed3D.
 The Button's FlatStyle property is changed from Flat to Standard.
 The TextBox's FontName property is changed from Sans Serif to Times New Roman.
The sans serif (or Arial) fonts are good for button text, form text, and other "headline"
or "title" uses. However, most people prefer a serif (curlicue) font for body text. Books,
magazines, newspapers—and TextBoxes too—almost universally employ a serif font
such as Times for their smaller body text. It's easier to read because the letters are more
distinctive, especially at the smaller font sizes typical of narrative text. Unfortunately,
the TextBox defaults to sans.

 The TextBox font was changed from boldface to regular.
 The Button font was changed from boldface to regular.
 The form, TextBox, and button were resized and repositioned to ensure that the borders
between them are symmetrical. In other words, the distance between the TextBox's left
and right sides—and the form's edges—should be identical. Likewise, the distance
between the bottom of the TextBox and the top of the button should match the distance
between the bottom of the button and the bottom of the form. You can use the format
menu's Align, Make Same Size, and Spacing tools to get things right.

 The button text has been changed from Exit to Close. The term Exit is reserved for
shutting down an application. This is merely one of several forms in this application.
Dialog boxes and secondary forms are closed using buttons captioned variously OK,
Save, Cancel, or Close. But never Exit.

 The text on the button has a subtle etched effect (see Figure 21.3). More on this
technique later in this chapter.

 The button has a gradient background (more on this later). By default, the backgrounds
of most controls and the forms are flat.

 The form background also has a gradient background.

FIGURE 21.3 Etched text looks good on buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 627

If you don't like the metallic look, at least think about the colors you choose. To some extent,
the user's Windows display properties settings determine the look (such as the icons on a
form's title bar), but you have control over most elements in your forms.

FontBold Off

Second, FontBold should be False (normal text weight is used, not boldface) in the button
captions, menu titles and other text in most applications, including those from Microsoft.

Normal text looks neater and cleaner than boldface text. Reserve boldface for highlighting
something—to indicate, for instance, that a particular button has the focus (will activate if you
press Enter). More than an occasional touch of boldface is crude and unsightly.

Using a Sans-serif Typeface for Headlines

VB's default Font Property is MS Sans Serif, which is also the Windows default typeface. Of
the fonts that ship with Windows, if you want to use a sans face, choose Arial. It's the best
choice for most titles, captions, and headlines (but not body text). Arial differs from the
default MS Sans Serif primarily in that it improves the appearance of the charcters because the
midpoint of its uppercase letters is lower than the midpoint of MS Sans Serif's capitals. Arial
also improves readability by spacing its letters somewhat more widely apart.

Choosing a Type Size

For most purposes, the default FontSize (8.25) is too small. Normally, for typical screen
resolutions, you should adjust body text (captions, labels, TextBox text) to 11, and make
headlines and other large text what looks best—something between 20 and 40 points is usually
best.

Layering

Another technique that adds dimensionality is layering, a kind of rice-paddy effect whereby
you divide your form into logical zones. Take a look at all the controls on your form. If
necessary, make lists of which controls go together. Does this label describe this TextBox's
function? Does this button cause something to happen to the contents of this ListBox? Ensure
that controls that work together are physically located near each other, and even contained
together within a GroupBox or Panel. You can also use the new Splitter control, giving the
user the ability to adjust the size of the zones on your form. Sometimes you even want to put a
Panel within another Panel, to further subdivide the functions of the controls—this is the rice-
paddy effect.

Adding Depth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first and most important graphics technique when designing visually pleasing windows is
to add depth, to make them look three-dimensional. Flat, monochromatic screens should never
be used in Windows. No design error makes your application look more amateurish than a
lifeless, boring, flat surface.

Not only does a sculpted, 3D window look more attractive, it also more efficiently conveys
information to the user. One reason is that we are not Cyclops—we have two eyes, so depth,
the Z-axis, provides us with additional useful information. Also, the user is supposed to
interact with some controls,

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 628

and these controls should have highlights and shadows to make them look physical, to make
them look as if clicking on them will in fact do something.

A button looks as if it could be depressed; it seems to protrude from the window (unlike
Labels, which seem merely printed on the flat surface of the window). The Windows user
understands that a captioned three-dimensional rectangle is a button—just like buttons on
appliances in the real world. Likewise, the user understands that the flat printing on Labels is
merely informational—it describes the purpose or contents of something, but nothing will
happen if you click it. Sculpted controls such as RadioButtons are interactive. Almost
everyone knows to press the protruding button labeled POWER on a stereo—few try to press
the label POWER itself.

Buttons look best if you leave their FlatStyle property alone. Change FlatStyle and it goes,
yes, flat: designed to look like a label until a mouse pointer either moves over it or clicks it
(the Flat version turns gray, the PopUp version becomes dimensional—as shown in Figure
21.4). Also unsettling is that any FlatStyle other than the default ''Standard" adds a retro
dashed line around the button to indicate selected. This is old-style Windows. The current,
superior selected style has a dark outline, as shown in the figure. The strange FlatStyle.System
option should be avoided at all costs. It causes the button to become narrower, and is intended
for people who are forced to create platform-independent user interface designs (that's
oxymoronic, if you think about it).

FIGURE 21.4 Important visual clues distinguish various button styles.

Light from the Upper Left

Notice the top two buttons in Figure 21.4. See how Windows draws a button before (left) and
after (right) the Button is clicked. In Windows, the light is always assumed to be coming from
the upper left corner of the screen. Therefore, a protruding object like a button picks up
highlights along its top and left sides. Shadows fall along the right and bottom of the object.
However, if the object is supposed to be sinking into the background, the process is reversed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interestingly, most light sources in the real world usually follow this same pattern. People
reading outdoors often maneuver their position until the sun shines from their left side (and, of
course, above) onto the book. People often put lamps to the left of their desk and above it, to
the left of a reading chair, and so on. Look at your computer monitor. If you're like most
people, your lamp or ceiling light

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 629

(the primary light source) is above and to the left. And, in consequence, the top and left of
your monitor will pick up the highlights, the bottom and right will be in shadow. As an
experiment, turn this book upside down and see what happens to your perception of the shapes
in Figure 21.4. And if you work in a cubicle with the light source in some other location, tell
your boss that's the reason you've been moaning so much lately, or whimpering or whatever it
is that you do when distressed.

Creating Zones

When you start designing a form, you'll decide which controls you're going to use. But don't
put them on right away. First determine which controls will be merely decorative, which
informational, and which interactive. Then add some zones to visually separate these control
categories. Most controls have their own frames, but you want to use GroupBox controls to
frame other, related controls (such as a set of CheckBoxes).

Figure 21.5 illustrates excellent user-interface design. Information is displayed effectively and
efficiently by using various techniques—particularly by subdividing the main window into
logical zones. Also, there's considerable variety.

Notice in Figure 21.5 how many different areas and tools are arranged together to cue the user
what to expect. There are tabbed windows, toolbars, menus, lists, slider bars, dropdown lists,
menus, and a status bar. There's lots going on here, but there's also a logic to the arrangement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 21.5 Microsoft spends loads of cash refining user-interface design.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 63

First, we create an ArrayList collection and add to it a Rectangle and a Bitmap object. Then
we serialize the ArrayList by calling the Serialize method of the BinaryFormatter class. The
Serialize method accepts two arguments—a Stream object where the result of the serialization
will be written and the object to be serialized. As you can see, it doesn't get any simpler. The
structure exception handler is needed in case one of the objects you're trying to serialize is not
serializable. Many of the .NET Framework's built-in classes are not serializable and an
exception will be thrown if you attempt to serialize them. You will see shortly how to create
serializable custom classes, and you must make sure that any of your custom classes you plan
to serialize are serializable.

This is the code needed to serialize an object in binary format, regardless of the object's
complexity. In effect, all the work is done by a single statement, which calls the formatter's
Serialize method. Most of the output's bytes are the contents of the bitmap, but you'll be able
to figure out that it contains an instance of the Rectangle class (the string
''System.Drawing.Rectangle" appears in the file), as well as an instance of the Bitmap class
(indicated by the string "System.Drawing.Bitmap"). The dimensions of the rectangle are
stored in binary format and you can't read them.

To use SOAP serialization, you must first add a reference to the SoapFormatter to your
project. Open the Add Reference dialog box (menu Project Add Reference) and select the
component System.Runtime.Serialization.Formatters.Soap. In the listing of the
BasicSerialization project, we've commented out the statements that use the SoapFormatter.
You can uncomment these statements and comment out the statements that perform binary
serialization. Here's what the Objects.bin file looks like for the SOAP serialized ArrayList
(the bytes making up the image are stored in Base64 encoding and we're showing only a few
dozen bytes). The line breaks were inserted during the typesetting process; normally, there are
no breaks in the serialized data.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:
 xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
 ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<a1:ArrayList id="ref-1"
xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Collections" >
<_items href="#ref-2"/>
<_size>2</_size>
<_version>2</_version>
</a1:ArrayList>
<SOAP-ENC:Array id="ref-2" SOAP-ENC:arrayType= "xsd:anyType[16]" >
<item xsi:type="a3:Rectangle" "xmlns::a3="http://schemas.microsoft.com/clr/nsassem/
 System.Drawing/System.Drawing%2C%20Version%3D1.0.5000.0%2C%20
 Culture%3Dneutral%2C%20PublicKeyToken%3Db03f5f7f11d50a3a"<
<x>10</x>
<y>10</y>
<width>100</width>
<height>160</height>
</item>
<item href="#ref-4"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<item href="#ref-4"/>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 630

Framing

Framing can be done simply using a Panel or GroupBox control, and these controls are good
when you want a quick way to subdivide your forms into logical zones. However, they are
fairly limited in shape and color.

You may want to adjust the colors or style of your frames. You might want to use etched
frames (cut-away framing, which appears carved into the surface of the form, such as a Panel
with a Fixed3D BorderStyle or a GroupBox). Or you might prefer embossed frames
(protruding, raised surfaces, such as a button control). When you really want to highlight
something, consider using multiple frames, as illustrated in Figure 21.6:

FIGURE 21.6 Add as many frames as you wish, designing layering, matting, and other styles.

Interestingly, the Microsoft designers have found that it's not enough to suggest a frame by
using two shades (one for shadow and one for highlight). Two-tone shading is shown in
Figure 21.7; four-tone shading (four different grays) is shown in Figure 21.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 21.7 From a sufficient distance, or at a high resolution, two-tone shading works OK.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 631

FIGURE 21.8 Four-tone shading creates a better effect. Adjust the framing procedure described in Listing
12.2 to suit yourself (it defaults to four-color).

The following code is a multipurpose framing procedure that can create all kinds of frames
quickly and easily. Listings 21.1, 21.2, and 21.3 are a bit of typing, so you might want to
download them from this book's website.

Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Imaging
Imports System.Drawing.Text

The following variables can be used throughout the form, so they're not declared within any
procedure:

Public x1, x2, y1, y2 As Integer
Public toprightx, toprighty, bottomrightx, bottomrighty, _
 bottomleftx, bottomlefty As Integer

 'frame embossed (out), or etched (inn)
 Dim inn As Boolean = False
 Dim out As Boolean = True

 'TOP pens (drawn along left and top sides)
 Dim Lgray As New Pen(Color.FromArgb(113, 111, 100)) ' inner line (dark gray)
 Dim DGray As New Pen(Color.FromArgb(172, 168, 153)) 'outer line (light gray)

 'BOTTOM pens (drawn along right and bottom sides)
 Dim Darkwhite As New Pen(Color.FromArgb(241, 239, 226))
 'inner line (medium white)
 Dim Lwhite As New Pen(Color.FromArgb(255, 255, 255)) 'outer line (white)

Each time you draw a new frame (you can draw as many as you want), you use this SetPoints
procedure. You pass the name of the control you're framing (parameter c), and also the
number of pixels out away from that control that you want the frame drawn (parameter
framesize), as shown in Listing 21.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 632

LISTING 21.1: DRAWING SOPHISTICATED FRAMES
Private Sub SetPoints(ByVal c As Control, ByVal framesize As Integer)
 ' define coordinates for frame

 Dim n As System.Drawing.Size = c.Size

 x1 = c.Left - framesize
 x2 = c.Top - framesize
 y1 = n.Width + (framesize * 2)
 y2 = n.Height + (framesize * 2)

 toprightx = x1 + y1
 toprighty = x2
 bottomrightx = toprightx
 bottomrighty = x2 + y2
 bottomleftx = x1
 bottomlefty = bottomrighty

End Sub

After you've used the SetPoints procedure to specify the size of the frame, you then call this
PaintFrame procedure to actually draw the frame itself. You pass a direction parameter,
which can be Out (which draws the frame outward as if embossed) or In (which draws the
frame inward, as if etched), as shown in Listing 21.2.

LISTING 21.2: CREATING EMBOSSED AND ETCHED FRAMES
Private Sub PaintFrame(ByVal direction As Boolean)

 If direction = False Then

 'draw the frame in (etched style)

 ' Create a Graphics object.
 Dim g As Graphics = Me.CreateGraphics

 ' A lightgray rectangle starting at the upper left
 g.DrawRectangle(Lgray, New Rectangle(x1, x2, y1, y2))
 'a mediumgray rectangle one pixel inward
 g.DrawRectangle(DGray, New Rectangle(x1 – 1, x2 – 1, y1 + 2, y2 + 2))

 ' Two white lines from upper to the lower right

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 633

 g.DrawLine(Darkwhite, toprightx, toprighty, bottomrightx, bottomrighty)
 g.DrawLine(Lwhite, toprightx + 1, _
 toprighty - 1, bottomrightx + 1, bottomrighty + 1)

 ' Two white lines from bottom right to bottom left
 g.DrawLine(Darkwhite, bottomrightx, _
 bottomrighty, bottomleftx, bottomlefty)
 g.DrawLine(Lwhite, bottomrightx + 1, _
 bottomrighty + 1, bottomleftx - 1, bottomlefty + 1)

 ' Kill the graphics object
 g.Dispose()

 Else ' do the frame out (embossed style)
 ' to create the embossed (outie) effect, you simply
 ' reverse the colors dark on right/bottom, light on top/left

 ' Create a Graphics object.
 Dim g As Graphics = Me.CreateGraphics

 ' A lightgray rectangle starting at the upper left
 g.DrawRectangle(Darkwhite, New Rectangle(x1, x2, y1, y2))
 'a mediumgray rectangle one pixel inward
 g.DrawRectangle(Lwhite, New Rectangle(x1 – 1, x2 – 1, y1 + 2, y2 + 2))

 ' Two white lines from upper to the lower right
 g.DrawLine(DGray, toprightx, toprighty, bottomrightx, bottomrighty)
 g.DrawLine(Lgray, toprightx + 1, _
 toprighty – 1, bottomrightx + 1, bottomrighty + 1)

 ' Two white lines from bottom right to bottom left
 g.DrawLine(DGray, bottomrightx, bottomrighty, bottomleftx, bottomlefty)
 g.DrawLine(Lgray, bottomrightx + 1, _
 bottomrighty + 1, bottomleftx – 1, bottomlefty + 1)

 ' Kill the graphics object
 g.Dispose()

 End If

 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 634

The SetPoints and PaintFrame procedures are called within the form's Paint event, so that each
time the form is repainted, the frame is redrawn. This is necessary because drawn designs
don't persist during Form_Load, or when the user covers this form with another, resizes it, and
so on. The code in Listing 21.3 draws three frames around the PictureBox (as shown in Figure
21.9).

LISTING 21.3: CREATING MULTIPLE FRAMES
Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

 'define the frame sizes (passing the name of the control
' to be framed, distance of frame from the control)

 SetPoints(PictureBox1, 3) 'innermost frame
 PaintFrame(inn)

 SetPoints(PictureBox1, 25)
 PaintFrame(out)

 SetPoints(PictureBox1, 28)
 PaintFrame(inn) 'outermost frame

End Sub

FIGURE 21.9 A close-up of the three drawn frames, plus the PictureBox's own frame. Note that the
second drawn frame is the out style—with the highlight on the top.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 637

Fade In, Fade Out

Here's how to do a fade, like the one shown in Figure 21.11:

FIGURE 21.11 The main program screen fades out as a data entry screen fades in.

Create a project with two forms. Above the Form1_Load procedure in Form1, type this global
variable that instantiates Form2 (you've already designed Form2, so it's ready to be brought to
life):

Public f2 As New Form2

Also above their form load events, add positioning variables to both Form1 and Form2

Private x As Single = 0
Private y As Single = 1

Then, in the Click event of the button that triggers the fade transition, use this code to hide the
current form and set Form2's opacity to 0 or complete invisibility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

f2.Opacity = 0
f2.Show()
Timer2.Enabled = True 'fade routine

End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 638

The Opacity property ranges from 0 to 1, rather than from 0 to 100 as you would expect.
Apparently 0 to 1 is someone's idea of the proper ''scientific" way to express a range of
percentages, so there's a performance hit caused by not using integers here.

The actual fade-out that takes Form1 from visible to invisible occurs in Timer2. Note that in
VB.NET timers default to Enabled = False.

Private Sub Timer2_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer2.Tick
 'fade out Form1
 y -= 0.04
 If y <= 0.01 Then Timer2.Enabled = False : y = 1 : Me.Hide() : f2.Show()
 Me.Opacity = y
End Sub

Now, in Form2's code window, you detect that the VisibleChanged event has been triggered,
and you start the fade-in process to make Form2 visible, as shown in Listing 21.5.

LISTING 21.5: CREATING A FADE TRANSITION
Private Sub Form2_VisibleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.VisibleChanged

 Timer1.Enabled = True

 End Sub
In Form2's Timer1, this code makes Form2 visible:
Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 'fade in

 x += 0.04

 If x >= 1 Then Timer1.Enabled = False : x = 0 : Me.Opacity = 1 : Exit Sub

 Me.Opacity = x

End Sub

And, to reverse the process, you have a Cancel button on Form2 that fades Form2 out and
fades Form1 in Listing 21.6.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 639

LISTING 21.6: REVERSING A FADE
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 'cancel button clicked

 Timer2.Enabled = True

End Sub

Private Sub Timer2_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer2.Tick
 'fade out

 y -= 0.04

 If y <= 0.01 Then Timer2.Enabled = False : y = 1 : Me.Hide() : F1.Show()
 Me.Opacity = y

 End Sub

And back in Form1's VisibleChanged event, you trigger yet another timer devoted to fading
Form1 in Listing 21.7.

LISTING 21.7: FADING IN
Private Sub Form2_VisibleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.VisibleChanged

 Timer1.Enabled = True
End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 'fade in

 x += 0.04
 If x >= 1 Then Timer1.Enabled = False : x = 0 : Me.Opacity = 1 : Exit Sub

 Me.Opacity = x

End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 64

</SOAP-ENC:Array>
<a3:Bitmap id=''ref-4"
xmlns:a3="http://schemas.microsoft.com/clr/nsassem/System.Drawing/
 System.Drawing%2C%20Version%3D1.0.5000.0%2C%20Culture%3D
 neutral%2C%20PublicKeyToken%3Db03f5f7f11d50a3a" >
<Data href="#ref-5"/>
</a3:Bitmap>
<SOAP-ENC:Array id="ref-5" xsi::type="SOAP-
 ENC:base64">R0lGODlhfAHgAvcAAAUGBhQGBggUG
 BEWFx8PCSEYECEQGBkbGysQCTEYECUYHC0aGiEhGCEhIS4hFSkhIRQl
 JyElJSEpKSExKTEhIS0pHCkhKTEtIRg

Now enter the statements of Listing 3.2 in the Deserialize Collection button's Click event
handler. These statements read the contents of the Objects.bin file, deserialize them with
the Deserializer method of a BinaryFormatter object, and recreate a copy of the original
ArrayList, the persistedObjects ArrayList. The program prints the basic properties of the
two objects it deserialized and then displays the bitmap on the form.

LISTING 3.2: DESERIALIZING A BINARY FILE INTO AAN ARRAYLIST COLLECTION
Dim persistedObjects As New ArrayList
Dim Strm As New FileStream("..\Objects.Bin", FileMode.Open)
Dim BF As New BinaryFormatter
Try
 persistedObjects = CType(BF.Deserialize(Strm), ArrayList)
Catch ex As Exception
 MsgBox("Deserialization failed." & vbCrLf & _
 ex.Message)
 Strm.Close()
 Exit Sub
End Try
Console.WriteLine(persistedObjects(0).GetType)
Dim R As Rectangle = CType(persistedObjects(0), Rectangle)
Console.WriteLine("RECT. WIDTH:" & R.Width.ToString & _
 ", HEIGHT: " & R.Height.ToString)&
Dim IMG As Bitmap = CType(persistedObjects(1), Bitmap)
Console.WriteLine("IMAGE WIDTH: " amp; IMG.Width.ToString & _
 ", HEIGHT: " & IMG.Height.ToString)
Me.BackgroundImage = IMG

The deserialization process, like the serialization process, requires a single statement that calls
the Deserialize method. This method accepts as argument the stream with the persisted data
and returns a variable of the Object type. You must cast the result returned by the Deserialize
method to the appropriate type before using it in your code (unless you don't mind late
binding, of course). This object is cast to the ArrayList type and assigned to the
persistedObjects variable, which is an ArrayList.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 640

I realize this seems like a bit of trouble, but the effect is so cool that it's quite worth it. Give it
a try. You can adjust the granularity of the fades by changing the lines in the timers:x +=
0.04. A good value for the timers' Interval property is 3, but fiddle with this setting if you
wish as well to find a fade speed that pleases you.

Sliding

Sliding one form on top of another (or sliding a control such as a ListBox) is a useful and
attractive technique. In Figure 21.12, the marble panel slides up and down, allowing the user
to enter or change a password.

FIGURE 21.12 This marble panel is sliding down to reveal a password entry field.

Sliding simply involves using a timer to continuously adjust a form's or control's Left or Top
property. Put a button and panel on a form, then type in the simple code in Listing 21.8.

LISTING 21.8: USING SLIDE TRANSITIONS
Dim X As Integer 'remember correct position of Panel1

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 X = Panel1.Left
 Panel1.Left = –200 'move offscreen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Panel1.Left = –200 'move offscreen
 Timer1.Interval = 1
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 642

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 646

When the design window comes up, there's a highly abbreviated form, probably the smallest
one you've ever seen, as shown in Figure 22.2.

FIGURE 22.2 This tiny form is the space within which you interact with the user.

Understanding the Mobile Form

You get a single form, and most of your applications are likely to employ only one. You can
add as many controls as you wish to this one form—and the form will grow taller as necessary
to accommodate them. Most mobile devices permit scrolling, so if your form is too large to fit
within the visible screen area, the user can simply page down or scroll down to view the rest
of it.

You'll find that once you add enough controls to exceed the default form height (generally two
controls are the limit), however, when you double-click to add additional controls, they land
on the page background, and have to be dragged onto the form.

The CF form isn't necessarily equivalent to a single visible screen on the target device. A CF
form is a way to group related controls that may or may not appear on a single page, or may

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

form is a way to group related controls that may or may not appear on a single page, or may
require additional paging or scrolling to be viewed. In fact, you can specify that you want your
form to paginate its output, to ensure that the output doesn't exceed the capacity of whatever
device accepts it. The TextView (read-only text display) and various List controls can all grow
huge. You may find, however, that some of your application's content is too large for the
target device to handle (this can result in an error message from the device during initialization
of your page). Try setting the Paginate of the form to True.

Navigating to a Second Form

If instead of pagination you want to subdivide your application into various forms, you can
link them simply by adjusting the NavigateURL property of a Link control.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 648

New Technology, New Behaviors

As you might expect with a new technology, CF has kinks and strange behaviors. As
mentioned, double-clicked controls in the Toolbox can land on the design page background,
not a form on that page. Then you must drag and drop them onto the form. The Button control
is called a Command for some reason. Instead of a Name property, controls have an ID
property. Although the ID defaults to Command1, Command2 ... as you'd expect, the default
text is Label or Command rather than Label1 or Command1. You use the syntax
Form1.BackColor rather than Mc.BackColor. Deleting a control from a form does not remove
any events or source code associated with that control in the code-behind file.

To add controls to the form, you sometimes must double-click them within the Toolbox.
Selecting and dragging sometimes won't work, sometimes will. Try adding a TextBox and
you'll notice that it looks different from an ordinary TextBox—there's a small input section
within a larger box.

Look at the Properties window: There's no Name property, but there is a Title property. This
property, and other features of some properties and controls (the calendar, PhoneCall, and so
on), derive from an initiative that came out of the Unix camp, their WAP platform, and WML
(WebSite Meta Language, another XML derivative). Devices running on WML expect a Title
attribute.

You can add additional forms from the Toolbox to this design page, which facilitates creating
multi-page applications. However, all the forms look the same as the default form—and the
size cannot be adjusted. Nor can the size of many controls, such as the SelectionList, be
adjusted. Nor can you reposition the controls horizontally; they go where they go and nowhere
else. Nor can the forms be moved around on the design window (it wouldn't have an effect on
the target device's display screen anyway).

Just as with ASP.NET applications, there's a code-behind view (see Listing 22.1), which you
can access by double-clicking a form. You then see this default code, though the Region is, as
usual, hidden unless you expose it.

LISTING 22.1: DEFAULT CODE-BEHIND PROGRAMMING
Public Class MobileWebForm1
 Inherits System.Web.UI.MobileControls.MobilePage

#Region '' Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub
 Protected WithEvents Form2 As System.Web.UI.MobileControls.Form
 Protected WithEvents Form1 As System.Web.UI.MobileControls.Form

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 649

 InitializeComponent()

 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

 Private Sub Form1_Activate(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Form1.Activate

 End Sub
End Class

Note that both Page_Load and Form1_Activate events are, by default, displayed. There is,
however, no Form_Load event (though one does exist in the list of available Mobile Web
application events for the Form object).

The Activate event is similar to the traditional Load event. When a page is requested the first
time, its first form is activated. However, the Activate doesn't trigger on postback. Two other
actions trigger Activate: when a user uses a link control to navigate to the form, or when the
ActiveForm property of a page is set in the source code. Use the Activate for initialization
code, including data-binding to controls on the form and for setting properties such as
BackColor.

To get a feel for how all this works, try this small program (Listing 22.2). Add a SelectionList
control to Form1, then double-click the Form to get to its code-behind page and type this in:

LISTING 22.2: SEEING A MOBILE APPLICATION IN ACTION
Imports System.Web.UI.MobileControls
 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

 Private Sub Form1_Activate(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Form1.Activate

 Form1.Alignment = Alignment.Center

 Form1.ForeColor = System.Drawing.Color.CadetBlue
 Form1.BackColor = System.Drawing.Color.Bisque

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 650

 SelectionList1.Items.Add(''ratk")
 SelectionList1.Items.Add("atk")
 SelectionList1.Items.Add(" tk")
 SelectionList1.Items.Add("kratch")

 If Not IsPostBack Then
 Form1.Paginate = True
 End If
 End Sub

This Alignment property centers the form within the mobile device's screen (and it's a property
from the System.Web.UI.MobileControls namespace, hence the Imports statement. When you
test this project, you'll see the controls centered in the browser, but if you want to get a real
feel for how it all looks on a cell phone or PDA, reduce your browser's size as shown in Figure
22.3:

FIGURE 22.3 Simulate a mobile device during testing by resizing your browser until it's very, very small,
like this.

Further work with the various controls will illustrate for you how the programming for mobile
devices is similar to, but just not the same as, regular programming—even regular ASP.NET
programming, which it most closely resembles.

Given the limitations of mobile devices, it's not surprising that Microsoft has designed mobile
controls—such as the ObjectList—to conserve as much space as possible.

The List Controls

The CF offers your choice of List controls: small, medium, and large. For short lists, use the
SelectionList control instead because it doesn't have any provision for pagination. You're
encouraged to add fewer than ten items to this list, to permit some cell phone users to choose
an item from their keypads (a feature available on some phones). You can also use this list if
you want to permit the user to make more than one selection at a time. The SelectionList is a
dropdown-style list. The List control is similar to the SelectionList, but all its items are visible
(no dropdown); the List control can work with device filters to customize its behavior, and can
also paginate. With both the SelectionList and List you can add items during design time by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

also paginate. With both the SelectionList and List you can add items during design time by
opening a Properties dialog box (click the Items collection in the Properties window), as
shown in Figure 22.4:

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 651

FIGURE 22.4 Use this special editor to create lists.

The ObjectList is the newest, most interesting and most flexible of the three List objects. You
can't add items to this list during design time; instead, you must add them programmatically
via data binding to a collection such as an array. The ObjectList can use device filters. Listing
22.3 is code that binds an array to a SelectionList during runtime.

LISTING 22.3: BINDING AN ARRAY TO A SELECTIONLIST
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack Then

 Dim arr(4) As String
 arr(0) = ''Que Sera Sera, Doris Day"
 arr(1) = "Seems Like Teen Spirit, Kurt Cobain"
 arr(2) = "Why Wait for Death?, Keith Richards"
 arr(3) = "Fever, Peggy Lee"
 arr(4) = "Let Go of It, Please, Dontatella Versace"

 SelectionList1.DataSource = arr
 SelectionList1.DataBind()

End If
End Sub

The results of this code are shown in Figure 22.5.

The ObjectList is even capable of displaying tables, but that might be overkill on the small
screens of mobile devices.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 653

Try changing the authorization section in the Web.config file in your mobile application to
see the effect of a login request. Remove this line:

<allow users=''*" /> <!-- Allow all users -->

and replace it with this:

<authorization>
 <allow users="richardm@baxmill.com" />
 <deny users="*" />
</authorization>

When you press F5 to test your mobile application, you'll be challenged with the logon dialog
box shown in Figure 22.6.

FIGURE 22.6 This logon is required when you beef up security for a mobile application.

If you fail to provide the expected logon/password pair, you are denied access to the Web page
and the error message shown in Figure 22.7 appears.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 22.7 An error message informs a user that their attempt to log on failed.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 655

You can also enable tracing for the current page in a different way. Switch to design view
(click the MobileWebForm1.aspx tab at the top of the code window). In the Properties
window, double-click the Trace property to turn it to True. There's also a TraceMode property,
but you should normally leave it to the default SortByTime. This shows you the steps in the
order that they were carried out by ASP.NET in the process of executing your source code,
then building the resulting HTML code to send to the browser. The alternative setting for
TraceMode is SortByCategory and it comes in handy if you want to avoid having your trace
messages (your custom Trace.Write messages, described shortly) segregated from the other,
default trace messages inserted by .NET.

Other options for tracing include enabled, which can be selectively turned off, allowing you to
skip trace output for pages in your application. Use Trace=''false" within the page
element of the HTML:

<%@ Page Language="vb" Trace="false"
 AutoEventWireup="false" Codebehind="MobileWebForm1.aspx.vb"
 Inherits="MobileWebApplication2.MobileWebForm1" %>

The RequestLimit attribute (in the Web.config file) governs how many requests that have
been made to your application are stored, and it defaults to 10. You can select from among
these previous requests and view them. The LocalOnly attribute defaults to True and specifies
whether tracing is enabled for localhost users only (or, if set to False, is available for all users).

Custom Tracing

Tracing can also be selective—you can insert your own tracing messages within your code,
and they will appear within the trace data, sorted by execution time. For example, if you add
these lines to the Page Load event:

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim s As String = "This string"
 Trace.Write("Beginning Page Load Code HERE. The value of s: " & s)
End Sub

the "Trace information" section of the trace output will include your line, and any variable
information you requested, as shown in this result:

Trace Information
Category Message From First(s) From Last(s)
aspx.page Begin Init
aspx.page End Init 0.000955 0.000955
 Beginning Page Load Code HERE. The value of s: This string 0.001978 0.001022
aspx.page Begin PreRender 0.002233 0.000255
aspx.page End PreRender 0.002361 0.000129

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 657

 Set customErrors mode=''On" or "RemoteOnly" to enable custom error messages,
"Off" to disable.
 Add <error> tags for each of the errors you want to handle.
 "On" Always display custom (friendly) messages.
 "Off" Always display detailed ASP.NET error information.
 "RemoteOnly" Display custom (friendly) messages only to users not running
 on the local Web server. This setting is recommended for security purposes,
 so that you do not display application detail information to remote clients.
-->
<customErrors mode="RemoteOnly" />

Change the final line in this element to add the name of your custom error-message handling
file, and remove RemoteOnly:

<customErrors defaultRedirect="genericerror.aspx" mode= "On" />

Only change mode to On temporarily. You do this so you can test your error-message
handling, seeing what your users will see on their PDAs and phones. When finished testing,
restore it to RemoteOnly, the default, so hackers don't benefit from detailed dumps of data
about your system.

Now you have to create the genericerror.aspx file to hold your custom error messages.
Use Project Add New Item, click the Mobile Web Form icon to select it, then type
genericerror.aspx into the Name field. Switch to the genericerror.aspx file and add a
Label to it. Double-click the label to get to the code-behind page and add this line to the
Page_Load event:

 Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
 Label1.Text = "Unfortunately there's been an error. Please call" & _
 "1-800-255-5333 and ask for Tricia--our friendly Happy Helper--" & _
 "to fix this minor problem. " & _
 "For your convenience, Tricia stays up all night!"
 End Sub

This substitutes your understandable, even comforting, custom message for the terrifying Look
what you've done now! HIT THE DECK! nature of the typical error message. If you don't
divert error messages to your custom file, the user will see a message like the one shown in
Figure 22.9

Instead, the user sees your reassuring message shown in Figure 22.10.

To trigger an error that will force VB.NET to display your custom error page, type this into
your start form, MobileWebForm1.aspx:

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 MsgBox("Msg")
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 659

When you start a new mobile application project (by clicking the ASP.NET Mobile Web
Application icon in the New Project dialog box), you can see that the default files and
dependencies that VB.NET creates for you are quite similar to an ASP.NET project's files and
defaults. (The System. Web.UI.Controls reference is replaced by
System.Web.UI.MobileControls in the .aspx file, but otherwise things are startlingly the
same.)

Another change: In the Web.config file you'll see these two additional sections that aren't
included in ordinary ASP.NET VB.NET projects:

>!-- SPECIFY COOKIELESS DATA DICTIONARY TYPE
 This will cause the dictionary contents to appear in the local request url
querystring.
 This is required for forms authentication to work on cookieless devices.
 -->
 <mobileControls cookielessDataDictionaryType=
"System.Web.Mobile.CookielessData"/>
 <deviceFilters>
 <filter name="isJPhone" compare="Type" argument="J-Phone" />
 <filter name="isHTML32" compare="PreferredRenderingType" argument="html32" />
 <filter name="isWML11" compare="PreferredRenderingType" argument="wml11" />
 <filter name="isCHTML10"
compare="PreferredRenderingType" argument="chtml10" />
 <filter name="isGoAmerica" compare="Browser" argument="Go.Web" />
 <filter name="isMME" compare="Browser"
argument="Microsoft Mobile Explorer" />
 <filter name="isMyPalm" compare="Browser" argument="MyPalm" />
 <filter name="isPocketIE" compare="Browser" argument="Pocket IE" />
 <filter name="isUP3x" compare="Type" argument="Phone.com 3.x Browser" />
 <filter name="isUP4x" compare="Type" argument="Phone.com 4.x Browser" />
 <filter name="isEricssonR380" compare="Type" argument="Ericsson R380" />
 <filter name="isNokia7110" compare="Type" argument="Nokia 7110" />
 <filter name="prefersGIF" compare="PreferredImageMIME"
argument="image/GIF" />
 <filter name="prefersWBMP" compare="PreferredImageMIME"
argument="image/vnd.wap.wbmp" />
 <filter name="supportsColor" compare="IsColor" argument="true" />
 <filter name="supportsCookies" compare="Cookies" argument="true" />
 <filter name="supportsJavaScript" compare="Javascript" argument="true" />
 <filter name="supportsVoiceCalls"
compare="CanInitiateVoiceCall" argument="true" />
 </deviceFilters>

Memory-scarce, security-conscious mobile devices generally don't support cookies.
Authentication, though, is sometimes required in any communication process, and the
workaround is to stuff some session information and verification data in the query string.

The DeviceFilters section allows you to customize your applications to vary their behaviors in
device-specific ways. You know the situation: If it's Netscape, avoid using DHTML, or if it's
Internet Explorer, go ahead and do some animation because it supports DHTML.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 66

that aren't meaningful outside the current domain should be marked as non-serializable. A
typical example is the ID assigned to a record by a database system. Here's a simple class that
represents Products. The entire class is serializable, except for the ProductID field, which is
assigned a value automatically by the database every time a new product is committed to the
database.

<Serializable()> _
Public Class Product
 Public Sub New()
 End Sub
 <NonSerializable()> _
 Public ProductID As Integer
 Public ProductName As String
 Public ProductPrice As Decimal
End Class

You can create an instance of the Product class, serialize it, and then deserialize it into another
instance of the same class. While all other fields will be persisted, the ProductID field will not
be persisted.

The ClassSerializer Project

The example of this section demonstrates how to serialize a fairly complicated class in binary,
SOAP, and XML format (you can ignore the XML serialization samples for the moment and
return to the project after reading about XML serialization). The project's code serializes
individual objects as well as collections of objects. The ClassSerializer project's main form is
shown in Figure 3.2. Initially, all buttons are disabled except for the Create Book Objects
button. Click this button to create a few Book objects and then serialize/deserialize them with
the appropriate buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 3.2 The ClassSerializer project demonstrates the various serialization types in .NET.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 661

Nokia http://forum.nokia.com

Openwave http://developer.openwave.com

The Visual Studio 2003 Pocket PC Emulator

Shipped with Visual Studio 2003 is emulator version 4.1, which is configurable within the
IDE. This emulator is remarkably full of features—you feel as if you're working with a real
PDA. The emulator currently emulates Pocket PC devices (and Windows CE), and word is
that it will be expanded to include additional devices.

To see if you installed it during VS 2003 setup (it's a default), choose Tools Connect To
Device and you should see the dialog box shown in Figure 22.11.

FIGURE 22.11 Connecting to the Pocket PC Emulator built into Visual Studio 2003.

Select Pocket PC 2002 Emulator (Default) and click the Connect button. You should see the
full emulation appear, as shown in Figure 22.12:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FIGURE 22.12 Here's a Pocket PC you can test with, right inside your VS.NET environment.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 662

Also notice that the status bar on the bottom of your VB.NET IDE displays Device
Connected.

TIP If you cannot follow the above steps, you most likely deselected the Smart Device
Programmability option during VS.NET setup. To install it, you must use the Add/Remove
Programs feature in Control Panel to Change/Remove your version of VS.NET. But instead of
removing it, go to the maintenance page and select Add or Remove Features. On the Options
page, choose Smart Device Programmability. Then click Update Now.

POCKET PC EMULATOR CONFIGURATION

You can't configure the emulator while it's running, but the changes won't take effect until you
restart it. So shut it down then choose Tools Options Device Tools Devices. Click the
Configure button and you see the Configure Emulator Settings dialog box, where you can
adjust color depth, screen size, system memory, and serial and parallel port connections
(which can be mapped to your programming computer for testing). Several settings are
optimistically flexible. Screen size, for example, can be adjusted from 80×64 up to 1024×768
pixels. A 1024×768 pixel screen four inches square exceeds most people's requirements, not to
mention the acuity of their vision.

New Technology, New Problems

As with many new technologies, you have to struggle a bit with workarounds and generally
inaccurate, too brief, or beside the point documentation. Using the built-in emulator is no
exception. The following problems using the Pocket PC emulator occur at the time of this
writing.

You'd think that as soon as you execute the emulator, it would be available as an option, as a
testing target device, within the VB.NET IDE. It's not. Although Help says you can change
from Internet Explorer to another emulator by choosing File Browse With, that option isn't
available on the File menu. Instead, you must right-click your Form1.aspx in Solution
Explorer, then choose Browse With.

When the Browse With dialog box appears, you expect to see your emulators listed in the
Browser list. Not so fast, dude. You have to manually add the emulators by locating their
executable on your hard drive. Click the Add button in the Browse With dialog box, then click
the Browse button. Locate Program Files\Microsoft Visual Studio .NT
2003\Compact Framework SDK\Connection Manager\Bin\Emulator.exe. Click it
to add it to your list of available emulators.

Click the Set As Default button. This should make it the default for all your .aspx files. You
should also right-click your application's name in Solution Explorer (it's the name in boldface).
Choose Properties, then in the dialog box click Configuration Properties, Debugging. Deselect
''Always use Internet Explorer when debugging Web pages."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even with all these adjustments, though, you might still face problems. (This is a new
technology; they're working on these problems.) When you try to test your mobile application
in the emulator, you might get the following error message: "The CE boot image could not be
opened. Please verify that the specified path name is valid." Of course, this error message
doesn't tell you how to verify this or rectify the problem.

This problem (and others) have been reported if you're not on a networked computer. One
workaround if you're using a stand-alone desktop machine is to install the Microsoft TCP
Loopback Adapter that ships with Windows XP. Another workaround to try: Disable XP's
Internet Connection

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 664

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 666

AlternatingItemStyle property, of DataGrid control, 281
alternation, in regular expressions, 563–564
anchors, in regular expressions, 562
AND Boolean operator, for DataView object, 426
animated transitions, 636–641
API functions

importing, 187
for screen capture, 186

Append property, of FileMode class, 43
Application Directory membership condition, 256
Application object, 104

destroying, 95
application servers, business logic on, 449
application tier. See middle tier component
ApplicationException class, class inheritance from, 229–230
applications. See also deployment process

adding to User's Programs Menu, 267
appearance of reliability, 623–626, 624
assigning permission set to, 255
communicating data between, 93
debugging, 216
design, 215
distributed, 2
multiple processing queue messages, 367
persisting settings to configuration file, 76–79
robust, 215. See also structured exception handling debugging techniques, 231–240
running, 53
running after Internet–based deployment, 257–258
starting from within another application, 259
upgrading, 244

ArgumentException, of Open method, 219, 225, 226
ArgumentNullException, of Open method, 219, 226
ArgumentOutOfRangeException, of Open method, 219, 226
arguments for Response object, entire files as, 272
Arguments property, of Register User dialog box, 270
Arial font, 627
ArithmeticException, 226

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array class, 34
ArrayList, 35–37

binary serialization of collection, 62–64
deserialization, 64
mass manipulation, 36

arrays, 14, 28–34
binding to SelectionList control, 651
control, 24–28
creating and filling, 19–20
deleting element, 35–36
filling with random numbers, 52–53
number of elements in, 29
search and sort methods, 31–33
zero-based collections, 28–29

ArrayTypeMismatchException, 226
As New command, 10, 45
.ASMX filename extension, 322
ASP.NET. See also DataGrid control

data display on WebForm, 273–283
connecting to database, 273–274
DataList control, 275
detecting postback, 281–282
Repeater control, 276
templates, 275

HTML controls, 287–288
new features, 271–273

sending entire files, 272
server controls, 272–273

sending graphics, 286–287
validation, 282–285

controls, 283–285
programmatic, 282–283

assemblies, xxii, 192–193
downloading on demand, 258–259
exploring unknown, 208–211
loading file from, 200–201
loading from file, 201–203
need for Imports statement, 11
path for accessing, 202
reflection to access current project's, 198–199

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reflection to access loaded, 199–200
security, 193

asterisk (*), in regular expressions, 543, 558
asymmetric public key system, 143
asymmetrical encrypting, 151–158
asynchronous system, 341
attractors, 605
attribute classes, 124
AttributeCount property, of XMLReader object, 477

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 669

COM components, use with .NET clients, 461–467
ActiveX controls, 462–465

COM wrapper, 94
ComboBox control, binding to columns, 506
COMCalculator, 462–463, 463
Command class (ADO.NET), 391–392, 409–415

parameters, 410–413
Command window for debugging, 239–240
CommandText property, of Command class, 409
CommandType enumeration, 409
Commit method, of MessageQueueTransaction class, 371–372
Common Language Infrastructure (CLI), 214
Common Language Runtime (CLR)

evidence for, 251
installing, 244
and .NET applications, 462

communicating data between applications, 93
communication, programming as, xx
Compact Framework. See .NET Compact Framework
CompareValidator control, 283
comparisons in DataAdapter, null values and, 406
compatibility namespace, accessing, 201–202
Compiled member of RegExOptions enumeration, 549
complex numbers, 604

operations, 620–621
in transformation, 605–606

COMPlus component, 466–467
Component Services Explorer, 465
ComponentModel.InvalidEnumArgumentException, 226
ComputeHash method, 141, 151

streaming file into, 142
computer Properties dialog box, Network Identification tab, 290
concurrency, 515

DataAdapter handling of, 405–406, 407–408
optimistic, 516

Condition property, for debugging, 237
config files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for code-access security, 127
persisting application settings to, 76–79

Configure Emulator Settings dialog box, 662
Connect method, of chat client object, 306
connected application, NWProducts application as, 508
Connected event, code to handle, 304
Connection class (ADO.NET), 391–392, 402–403

BeginTransaction method of, 436
ConnectionString property, of Connection object, 402
Console.Writeline, to display variable, 17
constraints

in database testing, 439
editing DataSet with, 421

constructors, 10–11
reflection to report on, 196–197
for Xml Serializer class, 72

content attribute, of XML elements, 486
ContinueUpdateOnError property, of DataAdapter, 408
control arrays, 24–28
controls

adding to form at runtime, 25–27
data-bound, 506
inherited, appearance of, 176

cookies, for mobile computing, 652, 659
coordinates, for printing Graphics object, 168
Copies property, of PrinterSettings object, 163
counting messages in queue, 358
crashes, 216, 217
Create Code Group wizard, 255–257
Create method, 5–6, 6

of MessageQueue class, 347–348
Create Permission Set dialog box, 130, 254, 254
Create Permission Wizard, 254
CreateComInstanceFrom method, 211
CreatedAfter property, of MessageQueueCriteria class, 349
CreatedBefore property, of MessageQueueCriteria class, 349
CreateDirectory method, of DirectoryInfo class, 9
CreateInstance method, of Activator class, 211
CreateMeasurementGraphics property, of PrinterSettings object, 164
CreateScreenShot function, 187–188

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cryptology, xx
CryptoServiceProvider object, 145
cryptostream, for DES, 145–146
CultureInvariant member of RegExOptions enumeration, 549
Custom Actions editor, 262
custom class, for moving data out of SQL Server, 81–90
custom exceptions, throwing, 228–230

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 67

The Book class provides some simple properties: the Title, Pages, and a few more properties
that describe a book. The Authors property is an array of Author objects, and the Author class
exposes the FirstName and LastName properties. Finally, the Book class exposes the
AuthorRoyalties property, which describes how the book's royalties are calculated. The
RoyaltySchedule class exposes a single property, which is an array of RoyaltyTier objects.
Each RoyaltyTier object exposes the Tier and Royalty properties, which are the tiers (number
of copies) and the corresponding royalties.

For a certain book, the royalties paid to the author(s) are calculated as follows: 15% of the
book's price for the first 10,000 copies of the book, 20% for the next 5,000 copies and 25% for
any number of copies after that. The last tier's value is actually irrelevant, because there's no
higher tier. The following statements create a royalty schedule for a book by setting up an
array of RoyaltyTier objects (BKO is an instance of the Book class):

Dim auRoyaltySchedule(2) As RoyaltySchedule.RoyaltyTier
auRoyaltySchedule(0) = New RoyaltySchedule.RoyaltyTier()
auRoyaltySchedule(0).Tier = 10000
auRoyaltySchedule(0).Royalty = 0.15

auRoyaltySchedule(1) = New RoyaltySchedule.RoyaltyTier()
auRoyaltySchedule(1).Tier = 15000
auRoyaltySchedule(1).Royalty = 0.2

auRoyaltySchedule(2) = New RoyaltySchedule.RoyaltyTier()
auRoyaltySchedule(2).Tier = 25000
auRoyaltySchedule(2).Royalty = 0.25

BK0.AuthorRoyalties = New RoyaltySchedule()
BK0.AuthorRoyalties.Tiers = auRoyaltySchedule

The complete code of the Book class is shown in Listing 3.3. It's not a trivial class, and you'll
find it easier to understand if you create and configure a Book object. Besides its properties,
the Book class exposes the CalculateRoyalties method, which returns the royalties generated
by a specific number of copies of the current book. We'll use this method to verify that the
deserialized objects match the serialized ones (they should both report the same royalties). To
condense the listing, we're not showing the implementation of the trivial properties, but you
can find them in the project's code.

LISTING 3.3: THE BOOK CLASS
Imports System.Runtime.Serialization
Imports System.Xml.Serialization

<Serializable()> Public Class Book
 Private _title As String
 Private _pages As Integer
 Private _price As Decimal
 Private _authors() As Author
 Private _AuthorRoyalties As RoyaltySchedule

 Public Sub New()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 671

DataType property, of XmlElement, 74
DataView objects, 426–427
DataViewRowsStates enumeration, 427
Date function, 38
DateTime class, methods, 38, 39
DateTime data type, 39
dbType property, of Parameter object, 410
dead-letter messages, 343
Debug mode, 232
debugging, 216, 231–240

breaking on all errors, 230–231
Call Stack window, 240, 241
with debugger windows, 238–239, 239
logical errors, 231, 237–240

breakpoints, 237–238
mobile application, 654–656
Output and Command windows for, 239–240
with WriteLine method, 240

decimal value type, 14
declarative code access, 124
Decrypt procedure, 151
default startup object, in Visual Basic, 4
default unit of page, 168
DefaultPageSettings property

of PrintDocument object, 165
of PrinterSettings object, 163

DefaultPropertiesToSend property, of MessageQueue class, 351
DefaultView property, of DataTable object, 426
Definitions element in WSDL, 331
DELETE statement (SQL), DataAdapter task for, 404
DeleteCommand property, 405

of DataAdapter, 404
DeleteRule property, 431
deleting

array element, 35–36
attributes in XML, 488
elements in XML, 488–489

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

files, security and, 145
message queues, 345
messages in queue, 357
rows in DataTable, 419

Demand method, 257
DemoControl project, 175–178
dependencies of project, 264–265
deployment process, 243

Internet-based, 244, 246–259
assembly download on demand, 258–259
code access permissions, 251–257
preparation, 247–249
running application, 257–258
Windows application deployment on Web server, 249–250

with Windows installer, 259–270, 260
File System Editor, 263–266
installer package creation, 261–262
Registry Editor, 267
shortcut creation, 266–267
User Interface Editor, 267–270

Windows installer package, 244
XCopy method, 245, 245–246

depth, as user interface convention, 627–628
Depth property, of XMLReader object, 477
DES (Data Encryption Standard), 142, 143

encrypting and decrypting file with, 143–145
Description property, of Setup Project, 266
descriptors, in code-access security, 127
deserialization, 56–57, 59

overhead, 79
source of process, 80

Deserialize method, 64
destructive concurrency, 407–408
DetectnewInstalledVerson property, of Setup Project, 266
development machines, 243
DHCP (Dynamic Host Configuration Protocol), 290
dialog boxes

adding to user interface, 268
for printing, 164–167

digital signatures, 121

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim statement, 8
dimension, vs. capacity, 28
Direction property, of Parameter object, 410
directories, adding items to user's, 267
Directory object, 12

for getting file list, 11
DirectoryInfo class, 9

CreateDirectory method of, 9
GetDirectories method of, 11

DirectoryNotFoundException, of Open method, 220
DirectoryServicesPermission code access permission, 252

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 679

message retrieval from queue, 378–379
order preparation, 375–377

referencing, 345–346
triggers, 382–388

defining, 384–385
ProcessOrders console application, 385–388
rules, 382–384, 383

types, 343–344
Message Queuing Triggering service, 382
MessageBox statement

for debugging, 240
to display variable, 17

MessageEnumerator class, 355
MessageQueue class, 347–349
MessageQueueCriteria class, 348–349
MessageQueueEnumerator class, 349
MessageQueuePermission code access permission, 252
MessageQueueTransaction class, 371–372
MessageReadPropertyFilter property, of MessageQueue class, 361, 364
messages. See also error messages

in asynchronous communications
creating and sending, 352–358
sending and receiving, 346
settings to save, 344

suppressing, 100
MessageType property, of acknowledgment messages, 361
metacharacters in regular expressions, 544, 558

escaping, 563
for lookahead and lookbehind assertions, 578
quantifiers for, 546
replacement, 553
single character, 558–559
white space and, 560

metadata, 16
in schemas, 482

metallic shading in user interface, 635–636, 636

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

methods, 18. See also constructors
access to specific, 206–207
reflection to report on, 197–198, 203–204
shared, 8

Microsoft, and DOM specification, 478
Microsoft biztalk, 481
Microsoft Excel 10.0 Object Library, 111
Microsoft Intermediate language (MSIL), 214
Microsoft Message Queueing (MSMQ) component, 341

fault tolerance and load balancing, 366–370
management console snap-in, 344, 344–345
message delivery guarantee, 343

Microsoft Office. See Excel; Outlook; Word
Microsoft Outlook 10.0 Object Library, 109
Microsoft Pocket PC, emulator, 660
Microsoft SQL Server 2000 Desktop Engine (MSDE), potential problems, 329
Microsoft Word 10.0 Object Library, 94
Microsoft.VisualBasic namespace, 52
Microsoft.Win32 namespace, 49
middle tier components, 401

advantages, 444
business logic, 442, 443

remoting, 449–461
for business rule, 532–535
changing reference to, 457
from client/server to, 441–449

business rules, 443–445
COM+ applications, 465–473

COMPlus component, 466–467
exporting proxy, 467–468
serviced components, 468–473

converting BusinessLayer class to Web service, 450–457
for database connection, 90
designing with, 445–449
discount policy component as, 447–449
using COM components with .NET clients, 461–467
as Web service, 247

MinimumPage property, of PrinterSettings object, 164
MinorGridWidth property, in PlotControl application, 592
MinorXTicks property, in PlotControl application, 592

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MinorYTicks property, in PlotControl application, 592
mobile code, 125
mobile computing, 643

connections, 644–645
debugging via tracing, 654–656
device specificity, 658–660
emulators, 660–663
security, 652–653

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 68

End Sub

Public Property Title() As String
 Get . . .
 Set . . .
End Property

Public Property Pages() As Integer
 Get . . .
 Set . . .
End Property

Public Property Price() As Decimal
 Get . . .
 Set . . .
End Property

Public Property Authors() As Author()
 Get . . .
 Set . . .
End Property

Public Property AuthorRoyalties() As RoyaltySchedule
 Get
 Return (_AuthorRoyalties)
 End Get
 Set(ByVal Value As RoyaltySchedule)
 _AuthorRoyalties = Value
 End Set
End Property

Public Function CalculateRoyalties(ByVal UnitsSold As Integer) As Decimal
 If _AuthorRoyalties Is Nothing Then Return 0
 Dim tier As Integer, lastTier As Integer
 lastTier = _AuthorRoyalties.Tiers.GetUpperBound(0)
 Dim currentTier As Integer = 0
 Dim runningCount As Integer = 0
 Dim tierCount As Integer = 0
 Dim royalty As Decimal = 0
 For tier = 0 To lastTier
 tierCount = _AuthorRoyalties.Tiers(tier).Tier
 If tier > 0 Then tierCount = _
 tierCount - _AuthorRoyalties.Tiers(tier - 1). Tier
 runningCount = Math.Min(UnitsSold, tierCount)
 If UnitsSold > 0 Then royalty = royalty + _
 _AuthorRoyalties.Tiers(tier).Royalty *
 _price * tierCount
 UnitsSold = UnitsSold - runningCount

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 683

positive lookahead, 575
PositiveArrival member of AcknowledgeTypes

enumeration, 359
postback for DataGrid, detecting, 281–282
PostiveReceive member of AcknowledgeTypes

enumeration, 359
Precision property, of Parameter object, 410
Prefix property, of XMLReader object, 478
presentation tier, 442

separation by middle tier, 446
primary key changes, propagating, 431
principal object, 122–123
Print dialog box, 164–166, 165
Print method, of PrintDocument object, 166
Print Preview dialog box, 164
PrintBMP subroutine, 188–189
PrintDialog control, 165–166
PrintDocument control, 159–161
Printer object, 159
PrinterName property, of PrinterSettings object, 164
PrinterResolution property, of PageSettings object, 163
PrinterResolutions property, of PrinterSettings object, 164
PrinterSettings object, 162, 163–164
PrinterSettings property, of PageSettings object, 163
printing

dialog boxes, 164–167
in .NET, 159–162

simple printout, 160–161
page layout, 168–174

DrawString method, 168–170
PrintTests project, 170, 170–174

plaintext, 174–178, 175
pretty, from Excel, 113
printer and page properties, 162–164

PageSettings object, 162–163
PrinterSettings object, 163–164

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printscreen utility, 186, 186–189
punctuation symbols, 178
tabular data, 179–186
with Word objects, 107–108

PrintingPermission code access permission, 252, 253
PrintOut method, 113
PrintPage event handler, 160
PrintPreview control, 166–167, 167
PrintRange property, of PrinterSettings object, 164
PrintScreen project, 186, 186–189
PrintTests project, 170, 170–174
Priority property, of Message class, 342, 347, 350
prisoners, in Mandelbrot Set, 608, 612
privacy, 139
private queues, 343

referencing, 345
privileges, for .NET applications downloaded from server, 250
PRNListView control, xxii, 179–186

generating printout, 181–185
initiating printout, 180–181

PRNTextBox control, xxii
ProcessOrders console application, 385–388
production machines, 243
programming

aptitude for, xix–xx
error types, 232–236
for security, 133–136

Project Gutenberg web site, 545
Project menu

 Add Module, 46
 Add Reference, 11, 63, 109

project output, 263
projects, 193

adding Web service to, 336
BasicSerialization project, 61–65, 62
BusinessLayer project, 450–457
ClassSerializer project, 66, 66–71

Book class, 67–70
deserializing individual objects, 71
serializing individual objects, 70–71

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMCalculator, 462–463, 463
componentizing, 444
DataRelations project, 422–424, 423
DemoControl project, 175–178
DisconnectedOrders application, 374, 374–375
DiscountServer project, 458–461
fractal generator, 602–620
invoicing application, 516–535

architecture, 518–525
interface, 516–518, 518

MatchEvaluator project, 554–557, 555
MSMQLoadBalancing project, 367–370

BalancedQueue setup, 368

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 685

random numbers, 49–53
filling array with, 52–53

Randomize function, 49
Random.NextBytes method, 52
ranges of characters, in regular expressions, 546–547
RangeValidator control, 283, 284
RankException, 227
RCW (runtime–callable wrapper), 462
Read method, of FileStream object, 221
read–only access to database data, 413
read–only files, exception handling for, 222
reading files, 40–41
reading messages, from queue, 354–355
ReadLine method, of Stream object, 311
ReadToEnd method, of StreamReader object, 42
ReadWriteFile project, 219–224
real numbers, 603–604
Receive method

for messages in queues, 347, 354
of socket, 295

ReceiveByCorrelationID method, 350, 362
ReceiveByID method, 358
ReceiveCompleted event, 357
Recoverable property, of Message class, 344, 351, 366
Reference Map, 336
reference types, 14
ReferenceEquals method, 13, 14
Reference.vb file, 336
referential integrity, 421
reflection, xxii

accessing a type, 194–198
accessing current project's assembly, 198–199
accessing loaded assembly, 199–200
accessing specific members, 206–207
emission, 213–214
to execute discovered code, 208–213

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to get methods in class, 203–204
searching for members or data, 207–208
uses for, 191–193

assemblies, 192–193. See also assemblies
containers within containers, 193
security, 193
types and, 191–192, 205–206

Reflection.Emit namespace, 213
ReflectionPermission code access permission, 252
Regex, 282–283
RegExEditor project, 564–567

Find & Replace dialog box, 564–567
RegExOptions enumeration, 549
Register User dialog box, 270
Registry, 48–49

writing to, 49
Registry Editor, 262, 267
RegistryKey class, 48, 49
RegistryPermission code access permission, 252
regsvcs.exe tool, 472
Regular Expression Editor dialog box, 285, 285
regular expressions, 543

advanced topics, 567–579
grouping and backreferences, 568–573
lookahead and lookbehind assertions, 575–578
multiple captures, 573–575
replacement operations, 578–579

elements, 558–567
alternation, 563–564
anchors, 562
characters and metacharacters, 558
escaping metacharacters, 563
quantifiers, 560–562
ranges of characters, 559–560
single character metacharacters, 558–559
white space and metacharacters, 560

greedy vs. non-greedy, 561–562
ranges of characters in, 546–547
RegExEditor project, 564–567

Find & Replace dialog box, 564–567

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegularExpressions project, 579–582
testing, 571
for validation, 282
Visual grep project, 582, 582–587
writing, 544–547

RegularExpressions class, 547–557
Match and NextMatch methods, 551–552
Matches method, 550–551
Replace method, 552–557

MatchEvaluator project, 554–557
Split method, 552

RegularExpressions project, 544, 545, 579–582
RegularExpressionValidator control, 283, 285
RejectChanges method, of DataSet, 420, 425–426

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 687

Toolbox for design, 398
XSD, 481–482

science, and programming, xx
screen display, printscreen utility, 186, 186–189
Script control, 462–463

programming, 464–465
scripting, security and, 125
searching

in arrays, 31–33
text, 106–107

security. See also .NET Security Policy management
agreement on, 124–125
code-access, 124, 125–128
encrypting, 143–151

asymmetrical, 151–158
DES (Data Encryption Standard), 143–145
hashing with, 147–151
initialization vectors for DES, 146–147
key length, 147

main problem, 139–143
.NET Framework features, 121–122
permissions for downloaded assembly, 251
and privacy, 139
programming for, 133–136
role–based, 122, 469
for Web services, 339

Security Administration Wizard, 132, 133
Security.Cryptography.CryptographicException, 227
SecurityPermission code access permission, 252
Security.XmlSyntaxException, 228
seeding random generator, 50–52

for identical lists, 52
Select Case structure, for control array, 24
Select method, of DataTable object, 420
SELECT statement (SQL)

Data Adapter Configuration Wizard to create, 394, 394

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataAdapter task for, 404
WHERE clause, 405

SelectCommand property, of DataAdapter, 404
selection object in Word, 103, 104
SelectionColor property, of RichTextBox control, 587
SelectionFont property, of RichTextBox control, 587
SelectionList control

binding array to, 651
for mobile computing, 650

self-describing object types, 12
Send method, for messages in queues, 347
sending

fax with Word's Wizard, 98
graphics, 286–287
message to TCP server, 299–300

SendKeys command, 53
SentTime property, of acknowledgment messages, 361
<seq>, to require complex element sequence, 484, 485
<Serializable> attribute, 65, 460

and XML serialization, 72
serializable objects

creating, 65–79
ClassSerializer project, 66, 66–71

XSD to generate, 84–86
serialization, 53–57, 59, 60–65

basic steps, 61–65
custom, 79–81
destination, 80
firewall and, 61
Imports statements for, 54
overhead, 79
reading back mixed data, 56–57
of SQL Server data, 81–90
types, 60–61
XML, 495–501

SerializationContext parameter, of GetObjectData method, 80
SerializationInfo class, AddValue method, 79
serialized objects, messages as, 342
server controls, 272–273
Server Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to add queue reference, 346
Data Connections node, 327, 393

ServerKey.snk file, 470
servers

application, business logic on, 449
database, 441
IP addresses responded to, 291
proxy, 290
SQL Server

account for all users, 403
connection to instance running on other machine, 403

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 688

security, 120
serialization of data, 81–90

TCP, sending message to, 299–300
TcpChatServer application, 301–305

ChatClass, 302–303
incoming messages, 305
listening for requests on separate thread, 303

TCPServer project, 297–298
UDPServer application, 295, 295–296
web

downloading document from, 315
user download of application from, 246
Windows application deployment on, 249–250

Service element in WSDL, 331
ServiceControllerPermission code access permission, 252
serviced components, 468–473
session keys, 153
session state, in ASP.NET, 325
Set Application Identity window, 466, 467
SetAttributes method, of File class, 224
SetClip method, of Graphics object, 162
Setup Project

as New project option, 261
properties, 265–266

Setup Wizard, as New project option, 262
Setup.exe, 265
Setup.ini, 265
SetValue method, 33
SHA1 algorithm, 141, 142
shallow copy of instance, 12
Shared command, 15
shared methods, 8
Shell command, 53
shortcuts for Internet–based application deployment, 246, 257

creating, 266–267
ShowDialog method

of PageSetupDialog control, 165

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of PrintPreview control, 167
ShowMajorGrid property, in PlotControl application, 592
ShowMinorGrid property, in PlotControl application, 592
ShowNetwork property, of PrintDialog control, 166
simple XML data types, declaring, 483
SimpleQueue project, 362–363

processing acknowledgment messages, 365–366
single value type, 14
SingleLine member of RegExOptions enumeration, 549
singularities, 602
Site membership condition, 256
SkipVerification permission set, 251
slide transitions in user interface, 640, 640–641
sn command line tool, 470
SOAP, 333

persistence with, 495–503
SOAP serialization, 60–61

using, 63–64
SoapFormatter class, 61

deserialize method, 499
Socket class

Bind method of, 294
Send method, 295

SocketPermission code access permission, 252
sockets, 292–300
SocketType enumeration, 294
Software Restriction Policies (Windows), 122, 127–128
Solution Explorer, 459
solutions, 193
Sort property, of DataView object, 426
sorting

arrays, 31–33
customized, 33–34
DataGrid support, 276
DataViews, 426

source code. See code
Source property, of exception objects, 225
Specified property, 85
spell-check with Word objects, 94–98

passing text directly, 96

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

retrieving misspelled word list, 96–98
for VB.NET TextBox, 94–95

Split method
of RegEx class, 552
of String class, 19

SQL commands, Data Adapter Configuration Wizard to set up, 394, 394
SQL connection to database, 273–274
SQL Server

account for all users, 403
connection to instance running on other machine, 403

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 69

 Next
 If UnitsSold > 0 Then
 royalty = royalty + _
 _AuthorRoyalties.Tiers(lastTier).Royalty * _
 _price * UnitsSold
 End If
 Return royalty
 End Function
End Class

<Serializable()> Public Class Author
 Private _firstname As String
 Private_lastname As String
 <XmlAttributeAttribute()> Public Property FirstName() As String
 Get . . .
 Set . . .
 End Property

 <XmlAttributeAttribute()> Public Property LastName() As String
 Get . . .
 Set . . .
 End Property
End Class

<Serializable()> Public Class RoyaltySchedule
 Private _royaltyTiers() As RoyaltyTier

 Public Property Tiers() As RoyaltyTier()
 Get
 Return _royaltyTiers
 End Get
 Set(ByVal Value As RoyaltyTier())
 Dim tier As Integer
 For tier = 1 To Value.GetUpperBound(0)
 If Value(tier).Tier <= Value(tier - 1).Tier Then
 ReDim Preserve Value(tier - 1)
 _royaltyTiers = Value
 Exit Property
 End If
 Next
 _royaltyTiers = Value
 End Set
 End Property

 <Serializable()> Public Class RoyaltyTier
 Private _tier As Integer
 Private _royalty As Decimal
 Public Property Tier() As Integer
 Get

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 7

Too bad. What we want isn't always what we get. For all its power and virtues, .NET is
riddled with idiosyncratic, patternless constructions. Solecisms abound.

The situation is similar to the way that prepositions are used in English. There are no fixed
rules that govern prepositions, yet they serve to shade the meaning of many sentences.
Probably the single most obvious clue that a speaker is relatively illiterate (once they get verb
forms figured out) is the misuse of prepositions. Because there are no rules, each person
refines his use of prepositions by listening to educated speakers (not local TV reporters) and
reading well-written text (not local newspaper stories). For example, many people use the
preposition for inappropriately—using it as an all-purpose substitute when they don't know the
correct preposition. An example: ''There's a good chance for rain." (Should be "of.")

Having worked with VB.NET on a daily basis for years now, I can tell you that your educated
guesses about writing instantiation code and how to employ other syntaxes will improve over
time. But you'll never discover any fixed, reliable rules. There are too many exceptions, too
many peculiarities.

Here's an illustration. The first confusion when trying to grammatically diagram the items
shown in Figure 1.2 comes from the fact that two classes appear to be working together to
accomplish the job of creating "a file in the specified path": System.IO.FileStream and
System.IO.File. Both a filestream and a file object must be used in your code. However,
since they both belong to the System.IO namespace, you need only import that single
namespace:

Imports System.IO

The namespaces that are automatically added as defaults to each VB.NET Windows-style
project are: System, System.Data, System.Drawing, System.Windows.Forms, and
System.XML. These defaults, however, have changed in the past, and are likely to change in
the future. One wonders: Why include the little used System.Drawing as a default namespace?

In addition, .NET automatically includes some less visible default namespaces—as you'll see
later in this chapter in the section titled "Assemblies Three Ways."

Given that essentially everything is an object during runtime (including an integer variable, for
example), you can expect that sometimes you may have a single line of code that involves
objects from more than one namespace. Your first job when translating .NET documentation,
then, is to see what namespaces are referenced in the example code, and Imports them.

Next, you usually need to figure out what kind of object is returned from the method you're
working with. In the example in Figure 1.1, you can see that you must instantiate a FileStream
object. Why? Because the function (method) Create returns a FileStream object. You can
instantiate your FileStream object two ways:

 Dim fstream As FileStream
 fstream = File.Create("c:\myfile.tst")

or you can put the whole thing on a single line:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim fstream As FileStream = File.Create("c:\myfilex.tst")

Notice that sometimes when you instantiate an object you must use the New keyword
(triggering its constructor method). Other times you don't need it. A FileStream object can be
created without the New constructor, as can other common objects, such as a string. But don't
relax: other, equally common, objects must be instantiated with New. Sometimes you use
New; sometimes you don't—and there's no pattern or rule you can learn.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 70

 Return _tier
 End Get
 Set(ByVal Value As Integer)
 _tier = Value
 End Set
 End Property

 Public Property Royalty() As Decimal
 Get
 Return _royalty
 End Get
 Set(ByVal Value As Decimal)
 _royalty = Value
 End Set
 End Property
 End Class
End Class

The Create Book Objects button creates a few instances of the Book class and sets their
properties. These instances are the variables BK0, BK1, and BK2. Each of the buttons on the
left column serializes the Book objects, either individually or as a collection. Listing 3.4
shows the code behind the ''Save Book Objects (Binary)" button, which serializes all of the
Book objects in binary format.

LISTING 3.4: SERIALIZING INDIVIDUAL OBJECTS
Private Sub bttnSaveBookBinary_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSaveBookBinary.Click
 Me.Cursor = Cursors.WaitCursor
 Dim FS As FileStream
 Dim BF As New BinaryFormatter()
 Try
 FS = New FileStream("..\SerializedObjects.bin", FileMode.Create)
 BF.Serialize(FS, BK0)
 BF.Serialize(FS, BK1)
 BF.Serialize(FS, BK2)
 Catch exc As Exception
 MsgBox(exc.Message)
 Finally
 FS.Close()
 End Try
 Me.Cursor = Cursors.Default
 bttnLoadBooksBinary.Enabled = True
 TextBox1.Clear()
 TextBox1.Text = "Book objects saved in file SerializedObjects.bin"
End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 71

To serialize a series of objects, we simply call the appropriate formatter's Serialize method for
each object. Each object's binary serialized version is appended to the file. To deserialize the
original objects from the same file, click the Load Book Objects (Binary) button on the
application's form. The code behind this button is shown in Listing 3.5.

LISTING 3.5: DESERIALIZING INDIVIDUAL OBJECTS
Private Sub bttnLoadBooksBinary_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnLoadBooksBinary.Click
 Me.Cursor = Cursors.WaitCursor
 Dim book0, book1, book2 As Book
 Dim FS As FileStream
 Try
 FS = New FileStream(''..\SerializedObjects.bin", FileMode.Open)
 Catch exc As Exception
 MsgBox(exc.Message)
 Me.Cursor = Cursors.Default
 Exit Sub
 End Try
 Dim BF As New BinaryFormatter()
 Try
 book0 = CType(BF.Deserialize(FS), Book)
 book1 = CType(BF.Deserialize(FS), Book)
 book2 = CType(BF.Deserialize(FS), Book)
 Catch exc As Exception
 MsgBox(exc.Message)
 Me.Cursor = Cursors.Default
 Exit Sub
 Finally
 FS.Close()
 End Try
 TextBox1.Clear()
 ShowBook(book0)
 ShowBook(book1)
 ShowBook(book2)
 Me.Cursor = Cursors.Default
End Sub

You can examine the code behind the remaining buttons to see how they serialize/deserialize
individual objects in binary and SOAP format. The code is quite trivial and can be used by any
application that has access to the Books class.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 72

XML Serialization

Besides binary and SOAP serialization, the .NET Framework provides support for XML
serialization. XML serialization differs from the other two serialization forms in that it
serializes only public properties and fields; read-only and private properties are not serialized.
Therefore, XML serialization doesn't preserve the state of the object being serialized. The
output of XML serialization is both human and machine readable and doesn't require that
classes are marked with the <Serializable> attribute. Moreover, you have control over the
schema of the XML document that's produced with the help of attributes.

To use XML serialization, you must create an instance of the XmlSerializer class and then call
its Serialize method (or the Deserialize method to extract data from an XML stream and
populate an instance of a custom class). There's a major difference, however. The
XmlSerializer class must be told in its constructor the type of object it's going to serialize. The
constructor of the XmlSerializer class requires an argument, which is the type of the objects it
will serialize or deserialize. Here's how we set up a new instance of the XmlSerializer class:

Imports System.Xml.Serialization
Dim serializer As New XmlSerializer(CO.GetType)
Dim FS As FileStream
FS = New FileStream(path, FileMode.Create)
serializer.Serialize(FS, CO)
FS.Close()

The first statement imports the System.Xml.Serialization namespace so that we won't have to
fully qualify our references to the members of this class. The CO variable is an instance of the
custom class (custom object), whose instances we intend to serialize. You can also pass the
name of the class itself to the constructor, with a statement like the following:

Dim serializer As New XmlSerializer(GetType(CustomClass))

The Serializer object can only be used to serialize instances of the specific class and it will
throw an exception if you attempt to deserialize a different class with it. Note also that all
classes are XML-serializable by default and you don't have to prefix them with the
<Serializable> attribute.

NOTE XML Serializer can't serialize arbitrary objects. You must tell the XmlSerializer class
the type of object it's going to serialize. In the background, .NET will create a temporary
assembly, a process that will take a few moments. The temporary assembly, however, will
remain in memory as long as the application is running and after the initial delay, XML
serialization will be quite fast.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's return to the ClassSerializer project and look at the code that serializes an array of
custom objects. First, notice that you can't serialize individual objects into the same XML
document, because an XML document can't have multiple root nodes. To XML-serialize
multiple objects, you must assign them to the elements of an array and serialize the entire
array. Notice also that the XmlSerializer class can't serialize other collections, such as
ArrayLists and HashTables. The code that serializes the array of Book objects is shown in
Listing 3.6.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 73

LISTING 3.6: XML SERIALIZATION OF AN ARRAY OF OBJECTS
Private Sub bttnSaveArrayXML_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnSaveArrayXML.Click
 Me.Cursor = Cursors.WaitCursor
 Dim AllBooks(3) As Book
 AllBooks(0) = BK0
 AllBooks(1) = BK1
 AllBooks(2) = BK2
 AllBooks(3) = BK3

 Dim serializer As New XmlSerializer(AllBooks.GetType)

 Dim FS As FileStream
 Try
 FS = New FileStream(''..\SerializedXMLArray.xml", _
 FileMode.Create)
 serializer.Serialize(FS, AllBooks)
 Catch exc As Exception
 MsgBox(exc.InnerException.ToString)
 Exit Sub
 Finally
 FS.Close()
 End Try
 Me.Cursor = Cursors.Default
 bttnLoadArrayXML.Enabled = True
 TextBox1.Clear()
 TextBox1.Text = _
 "Array of Book objects saved in file SerializedXMLArray.xml"
End Sub

The XmlSerializer class's constructor accepts as argument the array type. Because the array is
typed, it can figure out the type of custom objects it's going to serialize.

CONTROLLING XML OUTPUT

One of the advantages of XML serialization is that it enables you to control the structure of the
XML document that will be generated. You can do so by applying special attributes to the
members of the class. To control the process of XML serialization, you can use the
XmlAttributes class, which provides the following properties. To use any of the following
attributes in the definition of your class, you must import the System.Xml.XmlAttribute
namespace into the module that implements the custom class.

XmlAnyAttribute Sometimes you may have to deserialize an XML document
received from another domain. The document should comply with an existing
schema, but you can't be sure it doesn't contain additional elements or attributes. To
make sure that the deserialization process

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 74

won't stop with an exception, create a property in your class and mark it with the
XmlAny-Attribute attribute. This property will be populated with any unknown
attribute the XML document may contain.
XmlAnyElements This attribute is equivalent to the XmlAnyAttribute attribute, but
handles unknown elements. A property marked with this attribute will be populated
with any unknown element the XML document may contain.
XmlArray This attribute serializes the contents of a property as an XML array and
is applied to all the properties that return arrays of objects.
XmlArrayItems This attribute is used in tandem with the XmlArray attribute and is
applied to all properties that return an array of objects. The XmlArrayItems attribute
specifies how the serializer renders the items of the array.
XmlAttribute By default, each property is rendered in the output as an element.
Use this attribute to serialize a property as an attribute of the preceding element.
XmlChoiceIdentifier This attribute allows you to specify a set of values, from
which the value of a property will be selected.
XmlDefaultValue This attribute sets the default value of an XML element or
attribute.
XmlElement This attribute forces the serializer to render a public field as an XML
element.
XmlEnum This attribute determines how an enumeration member is serialized.
XmlIgnore This attribute tells the XML serializer to ignore (not serialize) the
property to which it's applied.
XmlRoot This attribute is applied to a single property in the class and makes it the
root element of the XML document. You can also specify the name of the root
element, if you want it to be different than the name of the element to which the
attribute is applied.
XmlText This attribute renders the property to which it's applied as XML text. Only
one property in the class may be prefixed with the XmlText attribute.
XmlType This attribute controls how a type is serialized.

The two attributes used most often in the definition of a serializable class are the XmlElement
and XmlAttribute attributes. The XmlElement attributes has a few properties, which can be
specified in a pair of parentheses following the attribute's name, and they are:

IsNullable Allows you specify whether the property should be rendered even if set
to null.
DataType Allows you to specify the XSD type of the element the serializer will
generate.
ElementName Allows you to specify the name of the element.
Namespace Allows you to associate the element with a namespace URI.

The XmlAttribute attribute, which has a similar function to that of the XmlElement attribute,
supports only the DataType and the Namespace properties, but not the IsNullable property. As

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 75

you'd expect, the XmlAttribute attribute provides the AttributeName property instead of the
Element-Name property, which allows you to replace the default name of the attribute with the
string assigned to the AttributeName property.

Let's consider a very simple class, the Product class:

Public Class Product
 Public ProductID As Integer
 Public ProductName As String
 Public ProductPrice As Decimal
End Class

By default, an instance of the Product class will be serialized as follows:

<?xml version=''1.0"?>
<Product xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ProductID>332</ProductID>
 <ProductName>Product Name</ProductName>
 <ProductPrice>42.15</ProductPrice>
</Product>

If you apply the XmlAttribute to the ID property, the ID of the product will become an
attribute of the Product element:

<?xml version="1.0"?>
<Product xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ProductID="332" >
 <ProductName>Product Name</ProductName>
 <ProductPrice>42.15</ProductPrice>
</Product>

The revised definition of the Product class with the XmlAttribute attribute is:

Imports System.Xml.Serialization
Public Class Product
 <XmlAttributeAttribute()> Public ProductID As Integer
 Public ProductName As String
 Public ProductPrice As Decimal
End Class

The XmlEnum Attribute lets you modify the names of the members of an enumeration. The
following enumeration can be used to replace state abbreviations with state names:

Public Enum States
 <XmlEnum("Alaska")> AK
 <XmlEnum("California")> CA
 . . .
End Enum

We're assuming that the XML document you're deserializing contains abbreviations and the
objects that will accept the deserialization output have a field for storing state names.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 76

By default, the root element of an XML serialized object is the name of the class from which
the object was created. To change the name of the root element, apply the XmlRootAttribute
attribute to the class declaration:

<XmlRootAttribute(ElementName=''NWEmployee")>
Public Class Employee
 ' the class's definition
End Class

What good is this attribute if we can just change the name of the class? You may need it when
the class definition must conform to specific rules, which may not apply to serialized instances
of the class. You can also change the name of the root attribute programmatically, when you
have no access to the class's code. The following code segment does the same by creating a
new XmlRootAttribute object and passing it as an argument to the XmlSerializer class's
constructor:

Dim root As New XmlRootAttribute()
root.ElementName = "NWEmployee"
Dim ser As New XmlSerializer(typeof(Employee), root)

The NETConfigFiles Project

In this section we'll develop a class for persisting application settings to a configuration file.
We'll write a class that represents the application's settings, populate the class's members, and
persist the instance of the class to a file. The settings can be persisted in either XML or binary
format. The advantage of XML files is that they can be edited outside the context of the
application they describe. If you don't want users to edit the settings, you can use binary
serialization, which is faster. However, you can allow administrators to edit an application's
settings in an XML file.

The NETConfigFiles project contains two classes that describe the application settings: the
XMLConfigurationClass and the BINConfigurationClass. Both classes store the same data,
which are mapped to the following private data:

Public Class AppConfig
 Private _location As Point
 Private _size As Size
 Private _datapath As String
 Private _recentfiles() As String
 Private _passwordDigest(16) As Byte
 Private _printerName As String
End Class

Each of the two classes contain Property Set and Get procedures for each of these properties.
In addition, they provide a Save and a Load method, which persist the settings to a file and
load the settings from a file, respectively. The Save method accepts two arguments, the path of
the file and an instance of the XMLConfigurationClass class (or the BINConfigurationClass
class). The Load method accepts the path of the file with the settings and returns an instance of
one in the corresponding class. The Save method of the XMLConfiguration class is shown in
Listing 3.7:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 77

LISTING 3.7: PERSISTING AN INSTANCE OF THE APPCONFIG CLASS IN XML
Public Function Save(ByVal path As String, ByVal CF As AppConfig) _
 As Boolean
 Dim serializer As New XmlSerializer(CF.GetType)
 Dim FS As FileStream
 Try
 FS = New FileStream(path, FileMode.Create)
 serializer.Serialize(FS, CF)
 FS.Close()
 Return True
 Catch exc As Exception
 Throw exc
 End Try
 FS.Close()
 Return True
End Function

The code simply sets up an XmlSerializer class and calls its Serialize method. The Load
method is just as simple; it's shown in Listing 3.8.

LISTING 3.8: RESTORING AN INSTANCE OF THE APPCONFIG CLASS FROM XML
Public Function Load(ByVal path As String) As AppConfig
 Dim CF As New AppConfig
 Dim serializer As New XmlSerializer(CF.GetType)
 Dim FS As FileStream
 Try
 FS = New FileStream(path, FileMode.Open)
 CF = serializer.Deserialize(FS)
 FS.Close()
 Return CF
 Catch exc As Exception
 FS.Close()
 Return Nothing
 End Try
End Function

To save its settings, the application's code creates an instance of the AppConfig class and sets
its properties. Then it serializes the CF object, which contains the current settings of the
application. These settings include the name of a printer, a list of recent files, and a password's
hash code. Identical passwords produce identical hash codes, so we don't have to store the
actual password in the file. We know that the user supplied the correct password if its hash
code matches the hash code of the correct password. Listing 3.9 shows the code that reads
back the application settings (it's the code of the Save XML Configuration button of the test
form, shown in Figure 3.3).

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 78

LISTING 3.9: SAVING THE APPLICATION CONFIGURATION
Private Sub bttnSaveConfig_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnXMLSaveConfig.Click
 Dim printerName As String
 PrintDialog1.PrinterSettings = New _
 System.Drawing.Printing.PrinterSettings
 If PrintDialog1.ShowDialog() = DialogResult.OK Then
 printerName = PrintDialog1.PrinterSettings.PrinterName()
 End If

 Dim AppCFG As New XMLConfigurationClass.AppConfig
 Dim files() As String = {''drive\folder1\folder2\file1", _
 "drive\folder1\folder3\file2", _
 "drive\folder2\folder2\file3"}
 AppCFG.recentfiles = files
 AppCFG.datapath = "Application s\data\path\here"
 AppCFG.Location = New Point(230, 320)
 AppCFG.Size = New Size(100, 300)
 Dim DigestProvider As New _
 System.Security.Cryptography.MD5CryptoServiceProvider
 AppCFG.PasswordDigest = _
 DigestProvider.ComputeHash(_
 System.Text.Encoding.Unicode.GetBytes("secret password"))
 AppCFG.PrinterName = printerName
 Try
 XMLConfig.Save("..\AppConfigFile.xml", AppCFG)
 MsgBox("Configuration file saved successfully")
 Catch exc As Exception
 MsgBox("Failed to save configuration file!")
 End Try
End Sub

FIGURE 3.3 The NETConfig-Files project's form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 8

Figure 1.2 is a diagram illustrating how to translate the information found in the Object
Browser into usable source code:

FIGURE 1.2 Make these adjustments to the object description to come up with usable code.

The technical reasons why some objects demand that you instantiate them (use a New
command) and others don't are rather tedious, and are of more interest to the people at
Microsoft who wrote .NET and who continue to revise it than to us programmers.

The distinction is essentially trivial—you must use New when they say you must. They've
simply decided that some objects need it; others don't. Although virtually everything in
VB.NET is an object, some methods are considered ''common" enough that they are just there,
just available to you, like the ABS command (you don't have to instantiate the Math class to
use its ABS method, though you do have to mention the Math namespace). These "shared"
methods require no instantiation. The answer to this discrepancy can be found later in this
chapter in the sidebar titled "What's Shared, What's Static?"

If you're trying to instantiate an object, and get an error message saying, for example, that one
data type "cannot be converted" into another data type (or the infamous "Object reference not
set to an instance of an object" error message), this usually means that you need the New
command. You must use it. Just try adding it to see if this solves the problem. Sure, it's
whimsy, but so is the fact that some collections in .NET are zero-based and others are one-
based. You just have to learn all the little exceptions to the "rules."

For example, this line causes the IDE to protest:

Dim dirI As DirectoryInfo = ("c:\")

Instead, you must use this format:

Dim dirI As DirectoryInfo
dirI = New DirectoryInfo("c:\")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What happens here is that you are trying to assign a string data type "c:\" to your
DirectoryInfo object dirI. No can do. You must instead create the object variable dirI, then
instantiate a new DirectoryInfo object and assign it to your object variable. You can also use
this format:

Dim dirI As DirectoryInfo = New DirectoryInfo("c:\")

Do you suppose this format would work?

Dim dirI As New DirectoryInfo

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 80

The Info argument exposes methods for reading all data types of the .NET language runtime.
The following constructor corresponds to the custom serializer shown above:

Friend Sub New(ByVal info As SerializationInfo, _
 ByVal context As StreamingContext)
 _fld1 = info.GetString(''classField1")
 _fld2 = info.GetDecimal("classField2")
 _fld3 = info.GetBoolean("classField3")
Dim creationDate As DateTime = info.GetDate("CreationDate")
End Sub

Notice that this overloaded form of the custom class's constructor is declared with the Friend
modifier. The class should contain a simple New public constructor, which other applications
can access, but the constructor responsible for deserializing a class should not be visible
outside the containing class.

The CreationDate item is serialized, but there's no property in the class to store this value.
That's why the deserializer stores this value to a local variable.

The SerializationContext Parameter

The second parameter of the GetObjectData method is a SerializationContext object, which
describes the destination of the serialization process, or the source of the deserialization
process (where the serialized data are sent, or where the deserialized data are coming from).
The SerializationContext class has a few methods; the most important of these is the State
property, which can be a member of the StreamingContextState enumeration, shown in Table
3.1.

TABLE 3.1: THE STREAMINGCONTEXTSTATE ENUMERATION

Member Description

All Encapsulates all possible contexts

Clone Specifies that the object being serialized is cloned

CrossAppDomain Specifies that the context is that of a different application domain

CrossMachine Specifies that the source or destination is that of a different computer

CrossProcess Specifies that the source or destination is a different process on the
same computer

File Specifies that the source or destination is a file

Other Specifies that the serialization context is unknown

Persistence Specifies that the source or destination is a persisted store (database,
file, or private storage)

Remoting Specifies that the serialized object is remoted to an unknown
location

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 82

The Serialize Order button creates a new order by setting up an Orders object and serializes it
to the file. The Deserialize Order button deserializes the order's values into a new instance of
the Orders class and displays them on the TextBox control. To commit the new order to the
database, click the Commit Order button. The last button, Read Order, prompts you for an
order's ID and reads the corresponding order from the database directly into an instance of the
Orders class.

First, we must create a class for describing the orders. Since the class should be able to accept
data from the database, we'll use some of Visual Studio's tools to design the class. Start by
implementing and executing a query that will return the desired data from the database. Listing
3.10 is a query that returns the header and details of a specific order from the Northwind
database.

LISTING 3.10: RETRIEVING ORDER INFORMATION IN XML FORMAT
SELECT Orders.OrderID AS ID,
 Orders.CustomerID,
 CONVERT(datetime, Orders.OrderDate) AS OrderDate,
 CONVERT(datetime, Orders.ShippedDate) AS ShipDate,
 (SELECT CompanyName FROM
 Customers WHERE
 Customers.CustomerID=Orders.CustomerID) AS Customer,
 (SELECT ContactName FROM
 Customers WHERE
 Customers.CustomerID=Orders.CustomerID) AS Contact,
 Products.ProductID, Products.ProductName,
 CAST(Details.UnitPrice AS numeric(8,2)) As Price,
 CAST(Details.Quantity AS int) AS Quantity,
 CAST(Details.Discount AS numeric(8,2)) AS Discount
FROM [Order Details] Details
 INNER JOIN Orders ON Orders.OrderID = Details.OrderID
 INNER JOIN Products ON Products.ProductID = Details.ProductID
WHERE Orders.OrderID = 10910
FOR XML AUTO

The last clause of the statement instructs SQL Server to return the result of the query in XML
format, as shown in Figure 3.5. The entire query is returned as a single line, but we've edited
the XML document on the result pane of the Query Analyzer window to make it easier to
read.

The result of this query is an XML document with the following structure:

<Orders ID=''10910" CustomerID="WILMK"
 Customer="Wilman Kala" Contact= "Matti Karttunen" >
<Products ProductID="19"
 ProductName="Teatime Chocolate Biscuits" Price="9.20"
 Quantity="12" Discount="0.00"/>
<Products ProductID="49" ProductName= "Maxilaku" Price="20.00"
 Quantity="10" Discount="0.00"/>
<Products ProductID="61" ProductName= "Sirop d'érable"
 Price="28.50" Quantity="5" Discount="0.00"/>
</Orders>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Orders>

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 83

FIGURE 3.5 Retrieving the result of an XML query in Query Analyzer

The <Orders> element represents the header of the order and the <Products> elements
represent detail lines. Notice that the tables involved in the query have become elements of the
XML document and all the fields are attributes of their corresponding table element.

There's a catch here: We have selected a few columns from the Customers table with
subqueries, but the Customers table doesn't appear anywhere in the selection list of the query.
If we introduced another join with the Customers table, the XML document would have a
Customers element, and the customer's fields would become attributes of the Customers
element. We wanted to include the customer's data as attributes of the Orders element, without
introducing another element. You can experiment by rewriting the query and see how SQL
Server creates the XML document with the hierarchy of the requested data. You will have to
tweak the query to get a document with the desired structure; don't forget to append the FOR
XML AUTO clause to the query.

At this point, you can write a class with public fields and subclasses that reflect the hierarchy
of the XML document returned by the query. Although it's fairly straightforward to build this
class manually, you can use the XSD command-line tool to automate the generation of the
class. To use this tool, copy the XML document returned by the query, paste it into a new text
document, and save the document in a file with a short path with extension XML. You can
save it as Orders.xml in the root path (don't save it to a folder with a long pathname, because

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

save it as Orders.xml in the root path (don't save it to a folder with a long pathname, because
you'll have to type the entire pathname, as you'll see in the following statements). Then open a
Command Prompt window and switch to the SDK/Bin folder under the folder of Visual Studio
2003 (or the FrameworkSDK/Bin folder if you're using Visual Studio .NET). There you can
execute the following statement to extract an XML schema from the document:

xsd c:\Orders.xml

The XSD utility will process the XML file and will generate a new file with the document's
XSD schema. The Orders.xsd file will be saved in the current folder. Run again the XSD
utility, this time

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 84

specifying the name of the XSD file and two options: the /classes option (to generate the
classes that correspond to the specified schema) and the /language option (to generate VB
code):

xsd Orders.xsd /classes /language:vb

This command will generate a new file, the Orders.vb file, which contains a serializable
class that has the same structure as the XML document. Listing 3.11 shows what this file looks
like (we've removed all the comments inserted by the code generator in the listing).

LISTING 3.11: THE NWORDERS CLASS
Option Strict Off
Option Explicit On

Imports System.Xml.Serialization

<System.Xml.Serialization.XmlRootAttribute([Namespace]:=''", IsNullable:=false)> _ Public Class Schema1

 <System.Xml.Serialization.XmlElementAttribute("Orders",
 Form:=System.Xml.Schema.XmlSchemaForm.Unqualified)> _
 Public Items() As Schema1Orders
End Class

Public Class Schema1Orders

 <System.Xml.Serialization.XmlElementAttribute("Products",
 Form:=System.Xml.Schema.XmlSchemaForm.Unqualified)> _
 Public Products() As Schema1OrdersProducts

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public ID As Integer

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public IDSpecified As Boolean

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public OrderDate As Date

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public OrderDateSpecified As Boolean

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public ShipDate As Date

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public ShipDateSpecified As Boolean

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 85

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public Customer As String

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public Contact As String
End Class

Public Class Schema1OrdersProducts

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public ProductID As Integer

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public ProductIDSpecified As Boolean

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public ProductName As String

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public Price As Decimal

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public PriceSpecified As Boolean

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public Quantity As Integer

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public QuantitySpecified As Boolean

 <System.Xml.Serialization.XmlAttributeAttribute()> _
 Public Discount As Decimal

 <System.Xml.Serialization.XmlIgnoreAttribute()> _
 Public DiscountSpecified As Boolean
End Class

The Boolean public fields with the ''Specified" suffix are there to handle Null values. If a field
has a Null value, you should set the corresponding Specified property to True to indicate this
condition. We aren't going to use these properties, so you can safely remove them.

All the elements of the XML schema generated by the XSD class are prefixed with the
"Schema1" string. You can edit the code of the class and rename the elements by removing the
"Schema1" prefix. This default prefix is generated by SQL Server and it doesn't help the
readability of the code.

The class designed by the XSD command-line tool represents an order. We can now retrieve
an order from SQL Server as an XML document, deserialize each order into an instance of the
Schema1 Orders class, and pass it to the presentation tier. Using XML serialization, you can
either persist this object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 86

between sessions or transmit it from one application (or computer) to another. Let's say you're
developing an ordering system for the Northwind corporation. You can share with certain
trusted customers the company's price list, as well as the structure of the XML file for the
orders. Other companies can create their own orders and submit them to your corporation as
XML files.

Every time your application receives an order in XML format, it can deserialize it and use the
data to commit a new order into the database. Customers using .NET technology can make use
of the custom class to create orders: they can populate an instance of the custom class,
serialize the object into XML, and send it to your system for processing. Let's see how this can
be done.

The NWOrders Project

Now we can build the sample application that retrieves data from SQL Server and passes them
to the application tier as custom objects. Typed DataSets, which are discussed in Chapters 15
and 17, are quite convenient, but DataSets are not business objects. We still have to worry
about relations between tables, access tables, and rows, and work with a model that resembles
a database. The code at the presentation tier is simplified a lot if we can program against
objects.

Start a new project, name it NWOrders, and add a new class to it, the NWOrders class. Then
paste the class definition generated by the XSD command-line tool into its code window (just
delete the public fields suffixed by the string ''Specified," as explained already). Switch to the
project's main form and place the controls you see in Figure 3.4. The Serialize Order button
creates a new order by populating the fields of an instance of the Orders class. The code
always creates the same order, with the statements shown in Listing 3.12. Then the order is
serialized in the Order.xml file, which is read back by the code of the other two buttons on
the form. We've chosen to create the same order to simplify the code (you can create random
new orders, or use the interface we discuss in Chapter 18 to create new orders).

LISTING3.12: CREATING AND SERIALIZING A NEW ORDER
Private Sub bttnSerialize_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles bttnSerialize.Click
Dim NW As New NWOrders.Orders
Dim orderedproducts(2) As NWOrders.OrdersProducts

orderedproducts(0) = New NWOrders.OrdersProducts
orderedproducts(0).ProductID = 12
orderedproducts(0).Quantity = 12
orderedproducts(1) = New NWOrders.OrdersProducts
orderedproducts(1).ProductID = 48
orderedproducts(1).Quantity = 6
orderedproducts(2) = New NWOrders.OrdersProducts
orderedproducts(2).ProductID = 30
orderedproducts(2).Quantity = 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NW.CustomerID = "ALFKI"
NW.Customer = "Alfreds Futterkiste"

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 87

NW.Contact = ''Maria Anders"
NW.OrderDate = Now.Today
NW.Products = orderedproducts

Dim serializer As New XmlSerializer(NW.GetType)
Dim FS As FileStream
Try
 FS = New FileStream("..\Order.xml", FileMode.Create)
 serializer.Serialize(FS, NW)
Catch exc As Exception
 MsgBox(exc.InnerException.ToString)
Finally
 FS.Close()
End Try
txtOrder.Clear()
txtOrder.AppendText("Order serialized successfully")
End Sub

The code is straightforward. We start by creating an array of OrdersProducts objects, with the
order's detail lines. This array contains the IDs of the ordered products and the corresponding
quantities. Notice that we don't set the Price field, because customers can't set their prices. The
prices will be determined by the system that will process the order (we only assume that
customers have the most up-to-date version of our price list and the discount policy is simple
and clear). We're not going to deal with the practical issues that may arise, just how to
serialize and deserialize objects.

Once we've populated the NW object's fields, we serialize it into the Order.xml file with the
XmlSerializer and display the appropriate message. Let's now see how the Deserialize Order
button handles the deserialization of the Order.xml file and creates a new instance of the NW
order, this time on a different machine. The sample project doesn't use any variables to
maintain state. The Deserialize Order button simply reads the XML file created by the
Serialize Order button and displays the order's details on a TextBox control, as shown in
Listing 3.13.

LISTING 3.13: DESERIALIZING XML INTO AN INSTANCE OF A CUSTOM CLASS
Private Sub bttnDeserialize_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles bttnDeserialize.Click
Dim NW As New NWOrders.Orders
Dim serializer As New XmlSerializer(NW.GetType)
Dim FS As FileStream
Try
 FS = New FileStream("..\Order.xml", FileMode.Open)
 NW = CType(serializer.Deserialize(FS), NWOrders.Orders)
Catch exc As Exception
 MsgBox(exc.InnerException.ToString)
Finally
 FS.Close()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 88

End Try
Dim msg As String
msg = ''Order placed on" & NW.OrderDate
msg = msg & " By " & NW.Customer & " (" & NW.CustomerID & ")"
Dim itm As Integer
For itm = 0 To NW.Products.Length - 1
 msg = msg & vbCrLf & "ID " & NW.Products(itm).ProductID
 msg = msg & QTY & NW.Products(itm).Quantity
Next
txtOrder.Clear()
txtOrder.AppendText(msg)
End Sub

As soon as you type the name of the object that represents the order, the NW object in Listing
3.13, and the period following it, the order's fields will appear in a drop-down list and you can
select the desired member. The ID that relates the order to its details becomes irrelevant,
because each Order's object contains both the header and the details. We just pass the
responsibility of handling primary and foreign keys to the database and we don't have to worry
about relations between DataTables.

The Commit Order button performs the same deserialization as the Deserialize Order button to
reconstruct another NWOrders.Orders object. It then uses its fields as arguments to the
appropriate SQL statements that commit the order to the database in a transactional mode, as
shown in Listing 3.14.

LISTING 3.14: COMMITTIN AN ORDER TO THE DATABASE
Private Sub bttnCommit_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles bttnCommit.Click
Dim NW As New NWOrders.Orders
' retrieve the order from XML file and store it in the NW object
Dim serializer As New XmlSerializer(NW.GetType)
Dim FS As FileStream
Try
 FS = New FileStream("..\Order.xml", FileMode.Open)
 NW = CType(serializer.Deserialize(FS), NWOrders.Orders)
Catch exc As Exception
 MsgBox(exc.InnerException.ToString)
Finally
 FS.Close()
End Try
' now commit the order to the database by executing the appropriate SQL
' statements and passing the fields of the NW object as arguments
Dim CMD As New SqlClient.SqlCommand
CMD.CommandText = "INSERT INTO ORDERS " & _
 "(CustomerID, OrderDate) VALUES ('" & _
 NW.CustomerID & "', '" & NW.OrderDate & " '); " & _
 "SELECT @@IDENTITY"

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 89

CMD.CommandType = CommandType.Text
Dim CN As New SqlClient.SqlConnection
CN.ConnectionString = data source=.initial catalog=Northwind; '' & _
 "integrated security=SSPI;persist security info=False; " & _
 "workstation id=POWERTOOLKIT;packet size=4096"
CMD.Connection = CN
Dim TRN As SqlClient.SqlTransaction
CN.Open()
TRN = CN.BeginTransaction
CMD.Transaction = TRN
Try
 Dim orderID As Integer = CInt(CMD.ExecuteScalar)
 Dim itm As Integer, rows As Integer
 For itm = 0 To NW.Products.Length - 1
 CMD.CommandText = INSERT INTO [Order Details] " & _
 "(OrderID, ProductID, Quantity, UnitPrice, Discount) " & _
 "SELECT "& orderID &", &" NW.Products(itm).ProductID & _
 ", " & NW.Products(itm).Quantity & ", "& _
 " UnitPrice, " & NW.Products(itm).Discount & _
 "FROM Products WHERE ProductID =" & NW.Products(itm).ProductID
 rows = CMD.ExecuteNonQuery()
 If rows = 0 Then
 TRN.Rollback()
 CN.Close()
 MsgBox("TRANSACTION ABORTED! " & vbCrLf & _
 "Error in inserting detail line for Product ID " & _
 NW.Products(itm).ProductID & vbCrLf)
 Exit Sub
 End If
 Next
 TRN.Commit()
 txtOrder.Clear()
 txtOrder.AppendText("ORDER " & _
 orderID.ToString &" COMMITTED TO DATABASE")
Catch ex As Exception
 TRN.Rollback()
 MsgBox("Could not insert order into Northwind database! " & _
 vbCrLf & ex.Message)
Finally
 CN.Close()
End Try
End Sub

The last button on the form, the Read Order button, demonstrates how to read XML data out
of SQL Server and serialize it into an instance of the Orders class. First, you must create the
ReadOrder stored procedure and attach it to the database. The code of the ReadOrder stored
procedure contains the T-SQL code of Listing 3.10 (you can find the stored procedure's code
in the project's README

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 9

Nope. Try it and you're told that ''Overload resolution failed because no accessible 'New'
accepts this number of arguments." Too bad that whoever wrote this error message didn't
bother to translate it into English. Visual Basic is famous for its English-like syntax and its
avoidance of silly techno-talk and garbled phrasing. That's why VB is by far the world's most
popular programming language. It's sensible and attempts to be straightforward. Alas, .NET is
something of a setback in this department, but the Help feature and other documentation has
been considerably improved in the past three years, and continues to become increasingly
clear and sensible. Perhaps Microsoft will hire a writer who knows VB to continue the
improvements. One can hope.

This "Overload resolution failed because no accessible 'New' accepts this number of
arguments" error message seems to mean that the DirectoryInfo class doesn't have a
constructor that requires no parameters. In other words, in the DirectoryInfo class, there is no
Sub New(), a constructor that requires no parameters. However, that's not precisely the
problem.

The DirectoryInfo class requires that you pass it a string containing a filepath. If you look up
DirectoryInfo in Help, and look at its constructor, you find this, its only constructor:

 [Visual Basic]
Public Sub New(_
 ByVal path As String _
)

This seems to mean that you cannot instantiate a DirectoryInfo object without passing a file
path to it. How about the FileStream object? It's similar to DirectoryInfo because it also needs
a file path to do its job. Why aren't these two similar objects—FileStream and DirectoryInfo—
created the same way?

It's really curious, but some of the rules and behaviors in .NET are merely quixotic, a matter of
what seems to us programmers to be mere whimsy. The FileStream object's constructor is
overloaded; there are nine versions of its constructor (nine different "signatures" meaning
"parameter lists"). But FileStream, like DirectoryInfo, offers no constructor that requires no
parameters.

Here's the simplest description given by the Object Browser of how to use the DirectoryInfo
object's CreateDirectory method:

Public Function GetDirectories() As System.IO.DirectoryInfo()
 Member of: System.IO.DirectoryInfo
Summary:
Returns the subdirectories of the current directory.
Return Values:
An array of System.IO.DirectoryInfo objects.

Clearly, you must create an array that can hold DirectoryInfo objects, but first you have to
create another DirectoryInfo object (and in the process of instantiating it, its constructor
demands that you supply a path):

Dim di As DirectoryInfo = New DirectoryInfo("c:\")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim di As DirectoryInfo = New DirectoryInfo("c:\")

Then you instantiate the array (without using As New) and execute the GetDirectories method:

Dim dirs As DirectoryInfo() = di.GetDirectories()

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 90

file). This stored procedure returns an XML document with the values of an order and must be
executed with the ExecuteXmlReader method of the SqlCommand object. This method returns
an Xml-Reader object, which you can feed to the Deserialize method of the appropriate
XmlSerializer object to populate an instance of the Orders class. Listing 3.15 shows the code
behind the Read Order button.

LISTING 3.15: DESERIALIZING AN XML DOCUMENT REPRESENTG AN ORDER
Private Sub bttnReadOrder_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles bttnReadOrder.Click
 Dim NW As New NWOrders.Orders
 Dim serializer As New XmlSerializer(NW.GetType)
 Dim CMD As New SqlClient.SqlCommand
 CMD.CommandText = ''ReadOrder"
 CMD.CommandType = CommandType.StoredProcedure
 CMD.Parameters.Clear()
 Dim orderID As Integer = Convert.ToInt32(InputBox(_
 "Enter the ID of the desired order", , "10903"))
 CMD.Parameters.Add(@orderID , orderID)
 Dim CN As New SqlClient.SqlConnection
 CN.ConnectionString = "data source=localhost;initial " & _
"catalog=Northwind;integrated security=SSPI; " & _
"persist security info=False; " & _
"workstation id=POWERTOOLKIT;packet size=4096"
 CMD.Connection = CN
 CN.Open()
 Dim XMLReader As System.Xml.XmlReader = CMD.ExecuteXmlReader
 Try
 NW = CType(serializer.Deserialize(XMLReader), NWOrders.Orders)
 ShowOrder(NW)
 Catch Ex As Exception
 MsgBox(Ex.Message)
 Exit Sub
 Finally
 CN.Close()
 End Try
 ShowOrder(NW)
End Sub

The code is straightforward and doesn't contain any ADO.NET-specific code. We request
SQL Server to return the result of a query in XML format, with a predefined schema. The
response's schema matches the definition of a custom class, and we can deserialize the XML
document returned by SQL Server into an instance of this class. The advantage of this
approach is that presentation tier developers need not be concerned with the actual structure of
the database, or work with ADO.NET objects; they simply program against business objects
and call a middle tier component to communicate with the database.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 92

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 95

 Dim t As String = TextBox1.Text

 If t <> ''" Then Clipboard.SetDataObject(TextBox1.Text) 'move the text to the
clipboard

 With d
 .Content.Paste()
 .CheckSpelling()
 .Content.Copy()
 id = Clipboard.GetDataObject

 TextBox1.Text = CType(id.GetData(DataFormats.Text), String)
 .Close()
 End With

 w.Quit(false) 'exit word

 Me.Text = "Spellcheck complete"
End Sub

If there were no errors, nothing seems to happen so you want to use the Me.Text message at
the end, or a message box, to inform the user that indeed the spelling has been checked. If
there is an error, the usual Word spell-check dialog box appears and the user can edit their
work.

To use the Word spell-check dialog box, you must resort to the ancient technique of
transferring your TextBox's contents to the Clipboard, then pasting it into your Word
document object. After the spell-check is finished, the Clipboard is again used as a way station
between the document object, which copies its contents (using .Content.Copy) back into the
Clipboard, and the .NET GetData method, which is used to paste the Clipboard contents back
into the TextBox. To also check the grammar, simply replace .CheckSpelling with
.CheckGrammar. The latter option includes a spell-check.

WHOOPS: DESTROYING THE APPLICATION OBJECT

When working with instantiated Office objects you may get an error message that says: "An unhandled
exception of type 'System.Runtime.InteropServices.COMException' occurred in mscorlib.dll. Additional
information: The RPC server is unavailable." If you see this, it means that you've destroyed the application
object and are now trying to use it. It's gone, so you cannot continue to reference it in your source code. This
could happen, for example, if you use the Word application object's Quit method (destroying the application
object) prematurely. Look in your source code to see where you've used Quit and move it to a better
location, such as your form's Closing event, like this:
Private Sub Form1_Closing(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
 WordApp.Quit(False)
 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 96

Notice the pattern in the code in this example. First you instantiate the Word application
object, followed by instantiation of a Word document object. After that you're free to use a
variety of methods of the document object: Content.Paste, CheckSpelling, Content.Copy, and
Close.

Notice, too, the use of the argument false following the Word application object's Quit
method. This instructs Word not to throw up a dialog box asking if you want to save the
contents of the document. You don't; you're simply borrowing functionality from Word and
you put your TextBox's contents into this Word document merely temporarily so you could
spell-check it. You can dump the document after you've returned the correct contents back to
the VB.NET TextBox.

PASSING TEXT DIRECTLY

The next example is simpler (see Listing 4.2); it doesn't involve the Clipboard because you
pass the text in the TextBox directly to Word's spell-check function and get a yes or no answer
—it checks out, or there's an error somewhere in the text. This would be useful if you wanted
to allow your users to type in a single word or small phrase and verify its spelling.

LISTING 4.2: PASSING TEXT DIRECTLY TO THE WORD SPELL-CHECKER
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim w As Object = New Word.Application
 w.visible = False

 Dim t As String = TextBox1.Text

 If w.CheckSpelling(t) Then
 MsgBox(t & '' contains no spelling errors.")
 Else
 MsgBox(t & " does include an error in spelling.")

 End If

 w.Quit()

End Sub

RETRIEVING A LIST OF MISSPELLED WORDS

As usual in .NET, there are several ways to accomplish the same goal. This final spell-check
example shows you how to obtain a list of misspelled words in a document you submit to
Word, and a separate list of the spell checker's suggested alternatives to each misspelled word.
With this functionality, you don't need to employ the Word spell-check dialog box as your
user interface. Instead, you can design your own custom interface in VB.NET, showing the
user a list box, for example, containing all the misspelled words in the entire document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 97

Put a TextBox, two ListBoxes, and a button on a form. You'll need to give the Word
application instantiation form-wide scope because it's needed by more than just the button's
event. So type this line outside any event:

Dim w As Object = New Word.Application

Then type in the code in Listing 4.3.

LISTING 4.3: RETRIEVING MISSPELLED WORDS AND ASSOCIATED SUGGESTED ALTERNATIVES
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 w.Documents.Add()
 w.visible = False

 Dim range As Word.Range
 range = w.ActiveDocument.Range
 range.InsertAfter(TextBox1.Text) 'dump in the TextBox.text

 Dim s As Word.ProofreadingErrors
 s = range.SpellingErrors
 If s.Count > 0 Then
 ListBox1.Items.Clear()
 Dim i As Integer
 Dim ss As String
 For i = 1 To s.Count
 ss = s.Item(i).Text
 If ListBox1.FindStringExact(ss) < 0 Then
 ListBox1.Items.Add(ss)
 End If
 Next
 End If

 End Sub

 Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged
 Dim s As Word.SpellingSuggestions = w.GetSpellingSuggestions(ListBox1.Text)
 Dim c As Integer = s.Count

 ListBox2.Items.Clear()
 If c > 0 Then
 Dim i As Integer
 For i = 1 To c
 ListBox2.Items.Add(s.Item(i).Name)
 Next

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 98

 Else
 ListBox2.Items.Add(''No spelling suggestions.")
 End If
 End Sub

 Private Sub Form1_Closing(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
 w.quit(False)
 End Sub

When the user clicks the button, the text in the TextBox is dumped into the document using
the InsertAfter method. Then you create a ProofreadingErrors collection and assign to it any
spelling errors within the range (which has expanded to embrace the text you dumped into the
document). The collection is a set of strings, which you add to the ListBox using the
FindStringExact method to ensure there aren't any duplicates.

Also available from Word is the WordSpellingSuggestions collection (one collection per
misspelled word). When the user clicks on one of the misspelled words displayed in ListBox1,
the WordSpellingSuggestions collection is provided, via the GetSpellingSuggestions method.
ListBox2 is then filled with the collection. In a finished VB.NET application, you would
permit the user to click one of the suggested spellings in ListBox2 and replace the misspelling
in the TextBox with the correction.

Sending a Fax

You can borrow Word's Fax Wizard, which steps the user through the process of sending a fax
(based on either the current document in Word, or text the user wants to add during the Wizard
process). If you want to permit the user to fax text contained in your VB.NET application—in
a TextBox, for example—use the code in the previous example to transfer the text from the
TextBox to the Clipboard, and thence to the Word document (see Listing 4.4).

LISTING 4.4: HOW TO SEND A FAX
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim w As Object = New Word.Application
 w.visible = False
 Dim d As Object = w.Documents.Add

 w.SendFax()

 w.Quit()

 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page 99

Loading Documents

Many of the behaviors you can access in Office applications correspond to those applications'
menu items. If you can see it listed in a menu, you can nearly always find a way to achieve it
via VB.NET.

Say that you want to load the contents of a Word document into a TextBox in a VB.NET
application. Here's one way to do that. This loads the most recently edited file. It corresponds
to the list of recently opened documents found on the File menu in Word. With a button and
TextBox on a form, type Listing 4.5 into the button's Click event.

LISTING 4.5: IMPORTING A WORD DOCUMENT
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim w As Object = New Word.Application
 w.visible = False

 Dim id As IDataObject

 Try

 w.RecentFiles(1).Open() 'get the most recently edited file

 Dim s As String = w.recentfiles(1).name
 Me.Text = s

 'reference the word document most recently loaded
 Dim d As Object = w.Documents(1)

 With d
 .Content.Copy()
 id = Clipboard.GetDataObject
 TextBox1.Text = CType(id.GetData(DataFormats.Text), String)
 .Close()
 End With

 Catch ex As Exception

 MsgBox(ex.ToString)

 End Try

 w.Quit() 'exit word

 End Sub

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page i

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page ii

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page iv

Associate Publisher: Joel Fugazzotto
Acquisitions and Developmental Editor: Tom Cirtin
Production Editor: Leslie E.H. Light
Technical Editor: Greg Guntle
Copyeditor: Suzanne Goraj
Compositor: Maureen Forys, Happenstance Type-O-Rama
Graphic Illustrator: Jeffery Wilson, Happenstance Type-O-Rama
Proofreaders: Nancy Riddiough, Amey Garber, Emily Hsuan, Sarah Tannehill, and Laurie
O'Connell
Indexer: Nancy Guenther
Book Designer: Maureen Forys, Happenstance Type-O-Rama
Cover Designer: Richard Miller, Calyx Designs
Cover Illustrator: Richard Miller, Calyx Designs

Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World
rights reserved. The author(s) created reusable code in this publication expressly for reuse by
readers. Sybex grants readers limited permission to reuse the code found in this publication or
its accompanying CD-ROM so long as the author(s) are attributed in any application
containing the reusable code and the code itself is never distributed, posted online by
electronic transmission, sold, or commercially exploited as a stand-alone product. Aside from
this specific exception concerning reusable code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic, or other record, without the prior agreement and written
permission of the publisher.

Library of Congress Card Number: 2003109130

ISBN: 0-7821-4242-7

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc.
in the United States and/or other countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated.
All rights reserved.
FullShot is a trademark of Inbit Incorporated.

Internet screen shots using Microsoft Internet Explorer reprinted by permission from
Microsoft Corporation.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary
trademarks from descriptive terms by following the capitalization style used by the
manufacturer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The author and publisher have made their best efforts to prepare this book, and the content is
based upon final release software whenever possible. Portions of the manuscript may be based
upon pre-release versions supplied by software manufacturer(s). The author and the publisher
make no representation or warranties of any kind with regard to the completeness or accuracy
of the contents herein and accept no liability of any kind including but not limited to
performance, merchantability, fitness for any particular purpose, or any losses or damages of
any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page v

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in
the future contain programs and/or text files (the ''Software") to be used in connection with the
book. SYBEX hereby grants to you a license to use the Software, subject to the terms that
follow. Your purchase, acceptance, or use of the Software will constitute your acceptance of
such terms.

The Software compilation is the property of SYBEX unless otherwise indicated and is
protected by copyright to SYBEX or other copyright owner(s) as indicated in the media files
(the "Owner(s)"). You are hereby granted a single-user license to use the Software for your
personal, noncommercial use only. You may not reproduce, sell, distribute, publish, circulate,
or commercially exploit the Software, or any portion thereof, without the written consent of
SYBEX and the specific copyright owner(s) of any component software included on this
media.

In the event that the Software or components include specific license requirements or end-user
agreements, statements of condition, disclaimers, limitations or warranties ("End-User
License"), those End-User Licenses supersede the terms and conditions herein as to that
particular Software component. Your purchase, acceptance, or use of the Software will
constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export
laws and regulations of the United States as such laws and regulations may exist from time to
time.

REUSABLE CODE IN THIS BOOK

The author(s) created reusable code in this publication expressly for reuse by readers. Sybex
grants readers limited permission to reuse the code found in this publication, its accompanying
CD-ROM or available for download from our website so long as the author(s) are attributed in
any application containing the reusable code and the code itself is never distributed, posted
online by electronic transmission, sold, or commercially exploited as a stand-alone product.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with them may be
supported by the specific Owner(s) of that material, but they are not supported by SYBEX.
Information regarding any available support may be obtained from the Owner(s) using the
information provided in the appropriate read.me files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any
offer, SYBEX bears no responsibility. This notice concerning support for the Software is
provided for your information only. SYBEX is not the agent or principal of the Owner(s), and
SYBEX is in no way responsible for providing any support for the Software, nor is it liable or
responsible for any support provided, or not provided, by the Owner(s).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WARRANTY

SYBEX warrants the enclosed media to be free of physical defects for a period of ninety (90)
days after purchase. The Software is not available from SYBEX in any other form or media
than that enclosed herein or posted to www.sybex.com. If you discover a defect in the media
during this warranty period, you may obtain a replacement of identical format at no charge by
sending the defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of identical format by sending us
the defective disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

DISCLAIMER

SYBEX makes no warranty or representation, either expressed or implied, with respect to the
Software or its contents, quality, performance, merchantability, or fitness for a particular
purpose. In no event will SYBEX, its distributors, or dealers be liable to you or any other
party for direct, indirect, special, incidental, consequential, or other damages arising out of the
use of or inability to use the Software or its contents even if advised of the possibility of such
damage. In the event that the Software includes an online update feature, SYBEX further
disclaims any obligation to provide this feature for any specific duration other than the initial
posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the above
exclusion may not apply to you. This warranty provides you with specific legal rights; there
may be other rights that you may have that vary from state to state. The pricing of the book
with the Software by SYBEX reflects the allocation of risk and limitations on liability
contained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may contain various programs that are distributed as shareware. Copyright laws
apply to both shareware and ordinary commercial software, and the copyright Owner(s)
retains all rights. If you try a shareware program and continue using it, you are expected to
register it. Individual programs differ on details of trial periods, registration, and payment.
Please observe the requirements stated in appropriate files.

COPY PROTECTION

The Software in whole or in part may or may not be copy-protected or encrypted. However, in
all cases, reselling or redistributing these files without authorization is expressly forbidden
except as specifically provided for by the Owner(s) therein.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page vi

To Nefeli
 —Evangelos Petroutsos

 To David Lee and Cliff
 —Richard Mansfield

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page x

Using the Old-Style Double DateTime Data
Type 39
Finding Days in a Month 39

File I/O (Streaming) 39
Reading a File 40
How Do You Know You're at the End? 41
Writing to a File 42

Form References: Communication Between Forms 45
Using Handles 46

Runtime Handles 47
Detecting Key Presses 47

Loading Graphics with LoadPicture 48
Managing the Registry 48

Writing to the Registry 49
Random Numbers 49

Filling an Array 52
SendKeys 53
Serializing 53

Mixing Types into the Same Stream 55
Reading Back Mixed Data 56

Summary 57

Chapter 3 • Serialization Techniques 59
How Serialization Works 60

Serialization Types 60
Basic Serialization 61

Creating Serializable Objects 65
The ClassSerializer Project 66
XML Serialization 72
The NETConfigFiles Project 76

Custom Serialization 79

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SerializationContext Parameter 80
Serializing SQL Server Data 81

The NWOrders Project 86
Summary 91

Chapter 4 • Leveraging Microsoft Office in Your
Applications 93

Using Word's Features 94
Spell-Checking 94
Sending a Fax 98
Loading Documents 99
Finding Files 100
Feeding Individual Strings and Specialized
Formatting 102
Text Manipulation and Insertion 104
Replacing Text 106
Borrowing Word's Printing Features 107

Using Outlook Objects 109
Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xi

Accessing Excel 111
Evaluating Math Expressions 111
Pretty Printing 113
Sending Data to Excel, Formatting, Calculating,
and Saving 113
Retrieving Data from Excel 115

Summary 117

Chapter 5 • Understanding .NET Security 119
Security: An Overview 120

.NET's Strong Features 121
Users and Groups 122
The Principal 122
Code-Access Security 124
Everyone Must Agree 124

Understanding Code-Access Security 125
CAS Config Files 127
Descriptors 127
Software Restriction Policy 127

Managing .NET Security Policy 128
Using the Framework Configuration Tool 129

Programming for Security 133
Summary 136

Chapter 6 • Encryption, Hashing, and Creating Keys 139
The Main Problem 139

Hashing a Password 140
Hashing a File 142

Encrypting 143
Understanding Initialization Vectors 146
Discovering Key Sizes 147
Hashing while Encrypting 147

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asymmetrical Encryption 151
How RSA Works 153
Encrypting and Decrypting Using RSA 156

Summary 158

Chapter 7 • Advanced Printing 159
Printing in .NET 159
Printer and Page Properties 162

The PageSettings Object 162
The PrinterSettings Object 163

The Printing Dialog Boxes 164
Page Layout and Printing 168

The DrawString and MeasureString Methods 168
Printing Plain Text 174
Printing Tabular Data 179
A PrintScreen Utility 186
Summary 189

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xii

Chapter 8 • Upon Reflection 191
What Use Is It? 191

Understanding Types 191
Getting a Grip on Assemblies 192
Containers within Containers 193
Security Issues 193

Seeing Reflections 194
Accessing a Type 194
Accessing the Current Project's Assembly 198
Accessing a Loaded Assembly 199
Loading a File from an Assembly 200
Loading an Assembly from a File 201
Getting the Methods in a Class 203
More about Types 205
Accessing Specific Members 206
Searching for Members or Data 207

Executing Discovered Code with CreateInstance and
Invoke 208
Emission 213
Summary 214

Chapter 9 • Building Bug-Free and Robust
Applications 215

Structured Exception Handling 216
The Finally Clause 219
The ReadWriteFile Project 219
Resuming Statements That Failed 224
The Exception Class 225
Throwing Custom Exceptions 228
Bypassing Error Handlers 230

Debugging Techniques 231
Types of Programming Errors 232

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dealing with Logic Errors 237
Summary 241

Chapter 10 • Deploying Windows Applications 243
Installing the .NET Framework Runtime 244
XCopy Deployment 245
Internet Deployment 246

Preparing for Internet-Based Deployment 247
Deploying a Windows Application on a Web
Server 249
Code Access Permissions 251
Running the Application 257
Downloading Assemblies on Demand 258

Deploying with Windows Installer 259
Creating a Windows Installer Package 261
Using the File System Editor 263
Creating Shortcuts 266

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xiii

The Registry Editor 267
Using the User Interface Editor 267

Summary 270

Chapter 11 • Building Data-Driven Web Applications 271
New Features in ASP.NET 271

Sending Entire Files 272
Using Server Controls 272

Displaying Data on a WebForm 273
The DataList, Repeater, and Templates 275
Using the DataGrid 276
Detecting Postback 281

Validation 282
Programmatic Validation 282
Validation Controls 283

Sending Graphics 286
Using HTML Controls 287
Summary 288

Chapter 12 • Peer-to-Peer Programming 289
Internet Addressing 289
Using Sockets 292

Using UDP Sockets 295
Using TCP Sockets 297

The TCPChat Application 300
The TCPChatServer Application 301
The TCPChatClient Application 305

Interacting with Web Resources 308
Downloading Documents with WebClient 311
Uploading Documents with WebClient 312
The WebRequest and WebResponse Classes 314

Summary 317

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13 • Advanced Web Services 319
What Are Web Services? 319
Creating a Web Service 320

Caching Web Service Data 322
Consuming a Web Service 323
Preserving State 325

Using Session State 326
Making a Database Connection 326

Using the Pubs Sample Database 327
Getting an XML Dataset 327
Potential Problems with MSDE 329
Looking at the Results 329

Implementing WSDL 330
Viewing WSDL 331

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xiv

SOAP Too 333
Complex Types 333
PortType 335
Seeing SOAP, WSDL, and the Reference Map 336

UDDI: The Registry 336
Testing a Published Web Service 337
Security Considerations 339
Summary 339

Chapter 14 • Building Asynchronous Applications
with Message Queues 341

Queues and Messages 342
Types of Queues 343
Creating New Queues 344
Administering Queues 345

The MessageQueue Class 347
Exploring a Computer's Queues 348

The Message Class 349
Message Properties 350
Creating and Sending Messages 352

Acknowledgments and Time-Outs 358
Requesting Message Acknowledgment 358
Processing Acknowledgment Messages 361
Fault Tolerance and Load Balancing 366
Transactional Messages 371

Processing Orders with Messages 373
Preparing Orders 375
Processing Orders 377

Message Queuing Triggers 382
Defining Rules 382
Defining Triggers 384

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ProcessOrders Console Application 385
Summary 388

Chapter 15 • Practical ADO.NET 391
Accessing Databases 391

The Visual Database Tools 392
The Connection Class 402
The DataAdapter Class 404
The Command Class 409

Working with DataSets 415
Accessing the DataSet's Tables 416
Working with Rows 417
Handling Null Values 418
Adding and Deleting Rows 419
Locating Rows 420
Navigating through a DataSet 421
Using DataViews 426

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xv

Insert and Update Operations 428
Updating the Database with the DataAdapter 428
Handling Identity Columns 430
Performing Transactions with the DataAdapter 436

Summary 440

Chapter 16 • Building Middle-Tier Components 441
From Client/Server to Multiple Tiers 441

What Exactly Is a Business Rule? 443
Designing with Middle-Tier Components 445

Remoting the Business Logic 449
Converting the BusinessLayer Class to a Web
Service 450
Converting the BusinessLayer to a Remote
Service 458

Using COM Components with .NET Clients 461
Using ActiveX Controls in .NET 462

Using COM+ Applications in .NET 465
The COMPlus Component 466
Exporting a Proxy and Testing It 467
Building Serviced Components with .NET 468

Summary 473

Chapter 17 • Exploring XML Techniques 475
Choosing SAX 476

Copying the Sample File 476
Using SAX 476

Deeper into DOM 478
Using Namespaces in XML 480

Explicit Declaration 480
Implicit Declaration 480

The Explosion of Schemes 481
Understanding XSD 481

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using XML Data Types 483
Programmatic XML 487

Edit and Save 488
A Recursive Walk through the Nodes 491

XML and DataSets 493
Persisting with SOAP 495

Mixing and Matching Types 497
Deserialization Trapping 501

More Interchangeability 503
Summary 504

Chapter 18 • Designing Data-Driven Windows
Applications 505

Data Binding 505
The NWProducts Application 506

The Application's Interface 507
The Application's Architecture 508
The Application's Code 510

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xvi

An Invoicing Application 516
The Application's Interface 516
The Application's Architecture 518
The Application's Code 525
Adding a Business Rule 532

The Relations Application 535
The Application's Architecture 535
The Application's Code 536

The Relations1 Project 539
Summary 542

Chapter 19 • Working with Regular Expressions 543
Writing Regular Expressions 544
The RegularExpressions Class 547

Using the Matches Method 550
Using the Match and NextMatch Methods 551
The Split Method 552
The Replace Method 552

The Elements of a Regular Expression 558
Characters and Metacharacters 558
Single Character Metacharacters 558
Ranges of Characters 559
White Space and Metacharacters 560
Quantifiers 560
Anchors 562
Escaping Metacharacters 563
Alternation 563
The RegExEditor Project 564

Advanced Topics in Regular Expressions 567
Grouping and Back-References 568
Regular Expressions with Multiple Captures 573

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lookahead and Lookbehind Assertions 575
Advanced Replacement Operations 578

The RegularExpressions Project 579
The Visual grep Project 582
Summary 588

Chapter 20 • Advanced Graphics 589
The PlotControl 590

The GraphicsPath Object 591
The Control's Members 591
Drawing the Grid 598

A Fractal Generator 602
What Is a Fractal? 602
The Mandelbrot Set 607
The Julia Set 612
The Real Magic of Fractals 616

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xvii

Complex Number Operations 620

The Transformation z = z2 + c 621
Summary 622

Chapter 21 • Designing the User Interface 623
Making Applications Look Reliable 623
Windows Conventions 626

The Metallic Look 626
FontBold Off 627
Using a Sans-serif Typeface for Headlines 627
Choosing a Type Size 627
Layering 627
Adding Depth 627
Light from the Upper Left 628
Creating Zones 629
Framing 630

Metallic Shading 635
Sliding and Fading Transitions 636

Fade In, Fade Out 637
Sliding 640

Summary 641

Chapter 22 • Using the .NET Compact Framework
and Its Emerging Technologies 643

What's Eliminated? 644
Output Lite 644
Solving the Connectivity Problem 644

Using the Simulator 645
Understanding the Mobile Form 646
Navigating to a Second Form 646

More New Features 647
New Technology, New Behaviors 648

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The List Controls 650
Mobile Security 652
Debugging via Tracing 654

Custom Tracing 655
Trace Information Sections 656

Providing Friendly Error Messages 656
Device Specificity 658
Using Emulators 660

Custom Device Emulators 660
The Visual Studio 2003 Pocket PC Emulator 661
New Technology, New Problems 662

Summary 663
Index 665

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xviii

This page intentionally left blank.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Team Fly

Page xxii

You'll find a variety of useful utilities throughout the book, including DES and RSA
encryption systems in Chapter 6 that you can plug into your projects to protect the privacy of
any kind of data. The chapter on Office automation, Chapter 4, demonstrates how to add a
variety of utilities to your VB.NET programs: extracting statistical information such as word
or paragraph counts; evaluating math expressions; spell checking; automatically retrieving e-
mail; filtering and displaying e-mail; searching directories and subdirectories for specific files;
importing data from or exporting data to Word, Excel or Outlook; and sending faxes.

Chapter 5 takes you on a tour of the Windows and .NET multi-layered security maze—all the
various secret keyholes and locks that must be correctly set before even a single function can
execute. You'll see how to manage code-based (.NET), role-based (Windows), and
miscellaneous (IIS, database-specific, and so on) security systems. Did you know that you can
specify security with such great specificity that you can grant or deny permission for each
individual procedure—or even for each individual line of code—within your VB.NET
projects?

Chapter 8 explores the new technology called reflection with which you can extract
information from self-describing assemblies (libraries of code that contain descriptions of their
contents). You're shown how you can use this information in specialized, though practical,
applications, and how you can even go so far as to emit (write code-generating code).

Forms design is the topic of Chapter 21: What you can do to make the appearance of your
VB.NET programs more professional, polished, and ergonomic. This chapter covers one of the
most overlooked aspects of program design—the design itself properly so called, the actual
look of the finished application on its surface—where your programming logic rises and
becomes visible to your users. Among the techniques explained in this chapter are light
sources, metallic surfaces, fonts, layering, depth, framing, shading, gradients, and transitions.
In Chapters 11, 13, and 18 you'll find largely hype-free coverage of programming data-driven
Web applications, Web services, and XML, respectively.

Although you will find a book on every aspect of ADO.NET in the market, we've included
two chapters on the topic of database programming: an overview of the ADO.NET object
model with simple examples and a chapter with practical data-driven applications. One of the
examples is an invoicing application, which is a fundamental component of every business.
Besides sending XML data to Japan, or exchanging data with a database residing on a satellite,
a company may need to sell products and services, and for this you'll need a functional
application for preparing orders and invoices. It's a humble task, but too important to be
skipped in a practical chapter on data-driven applications. You have certainly read a lot about
the middle tier of a data-driven application. If you understand what a middle tier is, you can
skip our discussion on developing middle-tier components. If you need a simple example of a
business rule, how to implement business rules as middle-tier components, and how to deploy
middle-tier components so that you can change the business rule without touching the code of
the application that has already been deployed to the users' workstations, then explore our
examples in Chapters 16 and 18.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We've also included a few useful tools, which you can use in your projects with little or no
customization. The PRNTextBox and PRNListView controls are enhanced versions of the
TextBox and ListView controls that provide methods to print their contents. Regular
expressions are not the bread and butter of the typical VB developer, and this is the reason
most books totally ignore this topic. To demonstrate regular expressions in Chapter 19, we've
included the RegExEditor: a simple text editor that allows you to search text files using
general search patterns, such as e-mail addresses, dollar amounts, and so on. In Chapter 20
we've included two graphics applications, one for plotting functions—a practical control you
can use in any number-processing application—and a fractal application—a program that
generates fascinating patterns for your amusement. All of the utilities are available at
www.sybex.com.

Team Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You are here: home

We offer the only comprehensive approach to eBooks that integrates with the time-
honored missions and methods of libraries and librarians. Our vision is one of enhancing
the role of librarians as stewards of knowledge, supporting their crucial role in serving
millions of people every day who seek information.

home | search tools | reading room | help | jobs | log in
© 2001 - 2004, netLibrary, a division of OCLC Online Computer Library Center, Inc. All
rights reserved. privacy statement | terms of use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

